
United States Patent [19]

Steinman et al.

[S4] PARALLEL PROXIMITY DETECTION FOR
COMPUTER SIMULATIONS

Inventors: Jeffrey S. Steinman, Chatsworth. [75]
Calif.; Frederick P. Wieland.
Spotsylvania. Va.

[73] Assignee: The United States of America as
represented by the Administrator of
the National Aeronautics and Space
Administration. Washington. D.C.

[* J Notice: The term of this patent shall not extend
beyond the expiration date of Pat. No.
5.652.87 1.

[21] Appl. No.: 813,531

[22] Filed: Mar. 7, 1997

Related US. Application Data

[62] Division of Ser. No. 425,751, Apr. 10, 1995. Pat. No.
5,652,871.

[51] Int. CL6 .. G06F 17/50
[52] U.S. C1. 399500; 364/578; 364/400
[58] Field of Search 395/500; 364/578.

364/423. 232.3. 916.5. 922.5. 933.8

[561 References Cited

PUBLICATIONS

Hirata et al., “An Implementation of a Technique for Sharing
Variables in Time Warp.” 1995 Simulation Symposium, pp.

Raghunandan et al., “Dynamically Switching Between Lazy
and Aggressive Cancellation in a Time Warp Parrallel Simu-
lator.” 1995 Simulation Symposium. pp. 22-30.
Reiher et al.. “Providing Determinism in teh Time Warp
Operating System-Costs. Benefits, and Simplifications,”
1990 Experimental Distributed Systems Workshop, pp.

Steinman. “Interactive SPEEDES,” 199 1 Simulation Sym-

13-21.

113-118.

posium. pp. 149-158.

BATTLE

C - i

US00578 1 762A

[I I] Patent Number: 5,781,762
 SI Date of Patent: “Jul. 14, 1998

Steinman et al.. “Global Virtual Time and Distributed Syn-
chronization.” 1995 Parallel and Distributed Simulation
Workshop. pp. 139-148.
Weiland et al.. “Parallel-Discrete-Event Simulation
(PDES): A Case Study in Design. Development. and Per-
formance IJsinf SPEEDES.” 1995 Parallel and Distributed
Simulation Workshop. pp. 103-1 10.
Bagrodia et al.. “Parallel Simulation of the Sharks World
Problem.” Proceedings of the Winter Simulation Confer-
ence. pp. 191-198.
Chandy et al.. “Distributed Simulation: A Case Study in
Design and Verification of Distributed Programs.” 1979
IEEE Transactions on Software Engineering. pp. 440-452.
Felderman et al.. ‘Two Processors Time Warp Analysis:
Some Results ona Unifying Approach.” Proceedings of the
SCS Multiconference on Advances in Parallel and Distri-
bued Simulation. pp. 3-20. no date.

(List continued on next page.)

Primary Examiner-Emanuel Todd Voeltz
Assistant Examiner-Leigh Marie Garbowski
Attorney, Agent, or F i r e J o h n H. Kusmiss
[571 ABSTRACT

The present invention discloses a system for performing
proximity detection in computer simulations on parallel
processing architectures utilizing a distribution list which
includes movers and sensor coverages which check in and
out of grids. Each mover maintains a list of sensors that
detect the mover’s motion as the mover and sensor cover-
ages check in and out of the grids. Fuzzy grids are included
by fuzzy resolution parameters to allow movers and sensor
coverages to check in and out of grids without computing
exact grid crossings. The movers check in and out of grids
while moving sensors periodically inform the grids of their
coverage. In addition, a lookahead function is also included
for providing a generalized capability without making any
limiting assumptions about the particular application to
which it is applied. The lookahead function is initiated so
that risk-free synchronization strategies never roll back grid
events. The lookahead function adds fixed delays as events
are scheduled for objects on other nodes.

22 Claims, 6 Drawing Sheets

HOST ROUTER FOR
MAIN PROXIMITY DETECTION

VISUALLY
REALISTIC

RENDERING
STATION

WORKSTATION

MAIN PROXIMITY
DETECTION SYSTEM 1- OPERATING IN SPEEDES -3

5,781,762
Page 2

~

OTHER PUBLICATIONS

Fujimoto. “Design and Evaluation of the Rollback Chip:
Special Purposes Hardware for Time Warp.” 1992 E E E
Transactions of Computers. pp.68-82.
Fujimoto. “Lookahead in Parallel Discrete-Event Simula-
tion.’’ 1988 International Conference on Parallel Processing.

Fujimoto. “Parallel Discrete Event Simulation.” 1990 Com-
munication of teh ACM. pp. 30-53.
Gordon. “On Distributed Simulation Involving Human
Interaction.” 1992 Proceedings of the SCS Conference.

Hontalas et al., “Performance of the Colliding Pucks Simu-
lation of the Time Warp Operating System.” 1989 Proceed-
ings of the SCS Multiconference on Distributed Simulation.

Jefferson. “Virtual Time.” 1985 ACM Tracnsactions on
Programming Language and Systems. pp. 404-425.
Jefferson et al.. Distributed Simulation and the Time Warp
Operating System. 1987 ACM Operating System Review, no

Lubachevsky. “Several Unsolved Problems in Large-Scale
Discrete Event Simulations.” 1993 Proceedings of the 7th
Workshop on Parallel and Distributed Simulation. pp.
60-67.
Rapaport. ‘The Event Scheduling Problem in Molecular
Dynamic Simulation,” 1980 Journal of Computational Phys-
ics, pp. 184-201.

pp. 3 4 4 1 .

pp.14.

pp. 3-7.

pp.#S.

Rieher et al.. “Cancellation Strategies in Optimistic Execu-
tion Systems.” 1990 Proceedings of the SCS Multiconfer-
ence on Distributed Simulation. pp. 112-121.

Steinman, “SPEEDES: A lrnified Apporach to Parallel
Simulation. ” 1992 Proceedings of the SCS Multiconference
on Advances in Parallel and Distributed Simulation. no

Steinman. “Breathing Time Warp.” 1993 Proceedings of the
Federated Computing Research Conference. no pp.#s.

Steinman. SPEEDES: A Multiple-Synchronization Environ-
ment for Parallel Discrete Event Simulation. 1992 Interna-
tional Journal of Computer Simulation. pp. 251-286.

Steinman. “Incremental State Saving In SPEEDES Using
C-H.” 1993 Proceedings of the SCS Winter Simulation
Conference. no pp. #s.

Wieland et al.. ‘The Performance of a Distributed Combat
Simulation with the Time Warp Operating System.” 1989
Concurrency. Practice and Experience. pp. 35-50.

Wieland. “A Critical Path Tool for Parallel Simulation
Performance Optimization.” 1991 Proceedings of the Inter-
national Conference on System Sciences. no pp.#s.

Wieland et al.. “Experience in Parallel Performance Mea-
surement: The Speedup Bias.” 1992 Proceedings of the
Third Symposium on Experience with Distributed Multi-
processor Systems. no pp.#s.

pp.#s.

U.S. Patent Jul. 14, 1998 Sheet 1 of 6 5,781,762

1D

ln-

_____I I

U.S. Patent Jul. 14, 1998 Sheet 2 of 6 5,781,762

U.S. Patent Jul. 14, 1998 Sheet 3 of 6 5,78 1,762

U.S. Patent Jul. 14, 1998 Sheet 4 of 6 5,781,762

Z
Q:
I
0 w

US. Patent 5,781,762 Jul. 14, 1998 Sheet 5 of 6

I I

U.S. Patent Jul. 14, 1998 Sheet 6 of 6 5,781,762

5.781.762
2

event simulation practices. However. DIS is not technically
a true synchronized discrete-event protocol.

Thus. the DIS strategy assumes that the perception enve-
lope of each sensor includes the entire virtual world. Each

5 sensor receives information about all moving objects con-
tinually during the simulation. The algorithms within the
computer image generators that are connected to each sensor
determine which objects in the virtual world are to be
rendered or ignored.

A second example illustrating methods for proximity
detection is the Concurrent Theater Level Simulation
(CnS) implemented under the Time warp Operating Sys-
tem (TWOS). In the initial approach of this system, the
battlefield was decomposed into grids that represented

j 5 physical regions of space. Although the scalar speed of the
objects and their direction of motion could be changed at any
time. objects were constrained to move in straight lines.
Also. because all motion was modeled as a sequence of
straight-line segments. only one type of EOM was needed.

2o Thus. curved trajectories. for example. could be approxi-
mated only through a set of straight lines.

Combining the straight-line motion with a rectangular
battle space grid boundary crossings is easily computed. If
a mover changed its motion by either changing its speed or

25 direction. grid crossing events that were erroneously sched-
uled were canceled through user cancellation messages. The
actual proximity detection computations were performed by
the grid objects themselves. which reduced overall message
traffic. As a result. consistency in the treatment of proximity

30 detection is ensured and the work from the moving objects
is reduced.

However. it was not anticipated that military simulations
would tend to behave like football games. where the player

35 with the ball is chased. In a typical CI’LS simulation run.
most of the ground units would inevitably congest into a
s m a l l number of grids to fight their battle. Because grids
performed most of the work. they became bottlenecks, thus
limiting the amount of parallelism in the simulation.

Consequently. proximity detection for simulations involv-
ing moving objects can be critical. especially when object
interactions are restricted to a finite range. Hence. the goal
of proximity detection is to provide correct spatial informa-
tion for moving objects and participating sensor objects.

However. one of the fundamental and most diflicult
problems in supporting parallel simulations for military
applications is providing proximity detection that does not
bog down the simulation. The typical system currently
utilized is dependent solely on the wall clock for

50 synchronization. but this system is not logically synchro-
nized and limits the repeatability of the simulation on
parallel processing computers. Also, proximity detection
must provide each participating sensing object with a list of
equations of motion (EOM) for all other objects within its

55 sensor range. This list must be correct at all simulation
times.

Therefore. what is needed is a system that reduces or
eliminates bottlenecks in the proximity detection simulation.
What is also needed is a system that virtually eliminates

60 instabilities by further reducing the number of messages
required. What is also needed is a system that allows
unrelated grid events to be processed out of order.

What is additionally needed is a system that can provide
correct spatial information for moving objects. What is

65 additionally needed is generalized proximity detection for
moving objects in a logically correct parallel discrete-event
simulation. What is further needed is a system for deter-

Io

45

1
PARALLEL PROXtMITY DETECTION FOR

COMPUTER SIMULATIONS

This is a division of application Ser. No. 08/425.751.
filed Apr. 10. 1995. now lis. Pat. No. 5.652.871.

ORIGIN OF INVENTION

The invention described herein was made in the perfor-
mance of work under a NASA contract. and is subject to the
provisions of Public Law 96-517 (35 IJSC 202) in which the
contractor has elected not to retain title.

BACKGROUND OF THE INVENTION

1. Field of the Invention
The present invention relates, in general. to performing

proximity detection for computer simulations on parallel
processing architectures. and in particular, for detecting the
proximity of moving objects in a logically correct parallel
discrete-event simulation.

2. Related Art
Providing proximity detection for simulations involving

moving objects can be critical. especially when object
interactions are restricted to finite ranges. Various parallel
simulation studies in the past. such as “toy” simulations.
have touched on the subject of proximity detection. These
“toy” simulations ranged from colliding pucks to swimming
sharks devouring nearby fish. However. “toy” simulations
are not the only applications that require proximity detec-
tion. For example. interactive simulations. virtual reality.
colliding space debris, biological models. and the modeling
of interacting particles with short range forces are all real-
world applications that require proximity detection.

In addition, proximity detection is also applied in the
military community to confederate simulation elements by
using the Distributed Interactive Simulation (DIS) set of
protocols. Nevertheless. the DIS approach is not a logically
correct simulation strategy because it uses the wall clock for
synchronization. Events in a DIS exercise are therefore not
repeatable. Protocol Data Unit (PDU) messages are broad-
cast and received by different DIS “cells” without regard for
rigorous time ordering. Because DIS protocols were
designed for real time training and systems acquisition
decisions. the rigorous synchronization required for analytic
studies is not as critical.

DIS uses a “dead reckoning” technique for simulation
objects to compute the locations of other objects in their
virtual world. DIS objects periodically broadcast their state
informtion. which includes parameters for their dead-
reckoning equations. to all of the other objects in the
simulation. As a result. if there are N objects in the
simulation. a total of N messages would be required. ie.. one
from each object. Each object must process and store the N
messages resulting in a loss of scalability.

Objects broadcast their state information when either five
real-time seconds have elapsed since the last broadcast or
when the object has determined that the dead reckoning
system, computed by the other DIS cells. is in error. Errors
in the dead reckoning system arise when an object changes
its equations of motion (EOM), or if cumulative errors in the
dead reckoning system have exceeded a certain threshold.

Both conditions are motivated by the use of an unreliable
“User Datagam Protocol” (UDP) for message communica-
tion and for providing interoperability. Consequently. DIS
objects broadcast their state more frequently than what
would have been required by strict adherence to discrete-

5.78 I .762
3

mining the views of each object in a manner that is fully
scalable in terms of CPU usage, number of messages, and
memory requirements.

Whatever the merits of the above mentioned existing
systems and methods, they do not achieve the benefits of the
present invention.

SUMMARY OF THE INVENTION

To overcome the limitations in the prior art described
above. and to overcome other limitations that will become
apparent upon reading and understanding the present
specification. the present invention discloses a system for
performing proximity detection in computer simulations on
parallel processing architectures.

The present invention utilizes a distribution list system
which includes movers and sensor coverages that check in
and out of grids while moving sensors periodically inform
the grids of their coverage. Fixed sensors only need to
inform the grids once during initialization. Also. the grids
manage a list of movers and a list of sensors that are
operating in their represented space.

When a mover checks into a new grid it simultaneously
checks out of its old grid, except during initialization when
it checks into its first grid. Also. the movers always maintain
a distribution list of sensors that require its EOM. The new
grid returns its current list of sensors back to the mover so
that the mover can update its distribution list.

Similarly. when a sensor updates its coverage. it sends
messages to new grids that are now in its coverage. and also
sends messages to old grids that are no longer in its
coverage. The grids then relay this sensor information to the
movers in their mover list so that movers can also update
their distribution of sensors.

Specifically. each mover maintains a list of sensors that
detect the mover’s motion as the mover and sensor cover-
ages check in and out of the grids. This list can be viewed
as a mover’s distribution list by sensors that require its
equations of motion (EOMs). As a result, every sensor in the
simulation receives a list of pointers to the EOMs for all
movers that are within its sensing range. This list is valid at
any time in the simulation so that sensors can scan the
mover’s proximity at any time without requiring extra
messages to be sent. Thus. proximity detection in the present
invention operates in the background by providing mover
equations of motion to sensors. The majority of simulation
computations are performed through sensor scan events that
require no extra messages.

In addition. since grid crossings can be of an irregular
shape. fuzzy grids are used so that their calculations do not
need to be exact. Fuzzy grids model simulated space and
manage spatial information for moving objects and sensor
coverages. Fuzzy grids allow movers and sensor coverages
to check in and out of grids without computing exact grid
crossings. Instead. sensor coverages are expanded by fuzzy
resolution parameters to accommodate the fuzzy grid cross-
ings. The fuzzy resolution parameters are defined to reflect
various grid uncertainties.

A lookahead function is also included for providing a
generalized capability without making any limiting assump-
tions about the particular application to which it is applied.
The lookahead function is the time difference. or delay.
between a processed event and the events that it generated.
Optimistic parallel simulations with a high degree of loo-
kahead tend to have fewer rollbacks. Conversely, conserva-
tive simulations often rely on lookahead functions to ensure
causality or to prevent deadlocks.

5

10

15

20

25

30

35

40

45

5c

55

60

65

4
The loohhead function of the present invention is initi-

ated so that risk-free synchronization strategies never roll
back grid events. The lookahead function adds fixed delays
as events are scheduled for objects on other nodes. Zero time
delays are allowed for events scheduled between objects on
the same node. Consequently. sensors receive their updates.
in T units of simulation time. after the mover determines that
it is in a new grid.

Additionally. the lookahead function is scalable in terms
of CPlJ usage. number of messages. and memory require-
ments. Thus. the present invention can operate indepen-
dently of a clock. making the results repeatable and useful
for analytic studies. as well as real-time interactive simula-
tions.

Therefore. a feature of the present invention is to provide
correct spatial information for moving objects. Another
feature of the present invention is to provide generalized
proximity detection for moving objects in a logically correct
parallel discrete-event simulation. Yet another feature of the
present invention is to provide a system for determining the
views of each object in a manner that is fully scalable in
terms of CPU usage, number of messages. and memory
requirements.

An advantage of the present invention is the reduction and
elimination of bottlenecks in proximity detection simula-
tions. Another advantage of the present invention is to
virtually eliminate instabilities by further reducing the num-
ber of messages required. Yet another advantage of the
present invention is that unrelated grid events can be pro-
cessed out of order.

BRIEF DESCRIPTION OF THE DFWWINGS

Referring now to the drawings in which like reference
numbers represent corresponding parts throughout:

FIG. lA illustrates the overall parallel processing prox-
imity detection system of the present invention;

FIG. 1B illustrates the simulation objects of the present
invention;

FIG. 2 illustrates a sample inheritance tree for various
moving objects and sensors in accordance with the present
invention;

FIG. 3 illustrates a tiled grid for a simulated arena;
FIG. 4 illustrates a sample distribution list strategy for a

sequence of events for a mover checking in and out of grids;
FIG. 5 illustrates a sample sequence of events for a sensor

updating its grid coverage;
FIG. 6 illustrates an exploded view of a portion of the grid

in accordance with the present invention;
FIG. 7 illustrates the interaction between fuzzy grids and

sensors; and
FIG. 8 illustrates an overall flow diagram of the disiribu-

tion list system in the SPEEDES operating system for
parallel proximity detection.

DETAILED DESCRIPI?ON OF THE
PREFERRED EMBODIMENT

In the following description of the preferred embodiment.
reference is made to the accompanying drawings which
form a part hereof. and in which is shown by way of
illustration a specific embodiment in which the invention
may be practiced. It is to be understood that other embodi-
ments may be utilized and structural changes may be made
without departing from the scope of the present invention.

FIG. 1A illustrates the overall parallel processing prox-
imity detection system 2 of the present invention. The main

5.78 I .762
5 6

proximity detection station 3 utilizing a host router 3a for Next. the solution must support asynchronous sensors with
proximity detection with a distribution list of the present different scan modes and rates. This requirement eliminates
invention is connected in parallel to a first processor 4. those solutions relying on global t h e steps that synchronize
which can be a battle planning station. to a tracking station all movers and sensors.
5. which itself is wired to a visually realistic rendering 5 Also. the system must be independent of the EOMs used
system 6. and to a graphics workstation 8. An operating by the movers. This requirement can be fulfilled. for
system. such as one called SPEEDES disclosed in U.S. example. by using a virtual base class object in which the
patent application Ser. NO. 08/363,546 filed Dec. 12. 1994 EOM interface is defined without providing details of the
bY Jeffrey s- Steinman entitled SYNCHRONOUS P m - implementation. Finally. the system must allow objects to
LEL SYSTEM FOR EMULATION AND DISCRETE 10 change their motion at any time. These changes must be
EVENT SIMULATION. the disclosure of which is incor- propagated to all other Sensors that have the object in their
porated herein by reference. is operating on the main prox- field of view.
imity detection station 3. The distribution system of the FIG. 3 illustrates a tiled grid 53 for a simulated arena. ne
present invention runs in the SPEEDES environment. grids may be rectangular 54 or they may be irregular in their

FIG. 1B illustrates the simulation objects of the present 15 shape. For example. when the earth is marked with longitude
invention. The distribution list system 10 is used to detect 58 and latitude 56 markers. the earth is typically decem-
the proximity of moving objects in computer simulations. posed into approximately equal area grids. with the grids
Correct spatial information is attained by the present inven- being first decomposed into equal latitude bands 56. Next,
tion for moving objects. or movers. and participating sensor each latitude band 56 is further decomposed into longitude
objects. or sensors. 2o segments 58 to provide nearly equal area grids covering the

There are four types of simulation objects required by the earth.
distribution list system 10 of the present invention for This approach easily computes a unique grid
proximity detection. The four types of simulation objects identification. given a mover’s latitude and longitude. using
include a sensor 12. a mover 14. a grid 16, and a simulation modular arithmetic. Likewise. card dealing the grids to
object (EOMAN 18) containing a list of mover scripts 32 25 computer nodes provides a simple way. utilizing modular
and a list of sensors 34 for each mover script. Each simu- arithmetic. to determine the processor node for each grid.
lation object includes important data structures. For FIG. 4 filustrates a sample distribution list strategy for a
instance, the sensor 12 contains a k t of pointers 20 to mover sequence of events for a mover checking in and out of grids.
equations of motion (EOMs). The mover 14 contains a script Referring back to FIG. 1B along with FIG. 4. the disiribution
22 or sequence of EOMs describing its motion. a current 30 list system uses grids 16 to model simulated space. Sensors
grid 23. a list of sensors 24 (i.e., its distribution list). and 12 may be fixed or moving and additionally, can be enabled
EOM node-distribution information 26. The grid 16 contains or disabled.
a list Of mOVerS 28 that are “in” their Space and a list Of The goal of the distribution list system 10 is to provide
sensors 30 that can “see” their space. 35 each sensor 12 with the equation of motion for a l l nearby

FIG. 2 illustrates a sample inheritance tree for various movers 14. ALSO, movers 14 move according to a sequence
moving objects and sensors in accordance with the present of one or more consecutive equations of motion. The mov-
invention. A sensor 42 object inherits from a simulation er’s list of equations of motion is the script 22. Gaps are not
object 40. A moving sensor (which is not a mover and is not allowed in the mover’s script 22. If a mover 14 stops for a
detectable). such as a space sensor 44, a mover object 40, 4o period of time. it must have an equation of motion that
and a fixed non-moving sensor, such as a ground radar 48. describes its position. When a mover’s script 22 is over, the
inherit from the sensor object 42. A mover and a sensor. such mover 14 should not be seen by any of the sensors 12.
as an FIS Aircraft SO. and a mover with sensing disabled. Movers 14 are also defined as sensors 12 (Le.. mover
such as a SCUD Missile 52. inherits from the mover object objects from Sensor objects) but their sensing caps-
46. 45 bilities may be disabled if desired. For example, in a

The main requirement of the present invention includes simulation focusing on the interaction of military aircraft.
proximity detection to provide each participating sensing background commercial air trafEc may be modeled as mov-
object with a list of equations of motion for all other objects ers without sensors. Support for multiple inheritance is not
within its sensor range. This list must be correct at al l assumed or required.
simulation times. Movers 14 check in and out of grids 16 while moving

In addition to the main requirement, there are require- sensors 12 periodically inform the grids 16 of their coverage.
ments concerning scalability. The computations, messages. Fixed sensors only need to inform the grids 16 once during
and memory should al l scale as the physical problem scales. initialization. Grids 16 manage a list of movers 14 and a list
Precisely. the proximity detection system must scale at least of sensors that are operating in their represented space. Grids
as well or better than. within a constant. the sensor scan 55 16 do not interact with other grids 16. nor do they propagate
computations. If every object sees every other object, then self propelled events.
the proximity detection system must scale no worse than N2. When a mover 14 checks into a new grid 64. it simulta-
If every object sees only one other object on the average, neously checks out of its old grid 64. except during initial-
then the system must scale as N. These considerations reflect ization when it checks into its fmt grid. The new grid 62
the work loads of sensors. which should dominate the 60 returns its current list of sensors back to the mover 14 so that
overall central processing unit (CPU) usage in the simula- the mover can update its distribution list. Movers 14 always
tion. maintain a distribution list of sensors 12 that require its

Next. there are numerous correctness requirements which equations of motion.
must be met. First, the system must be logically correct. In Similarly. when a sensor 12 updates its coverage. it sends
other words. it must provide correct results independent of 65 messages to new grids 62 that are now in its coverage and
wall clock time. CPU capability. and communications to old grids 64 that are no longer in its coverage. The grids
latency. The system must also provide repeatable results. 16 then relay this sensor information to the movers 14 in

50

5.78 I .762
7

their mover 14 list so that movers 14 can also update their
distribution list of sensors.

Each mover 14 keeps track of which nodes already have
its script. All nodes that require the mover’s script receive
the script through a message sent to one of its EOMAN
objects 18. A hashing scheme based on the mover’s unique
identification determines which EOMAN 18 to use so that a
single EOMAN 18 on a node does not become a bottleneck
Next. messages time tagged slightly later than the script’s
arrival time. which must arrive first, are sent to EOMAN
objects 18. They are sent to identify which new sensors 12
need the mover’s 14 current equation of motion and also to
identify which old sensors 12 no longer contain the mover
14 in their coverage.

EOMAN objects 18 then forward these changes to their
local sensors 12 by sending a message to new sensors 12.
containing a pointer to the mover’s 14 current equation of
motion. or by informing old sensors 12 that they can no
longer see the mover 14. From these messages. sensors 12
maintain a list of pointers to their mover’s 14 current
equation of motion. which is the primary goal of the
distribution list system.

A particular sensor’s 12 lists of equations of motion is
actually a superset of the actual movers that are in its true
coverage at any simulation time. In other words. the distri-
bution list system acts as a filter providing all of the
necessary equations of motion for movers 14 that are inside
its sensing coverage along with others that might be nearby.

EOMANs 18 manage the equations of motion used by the
sensors 12 local to its node. The purpose of EOMAN objects
18 is to maintain. at most. a single copy of a moving object’s
script on a given node. EOMAN objects 18 have the
responsibility of locally distributing mover equations of
motion. from their script. to appropriate sensors. There are
multiple EOMANs 18 on each node so that a single
EOMAN 18 does not become a bottleneck Movers 14
choose their appropriate EOMAN 18 by using the simple
modular arithmetic hashing scheme that takes the remainder
after dividing the mover’s identification by the number of
EOMAN objects 18 created on each node.

The present invention also provides a lookahead function.
The lookahead function is the time difference, or delay.
between a processed event and those that it generated. The
lookahead function is important in both optimistic and
conservative parallel simulations. For instance. optimistic
parallel simulations with a high degree of lookahead tend to
have fewer rollbacks. while conservative simulations often
rely on lookahead to ensure causality or to prevent dead-
locks. The lookahead function in the distribution list system
is characterized by the parameter T as shown in FIGS. 4 and
5.

The lookahead function is incorporated in the distribution
list system to add fixed delays as events are scheduled for
objects on other nodes. Zero-time delays (i.e.. scheduling
events with no lookahead) are allowed for events scheduled
between objects on the same node. In other words, events or
events between an EOMAN object 18 and its local sensors
12 are self scheduled. Because lookahead delays events. it is
preferably ensured that all sensors 12 have their required
mover 14 equations of motion.

A lookahead delay 66 of T/3 is allowed for the internode
communications. The lookahead value 66 T/3 is used for
messages that are exchanged between objects that are on
different nodes. However. EOMAN objects 18 are on the
same node as their local sensor objects 12 so zero lookahead
67 is required. In this example. there are six sensors 12 on

8
three different nodes 68.69. and 70 that receive the mover’s
14 current equation of motion.

Specifically. FIG. 4 depicts a sequence of message-events
that are generated as a mover 14 checks in 62 and out 64 of

5 its grids. At time. t . the mover 14 determines that it is in a
new grid 62. Then at time. t+T/3. both the new 62 and the
old 64. receive updates concerning the mover 14. The new
grid 62 relays its corresponding sensor information back to
the mover 14 with another delay of T/3 so that the mover 14

10 has the new sensor 12 information at time t+2T/3.
The mover 14 next relays its script to EOMAN objects 18.

again with a delay of T/3, at time t+T. EOMAN objects 18
finally distribute the mover’s 14 current equation of motion
to their appropriate local sensors 12 with a zero time delay.

15 Consequently, sensors 12 receive their updates T units of
simulation time after the mover 14 determines that it is in a
new grid 62. Similarly. as shown in FIG. 5. sensors 82
modify the grids in their coverage. The sensors 82 receive
updates from movers 74 T units of simulation time after their

FIG. 5 illustrates a sample sequence of events for a sensor
82 updating its grid coverage. In this example. the sensor 82
determines that there are two new grids 78 and 79 in its
coverage and two old grids 80 and 81 that are no longer in

25 its coverage. These grids relay the sensor information to
their movers 74 which then update their corresponding
EOMAN objects 84 back on the sensor’s 86 node. A
lookahead delay 76 of T/3 is allowed for the internode
communications, but because the EOMAN objects 84 are on

30 the same node as the sensor 86. zero lookahead 88 is
required in the final step.

Both scenarios in FIGS. 4 and 5 result in proximity
detection errors if further steps are not taken. For example,
a mover 14 might have just entered a sensor’s 12 coverage

35 at time t. but because of the delay T. the sensor 12 would not
know about the mover until time t+T. Thus. the sensor 12
would miss the mover 14 between times t and t+T. thereby
having invalid proximity detection information.

The problem of sensors 12 receiving late mover 14
information is solved by extending each sensor’s 12 covez-
age an additional distance amount of D. This amount D,
must account for the fastest mover 14 in the simulation.
Therefore. each sensor 12 must extend its coverage by the
amount:

20 coverage has changed.

45
fkT.V-(for aU movers)

By extending sensor 12 coverages by D. a buffer zone is
provided to guarantee that even with the delay T, no mover
14 will be missedin a sensor’s 12 true coverage. The amount

50 of lookahead can be varied by changing the value T. No
lookahead would then correspond to the value T being set to
zero resulting in a zero value for D.

FIG. 6 illustrates an exploded view of a portion of the grid
in accordance with the present invention. The distribution

55 list system preferably uses an appropriate grid size. If grids
are too small. then sensor coverages will contain large
numbers of grids. This results in more sensor-grid messages
than are necessary. Also, a large number of grids in sensor
coverages can make their new/old grid computations

60 become costly. Alternatively. if grids are too large. then
sensors will have many movers in their list. Consequently.
more computations per scan is required to filter out the
extraneous movers. Therefore. it is important to choose a
grid size that keeps the number of grids per sensor relatively

65 small. without the grids being too small. A compromise must
be made when the simulation involves differing sensor
coverage sizes.

5.781.762
9 10

Even though the optimal grid size is a function of the
number of nodes. synchronization strategy. and computer
hardware. the distribution list system scales more than
adequately. Alternatively. if most of the work in the simu-
lation is done in sensor scan events. then proximity detection
(Le.. sensors -obtaining the equations of motion for nearby
movers) is essentially provided for free. which is the goal.
Qpically most of the work in the simulation is done in
sensor scan events since there are no intensive computations
required by the distribution list system. Therefore. it should
not be critical to completely optimize The Distribution List
algorithm in practice.

Grids 90 play a fundamental role in the distribution list
system. Movers and sensors both periodically check in and
out of grids 91. 92. 98 and 99. Because grids may be
irregular in shape. which is the case for a simulation where
grids cover the earth. and because movers potentially move
in complicated motion. computing exactly when a mover
exits one grid and enters another can only be done
iteratively, which is a very expensive endeavor. Also. com-
puting exact grid crossings for movers can cripple the
performance of any proximity detection algorithm.

Further. there may be problems. in terms of performance,
for movers that just barely enter a grid and then almost
immediately exit the same grid. For this scenario,
lookahead. or the relative time difference between events
and those that they schedule. may not be provided.
Therefore. the proximity detection system does not compute
grid crossings exactly. Instead. fuzzy grids are defined.
Fuzzy grids do not require exact grid crossing calculations.
Instead, fuzzy resolution parameters are defined that reflect
various grid uncertainties.

FIG. 7 illustrates the interaction between fuzzy grids and
sensors on a grid 90. Movers check in and out of grids but
not at exact boundaries. Instead. a resolution parameter. 6r
(denoted by reference numeral 110 i n the drawing). is
defined. Movers 106 periodically calculate their grid as they
move, at most. a distance of 6r 110. Because movers 106
might change their velocity unexpectedly. the time period
for movers to check their grid is given by:

6r
hax(mover) Sr =

Each mover may have a different maximum velocity so that
in general. 6t can be different for each mover.

For instance, a mover 106 can calculate its grid at time t.
and then almost immediately afterwards. enter the region of
a different grid. Because the fuzzy grid mechanism does not
recheck the mover’s grid until time ti-& the mover 106
would actually be in the wrong grid for almost 6t simulation
time units. However. because of the way 6t is defined, the
mover is in error by at most 6r 110. in terms of distance out
of the grid. AU sensor coverages must be expanded by the
amount. 6r 110, so that sensors can be guaranteed of having
the equations of motion for all movers that are within their
true sensing range. Also, expanding sensor coverages by 6r
110 may increase the number of movers in a sensor’s list of
mover equations of motion. However. this is a welcome
tradeoff for the added benefits of generality provided by
fuzzy grids.

Referring back to FIG. 6 a mover at time t 94 in grid 3 92
moves in time 1+6t % where it then exits grid 3 92 and
checks into grid 2 98. Exact grid crossings are not required.
There is no need for the mover to check into grid 4 99. Fuzzy
grids allow moving objects to be outside of their grid by the
amount 6r 110.

Moving sensors 102. like movers 106. do not add and
delete g ids from their coverages exactly in time as they

move. Instead. a sensor resolution parameter. Ar 104 is
defined. Each moving sensor 102 artificially expands its own
coverage further by the amount Ar 104 to account for its own
grid coverage uncertainty. Moving sensors 102 then only

5 need to recompute their grid coverages at time intervals
given by:

10
Each moving sensor may have a different maximum velocity
so that At can be different for each sensor and fixed sensors
have Ar=O, and At=-.

Extending a sensor’s 102 coverage by Ar 104 may at first
15 seem like more than what is necessary. However. the fuzzy

grid approach assumes that sensors may change their motion
at any time. possibly moving in the opposite direction at
maximum velocity. Therefore. sensor coverages are
expanded symmetrically in all directions to accommodate

As a result. the true coverage of a sensor 102 is always
contained within its expanded coverage. FIG. 7 shows how
a moving sensor 102 expands its coverage to accommodate
the two fuzzy resolution parameters. 6r 110 for movers and

25 hr 104 for sensors 102. Thus. a moving sensor’s 102
coverage is expanded by 6r 110 to account for fuzzy movers
106 and then by Ar 104 to keep the sensor’s 102 true
coverage within the current set of grids 90. The solid outline
100 of FIG. 7 illustrates which grids are contained in the

FIG. 8 illustrates an overall flow diagram of the distribu-
tion list system in the SPEEDES operating system for
parallel proximity detection. The SPEEDES operating sys-
tem is a synchronous parallel environment emulation and

35 discrete event simulation operating system. as disclosed in
the above-referenced patent application. SPEEDES relates
to discrete event simulation of objects using a plurality of
synchronous parallel computers in communication with
each other so that the objects being simulated may interact

40 in a logically correct manner. FIG. 8 illustrates how events
are generated. which objects they act on. and the amount of
lookahead provided as events are scheduled.

One feature of the present invention as implemented in
the SPEEDES operating environment is that events are

45 separated from the simulation objects that they “act” on.
This reflects the highly object-oriented nature of event
processing in SPEEDES. Specifically. events are encapsu-
lated C+t objects and are separate from the simulation
objects that they “act” on. Events as objects have excellent

50 benefits in terms of scalable software engineering practices
and they also provide very powerful mechanisms for sup-
porting external inpurloutput (YO). efficient incremental
state saving. and lazy cancellation techniques.

THE DISTRIBUTION LIST

20 possible changes to their motion.

30 sensor’s coverage.

55

The following is an explanation of the structure of the
distribution list operating in. for example. the SPEEDES
operating environment.

Interconnections between distribution list items
Event objects include a next-script 120. change-script

122. update-grid 124. add-s2e 126. del-sfe 128. del-sfm
130. addLs2m 132. new-sensors 134. add-m2g 136. del-
mfg 139, eomanscript 138. add-e2e 140. add-ds 142.

65 del-rnfs 144. add-s2g 146. del-sfg 148. scan 150.
update-coverage 152. and ext-tracker 154. A MOVER
156. EOMAN 158. GRID 160. and SENSOR 162 are

6o

5.78 I .762
11

coupled to respective event objects and represent different
characteristics of simulation objects. For example. a
MOVER 156 can also be a SENSOR 162. Initial events 164.
166. 168. are scheduled at the start of the simulation at the
next-script update-grid 124. and 120. update-coverage
152. respectively. HUMAN 170 and TRACK 172 external
modules are located outside of the internal simulation.

The TRACK 172 sends messages to the ext-tracker 154
and also receives messages sent from the ext-tracker 154.
Also, the HLMAN 170 sends messages to the change-
script 122. The MOVER 156 is linked to the next-script
120. change-script 122. del-sfm 130. a d d ~ 2 m 132.
new-sensors 134. and update-grid 124. The EOMAN 158
is linked to the eoman-script 139. a d b e 2 e 140. del-sfe
128. and addLs2e 1%. The SENSOR 162 is linked to the
scan 150. ext-tracker 154. update-coverage 152. de1-s
144. and add-ds 142. The GRID 160 is linked to the
add-m2g 136. a d b s 2 g 146. del-sfg 148. and del-mfg
138.

The next-script 120 schedules itself by a lookahead
amount of T(eom). where the T(eom) is the start time of the
next equation of motion in the MOVER’S 156 script. while
the change-script 122 schedules the next-script 120 by a
lookahead amount of also T(eom). The changescript 122
also schedules the add-e2e 140 by a lookahead amount of
T(eomj. The u p d a t e s i d 124 schedules itself. the add-
m2g 136, and del-mfg 138 by a lookahead amount of 6t.
T13. and T13. respectively, where T is a user selectable
runtime parameter. Both the addLs2e 126 and the del-sfe
128 schedule the add-m2s 142 and the delbnfs 144. by a
lookahead amount of 0. respectively. The del-sfm 130
schedules the del-sfe 128 by a lookahead amount of T/3.
The add-s2m 132 schedules the add-s2e 126 and the
add-e2e 140 by a lookahead amount of T / h and T/3.
respectively. The new-sensors 134 schedules the add-s2e
126 and the del-sfe 128 by a lookahead amount of T / h
and T/3, respectively. The new-sensors 134 also schedules
the add-e2e 140 by a lookahead amount of T/3. The
add-dg 136 schedules new-sensors 134 by a lookahead
amount of T/3. The eoman-script 139 schedules itself by a
lookahead amount of T(eomj. The eoman-script 138 also
schedules the delbnfs 144 and the add-m2s 142 by a
lookahead amount of 0. The add-e2e 140 schedules
eoman-script 139 by a lookahead amount of T(eom). The
add-rn2s 142 schedules the scan 150 by a lookahead
amount of 0. The add-s2g 146 schedules the add-s2m 132
by a lookahead amount of T/3. The del-sfg 148 schedules
the del-sfm 130 by a lookahead amount of T/3. The scan
150 schedules itself by a lookahead amount of multiple scan
types of T(scan). The update-coverage 152 schedules itself
by a lookahead amount of At. The update-coverage 152 also
schedules the adLs2g 146 and the del-sfg 148 by a
lookahead amount of T/3. respectively.

The following is a functional explanation of the distribu-
tion list and the interaction between the event objects,
simulation objects. links. scheduling. and lookahead
amounts.

The Initial Events

The distribution list system includes initial events that
start up the sirnulation. The next-script 120. updatecgrid
124. and update-coverage 152 are three kinds of initial
events that are self-scheduling events. The next-script 120
event is scheduled for each mover in the simulation. The
next-script 120 event manages its mover’s script of equa-
tions of motion. An equation of motion has a start time and

5

10

15

20

2s

3G

35

40

45

50

55

60

65

12
an end time. The end time of an equation of motion can be
infinity. Scripts are constructed by consecutive equations of
motion without time gaps. The next-script 120 event
removes the current equation of motion from the mover’s
script at its end time so that the next item in the script will
represent the movers correct equation of motion.

When next-script 120 event is processed. it first checks
if the end time of the current equation of motion matches the
event time tag. If it does. then the event is processed and
reschedules itself for the next equation of motion in the
mover’s script. unless the script is empty. or if the new
equation of motion has an end time of infinity. However, if
the time tag does not match the end time of the mover’s
current equation of motion. the event knows that the mover
has changed its script unexpectedly (see the change-script
122 event). and thus. the event does not process. This
eliminates the need for user cancellation of next-script 120
events.

The update-id 124 event is scheduled for each mover
in the simulation. The update-grid 124 event computes the
grid that the mover is in, and then if this is a new grid. it
schedules events to move into the new grid. such as add-
m2g 136. and to move out of the old grid. such as del-mfg
138. with lookahead T/3. When the update-id 124 event
is initially processed. its mover is not in a grid yet. so it only
schedules one event. such as add-m2g 136. to check into
the new grid. The u p d a t e s i d 124 event then reschedules
itself. unless its script is empty. to occur at 6t time units into
the future (see discussion on fuzzy grids).

The update-coverage 152 event is scheduled for each
sensor in the simulation. The update-coverage 152 event
computes grid coverages for a sensor with coverages that are
expanded by three parameters, such as. 6r. Ar and D. The
update coverage 152 event checks which grids are new and
which g ids are old. The changes are then sent with looka-
head T/3 to the grids by scheduling two events. such as.
add-s2g 146 and del-sfg 148. The update-coverage event
152 then reschedules itself At time units later. It is noted the
At is infinite for non-moving sensors.

Grid Events

The add-mtg 136. delJnfg 138. add-s2g 146. and
del-sfg 148 are four kinds of events that act on grids. These
events involve adding movers and sensors to grids, or
deleting them from grids.

First. when a mover checks into a new grid with the event
add-dg 136. it simultaneously checks out of its old grid
with the event de-mfg 138. unless it is the first time when
an old grid does not exist. The new grid relays its sensor
information back to the mover so that the mover can
correctly distribute its equations of motion to the appropriate
sensors.

Second, as sensors check their coverages. they determine
which old grids are no longer in their coverage and which
new grids are now currently in their coverage. Add-s2g 146
events are then scheduled to add the sensor into its new
grids, and del-sfg 148 events are scheduled to delete the
sensor from its old grids. The new sensor information is then
relayed to the movers in the sensor’s new and old grids.

Updating the Mover’s Distribution List

Three events. the new-sensors 134. add-s2m 132. and
del-sfm 130. can modify a mover’s distribution list. The
new-sensors 134 event contains a new distribution list for
the mover. This new distribution list is compared with the

5.78 I .762
13 14

mover’s old distribution list. Sensor’s that are in the new list, of T/3 from the time the mover thinks that its script is no
but not in the old list. must receive a copy of the mover’s longer residing in the EOMAN 158 to the time that the
equations of motion. Similarly. sensors that are in the old EOMAN 158 actually removes the mover’s script. It is
list. but not in the new list. must have the mover’s equations important that things are kept straight. especially when
of motion removed. The add-s2m 132 and del-sfm 130 5 human interactions or other mechanisms change the script of
events also update distribution lists in a similar way as the mover unexpectedly.
sensors change their grid coverage.

Sensor Scans

Sensors 162 are idle if there are no movers in their Adding Equations of Motion to Sensors

The new-sensors 134 and add-szm 132 events m y add lo peIWptiOn envelope. Therefore. it is imprtant to have a
new sensors to a mover’s distribution list. Because the general mechanism to start up a Sensor 162 when a mover
distribution list ensures that. at most. only one COPY of a enters its coverage, ;.e.. when the sensor 162 receives a
mover’s equations of motion resides on a node. a check is mover’s equation of motion.
made to see if the mover’s script has already been sent to the This is accomplished by having each sensor 162 define its
appropriate EOMAN object 158. It should be noted that l5 own scan 150 event type. For example. ground-based radars
hashing is used based on the mover’s unique identification scan dBerently than airborne radars or space-based infrared
to determine which EOMAN object 158 to use on the sensors. This scan event is activated when a mover’s equa-
sensor’s node. If the mover’s script does not reside on the tion of motion is added to a sensor’s empty list. The scan
sensor’s node. an addLe2e 140 event is scheduled for the event is a self-scheduling event. so it only needs to be
appropriate EOMAN object 158 to add the mover’s q u a - 2o activated when the sensor is idle. The scan event reschedules
tions of motion, Le.. its script, to the EOMAN object 158. A itself periodically if the sensor’s mover list is not empty. If
lookahead value of T/3 is used. In addition, an add-s2e 126 the sensor’s mover list ever becomes empty, then the scan
event. or add sensor to EOMAN 158. is scheduled to occur event terminates and will be activated again the next time a
by a lookahead amount of T/3k so that the mover’s mover is added to the sensor’s empty list.
equations of motion are already residing in the EOMAN 25 The efficiency of Sensor Scans can be improved by corn-
object 158 when the mover’s current equation of motion is puting the earfiest time that a mover might enter the sensor’s
Passed to the Sensor. When the EOMAN object 158 Pro- true coverage. However, that there may be extra movers in
cesses the add-ek event 140. it sends a pointer to the the sensor’s list that are not in the sensor’s true coverage. At
mOVeT’S Current equation Of motion t0 the sensor through the time t. a Sensor perfom a Sensor Scan and determines that
add-m2s 142 event. and not a full copy of it. 30 a mover is a distance d outside of the sensor’s true coverage.

A special self-scheduling event. the eomanscript 139. is Assuming that the mover and the sensor might fly directly
generated when the add-e2e 142 event is processed. The towards each other. since a sensor and mover can both
eoman-script 139 manages the mover’s script in the change their equations of motion unexpectedly. an earliest
EOMAN object 158, which is very similar to the to the 35 time value T is computed by:
next-script 120 event for the mover. However. there is one

removes the mover’s old equation of motion from its script,
at the end time of the equation of motion. it schedules an
add-m2s 142 event for all sensors on its node that need the 4o
mover’s next equation of motion. When processed. the
add-m2s 142 event replaces the pointer to the mover’s old
equation of motion with a pointer to the mover’s new
equation of motion. No lookahead amount is required
because these sensors are. by definition, on the same node as 45 coverage is costly.
the EoMAN object 158- when the Script is Over- the
mover’s equation of motion pointer is then removed from
the sensor.

d
IVmax(mover)l+ IVmax(sensor)l

important difference. As the eoman-script 139 event T =

The time value 7 can be stored in the sensor’s mover list
for movers that are outside the sensor’s true proximity so
that a quick check on this value in subsequent scans can
quickly filter this mover out of its scan computation. This is
important if the work in computing if a mover is in a sensor’s

Also. external trackers. such as ext-tracker. can be
plugged into any of the sensors in the simulation. These
external tracker modules can then take over the tracking
function of the sensor. Removing Equations of Motion from Sensors

Human Interactions and Changing the Script The new-sensors 134 and the del-sfm 130 events may
delete old sensors from a movers distribution list. If this Although movers typically move according to predefined
occurs. the del-sfe 128 event is scheduled for the EOMAN scripts of equations of motion, in a more complicated
object 158 on the sensor’s node that deletes the sensor from simulation. movers may change their motion based on either
the EOMAN 158. object. A lookahead value of T/3 is used. 55 internal events. These external events can be. for example.
When the del-sfe 128 event is processed, it schedules an a simulated military aircraft engaged in an interactive
additional event. the del-mfs 144. for the sensor, with no dogfight. or from human interactions coming from the
lookahead. that removes the pointer to the mover’s current outside world. In addition. the lookahead amount cannot be
equation of motion from the sensor’s list. assumed. If a mover changes its equations of motion. then

When processing the del-sfm 130 event. if it is deter- 60 sensors in the mover’s distribution list must receive those
mined that there are no more sensors on that node that changes at that time.
require the mover’s equation of motion, the mover is A script is sent to an EOMAN object 158. the time tag of
informed that its script no longer exists on that node. the change-script 122 or the addLs2m 132 event is also
Similarly. when the del-sfe 128 event is processed, it wiU sent to control unexpected changes in mover scripts. These
remove the mover’s script from the EOMAN object 158 65 are the only events that send mover scripts to EOMAN
because it too will know that no other sensors require its objects 158. Therefore, the EOMAN 158 object always
mover’s equation of motion. It is noted that there is a delay knows what time mover scripts are valid. If an EOMAN 158

50

5.78 I .762
15

ever gets a script from a mover with a later send time than
a mover script that is currently in the EOMAN 158. it
accepts it. Otherwise, the EOMAN object 158 knows that
the current script is more up-to-date than the one that it is
currently trying to add. Thus. the script is not added because
it is not valid any longer. This approach alleviates the need
for user event cancellation.

For instance. a simulation consisting of 800 ground
radars. 947 commercial aircraft. and 173 military aircraft
randomly flying about the earth can be used. The aircrafts
can randomly change their motion. Le.. their scripts. using
an exponential time distribution with a time constant of 10
minutes. The aircrafts can fly at velocities ranging from 125
to 1858 km per hour. or mach 2. Radar coverages can range
from IS0 to IS00 km. Sensor scan times can vary from one
to fifteen seconds. Kalman filters can be used by all of the
radars.

The grid size can be. for example. 500 km. which is a
good match with typical sensor coverages. Both fuzzy grid
parameters 6r and Ar can be 100 km. The lookahead
parameter. T. can be 100 seconds. This scenario of the
distribution list provides locality for scan events and a high
degree of parallelism in the simulation. Therefore. very high
performance on large parallel machines can be achieved.

The present invention operates extremely well with the
functions of the SPEEDES system. including Breathing
Time Buckets, Lazy Cancellation and Time Warp. For
example. lookahead allows risk-free synchronization
strategies. such as Breathing Time Buckets. As a result. grid
events tend never to roll back with Breathing Time Buckets.

Lazy Cancellation allows the events to be processed out
of order when each event does not effect another event. Lazy
Cancellation with tolerances is used in the present invention
so that the user checks on his own and decides whether the
event is to be reprocessed or rolled forward. Thus. mover
events and sensor events can be processed out of order and
mover events and sensor events are independent of each
other. Lazy cancellation can also be used with Time Warp to
reduce rollbacks for grid events as well. Consequently. Lazy
cancellation for grid events. which can become a source of
a fan-in and/or fan-out type of events, helps Time Warp
become more stable.

The present invention can also be used on a variety of
computer architectures and achieves outstanding perfor-
mance on UNIX workstations over Ethernet for military
simulations involving air and strategic defense scenarios.
The present invention can also be used with other computer
architectures.

The foregoing description of the preferred embodiment of
the invention has been presented for the purposes of illus-
tration and description. It is not intended to be exhaustive or
to limit the invention to the precise form disclosed. Many
modifications and variations are possible in light of the
above teaching. It is intended that the scope of the invention
be limited not by this detailed description, but rather by the
claims appended hereto.

What is claimed is:
1. I n a system of interconnected processor nodes operat-

ing on a parallel processing system. a method of performing
proximity detection of sensors and movers in grids that
model simulated space by processing events comprising
discrete simulation objects defined by said sensors. said
movers. and said grids distributed among said nodes as a
sequence of discrete sensor, mover. and grid events. com-
prising the steps of:

generating current equations of motion for each mover
and providing each of said equation of motion to each
of said sensor within a coverage area;

16
processing said respective equations of motion: and
determining the exact positions of all movers by said

sensors that are in said sensors coverage area from said
equations of motion of said movers to create a logically

2. The invention as set forth in claim 1 further comprising
the step of changing motion of said movers.

3. The invention as set forth in claim 2. wherein said
changing motion of said movers is performed by human

4. The invention as set forth in claim 2. wherein said
changing motion of said movers is performed by internally
computed changes.

5. The invention as set forth in claim 1. further comprising
15 the step of providing fuzzy grids for crossings of said

6. The invention as set forth in claim 5. further comprising

modeling simulated space and managing spatial informa-
tion for said movers and said sensor coverage areas:

computing approximate grid crossings of said movers and
sensor coverage areas: and

expanding sensor coverage areas by fuzzy resolution
parameters so that said crossing of said irregular grids
are accommodated.

7. The invention as set forth in claim 6. further comprising
the step of defining fuzzy resolution parameters to reflect
various grid uncertainties.

8. The invention as set forth in claim 1. further comprising
the steps of generating new events, and providing a looka-
head function as a time merence between said processed
events and said newly generated events for providing scal-
ability and improving parallel performance.

9. The invention as set forth in claim 8. further comprising
the step of adding fixed delays by said lookahead function as
said events are scheduled for objects on other nodes.

10. The invention as set forth in claim 1. further com-
prising the step of providing zero time delays for events

11. The invention as set forth in claim 1, further com-
prising the step of providing correct spatial information for
objects that are moving.

12. The invention as set forth in claim 8, wherein Breath-

13. The invention as set forth in claim 8. further providing
a Lazy Cancellation step for allowing events to be processed
out of order when each event does not affect another event.

14. The invention as set forth in claim 13. wherein said
Lazy Cancellation step utilizes tolerances so that a user
checks and decides whether said event is to be reprocessed
or rolled forward

15. The invention as set forth in claim 14. wherein said
Lazy Cancellation step processes mover events and sensor

55 events out of order so that mover events and sensor events
are independent of each other.

16. The invention as set forth in claim 14. wherein said
Lazy Cancellation in combination with a Time Warpreduces
roll back of grid events.

17. A system of interconnected processor nodes operating
in parallel, comprising:

a set of discrete simulation objects distributed among said
nodes defined by movers. sensors. and grids;

a computer program operating on said system for simu-
lating mutual interactions of said set of discrete simu-
lation objects as a sequence of discrete events changing
state variables of respective simulation objects:

5 correct solution without approximations.

10 interactions.

movers across irregular grids.

the steps of

25

3o

35

4o scheduled between objects on the same node.

45 ing Time Buckets never roll back grid events.

65

5.78 I .762
17

wherein each of said grids represent discrete simulation
objects that model simulated space and respectively
manage movers and sensors that are operating in grid
spaces of respective grids;

wherein said movers move according to a sequence of
equations of motion and each of said sensor is provided
with said equations of motion for each mover within a
coverage area; and

wherein said computer program performs object-oriented
simulation at each one of said nodes and performs
proximity detection of said movers and said sensors in
said sequence of events by processing said events. so as
to generate new event-defining messages addressed to
respective ones of said nodes for creating a logically
correct solution without approximations.

18. The invention as set forth in claim 17. fulther com-

means for modeling simulated space and managing spatial
information for said movers and said coverage areas of
said sensors:

means for computing approximate grid crossings of said
movers and said coverage areas of said sensors: and

means for expanding sensor coverages by fuzzy resolu-
tion parameters so that said crossing of said irregular
grids are accommodated.

19. A computer-readable medium for causing a computer
system of interconnected processor nodes operating in par-
allel to function as a parallel processing system. comprising:

prising:

a computer-readable storage medium:
a computer program stored on said medium;
a set of discrete simulation objects distributed among said

nodes ;
wherein said computer program operates on said system

for simulating mutual interactions of said set of discrete
simulation objects as a sequence of discrete events
changing state variables of respective simulation
objects and wherein said computer program performs

5

10

15

20

25

30

35

18
object-oriented simulation at each one of said nodes
and comprises.
grids representing discrete simulation objects that

model simulated space and respectively manage
movers and sensors that are operating in grid spaces
of respective grids;

movers representing discrete simulation objects.
wherein said movers move according to a sequence
of equations of motion: and

sensors representing discrete simulation objects.
wherein said sensors are provided with said equa-
tions of motion for each mover within a coverage
area:

wherein proximity detection of said movers and said
sensors is performed in said sequence of events by
processing said events. so as to generate new event-
defining messages addressed to respective ones of
said nodes for creating a logically correct solution
without approximations.

20. The invention as set forth in claim 19. further com-
prising a plurality of EOMAN objects located on said nodes
having a list of mover scripts and a list of sensors for each
of said mover scripts. wherein said EOMAN manages said
mover equations of motion used by said sensors that are
local to said nodes so that said equations of motion are
locally distributed to appropriate sensors.

21. The invention as set forth in claim 19. further com-
prising newly generated events and a lookahead function
defined as a time difference between said processed events
and said newly generated events for reducing grid events
from rolling back

22. The invention as set forth in claim 21, wherein said
grids further comprise grid spaces defining a tiled area. a list
of movers that are located in said grid spaces. and a list of
sensors for viewing said grid spaces and wherein said grids
respectively manage said list of movers and said list of
sensors that are operating in said grid spaces.

* * * * *

