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CONVERSION FROM ENGINEERING UNITS TO TELEMETRY 
COUNTS ON DRYDEN FLIGHT SIMULATORS 

Jay A. Fantini 
Woodside Summit Group Incorporated 

Edwards, California 

ABSTRACT 

Dryden real-time flight simulators encompass the simulation of pulse code modulation (PCM) telemetry 
signals. This paper presents a new method whereby the calibration polynomial (from first to sixth order), 
representing the conversion from counts to engineering units (EU), is numerically inverted in real time. 
The result is less than one-count error for valid EU inputs. The Newton-Raphson method is used to 
numerically invert the polynomial. A reverse linear interpolation between the EU limits is used to obtain 
an initial value for the desired telemetry count. The method presented here is not new. What is new is 
how classical numerical techniques are optimized to take advantage of modem computer power to 
perform the desired calculations in real time. This technique makes the method simple to understand and 
implement. There are no interpolation tables to store in memory as in traditional methods. The NASA 
F-15 simulation converts and transmits over 1000 parameters at 80 times/sec. This paper presents 
algorithm development, FORTRAN code, and performance results. 
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INTRODUCTION 

NASA Dryden Hight Research Center (DFRC), Edwards, California, flight simulators encompass the 
simulation of pulse code modulation (PCM) telemetry signals. These signal streams contain data relating 
to accelerations, velocities, and other vehicle states. The streams, along with voice, video, and simulated 
radar data, are used to rehearse for actual flight missions and to train control room personnel, so they can 
become familiar with expected values and learn emergency procedures. 

A PCM system is an electronic device mounted in a vehicle that converts analog measurements into 
digital counts, or scaled integers that represent state values of the vehicle. These counts are transmitted 
through a radio signal to a ground station for real-time tracking and data archival. Control room 
personnel use this information to determine if the vehicle is operating correctly. In a flight simulator, the 
vehicle states are calculated and stored as floating point numbers. The process of converting the analog 
measurements into counts is programmed into the flight simulation in order to mimic the behavior of a 
PCM system. 

Before a PCM system can be used, it must first be calibrated. Calibration consists of matching count 
values to their corresponding real-world analog values. These values are called engineering units (EU). 
Ideally, the PCM system should cover the entire range of the e '(pected values of the physical parameter 
being measured. The PCM systems measure their transmission resolution in number of bits. That means 
the device can count from 0 to 2n - 1 where n is the number of bits. The total counts is thus 2n. The 
majority of PCM systems range from 10 to 20 bits of resolutlOn. These counts correspond to ranging 
from 1 part in 1,024 to 1 part in 1,048,576 because 210 = 1024 z 103 and 220 = 1,048,576::::: 106. 

The zero value would correspond to the one extreme value of the physical parameter, and the 2n - I value 
would correspond with the other extreme value. In practice, the entire domain is not used. For example 
for a 1O-bit PCM system, the count domain of interest might be from 50 to 800 instead of 0 to 1023. The 
majority of the time, the relationship between the counts and the EU is linear. In cases where the relation
ship is not linear, a polynomial curve fit is performed on th~ counts and EU data pairs. This paper 
addresses the question of conversion from EU to counts whtn the relationship is a polynomial. The 
polynomial is valid for all count values that are bounded by the lower count limit and the upper count 
limit. The returned value is the corresponding EU value. The form of the polynomial is 
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EU = Pn (x) "II x E [L, U] (1) 

where x is counts, and L,U are count bounds. 

The ideal solution is to solve equation (1) in closed form when given the coefficients. For polynomials of 
degree 5 or higher, a fast numerical method that yields the root that lies within the minimum and maxi
mum counts value would be desirable. Modem computers, used for real-time flight simulation, compute 
at speeds over 20 MFLOPS/CPU (scalar) with 15 decimal digits of precision. In a typical flight simula
tion, multiple CPU are used to distribute the workload. One CPU simulates the engine; another, the 
aerodynamic forces on the aircraft; and still another, the navigation. A dedicated CPU is used for 
simulating the PCM stream. 

A typical NASA DFRC simulation has 100 to 1500 parameters that are converted every frame. The frame 
rate ranges from 80 to 200 Hz. The conversion polynomials range from first to sixth order with the major
ity of nonlinear polynomials being second and third order. The simulation is hosted on a computer 
equipped with 128 MB of memory and four to eight 64-bit CPU running at 195 MHz. The computing 
power of one CPU is sufficient to give the simulation engineer the ability to numerically solve these 
polynomials in real time through a quadratic convergent or more efficient numerical method provided the 
polynomials fulfill certain conditions. 

STATEMENT OF PROBLEM 

The objective of this research is to develop a method of solving equation (1) for x numerically in real 
time, for each parameter, such that the absolute error of the solution is less than 1 count. The count 
domain, EU range, polynomial, and EU value to be converted into a count are known. The EU value of 
interest must lie within the EU range. The main condition on the polynomial is that it is monotonic, 
increasing or decreasing for all counts within the count range. Here monotonic means that for counts 
within the counts domain, the slope of the polynomial does not change sign, and the slope is never equal 
to zero over a non-zero interval. If this condition were not met, then there would be two different counts 
that correspond to the same EU value. In formal notation, the conditions are as follows: 

EU _MIN, the minimum expected value of parameter being measured; 

EU _MAX, the maximum expected value of parameter being measured; 

count value L such that P n (L) = EU_MIN; 

count value U such that P n (U) = EU _MAX; 

monotonic polynomial P n (x) "II x E [L, U], n ~ 1; and 

Linear interpolation is a common technique currently used on flight simulators to perform the conversion. 
The basis of this technique is as follows: 
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1. During initialization, generate a table containing (P n (x), x) for x = L to x = U with m evenly 
spaced entries. The simulation engineer chooses the value for m. This value is based on accuracy 
needs and computer memory usage. Note that the table entries are reversed. 

2. During run time, perform a linear interpolation using the EU value and the generated table to 
obtain the required counts value. 

This technique has the advantage of being very simple to implement because it is the same technique 
used to obtain coefficient values from aerodynamic tables. The main disadvantages are as follows: 

1. Depending on size of m for each parameter, the method consumes large amounts of computer 
memory. For example in cases with 1000 parameters, each parameter generates an interpolation 
table of 64 entries. Storage for 128 numbers is required for each parameter. Assuming each 
number is a floating point type (e.g. FORTRAN's REAL*4) and consumes 4 bytes of computer 
memory, 512,000 bytes (0.5 MB) is used for the entire simulation. Note that the coefficients used 
to generate the interpolation tables can be erased from computer memory once the tables have 
been generated. 

2. Further complexity is introduced by using a different value for m for each parameter. This value 
would be another number for the simulation program to track. 

3. Careful analysis must be made to ensure that m is large enough to return a result to within the 
desired error. To minimize the error for a given m, uneven spacing in the interval is needed. 

4. The larger m is, the longer the interpolation takes. The majority of linear interpolation methods 
perform a linear search within the interval to find the correct subdivision before the actual interpo
lation takes place. The run time for this would be on the order of m (O(m». For advanced search 
schemes, such as bisection, the run time would be O(log(m». Programming techniques can reduce 
these times; however, increased complexity and memory usage will result. 

The method given in this paper overcomes these limitations. Memory usage is limited to storing the 
coefficients of P n (x), the order of the polynomial, the values of L, U and EU. Run time is a function of 
the order of the polynomial only for a given computer platform. 

SOLUTION 

The solution is to numerically solve equation (1) directly either by closed-form solution or with an 
iteration scheme. For polynomials of first and second order, the well-known linear and quadratic formu
lae are used. For third order and higher, the Newton-Raphson method is used. 

In the linear case, the equation 

y = ax+ b (2) 

is solved through 
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x = (y- b)la 

which involves two floating point calculations. 

In the quadratic case, only one of the roots of the quadratic formula is computed. For the equation, 

2 
y = ax + bx+ c 

the general solution is 

x = [-b ± -V(b
2 

- 4a(c - y»]/(2a) 

(3) 

(4) 

(5) 

For the polynomial P2 (x), only one of the roots lie in the interval bounded by Land U. One of the 
conditions cited by equation (1) is that P n (x) be strictly monotonic, increasing or decreasing for all x in 
[L,U]. This requirement prevents having the slope be zero within a subinterval of the stated interval. 
Thus, P n (x) will have a unique inverse for all EU in [EU_MIN, EU_MAX]. 

If L S U, then the desired root to P 2 (x) will be 

x = [-b + -V(b
2 
-4a(c- y»]/(2a) (6) 

Otherwise, P 2 (x) will be 

x = [-b--V(b
2
-4a(c-y»]/(2a) (7) 

The most time-consuming part of this calculation for real-time computation is the square root. 

For polynomials of third degree or higher, numerical methods are used. It is possible to solve third- and 
fourth-order polynomials in closed form, but the formulae involve radicals and trigonometric functions. 
This approach is too time consuming for real-time use and would not lend itself to being generalized for 
higher order polynomials. Because only the root that lies within [L,U] is desired, a numerical method, 
such as Newton-Raphson or Halley's, can be used. 

Two main concerns exist when using numerical techniques in real-time calculations: (1) convergence to 
root within precision and (2) time constraints and robustness of algorithm. Halley's method requires the 
calculation of not only P n (x) but also ap n(x)/ax and a2 

P n(x)/ai. Halley's method enjoys cubic 
convergence; that is, the number of correct digits triple after every iteration for x near xans where x ans is 
the root. In general, the quicker the method converges, the more critical it is that the initial approximation 
to the root be as close to the actual root as possible. This brittleness can be somewhat overcome by using 
the Newton-Raphson method l which is quadratic convergent. Newton's method is as follows: 

For y = j(x) = 0, x = x- j(x)/s(x) (8) 

where sex) = aj(x)/ax for Xo near x and 
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where Xo is the initial approximation of the root. 

For P n (x), the following two questions arise: 

• How is Xo selected when given P n (x), L, U? 

• How are P n (x) and ap n(x)/ax evaluated quickly? 

One of the conditions on P n (x) is that it be monotonic within [L,U]. From this condition, the existence of 
a unique inverse in the interval [EU_MIN,EU_MAX] is known. Assuming that 

(9) 

where EU is the engineering units value whose corresponding count is sought, construct the equation of a 
line using the points {(EU_MIN,L),(EU_MAX,U)} giving 

Xo = m * z + b (10) 

Evaluate equation (10) at z = EU to obtain the initial root to P n (x). Once Xo has been derived from 
equation (10), iterate using equation (8), where f(x) = P n (x) - E'J until convergent. 

The evaluation of Pn (x) and apn(x)/ax can be sped up by use of Homer's notation. For a polynomial, 

(11 ) 

The polynomial can be rewritten as follows: 

(12) 

Equation (12) enables computation of P n (x), using n multiplications and n additions. To compute 
a P n (x) I ax through Horner's notation, equation (13) is used. 

a na n-l 
X I x = nx (13) 

This computation gives 

(14) 

Equations (12) and (14) enable one to evaluate a polynomial anj its derivative without direct calculation 
of integral powers. This evaluation results in increased perfomtance as multiplication takes fewer CPU 
cycles than evaluation of powers. 
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Numerical experimentation has shown that four iterations are sufficient to obtain a result that differs from 
the actual root by less then 0.5 counts. This result is then rounded to the nearest integer before being 
returned to the calling program. 

IMPLEMENTATION IN FORTRAN 

The appendix contains the FORTRAN listing of the method as used at DFRC. This method consists of 
three routines: PL YSL V which solves the polynomial, PL YEVL which evaluates the polynomial at the 
selected point through Horner's notation, and PLYSLP which evaluates both P n (x) and dP n(x)ldx at 
the same time to reduce subroutine calling overhead. 

The inputs for PL YSL V are as follows: 

CTMIN - The value of CT _MIN expressed as a double precision number. 

CTMAX - The value of CT_MAX expressed as a double precision number. 

COEF - The double precision array of coefficients of the polynomial where COEF(O) is the constant 
term. 

N - The order of the polynomial expressed as an integer. 

x - The EU value input. 

The returned value is the solution of equation (15) 

(15) 

expressed as a double precision number where x is bounded by CTMIN and CTMAX. 

As an example to solve the polynomial 

3 2 
P 3(x) = 8.9617387E-8x - 2.5674509E- 4x + 0.80511892x - 106.4193 (16) 

where CTMIN = 0, CTMAX = 1023 

P3 (CTMIN) = -106.4193, and P3 (CTMAX) = 544.470472738 are generated. Solving for EU = 0.0 is 
required. The root that lies in [-106.4193, 544.470472738] is x = 137.955 which when rounded is 
138 counts. 

PERFORMANCE 

This method was tested on a computer with a 64-bit microprocessor running at 195 MHz. Compilation 
and optimizations flags were used to obtain maximum performance. A small main program was written 
that takes the following input: 
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• The polynomial coefficients and order of polynomial 

• The values for EU_MIN and EU_MAX 

• The number of steps, M 

The program varies the EU value from EU_MIN to EU_MAX along M evenly divided steps. This 
variance prevents the optimizer from o~timizing away any calculations and serves to simulate a slowly 
varying EU value. For all cases, M = 10 . 

Order of Polynomial 

6 

5 

4 

3 

2 

1 

Solutions/Sec 

588,000 

714,000 

769,000 

909,000 

3,030,000 

9,090,000 

CONCLUSION 

Remarks 

Highest order tested 

Lowest order using iteration 

Quadratic formula used 

Linear solution 

The method presented here to convert from engineering units values to counts have the advantages of 
(1) greatly reduced memory usage as linear interpolation tables are not used and (2) removal of errors 
caused by linear interpolation. These attributes allow the simulated pulse code modulated stream to be 
compared with actual aircraft-generated streams to determine the difference in behavior between flight 
simulation models and actual aircraft. The main disadvantage of the method is that a great deal of 
computer power is required to solve the higher order polynomials in real time. As computer performance 
improves because of technical advances, the power demand of the method will be less of a concern. 
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APPENDIX 

The FORTRAN-77 listing for converting from engineering units to telemetry counts is given in this 
appendix. 

DOUBLE PRECISION FUNCTION PL YSLV(CTMIN,CTMAX,COEF,N,X) 

IMPLICIT NONE 

DOUBLE PRECISION CTMIN,CTMAX,X 

DOUBLE PRECISION ANS,A,B,C,T,D,E,Y,S 

DOUBLE PRECISION PMIN,PMAX,XM,XB 

INTEGERN,I 

DOUBLE PRECISION COEF(O:N) 

DOUBLE PRECISION PL YEVL 

C CTMIN and CTMAX are arranged such that 

C Pn(CTMIN) < Pn(CTMAX) 

ANS=O.ODO 

IF (N .EQ. 1) THEN 

A=COEF(1) 

B=COEF(O) 

ANS=(X-B)/A 

GOT0900 

END IF 

IF (N .EQ. 2) THEN 

A=COEF(2) 

B=COEF(I) 

C=COEF(O)-X 

T=2.0DO*A 

D=-B 

E=DSQRT(B *B-4.0DO* A *C) 

IF (CTMIN .LE. CTMAX) THEN 

ANS=(D+E)IT 

ELSE 

ANS=(D-E)IT 
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END IF 

GOT0900 

END IF 

C Perform a reverse linear interpolation 

C between the points [CTMIN,Pn(CTMIN)] 

C and [CTMAX,Pn(CTMAX)] using the value 

C of X (number to be solved for) to generate 

C XO (initial value of counts value). 

PMIN=PL YEVL(COEF,N,CTMIN) 

PMAX=PL YEVL(COEF,N,CTMAX) 

XM=(CTMAX-CTMIN)/(PMAX-PMIN) 

XB=CTMIN-PMIN*XM 

ANS=XM*X+XB 

DO 100 1=1,4 

CALL PL YSLP(COEF,N,ANS,Y,S) 

ANS=ANS-(Y -X)/S 

100 CONTINUE 

900 PL YSL V=ANS 

RETURN 

END 

C *********************************************"*************** 

SUBROUTINE PL YSLP(C,N,X,S,T) 

IMPLICIT NONE 

DOUBLE PRECISION X,S,T 

INTEGER N,I 

DOUBLE PRECISION C(O:N) 

C This subroutine will compute the value of 

C Pn(x),dPn(x)/dx when given: 

C Coefficients with C(O) being the constant 
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C term, N is the Order of the Polynomial 

C and X is the value to evaluate at. 

C Outputs: S is Pn(x), T is dPn(x)/dx 

C This subroutine is for solving polynomials 

C of order 4-6 for PCM conversion. 

C N must be > 1. 

C 23-MAY-1997 

S=C(N) 

T=S*DBLE(N) 

DO 100 I=N-1,1,-1 

S=S*X+C(I) 

T=T*X+C(I)*DBLE(I) 

100 CONTINUE 

S=S*X+C(O) 

RETURN 

END 

C ***************************************** 

DOUBLE PRECISION FUNCTION PL YEVL(C,N,X) 

IMPLICIT NONE 

DOUBLE PRECISION S,X 

INTEGER N,I 

DOUBLE PRECISION C(O:N) 

S=C(N) 

DO 100 I=N-l,O,-l 

S=S*X+C(I) 

100 CONTINUE 

PLYEVL=S 

RETURN 

END 
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