
w

K..,

INTERIOR NOISE REDUCTION BY
ADAPTIVE FEEDBACK VIBRATION

CONTROL

KU-FRL- 1178-2

November 1998

w

w

W

. v

w

B
m

i

|
m

il

m

|

II

|
[]

m

!

=

[]
il

i

m

i

im

i

i

ID

-LS Final Report

under

Grant number NAG-1-1735

Prepared for

NASA Langley Research Center

Hampton, VA

w

INTERIOR

ADAPTIVE

NOISE REDUCTION BY

FEEDBACK VIBRATION

CONTROL

KU-FRL- 1178-2

November 1998

Prepared by:

Tae W. Lim (Principal Investigator)

Abdulhadi A. Alhassani (Graduate Research Assistant)

H

w

Approved by:

Richard J. Silcox (Technical Monitor, NASA)

U

M
!

w_t=:=
L_
w

Flight Research Laboratory

The University of Kansas Center for Research, Inc.

2291 Irving Hill Drive

Lawrence, KS 66045-2969

iA
w

!_1_li _

w

m

Im
m
I

g

ml

!

m_

ID

g

m_
[]

u

|

I

m

E

iw

[]
im

|

[]

IJ

u

I

ABSTRACT

L=

The objective of this project is to investigate the possible use of adaptive digital filtering

techniques in simultaneous, multiple-mode identification of the modal parameters of a vibrating

structure in real-time. It is intended that the results obtained from this project will be used for

state estimation needed in adaptive structural acoustics control. The work done in this project is

basically an extension of the work on real-time single mode identification, which was performed

successfully using a digital signal processor (DSP) at NASA, Langley. Initially, in this

investigation the single mode identification work was duplicated on a different processor, namely

the Texas Instruments TMS320C40 DSP. The system identification results for the single mode

ease were very good. Then an algorithm for simultaneous two mode identification was developed

and tested using analytical simulation. When it successfully performed the expected tasks, it was

implemented in real-time on the DSP system to identify the first two modes of vibration of a

cantilever aluminum beam. The results of the simultaneous two mode case were good but some

problems were identified related to frequency warping and spurious mode identification.

The frequency warping problem was found to be due to the bilinear transformation used

in the algorithm to convert the system transfer function from the continuous-time domain to the

discrete-time domain. An alternative approach was developed to rectify the problem. The

spurious mode identification problem was found to be associated with high sampling rates.

Noise in the signal is suspected to be the cause of this problem but further investigation will be

needed to clarify the cause.

For simultaneous identification of more than two modes, it was found that theoretically

an adaptive digital filter can be designed to identify the required number of modes, but the algebra

became very complex which made it impossible to implement in the DSP system used in this

study.

The on-line identification algorithm developed in this research will be useful in

constructing a state estimator for feedback vibration control.

w

u

_4
r_

w

Table of Contents

Table of Contents

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Introduction

1.1 Background and Literature Survey

1.2 Scope of the Work

1.3 An Outline &the Project

Theoretical Development

2.1 Mathematical Representation of a Vibration Structure

2.2 System Identification Process

2.2.1

2.2.2

2.2.3

2.2.4

2,2.5

2.2.6

The Dynamic System

The Adaptive Filter

The Adaptive Linear Combiner

Case I: Identification of Single Mode

Case II: Simultaneous Identification of Two Modes

Case HI: Identification of Three Modes

4

4

4

5

6

7

8

9

l0

Analytical Simulation 16

3.1 Single DOF Case 16 , _

3.2 Two DOF Case 26

The C40 Digital Signal Processing System 45

4.1 Hardware 45

4.1.1 TMS320C40 Processor 45

4.1.2 MDC40S 1 Tim-40 Module 47

4.1.3 QPC/C40B QUAD C40 Board 47

4.1.3.1 PC Interface 47

4,1.3.2 DSPLINK 51

4.1.4 Crystal Analog Daughter Module 52

4.1.5 Application ModulE Link Interface Adapter 54

4.1.6 PC Daughter Module Carder Board 54

4.2 Software 55

4.2.1 System Configuration 55

4.2.2 C and Assembly LanguageDebugger 55

4.2.3 Network API Libraries 59

4.2.3.1 The Development Library 59

4,2.3.2 The Application Library 59

4.2.4 TMS320C40 Parallel Runtime Support Library 62

4.2.5 Compiling and Linking the C40 and Host C Code 63

4.2.5.1 C40 Code 63

4.2.5.2 PC Host Code 64

4.3 Remarks 65

ii

i

m

m

I

I

i

I

m

i

|

I

=

!l

g

=== i

m

I

g

i;| !]7

Table of Contents

r_

Chapter 5

Chapter 6

Real-Time System Identification

5.1 Equipment Used

5.1.1 Computers

5.1.2 LING STAR 1.0 Power Amplifier

5.1.3 LING LMT-50 Modal Shaker

5.1.4 PCB Piezotronics Force Transducer

5.1.5 PCB Quartz Shear Mode ICP Accelerometer

5.1.6 PCB Six Channel_L!ne Power Voltage Amplifier

5.1.7 Test Structure

5.1.8 The Texas Instrument/Spectrum C40 System

5.2 Experimental Setup

5.3 Testing Procedure

5.4 Real-Time System Identification

5.4.1 SingleDOF Case (Single Mode)

5.4.2 Two DOF Case (Two Modes)

5.4.2.1 Two DOF Case with Filtering

5.5 Correction for Frequency Warping

Summary and Recommendations

6.1 Summary

6.2 Recommendations

66

66

66

66

66

66

66

67

67

67

67

67

70

72

89

110

116

119

119

120

References 121

w

w

Tz

=

w

Appendix A

Appendix B

Appendix C

Appendix D

! ;;; ,2 i ,

A1

B1

C1

D1

F_

.: _ _ i'_: _.....

°.,

111

Chapter

1 Introduction
This chapter details the background and driving force behind the use of adaptive filters in modal

parameter estimation. It also gives an overview of the techniques used to achieve this objective and
an outline of this document.

1.1 Background and Literature Survey

Active control of a structure that has time-varying plant dynamics requires accurate tracking of such
variance, which could be the result of uncertainties in the structure response or noise. In
airframes, such variance can also be induced by changes in altitude, speed, and temperature [1].
As a result, some form of on-line, real-time estimation of the modal parameters of the structure
becomes eS_ntial. :

Researchers at the U.S. Naval Center for space Tec_ologies at the U.S. Naval Research

Laboratory have studied the use of adaptive filters and neural networks in developing accurate
knowledge of the varying dynamics of large, lightweight, flexible space structures. Such
knowledge becomes essential in environments where accurate attitude control and vibration
suppression are needed in order to meet the stringent jitter and pointing requirements [2].

Modal parameter identification of linear, time-invariant systems has been an area of
extensive research for the past decade. It has been mainly used for off-line applications such as the
eigensystem realization algorithm, the poly reference technique, and the observer-Kalman filter
identification algorithm. In addition, several recursive or on-line versions of the time-do_
algorithms have also been studied for use in on-line identification of time-varying dynamic systems
[31.

Adaptive filters have been used extensively in various signal processing applications such
as echo cancellation, speech analysis, spectral estimation [4], removal of powerline h_ _:
medical instruments, equalization of troposcatter communication signals [5] and cancellation of
maternal heartbeat in fetal electrocardiography [4]. They are also the focus of major current studies
that try to use adaptive filtering algorithms to achieve adaptive inverse control of unknown and time
varying systems [4].

1.2 Scope of the work

Modal testin_ is a well established field that has applications in almost every engineering=_scip_ne.
In most applications, frequency response functions (FRF's), which are functions in the frequency
domain that relate the response output to a prescribed input to the structure under consideration, are

estimated using various methods of exciting the structure, measuring the response and processing
the measured data. Such tests are usually repeated many times to collect as many FRF's as

possible. These are then processed and used to determine the modal pararne_rs of the various
modes of vibrations of the structure. Many standard tools and methods are practiced in industry to
obtain such results. Although the ultimate goal of this study is the same as described above,

namely modal p_eter ___ti'on, the methods employed and techniques used in this
investigation are totally different.

In this project, the modal parameters of a structure are estimated in real-time using adaptive
filtering techniques. This information will be used in the next phase of this project to do real-time
state-estimation for active control.

An adaptive filter as the name implies is one that has the ability to adapt to and learn
changes in the characteristics of a signal. In the control and dynamics discipline, they are mainly
used for plant modeling and disturbance cancellation [4]. Particular to this project, they _ u_
for system identification. Such a filter usually has weights that can be changed/updated through an
adaptation algorithm to achieve some objective. In this study the adaptive filter is designed to
perform system identification of multiple modes of vibration on a structure by means of minimizing
the error between the f'dter output and the plant output, i.e. structure response. When that

i
IH

!
I

m

J

ii

Ul
M w

U

i===

m
R

!1 l i

t

! :

Chapter]

happens, then the filter is said to have identified/modeled the plant and this on-line real-time system
information can then be used in an active control setting.

1.3 Outline of the Report

The above section has provided an outline of the basic concept and reasoning behind this work.
This section on the other hand provides an outline of the various chapters included in this
document.

w

Chapter 2 Theoretical Development

f_

This chapter details the mathematical development and representation of the structure and the
adaptive filter. The process usually starts by modeling the structure using a continuous-time
transfer function that relates the structure response to the excitation input. The pulsed transfer
function of the structure model is obtained using some form of s to z transformation. The method
used here is the bilinear transformation. Once the pulsed transfer function of the structure is

available, then a discrete adaptive filter is built to perform the system identification. The filter
weights are updated through art adaptation algorithm, the one used here is the Widrow-Hoff Delta
Rule [4]. This development is done for both single and multiple mode identification models.

Chapter 3 Analytical Simulation

The simulation of the mathematical models developed in the previous chapter are presented here.
MATLAB ®, which is a high performance numeric computation and visualization software, is used

to simulate the system, the adaptive filter and the training process. The structure is modeled using
a spring-mass-damping system. Results and implementation problems are discussed along with
possible reasons and solutions.

Chapter 4 C40 DSP System

The real-time testing of the adaptive filter and the identification process is implemented on the C40
Digital Signal Processing System. The purpose of this chapter is to familiarize the reader and any
future users with such a system. This helps in understanding the real-lime identification process
and appreciating the problems associated with it.

Chapter 5 Real-Time System identification

This chapter details the equipment used in the lab, the testing set up and results for the single and
two mode real-time system identification. Discussions of problems associated with such testing
and possible solutions are embedded in the chapter.

Chapter 6 Conclusions and Recommendations

The most significant conclusions of the project are summarized in this chapter along with
recommendations for improvement and future applications.

Appendix A Simulation Code

The MATLAB code used for system simulation and algorithm testing is included in this appendix
for both the single and two mode cases.

Appendix B Real-Time Single Mode Code

2

Chapter1

Thisappendixdetailsthecodeusedfor the real-time system identification of the first mode. It
contains the C40 code and the host PC code which are written in C. It also includes the DSPLINK

register set up file, the network configuration file, an m-file to interface with MATLAB, the linker
command file and an error return subroutine.

Appendix C Real-Time Two Mode Code

Similar to appendix B, but for the real-time simultaneous two mode case.

Appendix D Real-Time Two Mode Code - Filtered

Similar to appendix C, but for the two mode case with band-pass filtering.

U

m

U

W

il

3

g

|
i!1 !!]

z

t ,

-LJ

i :

F!

Chapter 2

2 Theoretical Development
This chapter details the mathematical representation of a vibrating structure and the system
identification process using an adaptive filter.

2.1 Mathematical Representation of a Vibrating Structure

A single-input, single-output (SISO) multiple degree of freedom vibrating structure can be
modeled with the following continuous transfer function assuming proportional viscous damping
[1]:

Y (s) iA ,s 2
(2.1)

Where Uq is the excitation applied at point q of the structure and Yp is the acceleration response at

pointp (hence the s z term in the numerator). The quantities 4, co and A are the equivalent viscous

damping ratio, natural frequency and modal amplitude, respectively for the ith mode. The mode
shape information is embedded in the modal amplitude. The modal amplitude is evaluated using

the mode shape coefficients #p and #_ as follows [6]:

i Apqmi _)p i Cq (2.2)

The driving point measurement must be taken in order to identify the mode shape
coefficients in equation (2.2). For example, consider the fh'st mode of a structure. Assume that
the excitation is applied at point 1 and the response is measured at point 2. To solve uniquely for

the mode shape coefficients in equation (2.2) which are _¢1 and _$2, equation (2.1) will have to be

evaluated at the driving point, i.e. point 1. Thus, at least three sensors are needed (force
transducer for input signal, driving point accelerometer and an accelerometer where the mode shape
coefficient is to be identified) to fully identify the modal parameters of a mode unless only the
mode shape coefficient at the driving point is to be identified. Since the data acquisition system
used in this project is a dual-channel system, the luxury of using more than 2 sensors is not
available. This limitation hinders the identification of mode shape coefficients other than at the

driving point.

2.2 System Identification Process

A SISO dynamic system which has an input or excitation u(t)and an output or response y(t) as
shown below earl be thought of as an analog filter. If the input and output of this analog filter are
synchronously sampled and used to train an adaptive digital fdter driven by some adaptation
algorithm, when the weights of the adaptive filter converge and the error is minimized, the adaptive
filter transfer function becomes identical to the analog filter pulse transfer function [5]. In other
words, applying the same input to both filters will produce the same output, which means that the
adaptive filter has accurately identified the unknown dynamic system.

L_

.-.=

4

Chapter 2

.(t)
q Unknown Dynamic System(An,JoB Filter)

m

u(k)

e(k)

I I Adaptation Algorithm [.4------.

Y(O

Figure 2.1: Identification of an Unknown Dynamic System Using an Adaptive Digital Filter [4]

2.2.1 The Dynamic System

In our case, the unknown system is a vibrating structure which has the transfer function shown by
equation (2.1). In order m obtain the modal parameters of a specific mode, the adaptive triter
coefficients have to be related to the modal parameters. This is done by equating the pulsed
transfer functions of the filter and the system which means that the continuous transfer function of
the structure has to be transformed to get the pulsed transfer function. This is done by applying the
bilinear transformation (Tustin approximation):

z-1

s= 2f,-_--_- (2.3)

to equation (2.1), wheref, is the sampling frequency in Hz. We obtain:

2
1z m

Yp (z) _ "/tPv_,2f"

U(z) _;d_(2f'z-112+2"_/°'(2f'Zz-_+ll)+C°_z+l)

(2.4)

expanding and collecting terms give:

Y (z) 4iAqf_ (z 2 - 2z + 1)

') - ,.(4f,2 +4:/o,f, +¢o_)z2+(-8f? +2co_)z+(4f: -4_'/o,f, + ¢_o_)

Y,(z) -E
Uv(z) ;

4iApff'2 " (z 2 - 2z + 1) '_'
4 f ,2 + 4(ito if, + o_i

(-8f, 2 + 2r.o_) (4f2-4_'/o,.f, +r_o_) (2.5)
Z2"f- 2 ' 2 Z-b 2

4f, + 4_'i:.oif, + tO, 4f,2+4(i(.oif,+:.Oi

m

I

I

i

m

gll

I
m
I

m

m

L_

m
m

I

m

i

W

qi

M

Ii

v1 1 !:

= =

- i

g,..;

==

= =

= =
w

LJ

Chapter 2

2.2.2 The Adaptive Filter

An adaptive filter is a digital filter that has variable parameters (weights) which can be modified in
real-time to achieve a certain objective. While time-invariant, non-adaptive f'dters are also used to
solve many signal processing problems, such filters require a good knowledge of the signal at
hand, before they can be efficiently implemented. Uncertainties about the characteristics of a signal
or its variation with time can provide a real challenge to a standard filter. This is basically where
adaptive filters come into play, their ability to track down changes and learn the characteristics of
the signal in real-time makes them a powerful tool in many applications. As a matter of fact, they
have been used for well over a decade to solve such problems as echo and noise cancellation,
channel equalization, speech analysis and a host of other signal processing applications [4,5].

In this project, adaptive filters are used tO identify the modal parameters of a vibrating
structure as shown in Figure 2.1. The most common types of adaptive filters used are finite
impulse response (FIR) and infinite impulse response OIR) filters. The application at hand usually
determines the type of filter to be used. In this application, an I1R filter is used which has poles
and zeros and could model the dynamic system under consideration. In all cases, an adaptive filter
has a standard input and output and an error input that is used to update the weights through an
adaptation algorithm. There are many adaptation algorithms that can be used with a variety of

filters, the one used here is called the _-LMS or Widrow-Hoff delta rule [4]. It is discussed in

greater details below.
As mentioned earlier, the unknown dynamic system has poles and zeros and is thus better

approximated by an fiR filter. Such a digital filter has the following system pulsed transfer
function [7]:

H(z) = Y°u'(z)- ,_o
U(z)

expanding:

Yo,,,(z) _ Bo +B,z -1 + Bez -2 + B3 z-3 + B4z _ +

U (z) 1- Atz-t - Azz -2 - A_z-3 - A,z -4

By dividing numerator and denominator by the highest negative power of z, we can rewrite the
above equation as:

Z.,(z)
U(z)

B oz 4 + B_z 3+ B2 z 2 + B3z + B4 +

z';_A, z3_ A.zz 2_ 4 z_ A4

which can be factorized into multiple second order terms that can be expressed in the format given
in equation (2.5):

Yo.,(z) -2z +1)
U(z) - X. z2 +ail z+ai2

I

(2.6)

In general, the adaptive filter can be written as a difference equation:

6

Chapter 2

K M

yo_,(k) = _ a, Yo,,,(k- n) + _ b,,u(k-n)
1 n

Such an equation can be easily implemented in a code because it consists of current and past values
of the input and output signals multiplied by constant coefficients [7].

2.2.3 The Adaptive Linear Combiner

The implementation of the adaptive filter described above is done by modeling it as an adaptive
linear combiner (LC). The basic tenet of an adaptive LC is learning. It processes information and
learns through a certain algorithm to achieve a prescribed goal. In our case, this goal is to make the
output signal of the f'flter as close as possible to the response of the structure. The adaptive LC
takes in each adaptation cycle an input vector P(k) = [Pl(k), P2(k), P3(k), Pn(k)], multiplies
each input by a weight and takes the sum of all weighted inputs and compares it to a desired output

yd(k). The error, e(k) which is the difference between the adaptive LC output and the desired
output (structural response) is used to update the weights. The process continues until weights
converge and error is minimized.

The weights are updated in this case by the a-LMS or Widrow-Hoff Rule [4]:

P(k)
W(k U(k)P(k) (2.7)

where a is the learning rate, which can be thought of as a step size. It is basically a factor that

determines how fast the weights are updated. It has the recommended range of [4]

0.1 < o_< 1.0

It will be shown later that an even smaller learning rate is sometimes needed to get convergence. If
training takes place and the error is minimized, the pulse transfer function of the unknown system,
equation (2.5) and that of the adaptive filter, equation (2.6) are identical. Equating coefficients
relates the filter parameters and the modal parameters of the structure:

4,Aj/
bi = 4f' +4_itoif , + 092i

-8/,+
ai,= 4f2 + 4C, oJJ, +

- 4]'2,-4Ciwif " +0_

aa 4f2 +4C, w,f +w2

Thus, the modal parameters are defined in terms of the filter coefficients as:

_l + ail + ai2t_Oi = 2f, -a. +ai2
(2.8)

7

i

i

i

m

i

lid

ms

g

i

N

w

m

i

g

I

i!t l i

w

w...#

Chapter 2

't = 2f (1- ai2)
to i (1 -ail + aa) (2.9)

4bi

iApq = l_ai 1 +aa (2.10)

Although the mathematical development described above is for a single mode case, it can be
extended for multiple mode cases. The following sections describe in detail the modal parameter
identification procedures for one, two and larger number of modes.

2.2.4 Case I: Identification of Single Mode

The development of this case is based on work done by Lim, Cabell and Silcox [1].

For a collocated sensor and actuator case, the pulse transfer function of the structure for a single
mode from equation (2.5) is:

(z2_2z+l)
.... Y(z) 4 y¢ +4_07fi +o.I 2

U(z) z 2 + (-8f_2 + 2072) z+ (4f_2-4_'07f" +602)

L 4f ¢ + 4_'0/, +07 2 4f ¢ + 4_'Og' + 072

(2.11)

Similarly, the pulse transfer function of the adaptive filter from equation (2.6) becomes for a single
mode:

Yo,,(z) _ b(z 2 - 2z + 1)

"-- U(z) z 2 +alz +a 2

L_

(2.12)

The above equation can be written in a difference equation format as:

yo,,t(k) = -a, yo,,,(k- 1) -a 2yo,,,(k - 2) + b[u(k)-2 u(k - 1) + u(k -2)] (2.1 3)

Since this filter is used to identify the system of equation (2.1 1), its output delay variables, yo,,(k-

1) and y,,dk-2) are replaced by the system response delay variables, y(k-1) and y(k-2), which are
available through measurement. As a result, equation (2.13) becomes:

yo,,t(k) = -a_y(k-1)-a2Y(k-2)+b[u(k)-2_k-1)+u(k-2)] (2.14)

which says that the adaptive filter's output is a function of the system excitation and response delay
variables.

Implementation of the falter in equation (2.14) as an adaptive LC is as follows:

Chapter2

u(k)

[z _'zzt+l]
y(k)

Pl

Yo_(k)

Adaptation Algorithm

y(k

?

.6

Figure 2.2: Adaptive Linear Combiner to Identify the Modal Parameters of a Single Mode

where:

P1 = u(k)- 2u(k - 1) + u(k - 2) =_

P2 = y(k - 1) =_

P3 = y(k - 2) =_

Wl=b

W 2 =-a 1

W3 = -a2

(2.15)

Once the filter coefficients are identified, the modal parameters are calculated using equations (2.8),
(2.9) and (2.10). The simulation and real-time implementation of this network are detailed in

Chapters 3 and 5, respectively.

2.2.5 Case II: Simultaneous Identification of Two Modes

The pulse transfer function of the f'wst two modes of the structure is obtained from equation (2.5)
for/=2 are:

41Acf_ (z2_2z+l)

r(z)_ 4f: +4_o_f,+_ +
U(z) = (-8f, 2 +2.,(0 2) (4f,2 -4 ff,(-ou¢', + a_2)

z + z+
4f, = + 4_',(.o,f, +(.0 2 4f, 2 +4#,09,f, +0)12

4=Apq f,2 (z2_2z+l)

4f:+4:;:, ,.f, +_;
2 (-8f: + 2xo_) (4f,2- 4_2_2f, +(.o2)

z -_4f: +4LcoJ,+o_z, 4f: +4L_J, +_

The pulse transfer function of the adaptive filter is obtained from equation (2.6) as:

Yo.,(z) bl(z2-2z+l) b2(z2-2z+l)
= Jr

U(z) z2+a_:+a_2 z2 +a2:+a22

9

g

5

!3 _| i_

Chapter 2
r

g..;

-]

F
t

w

Combine the two terms on the fight hand side to obtain:

b_(z2 + a21z+ a22)+/_ (z2 +all2 +at2)Yo.,(z) =(z 2 _ 2z+ 1) .z4
U(z) +(all +a21)z 3 + (a,2+ a210q +a22)z 2 +(a2lal2 + a2zall)z +a22a12

Define: V(z)=U(z) _2-2z +1] (2.16)

and rearrange to arrive at:

(b, + b2)z _ +(a2tbl + oa_b2)z +(b_a22 + b2a_2)
|

z '_+ (a_ + a2_)z 3 + (a_ 2 + a2 _a_ + a22)z _ + (a 2_at2 + a22a_ _)z + a22a _2

The corresponding difference equation becomes:

Yo.,(k) = -(ali + a20 Yo.,(k - 1)- (oa2 + az lall +a22)Yo_,(k - 2)

- (a2 la_2+ a2za _1)y o.,(k - 3) - (a 2za_z) Yo.,(k- 4)

+(b_ + b2)v(k- 2)+(a2_b_ +ax_b2)v(k- 3)

+ (b,a 2+ b a)v(Ic -4)

(2.17)

Similar to the single mode ease, the adaptive filter's delay variables are replaced by measured
structural response variables:

y o,,(k)= -(all + a21) y(k -1)-(a12 + a21all + a 22)y(k -2)

- (a2ta12 + a22all)y(k - 3)- (a22a12)y(k -4) +(b t + b2)v(k - 2)

+ (az_b _ + a_b2)v(k- 3) + (b_a22 + b2at2)v(k-4)

where v(k-2) is obtained by dividing both sides of equation (2.16) by za and casting in the
difference equation form:

v(k - 2)= u(k)- 2u(k -1) +u(k- 2) (2.18)

The adaptive filter difference equation above indicates that an adaptive LC with 7 inputs, 1
output and 7 weights is needed as shown below:

t

w

g

10

Chapter 2

y(k) Pl

u(k)

, i z- .2Z ll
v(k-2) P$

Adaptation Algorithm

Figure 2.3: Adaptive Linear Combiner to Identify the Modal Parameters of Two Modes

where:

W1 =-(at_+a2_) =_

W2 = -(a12 + a21all + a22) =*

W3 = -(a2,a12 + a22a,,) =_

W, = -(a 22aa2) =#

=+(b,+b2)
W 6 = +(a2,bi +allb2)

W7 = +(b,a22 + b2a,2) =_

PI= y(k -1)

P2 = y(k- 2)

P3= y(k-3)

P4= y(k-4)

P5 = v(k- 2)

I'6 = v(k - 3)

P7 = v(k-4)

(2.19)

When the weights converge, the filter coefficients can be extracted by solving the seven
nonlinear equations above simultaneously. Since the fu'st four equations are functions of four
unknown coefficients only as written below, they can be solved simultaneously independent of the
other three.

al 1+ a21 = -W I

a_2 +a2tatl +a22 =-W 2

a2 lat 2 + a2zal l= -14"3

a22a12 =-W+

(2.20)

(2.21)

(2.22)

(2.23)

Substituting equations (2.20) and (2.23) into (2.22) gives:

11

m

I

=

II

U

I

m

J

l

W

m

I

g

m

m
U

_q I V

Chapter 2

w

w

-W3 = al2(--Wl -- at0+ al la22

-W3 + a12Wl

all (--1_4 al21

\ al2 ,)

(2.24)

Substituting (2.23) into (2.24) and adding to (2.21) gives:

-W2a, 2 + W3al l =a_2 -W 4 - a,]a22 (2.25)

Substituting (2.23) and (2.24) into (2.25) gives an equation in one variable only:

-W2a,2 + W3

a12

= a_2-W 4 +

a12

a12

After rigorous manipulation, the above equation reduces to the following:

a_2 +W2a_2 + (WIW3 + W+)_2 + (2W2W4 -W_ + W(W4)a_2

+(-w,w,w,-w,W + w:-o
(2.26)

The above equation is a 6th order polynomial in one filter coefficient, namely a12. The converged

weights will always cause equation (2.26) to produce 2 real roots and 2 pairs of complex
conjugates. Either real root produces the solution needed for the modal parameter identification of

the two modes. The other coefficients of the filter are solved by substituting back the value of a12

into the weight equations:

a22 -- _ W4

al2

a2, = a22W, - W 3
al2 - a22

all =-W 1 -a12

b,=W+-62

(2.27)

12

Chapter 2

Once the filter coefficients axe determined, then the modal parameters can be easily calculated using

equations (2.8), (2.9) and (2.10). The simulation and real-time implementation of this network are
detailed in Chapters 3 and 5, respectively.

2.2.6 Case IH: Identification of Three Modes

Similar to the previous 2 cases, the pulse transfer function of the first three modes of the structure
is obtained from equation (2.5) for I=3:

r(z) _
U(z)

4'Aqf2 (z 2 - 2z + 1)

4f 2 + 4_',6o,f, + 6o2

z2+

z2÷

(-8f) + 2o 2) (4f, = -4_,6olf, +6o 2)

4f, = +4_',6o,f, +6o2 z + 4f= +4_. 6ol.f " +(.o12

42Avqf'2 (z2-2z +1)

4f, 2 + 4_26o2f$ + 6o22

(-8f'2 +26o22) z_ (4L=-4_'26o=f" +6o2)
2 2

4f 2 +4_'26o2f, +6o 2 4ff +4_'2602f, +092

43Avqf'2 (z 2 -2z +1)
4f 2 +4_'36o3f, +6o_

z2 + (-8L 2+ 26o]) z +
4H +_'/oj, +o,32

+

(4f2 - 4_'36o3f, +6o_)
2

4f 2 + 4_'36o3f,+6o3

Using equations (2.6) and (2.16), the pulse transfer function of the adaptive filter is written as:

= _,, +ro.,(z) b, + z2 z2
V(z) ' z2 +a_z +a_2 +a2_z+a22 +a31z +a32

Combine the terms to obtain the common denominator:.

Den(z) = z 6 +(all +a21 + a31)z s + (alia21 + a, la31 + a21a31 +at2 +a22 +a32) z4

+ (a21a12 + a I 1a22 + a3 ia12 + a31a21all + a3 la22 + a32al 1+ a32a21) z3

+ (a22a_2 + a3 _a2 _a_2 + a3_a22at _+ a32al 2 + a3za2 (t_ _ + a32a22)z z

+ (a31a22al2 +a32a21al2 + a_2a22a __)z +a_2a22a_2

and the numerator:

I

N

il

i

B

I

I

II

m

M

n

II

I

I

Z-
l

U

=

13

!_| 1 F

=

w

r==__

L_

Chapter 2

Num(z) = (/_+b2 +b3)? + (/_a2j+ b_a3_+b:a3_+ b2a_+ _j _+b3a:_)z3

+ (bla22+bla21a3_+ I_a32+ b2ai2+ b2al_31+b2a32+b3a_2+ b3a21al_+ b3a22)z2

+ (bia2_. +/_a2:a3_+/_a_a32+ b2a__a3_+ b3a__a2_+/_ _22)z

+ (b3a2:a,2+/_a22a32+ b2al2a.)

Thus, we have a difference equation as:

yo,,(k)= - (alt + a21 +a3t)Y(k-1)

- (atta2t + at_3t + a2ta3t + at2 +a22 + a32) y(k - 2)

- (a2_t2+ a_ta22 + a3_2 + aa_2_ _t+ a31a 22+a32a_ +a32a21)y(k - 3)

- (a22at2 + a3ta2_at2 +aata22a_t +a_2a_2 + aa2a2pt_ +aa2a22)y(k -4)

- (a3 ta22at 2 + a_2a 2tat 2+ a 32_22dI1) y(k - 5) - (a_ 2a22a32)Y(k - 6)

+(b_ +b 2 +b3)v(k-2)

+ (/,_a2_+bta3t +b2a_ +b2a,_ +b_a_t +b3a20v(k- 3)

+ (b1¢122 -[- bld21d3l "["b1_32 -4- b2a12 + blalla3l +b2a32 +

-[- b3a12 -[-b3d21dll -[- b3d22)l/(k - 4)

_- (blg21¢_32 -[-bl_22a31-11- b2dl lt232 -[- b2ai2_31-11- b3a12a21 -[- b3911a22)v(k- 5)

-[- (b3a22_12 -[- bla22d 32 -[- b2dl 2a32)]/(k- 6)

(2.28)

This difference equation indicates that an adaptive LC with 11 inputs, 11 weights and 1 output is
needed. The adaptive LC diagram will be similar to that in Figure 2.3 but with the more inputs and
weights where the weights are given by:

Wl =-(at_ +a2t + a3t)

W2 =-(atta2t +at_a3t + a2ta_t + a_2 + a22 +a52)

W3 =-(a2_at2 + a_ta22 + + a3ta22 + a_2a_t + a32a20

W4 =--(a22at2 +a_ta2_t2 +a3_22att +a32at2 + a32a2ta_ + a32a22)

W5 =-(a.a2zat2 + a3zn2p. +a52a22a_t)

W6 --(al 2a22tI32) (2.29)

W7 = +(b_ + b2 + b3)

W8 = +(bta 2t + b_a3_ +b2a3t + bzatt + b3ati +b3a21)

W9 =+(bta22 +b_a2_3t + +b2a32+ b3at2 + b3a2_aa_ + b_a22)

W10 = +(b_ a2ta_2 + b_a22a3_ + + b_a_2a2t + b_a_ _a22)

Wll =+(b3a22at2 + bta22a32 +b2a_2a32)

i4

Chapter 2

and the adaptive LC inputs are:

P1 = y(k - 1)

t,2= y(k - 2)

P3 = y(k - 3)

p4 = y(k - 4)

P5 = y(k - 5)

P6 = y(k - 6) (2.30)

P7 = v(k - 2)

P8 = v(k - 3)

P9 = v(k - 4)

P10 = v(k - 5)

P11 = v(k - 6)

It is evident that at least 6 nonlinear equations need to be solv_ s_uitaneously to obtain

the filter coefficients. This has proven to be a formidable task. Manual manipulation of these
equations in a way similar to the two mode case is almost impossible. A symbolicrnath

manipulator (MAPLE*) on the UniversityofKan_L_:system was used to tackle these

equations. However, the program was unable to produce answers even after running for more
than 24 hours. It can safely be concluded that MAPLE is incapable of solving such a system of
equations. In a conversation the author had with Dr. Ralph Byers of the KU mathematics
department who is an expert on numerical analysis, he recommended that an optimization algorithm

be used. In addition, he indicated that obtaining an answer fast enough for this algorithm to still be
implemented in real-time is doubtful. As a result, the real-time implementation of the adaptive filter
for more than two degrees of freedom systems will not be attempted. An alternative method will
have to be considered.

m

i

N
m

i

I

IB

II

i
m

m

i

G

a

lJ

g

I

15

t

i_| 1 i7

LI

r.

r.

=

1;::,

Chapter 3

3 Analytical Simulation

The algorithms and mathematical models developed in chapter 2 are simulated and tested in this

chapter. This analytical work is done using MATLAB ® which provides an excellent platform for

simulation. It also provides an excellent way of testing DSP codes that are later adjusted and
implemented on the C40 DSP system. This is the reason why the MATLAB codes in Appendix A
are written in the long format that closely resemble the C40 code. The vibrating structure is
modeled as a spring-mass-damper system connected in series.

3.1 Single DOF Case

The MATLAB simulation program for the SDOF case described in this section is included in
Appendix A. Consider a spring-mass-damper system shown in Figure 3.1. The dynamics of the
system is represented by the following equation of motion:

mYc(t) +cR(t)+ kx(t)= F(t)

where m is mass, c damping coefficient, k spring constant, x (t) displacement response, and F(t)
the excitation applied to the system.

F(t)

Figure 3.1:

x(O

Single DOF Spring-Mass-Damper System

The modal parameters of such a system are chosen to be similar to those of the aluminum beam to
be tested in the lab:

natural frequency: to = 11 Hz,

damping ratio: _ = 0.01,

modal amplitude: A_,q = 1

where p is the response measurement point and q is the excitation point. In the single DOF case, p
and q are the same poinL

The system is implemented in MATLAB in the continuous transfer function format of
equation (2.1):

Y, (s) = Apq s2

Uq(s) s 2 + 2_'o9s+o92

where U,(s) is a normally distributed random excitation applied to the system, and Y/s) is the
system acceleration response. The system is converted to discrete time (pulse transfer function)

using the continuous-to-discrete command c2dm with the bilinear transformation option tustin in

16

Chapter3

MATLAB ata specificsamplingrate. Oncethepulsetransferfunctionis determined,thesystem
responseto the random excitation is simulated using thediscre_ linear simulation command dlsim.
Figure 3.2 shows the time histories of a sample excitation and response signals and the FFT of the
system response which clearly shows the single mode.

The system excitation and response are then used to form the adaptive linear combiner
inputs P1, P2 and P3. Off-line values of the weights can be obtained by solving the following
linear equation which relates the output of the adaptive LC to its inputs:

Y,t(k) = P(k)W(k)

yo,,(l!-
where: Y.,,t(k) yo.,(2) , P(k) =

kYo.,(k)

-P 1(1) P2(1) P3(1)"

PI(2) P2(2) P3(2)

P1(3) P2(3) P3(3)

: : :

Pl(k) P2(k) P3(k)

and

(3.1)

[w,(k)]

LW (k)J

By solving for the weights, we obtain

W(k) = P" (k)Y.t(k)

where P" is a pseudo-inverse defined by

p" = 0p'p) "xp"

The computation is done in MATLAB using the pinv command. It is based on singular value
decomposition.

In order to identify the off-line weights, the output of the adaptive LC, Y,ut(k), is replaced
by the system response vector Yfk), which is available through measurements. These off-_e
values are used to check the on-line weights which should converge to the exact off-line values

provided that the system is time-invariant. Thus, the 3x 1 off-line weights vector is obtained by

War = P" (k)Y(k)

Note that no training is taking place and, as a result, the weights are not updated every time step.
These in turn are used to determine the off-line modal parameters of the system. This off-line test

provides a way of determining the sanity of the system response obtained through simulation or
actual data acquisition. Possible problems could include inaccurate simulation, bad sampling, low
signal-to-noise ratio, damaged sensors, etc. In addition, the off-line method provides a way of
testing the adaptive LC architecture and helps find errors before the real-time implementation of the
identification algorithm. It is hard to determine sources of error once the adaptation process is
started because there are many variables involved. But by eliminating problems associated with the

adaptation process, one can easily track down sources of error.
If the spring-mass-damper system was chosen to have the modal parameters described

previously, and the response signal was sampled at 32 Hz, then the off-line weights obtained using

the above procedure are

= 0.4571
o_, -0.152
oJr - 0.903

The MATLAB code for this case is given in Appendix A.

U

il

m

I

m

I

II

L_
r_

m

m
I

L

m
I

J

W

17
m

i;| II

Chapter 3

L

L •

Random Excitation
I I t I | I

0

-5 i i i i t i i

0 1 2 3 4 5 6 7 8

Time, sec.

: System Acceleration Response

20 1 , , , _ , , ,

0

-20

rE==..

-:o!
I

w

U

0 1

15OO

I I I 1 I

2 3 4 5 6 7 8

..... Time, sec.

FFT of System Response
I I I I

1000

5OO

0
0 5 10 15 20 25 30 35

' " Frequency, Hz

Figure 3.2: Time Histories oi"the Single DOF System Excitation and Response

Signals and the FFT of the Response _ = 64 Hz)

--=

w

.18

Chapter 3

Corresponding modal parameters of the system are then obtained using equations (2.8)-(2.10) and
(2.15) as

off-line natural frequency: O_o_,= 11 Hz,

off-line damping ratio: _olr = 0.01,

off-line modal constant: Ap+o/r = 1.0

During the simulation, if the off-line modal parameters come out exactly the same as the actual
system parameters, one can assume that the mathematical development of the adaptive LC
equations is correct.

At this point, one can proceed safely with the next step, which is testing the adaptation
algorithm using the on-line method that also simulates the real-time implementation. First, the
delay variables y(k-1), y(k-2), u(k-1) and u(k-2) which are needed to construct the adaptive LC

inputs are initialized along with the weights and learning rate. A for statement is used to implement
a loop that runs for a specified number of iterations.

As discussed in Chapter 2, the adaptive LC inputs are simply:

P1 = u(k)- 2u(k-1) + u(k-2)
P2 = y(k-1)
P3 -- y(k-2)

Using these inputs and the weights the adaptive LC can be built using the linear relationship of
equation (3.1). The error e(k) at time k, is taken as the difference between the actual system
response, y(k) and the adaptive LC output, yo,,/k) at k (see Figure 2.2). This error is then fed into
the adaptation algorithm of equation (2.7) to update the weights. The on-line modal parameters are
calculated during every iteration.

The results are presented in a graphical format for various sampling rates as shown in
Figures 3.3 to 3.8. The plots show that the modal parameters converge to the actual system values
in a very short time depending on the sampling rate. A higher sampling rate as shown usually
means quicker convergence because more data points are available for a given length of time.
Figure 3.3 (]', = 32 Hz) shows that the adaptive LC weights converge to the off-line values as
stated above within 1 second, whereas Figure 3.8 (f, = 1024 Hz) shows an almost instantaneous
convergence. The error goes to zero at the same rate indicating accurate system identification. The
convergence rate can also be modified by adjusting the learning rate. A learning rate of 1.0 means
total error correction, any value greater than 1.0 means that the error would be overcorrected and
should not be used [4]. In this case, a learning rate of 1.0 was used and found to work well. On
the other hand, such a high learning rate can cause problems for the adaptation process in some
eases, therefore a smaller value must be used. This problem becomes evident in the two mode
identification process, where in some cases a learning rate as small as 5% can be too high and
produce poor results.

As shown in the plots, for all cases, system identification took place without difficulty even
at sampling rates higher than lkHz. Thus, it can be concluded that for the single DOF case, the
adaptation algorithm is not adversely affected by the sampling rate. This as it turns out, is not
necessarily true for the two DOF case as will be shown in the next section, where the adaptation

process is significantly affected by the sampling frequency.

U

m

g

i

i
I

Ig

[]

i

II

i

i

i

7_

I

W

u

i

m

19

i

U

Chapter 3

=

w

w

r

=

15

5

Natural Frequency, Hz

0

First Weight, W1

........
1 2 3 4 0 1 2 3

2

1

0
0

Damping Ratio W2

] o;L
' ' ' -0.5
1 2 3 4 0 1 2 3

Modal Amplitude
2

°2

0 1

W3
0

-0.5_
I J i1 _ I ! I

2 3 4 0 1 2 3
Time, sec.

error

0

-1
0 1 2 3

Time, sec.

Figure 3.3: On-Line Modal Parameters, Weights and Error for the Single Mode

Identification in MATLAB

= 32 Hz, ct = 1.0)

2O

4

4

4

Chapter3

m
g

m

g

30

20

10
0 1

Natural Frequency, Hz

2

0

2 3 4

Damping Ratio

0 1 2 3 4

5

0

Modal Amplitude

1 2 3
Time, sec.

4

1

-1
0

2

0
0

0

5
0

First Weight, Wl
q

1 2 3

1 2 3

W3

4

4

1 2 3 4

error

41 2 3

Time, sec.

i

i
mm

U

=

I

m
l

i

i

u

U

m

g

w i

Figure 3.4: On-Line Modal Parameters, Weights and Error for the Single Mode

Identification in MATLAB

(f, = 64 Hz, ot = 1.0)

21

J

I

m

Chapter 3

i]

L_

T "

L :

=

Natural Frequency, Hz

i i

0 1 2 3 4

Damping Ratio
2

°t
-2 ! i i

0 1 2 3

First Weight, W1

4

2

0
0

Modal Amplitude

i |

1 2 3

Time, sec.

2

0
0 1 2 3

2

W2

i i i

4

4 0 1 2 3 4

W3

2

ok
-2 i i i

4 0 1 2 3

error

j ! i

0 1 2 3
Time, sec.

Figure 3.5:

2

-2 /

OniLin'e M0d_ Pff_'&6 t_, Weights and Error for the Single Mode
Identification in MATLAB

(f,=]28 Hz,_ = 1.o)

4

4

22

Chamer 3

m

i

u

100

50

Natural Frequency, Hz

, • i

0 1 2 3 4

2

:f
0

First Weight, Wl

1 2 3 4

2

°t
-2

0

Damping Ratio

1 2 3 4

W2
, , ,

i i J

0 1 2 3 4

5

0

-5
0

Modal Amplitude

i | ,,, !

1 2 3

Time, sec.

4

0

-2
0

2

°l
-2

0

W3

i i |

1 2 3 4

error

A I i

1 2 3

Time, sec.

4

Figure 3.6: On-Line Modal Parameters, Weights and Error for the Single Mode
Identification in MATLAB

= 256 Hz, c_ = 1.0)

D

I

=

m

I

m

m

u

z

I

m

m

m

23

i

m

I

_r| 71 1-

-- .Chapter 3

l....a

w

t

100

5O

Natural Frequency, Hz

i i

0 2 4 6 8

2

0

First Weight, Wl

i i

2 4 6

5

0

-5
0

Damping Ratio

a. i i

2 4 6 8

W2

0 2 4 6

0

Modal Amplitude
2

W3

i

2
|

4

Time, sec.

i

6 8

0
k

_2 i u |

0 2 4 6

5

el
-5

0

error

i , i i

2- 4 6

Time, sec.

Figure 3.7: On-Line Modal Parameters, Weights and Error for the Single Mode
Identification in MATLAB

(f, = 512 Hz, ot = 1.0)

24

Chapter 3

g

g

il

I

400
Natural Frequency, Hz

200

..... ; -.

0 1 2 3 4

2

1

0
0

First Weight, Wl

!

2
i

3 4

i

il

II

2

0

-2
0

4

0
0

Figure 3.8:

Damping Ratio

I , ! I

1 2 3 4

Modal Amplitude

2 3

Time, sec.

4

2

1

0
0

2

0

-2
0

5

0

-5
0

W2

|

2
I

3

W3

4

I

2
i

3

error

4

I

1
f

2

Time, sec.

I

3

On-Line Modal Parameters, Weights and Error for the Single Mode
Identification in MATLAB

= 1024 Hz, cc = 1.0)

4

I

w

W

m

m

=

m
I

m

g

m

J

m

=
I

25

m
m

I

71 ![1-

= ,

L.=

t7

U

_ .

w_
= :
= 1

= .

i Chapter 3

3.2 Two DOF Case

The MATLAB simulation program for the two DOF case described in this section is included in
Appendix A. As shown in Figure 3.9, the two DOF spring-mass-damper system driven by
external forces is represented by the following equation of motion in matrix form [8]:

Ira'°]+ =m2JLX2J -c2 c2 2 k=jLx (t)j Lf2(t) J (3.2)

wheref(t) is an excitation applied to a mass, and x(t) is a displacement response of a mass.

F_(t) F2(t)

xl(t) xe(t)

Figure 3.9: Two DOF Spring-Mass-Damper System

The modal coordinate Wansformation is employed to de,couple the equations of motion for a
multiple DOF system as

I !

x = M-rq = M-rEr (3.3)

where:

X'-

Ix [_ m_0] rq,(t)] r [rl(t)lx,(t)]2(t)j , M= ,q=Lq2(t)_] , =Lr_(t)j

and E is a matrix that contains the normalized eigenvectors:

E = [v 1 v 2 v 3 v.] (3.4)

where n is the number of modes (here n = 2). The mode shapes can be extracted from the
eigenvectors using the following equation:

¢1) = M "1/'2 V

Substituting equation (3.3) into equation (3.2) and multiplying by M d" gives

M'q'MMA'_ 1 + M-4"CM-_ + M-_KMq'q -- M-'I'Ff
: ! ' : .. _ ==;

C and K are the damping and stiffness matrices, respectively. F is a 2x2 identity matrix. The
above equation is simplified to

26

Chapter3

where

I_+C_I + Kq = M-]'Ff

M -_MM -_' = I , M -rCM-'r
! l

, g=M-rKM-T

In the modal coordinate system, the equation becomes:

E_ + CE/" +/_Er '= M-TFf

ErEf +ErC/_ +ErK/_ = E r M-_'Ff

where

Er E =- EriE= 2 , 0 , Er lP._E= 092
' 2_20J2 2

The equation can ,dso be cast into a state-space format:

,.,iro o ,
*,/=/o o o
"I/-_'_ o -_,,,,,
&J L o _ o

o T",l
1 lr,/+l -
o /"/ LE'O_F]f

-2_2ahl_,J

and _e correspon_ng acceleration ou_ut is:

+]

rl i

4F_,[diag(-2¢)]I _r_
M iO_i ,r

°

r,_

This sm_-space model is used m MATLAB m represent _e _vo DOF system wi_ He foUowmg
values:

m I = m e = 3 kg
k I = 35 kN/m
k 2 = 150 kN/m

C = 0.0001*K N.s/m

The res_fing mo&d parameters are:

first mode namr_ fiequency:

first mode damping ratio:

a),= 11.8 Hz (74 rad/sec)

_l = 0.004

27

i

iII

[]

=
U

I1

t

6
I

==

I

J

I

=

i

u

g

m

g

I

=

k

L_
w

L==I

w

Chapter 3

first mode shape: -- F1 ¢1 l I0"3841

L,@_j=LR431j

second mode natural frequency:

second damping ratio:

second mode shape:

oh = 52 Hz (326 rad/sec)

_2 = 0.016

L0384J

A random excitation can be applied to either m I or nh depending on the user's choice. The
two DOF program given in Appendix A, requests an input for an excitation point. Similarly, the
user is asked to enter a response point. A same point excitation and response measurement must
be taken to solve for the mode shape coefficients. If the mode shape coefficients at both of the
masses are desired, the simulation program will have to be run twice. Figure 3.10 shows the

random excitation signal, the system acceleration response (f, = 200 Hz) and the fast fourier
transform (FF'I) of the response signal. Note that the FFr shows the first mode at the expected
frequency (11.8 Hz), whereas the second mode is shown at a lower frequency (around 45 Hz
instead of the expected 52Hz). This is the result of a phenomenon
associated with the bllinear transformation called frequency warping, which will be discussed in
detail in Chapter 5.

Once the system response is obtained, the rest of the simulation program is similar to the
single DOF ease with the exception of the adaptive filter coefficients extraction process from the
weights. In the SDOF case, the filter coefficients and the weights have the simple relationships
shown in equation (2.15). However, for the two DOF case, the relationship between the weights
and the f'dter coefficients is more complicated as shown in equation (2.19). A sixth order
polynomial equation (2.26) must be solved before any coefficients can be extracted. This is done

using the Newton root approximation algorithm. The MATLAB roots command which solves for
the roots of a polynomial by f'mding the eigenvalues of the assoeiated companion matrix could have
been used in this ease, which would have reduced the amount of code and iteration time

tremendously. However, the reason this easy route was not taken is due to the fact that the author
wishes to make the simulation code as close to the real-time code (C code) in chapter 5 as possible
to facilitate troubleshooting. The Newton iteration method solves the equationf(x) = 0, wherefis
assumed to be continuous and differentiable. Using an approximate value of the root x,, a new

value, x,,+_ that is closer to the root (assuming convergence) is found by the following [9]:

f(x,,)
Xn. a = X n

f "(x,)

This is done using a for loop as shown in the simulation program (DDOFSIM.M) in Appendix A.
It was found that the Newton method converges to a root after only a few iterations with an initial

value, x,=l. Since only one real root is needed to solve equation (2.26), which is continuous and
differentiable, this turned out to be a good estimate. Once equation (2.26) is solved for one root
(coefficient), equation (2.27) is solved simultaneously for the rest of the filter coefficients. The
modal parameters can then be extracted using equations (2.8)-(2.10).

Here are the results of a sample run (f, = 128, a = 1.0):

First Run (excitation ltl point 1. response at point 2)

off-line weights: W_ = 1.2213
W2o,_ -1.1787

28

Chapter3

ill

m
I

I

.....

0

Random Excitation

I I I I I

°5 I I I I I

0 2 4 6 8 10

Time, sec

System Acceleration Response

-5 i

400

2OO

0
0

5] : I I I I i :

0

I I I I

0 2 4 6 _8 10

Time, sec.

..... : -_ F_ of-System_Resp0nse

I| I I I I I I I

10 20 30 40 50 60

Frequency, Hz

....... I] I

70 80 9O

z

Fibre 3.10: Time Histories of the Two DOF System Excitation and Acceleration _

Response Signals and the Fast Fourier Tr_sform of the System Respoiase

or, = 200Hz)

12

12

100

=m

m
I

I

I

I

I

I

I

i ;

i

29

I

i F

Ill:Ii:

i

a

z:: 7

t.J

;G

_L

Chapter 3

W3o_, = 1.1706
W_o,H -0.9650
Wso,_ 0.0902
W_o_ 0.1760
WTo_ 0.0857

which give the following off-line modal parameters:

first mode off-line natural frequency:

................. damping ratio:

................ modal constant:

second mode off-line natural frequency:

................. damping ratio:

................ modal constant:

(Otoz = 74.1 rad/sec (11.8 Hz),

_oM = 0.004,

_A21.o# = 0.1655

tO2oH = 326 rad/sec (52 Hz),

_2oZ = 0.016,

2A2_.ol = -0.1655

Second Run (same point excitation and response (_ point 1)

off-line weights: W_o_,= 1.2213
W2, _, = -1.1787
Wso_ = 1.1706
W,o z - -0.9650
W_oz = 0.2056
W_z = -0.0547
WToz 0.2011

which give the following off-line modal parameters:

first mode off-line natural frequency:

................. damping ratio:

................ modal constant:

second mode off-line natural frequency:

................. damping ratio:

................ modal constant:

tO_oz = 74.1 rad/sec (11.8 Hz),

o = 0.004,

iAn__# = 0.1474

2o" = 326 rad/sec (52 Hz),

_2o# = 0.016,

_An.oZ = 0.186

Using equation (2.2), the modal constants are solved and the following mode shapes are produced

[°384l ['¢'l [- 484l
kt02] = L0.431_1 _ = = L0342J

which are fairly close to the actual values shown earlier (page 41).
Note that the first four weights are the same in both cases whereas the last three are

different. This is due to the fact that, as shown in equation (2.19), the fh-st four weight equations
are functions of the filter denominator coefficients (a's) only. These influence all modal parameters
of the specific mode according m equations (2.8)-(2.10). Whereas, the filter numerator
coefficients (b's) only influence the modal shape as shown in equation (2.10). As a result,
equation (2.19) shows that the b-coefficients appear in the last three weights only.

The development of the on-line part of the code for this case is similar to that of the SDOF
case. The results are discussed next.

30

Chapter 3

m

i

i

m

i

First Mode Natural Frequency, Hz
150

100

5O

0
0

hi
i

5 10

Second Mode Natural Frequency, Hz
100

0
0 5 0

5

-5
0

100

0

-100
0

Damping Ratio

!

5

Modal Amplitude, A1 pq
"t-

5

Time, sec

4

2

0

-2
10 0

100

0

-100
10 0

Damping Ratio

5

Modal Amplitude, A2pq
T

_m

5

Time, sec.

10

10

Figure 3. l l a: On-Line Modal Parameters of the Simultaneous Two Mode
Identification done in MATLAB

(Case 1: f,= ll0Hz, cz= 1.0)

31

l

i

I
I
I

I
i

d

I

i

i
II
i

I

I

M

I

i

i

I

I

m

m

!_1 a I

Chapter 3

| :

L2

i ;

! i

i .

I L

_J

L

w

f
=

w

1

0.5

First Weight, Wl

oL/
0 5 10

W5

0 10

W2

0 5 10

0.5

-0.5
0

W6

,I

5 10

W3

0 5 10

0.5

-0.5
0

W7

I

5 10

1

0

-1
0

W4

5 10

Time, sec.

Error

0 5

Time, sec.

10

Figure 3.1 lb: Adaptive LC Weights and Error

(Case 1' f, = 110 nz, cz = 1.0)

32

Chapter 3

Case 1 (Figure 3.11a,b) Sampling Rate = 110 Hz
_ing Rate = 1.0

The sampling rate is slightly higher than twice the second mode natural frequency. A leamlng rate
of 1.0 is used for total error correction. The first and second mode parameters converge to the
exact off-line values within 2 seconds. The weights also converge to the off-line values and the
error goes to zero within the same time indicating full identification.

Case 2 (Figure 3.12a,b) Sampling Rate = 128 Hz
Learning Rate = 1.0

Slighdy increasing the sampling rate to 128 Hz does not have much of an effect on the results. The
modal parameters are accurately identified within approximately 2.5 see.

Case 3 (Figure 3.13a,b) Sampling Rate = 256 Hz
Learning Rate = 1.0

Increasing the sampling rate further to 256 Hz and using total error correction (cx = 1.0) produces

poor results as shown. Even though the adaptive filter fails to accurately identify both modes,
Figure 3.13b shows that the algorithm has tried to minimize the error. Allowing the adaptation
process to run for a longer period of time did not produce better results. Possible explanation is
given in the next section.

Case 4 (Figure 3.14a, b) Sampling Rate = 256 Hz
Learning Rate = 0.05

Reducing the learning rate significantly produced better results than the previous case. But the
adaptive filter still fails to accurately identify both modes. As shown in Figure 3.14a, the first
mode is totally skipped, the second mode appears as the first mode, and in place of the second
mode the filter tried to identify an adjacent component that is not an actual mode. The following
section contains possible explanation for this mode-skipping phenomenon.

U

l
D

I

I

i

I

.I
m

I

L_
I

I
D

J

I

I

I

I

I

m

i

I

33
i
I

!]1

-- Chapter 3

= :

=

100

50

First Mode Natural Frequency, Hz

0
0

i

5 10

Damping Ratio
2

1

0

-1
0

i

5

Second Mode Natural Frequency, Hz
100

0
0

0.5

i

5 10

Damping Ratio

0
10 0

i

5 0

k,_;

100

0

-100

-200

Modal Amplitude, Alpq

0
i

5

Time, sec

2OO

0

Modal Amplitude, A2pq

-2OO
10 0

|

5

Time, sec.

Figure 3.12a: On-Line Modal parameters of the Simultaneous Two Mode
identification done in MATLAB

(Case 2: _ = 128 Hz, o_= 1.0)

10

[

w

34

Chapter 3

i

z

I

2

0

First Weight, Wl

0 5 10

2
W2

-2
0

i

5

]
10

W3

2

0

-2
0

i

5

t
10

W4

-1
0

!

5

Time, sec.

10

W5

1

-1
0

1

0

-1
0

i

5

W6

10

|

5 10

,

0

VV7

I

10

10

0

Error

i

5

Time, sec.

10

i

II

=
II

ii

z
ii

=
m
II

[]

E

l
i
li

I

w

m
Illl

Figure 3.12b: Adaptive LC Weights and Error

(Case 2: f, = 128 Hz, ot = 1.0)

_i

u

I

35

Chapter 3

r

First Mode Natural Frequency, Hz
3OO

20O

100 j_
0

0 5 10

Second Mode Natural Frequency, Hz
4OO

200 , _

0 5 0

--=

w

L_
L_

L,

L

L:

L

r-=;:

2OO

100

0

-1 O0
0

200

0

-200

-400
0

Damping Ratio
'I"

5 10

200
Damping Ratio

100

0

-100
0

I
I

I

5 10

Modal Amplitude, Alpq
"t"

5

Time, sec

10

2OO

100

0

-100
0

Modal Amplitude, A2pq

5 10

Time, sec.

Figure 3.13a: On-Line Modal Parameters of the Simultaneous Two Mode

Identification done in MATLAB

(Case 3" f_ = 256 Hz, ct = 1.0)

36

Chapter 3

I

i

I

First Weight, Wl

0 5 10

0.5

0

-0.5
0

W5

5 10

I

I

i

5

W2

i r,

0 5 10

W3

0 5 10

W6 --
I-

o.5

-0.5
0 5 10

0.5

0

-0.5
0

W7 I

i

z

5 lo

W4
1

0 5

Time, sec.

10

10

0

-10
0

Error __

..___J_ alJ__,_,,,..,_,.,_.._,....... - ,_

i

5 10

Time, sec. == !
W_

Figure 3.13b: Adaptive LC Weights and Error

(Case 3: f, = 256 Hz, o_= 1.0)

I

37

!1:11 F

-- Chapter 3

_f

F..

First Mode Natural Frequency, Hz
150

100

50

0
0

|

5 0

Second Mode Natural Frequency, Hz
300

2O0

100

0
0

L
5 10

4

2

0
0

Damping Ratio

5 0

200

100

0

-100
0

Damping Ratio

J_.L

5 10

Modal Amplitude, Alpq Modal Amplitude, A2pq
2 10

0

-2

-4
0 5

Time, sec

0

-10
10 0

k_

L

5

Time, sec.

Figure 3.14a: On-Line Modal Parameters of the Simultaneous Two Mode
Identification done in MATLAB

(Case 4: f, = 256 Hz, a = 0.05)

0

38

Chapter 3

D

i

b,,

First Weight, Wl

0 5 10

W2

0 5 10

-0.5
0

W3

, i

5

0.5

W4
1

-1
0 5 10

Time, sec.

W5

0

-0.5
0

i

0.2

i

0

-0.2
0

5 10 --

W6

5 10

W7
0.2

-0.2
10 0 5 10

Error
10 _ ' ,

I -
-- _l_lua_ll,....JkL_,U... *L r__+ ,.,._taa..i_f,,..,,.,.,.

/
_10 _ , .

0 5
Time, sec.

10

i

m

i

I

m

m

I

Figure 3.14b: Adaptive LC Weights and Error

(Case 4: f, = 256 Hz, o_= 0.05)

39

r_
I

i

I

TT_1

w

z

i 4

E7

r-

E

w

--.

m_.

Chapter 3

Case 5 (Figure 3.15a,b) Sampling Rate = 1024 Hz
Learning Rate - 0.05

Increasing the sampling rate to more than lkHz produces worse results. Also, the mode skipping
phenomenon still occurs where the actual second mode appears as the fast mode and in place of the
second mode, the adaptive filter tries to identify a false mode.

Note that the adaptation process duration for this case is 5 seconds only. This is done to
save time and prevent the computer from running into memory limitations. However, in order to
ensure that the adaptation process is allowed to run for a sufficient amount of time before coming
to a final conclusion, the MATLAB program was slightly modified to save frequency information
only and was run for an adaptation time of 20 seconds. The results were very similar to those
shown in Figure 3.15a with no different behavior seen after the fast five seconds. The following
discussion tries to provide an explanation for such behavior.

Two Mode ID and Sampling Rate
It has been found in simulation and verified by real-time testing in the lab (Chapter 5) that unlike

the single mode case, the simultaneous two mode identification process is sensitive to the sampling
rate. When the test is run at a sampling rate that is slightly higher than twice the second mode
natural frequency, then the algorithm performs well and full system identification can take place as
shown in Figures 3.11, 3.12. As the sampling rate increases, system identification becomes
harder to achieve. For example, in the specific case discussed here, it has been found that the
algorithm is able to successfully drive the adaptive filter to fully identify the system in the
frequency range of 110 Hz to somewhere slightly above 200 Hz. This is not an exact range
because each test run is unique and sometimes a slight improvement can be seen at the high end of
frequency by manipulating the learning rate. However, there always exists a sampling rate
associated with each specific case beyond which there is no hope of accurate system identification.
Such a sampling rate is hard to pinpoint and can only be determined by trial and error during
testing. As a matter of fact, even under the exact same conditions, this sampling rate can differ
from one test to the next. In general, it has been found that in most cases, if a sampling rate higher
than 4-5 times the second mode natural frequency is used, then there is a high possibility of
inaccurate results.

Many possible causes for this problem were considered and they were all fully
investigated. Some of these included manipulating the learning rate, changing the damping and
magnitude of the signals, using filtered excitation signals, increasing the number of data points,
remodeling the continuous system (using a transfer function approach instead of the state-space
model), and using the exact root finding command in MATLAB instead of the Newton algorithm.
Most of these possible causes were not expected to be the source of the problem because the off-
line modal parameters always came out to be exact regardless of the sampling rate. In addition,
system identification was successful at low sampling rates.

For a while, the bilinear transformation was suspected as the culprit but it was hard to
eliminate this possibility in simulation because the discrete system is obtained using this particular
method and using any other method, such as zero-order hold, did not work at all because the basic
idea is different. However, this possibility was eliminated during the real-time testing as discussed
in Chapter 5. In the real-time testing the discrete signal is obtained by sampling an actual dynamic
system response, so the bilinear transformation does not come into play until the training is done
and then its inverse is used to show the results in the continuous time domain (equations 2.8, 2.9,
2.10). Therefore, the error term and the weights in the real-time testing are not influenced by the
bilinear transformation. When these were investigated, it was found that at the higher sampling
rates, the weights did not converge to any reasonable values and the error was not minimized as it
should be, at this point the bilinear transformation was eliminated as a possible cause. This has left
one last option, that the problem is actually in the adaptation algorithm itself.

The adaptation algorithm has proven to work well for the single DOF case at any sampling
rate and for a limited range of sampling rates in the two DOF case. This is enough proof that the

W

40

Chapter 3

g

m
m

m

First Mode Natural Frequency, Hz

1000 t

500_ --_

0 t _
0 2 4 6

Second Mode Natural Frequency, Hz
1000

5OO

t

0 4 6
!

2

3
Damping Ratio

1

0
0 2 4 6

2
Damping Ratio

14"q
0

!

-lo

Z
i

Modal Amplitude, Alpq
20 T

0

-20

-4O
0

i i

2 4
Time, sec

6

I

5O

oA
-50

0

D

==

J

a

B

4 6 II

Modal _piitude, A2pq
r r

62 _ 4
Time, sec:

Figure 3.15a: On-Line MQda! Parameters ofthe Simultaneous Two Mode
........ -_ _aemi_cation done in _TL_

(Case 5: f, = 1024 Hz, (:z= 0.05)

U

i

I

li

i

u
u

m

41

=-
m

i

_1 I!

w

Chapter 3

First Weight, Wl

0.5

0 2 4 6

0.05

0

-0.05
0

W5

2 4 6

F_

L;

w

m

W2

0 2 4 6

0.05

0

-0.05
0

W6

! A

2 4 6

W3
0.2 . .

0 2 4 6

0.05

0

-0.05
0

W7

, I

2 4 6

W4
0.5

0 2 4

Time, sec.

6

Error
5 L

-5 / i i

0 2 4

Time, sec.

6

Figure 3.15b: Adaptive LC Weights and Error

(Case 5: jr = 1024 Hz, o_= 0.05)

42

Chapter 3

basic formulation of the algorithm and the way it is applied is correct. However, it has been
noticed that at the higher sampling rates, the algorithm in most cases totally skips the f'ast mode,
tries to identify the second mode and an additional mode that does not exist. For example, Figure
3.14a shows that the algorithm has identified the second mode natural frequency as the fhst mode
and then tried to identify some higher mode as the second mode but finally came back to the actual
second mode or something in its vicinity. It has totally skipped the f'ast mode and assumed that the
second mode is actually the first. In addition, Figure 3.14b shows that the algorithm did try to
minimize the error especially at the end, but was unsuccessful mainly because it skipped the most
obvious mode. Figures 3.15a,b show similar behavior. This phenomenon had been seen time and
time again in simulation and in real-time testing which leads the author to the following possible
conclusion.

The FFT plots of the simulated and actual system response always show the second mode
not as a sharp clearly defined single frequency peak similar to the fast mode, but as multiple peaks
in the vicinity of the second mode frequency (Figure 3.10). Therefore, it can be assumed that once
the sampling rate reaches a high enough value for the small magnitude frequency components in
the vicinity of the second mode to become visible, then the algorithm totally ignores the fast mode
and tries to identify the second mode and something adjacent to it. The algorithm does not have the
built-in decision making capability that could enable it to tell the difference between actual vibration
modes and simple noise. When this mode-skipping phenomenon was noted, it was thought that if
the above explanation is Irue, then bringing the two modes closer together should solve the
problem, or at least improve the sensitivity of the algorithm to the sampling rate. When this was
tested in simulation and in real-time, the results did not show any improvement and the same
problem did occur.

A possible problem with the explanation given above as the cause of the mode skipping
phenomenon is the single DOF case. In the on-line testing of the single DOF case, system
identification took place without problems at sampling frequencies higher than 100 times the actual
mode natural frequency, At such high sampling rates, the algorithm did not skip the fast mode and
identify a noise component in its place. However, this apparent contradiction might work in favor
of the given explanation, because in the two DOF case, the adaptive filter has two coupled modes
that influence and interact with each other and ff the algorithm identifies only one of them, then the
error would be reduced significantly which might mislead it into assuming that the goal is
achieved. But the single DOF case has only one mode, which makes it difficult for the algorithm
to try and minimize the error ff this mode is totally ignored. As a result, the explanation given
above seems like the most logical one. A possible solution to this problem could be the use of an

adaptive learning rate (variable step size). This is discussed in the recommendations section (6.2).

w

t

Qii

R

I
R

ii

m

U

l

B

[]
tm
g

[]

Ill

m

ill

m
i

ii

m

43
m

:il] !_

! i

[

m_

E

=

Chapter 4

4 The C40 Digital Signal Processing System*

The C40 DSP system used in the data acquisition and the real-time algorithm implementation is
discussed in some details in this chapter. Most of the information contained in this chapter is taken
out of the user's guides and manuals provided by Texas instruments and the third party vender,
Spectrum Signal Processing Inc. [10-21]. As a result, the authors obtained written permission
from both parties mentioned above to reproduce a limited amount of text, tables and figures.

*Reprinted by Permission of Texas Instruments and Spectrum Signal Processing Inc.

4.1 Hardware

This section describes the various hardwarecomponents and connections that make up the C40

system used in this project. Figure 4.1 shows the two main boards that comprise the C40 system
hardware, the QPC/C40B DSP Board showing a single TM5320C40 DSP processor in site A, and
the PC]DMCB (smaller board) which has a single daughter module in site A. The 50-way ribbon
cable connecting the two boards provides the DSPLINK interface. These are discussed in details
in this section.

4.1.1 TMS320C40 Processor

The Texas Instrument's' TMS320C40 is a parallel floating point digital signal processor which is
capable of 25 Million Instructions per Second (MIPS) performance if operating from a 50 MHz
clock. It can attain a peak arithmetic performance of 275 Million Operations Per Second (MOPS).
The total memory reach of the C.40 is 4 Gbytes which contains program memory and registers
affecting timers, communication ports and DMA channels. Memory space allocation will be
discussed in more details in coming sections. Some of the main features of the C40 include [17]:

• Six identical communication ports for high-speed interprocessor communication which are
capable of 20 Megabytes per second asynchronous transfer rate at each port, simple processor
to processor communication, and bi-directional transfers for maximum flexibility. The
TMS320C40 Parallel Runtime Support Library (PRSL) described in the software section
(4.2.4) has several functions that allow the user to perform either synchronous communication
port transfers which use the CPU to transfer data between memory and the six C40
communication ports or asynchronous communication port transfers that use direct memory
access (DMA) autoinifialization and communication port flag synchronization mode for
concurrent data input/output and CPU computation [20]. The asynchronous data transfer
functions are the ones used mainly in the C code of chapter 5 to transfer data from the C40 to
the PC.

• Direct memory access (DMA) coprocessor that supports six DMA channels that perform data
transfers within the C40 memory map. This provides the advantage of moving data to and from
the C40 memory without any CPU intervention. Each DMA channel is controlled by nine
registers that are mapped in the C40 peripheral address space. The six channels transfer data in
a sequential time-slice fashion rather than simultaneously due to that fact that they share
common buses on the DMA coprocessor. The PRSL of section 4.2.4 also has several DMA
functions written to assist the programmer is setting up the DMA channels for different transfer
tasks. None of these functions are used in this project.

• High-performance CPU has a 40-ns instruction cycle time with 40/32-bit single-cycle floating
point multiplier for high performance in computationally intensive algorithms.

• Two identical external data and address buses supporting shared memory systems and high data
rate, single-cycle transfers.

Reference 15 is a very extensive user's guide of the C40 processor that has an overwhelming
amount of information that can help any user utilize the full potential of this powerful processor.

45

Chapter 4 w

g

I

m

J

._

L

\

i

• u--,- -

m

I

I

Z
i

g

[]

[]

II

H
im

J

Figure 4.1 : C40 DSP System Used in the Real-Time System Identification Test I

w

J

I

46

m

i

g

]1-1I_:

F'

w

¢¢t,_

Chapter 4

However, the processor is used in this project in a very limited sense and a detailed discussion of
its characteristics and possible applications is beyond the scope of this thesis. Any user of the C40
processor is highly encourage to refer to the user's guide in order to familiarize themselves with the
potential power of this device. The third party documentation do not provide such a perspective.

4.1.2 MDC40SI Tim-40 Module

The Texas Inslruments' Tim-40 module is a standard hardware platform that consists of a
TMS320C40 processor, memory and/or peripherals. The memory and peripherals are

implemented according to the specific application at the discretion of the third party vendor, in this
case the third party vender is Spectrum Signal Processing. However, the module's physical and
electrical characteristics must conform to a standard specification. Such a module is the
Loughborough Sound Images O.,SI') MDC40S 1 module which adheres to Texas Instruments' Tim-
40 specification. It consists of one TMS320C40 processor operating from a 50 MHz clock, three

banks (Bank 0, 1 and 2) of external 32K x 32 zero wait state Static RAM (SRAM), a 32K x 8
Programmable Erasable ROM (PEROM) to provide the identification ROM required by the Tim-40
module specifications and a clock oscillator. Figure 4.2a, b show the module layout and block
diagram. The memory map of the module is shown in Figure 4.3. Banks 0 and 1 of the external
zero wait state SRAM are located in the local memory of the module which along with the internal
C40 Blocks 0 and 1 make up one continuous block in the memory map. This gives the user the
power to work within a single memory block if the program is larger than any one individual block
without having to jump from one block to another. This has proven to be a very useful tool in this
project where some of theprograms were required to store large arrays of data. In order to make
this feasible, the External SRAM bank 1 (a.k.a. ERAMI) is not configured in the linker command
file (Appendices B, C and D). Instead, the SRAM bank 0 (a.k.a. ERAM0) is configured as a 64K
bank instead of the usual 32K to accommodate the large arrays of data. This means that in Figure
4.3, the ERAM0 bank will extend from address 0030 8000h to 0031 0000h. Then in the linker
command file the .data section is forwarded to ERAM0, _ing that the arrays will be stored in

that memory block.
The third external zero wait state SRAM bank (bank 2) is used as the on-module global

memory. It is recommended that for optimum module performance, data should be restricted to
local memory and executable code restricted to global memory. The TMS320 Floating Point C
compiler produces six relocatable blocks of code and data, which are called sections. One of these
sections is the .text section which is an initialized section that contains all the executable code as

well as floating point constants. Therefore, in the linker command file, the .text section is sent to
the global memory (ERAM2) as shown in Appendices B, C and D. Another section that has
already been mentioned above, is the .data section which according to the recommendations must
be restricted to local memory.

4.1.3 QPC/C40B QUAD C40 Board

The Loughborough Sound Images (LSI) QuadPC/C40B board shown in Figure 4.1 is designed to
accommodate up to four Tim-40 modules for fast parallel processing and real-time embedded
applications. It has a digital system expansion interface known as DSPLINK and a 16 bit PC
interface making it suitable for PC AT and compatibles. Figure 4.4 shows a block diagram of the
QPC/C40B board.

4.1.3.1 PC Interface

The PC interface is facilitated by two LSI C40 Network API libraries, which are high level

language interface routines that allow the user to download and run code on the C40 from a PC
program without having to deal with the low level details of the interface. This means that the user
does not need to write code to access the PC interface directly [11]. The C40 NetAPI libraries are

47

Chapter 4 v

I

i

@

@

o
O

I

it ,._

r._

m

c,•._ _2'_

o

@

[,.

G,

J

O @

O

N

O

0%

.

.

¢

2i8

m

i

g

U

m
i

w

i

m

i

i

i

i

m

i

I

I

i
m

i

w

Chapter 4

=

= :

= .-

b

= ,:

0000 0000h

0ooo lO00h

0010 0000h

0010 0100h

0020 0000h

002F F800h

O02F FCOOh

0030 0000h

0030 8000h

0031 0000h

4000 0000h

4000 8000h

8000 O000h

8000 8000h

Internal Bootstrap

Reserved

Internal Peripherals

Reserved

Reserved

Internal RAM Block 0, 1K (IRAM 0)

Internal RAM Block 1, 1K (IRAM 1)

Extemal SRAM Bank 0, 32K x 32 (ERAM 0)

External SRAM Bank 1, 32K x 32 (ERAM 1)

Reflections of External Banks 0 and 1

Programmable Erasable ROM, 32K x 8 (PEROM)

Reflections of PEROM

External SRAM Bank 2, 32K x 32 (ERAM 2)

Off-Module Expansion Space

FFFF FFFFh

Figure 4.3:TIM-40 Module Local and Global Memory Map

(Reprinted by Permission of Spectrum Signal Processing, Inc. (Reference 10))

Ak

L
0
C
A
L

IM
E
M
O
R
Y

I

I

IG
i L
I O
I B

A

yL

49

Chapter 4

g

m

m

>..

[]

&

0

o
&)

-o 4

"_._
m _
m _

O'

4/
,4

i

m

m

g

g

w

i

I

Z

m

[]

i

J

I

50

m

i

F

L

. _ Chapter 4

discussed in greater details in section 4.2.3. The PC interface is enabled/disabled by setting a
jumper on a hardware link on the board, if the enable option is chosen then the communication
ports A1, B1, C4 and D4 are used for PC interface and hence can not be used for interprocessor
comm_tmication as shown in Figure 4.4. Disabling the PC interface means that the QPC/C40B

board can be operated independently of the PC, which means that in a multiboard system, only the
master board needs to be mapped in the PC I/O map and control of the other boards takes place
through this master board. The communication between the QPC/C40B board and the PC takes

place via three main routes:

I) Link Interface Adapter (LIA]
The LIA provides the main data exchange mechanism between the Tim-40 modules on the
QPC/C40B board and the host PC. LIA is enabled by a hardware link on the board. When the PC
interface is enabled as discussed in the previous section, communication ports A I, B 1, C4 and D4
are routed directly through the LIA circuitry to the PC bus as shown in Figure 4.4. The LIA
emulates the operation of the C40 communication ports allowing direct communication between the
host PC and the Tim-40 modules [11]. Each of the Network API libraries contains several
functions that allow data transfer to/from the C40 via the LIA. Some of these functions are
mentioned in section 4.2.3.

2) PC Bus

The PC bus is the main control interface that provides access to various board functions such as
interrupts and resets through the Control Register which is a software programmable register.

3_ Test Bus Controller CI"BC_

The TBC is an interface to the C40's JTAG-based scan path circuitry and functions as a full
emulation system. It is used to implement the DB40 debugger and the Network API libraries.
Accessing the TBC directly is not recommended [11], instead the user is encouraged to use the
Network API libraries. JTAG is a debug port for the C40 that allows the debugger to peak/poke
the memory without interfering with the CPU.

4.1.3.2 Digital System Parallel Expansion (DSPLINK)

DSPLINK is a high speed, bi-directional bus that allows data transfers to/from the C40 processor
without using the input/output bus on the PC. It is mapped into the global memory map of the
Tim-40 module in site A on the QPC/C40B board as shown in the block diagram of the board in
Figure 4.4. The DSPLINK interface provides a high bandwidth, 32 bit, memory-mapped parallel
expansion capability. The QPC/C40B implements the full 32 data lines and supports interrupt and
wait signals on the DSPLINK 50 way connector. A slave board (PC/DMCB described below)
communicates with QPC/C40B board via a 50-way shrouded connector. The DSPLINK interface

is mapped into four spaces in the global memory map of the Tim-40 module in site A. Space 1 is
aceegsed from addresses B000 0000h, Space 2 from B000 0100h, Space 3 from B000 0200h and
Space 4 from B000 0300h (note that DSPLINK has a base address of B000 0000h). The four
spaces are given to allow the user to operate the slave board at different speeds, Space 1 allows the
fastest access and Space 4 the slowest. Also, in a multiple slave board configuration, each beard
must be located in a different area of the DSPLINK I/O space to prevent contention. In this
project, Space 4 is used even though it is the slowest because it is the only one guaranteed to
operate correctly with any LSI slave board. Each space consists of 256 locations [1 I]. A header
file (carrier.h) is supplied with the QPC/C40B board that defines pointers to all of the DSPLINK
interface registers for the PC/DMCB board. This header file (Appendix B) shows that Space 4 in
the global memory map is being used. Note that the PC/DMCB slave board is a 16 bit peripheral
whereas the C40 processor has a 32 bit data bus, so the slave board communicates via the upper
half of the data bus (I)16-1)31). As a result, the data received by the processor has to be shifted
down by 16 bits in order that it is read correctly by the C40. In the programming code, this is
done using the >> operator fight after the data is read from the channels. The code in Appendices

51

(_h_pter4

B,C andD showssuch an operation at the beginning of the interrupt service routine (ISR). On the
other hand, in order to configure the slave board (PC/DMCB) for operation by the C40 processor,

a set of registers must be set up. The values for such registers must be shifted up 16 bits in order
for the slave board to be able to read them. These registers and their functions are discussed in

greater details in sections 4.1.4-6.

4.1.4 Crystal Analog Daughter Module (DM)

The Crystal DM is a 16 bit dual-channel delta-sigma I/O module that has a maximum sampling rate
of 48 kHz. It is compatible with any LSI AMELIA-sited carrier board. In this case, it is fitted on a
PC./DMCB in site A. The analog input/output signals are routed to/from the DM via the DM
connector located at the backplate of the carrier board. The analog inputs to both channels have a

maximum voltage span of +/- 2 volts, with 10 k_ input impedance. Each input is referred to a

separate ground to ensure signal integrity [13]. The analog inputs are inverted through a unity gain
stage before being presented to the analog-to-digital converter. As a result, the values read by the

C40 have to be inverted back (multiply by -1) to get the correct sign. This is done in the Interrupt
Service Routine (ISR) after the 16 bit shift mentioned earlier. The analog outputs have a maximum

output voltage span of +/- 2 volts and are referred to separate grounds. They are also inverted
through a unity gain stage [13]. Both input channels of the DM are sampled at the same rate
(synchronous sampling) which is derived directly from the system clock. Any of the following
clocks can be chosen to be the system clock:

DMCLK_0 DM factory-fitted resident clock set at 12.288 MHz
DMCLK_I 6.144 MHz

MCLK_0 Clock derived fi'om TCLK_0 PC/DMCB carrier board factory-
fitted resident clock set at 6.144 MHz.
MCLK_I Clock derived from TCLK_I PC/DMCB carrier board factory-
fitted resident clock set at 12.288 MHz.
EXTCLK_0 External user-specific clock routed to the DM through pin 8 of
the DM connector.
EXTCLK_I External user-specific clock routed to the DM through pin 9 of

the DM connector.

The process of selecting the desired sampling rate for the DM is _ous and confusing. It involves

setting up certain DSPLINK registers to configure the DM in order to select the type of system
clock used, the prescaler, the prescale factors and finally the sampling rate. This process h_ been

simplified by developing the final register configurations that are needed to produce ce_
sampling rates. These are listed below. Note that the possible sampling rates that can be generated
on the DM without using an external clock source are 48, 44.1, 32, 29.4, 24, 22.05, 16, 14.7, 12,
11.025, 8, 7.35, 6, 5.5125, 4 and 3.675 kHz [13]. Some Of these sampling rates migh t seem
strange, but they are selected this way for a reason. Apparently, the Crystal Daughter Module was
designed for audio applications. The sampling rates were selected to be the Nyquist frequencies
for some of these applications. For example, the 44.1 kHz sampling rate is used for audi_o_......_
compact disks and the 48 kHz is used for digital audio tapes. For the purpose of this project, the

registers were set up to produce selected rates that can be easily decimated down to desired values.
These are shown as follows (Note that 0x in C code means a hexadecimal number).

Samnlin_, rate = 4 kHz

DM Rout_ Register:. *DMI_ROUTE = 0x0000
AMELIA Control Register. *DMI_AMELIA_CO_OL = 0xB3 0000

and: *DMI_AMELIA_CONTROL = 0xF3 0000

User Control Register:*DMI_USER_CONTROL = 0xA8E0 0000

52

g

m

i

n

m

l

I

i

m

=_

g

m

i

I

M

l
I

m |
g

U

ilx

:IEF:|] i

i

L_

L_

Chapter 4

6krlz
DM Route Register: *DMI_ROUTE = 0x0000
AMELIA Control Register:. *DMI_AMELIA_CONTROL = 0xA3 0000

and: *DMI_AMELIA_CONTROL = 0xE3 0000

User Control Register." *DMI_USER_CONTROL = 0xA8E0 0000

8kHz
DM Route Register: *DMI_ROUTE = 0x0(O
AMELIA Control Register:. *DMI_AMELIA_CONTROL = 0xB3 0000

and: *DMI_AMELIA_CONTROL = 0xF3 0000

User Control Register:*DMI_USER_CONTROL = 0xA8A0 0000

12kHz
DM Route Register: *DMI_ROUTE = 0x0000
AMELIA Control Register:. *DMI_AMELIA_CONTROL = 0xA3 0000

and: *DMI_AMELIA_CONTROL = 0xE3 0000

User Control Register: *DMI_USER_CONTROL = 0xA8A0 0000

DM Route Register:. *DMI_ROUTE - 0x0000
AMELIA Control Register:. *DMI_AMELIA_CONTROL = 0xB3 0000

and: *DMI_AMELIA_CONTROL = 0xF3 0000

User Control Register:.*DMI_USER_CONTROL = 0xA860 0000

DM Route Register: *DMI_ROUTE = 0x0000
AMELIA Control Register:. *DM I_AMELIA_CONTROL = 0xA3 0000

and: *DMI_AMEL__CONTROL = OxE3 0000
User Control Register:*DMI_USER_CONTROL = 0xA860 0000

DM Route Register:. *DMI_ROUTE = 0x0000
AMELIA Control Register:. *DMI_AMELIA_CONTROL = 0xB3 0000

and: *DMI_AMELIA_CONTROL = 0xF3 0000

User Control Register.*DMI_USER_CONTROL = 0xA820 0000

48kHz
DM Route Register: *DMI_ROUTE = 0x0000
AMEI_JA Control Register:. *DM I_AMELIA_CONTROL = 0xA3 0000

and: *DMI_AMELIA_CONTROL = 0xE3 0000
User Control Register:*DMI_USER_CONTROL -- 0xA820 0000

V_llere

DM Route Register is a 4 bit register. Each bit controls the direction and muting of one of
the four possible system clock signals to and from the DM.

AMELIA Control Register is an 8 bit register that is used to set up and control the
Application Module Link Interface Adapter (AMELIA). These bits are used to select the system
clock, reset/calibrate the DM, set the board in Master/Slave mode and select sample rate.

User Control Register is a 16 bit regis_r_tfiat:isused to select Clock source for prescaler,
select prescale factor and enable system dock.

53

Chapter4

In the C40 code shown in the Appendices, these registers are set up before globally enabling the
interrupts. The other DSPLINK registers that are listed in the carrier.h header f'de and that are

used to configure the DM and the carrier board are [13,I5]:

• Reset Register is a 16 bit register which when read resets all logic on the DM. This halts the
operation of the DM immediately. So in order to resume operation on the DM module, it must
be fully reconfigured which means that this register must be read before any of the other
registers are set up (see code in Appendices).

• Interrupt Mask Register is a 3 bit register the once configured, allows the DM to interrupt
the C40 via the DSPLINK interface under specific conditions. For example, setting bit 0 of this
register will allow the DM to interrupt the C40 whenever the Input Data Registers are full,
meaning a sample of data can be read. Similarly, setting bit 1 will cause interrupts to be

generated when the Output Data Registers are empty, meaning a data sample has been delivered
and the registers are ready for another sample to be output.

• Interrupt Status Register is a 3 bit read only register that displays the status of the pending
interrupts. It must be read at the beginning of the Interrupt Service Routine (ISR) to clear
pending interrupts. So when an interrupt is received by the C40, the first step in the C40 ISR
must be to read the interrupt Status Register. Bit 0 will be high when the Input Data Registers
are full and the data can be read. Bit 1 will be high to signal that the Output Data Registers are
empty and the next data to be output may be written. Bit 2 should always be set 0.

• Board Interrupt Status Register is a 2 bit register for the carrier board that defines the
interrupt status of each DM in a board with two DM's placed on sites A and B. This register is
not used in this project since only one DM is available on site A of the carrier board.

• Configuration Register is 16 bit register that is used to unlock AMELIA and initiate a valid
communication protocol between the carrier board and the DM. This is done by writing a
configuration word (key) to this register. The KEY is B390h.

• Timerl Register. A 16 bit, write only register that is generally used to define sample/timer

options. This register is not used by this DM or carrier board_.

• Channel 0/1 Input Registers are two 16 bit, read only data registers residing in the
AMELIA. They are usually setup in the ISR to read data from the input channels 0/1
respectively every time the ISR is executed which is at the sampling rate. The contents of these
registers can be obtained by dumping them into two separate variables using the assignment

g g

operator =.

• Channel 0/1 Output Registers are two 16 bit, write only AMELIA data registers that
deliver samples to the DM output channels 0/1 respectively.

• Channel 2/3 Input and Output Registers. Since the Crystal DM is a dual-channel board,
these channels are not available.

Bit maps for these registers are documented in References [13] and [14] and they should be
referred to if the user wishes to have a different sampling rate that is not listed above.

4.1.$ Application ModulE Link Interface Adapter (AMELIA)

The AMELIA is a programmable ASIC chip sited on the carrier board for each DM to provide an
interface between the DM and the DPSLINK interface (Figure 4.5). The registers specific for this
chip are discussed in the previous section.

4.1.6 PC Daughter Module Carrier Board (PC/DMCB)

The PC/DMCB is a general purpose DM carrier board that has two DM sites, A and B which can
be used with a range of LSI's DSP boards supporting DSPLINK. Each DM site is supported by
an AMELIA chip. External signals are routed to and from each DM site via its 26-way high

I

B
I

I

i

I

I

I

I

i

i

[]
I

I

Q

I

I

54
i

I

!qI V

CJaapter 4

density DM connector on the carrier board. The DSPLINK interface to the C40 carrier board is

provided with a 50 way connector as shown in Figure 4.5. Each DM is fully controlled and
programmed from the C40 board via DSPLINK. If two DMs are available, then they can be
operated either asynchronously (both DMs configured as masters), or synchronously
(Master/Slave mode). However, for the purpose of this project, only one daughter module
residing in site A is available. Figure 4.5 shows a board layout of the PC/DMCB. The 26-way
high density DM connector has the pinout shown in Table 4.1. The PC/DMCB has two factory-
fitted clocks, TCLK_0 and TCLK_I. These clocks are routed to the AMELIA chip on the board.
They are software controlled and can be prescaled to generate master clock outputs, MCLK_0 and
MCLK_I. The carrier board can be located in any of four different areas of the DSPLINK I/O
space. This is achieved by setting a hardware link on the carrier board (LK3) to a specific base
address. In this ease it has been given a base offset address of 300h which will map it to space 4
on DSPLINK. The Carrier Board base address is determined by adding the DSPLINK base
address in the C40 memory map and the carrier board offset address set by link LK3. This is
shown in the carrier board memory map in Table 4.2 which also shows the control and data
transfer registers for the DM.

4.2 Software

The software supplied by the C40 manufacturer and the third party vender that is used to configure
and operate the C40 system is discussed in this section.

4.2.1 System Configuration

Once the C40 system is installed in the PC and all the necessary hardware links and connections

are set up, the system is ready to be software configured before it is ready and operational. There
are two configuration files that need to be generated, and they are the system configuration file
(netapi.efg) and the JTAG configuration file (board000.cfg). Reference [16] has detailed step
by step procedure on the installation process of these files.

1)System Configuration File (netapi.cfg)
This is a text file that is generated by the user with the help of a utility program provided by the
manufacturer, it contains a description of the C40 system used. This may be a simple single
processor single board set up, or it could be a complex multi-board network. The information in
the system configuration file is used to initialize various addresses and registers in the system. The
DB40 debugger and the C40 NETAPI libraries obtain information about the system from this t-de.
The file created for this project is shown in Appendix B and it contains information about the host
system, the board type, host connection, control register, JTAG base address, LIA base address,
module type, processor site, processor type, processor speed and processor memory map.

2)JTAG Configuration File (board000.cfg)
Each system that uses the JTAG emulation system either directly, via the DB40 debugger, or the
functions in the development library must have one or more JTAG configuration file associated
with k [16]. Each of these files describes a JTAG scan chain which has a listing of all the
processors in the system or board that are connected in chain. Since only one board with a single
processor is used in this project, the JTAG configuration file contains a single scan chain for a
single processor, namely:

4.2.2 C and

"CPU_A" T1320C40

Assembly Code Debugger (DB40)

The DB40 is LSI's version of the TI TMS320C40 C Source Debugger used to debug C40 C code,
Assembly code or both. This is a very powerful and user friendly software that enables the user to

55

Chapter4

Table 4.1 Crystal Daughter Module Connector Pinout

Pin Assignment

GIN B

GINA
w

3 GOUT B
m

4 GOUT A
m

5 UC1

..... Description

Channel 1 input ground signal

Channel 0 input ground signal

Channel 1 output ground signal

Channel 0 output ground signal

Not Used

6 UC4 Not Used
, , , ,j.,.,, ,

7 COMMON Common

10

11

12

13

EXTCLK 0

EXTCLK 1
m

AINB

AINA

AOUT B

AOUT A

UCO14

External user-generated clock signal

External user-generated clock,signal

Channel ,! analog input signal

Channel 0

Channel 1

Channel 0

Not Used

15 UC3 Not Used

16 COMMON Common

17 DGND

EXTCONV 0

COMMON

18

analog input signal

analog output signal

analog output signal

19

20 COMMON Common

21 COMMON Common

22 COMMON Common

23 UC2 Not Used

24 UC5 Not Used

DGND

EXTCONV

25

26

Digital ground pin

Clock signal used for slave DMs

Common

Digital ground pin

_1 ,Cl°ck=signal used for slave DMs

Reprinted by permission of Spectrum Signal Processing, Inc. (Reference 14)

D

u

u

z

g

m

g

g

Z

m

U

m

m

l

g

m

z

g

i r

56

g

mm
i

it !]

Chapter 4

z

; t

w

w

w

Table 4.2: Carrier Board Memory Map for Site A Daughter Module

w

w

CB Offset DSPLINK2 Base CB Base Read Register Write Register

Address Address Address *

300h B000 0000h B000 0300h Ch0 Data Ch0 Data

301h B000 0000h B000 0301h Reset Timer1

302h B000 0000h B000 0302h Ch2 Data Ch2 Data

303h B000 0000h B000 0303h Interrupt Status Interrupt Mask

304h B000 0000h B000 0304h Chl Data Chl Data

305h B000 0000h B000 0305h AMELIA Status AMELIA Control

306h B000 0000h B000 0306h Ch3 Data Ch3 Data

307h B000 0000h B000 030711 Not Used Route/User Control/

* Pointers to these locations are shown in the C_er.h file in Appendix B Configuration

Reprinted by perraission of Spectrum Signal Processing, Inc.(Reference 14)

_22

57

Chapter 4

m

U

D

J _ _

i

k_.___

i..1

>
v

<

H

i0
o
_D

_z

<_

0 _

_D

U

l

m
I

g

I

U

l

m

m
m

I

I

U

m

m

!

58
J

_1 i I

w

+

[-

t =]

w

U

Chapter 4

download a program on the C40 system and perform high level as well as low level debugging
operations. In addition to the programming code, CPU register contents and memory contents can
optionally appear in separate adjustable windows. The comprehensive data display allows the user
to create windows for displaying and editing the values of variables, arrays, structures and pointers
in their natural format, whether float, integer, character or pointer [19]. Commands can either be
entered at the prompt or using the mouse and menu at the top of the screen as shown in Figure 4.6.
The process that a program has to go through in preparation for the debugger is simple. Once the
code is written, it must be compiled using the -g compiler option which tells the compiler to
produce symbolic debugging information and the -v40 option which identifies the code as a C40
program and ensures that the intermediate assembly language code is produced for the right

processor. Once the p .rogram is compiled, it must be linked using ,among other options, the -o
option which tens me linker to create aria name an output me (nlename.out). This is the file that
is loaded onto the C40 system either via the interface libraries of the host PC or in this case the
debugger. At this point, the code is loaded into the DB40 software and is ready for debugging.
Any variables or arrays that need to be monitored are called using the watch command (wa) or the
display command (flisp) respectively. Breakpoints can be set to control the code execution. The
code can be run for a specific time, number of steps or up to a breakpoint. The latter is a very
useful option that gives the user a lot of power in concentrating on the trouble spots in the code. If
the step by step command is used, the debugger steps through the code one assembly instruction at
a time, every time an instruction is executed, corresponding registers and variables are highlighted
and updated accordingly. The code can be restarted as many times as necessary without leaving
the software, all code initializations are done automatically every time the user requires a restart.
The TMS320C4x C Source Debugger User's Guide [19] is an extensive documentation of this
software and has description and examples of most of the commands and instructions needed to

provide an extensive on-processor debugging operations. The discussion has been limited here
due to the fact that the software is easy to use once the code is prepared and loaded into the

debugger.

4.2.3 Network API Libraries

These are two high level language libraries, namely the development library and the application
library, that contain a host of interface routines [16]. The C40 code development cycles usually
involve using the Texas Instruments floating point tools to produce an executable program (.out)
file which can be tested using the DB40 debugger as discussed above and downloaded to the C40
system using a host resident program. This PC resident program contains the interface routines of
either library that can download the C40 code, start and halt it and allow C40-host interaction and
data exchange.

4.2.3.1 The Development Library

In addition to the above features, the development library uses the JTAG system via the on-board

Test Bus Controller to communicate with individual C40 registers and memory blocks. This
library is provided in the fde e4xdev.lib and can be compiled using either the Microsoft C
Version 8.0 large memory model compiler or the Borland C Versions 3.1 and 4.0 compilers. A
header file that contains declarations and definitions needed by the library such as structures,

unions, enumerations and function prototypes is provided in the file c4xdev.h which must be
included in the host program. However, since the extra features of this library are not needed for
this project, its smaller and faster sister, the application library is used.

4.2.3.2 The Application Library

The application library is optimized for use in a host application similar to the development library
and provides functions to allow code to be downloaded and run on any target processor in a
multiboard system [16]. It also provides hand optimized routines for transferring data between the

59

Chapter 4

i

O
,-4
is.
l

K
g
Z

|

0

(n

II
I:

I
,..4

,-(

0
X

L,

2
o
U

0
E

U

3c

O

v

!
O

- O

I

•_ O O _ O O _M _ O _ r_ E

O

I O

O
M

It

oJ
O O
O O
O O
O O
O O
O O
O O

O O
O O
O O
O O
O O
O O
O O
O O

r_ o
r'. o
o o
o O
o o
o o
o o
O o

_D o

O O
o O
o o
o o
o o
o O

o
O O
O o
o o
o O
O O
o o
O o

A

E
lip
E

o o o o
o o o o
O o O O
o o o o
O O o o
O O O O
O ID o O
o o o o

O o O o
o o o o
o o (3 o
o O o o
o o o o
o o o o
O o o o
O o o o

O o o o
O o o o
o o o O
o O o o
o o o O
o o o o
o o o o
o o o O

O o o o
o O o o
O o o o
O o o o
o o o o
o O c3 o
o o o o
O o O o

o o O O
O o O O
O o o o
o o o O
o o o o
O O O O

4_

0

_.

ooooooooO O

E @

E

m

• _ _ A
0 0

O

./

I

g

m
ll_

I

I

i

i

I

D

m

I

g

J

I

I

6O

i

W_

w

Ld

w

7 _-

Chapter 4

host application and target processor. The code comes in the Microsoft C and Borland C
versions. In this project, the Microsoft C compiler is used. As well as the standard DOS form,
this library is also available in two Windows 3.1 compatible forms. The library is available in the

c4xapp.lib and the associated header file is called c4xapp.h. The routines in this library
provide access to the board registers and the Link Interface Adapter discussed above. The C40
executable (.out) file can be downloaded and executed. Easy C40-host interaction is also
provided. Before using the Application library, the following preparations have to be done [16]:

o

The system configuration file, netapi.cfg discussed in 4.2.1 must be present in the same
directory as the host program.

Some other files needed by the application library must also be included in this working
directory. These are edboot.out, edload.rorn, c4xload.rorn and boot.out and are
provided in the software package included with the C40 system.

The application library header file c4xapp.h which declares all library functions using
function prototypes must be included in the host PC code.

Once the above steps are completed, the final step after writing the host PC code is to compile and
link it with the configuration f'de (netapi.cfg), the reader library file (lrncfglib.lib) and the
Microsoft C version of the application library.
The application library has 20 different control, access and utility functions. The most used in this
project are outlined below:

Utility Functions

These are common to both the development and application libraries.

Global Network Reboot
Used to _et the carrier board and the Tim-40 module into a known state. This must be the

first function called from the library and it must be followed by a function that loads the C40
code onto the processor. In this case, the Load And Run File LIA function is used.
Open_Processor ID
Creates a processor'[aandle for the specified processor. This handle is then used by the other

functions within the library to access this processor.
Close Processor ID

ClearsTdl memory taken by the processor specific information. The memory must be
cleared at the end of the each session.

Clear_All_Lib_Memory
Clears all memory allocated during the work session by calling the Global_Network_Reboot
function.

Link Access Functions

Once communication with the C40 processor is established and the processor is rebooted and

is ready for operation, the following functions download and run the C40 code and provide
the C40-host interaction [16]:

Load And Run File LIA

Loads-an ex_'eutab_ obj_,t file (.out) to the processor specified in the function call
parameters. It then sets up the internal C40 Global and Local Memory Interface Control
Register values before starting the program.
Read LIA Words 32
Reads_ bloc'I: of 32 bli words from the C40 via the LIA. This function is used here in

junction with the send msg function which is discussed below in the PRSL (section
4.2.4). It is used to rea_ the size of the data array that will be sent by the send_msg

61

Chapter4

function from the processor. A function that reads a block of 32 bit floating-point numbers
from the C40 must be used right after this function to receive the array sent by the

send msg function whose size has already been read by Read_LIA_Words_32.
Reaff LIA Floais 32

Reads'a bloc]_ of 32 bit floating-point numbers form the C40 via the LIA and places it in

temporary storage. This function has the added useful feature of automatically converting the
data from the C40 format to IEEE format [16]. This function is used here to read a fixed size

array sent by the send_msg function from the C40.

Examples of how these functions are used are shown in the host code in Appendices A, B and C.
The return code error messages for these functions are included in the CHKERROR.C file

shown in Appendix B.

4.2.4 TMS320C40 Parallel Runtime Support Library

This library provides support and standard method programming for the C40 digital signal
processor peripherals such as the six direct memory access channels and the byte-wide
communication ports via the C programming language. These peripherals are controlled through

memory-mapped registers that are accessed easily through assembly or C language. The PRSL
contains well over 100 functions and macros which are categorized as communication port, DMA,

interrupt, multiprocessor and timer functions and macros. The library itself is provided as a source
code along with a header files and must be built before files can be linked to it [20]. Several
building options are available and the one chosen for this project is the small memory model option
using the stack-passing parameter convention with a level 2 optimization and header file installation
[16]. The C40 code is linked to the PRSL in the linker command file (.cmd) as shown in the

Appendices. The appropriate header fries, such as intpt40.h or compt40.h, must be included in
the C40 code before any functions from that specific section of the library can be called. In this
application, only some of the communication port and the interrupt functions are used. These are

li_sted below:

Interrupt Functions
Used to tell the processor programs how to handle various tasks according to their priority.
They provide access to the vector table and the CPU interrupt registers.

INT DISABLE

This _'s a macro that resets bit 14 (Global Interrupt Enable, GIE) of the C40 status register

(ST) to globally disable all C40 interrupts.
set ivtp
Set'up the interrupt-vector-table pointer (IVTP) register to the address specified in the
function argument. An interrupt table contains interrupt vectors. An interrupt vector is an
address of an interrupt service routine that should start executing when an interrupt is
received. If the DEFAULT option is used, then the IVTP pointer is set to the .vector
section in the linker command file.
|nstalf int vector : _: _

This fu_'ction sets up the interrupt service routine address into the section where the IVTP
register points. So if the .vector section in the linker command file is allocated a default

address, then the set_ivtp function sets the IVTP to point to the top of the stack and the
install mt vector function puts the timer 0 interrupt service routine address in that
memo_ lo_ation plus a user specified offset. Therefore, when timer 0 interrupt occurs, the

PmrOCessor branches off to the interrupt service routine. In this application, the C40 system
terraces with the PC/DMCB and as a result the interrupts are provided by the PC/DMCB

system as discussed above at the desired sampling rate. In other words, the interrupt service
routine w_ch in this case is a subroutine that contains the data acquisition and system

62

L

r *

L

L

E_

&._

Chapter 4

identification code, is executed at the sampling rate set by the PC_./DMCB system to provide
real-time system identification.
load iif

Sets the IIOF1 pin to be level trigger interrupt. The status of the external pins IIOF(3-1)

indicates where to find the source program to be loaded (memory or communication ports)
INT ENABLE

A ma'cro that sets bit 14 (GIE) of the C40 status register (ST) to globally enable all interrupts.

Communication Port Functions

Used mainly for data transfers between memory and the six C40 communication ports or the
DMA autoinitialization [20].

send_msg
This function sets up a DMA to send a word array that is pointed to by a data array pointer to
a specified communication port channel. The operation of this function is asynchronous to
the CPU operations after the setup, meaning that the CPU can be used in parallel with the
data transfer. It is important to note that this function sends the number of data words to be
delivered as the first item in the stream. Therefore, if the host program is expecting an array
from a specific communication port, it must first read the number of words to be read, then
the actual data array. This has been mentioned in the Application Library section above.
out msg
Sirm_ar to the send_msg above but is CPU controlled.

The C40 code in Appendices B, C and D contain examples of these functions and macros and the

context in which they are used.

4.2.5 Compiling and Linking the C40 and Host C Code

Two batch files have been written to compile and link the C40 and host C codes. These are named
comp dsp.bat and comp..pcS.bat respectively and they are available in the working directory
for the'C40 system.

4.2.5.1 C40 Code

The C40 code is compiled and linked using the following commands and options. These and other
compiler and linker options can be found in Reference [18] in more details:

ci30
-S

cl30 -s -g -v40 -alxs file.C
ink30 file.CMD

is the command that invokes the compiler and assembler
invokes the interlist utility, which interlists C source statements into the compiler's
assembly language output. This option automatically invokes the -k option which
instructs the shell to keep the assembly language file (filename.asm). This
assembly language file becomes useful if the assembly code for any C statement
needs to be inspected or if the number of assembly instructions in the interrupt
service routine (ISR) needs to be counted to ensure that the total number of clock
cycles does not exceed the time between interrupts. The latter option is important if
the code that needs to be executed in the ISR is long. The user needs to ensure that
this code can be executed entirely before the next interrupt comes in, which would
be skipped if the code is still running, and the result will be a false sampling rate.
For example if the PC/DMCB was set to sample at 4 kHz, which means that the
entire ISR code would be executed 4000 times per second, then the total time

63

Chapter4

allowedfor theISRto executebeforethenextinterruptcomesin is 250ps. Since

thisparticularprocessorhasa50MHz, thenthedurationof aclockcycleis 0.02kts,
whichmeansthatthetotalnumberof clockcyclestheISRis allowedto haveis
12500cycles.This numbershouldnotbeexceeded,otherwiseafalsesampling
ratewouldresult. Thereisaneasierwayof approximatingthenumberof clock
cyclesaportionof C codetakes,andthatis byusingthe?dk commandin the
DB40Debugger.However,thiscommanddoesnotnecessarilygivethecorrect
number,andif thecodeis large,it is saferto manuallycounttheassembly
instructionsin the.asmfile.

- g tells the compiler to generate symbolic debugging directives that are used by the
DB40 Debugger.

-v40 specifies the target processor, in this case the TMS320C40 processor.
-al xs an assembler option that invokes the assembler to produce an assembly listing fde,

produce a symbolic cross-reference in the listing file and retain labels.
file. C the file that contains the C40 source code.
-ink30 the command that invokes the linker.

file.CMD the linker command file that contains the linker options, standard memory

configuration and section allocations into memory (see .cmd files in Appendices B,
CandD). These are:._= ,

-x forcesrereadingof librariesifunresolvedsymbols arenot found.
-c enablesROM autoinitializadon.

-ofile gcne_tes theexecutable.outfilethatisloadedonto theC40.

.m file generates a map file of the input and output sections.
-i dir directs the library search algorithm to look in d/r for the Run Time Support Library.
-i lib links Parallel Runtime Support Library that is located in dir.

-e global_symbol
defines a global_symbol that specifies the primary entry point for the output
module. Must be c_int00 if the DSP code is C source files.

: _,= = =,==

MEMORY {}
the linker, not the compiler, specifies the standard memory configuration (memory

map) for the C40 carrier board. See section 4.1.2 for more details.
SECTIONS the compiler usually produces several blocks (sections) of code and data that arc

relocatable and can be allocated in memory in various ways to conform to the user

specified application. Once these sections are created by the compiler, the linker
takes over and allocates these sections into target memory. For example, the_er
can be instructed to place all global variables (.bss section) into fast intem_
or allocate executable code into internal ROM. The following sections are used in

this application [21].
•text contains all the executable code and floating-point constants.
•data contains tables of data or preinitialized variables,
.vectors contains the interrupt vector table which must lie on a 512-word boundary (see

linker command files)/_ i
.cinit contains tables with the values for initializing variables and constants.

•b s s reserves space for global and static variables. At program startup, the C boot
routine copies data out of the .cinit section and stores it here.

.stack allocates memory for the system stack which is used to pass arguments to functions
and to allocate local variables [18].

Other sections are discussed in Reference [18].

4.2.5.2 PC Host Code

64

=_-__=
II

m

I

I

I

m

I

I

ii

[] !
iIi

m

I

I

I

r

I

I i

I

7

i

k

2

FI I I:

E_=!2

w

= =

w

F-;

L,

=

Chapter 4

The PC host code is compiled and linked using the following command and options [22].

cl /W4 /O1 /AL IF 4000 file.C netapi.lib readlib.lib

cl
/W4

/O1

/AL

IF size

file.C

netapi.lib

readlib.lib

invokes the Microsoft C Version 8.0 C compiler and linker.

Sets warning level 4. Tells the compiler to display the least severe level of warning
messages.
This option affects the optimizing procedure that the compiler performs. The/O1
option produces very small executable f'des that will run on most machines.
Selects large memory model. A program code and data are stored in blocks, the
memory model of the program determines the organization of these blocks. In
addition, the memory model determines the type of executable file that is generated
by the compiler, the large memory model generates an .exe file [22].
Sets the program stack size to the number of bytes specified by size, where size is a
hexadecimal number in the range 0001 to FFFF. For programs in this application,
a value of 4000hex (16K) is used. If the program issues a stack-overflow error,
then the user might try to increase the stack size. Reference [22] indicates that the
maximum stack size accepted is for greater than 64K.
C source file that contains the host PC code.

Links the code with the sl_eified NetAPI library. In this case the application library
is used, so the c4xapp.hb is linked.
links the code with the reader library associated with the specific NetAPI library
used. In this ease, the lmcfglib.lib is used.

4.3 Remarks

This chapter is meant to provide a basic description of the specific C40 system used in this project
and its operation to help the reader understand the process involved in the real-time code
implementation and consequently appreciate the problems associated with such an undertaking. In
addition, it is hoped that this chapter will provide the next user of the C40 system a good starting

point and aid them in picking up the learning curve in a short period of time. This could save a
great deal of time because the C40 system used here consists of modules and components from
two different manufacturers and a third party vendor. Each module and piece of software comes
with its own documentation in a fragmented format to accommodate a wide range of applications.
As a result, there are 12 manuals and user guides that came with this system which had to be
related to one another to provide the knowledge required to use the system accurately and
effÉciently, and that is what this chapter is designed to deliver. It is by no means a comprehensive
description of the entire system and should not be taken as such, but rather a starting point that
could make the learning process a lot smoother. The author feels that the documentation provided
here along with the example programs included in the appendices is sufficient to use the C40
system in this type of application. If different applications or an extension of this application are
required, then the user is advised to refer to the original manuals.

== :

65

Chapter 5

5 Real-Time System Identification

The adaptive filter and algorithm that have been developed in chapter 2 and simulated analytically in
chapter 3 are tested in real-time in this chapter. The first two sections describe the equipment used
in the lab and the experimental setup. The last section details the real-time system identification
process and the results obtained.

5.1 Equipment Used

This section details the equipment used in the lab to test the system identification algorithm in real-
time.

5.1.1 Computers

Two computers are used. A Compaq Deskpro 575 PC (computer #i) with a 75 MHz pentium
processor and 16MB RAM is the main computer used for the experiment. It houses the 840
system and its accompanying software. A Microtech PC (computer #2) that has a LabView
input/output AT-MIO-16X I/O board is used to provide the excitation signal for the shaker. The
AT-MIO-16X board is a 16 channel, high-performance, multi-function ahalog/digital input/output
board [23]. It is driven by the LabView Virtual Instrumentation software (VI). A VI is created to
serve as a random signal generator. This is used to provide the driving signal for the shaker via the
LING STAR amplifier.

5.1.2 LING STAR 1.0 Power Amplifier

The STAR 1.0 is an audio amplifier that has been reconfigured for vibration and modal testing use.

It has an output power of 1.4 kVA, output voltage 120 Vm (nominal), output current 12 A m
(nominal), frequency response 2 Hz - 20 kHz and voltage gain of 56 [24]. The power amplifier is
used to drive the shaker which delivers the excitation force to the structure.

5.1.3 LING LMT-50 Modal Shaker

The LING shaker is:_ electrodynamic transducer C_able of producing a tot,_dsine vector force

rating of 50 pounds [25]. It has a useful frequency range of DC to 2 kHz and a maximum rated

stroke limit displacement of 1.2 inches peak-to-peak. It is capable of .an 80g _mum acceleration
and 60 in/s maximum velocity. Its fundamental resonance frequency is at 3500 Hz.

5.1.4 PCB Piezotronics Model 280A02 Force_ Transducer

The PCB force transducer is designed to measure compressive, tensile and impact forces over a

dynamic range of 10 to 500 lbs. It can withstand a maximum compression of 100 lbs, maximum
tension of 500 lbs and has a resolution of 0.002 lbs [26]. It has resonant frequency at 70 kHz and

a 10 Bsec rise time.

5.1.5 PCB Piezotronics Model Q353B33 Quartz Shear mode ICP
Accelerometer

The PCB 353 quartz shear mode accelerometer has a quartz sensing element housed in a titanium
casing and weighs only 25 grams. It offers high performance for precision acceleration
measurements and utilizes an integrated circuit piezoelectric electronics [27]. It has a frequency

range of 0.07 to 7000 Hz, a mounted resonance frequency of 22 kHz, an axial maximum shock

I

I

,i
I

I

i

I

I

i

I

i

i [

m _

I

66

Ii

_1 :Ii:

IL..,

LZ_

W

t--t

__,=

L

_=
L_

r

Chapter 5

limit of +/- 2000g and a -65 to 250 °F operating temperature range. The accelerometer and force

transducer must be powered with a PCB approved constant current power/signal conditioners,
such as the one listed next.

5.1.6 PCB Piezotronics Model 483B18 Six Channel Line Power Voltage
Amplifier

This is a well regulated 24 VDC or 105-125 VAC driven six channel power unit with a continuous
gain range of 1 - 100. It provides constant current excitation to the ICP transducers (in this case,
the force transducer and accelerometer mentioned above). The front panel has the gain adjustment
dials and the fault monitoring switch. The back panel has BNC jacks for both input and output
connections. It has a low frequency response of 0.05 Hz and a high frequency response of up to
200 kHz. The output voltage is +/- 10 volts and the output current is +/- 1 rnA with an output
impedance of 50 Ohms [28].

5.1.7 Test Structure

The main structure used in testing is an aluminum beam with a uniform rectangular cross section.
It has the following properties:

Overall Length:
Cross Section Area:

Modulus of Elasticity:

Mass Density:
Moment of Inertia:

L=48in

A = 0.75 in 2 (0.5xl.5 in)

E = 10.3x106 Ibm 2

p = 0.098 lb/in 3
I ---0.0156 in 4

5.1.8 The Texas Instrument/Spectrum C40 System

This system and the accompanying software were discussed in detail in chapter 4.

5.2 Experimental Setup

The equipment used is laid out as shown in Figures 5.1 and 5.2. A connection is made from the
AT-MIO-16X board to the back of the LING STAR 1.0 power amplifier. This connection carries

the random signal generated by the LabView VI to the amplifier. The amplifier has two modes of
operation, a Voltage mode and a Current mode. The Current mode was selected because it is
recommended by the manufacturer for modal analysis and modal excitation [24]. A power cable
connects the amplifier to the shaker which is mounted vertically on a wooden workbench. A wire
stringer is attached to the shaker at one end and at the other end it has the force transducer which in
turn is securely attached to the structure. The structure is clamped at one end to an adjustable steel
platform as shown in Figure 5.2 and is free to vibrate at the other end. The accelerometer can be
attached to the structure at any point desired. Two standard 10-32 (model 002C10) general
purpose coaxial cables are used to connect the sensors to the signal conditioner. These cables have
a coaxial plug at one end that connects to the sensor [2"/], and terminate in a BNC plug that hooks
up to the back of the signal conditioner (input channel). Two oscilloscope probes are used to take
the output of the signal conditioner to a breadboard that in turn is attached to the input/output
channels of the C40 system by a ribbon cable.

5.3 Testing Procedure

The following steps describe the testing procedure used in the lab

67

Chapter5

I

m

L)

('q

¢q

E_

o .= ©

0

_.
.__

• _ _

x: E
rn [--.

I

I

i

g

I

m_

INI |

g _

i -

68

U

_1 ! i

-- Chapter 5

=

_.-z:

i

Figure 5.2: Equipment Setup Used in the Real-Time System Identification Tests

L_

w

69

Chapter 5

1. Write, compile and link C40 and host PC code on computer #1.
2. Prepare the C40 code for the DB40 debugger and load into debugger.
3. Mount the structure on the platform using clamps at the desired length. Load the

random signal VI (UWNoise.VI) on computer #2, then select the desired sampling
frequency and number of points. Also choose the amplitude of the random signal and
whether a low-pass f'flter is to be applied to the signal or not. If the user wishes to only
excite certain modes of the structure, then it is recommended that the low-pass filter is

activated in the VI and a cutoff frequency selected as needed.
4. Ensure that the gain knob on the STAR power amplifier is turned off. Failing to do
this could damage the shaker and the wire stringer.
5. Turn the power amplifier on, and run the random signal VI. Then slowly turn the
gain on and increase until the shaker is imparting the desired force to the structure.
6. In the DB40 debugger, choose the Run command to download and start the C40

code on the processor. Halt the program, set break points and step through the commands
to debug the program and ensure that it is performing the expected tasks. If not, then halt
the debugging operation, free the processor using the runf command, quit the debugger
and reduce the gain on the power amplifier to stop the shaker. Go back to the code and
make the necessary changes then repeat the above steps until the debugging operation is

complete.
7. Quit the debugger and modify the C40 code to interface with the host PC code.
8. Repeat steps 4 and 5, but this time download the C40 code onto the DSP using the
host PC code. The system identification process will terminate when the arrays contai_ng
the results are filled up. This time duration depends on the size of the arrays, the sampling
rate and whether time decin3ation is used or n0t.
9. Start MATLAB and run the M-file (e.g. C40SDOF.M) that is associated with the

specific testing done. MATLAB will display the final system identification results

graphically.

5.4 Real-Time System Identification _i _ _--_ii

This section details the results of the real-time testing of the system identification algorithm

developed in Chapter 2 using the equipment and procedures described above. But first a
discussion on the problem of aliasing and possible solutions are presented.

Aliasing
In general, minimizing the sampling rate of a discrete signal means rninimizing the ari_etic
involved. In addition, for this project minimizing the sampling rate atso means more coae can be
executed in the ISR before the next sample comes through, allowing the user more time to perform

many tasks. However, if the input signals are not band-limited as in most real-life cases, then a
lower sampling rate will cause the higher frequencies to be aliased down and appear in the lower
frequency band [7]. This problem is usually avoided by the use of an anti-aliasing filter which is
an analog low-pass filter that usually has its cutoff frequency at one-half the desired sampling
frequency, thus forcing the input signals to be band-limited in the that region. As a result, any
higher frequency components are filtered out and do not alias down to the lower frequency band

after sampling.
Unlike most data acquisition systems used nowadays, the C40 system does not come with

a built-in anti-aliasing filter. Therefore, an analog low-pass filter was designed and built to be used
as an anti-aliasing filter but turned out to be a very crude device that did not deliver the satisfactory
response. A recommendation was made by an Electrical Engineering Professor at the School to
use the oversample-filter-decimate method [29]. The basic idea is to sample at a high frequency
that will capture the entire frequency band where significant information is present, then use a low-

pass digital filter to isolate the band of interest, and finally decimate to get the needed sampling
frequency for the computations. Decimation is basically throwing away every other sample to
bring down the sampling rate to a desired value.

D

R

m

I
I

m

J

i

Uig

g

i

I

i

m

m

J

J

=
g

70

J

[![11'

L_

L

.J

F7

L_

Chapter 5

Theoretically, it is assumed that a structure has an infinite number of vibration modes that
could appear in the response signal if excited. This assumption invalidates the oversample-filter-
decimate method because no matter how high the sampling rate is, there are always higher modes
which will alias down into the lower band. Fortunately, in reality this effect can be reduced in
magnitude if the higher modes are not well excited. Then, if a sampling frequency at least two
times higher than the highest frequency mode that is significantly excited is used, then the entire
frequency band of significance is captured and little aliasing takes place. Reducing excitation of

higher modes is done by applying a low-pass digital filter on the excitation signal so that only the
modes of interest are well excited. Digital filtering after sampling the signals can then be used to
isolate these modes. But, low magnitude noise at higher frequencies is always present in the signal
and gets aliased down into the lower band. Unfortunately, without an analog anti-aliasing filter,
nothing can be done to eliminate this problem and it has to be tolerated. Tests have shown that
good results can still be obtained even though such noise is always present in the signals.

Although the oversample-filter-decimate method has been found to work well as shown in
the following sections, it does have a disadvantage associated with it. A higher sampling
frequency will always mean less code in the interrupt service routine (ISR), thus limiting the
number of tasks that can be done. In this project, a sampling frequency of 4 kHz has been found
to be high enough to capture the significant information in the signals and avoid aliasing, yet it is
still low enough to allow significant amount of computation in the ISR.

Digital Low-Pass Butterworth Filter
The input signals in most test runs in this project were sampled at 4kHz or higher, and a fourth
order low-pass digital Butterworth filter has been used to filter out the higher unwanted
frequencies. Butterworth filters are Infinite Impulse Response (I]R) filters, that have a maximally
flat amplitude response in the pass-band [7]. A fourth order filter has the following pulse transfer
function:

r(z)
X(z)

C 0 -[-CI Z-I -i-C2 Z-2 -1-C3 Z-3 +C4 Z'4

l _ z -' _ d _ z _ d, z

Cross multiplying and taking the inverse z transform gives the filter difference equation:

y(k) = d_y(k - 1) + dzy(k- 2) + d3y(k- 3) + d4 y(k- 4) +

CoX(k) + qx(k -1) + c2x(k - 2) + c3x(k- 3) + c4x(k- 4)
? - _ _

where x is the filter input (unfiltered signal), and y is the filter output (filtered signal); x(k) is the
present sample of the signal and x(k-1) is the previous sample (one tap delay) and so on. The f'dter

coefficients (d v d4; co.... , c_) are obtained using the butter command in MATLAB which
designs a digital Butterworth filter of a desired order given a sampling frequency and a cutoff
frequency. A sample fourth order filter is shown below, which was designed at a sampling rate of
4 kHz and has a cutoff frequency of 75 Hz to isolate the first two modes of the beam. The filter is
implemented in the ISR as shown below. This is part of a sample code given in Appendix C.

• Once the input signalsA (accelerometer), F (force Iransducer) are sampled, the tap delays

(previous values) for the first signal are set up.

1) First Signal, A

xa4=xa3;
xa3=xa2;
xa2=xal;

71

Chapter5

xal=xa;
xa=A;
ya4=ya3;
ya3=ya2;
ya2=ya 1;
yal=FA;

• Then the filter is applied to the first signal as follows:

FA=3.692234261*yal-5A23180777*ya2 + 3.165651468"ya3 -

0.734870850"ya4 + 1.0e-04*(0.103686192"xa + 0.414744770"xal +
0.622!17156"xa2 + 0.414744770 *xa3 + 0.1036861926 *xa4);

• and the tap delays for the second signal are

2) Second Signal, F

xf4=xf3;
xf3=xt'2;
xf2=xfl;
xfl =xf;
xf=F;

yf3=yt'2,
yf2=yfl;
yfl =FF;

now the filter is applied to the second signal,

FF= 3.692234261"yal- 5.123180777"ya2 + 3.165651468'ya3 -
0.734870850"ya4 + 1.0e-04*(0.103686192"xa + 0.414744770"xal +
0.622117156"xa2 + 0.414744770 *xa3 + 0.1036861926 *xa4);

Figures 5.3 and 5.4 show the beam acceleration response signal without and with f'dtering,
respectively. The FFT plot in Figure 5.4 shows how the filter has effectively eliminated all modes
and noise components that are higher than 75 Hz, thus isolating the first two modes of vibration.

System Identification :: :=--=--:::_: _.... :_ - : :-
Once the excitation and response signals are sampled and f'dtered, a cotmter is set to decimate the
signals in time to easily establish an effective sampling rate without having to reconfigure the DM

registers or inlroduce an external clock source. This is done for two reasons: the C40 pre_t
sampling rates are limited and too high for this application, so time decimation allows the user to
select a lower rate by simply selecting a desired counter value. The counter is used in an if
statement to throw out (decimate) unwanted samples. The second reason for time decimation is the
oversample-filter-decimate method discussed above. The system ID code is included within the if
statement as shown in the sample codes in Appendices B, C and D.

5.4.1 Single DOF Case (Single Mode) _ :: : :_ _:: : _
For the single mode ID, the beam was clamped to the steel platform at a 40 inch length. The
excitation point was chosen to be near the center of the beam and the response was taken at the tip
as shown in Figure 5.1. The excitation point was chosen so that at least the first two modes will
be well excited.

72

g

J

II

i

m

!

I

II

m

J

l

i

|
m

l

II

I

l
==
!

g

W

I

g

!!l :|]

Chapter '_

=

2

1

0

-1 -

-2
0

3OO

Time History of Beam Response (Unfiltered)
I I I I I I

I I [I I I

2 4 6 8 10 12

Time, sec.

FFT of Beam Response Signal
| |

4

2OO

100

0
0 50 100

_ Frequency, Hz

Figure 5.3 Aluminum BeamUnfikered Acceleration Response and its FFT
= 500 az)

5O

73

Chapter 5

m

i

i

2

0

-1

Time History of Beam Response (Filtered)

3OO

2OO

100

I I I I I I

-2 i l
0 2 4

0
0

I I I I

6 8 10 12

Time, sec

FFT of Beam Response Signal

I t

50 100

Frequency, Hz

Figure 5.4: Aluminum Beam Filtered Acceleration Response and its FFT

(f,= 500I-Iz)

14

150

!

g

II

u

i

m

It

ill

m
m

i

_=

iii

L__

Ii

L

n

74
i

in,

i1 ! i:

L •

r_

i •

z

_S

w

L_

Chapter 5

5.4.1 Single DOF Case (Single Mode)

For the single mode ID, the beam was clamped to the steel platform at a 40 inch length. The
excitation point was chosen to be near the center of the beam and the response was taken at the tip
as shown in Figure 5.1. The excitation point was chosen so that at least the fhst two modes will
be well excited.

The first and second theoretical natural frequencies of the beam in this configuration
(clamped-free @ L - 40 in) are 10.2 and 64 Hz, respectively [8]. Prior to the actual testing, a
random unfiltered excitation was applied to the _ and the response was sampled, collected and
transferred to MATLAB by the C40 system. The fast fourier transform (FFT) of the response
(Figure 5.3) is calculated in MATLAB to determine empirically the first and second natural
fxequencies of the beam in this setup. It was found that the first frequency appears at
approximately 11 Hz and the second frequency appears in the vicinity of 50 Hz. The FFT plot
shows that the first mode appears as a fairly sharp component whereas the second mode is not as
sharp and is therefore hard to pinpoint exactly. However, 50 Hz is a good estimate. The fh'st
mode frequency is fairly close to the theoretical value of 10.2 Hz, but the second mode frequency
appears at a significantly lower value than that of the theoretical 64 Hz. The difference can be

attributed to the fact that the beam is fairly stiff and the mounting steel structure is not absolutely
rigid. Depending on the magnitude of the excitation force, the entire mounting structure can shake
noticeably. In addition, the wooden workbench on which the shaker is placed vibrates slightly and
introduces more error into the signals.

In this section, only the first mode is considered. Therefore, during the actual system
identification experiment, the random shaker signal is constructed such that only the first mode is

mainly excited which is done by applying a low-pass digital filter (¢0, = 15 Hz) on the signal
coming out of computer #2. However, this process does not totally prevent the next two or three
modes from being partially excited. This is where the low-pass digital Butterworth filter comes
into play. The signals are sampled at 4 kHz which ensures that all the modes that could be excited
are picked up at the correct frequencies and do not alias down to the lower band, these are then
filtered out using the digital low-pass filter before the training process starts. For this test, the
Butterworth filter was designed to have a 20 I-Iz cutoff frequency which effectively isolates the first
mode.

A large number of tests were conducted in this arrangement to examine the influence of the
sampling frequency, the learning rate and the low-pass filter on the system identification process.
Among those, ten case studies are selected and presented herein. Sample code is shown in the file
C40SDOF.C in Appendix B. The test cases are summarized in Table 5.1.

Case No.
1

2

3

4

5

6

Table 5.1: Summar_¢ of the sin i fi6FR

i Sampling Frequency, (Hz) Learnin_ Rate
10(0.01

100 0.01

100 0.03
100 0.03

100 0.1

100 0.2

200 0.01

200 0.1

200 0.2
400 0.017

7

8
9

10
k •

•.al-Time Test Cases

Anti-Aliasin_ Digital Filter?
Yes

No

Yes

No

Yes

Yes

Yes
Yes

Yes

Yes

75

Chapter5

Case 1 (Figure 5.5): effective sampling rate: f, = 100 Hz

learning rate: o_ = 0.01

Results show that the first mode of vibration of the beam is identified as expected. The natural

frequency converges to the expected value of 11 Hz and the damping ratio converges to an average
value of 0.011. The modal constant should have converged to a value near 1, but the plot shows
that it is slowly moving towards that value. This is due to the low learning rate used. Figure 5.5
shows the linear combiner weights. The second and third weights seem to converge rapidly, but
the first weight does not. This is expected because the first weight is the one that influences the
mode shape. The error plot shows that it has been reduced significantly but did not go to zero.
Actually, unlike simulation, none of the errors in the real-time testing ever ConVerge to zeroeven if
the system identification process is completed. This is mainly due to anomalies such as high
frequency noise and non-linearities in the input signals. Such problems are always present in a
real-life testing environment. If the modal parameters and weight plots are examined closely, one
can see that they are not entirely smooth, which means that the algorithm is actually trying to deal
with the anomalies of the input signals. This as it turns out is one of the most powerful features of
adaptive filters, their ability to learn the complex behavior of signals.

It must be noted that there exists a lag of almost one second between the moment the C40
executes the code and starts the training process and the actual arrival of the first samples of data.
This delay is always present in the system and according to the third party vendor, it is a built-in
problem that comes with the A/D converters. Most of the plots show such an effect, which
appears mostly as a fiat region at the beginning of the time history. When the sampling rate is

becomeshigh, the problem more apparent.

Case 2 (Figure 5.6): effective sampling rate: f, = 100 Hz

learning rate: a = 0.01
WITHOUT ANTI-ALIASING FILTER

"this case is the same as the one above, except that the low-pass Butterworth filter that deals with
the aliasing problem is not applied to the input signals. Consequently, the results did not come out
as good as the f'dtered case above. The error time history shows how the algorithm becomes far
more susceptible to the aliased higher modes and high frequency noise in the signal, thus
producing a large error..

Case 3 (Figure 5.7): effective sampling rate: f, = 100 Hz

learning rate: a = 0.03

The anti-aliasing filter is applied once again, but the learning rate is increased by a factor of three.
The results are better than those in case 1. Total system identification time is cut by almost a half
and the modal constant does converge, but still sluggish. As expected, the first weight which

influences the mode shape converges faster in comparison to case 1. The error is minimized
effectively. '

Case 4 (Figure 5.8): effective sampling rate: f,= 100 Hz

learning rate: a = 0.03
WITHOUT ANTI-ALIASING FILTER _

Similar to case 3, but with the aliasing problem. Results are definitely worse. Cases 2 and 4 show

clearly the significant effect of aliasing and prove beyond any doubt that some form of anti-aliasing
should always be used in order to get the best possible results. Since this point has been clearly
illustrated, the low-pass Butterworth filter will be used to combat the aliasing problem from this
point on.

76

W

iw

m

t-

l

m

m

m

II

B

U

I

m

J

IW

E
m
lIB

U

!

II

_1 1 I:

c_.)

F

L:..

,rt.x.a

=--

=zE

Chapter 5

Case 5 (Figure 5.9): effective sampling rate: f, = 100 Hz

learning rate: _ = 0.1

The learning rate is increased by an order of magnitude compared to case 1. Results show a much
faster convergence. However, the plots indicate increased susceptibility of the algorithm to high
frequency noise in the signal due to a higher learning rate in comparison to case 1 and case 3.
Error is minimized almost immediately and maintains a very low value throughout the remainder of
the process.

Case 6 (Figure 5.10): effective sampling rate: f, = 100 Hz

learning rate: c¢ = 0.2

Learning rate is increased once again and the results show even more improvement in terms of
convergence, almost instantaneous, especially in the mode shape constant which converges in case
5 within 10 seconds, but converges here in less than one second. However, the results indicate
that the algorithm becomes more influenced by the noise in the signal due to the increased learning
rate. Cases 5 and 6 prove that the algorithm has a wide range of learning rates that will produce
stable results.

Case 7 (Figure 5.11): effective sampling rate: f, =200 Hz

learning rate: tz = 0.01

Learning rate is set to the original value of 0.01 and the sampling rate is doubled. In comparison to
case 1 which has same learning rate, it is apparent that the modal constant rate of convergence
became worse. Frequency and damping convergence are about the same. The error reduction is
also slow, but does move towards a smaller value.

Case 8 (Figure 5.12): effective sampling rate: f, = 200 Hz

learning rate: ot = 0.1

Same as case 7 but with a higher learning rate. Comparison with case 3 (same learning rate but
twice the sampling rate) shows very similar behavior which would indicate that increasing the
sampling rate did not have much influence on the learning process. Note that the time scale is
different between the two cases.

Case 9 (Figure 5.13): effective sampling rate: f, = 200 Hz

learning rate: a = 0.2

This case is included to illustrate a couple of points. The natural frequency convergence is
instantaneous similar to case 6, but the plots show a very unusual behavior. As shown in Figure
5.13, the damping ratio plot has many pulses with an order of 1038 magnitude. These axe the
results of dividing by zero which causes an overflow error in the C40 system. According to
Reference [17], the most positive extended precision floating point number that the C40 DSP
processor has is 3.402x10 _. Any higher number causes an overflow and the C40 always returns
the largest FPN. It can also be noted that these pulses correspond to values in the natural
frequency plot of zero. Since the natural frequency appears in the denominator of the damping
ratio term (equation 2.9), then when the natural frequency is zero, the damping ratio term
overflows, The natural frequency usually goes to zero when the term under the square root in
equation 2.8 is negative. The C40 system sets the whole square root to zero if the term under the

77

Chapter5

squareroot is negative. If this becomes a problem in future applications, then it can be easily

solved by a simple if statement.

Case 10 (Figure 5.14): effective sampling rate: f, = 400 Hz

learning rate: o_ = 0.017

In order to verify the explanation given at the end of Chapter 3 regarding the effect of sampling rate

on the adaptation algorithm performance, high sampling rates were used to study their effect on the
single DOF case. Figure 5.14 shows that even at a sampling rate 40 times the natural frequency of
the single DOF case, the algorithm does manage to correctly identify the mode. However,
choosing an optimum learning rate that is high enough for a reasonable time to convergence, but
does not cause an overflow problem as seen m case 9 above, becomes rather difficult. The results
in this case were obtained after 14 trials. During these trials, the natural frequency does converge
to the expected value but it is usually jagged and goes to zeros many times causing persistent
overflow problems. So, even though the actual identification process is not affected significantly
by the increase in the sampling rate, finding an appropriate learning rate becomes more difficult.

Remarks

It has been shown that the SDOF system identification process can be influenced by the learning
rate and the sampling rate as well as aliasing. Signals that were not processed by an anti-aliasing
filter were difficult to identify (cases 2 and 4). In addition, sampling very fast or using a high
learning rate can give the algorithm stability problems as seen in cases 6, 9 and 10. In general, the
author has found that there usually exists a combination of learning rate and sampling rate that

produces the best results for the ease at hand. Such a combination is usually determined by trial
and error. Please note that the term 'best' is loosely used here, because there is usually a trade-off

between stability and speed. Cases 3 and 6 illustrate this point very well. Case 3 is slower to i

converge and case 6 is more susceptible to noise, thus becomes less stable. The balance between
speed and stability will usually depend on the application at hand.

g

m

II

g

Ii

m

g

II1

m
J

B
Q

!

i

I

i

I

J

m

mill

I

[]
m

U |

I

Q

78 _ !

U :

,- Chapter 5

i 1

: :

L

r":

R

40

0
0

Frequency, Hz

i i

10 20 30

Damping Ratio
2

0 ' '

0 10 20 3O

Modal Amplitude
1

! i

0 10 20

Time, sec.

30

First Weight, Wl

1

-1

0 10 20

W2

iff-
i i

0 10 20

W3

0 10 20

Error

°._Io L
-051 r

0
i i

10 20
Time, sec.

Figure 5.5: Single Mode Real'Time System Identification Results

(Case l:f,= 100_, a = 0.01)

30

30

30

30

i

79

Chapter 5 ""

I

i

I

I

40

20

0
0

Frequency, Hz

.i i

10 20 30

First Weight, Wl
1

O5 f
o -' ,

0 10 20 30

2
Damping Ratio

0
0 10 20 30

W2

0 ' '

0 10 20 30

Modal Amplitude
1 ' '

0
0 10 20 30

Time, sec.

W3

0 10 20 30

10 2O

Time, sec.

30

Figure 5.6: Singe Mode Real-Time System Identification Results

(Case 2:f, = 100 Hz, ot = 0.01, no filtering)

Rt3

m

I

=

m
m

I

i
I

i

m
i

I

l

U
!
I

i

m

=

I

im
m
g

I

_zJ

m i

g
I

m
m
!

I

m !I

:3 I i

Chapter 5

40

0
0

Frequency, Hz

i i

10 20 30

First Weight, Wl

0 10 20 3O

Damping Ratio
2

0 10 20 30

2

0
0

W2

! i ,,

10 2O 3O

Modal Amplitude

-1 '

0 10 20
Time, sec.

30

W3

0

-1
0 10 2O 3O

Error

0.2] , .]

iF IrT'y q'' 1".... • i.q_ v

-0.
0

i ,,.

10 20

Time, sec.

30

_ Figure 5.7: Single Mode Real-Time System Identification Results

(Case 3:./, = 100 Hz, ct = 0.03)

81

Chapter 5 ...

I
I

I

I

Frequency, Hz
40 , '

0
0 10 20 30

Damping Ratio

0 10 20 30

Modal Amplitude
2

0 10 2O 3O

Time, sec.

First Weight, W1
2

0 10 20 30

W2

0 10 20 30

=

I

i

Ii

u

I

W3

2 . ' i

I

- 0 10 20 30 i

w

I

Figure 5.8: Single Mode Real-Time System Identification Results

(Case 4:f, = 100 Hz, o_= 0.03, no filtering) U

m

82

W

M

_1 I F

Chapter 5

° .

= =

:_:

k_

4O

2O

Frequency, Hz First Weight, Wl
2

0
0 10 20 30 0 10 20 30

Damping Ratio

, i

10 20

Modal Amplitude

0 3O

3O

2

0 10 20
Time, sec.

W2

0 10 20

_-._J

3O

2

0-_L

_2 - '

0 10

W3

20 30

Error
T T

10 20

Time, sec.

3O

Figure 5.9: Single Mode Real-Time System -Identification Results

(Case 5:f_ = 100 Hz, ot = 0. l)

83

Chapter 5 -'

Q

i

Frequency, Hz
40

0 i

0 10 20 30

First Weight, Wl
2

:t
0 10 20 30

t

i

J

0

Damping Ratio

I i ,

10 20 30

W2

:17- t
I

0 10 20 30

Modal Amplitude

0 10 20 30

Time, sec.

W3

-2 , ,
0 10 2O 30

0.1
Error

L

-0.1 ' '
0 10 2O

Time, sec.

30

Figure 5.]0: Single Mode ReabT'une -System Identification.Results

(Case 6:f, = 100 Hz, _ = 0.2)

u

m

m
g

m

U

B

l

I

g

i

t

i:

L

84

M

1

!IT 1i_

Chapter 5

w

L

D

= ..

100

5o

0

Frequency, Hz

0 5 10 15

Damping Ratio

0 5 10 15

First Weight, Wl

04o.2[
0 _

0 5 10 15

Modal Amplitude

W2

2

0 5 10 15

0 5 10 15
Time, sec.

Figure 5.1 l

W3

0 5 10 15

0.2

0

.-0.2
0

Error

L. i ,.,

5 10 15
Time, sec.

Single Mode Real-Time System Identification Results

(Case 7:f_ = 200 I-Iz, a = 0.01)

85

Chapter 5 ""

g

D

g

Frequency, Hz

0 '
0 5 10

!
15

First Weight, Wl
1

0 '
0 5 10

0

Damping Ratio

i i

5 10 15

W2

!tJ,
0 5 10

Modal Amplitude

0 ' '
0 5 10

Time, sec.

15

2

0

W3

-2 ' '
0 5 10

Error

0.1 [_.,,_,a_._,_l,t,_,,..,_,._,,._,_.

-0.1 ' '
0 5 10

Time, sec.

Figure 5.12: Single Mode Real'Time System identification Results

(Case 8:/, = 200 Hz, _ = 0. i)

15

15

15

15

IB

I

m

m

m

I

D

__ °

m

m

86

m

![! ii !i

Chapter 5

L

g===

100

5O

10

Frequency, Hz

0 5 10 15

First Weight, Wl
5

-5

0 5
i

10
i

15

x 103a Damping Ratio

ift Rl ll5 i
0 5 10 15

W2
4

0 5
i

10 15

0

-10

Modal Amplitude

0 5 10
Time, sec.

W3

15 0 5
i

10 15

Error

0.1_
_O._L ,

0 5 10 15
Time, sec.

Figure 5.13: Single Mode Real-Time System Identification Results

(Case 9:f, = 200 Hz, _ = 0.2)

87

Chapter 5

imm

g

m

g

Frequency, Hz

200 _ ,

,0el __
0 I "_"_-_'- _.

0 2 4 6 8

1

0.5

0
0

First Weight, W1

i i J

2 4 6 8

2O

0
0

Damping Ratio

2 4 6 8

2
W2

0 2 4 6 8

4

2

0
0

Modal Amplitude

_L--
2

Time, sec.

4 6 8

W3

0

i-1
0 2 4 6 8

Error

_). L L I ,,

0 2 4 6 8
Time, sec.

Figure 5.14: Single Mode Real-Time System Identification Results

(Case 10:f, = 400 I-Iz, ct = 0.017)

U

D

J

w

J

ml

g ;

u _

_J

m

U

II

88
=--

TVI]_

Chapter 5

5.4.2 Two DOF Case (Two Modes)

The same structure and set up as in the SDOF case, is used here. The excitation was applied at the
center of the beam (point 1) and the response was taken either at the tip (point 2) or at the center of
the beam to provide the same point results needed to evaluate the mode shape coefficients as
discussed in Chapter 2. A fourth order low-pass digital Butterworth filter is used to tackle the
aliasing problem similar to the one used in the SDOF case but with a different cutoff frequency in

order to isolate the fast two modes only (¢0_ = 70 Hz for the beam in this setting). Figure 5.15
shows the frequency response magnitude and phase of this f'dter. Note that the phase for this filter
does change significantly in the region below the cutoff frequency. This has not affected the
identification process, but can be avoided by using a higher order filter.

The random excitation signal going into the shaker was f'dtered using a low-pass digital
filter built in the UW oise,Vl random signal generator at a cutoff frequency of 60 Hz. This
causes the shaker to mainly excite the fast two modes of the beam. Sample code is shown in the
file C40DDOF.C in Appendix C, and Table 5.2 contains a summary of test cases in this section.
Please note that the cases listed below are the result of many test runs that were done to try and
establish some kind of a trend in each ease for meaningful comparisons between cases. Each test

run, even under the exact same conditions, is unique and can produce different results.
Representative results are listed herein.

Case
No.

1

2

3

4

5

6

7

8

Table 5.2: Summar

Sampling Frequency, l-lz

200

160

200

200

250

400

500

1000

Learning Rate

of the Two DOF's Real-Time Test Cases

Input/Output Measurements

0.01

0.008

0.(

0.03

0.03

0.001

0.01

0.01

non-collocated

non-collocated

collocated

non-collocated

non-collocated

non-collocated

non-collocated

non-collocated
L_

L_L_

Case 1 (Figure $.16): effective sampling rate: f, = 200 Hz

learning rate: o_ = 0.01

non-collocated response measurement (at tip)

First mode frequency is seen slowly converging to the expected value, whereas the damping is
slow to do so even after almost 80 seconds. The modal constant seems to be leveling off around

2. The second frequency identified by the adaptive filter is around 74 Hz, which is much higher
than the expected second mode frequency (around 50Hz). However, the beam does not have a
mode of vibration in the vicinity of 74 Hz.

This was a point of confusion for sometime until a characteristic of the bilinear
transformation known as frequency warping came to the attention of the author which provided a
very logical explanation to this seemingly strange behavior. As it turns out, the frequency
identified at a higher value is actually the second mode natural frequency which is around 50Hz,
but due to frequency warping it shows up as a higher value. This phenomenon was mentioned
briefly in Chapter 3 and it seems appropriate at this point to discuss it and its effect on the results of
this project in greater details. The following section provides such a detailed discussion.

89

Chapter5

I

U

i
m!

m_

g

0

t/l
ID

-100
fu_

131
ll)

"O

if) -200
c-

r_

-300
0

0 2O 4O 60 80 100

Frequency (Hertz)

............................i..i...................i..............................i............................
i [

L i

20 40

Figure 5.15:

60 80 100

Frequency (Hertz)

Frequency Response of a Fourth-Order, Low-Pass,

Digital Butterworth Filter

(f, = 4000 Hz, cot= 70 Hz)

120

120

90

m

[]
m

w

D :

_ m

2

roll °

!it :11I:

w

Chapter 5

17_ `

_...#

--!

7

!-4

100
First Mode Frequency, Hz

(3
0 20

i i

40 60 80

75

70

65

60
0

Second Mode Frequency, Hz

20 40 60

3

2

1

0
0

Damping Ratio

i i i

20 40 60 80

Damping Ratio
1.5

1

0.5

0
0 20 40 60

Modal Amplitude, Alpq
3

2

1

0
0 20 40 60

Time, sec.

80

5
Modal Amplitude, A2pq

-5

-10 ' ' '
0 20 40 60

Time, sec.

Figure 5.16: Two Mode Real-Time System Identification-Results

(Case l:f, = 200 Hz, ot = 0.0l)

80

80

80

__ 91
w

Chapter 5

Bilinear z-Transformation and Frequency Warping

A popular method of designing discrete time IIR f'flters is to utilize the already existing highly
advanced art of continuous-time IIR filter design and transforming this design into the discrete
domain to obtain a discrete I/R filter that meets prescribed specifications [7]. Two of the most
widely used methods to achieve this are the impulse invadance method and the bilinear
transformation (BT, or Tustin) method. The basic idea of the impulse invariance method is to
select an impulse response of the discrete tilter to match the impulse response of the continuous
filter. The details and problems associated with such a method are beyond the scope of this thesis,
but it must be noted that one of the major problems associated with impulse invariance is the
aliasing problem. References [7] and [30] have extensive discussions into this topic. The second
method that is of interest to us is the bilinear transformation. This technique avoids the problem of

aliasing inherent in the impulse invariance method by mapping the entire imaginary (jo_) axis of the

s-plane into the unit circle in the z-plane. This non-linear compression of an entire axis that

extends from -** to 4-** into a unit circle is called frequency warping. Figure 5.17 (solid line)

shows this mapping using a sampling frequency of 100 Hz. The following relationship gives the
discrete frequency as a function of the continuous frequency using the BT:

°
where f_ is the discrete frequency, co is the analog frequency and T, is the sampling period (1/f).

Detailed derivation of this formula can be found in Reference [7] which also recommends that the

BT be used only if the warping of the frequency axis can be tolerated or compensated for, using
the following equation

co= 2f, tan(2_) (5.2)

Solve for f,

CO

L = (5.3)

which means that in the initial development of the discrete system (Chapter 2), instead of using the

actual BT as shown in equation (2.3)

z-1
1

s=2f, z+ 1

I

1

1

|
=_

I

m

l

m

I

W
U

O

i

the following pre-warped formula would have to be used [30]

¢o z-1

s= tan(-_I z+l

(5.4)

92

==

J

m

1

m

I

J

r..,,d

t

L_

=- i

|_

w

L z

Chapter 5

This equation requires previous knowledge of the actual system frequency and the exact discrete

frequency that maps it. However, this equation is not used in this project because the warping
effect was not discovered and understood early enough to justify a complete redevelopment of the
mathematical model of the system and the adaptive filter used.

The BT is used mainly because of its simplicity. It is nothing more than an algebraic
transformation between the s and z variables and can be easily implemented by simple substitution
as shown in Chapter 2. According to Reference [7], if the continuous-time system (filter) is band-
limited, then the "discrete-time and continuos-time frequency responses are related by a linear
scaling of the frequency axes" (p. 408):

- coT, (5.5)

Unfortunately, this relationship requires exactly band-limited continuous systems, otherwise
aliasing becomes a problem, which is almost impossible in real-life. However, this linear scaling
will be used here to represent the ideal theoretical relationship that relates both frequencies together
as shown by the dotted line in Figure 5.17 (wheref, = 100Hz). The figure shows that there exists
a region (near the origin) in which the theoretical relationship and the BT relationship between the
frequencies is identical. This region can be extended using high sampling rates as shown in Figure
5.18 (f, = 1000Hz). In other words, by sampling at a high rate, the linear region can be expanded
and the effect of frequency warping will be reduced.

Once the concept of frequency warping is understood, the results of the second mode

identification can be explained. Substituting the adaptive filter coefficients (b_, b 2, a_, a_2
etc.) into equations 2.8, 2.8 and 2.10 to evaluate the modal parameters of the specific mode is
actually performing the inverse of the bilinear transformation to get from the z-domain back to the
s-domain. So, if the mode identified by the adaptive filter has a discrete frequency at a certain
value, then by applying the inverse BT to that frequency in the non-linear region causes such a
frequency to show up at a higher value in the continuous domain. Figure 5.19 shows the
continuous-discrete frequency relationship at a sampling rate of 200Hz (ease 1). If a vertical line
representing the actual natural frequency of the second mode is drawn at or around the 50I-Iz point
on the horizontal axis (continuous) until it intersects the theoretical plot (dotted), and a horizontal
line that goes through this point is drawn to intersect with both the vertical axis and the BT plot
(solid), then that horizontal line represents the actual discrete frequency corresponding to the
second mode. However, the point of intersection of this discrete frequency and the BT plot
corresponds to a continuous frequency that is higher than the actual value. Therefore, the mode
appears at a higher frequency. It must be noted that the experimental values do not correspond
exactly to this argument, but taking measurement errors into consideration, they are reasonably
close. The first mode is usually not affected because it falls in the linear region of the BT plot, and
hence the mapping is exact.

Now if the frequency warping explanation holds, then reducing the sampling rate further
should magnify the problem. This is exactly what happens in case 2 below as shown in Figures
5.20. The sampling frequency was reduced to 160 Hz, and as expected, the adaptive filter
identified the second mode as one with an even higher frequency than that at the 200Hz case. On
the other hand, increasing the sampling rate should reduce the effect of frequency warping. This is
also true as shown in the cases to follow.

Furthermore, one might even expect that if this argument was to hold true, then similar
behavior should have be seen in simulation. But the simulation results of Chapter 3 did not have
this problem, the second mode frequencies always appeared at the correct values even at sampling
rates as small as twice the second mode natural frequency. This apparent contradiction can be
easily explained by noting that in the MATLAB simulation of Chapter 3 the continuous-time
system was converted to a discrete-time system using the BT option. When the adaptive filter
coefficients were used to evaluate the modal parameters using the inverse BT, the warping problem
automatically corrected itself, and consequently there was no hint that there ever was a problem in
the first place. Actually, this is not entirely true, because the FFF plots of the simulated system

93

Chapter5 w

i

I

g

10 , ! i
! I i _ i

i ! i °."°'_'

jo

8 ""-
_ _ _ ..._"

i i . : o,_°.

6 _................... L i'"

:. _ ,o,-°°*°°

4"...................................... ! ! ...: i

t 2 i i i ..." : :

0

_ -2

e;el Ila

'4 oL ...-,. ...

..........................e_"...................÷......................._-........................,,-.................... --....................

-8 -":..........-........................- _ _.................... -

-10 i i i _ i
-I50 -I00 -50 0 50 100 150

continuous frequency, Hz

Figure 5-17: Frequency Warping A;sociatedwith the Bilinear Transformation

(f,= iooH_)

94

=
m
D

m

g

m

J

m

II

m

I

II

i

g

H
i

i

i

i

g

-- Chapter 5

w

E :

= =

=

li/ i ! .,.

0.81.._..........................-....................,......................._......;/"-

0.6- ..._ i:.... !

0.4i........................'T.........................._.................--7"!

,.o._........................i..........................+.........................._......./......i.......................+.......................
{o!...................i....................-Y-...........!i....................i.....................

g

-I i i i J i

-I 50 -I O0 -50 0 50 I O0 150

_ntinuous frequency, Hz

Figure 5.18: Frequency Warping Associated with the Bilinear Transformation

G = 1000 l-Iz)

95

: i

Chapter 5

m

i

i

mM

3.5

3

2.5

t

¢_ 2

C9 1.5

0.5

Figure 5.19:

! ! t

ig I°

• Ex.ot ' i ...-'""
t-BTI I :"'" "

- Qoe

i I

: z i I

- iae-fit[fie?zlrre56_n-cy-..............-;-'"-.....................-2_

, i I

-- aiac9....

0 I ., . i i
0 20 40 60 80 100

continuous frequency, Hz

FreqUency Warping Associated with the Bilinear Transformation

G = 200Hz)

m

i

m

J

i

i

ID

W

W

u_

m i

96

W

j

F1 !]

Lj

w

))

r

t

| ,

w

L_

5

Chapter 5

response hinted to this effect. As shown in Figure 3.10, the second mode natural frequency of the
spring-mass system shows up in the FFr plot at 44 Hz instead of the actual 52 Hz. This is an
indication of the reverse warping effect that is the result of going from the continuous-time domain
into the discrete domain via the BT, whereas the effect seen in the real-time testing is the reverse of
that, i.e. going from the discrete-time domain into the continuous-time domain. When the two
mutes are put together, the problem automatically corrects itself. Note that this problem of
frequency warping which becomes apparent at low sampling rates probably has nothing to do with
the mode-skipping problem discussed at the end of Chapter 3 which usually occurs at high

sampling rates.
At this point, it becomes necessary to study the effect of warping on damping and mode

shapes. Recall equations (2.8)-(2.10) from chapter 2

COi = 2 f,,.]17 + all + ai2 (2.8)
Vl-all + ai2

_',=. 2f,(1-a,2)
co_(1 - a_ + a.,) (2.9)

4hi
= (2.10)

At'q 1- a n + a s

Going back to the original mathematical development of the system in Chapter 2, one can easily see
that equations (2.8)-(2.10) are the result of the inverse BT which means that all of them are
affected by the warping effect. In addition, the modal parameters of each mode are functions of the
filter coefficients and sampling rate that appear in the natural frequency equation which means that
they will be affected by frequency warping. Such an effect has to be studied and verified
empirically in MATLAB using simulation [31]. The idea is to simulate the continuous-time system

response instead of the discrete-time system response using the isim command instead of dlsim
which has been used so far. This method of simulation would duplicate the real-time environment

more accurately than the original method. In addition, it could also be used to either buttress the
frequency win-ping argument and show its effect on damping and mode shapes or negate it. A
sample test run was done and the results were as follows

Actualmodal parameters: (o_ = 11.8 Hz

_t = 0.003

tAm - 0.166

0)2 = 52 Hz

_2 = 0.013

_ .. -0.166

Test results using lsim: ol = 11.9 Hz o_2 = 67.5 Hz

_l = 0.003 _2 = 0.0213

lAp, = 0.167 zAn = -0.215

As expected, these results show clearly the effect of warping on all modal parameters of the second
mode. All three parameters came out significantly higher than they should be, which means that
the effect of frequency warping can also be seen in simulation if the continuous-time response is
used to train the adaptive filter instead of the discrete-time response. As discussed earlier,
simulating the system response using dlsim with the tustin method masks the frequency warping
effect because it is automatically corrected when the modal parameters are calculated using the filter

coefficients. This masking of the warping effect is eliminated by using tsim instead of dsim. As a
result the modal parameters show up at higher values than expected, thus supporting the warping
effect argument.

97

Chapter5

Case 2 (Figure 5.20): effective sampling rate: fs = 160 Hz

learning rate: ct = 0.008

non-collocated response measurement

This ease is included to prove that reducing the sampling rate further, causes the second mode to
show up as a higher frequency mode due to frequency warping.

Case 3 (Figure 5.21): effective sampling rate: f, = 200 Hz

learning rate: tz = 0.01

collocated response measurement (at center)

Similar to case 1 in all aspects except for the modal constant results. This case has excitation and
response measurements collocated and is done to verify the mode shapes and see if the results
given are reasonable. Figure 5.16 shows the first modal amplitude converging to a value near 2.0,
and the second converging to almost -5.0. On the other hand, for the same point test, the first
modal amplitude is roughly around 0.3 and the second is around 1.3. Summarized, these results
ale:

iA21 = 2.0

r,t2_= -5
,An = 0.3

r4. = 1.3

where tim is the modal amplitude of the ith mode excited at point q and the response measurement
taken atp. Now solving for the mode shape coefficients given by equation 2.2 in chapter 2:

?

:,_=,¢',A

gives the following mode shapes:

:ro l¢I= ,¢2J [3.65]' :F:c',]:ru41m' L,_, L-4.39]

normalize for effective comparison with theoretical values to get

[,,,l:r,i¢',= ,¢,] L6_6] ' :r,] [1]_2 I.'¢2 = 3.86

but the theoretical mode shapes calculated using formulas taken from Reference [8] are:

,,p,qF0681 F l
*' =[,,:]=Lzoo]' a': =L2¢_,] [-2.00]

normalized:

=r,,,l=[,]_'1 LI¢,J 2,94'

t

u

U

i

Ii

i

I

i

i

i

B

M

U

U

I

l

i

98

k

W

w

w

r -

w

w

Chapter 5

As shown, the real-time mode shapes are exaggerated and could very well be in error. For one
thing, these values are affected by frequency warping and they were measured from the plots
which are not very accurate because they were taken under the assumption that they were the final
convergence values which might not be true.

Also, there is always the error introduced by the vibration of the workbench and the steel
mounting frame. In addition, as discussed in Chapter 2, this is not a very accurate test because the
mode shapes are evaluated at two different test runs instead of one. This is the result of the limited
number of channels in the C40 system. Instead of performing the test with three sensors (a force
transducer and two acc.elerometers), the test is done twice with two sensors. However, the results

are not completely useless, they do indicate the correct general shape of each mode.

Case 4 (Figure 5.22): effective sampling rate: f, = 200 Hz

learning rate: cz = 0.03

non-collocated response measurement

Maintaining the sampling rate and increasing the learning rate has improved the speed of
convergence noticeably. On the other hand, the smoothness of the curves is much worse. This
case illustrates the Wade-off between stability and speed.

Case 5 (Figure 5.23): effective sampling rate: f, = 250 Hz

learning rate: ot = 0.03

non-collocated response measurement

This case is included to illustrate the effect of increasing the sampling rate on the frequency

warping problem. Figure 5.23 shows that the second mode frequency converges to a value
between 65 and 70Hz, which is less than that identified at 200Hz sampling. This proves that
sampling higher, forces the BT to operate in the linear region or close to it, thus reducing the error
due to warping. However, any hopes of seeing better results by increasing the sampling rate
vanish quickly as the mode-skipping phenomenon which was discussed in section 3.2 comes into
play.

Case 6 (Figure 5.24): effective sampling rate: f, = 400 Hz

learning rate: cx = 0.001

non-collocated response measurement

The first mode as identified here is actually the second mode, and the identification is almost

perfect, with the exception of the damping ratio which is slightly high. It appears that the adaptive
filter completely ignored the first mode, treated the second mode as the first and tried to identify
something that has a frequency much higher than that of the second mode. This problem of totally
skipping the first mode was seen in the simulation as well and is found to be common here in
almost all cases that had a sampling rate higher than 250-300 Hz. It must be noted that many test
runs were done to try and improve the results of this ease by both increasing and decreasing the
learning rate. It was found that this did not have any significant effect on the final values, they
almost always came out similar to the above results.

Case 7 (Figure 5.25): effective sampling rate: fs = 500 Hz

learning rate: o_ = 0.01

non-collocated response measurement

Same problem as seen above, actual second mode appears as first mode, but with an impressive
rate of convergence, almost instantaneous identification. In place of the actual second mode, it
seems like the adaptive falter is trying to identify something adjacent to the actual second mode.

99

Chapter

Thissupportstheargumentmadeat the end of Chapter 3 as a possible cause of the mode-skipping
problem. Figure 5.26 shows that the algorithm does actually try to minimize the error.

Since the second natural frequency of the beam (50 Hz) appears at a frequency adjacent to
that of the electrical power frequency (60Hz), then it is possible that interference causes this
behavior. However, this was not found to be a conclusive explanation because using different
lengths of the beam, which shifts the mode location on the frequency spectrum, and even using a
totally different structure did not support this argument, the problem still existed as discussed
above. The other structure that was used here was a composite ski that was clamped in a cantilever
mount. Figure 5.27 shows the ski acceleration response and the FFT of that response. The first
mode of vibration is at slightly less than 10 Hz and the second mode appears around 30 Hz. The
results obtained using the ski are very similar in nature to those of the beam. The same problems
associated with low and high sampling (namely warping and mode-skipping) were seen in the ski
tests which for one thing eliminate the possibility of the electrical power frequency being a source
of error.

Case 8 (Figure 5.28): effective sampling rate: f, = 1000 Hz

learning rate: tx = 0.01

different points measurement

Sampling at 1 kHz does not improve the results. As a matter of fact, the apparent second mode is
converging to an even higher value than seen before. The error behavior as shown in Figure 5.26
is similar to that of case 7.

w

m

I

m

D

u

iI

i

D

u

I

J

fill
1

m

I

=.=

tim

I

100

m

!_ I]:

-- Chapter 5

, 7

y
W

k--"

W

= =

W

Z: C

=

=

1°°t
5O

0
0

1.5

1

0.5

0
0

40

20

0

-20 I
0

First Mode Frequency, Hz

u

20

100

50

Second Mode Frequency, Hz

i L !i i

40 60 80 0 20 40 60

Damping Ratio Damping Ratio
1.5

1

0.5

0
0

! i

i i i

20 40 60 80 20 40 60

50

80

Modal Amplitude, Alpq Modal Amplitude, A2pq

80

0

.... 50 ' '
20 40 60 80 0 20 40 60

Time, sec. Time, sec.

Figure 5.20: Two Mode Real-Time System Identification Results

(Case 2:f_ = 160 Hz, ot = 0.008)

80

i01

Chapter 5

i

I

g

100

First Mode Frequency, Hz

0
0 20 40 60 80

8O

70

Second Mode Frequency, Hz

60 i i i

0 20 40 6O

3
Damping Ratio

2

1

| i i

0 20 40 60 80

1.5

1

0.5

0
0

Damping Ratio

i i i

20 40 60

0.5

-1
0

Modal Amplitude, Alpq

i i

20 40 60

Time, sec.

8O

1.5

1

0.5

0
0

Modal Amplitude, A2pq

i i !

20 40 60

Time, sec.

Figure 5.2l' Two Mode Real-Time System Identification Results

(Case 3:f, = 200 Hz, o_= 0.01, collocated response measurement)

8O

80

80

J

iI

l

i

g

i

J

i

i

i

iW

Z

U +

m
W

i --
I

g

102

i

E! :I 1:

-- Chapter 5

w

=

r
w

w

U

L_

60

40

20

0
0

3

2

1

0

First Mode Frequency, Hz

I i

10 20

Damping Ratio

3O

8O

70

6O

Second Mode Frequency, Hz

50 ' '
0 10 2O 3O

Damping Ratio

0

3

2

1

0
0

i !

10 20 30

0.2

0
0

I I

10 20 30

Modal Amplitude, Alpq
0

-5

Modal Amplitude, A2pq

, , -10 ' '
10 20 30 0 10 20

Time, sec. Time, sec.

Figure 5.22: Two Mode Real-Time System Identification Results

(Case 4:f_ = 200 Hz, o_= 0.03)

3O

103

Chapter 5

i

m

U

150

100

50

0
0

6

First Mode Frequency, Hz
100

Second Mode Frequency, Hz

20 40 60

50

C ' '
0 20 4O 60

Damping Ratio

4

2

0
0

P
, , |,.

20 40 60

1.5

1

0.5

0
0

Damping Ratio

2O 4O 60

0

-5
0

Modal Amplitude, Alpq

| |

20 40
Time, sec.

Figure 5.23:

Modal Amplitude, A2pq
5

0

-5

-10
0

i !

60 20 40
Time, sec.

Two Mode Real-Time System Identification Results
(Case 5:_= 2so Hz, o_=0103)_

60

I

i

i

ii

I

i

n

I
I

l

[]

I

J

i

W

104

m
u

|
F1:11 {7

w

Chapter 5

w

First Mode Frequency, Hz

150 I

100 L

t I t

0 10 20 30 40

1.5
Damping Ratio

1

0.5_...._

0 10 20 30 40

Modal Amplitude, Alpq

i

0 10
| i

20 30

Time, sec.

300

2OO

100
0

Second Mode Frequency, Hz

1.5

i J i .,

10 20 30 40

Damping Ratio

i I i

10 20 30 40

Modal Amplitude, A2pq

0.5

0

0 5 _ i I

40 0 10 20 3O
Time, sec.

4O

Figure 5.24: Two-Mode Real-Time System identification Results

(Case 6:f, = 400 Hz, ot = 0.001)

I05

Chapter 5
w

m

I

i

4OO

2OO

First Mode Frequency, Hz

i i

0 20 40 6O

3OO

2O0

100

0
0

Second Mode Frequency, Hz

i i

20 40 60

2

1

0

Damping Ratio

-1 ' '
0 2O 4O 60

15
Damping Ratio

10

5

0
0 20 40

2O
Modal Amplitude, Alpq

10

o\
-10

0

2

0

-2

-4
0

Modal Amplitude, A2pq

i

, a

20 40 60 20 40

Time, sec. Time, sec.

Figure 5.25: Two Mode Real-Time System Identification Results

(Case 7:f, = 500 Hz, c_= 0.01)

6O

60

B

I

I

m

[]

i

m

__

k

m
I

[]

L _

U

u

m

!3 ! !_

106

z

-- Chapter 5

+ ;

+,.,

i _

E

w

E

Cases 1-5

0.41 , , , , • J
0.2

o 1
-0.2

-0.4 t

-0.6 t i t i J
0 10 20 30 40 50 60

0.4

0.2

0

-0.2

Cases 6-8

I ! I I I

-0.4 i
0 10

Figure 5.26:

I I I I

20 30 40 50

+ Time, sec.

Representative Error Time Histories for the Two Mode
Real-Time Test Cases

6O

107

0.5

0

-0.5-

-1
0

Chapter 5

i
|

Time History of Ski Response

I I I I i

I I

I I ! I [L, '

2 4 6 8 10 12 4

Time, sec _--

FFT of Ski Response Signal

100

0

5O

0
10 20 30 40 50 60 70 80

Frequency, Hz

i

E
i

- li

i

i

90
I

Figure5127: Ski'Response and _T PIot: Showing the First Two
Modes of Vibration, _ = 250 Hz) I

I

108

: =

I

__ i

I

13 I]_

Chapter 5

600

400

2O0

0
0

First Mode Frequency, Hz
1000

Second Mode Frequency, Hz

2

1

0

-1
0

4

2

0

-2
0

10 20 30

5OO

4 i

0 10 20 3O

Damping Ratio Damping Ratio
3

2

1

I | O _ i

10 20 30 0 10 20

Modal Amplitude, Alpq Modal Amplitude, A2pq
10

I i

10 20

Time, sec.

Figure 5.28:

-10
0

| I

30 10 20
- Time, sec.

Two Mode Real-Time System Identification Results

(Case 8: f, - 1000 Hz, ot = 0.0t)

30

30

109

Chapter 5

5.4.2.1 Single DOF Algorithm Applied to Two DOF System with Filtering

This section is included to see how the SDOF algorithm applied twice to the two DOF system with

the aid of band-pass f'dtering will perform. The idea is to try and isolate each mode and apply the
SDOF algorithm to it separately in real-time. This idea is similar to work done by Lim, Cabell and
Silcox [1]. As shown in the sample code C40DDOFF.C in Appendix D, a 4th order low-pass

digital Butterworth filter is used to isolate the fn'st mode of the beam (coo = 20Hz), and another 4th

order band-pass digital Butterworth tilter is used to isolate the second mode (¢tk = 30Hz, oxa =

70Hz). Figure 5.29 shows the Fb'T of the beam response before and after applying each filter
separately. Each mode is effectively isolated. The filters are also applied to the excitation signal.
It is realized that this technique is outside the main focus of the thesis which is the simultaneous
multi-mode identification. Therefore, only three cases are discussed below to summarize the

results of this technique which could help in drawing a better picture of the behavior of the adaptive
filter.

Case 1 (Figure 5.30): effective sampling rate: f, = 400 Hz

first learning rate: a_ = 0.003

second learning rate: o_2 -- 0.015

non-collocated response measurement

Both modes are correctly identified. However, the first mode results are not very good. The

damping drifts around for a while before converging and the modal constant is slowly climbing up
to some unknown value. The second mode on the other hand looks very good. The frequency

converges to a value slightly higher than the expected 50Hz (effect of warping). The damping
converges to an average value of 2.3% which is also acceptable and the modal constant seems to be
moving towards some negative value. This case and following eases show that the SDOF can very
efficiently identify the second mode with absolutely no trouble at all. However, the problem with
this method is that one sampling rate is used for both modes which means that using a low

sampling rate in order to have a good identification of the first mode will cause the second mode to
be undersampled and "ve inaccurate results. Conversely, if a high sampling rate is used to cater to
the second mode, the _st mode identification process starts having problems and becomes very

sensitive to the learning rate as discussed is section 5.4.1.

Case 2 (Figure 5.31): effective sampling rate: f, = 400 Hz

first learning rate: oq = 0.004

second learning rate: o_ = 0.015

non-collocated response measurement

Slightly increasing the first mode learning rate produces a slight improvement in the first modal
constant.

Case 3 (Figure 5.32): effective sampling rate: f, = 400 Hz

first learning rate: _ = 0.01

second learning rate: _2 = 0.015

non-collocated response measurement

Increasing the learning further, causes the floating point overflow in the first mode damping as a
result of the frequency becoming complex. The first modal constant is trying to approach the

expected value of 1.0.

110

w

M

I

II
m

II

lira

m

i

I

!

II

u

m

I

g

g

U

I

. ,

t

r_

L

H
Lz.

Chapter _i

In conclusion, the filtered two DOF method discussed here does actually work and can be
effectively implemented in real-time as shown, however choosing appropriate sampling and
learning rates to cater to both modes can be a tricky problem. A possible solution is to use two
different interrupt service routines (ISR) that can be executed at different sampling rates, but that is
definitely outside the main focus of this thesis. In addition, this method does not work very well
for closely-spaced modes, because band-pass filtering does not become effective.

Remarks

Although the discussion of the mode-skipping phenomenon associated with simultaneous two
mode identification at high sampling rates is mentioned first in Chapter 3, it was not noticed until
the real-time testing began and the results were studied. When the real-time testing was first done
at low sampling rates, the warping problem emerged. The conclusion was that increasing the
sampling rate should solve the warping problem, and that was when the second phenomenon was
noticed. For a while it was thought that this was the result of problems associated with the real-
time testing. One of the main concerns was that the ISR was too long which could have been
causing the C40 to skip samples thus giving a false sampling rate. This is discussed next.

Sampling Rate and ISR
The ISR execution time discussed in Chapter 4 was considered as a possible potential source of
error. The sampling frequency used in the testing for this project is 4kHz. This was chosen
because it was the lowest allowed by the internal circuitry of the C40 data acquisition system, yet it
was not too low as to limit the use of a digital filter to overcome the aliasing problem. This

sampling rate means that the time the ISR takes to execute entirely must not exceed 2501as, which
translated in clock cycles means 12500 cycles. When checked in the debugger, the ?elk command
discussed in Chapter 4 indicated that the ISR of the two DOF identification code takes
approximately 3683 clock cycles to execute. But this can not be taken at face value because in the

ISR there is a math function call, the square root command (sqrt) needed to evaluate the natural

frequency. In addition, there is a for statement needed for the Newton root finding algorithm. The

sqrt command causes the program to branch off to the math library and evaluate the function. This
can take more clock cycles than actually indicated; in addition, the stacking can get messed up

which would also cause delays in the ISR. The repetitive nature of the for statement can cause it to
take more clock cycles than predicted by the debugger. These problems are very hard to track
down and verify; so as a rule of thumb, function calls and loops should not be placed in the ISR
unless there is no other way. This was actually emphasized by the technical support staff at
Spectrum Inc. and a DSP expert at NASA, Langely [32]. However, in the code used here, there
are only two function calls made and the for statement necessary for root finding does not exceed
10 iterations, so it is assumed that even with these uncertainties, there is enough time for the ISR to
execute completely. Nevertheless, this is not enough to draw a definite conclusion regarding this
possibility. So data was collected using the C40 with limited code in the ISR and was imported
into MATLAB where the adaptive filter was applied to the data and the results were consistent with
those above. Therefore it was concluded that the ISR execution time is not a problem. At this

point, the simulation code was tested to see ff the same behavior exists at high sampling rates, and
sure enough it was. This is when the mode-skipping issue was looked into. In conclusion, the
simultaneous two DOF identification process has been found to work but with difficulties, namely

those of warping and mode-skipping. The warping problem is well understood, but the mode-
skipping problem is yet to be analyzed.

F

w

111

Chapter 5

M

B
g

I

FFT of Response
150 , , i , j _ t ,

100

50

0
0

100

5O

10 20 30 60 70 804O 5O

Frequency, Hz
Filtered First Mode

J iI ! I I

- " ;I 0 20 30 40 --50 60

Frequency, Hz =
= =

Filtered Second Mode

0
0

[' I

I ' I

70 80

100

5O

0
0 10 20 30 40 50 60 70

Frequency, Hz

Figure 5.29: FFT of Beam Response Showing the Effectiveness of Band-Pass

Filtering in Isolating the First and Second Modes (f, = 500)

90

9O

9O

.,..._

I

I

m

I

U

u

I

m

II

I

g

m

g

z

i

U

I

112

m

m

m

[3 IF

-- Chapter 5

LJ

w

w

LJ

r i

150

100

5O

First Mode Frequency, Hz

L I i

0 10 20 30

4

150
Second Mode Frequency, Hz

2

100

5O

0
0 10 20 30

0.2

Damping Ratio

0
0

0
0

10 20 30

2
Damping Ratio

_ h

0 10 20 3O

Modal Amplitude, Alpq

i i

10 20 30

Time, sec.

2

0

-2

-4
0

Modal Amplitude, A2pq

i i

10 20

Time, sec.

3O

Figure 5.30: Two Mode Real-Time System Identification Results

(With Band-Pass Filtering)

(Case]:f, = 400Hz, a_ : 0.003, or2 = 0.015)

113

Chapter 5

J

u
g

=

l

150
First Mode Frequency, Hz

100

0 ' '
0 10 20 30

Second Mode Frequency, Hz
150

100

50

j •

0 10 20 30

0.5

Damping Ratio
6 2

Damping Ratio

2

0
0 10 20 30

0

1\
0 10 20 30

Modal Amplitude, Alpq

f

0 10 20 30

- Time, sec.

2

0

-2

Modal Amplitude, A2pq

0 10 20 3O

Time, sec.

Figure 5.31" Two Mode Real-Time System Identification Results

(With Band-Pass Filtering)

(Case 2:f, = 400_, al =01004, a2 = 0.015)

114

l

z

i
I

u

l

m

m

m

m

i

m

m

u

!
U

R
Q

U!

I

m
n

|I

l!
m -'

mr!_|]'

w

Chapter 5

w

r,...a

= .

L_2

w

L .

w

150

100

5O

First Mode Frequency, Hz

0 10 2O 30

150

100

5O

0
0

Second Mode Frequency, Hz

i i

10 2O 3O

4

2

x 10 _ Damping Ratio

0.5

i i

0 10 20 30

Modal Amplitude, Alpq

0
0

f
,...,--

._,1'--"

10 2O 30

Time, sec.

1.5

1

0.5

0
0

Damping Ratio

10 20 30

2
Modal Amplitude, A2pq

i, i

-40 l_?lrne, sec.20 30

Figure 5.32: Two Mode Real-Time System Identification Results
(With Band-Pass Filtering)

(Case 3:f_ = 400 Hz, (zt = 0.01, c_2= 0.015)

115

w

Chapter 5

5.5 Correction for Frequency Warping

In the previous section, the phenomenon described as frequency warping was presented.
Due to the approximate nature of the bilinear transformation employed in the process of
converting the identified f'dter coefficients into modal parameters, the frequency estimates
are biased and the error tends to grow as the frequency gets closer to the sampling
frequency. An alternative modal parameter extraction method is developed to mitigate the
problem. The method along with a numerical example is presented herein.

In this new approach, rather than using the inverse bilinear transformation to identify the

modal parameters, the definition, z = e sTs , is directly used to relate the filter coefficients in

the z-domain to the modal parameters in the s-domain. As the first step of the approach,
the poles are computed from the identified filter coefficients, i.e., the denominator of Eq.
(2.12). Assuming the system is underdamped, the complex conjugate poles are obtained as

l a12 (5.6)z=- +J a2 4

The poles in the z-domain are converted into the poles in the s-domain using

s = fs In(z) (5.7)

Then the undamped natural frequency and damping ratio are defined as

con = abs(s)

= abs(real(s))/o3 n

The corresponding mode shape amplitude is still defined using Eq. (2.10).

(5.8)

Numerical Example

An example is given here to demonstrate the performance of the new modal parameter

identification process. Consider the single DOF example given in Section 3.1. In Section
3.1, the identified modal parameters appears tO be exact and are free from frequency
warping problems. This apparent accuracy stems from the fact that the bilinear
transformation is used to discretize the continuous system and to conduct a response
simulation. In other words, the bilinear transformation was used consistently for the
conversions process between continuous and discrete systems. Because of this, the
frequency warping was never noticed. However, in an experimental setting, the plant
dynamics remains as a continuous system while input and output signals are sampled at a
given frequency. To represent correctly the experimental setting, the response c_culation
should be conducted using a continuous simulation not a discrete simulation using a

bilinear transformation. Figure 5.33 shows the results 0bta_med Using a c0ntinu_s
simulation response data with the old modal parameter extraction approach, i.e., Eqs. (2.8)
and (2.9). As expected, the results produces a bias in the frequency and damping ratio
estimates. The identified frequency and damping ratio are 12.2Hz and 0.012, respectively,
compared to the correct values of 11Hz and 0.01. The results using the new modal
parameter identification approach are shown in Fig. 5.34. The frequency and damping
ratio are identified correctly.

116

w
I

u

m

u

J

!

m

I

l
g

l

II

m
l
U

m

g

m

11

i

i
m

U

iiI

i .

III

ii! I]'

Chapter 5

. =

_= :

20

0

Natural Frequency,Hz

0 1 2

Damping Ratio

2 t
L_ 00 01 2 0

Mode Shape Coefficient
4

0 1 2
Time, sec

[± J

F
w

First Weight, Wl

Second Weight, W2

Third Weight, W3

0

-1
0

error

|

1
Time, sec

t
2

t
2

Fig. 5.33 Results of the old modal parameter identification approach

L_
w

I

w

W

w

=

=._=j

w

117

Chapter5 w

I

!

ii

Natural Frequency,Hz

15![_
10 1

Damping Ratio

0.2

O0 1

=

Mode Shape Coefficient
4

00 1
Tirr_, sec

First Weight, Wl

0.5

o ;2 0

Second Weight, W2
1

0.5J_ r

2 O0 '_

-0.5

-1
2 0 i

Third Weight, W3
|

0

error

I

1
Time, sec

Fig. 5.34 Results of the new modal parameter identification approach

t
2

2

I

w

i

m

m

t

Z

m
g

I

J

m

U

I

118

l

[_1 li

Chapter 6

J

L :

6 Summary and Recommendations

This study has shown that adaptive filters can be used effectively to identify the modal

parameters of a vibrating structure. Summary on the findings and recommendations for further

research are described herein.

w

_ix:!

L

v

w

2 _

w

U

6.1 Summary

This section details most significant findings obtained from the research conducted.

0

0

0

The simultaneous multiple mode identification approach developed in this research has an

advantage over the multiple mode identification process using the single mode identification

algorithm with the aid of band-pass filtering. The simultaneous identification method is more

effective in identifying closely-spaced modes which frequently appear in aerospace structures.

The real-time identification capability of the algorithms will help model accurately the varying

dynamics of aerospace structures and vehicles. This in turn can be used to develop adaptive

controllers for vibration suppression, active noise control, and system health monitoring.

The use of the bilinear transformation (BT) to relate the adaptive filter coefficients to the

dynamic system parameters is fairly simple for the single and two mode cases, but for more

than two modes the mathematics becomes very complex. In addition, the BT is an

approximation that has a built-in frequency warping problem which becomes severe as the

separation between the signal and sampling frequencies grows larger. An alternative approach

of relating identified filter coefficients to the modal parameters was developed to rectify the

problem.

0 Simultaneous identification of modal parameters of more than two modes is theoretically

feasible but it was not able to be implemented due to mathematical complexity.

The mode-skipping phenomenon associated with the simultaneous two mode identification at

high sampling rates could be the result of poor signal quality and the algorithm's inability to

distinguish between actual modes of vibration and noise.

0 The learning rate which can also be thought of as a step-size, has been found to have a

significant effect on the speed of convergence and stability of the learning process. A wide

range of learning rates exists in each test which produce good results. However, there is

usually a trade-off between speed and stability.

119

Chapter6

6.2 Recommendations

Recommendations for further research are listed herein.

The real-time identification of more than two modes should be investigated further. Especially,

an alternative approach of identifying multiple modes simultaneously, by developing different

adaptive filter structures, should be studied further. Although various approaches are looked

at, no clear-cut winner has been identified.

A state estimator construction process should be investigated using the modal parameters

identified via the on-line identification algorithms.

Active control simulation and experiments should be conducted to evaluate the performance of

the state estimator.

INW

Ii

II

m
I!

m

i
u

m

I

i

!

-- !

[

I

m
J

w

t

m

d

120
lIB

w
References

References

@

w

L .

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[s]

[9]

[lo]

[111

[12]

[13]

Lim, T. W., Cabell, R. H. and Silcox, R. J. On-Line Identification of ModalParameters

Using Artificial NeuralNetworks, Journal of Vibration and Acoustics, Vol. 118, pp. 649

656, October 1996.

Lira, T. W., Bosse, A. and Fisher, S. Adaptive Filters for Real-Time System Identification

and Control, Journal of Guidance, Control and Dynamics, Vol. 20, No. 1, Jan-Feb 1997.

Lirn, T. W., Alhassani, A. A., On-Line Simultaneous Identification of Multiple Modes for

Flexible Structures Using Adaptive Filtering Techniques, AIAA GNC Conference in New

Orleans, LA, Aug. 1997.

Widrow, B. and Walach E. Adaptive Inverse Control, Prentice Hall, NJ, 1996.

Treichler, J. R., Johnson Jr., C. R. and Larimore, M. G. Theory andDesign of Adaptive

Filters, John Wiley & Sons, New York, 1987.

Ewing, M., Constructing Modal Properties from a measuredFRF, Class Handout

(AE680), Department of Aerospace Eng., University of Kansas, Lawrence, KS, Spring

1996.

Oppenheim, A. V. and Schafer, R. W. Discrete-Time SignalProcessing, Prentice Hall,

NJ, 1989.

Inman, D. J. Engineering Vibration, Prentice Hall, NJ, 1994.

Kreyszig, E. Advanced Engineering Mathematics, John Wiley & Sons, New York, 1988.

Anonymous, MDC40S T1M-40 Module User Manual, Document No. 500- 00094,

vet. 1.03, Spectrum Signal Processing Inc., B.C., August 1994.

Anonymous, QUAD C40 Processor Board Technical Reference Manual, Document No.

500-00120, ver. 1.03, Spectrum Signal, Inc., B.C., Sept. 1994.

Anonymous, TIM-40 Module and Carrier Board PC Support Manual, Document No.

500-00166, ver. 1.10, Spectrum Signal Inc., B.C., March 1995.

Anonymous, Crystal Analog Daughter Module User Manual, Document No. 500-00055,

ver. 1.04, Spectrum Signal PrOceSsing Inc., B.C., August 1994.

121

References

[14] Anonymous,PC Daughter Module Carrier Board User Manual, Document No.

500-00086, ver. 1.01, Spectrum Signal Processing Inc., B.C., Dec. 1994.

[15]

[16]

Anonymous, C40 Network API Support for PC Systems, a Quickstart Guide, Document

No. 500-00275, vet. 1.00, Spectrum Signal, B.C., March 1995.

Anonymous, C40 Network API Support for PC Systems, User Guide, Document No.

500-00236, ver. 1.10, Spectrum Signal, B.C., March 1995.

I

I

I

I

[17] Anonymous, TMS320C4x User's Guide, Document No. SPRU063A, Texas Instruments,

1993.

[18] Anonymous, TMS320 Floating-Point DSP Optimizing C Compiler User's Guide,

Document No. SPRU034F, Texas Instruments, 1995.

[19] Anonymous, TMS320C4x C Source Debugger User's Guide, Document No.

SPRU054F, Texas Instruments, 1992.

[20] Anonymous, TMS320C4x Parallel Runtime Support Library User's Guide, Document

N 0. SPRU084A, Texas Instruments, 1994.

[21] Anonymous, TMS320 Floating-Point DSP Assembly Language Tools User's Guide,

Document No. SPRU035B, Texas Instruments, 1995.

[22] Anonymous, Microsoft Visual C+ + Tools-Command-Line Utilities User's

Vol. 2, Document No. DB64018-0395, Microsoft Corporation, 1995.

Guide,

[23] Waner, R. C. Ground Vibration Tests and Finite Element Model Updating for a Seven-

Bay Space Truss, MS Thesis, AE Dept., University of Kansas, 1996.

[24] Anonymous, LING STAR 1.0 Power Amplifier Operating Manual, Document No.

706789B, LING Electronics, 1994.

[25] Anonymous, LING LMT-50 Modal Shaker Operating Manual, Document

706767A, LING Electronics, 1993.

No.

[26] Anonymous, PCB Model 208 Series Force Transducer Operator's Manual, PCB

Piezotronics, NY, 6/1993.

[27] Anonymous, PCB Series 353 Quartz Shear Mode ICP Accelerometer operator's

Manual, PCB Piezotronics, NY, 6/1993.

122

i

I

m
I
I

m

H
I

B
m
I

i

I

I
I

I

i!iI i_

_'- References

w

w

I- :

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[36]

Anonymous, PCB Model 483B18 Line Power Voltage Amplifier Operating Instructions,

PCB Piezotronics, NY, 6/1993.

Prescott, G., Personal Communication, Dec. 1996.

Ziemer, R. E., Tranter, W. H. and Fannin, D. R. Signals and Systems Continuous and

Discrete, Macmillan Publishing Co., Inc., 1983.

Lim, T. W., Personal Communication, Jan. 1997.

Brown, D., Personal Communication, Spring-Fall 1996.

Parks, T. W. and Burrus, C. S., DigitalFilterDesign, John Wiley & Sons, Inc., 1987.

Ogata, K. Discrete-Time Control Systems, Prentice Hall, N.J., 1995.

Bendat, J. S. and Piersol, A. G. Random Data Analysis and Measurement Procedures,

John Wiley and Sons, 1986

L_

r +

F

leee_

h

z

123

w

Appendix A

%%%

PROGRAM: SDOFSIM.M%

%

%

%

%

%

%

%

DESCRIPTION: A MATLAB ® M-file (simulation program) that tests the

single mode identification algorithm. The system used is a randomly excited

SDOF damped spring mass system.

Hadi Alhassani, KUAE

12/26/1996

%%%

clear all

%%%%% DYNAMIC SYSTEM S_TION %%%%%

np= 1024;

fs = 256;

Ts = 1/fs;

w = 42;

z=0.01;

Apq = 1;

t=[0: l:np-1]';

Exc---randn(size(t));

% number of iterations

% sampling freq. in Hz

% system natural frequency in Hz

% system damping ratio
% modal constant

% random excitation

Num=[Apq,0,0]; % continuous system transfer function

Den=[1 (2*z*w*2*pi) (w*2*pi)^2];

[Numd,Dend]=c2dmfNum, Den, Ts,'tustin'); % pulse transfer function

[Resp,xx]=dlsim(Numd,Dend,Exc); % system response simulation

%%%%% SYSTEM IDENTIFICATION %%%%%

% PART I: OFF-LINE ID %

P 1off=-Exc-(2* [0;Exc(1 :tap- 1)])+[0;0;Exc(1 :rip-2)]; % linear combiner inputs

P2off=[0;Resp(1 inp- 1)];

P3ofr-=-[0;0;Resp(1 :rip-2)];

Ppinv = pinv([Ploff, P2off, P3off]); % pseudoinverse of LC input vector

W_off=-Ppinv*Resp % off-line weights

b=W_off(1); % off-line adaptive filter coeffs.

al =-W_off(2),

a =-w off(3);
w_off=2*fs*sqrt((l+al+a2)/(1-al+a2)) % off-line mod. param.

Zoff=2*fs*(1-a2)/(w_off*(l-a 1+a2))

Apq_off--4*b/(1 -a 1+a2)

I

II

_I

W

lib

mm

m

m
m

U

g

J

m

la

B

U

U

A1

U _

i

m
g

Appendix A

s;;z

w

IN2

L_

w

=_.

% PART II: ON-LINE ID %

% initailization

yk=0; % present value of response

ykl=0; % previous value of response (1 tap delay)

yk2=0; % value before previous (2 tap delays)

'),

uk-'_; % present value of excitation

ukl=0; % I tap delay

uk2=0; % 2 tap delays

Wl=0; % initialize weights to zero

W2=0;

W3=0;

alpha = input(' Enter learning rate: % user defined learning rate

for k=-1 :np % start system identification process

yk2 = ykl;

yk 1 = yk;

yk = Resp(k);

uk2 = ukl;

ukl = uk;

% system response

uk = Exc(k); % system excitation

Pl = uk-(2*ukl)+uk2; % linear combiner (adaptive l/R filter) inputs

P2 =ykl;

P3 = yk2;

val = PI*P l+P2*P2+P3*P3; % Normalizer

yout=PI*Wl+P2*W2+P3*W3; % LC output

e(k) = yk - yout; % Error

Wl=Wl+c(k)*alpha*(P 1/val); % Widrow-Hoffdelta rule

W2=W2+e(k)*alpha*(P2/val);

W3=W3+e(k)*alpha*(P3/val);

W123C,k)=[Wl;W2;W3]; % store weights for plotting

b=Wl; % evaluate adaptive filter coefficients using weights

al=-W2;

a2=-W3;

w_on(k)=2*fs*sqrt((l+al+a2)/(1-al+a2)); % evaluate modal parameters

z_on(k)=2*fs*(l-a2)/(w_on(k)*(1-al +a2));

Apq_on(k)=4*b/(1-al +a2);

end

A2

w

Appendix A

%%%%% Plotting the Results %%%%%

Hz=-[1/(np*Ts): 1/(np*Ts): 1/Ts]'; % set freq. vector for

fftResp--f_(Resp); % find ftt of response

figure(1),subplot(411),plot(W123(1,:)) % plot weights and error

title(Tirst Weight, Wl')

subplot(412),plot(W 123 (2, :)),title('Second Weight, W2')

subplot(413),plot(W123(3, :)),title('Third Weight, W3')

subplot(414),plot(e), title('error')

xlabel(_umber of Iterations')

figure(2), subplot(311), plot(Exc)

title(q_andom Excitation')

subplot(312), plot(Resp)

title('System Acceleration Response')

xlabel('Number of Iterations')

subplot(313),plot(I-Iz(1 :np/2),abs(tiLResp(1 inp/2)))

title(TFT of System Response')

xlabel(Trequency, Hz')

figure(3),subplot(311),plot(w_on/pi/2) % plot modal parameters

title('Namral Frequency, Hz')

subplot(312),plot(z__on),title('Damping Ratio')

subplot(313),plot(Apq_on)

title(Wlodal Constant')

xlabel(2qumber &Iterations'))

% plot excitation and response and fft

J

i

J

i

m
I

I

H

m

I

I

i

i ,
i J

B

g !

H

I

A3
am

!I 1 1_

Appendix A

L

E

%%%

PROGRAM:DDOFSIM.M%

%

%

%

%

%

%

%

DESCRIPTION: MATLAB M-file used to test the two degree of freedom

system identification algorithm. The system used is a randomly excited DDOF

proportionally damped spring mass system in series.

Hadi Alhassani, KUAE

12/26/1996

%%*/,%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all

%%%%% DYNAMIC SYS_M SIMULATION %%%%%

np = 1024;

t = [0:l:np-1]';

mI =3;

rn2 = 3;

kl = 50000;

k2 = 50000;

fs=128;

Ts=l/fs;

M=[ml 0;0 m2];

K=[kl+k2 -k2;-k2 k2];

C=0.0001 *K;

Mmh = inv(sqrt(2vl));

Ktilda = Mmh*K*Mmh;

Ctilda = Mmh*C*Mmh;

[P,wsqold] = eig(Ktilda);

P = [P(:,2),P(:,I)];

wsqnew = P'*Ktilda*P;

tzw = P'*Ctilda*P;

Ftemp=eye(2);

% number of iterations

% time vector

% first mass

% second mass

% first spring constant

% second spring constant

% sampling frequency

% mass matirx

% stiffness matrix

% damping matrix

% inverse the squre root of M

% find eigenvalues and vecors

% rearrange eigenvector

% eigenvalues check

% 2*zeta*omega

% identity matrix

modeshapel = Mmh*(P(:, 1)) % find mode shapes

modeshape2 = Mmh*(P(:,2))

Ac=[zeros(2,2) eye(2);-wsqnew -tzw];

Bc=[zeros(2,2);P'*Mmh*Ftemp];

Cc=[Mmh*P*(-wsqnew) Mmh*P*(-tzw)];

Dc=[Mmh*P*P'*Mmh*Ftemp];

[w,z] = damp(Ac)

w=[w(1),w(3)];

% system in continuous state-space form

% system natural freq. and damping ratio

A4

Append_ A

fprintf('knNaturalFrequencies:ha')
fprintf(' %f Hzha',(w/pi/2))

noexc= zeros(size(t)); % noexcitation
Exc = randn(size(t)); % randomexcitati0n :
EP= input(' EnterExcitationPoint. (1 or 2) '); % userdefinedpointof excitation
RP= input(' EnterResponsePoint. (1 or 2) '); % userdefinedpointof response
ifEP _ 1 % detemine where excitaion is applied

EXC = [Exc noexc]; % Excitation is at 1

elseif EP _ 2

EXC = [noexc Exc]; % Excitation is at 2

end

.... , ° ,

[Ad,Bd, Cd,Dd]=c2dm(Ac,Bc,Cc,Dc, Ts, tustm);

[Acc,XX]=dlsim(Ad,Bd,Cd,Dd,EXC);

Resp = AccC,_);

Hz=-[1/(np*Ts): 1/(np*Ts): 1frs]';

fltResp--=fft(Resp);

figure, subplot(311), plot('Exc)

title(qLandom Excitation')

subplot(312), plot(Resp)

title('System Acceleration Response')

xlabel(' Number of Iterations')

subplot(313), plot(I-Iz(1 :np/2),abs(MResp(1 :np/2)))

tifle('FFT of System Response')

xlabel(_Frequency, Hz')

% system pulse T.F.

% system response simulation

% response measured at point RP

% set freq. vector for fit

% find fit of response

cont = input(' Continue ? (y/n) ','s');

if cont _--- 'y'

%%%*/0%:SYS_M _E_CATION %%%%%

% PART I: OFF-LINE ID %

Vk2 = Exc(1 :np)+(-2*[0;Exc(1 :np-1)])+[0;0;Exc(1 :rip-2)];

Ploff = [0;Resp(1 :rip-l)];

P2off = [0;0;Resp(1 :np-2)];

P3off= [0i0i0;Resp(1 :np-3)];

P4off = [0;0;0;0;Resp(1 :rip-4)];

P6off = [0;Vk2(1 :np-l)];
P7off = [0;0;Vk2(1 :np-2)];

Ppinv = pinv([P 1off, P2off, P3 off, P4off, PSoff, P6off, P7ofl']);

Woff= Ppinv*Resp % off-line weights

% linear combiner (adaptive HR. filter) inputs

A5

I

D

u

i

II

l

ii

I
gl

I

B

gl

I

g

_----

I

!i
gill

I

w

g

Z

i

i

!i1 ;|]11

Appendix A

w

i_ 2

r,L.d

m

% Evaluate the modal parameters using Newton root approximation algorithm

fxo = 0; % initialize function value

fxop = 0; % initialize function derivative

Xn = 0; % initialize next value ofx

Xo = 1; % starting value

for i=1

fxo =

Xn

Xo

end

:20

(Xo"6)+... % weights function

(Woff(2)*Xo^5)+...

((3Voff(1)*Woff(3)+Woff(4))*Xo^4)+...

((2*Woff(2)*Woff(4)-(Woff(3)^2)+Woff(4)*Woff(1)A2)*Xo^3)+...

((-Woff(1)*Woff(3)*Woff(4)-Woff(4)A2)*Xo^2)+...

(Woff(2)*Woff(4)^2)*Xo+(-Woff(4)^3);

fxop = (6'Xo^5)+... % function derivative

(Woff(2)*5*Xo^4)+...

((Woff(1)*Woff(3)+Woff(4))*4*Xo^3)+...

((2*Woff(2)*Woff(4)-(Woff(3)^2)+Woff(4)*Woff(1)^2)*3*Xo^2)+...

(-Woff(1)*Woff(3)*Woff(4)-Woff(4)^2)*2* Xo+(Woff(2)*Woff(4)^2);

= Xo - fxo/fxop; % Newton algorithm

=Xn;

a12 = Xn;

a22 = -Woff(4)/al 2;

a21 = (a22*Woff(1)-Woff(3))/(a 12-a22);

al 1 -- -Woff(1)-a21;

b2 = (a22*Woff(5)-Woff(7))/(a22-a12);

bl = Woff(5)-b2;

wl_off=-2*fs*sqrt((l+al l+al2)/(1-al l+al 2));

w2_off=-2*ts* sqrt((l+a21 +a22)/(1-a21 +a22));

zl_off=2*fs*(1-al 2)/(w l_off*(1-al l+a12));

z2_off=2*fs*(1-a22)/(w2_off*(l-a21 +a22));

Alpq_off--4*bl/(1-al l+a12);

A2pq_off--4*b2/(1-a21 +a22);

% Evaluate filter coefficients using linear combiner weights

% off-line modal parameters

% PART II: ON-LINE ID %

Wl = 0;

W2 = 0;

W3 = 0;

W4 = 0;

W5 = 0;

W6 = 0;

% initialize weights

A6

AppendixA

=_
U

W7 = 0;

yk=0;

ykl=0;

yk2=0;

yk3=0;

yk4=0;

uk=0;

ukl=0;

uk2=0;

vk2=0;

vk3 =0;

vk4=0;

alpha----0.95;

% initialize excitation and response values

% present response value

% 1 tap delay

% 2 tap delays

% 3 tap delays

% 4 tap delays

% present value of excitation

% where V2=F0-(2*Fi)+F2

% 1 tap delay

% 2 tap delays

% learning rate

for k = 5:np % start system identification process

yk4 = yk3;

yk3 = yk2;

yk2 = ykl;

yk 1 = yk;

yk = Resp(k); % system response

uk2 = ukl, :

ukl = uk;

uk = Exc(k); % system excitation

vk4 = vk3;

vk3 = vk2;

vk2 = uk-(2*ukl)+uk2;

P 1 -- ykl; % linear combiner inputs

P2 =yk2;

P3 = yk3;

P4 = yk4;

P5 = vk2;

P6 = vk3;

P7 = vk4;
val=P 1,p 1+p2*P2+P3*P3+P4*P4+P5*P5+P6*P6+PT*P7; % Normalizer

yout = P I*Wl +P2*W2+P3*W3+P4*W4+P5*W5+P6*W6+P7*W7; % LC output

e(k) = yk - yout; % Error

Wl = Wl+e(k)*alpha*(P1/val); % Widrow-HoffDelta Rule

W2 = W2+e(k)*alpha*(P2/val);

W3 = W3+e(k)*alpha*(P3/val);

W4 = W4+e(k)*alpha*(P4/val);

W5 = WS+e(k)*alpha*(PS/val);

Ii

mmm

I

m

7

r

B

J

mum

i

i

n
n

i

g

7

m

= =

W

m

=

i

= =

A7

m

w

Appendix A

tt

= =

W

W6 = W6+e(k)*alpha*(P6/val);

W7 = W7+e(k)*alpha*(P7/val);

WGHT_ON(:,k)=[Wl ;W2;W3;W4;W5;W6;W7]; % store weights

% Newton algorithm to solve for adaptive filter coefficients

fxo = 0; % initialize function value at root

fxop = 0; % initialize function derivative

Xn = 0; % initialize next value ofx

Xo = 1; % starting value

for i=1:20

fxo = (Xo%)+... % weights function

(W2*Xo^5)+...

((Wl*W3+W4)*Xo^4)+...

((2*W2*W4-(W3^2)+W4*W1^2)*Xo^3)+...

((-Wl*W3*W4-W4^2)*Xo^2)+...

(W2*W4^2)*Xo+(-W4^3);

fxop =(6"Xo^5)+... % function derivative

(W2*5*Xo^4)+...

((W l*W3+W4)*4*Xo^3)+...

((2*W2*W4-(W3^2)+W4*WlA2)*3*Xo^2)+...

(-W 1*W3*W4-W4^2)*2*X0+(W2*W4^2);

Xn = Xo - fxo/fxop; % Newton algorithm

Xo=Xn;

end

a12 = Xn;

a22 = -W4/a12;

a21 = (a22*Wl-W3)/(al 2-a22);

al 1 -- -Wl-a21;

b2 = (a22*W5-W7)/(a22-a12);

bl = W5-b2;

w l_on(k)=2*fs*sqrt((l+al l+al2)/(1-al l+a12));

w2._on(k)=2* fs * sqrt((1+a21 +a22)/(1-a21 +a22));

z l_on(k)=2* fs*(1-al 2)/(w l_on(k)*(1-al l+a12));

z2_on(k)=2*fs*(1-a22)/(w2_on(k)*(1-a21+a22));

A1 pq_on(k)=4*b 1/(1-al 1+a12);

A2pq_on(k)=4*b2/(1-a21+a22);

% on-line adaptive filter coefficients

% on-line modal parameters

end

A8

w

A_.pendix A

%%%%% Plotting the Results %%%%%

figure, subplot(411),plot(WGHT_ON(1, :))

title('First Weight, Wl')

subplot(412),plot(WGHT_ON(2,:)),title('Second Weight, W2')

subplot(413),plot(WGHT_ON(3, :)),title('Third Weight, W3')

subplot(414),plot(WGHT_ON(4,:)),title(q:ourth Weight, W4')

xlabel(_umber of Iterations')

figure, subplot(411),plot(WGHT_ON(5, :))

title('Fifth Weight, WS')

subplot(412),plot(WGHT_ON(6,:)),title('Sixth Weight, W6')

subplot(413),plot(WGHT_ON(7, :)),title('Seventh Weight, W7')

subplot(414),plot(e), title(_Errof)

xlabel(_umber of iterations')

figure, subplot(311), plot(w l_on)

title('First Mode Natural Frequency (rad/sec)')

subplot(312),plot(z l_on),title(_First Mode Damping Ratio')

subplot(313),plot(A1 pq_on),title(qVlodal Constant, A1 pq')

xlabel(_Number of Iterations')

figure,subplot(311),plot(w2_on)

title('Second Mode Natural Frequency (rad/sec)')

subplot(312),plot(z2_on),title('Second Mode Damping Ratio')

subplot(313),plot(A2pq_on),title(qVlodal Constant, A2pq')

xlabel(_umber of Iterations')

end

I

il

i
i
I

m

[]

I

m
i

i

I

I

i

g

_=

[]

A9

m

I

I

IllI i

w

= =

ii

F

L_

L

r--

W

L

: La_

Appendix B

PROGRAM: C40SDOF.C (C40 Source Code)

DESCRIPTION: C40 code that is downloaded onto the C40 system using the

PCSDOF.C host program via the application NETAPI library. The code in the ISR

reads two signals, an excitation and a response of a low frequency flexible structure

and trains an adaptive IIR filter to identify the fundamental mode of vibration in real-

time.

>>> SAMPLING FREQUENCY = 4 kHz <<<

Hadi Alhassani, KUAE

12/26/1996

Header Files

#include "c:XdsptoolsXmath.h" /* math library */

#include "c:\dsptoolskintpt40.h" /* interrupt support (PRSL) */

#include "c:\dsptools\compt40.h" /* Comm port support (PRSL) */

#include "carrier.h" /* Defines pointers to DSPLINK registers for DM */

Define Constants

#define BUF SIZE 3000 /* Define array size */

#define LIA CHAN NO 1 /* Comm port channel number */

Global Variables

long int counter = 0, index = 0;

long y, u;

float yk--_,yk 1=0,yk2=0,uk--_,uk 1=0,uk2=0;

float TempW[BUF_SIZE], TempZ[BUF_SIZE], TempM[BUF_SIZE];

float WW1 [BUF_SIZE], WW2['BL_-_SIZE]; WW3[BUF_SIZE];

float PI=0, P2=0, P3=0, alpha=0.01, fs=333.33;

float TY, TU, FY=0, FU=0, yale; _,a2=0, ya3=0, ya4=0;

floatyn=0, y =o, yf3=o,yf4=0,
float xa=o, xal=o, xa2=0, xa3=0, xa4=0;

float xf-_, xfl=0, xf_2=0, xf3=0, xf4--0_

float Wl=0, W2=0, W3=0, yout--'-0, val=0, temp=o;

float e=0, omega=0, zeta=0, ms=0, b=0, al=0, a2=o;
**

void c_int04(void); /* Function prototype for the IIOF1 ISR */

b.r_

W

B1

Appendix B

Main Program

void main(void)

{
volatile int dummy;

for(index=0; index<=BUF_SIZE-1, index++)(

TempW[index]=0;

TempZ[index]--0;

TempM[index]--0;

WW 1 [index]=0,

WW2[index]--O,

WW3 [index]=O,

)
index=O;

asm(" PUSH AR0");

asmC PUSH DP"),

asm(" LDI 030H, AR0");

asm(" LSH 16,AR0");

asm(" IACK *AR0");

asm(" POP DP");

asm(" POP AR0");

/* Set Up C40 Interruptts */

/* assembly language instructions */

/* n_ded t0perform an interrupt */

/* acknowledge instruction to allow */

/* external interrupts to the C40. */

INT_DISABLE0; /* Global disable of interrupts */

set_ivtp(DEFAULT); /* Set IVTP on 512 word boundary,*/
/* see vector in linker file */

install kit vector((void *)c_int04, 0x04); /* Set the IIOF 1 int vector */

load iif(0x00B0); /* Enable the I_01 pin to be level trigger interrupt */

/* Set up DSPLINK registers for the DMCB and DM. */

dummy = *DMI_RESET; /* D oa rod to R¢_t the Sit_ ADM */
DM1 ROUTE = 0x0000; / Set LKCLKI to choose MCLK1 as system clock */

DM1 INT MASK = 0x00010000; / Interrupt when Input Data Regs are full */
m

DM1 AMELIA CTRL = 0xB30000; / CM6-_, bo_d nowinreset */

DM1-AMELIA-CTRL = 0xF30000; / CM-6=i, _bration cycle started */

/* CM0=I CMI=I and CM4=I; use MCLK1 as system clock*/

*DM1 USER CONTROL = 0xASE00000; / _ Selcet prescale fact0r, i ci&ks0urce */
w

/* PT11=PT10=I,CS1 l=CSl_,MCDi=l-and MCD2=I */

/'_ SAMPLING RATE IS NOW SET TO 4kBz t/

DM1 CONFIGURATION = 0xB3900000;/ Write the KEY for the Crystal ADM */

w

g

g

II

m
m
m

I

l

I

B

|

m

i

g

m

D

I

g

m !

W

m

B2

m

I

m
m

Appendix B

s

H

[]

iL.i

INT_ENABLE0; /* Globally enable interrupts */

/* create a while loop that activates an INT_DISABLE function to halt the C40

operations as soon as the arrays are full, then send the data to the Host PC */

while(index <= BUF_SIZE){

if(index _ BUF_SIZE){

INT_DISABLE0;

send_msg(LIA_CHAN_NO,TempW, BUF_SIZE, 1);

while(chk_dma(LIA_CHAN_NO));

send_msg(LIA_CHAN_NO,TempZ,BUF_SIZE, 1);

while(chk_dma(LIA_CHAN_NO));

send_msg(LIA_CHAN_NO,TempM, BUF_SIZE, 1);

while(chk_dma(LIA_CHAN_NO));

send_msg(LIA_CHAN_NO,WW 1,BUF_SIZE, 1);

while(chk_dma tA_C NO));
send_msg(LIA_CHAN_NO,WW2,BUF_SIZE, 1);

while(chk_dma(LIA_CHAN_NO));

send_msg(LIA_CHAN_NO,WW3,BUF_SIZE, 1);

while(chk_dma(LIA_CHAN_NO));

} /* end of if statement */

} /* end of while loop */

} /* end of main program */

Interrupt Service Routine

This subroutine contains the data acquistion and system identification code. It is

executed at the sampling rate.
_************* _$_*_ _******/

void c_int04(void)

{
volatile long clear;

clear = *DMI_INT_STATUS;

y = *DMI_CH0 IN DATA;

u = *DM1 CH1 IN DATA;
m

/*Read Interrupt Status Regis to Clear Interrupts */

/* Read Channel 0 Input Data Register */

/* Read Channel 1 Input Data Register */

y = (y >> 16); /* Shift data by 16 bits to map DSPLINK */

u = (u >> 16);

TY = -l*((float)y)/16384; /* True value in voults */

TU = - 1 *((float)u)/16384;

/* Implement a 4th order low-pass Bu_e_orth filter on both inputs. (we = 20 Hz) */

/ * Response Signal (Channel 0) */

B3

xa4--xa3;
xa3--xa2;
xa2--xa1;
xaI --xa;

xa=TY;

ya4=ya3;

ya3=ya2;

ya2=ya 1;

yal=FY;

FY=3.917907865*yal-5.757076379*ya2+3.760349508*ya3-

0.921181929"ya4+ 1.0e-08"(5.845142437"xa+23.380569747"xa 1+

35.070854487*xa2+23.380569747*xa3+5.845142437"xa4);

/* Excitationi Signal (Channel 1) */

xf4--xf3;

xf3--xf2;

xf2--xfl;

xf'l--xf;

xf=TU;

yf4--yf3;
yf3-- ;
 --yfl;
yn= ;
FU=3.917907865 *yf1-5.757076379 *yf2+3.760349508"yf3-

0.921181929"yf4+ 1.0e-08"(5.845142437"x£+23.380569747"xfl +

35.070854487"x/2+23.380569747"xf3+5.845142437*xf4);

Appendix B
w

=

g

!

g

I

I

i

I

g

g

counter += 1;

if(counter ----- 12) { /* time decimation to set effective fs */

/*"'''' REAL-TIME SYSTEM IDENTIFICATIOIN CODE "+"""""/

g

lid

yk2=yk 1;

yk 1=yk

yk=-FY; /* filtered system response */

uk2=uk 1;

ukl--uk;

uk=-FU; /*filtered system excitation */

P1 = uk-(2*ukl)+uk2; /* linear combiner (adaptive IJR filter) inputs */

P2 = ykl;

P3 = yk2;

val = P 1*P 1+P2*P2+P3 *P3; /* Normalizer */

yout = PI*Wl+P2*W2+P3*W3; /* linear combiner output */

B4

g

J

D

g

Ill

!11 1]

Appendix B

L..

e = yk-yout; /* Error */

Wl = Wl +e*alpha*(P 1/val); /* Widrow-Hoff Delta Rule */

W2 = W2+e*alpha*(P2/val);

W3 = W3+e*alpha*(P3/val);

b = Wl; /* evaluate the filter coefficients using the weights of the LC */

al = -W2;

a2 = -W3;

temp = (l+al+a2)/(1-al+a2);

omega = 2*fs*sqrt(temp); /* evaluate the modal parameters */

zeta = 2*fs*(1-a2)/(omega*(1-al+a2));

ms = 4*b/(1-al+a2);

TempW[index]=omega;

TempZ[index]=zeta;

TempM[index]--ms;

WWl [index]=W 1;

WW2[index]=W2;

WW3 [index]=W3;

index += 1;

counter = 0;

}/* end if statement that sets effective fs */

}/* end Interrupt Service Routine */

/* store modal parameter results in arrays */

/* store weights in arrays */

L_
L

g.,.d

J

B5

AppendixB

PROGRAM: C40SDOF.CMD

DESCRIPTION: A linker command file that contains the linker options, standard

memory configuration and sections allocation to be used with the C40SDOF.C code

shown in this appendix. This file is called by the batch file that runs the compiler.

-X

-C

-o C40SDOF.OUT

-m C40SDOF.MAP

C40SDOF.OBJ

-i c:\dsptools
-1 rts40.1ib

-1 prts40.1ib
-e c int00

/* Reread libraries if unresolved symbols have not been found.*/

/* ROM autoinitialization. */

/* Linker option to name the output file. */

/* Linker option to generate a map file. */

/* Input file specification. */

/* Run Time Support Library directory */

/* Link small memory C40 PRTS Library.*/
/* Link C40 PRTS.*/

/* Define the entry point.*/

/* 2)
MEMORY

{

Standard Memory Configuration */

IRAM0: origin = 002FF800h

IRAM1: origin = 002FFC00h

ERAM0: origin = 00300000h

/* ERAMI: origin = 00308000h

PEROM: origin = 40000000h

ERAM2: origin = 80000000h

length = 0400h

length = 0400h

length = 10000h

length = 8000h

length = 8000h

length = 8000h

/* Internal 0, l k */

/* Internal 1, l k */

/* External 0, 64k */

/* External 1, 32k */*/

/* EPROM, 32k */

/* External 2, 32k */

/* 3) Allocate Sections into memory */
SECTIONS

{
.text :{ } >ERAM2

.data :{ } >ERAM0

.vector align=512 :{ } > IRAM1

.cinit :{ } >IRAM1

.bss :{ } >ERAMO

.stack : { } > IRAM0

B6

W

m

w

B

i

I

i

m

[]
I

m

m

g

i

g

[_1 .-'

m
i

il

___i

w

Appendix B

i .

i :

t...d

|

i ,

r

t,i

L

U

= :
=:, =

PROGRAM: PCSDOF.C (Host PC code)

DESCRIPTION: This is the PC Host code that downloads the C40SDOF.OUT

executable file onto the C40 system using the application NETAPI library. Dynamic

memory allocation is used to store six large arrays that are sent back by the C40 system

when the system identification process is complete. These 6 arrays contain the modal

parameters &the structure and the weights. They are written to data files that can be

read be MATLAB and then displayed.

Hadi Alhassani

12/26/1996

Header Files and Definitions

#include <stdio.h> /* Standard I/O library */

#include <conio.h> /* Standard Console and Port IO library */

#include "c4xapp.h" /* NETAPI Applications library */

#include "clakerror.c" /* Subroutine for NETAPI error handler */

#define C40 FILE "C40SDOF.OUT" /* Executable file to be downloaded */

#define BUF SIZE 3000 /* Size of data arrays */

void checkRetumCode(UINT retumCode); /* Error code function prototype */

Main Program

void main (void)

{
int i;

ULONG NumToRec 1;

UINT buf_length = BUF_SIZE;

UINT ret;

PROC ID *handle;

FILE *ctgtrl, *cflt'tr2;

float *w;

float *z;

float *a;

float *Wl;

float *W2;

float *W3;

w = calloc(BUF_SlZE, sizeof(float)); /* Dynamic memory allocation */

B7

AppendixB

z = calloc(BUF_SlZE,sizeof(float));

a = calloc(BUF_SlZE,sizeof(float));

Wl = calloc(BUF_SIZE,sizeof(float));

W2 = calloc(BUF_SIZE, sizeof(float));

W3 = calloc(BUF_SIZE,sizeof(float));

if(_NULLII_NULLIla=NULLIIW 1_--_-NULLIIW2_---NULLIIW3 =NULL)

printf("Sorry, dynamic memory could not be allocated. ");

else{

system("cls"); /* clear screen */

/***** Reboot the C40 system *****/

printf("knRebooting the C40 network ha");

ret = Global_Network_Reboot0;

checkRetumCode(ret);

/***** Open Processor on Site A*****/

primf("Opening processors kn");

ret=Open_Processor_ID(&handle,"CPU_A",NULL);

checkReturnCode(ret);

/***** Download executable C40 code onto processor *****/

printf("knLoading program %s to C40 in Site A ha", C40__FILE);

ret=Load_And_RunFileLIA(handle,C40_FILE);

checkRetumCode(ret);

/* Wait for data to arrive and receive when ready */

printf("Training ");

ret=Read_LIA_Words_32(handle, 1,&NumToRec 1);

ret=Read_LIA__Floats_32(handle,buf__length, w);

ret=Read_LIA_Words_32(handle, 1,&NumToRec 1);

ret=Read_LIA_Float s__32(handle, buf_length, z);

ret=Read_LIA_Words_32(handle, 1,&NumToRec 1);

ret=Read_LIA_Floats__32(handle,bur_length, a);

ret=Read_LIA_Words_32(handle, 1,&NumToRec 1);

ret=Read_LIA_Float s_32(handle,buf_length, W 1);

ret=Read_LIA_Words_32(handle, 1,&NumToRec 1);

B8

I

I

i

i

I

z

I
I

i

I

i

I
I

!

i

I

l

I

[]
i

m

[]
I

w

Appendix B

w

w

[

w

= •

7- :

w

w

w

ret=Read_LIA_Float s_3 2(handle,buf__length, W2);

ret=Read_LIA_Words_3 2(handle, 1,&NumToRec 1);

ret=Read_LIA__Float s_3 2(handle,buf_length, W3);

printf("kn Data has been successfully received.W');

/* Write results to data files */

if ((cfPtr 1 = fopen(" SDModPar. dat ","w")) _ NULL)

printf("File could not be opened._");

else{

for (i=l; i<BUF_SIZE; i++)

fprintf(cfPtr 1,"%.5fW',w[i]);

for (i=l; i<BUF_SIZE; i++)

fprintf(ctPtrl, "%. 5fi.n",z[i]);

for (i= 1; i<BUF_SIZE; i++)

fprintf(cfPtr 1,"%. 5f_",a[i]);

fclose (cfPtrl);

}
if((cfPtr2 = fopen("SDWeight.dat","w")) _ NULL)

printf("File could not be opened.kn");

else{

for 0=1; i<BUF_SIZE; i++)

fprintf(cfPtr2,"%.Sf_",Wl [i]);

for (i=l; i<BUF_SIZE; i++)

fprintf(cfPtr2,"%.Sfha",W2[i]);

for (i=l; i<BUF_SIZE; i++)

fprintf(cfPtr2,"%. 5fua",W3 [i]);

fclose (cfPtr2);

}
/* Free memory */

ret=Cl o seP rotes sor ID(handl e);

checkReturnCode(ret);

Clear All Lib_Memory0;

checkReturnCode(ret);

free(w);
free(z);
free(a);
free0X'l);
fr 2);
free(w3);

}
}/* end of main program */

B9

w

Appendix B

%%%

% PROGRAM: C40SDOF.M

%

% DESCRIPTION: This MATALB M-file reads the six data arrays created by the

% PCSDOF.C program which contain the training wieghts and modal parameters of

% vibration of the structure.

%

% Hadi Alhassani, KUAE

% 12/26/1996

%%%

clearall

% Read Data

cd c:\..\workfile

%

rid 1--fopen('SDModPar.dat');

[MP,NP 1]--fscanf(fid 1,'% f);

fclose(fid 1);

%

fid2---fopen('SDWeight.dat');

[WW,NP2]--fscanf(fid2, _/_f);

fclose(fid2);

cA cAmatlab

% Rearrange Data

npl = NP1/3;

np2 = NP2/3;

freq = MP(1 :npl);

damp = MP(np 1+ 1:2*np 1);

mode = MP(2*npl+1:3*npl);

Wl = WW(1 :np2);

W2 = WW(np2+1:2*np2);

W3 = WW(2*np2+1:3*rip2);

% Plot Results

% open modal parameters data file

% read modal parameters

% open training weights data file

% read training weights

figure, subplot(311), plot(freq), title('First Mode Frequency')

subplot(312), plot(damp), title(q)amping Ratio')

subplot(313), plot(mode), title(_Vlodal Constant')

figure, subplot(311),plot(W 1), title(First Weight')

subplot(312), plot(W2), title('Second Weight')

subplot(313), plot(W3), title('Third Weight')

I

II

m
I

i

i

I

m

U

m
I

n

il

II

!

II

.-7

U

u

u

N
i

BIO

g

m
l

I

l

F_I _ V

Appendix B

w

=

w

w

]**

FILE: CARRIER.H

DESCRIPTION: A header file that defines pointers to the DSPLINK interface

registers for the Crystal Daughter Module Carder Board which is used as a slave board

to the QPC/C40B board. Note that the PC/DMCB slave board is mapped into Space 4

in the global memory map of the Tim-40 module in site A on the QPC/C40 B board.

Although Space 4 allows operation of the slave board at the slowest speed, it is always

guaranteed to work with any LSI DSPLINK slave board [Reference 9].

Courtesy of Spectrum Signal Processing Inc.

s_
w

r

w

qm_

#defineDM1 CH0 IN DATA

#define DM I_CH0 OUT_DATA

#define DM1 TIMER1

#define DM1 RESET

#defineDM1 CH2 IN DATA

#define DM1 CH2 OUT DATA

#defineDM1 INT MASK

#define DM1 INT STATUS
I

#define DM1 CH1 IN DATA

#define DMI CH1 OUT DATA

#define DM1 AMELIA CTRL
m

#define DM1 AMELIA STATUS

#defineDM1 CH3 IN DATA

((unsigned long*)

((unsigned long*)

((unsigned long*)

((unsigned

((unsigned

((unsigned

((unsigned

((unsigned

((unsigned

((unsigned

((unsigned

((unsigned

((unsigned

#define DM1 CH3 OUT DATA ((unsigned

#define DM1 ROUTE ((unsigned

#define DM1 USER CONTROL ((unsigned

#define DM1 CONFIGURATION ((unsigned

0xB0000300)

0xB0000300)

0xB000030])

long*) 0xB0000301)

long*) 0xB0000302)

long*) 0xB0000302)

long*) 0xB0000303)

long*) 0xB0000303)

long*) 0xB0000304)

long*) 0xB0000304)

long*) 0xB0000305)

long*) 0xB0000305)

long*) 0xB0000306)

long*) 0xB0000306)

long*) 0xB0000307)

long*) 0xB0000307)

long*) 0xB0000307)

Bll

AppendixB

FILE: NETAPI.CFG

DESCRIPTION: System configuration file for the C40 Network that contains a

listing of the devices on the carrier board, the modules and processors present, the

processor unique name as well as base address of the PC I/O blocks, default board

register values, memory map details and a link map. The information contained in this

file is used to initialize various addresses and registers in the system.

I

m

I

i

m

Host {
Hostname: LSI HOST

Board {

Board_Type: QPC/C40B
Host Connection: 0300h

Register: 01011, 00000h

Host Connection: 0320h

Host Connection: 0400h

Module { _

Module_Type: MDC40S1
Site: A

Processor CPU_A {

; Block 0 Base Address

; Control Register

; Block 1 Base Address (JTAG)

; LIA Base Address

Processor_Type: C40

Clock_Speed: 50

}
}
}
}

Memory_Map {

Page 0002FF800h 0002FFBFFh No_RT_Access ; INT0

Page

Page

Page

Page

Page

Page

}

0002FFC00h 0002FFFFFh No_RT_Access ; INT1

000300000h 000307FFFh No_RT_Ace_S fB-ANK0

000308000h 00030FFFFh No RT Access ; BANKI

040000000h 040007FFFh No RT Access ; PEROM

070000000h 070007FFFh No RT Access ; IDROM

080000000h 080007FFFh No RT Access ; BANK2

; Link map to be placed here if required.

B12

m
m

I

U

I

m
m

!1

mm

W

==

m

u

m

I

m

g

|

_i] !i

-- Appendix C

z

= =

w

L__

r_

q

H
L_.1

k_

PROGRAM: C40DDOF.C (C40 Source Code)

DESCRIPTION: This program is downloaded onto the C40 system using the

PCDDOF.C host program via the application library. The code in the ISR reads two

signals, an excitation and a response of a low frequency flexible structure and

trains an adaptive IIR filter to identify the first two modes &vibration in real-time.

>>> SAMPLING FREQUENCY = 4 kHz <<<

Hadi Alhassani, KUAE

12/26/1996

Header Files

#include "¢:\dsptools_nath.h" /* math library */

#include "c:\dsptools\intpt40.h" /* interrupt support (PRSL) */

#include "c:\dsptools\compt40.h" /* communication port support (PRSL) */

#include "carrier.h" /* defines pointers to DSPLINK registers for DM */

Define Constants

#define BUF_SIZE 3000 /* define_ay size*/

#define LIA_CHAN_NO I /* comm portchannelnumber */

Global Variables

long int counter = 0, count2 = 0, index, i=0,

long y, u;

float yk-=0,yk 1--0,yk2=0,yk3=0,yk4=0,uk_,uk I =0,uk2=0,

float vk2=0, vk3=0, vk4=0,

float freq 1[BUF_SIZE], model [BUF_SIZE], damp 1[BUF_SIZE];

float I_eq2[BUF_SIZE], mode2[BUF_SIZE], damp2[BUF_SIZE];

float TY, TU, FY=0, FU=0, P1, P2, P3, P4, P5, P6, P7;

float Wl=0, W2=0, W3=0, W4=0, W5=0, W6=O, W7=0;

float yal--0, ya2--0, ya3--0, ya4=0;

float yfl=0, y£2=0, yf3=0, yf4=0;

float xa--0, xal=0, xa2=0, xa3=0, xa4=0;

float x£--_, xfl=0, xf2=0, xf3=0, xf4=O;

float e=0, val=0, yout=0, al 1, a12, a2I, a22, bl, b2;

float fxo--0, fxop--0, Xn=0, Xo_.5, _alpha=0, i, fs=200;

C1

AppendixC

void c_int04(void); /* Function prototype for the IIOF1 ISR */

Main Program

void main(void)

{
volatile int dummy;

/** Initialize arrays that hold modal parameters **/

for(index=0; index<=BUF_SIZE- 1; index++) {

freq 1[index]=0;

freq2[index]=0;

d_p i[iiidex]=0;

damp2[index]=0;

mode 1[index]=0;

mode2[index]=0;

)
index=0;

asmC PUSH AR0");

asm(" PUSH DP");

asm(" LDI 030H, AR0");

asm(" LSH 16,AR0");

asm(" IACK *AR0");

asm(" POP DP");

asm(" POP AR0");

/* Set Up C40 Interruptts */

/* assembly language instructions */

/* needed to perform an interrupt */

/* acknowledge instruction to allow */

/* external interrupts to the C40. */

INT_DISABLE0; /* Global disable of interrupts */

set_ivtp(DEFAULT); /* Set IVTP on 512 word boundary,*/
/* see vector in _linker file */

install hat vector((void *)c_int04, 0x04); /* Set the IIOF1 int vector */

load___f(0x00B0); /* Enable the Iff01 pin to be level trigger interrupt */

/* Set up DSPLINK registers for the DMCB and DM */

dummy = *DMI_RESET; /* Do a read to Reset the Site A DM */

DMI_ROUTE = 0x0000; / Set LKCLK1 to choose MCLK1 as system_, clock */

DMI_INT_MASK = 0x00010000; / Intemapiwlaen Input Data Regs are full */

DM1 AMELIA CTRL = 0xB30000; / CM6=0, board now in reset */

DMI_AMELIA_CTRL = 0xF30000; / CM6=I, calibration cycle started */

/* CM0=I CM1---1 and CM4=I; use MCLKI as system clock*/

DMI_USER_CONTROL = 0xASE00000;/ Selcet prescale factor, clock source */

/* PT11=PT10=I,CS11=CS10--_,MCDI=I and MCD2=I */

/* SAMPLING RATE IS NOW SET TO 4kHz */

C2

!

lie

|

!_! I]i

w

L._

__===

L_

w

L

u

Appendix C

DM1 CONFIGURATION = 0xB3900000;/ Write the KEY for the Crystal ADM */

INT_ENABLE0; /* Globally enable interrupts */

/* create a while loop that activates an INT_DISABLE function to halt the C40

operations as soon as the arrays are full, then send the data to the Host PC */

while(index <= BUF_SIZE) {

if(index _ BUF_SIZE){

INT_DISABLE0;

send_msg(LIA_CHAN_NO,freq 1,BUF_SIZE, 1);

while(chk_dmaCLIA_CHAN_NO));

send_msg(LIA_CHAN_NO,damp 1,BUF_SIZE, 1);

while(chk_dma(LIA_CHAN_NO));

send_msg(LIA_CHAN_NO,model,BUF_SIZE, 1);

while(chk_dma(LIA_CHAN_N0));

send_msg(LIA_CHAN_NO,freq2,BUF_SIZE, 1);

while(chk_dma(LIA_CHAN_NO));

send_msg(LIA_CHAN_NO,damp2,BUF_SIZE, 1);

while(chk_dma(LIA_CHAN_NO));

send_msg(LIA_CHAN_NO,mode2,BUF_SlZE, 1);

while(chk_dma(LIA_CHAN_NO));

} /* end of if statement */
}/* end of while loop */

} /* end of main program */

Interrupt Service Routine

This subroutine contains the data acquistion and system identification code. It is

executed at the sampling rate.

void c_int04(void)

volatile long clear;

clear = *DMI_INT_STATUS;/* Read Interrupt Status Register to Clear Interrupts */

y = *DMI_CH0 IN DATA; /* Read Channel 0 Input Data Register */

u = *DMI_CH1 IN DATA; /* Read Channel 1 Input Data Register */

y = (y >> 16); /* Shift data by 16 bits to map DSPLINK */

u = (u >> 16);

TY = -l*((float)y)/16384; /* True Value in volts */

C3

!

Appendix C

TU = - 1 *((float)u)/16384;

/* Implement a fourth order digital low-pass Butterworth filter

on both inputs. (wc = 75 Hz) */

/* Response Signal (channel 0) */

xa4 = xa3;

xa3 = xa2;

xa2 = xal;

xal = xa;

xa = TY;

ya4 = ya3;

ya3 =ya2;

yaP. = yal;

yal = FY;

FY = 3.692234261 *ya 1- 5.123180777"ya2 + 3.165651468"ya3 -

0.734870850"ya4 + 1.Oe-04*(O. 103686192"xa + 0.414744770"xal +

0.622117156'xa2 + 0.414744770 *xa3 + 0.1036861926 *xa4);

/* Excitation Signal (channel 1) */

xf4 =xf3;

xf3 =x£2;

xf2 =xfl;

xfl =_,

xf = TU;

yf4 =yf3;

:3
yf2=yfl;
yn =vtJ;
FU = 3.692234261"yfl- 5.123180777"yf2 + 3.165651468"yf3 -

0.734870850"yf4 + 1.0e-04*(0.103686192"xf+ 0.414744770'xfl +

0.622117156"x£2 + 0.414744770 *xf3 + 0.1036861926 *xf4);

counter += 1;

if(counter = 20) { /* time decimation to establish desired fs */

/****** REAL-TIME SYSTEM IDENTIFICATIOIN CODE ******/

yk4 = yk3;

yk3 = yk2;

yk2 = ykl;

yk 1 = yk;

yk = FY; /* filtered system response */

C4

i

il

l I V

w

Appendix C

w

r_
• J

K

y

E

t_

uk2 = uk 1;

ukl = uk;

uk = FU;

vk4 = vk3;

vk3 = vk2;

vk2 = uk-(2*uk 1)+uk2;

P1 =ykl;

P2 =yk2;

P3 =yk3;

P4 = yk4;

P5 = vk2;

P6 = vk3;

P7 = vk4;
val

/* filtered system excitation */

/* linear combiner (adaptive IIR filter) inputs */

= PI*P1 + P2*P2 + P3*P3 +

P4*P4 + P5*P5 + P6*P6 + P7*P7;

yout = PI*Wl + P2*W2 + P3*W3 + P4*W4 +

PS*WS+P6*W6+P7*W7; /*

e = yk-yout;; /* Error */

Wl = Wl+e*alpha*(P1/val);

/* Normalizer */

Adaptive Filter output */

/* Widrow-HoffDelta Rule */
W2 = W2+e*alpha*(P2/val);

W3 = W3+e*alpha*(P3/val);

W4 = W4+e*alpha*(P4/val);

W5 = WS+e*alpha*(P5/val);

W6 = W6+e*alpha*(P6/val);

W7 = W7+e*alpha*(P7/val);

/* use a Newton root finding algorithm to solve a sixth

order equation for filter coefficients */

for(i=0; i<=10; i++){

fxo = (Xo*Xo*Xo*Xo*Xo*Xo)+(W2*Xo*Xo*Xo*Xo*Xo)+

((Wl *W3 +W4)*Xo*Xo*Xo*Xo)+

((2*W2*W4-(W3 *W3)+W4*W 1 *W 1)* Xo*Xo*Xo)+

((-W I*W3*W4-W4*W4)*Xo*Xo)+(W2*W4*W4)*Xo+

(W4*W4*W4);

fxop = (6*Xo*Xo*Xo*Xo*Xo)+(W2*5*Xo*Xo*Xo*Xo)+

((Wl *W3+W4)*4*Xo*Xo*Xo)+

((2*W2*W4-(W3*W3)+W4*WI*W1)*3*Xo*Xo)+

(-Wl *W3*W4-W4*W4)*2*Xo+(W2*W4*W4);

Xn = Xo - fxo/fxop; /* Newton Formula */

Xo=Xn ;

}/*end of root-approximation using Newton-Rapson */

a12 = Xn; /* adapt. IIR flit. coefficients */

C5

w

Appendix C

a22 = -W4/al 2;

a21 = (a22*W 1-W3)/(al 2-a22);

all =-Wl-a21;

b2 = (a22*W5-W7)/(a22-al 2);

bl = WS-b2;

count2 += 1;

h_count2 = 1){/* save ordy every count2 result */

/* Finally, solve for modfl parameters using Nt. coefficients */

_eql [index]=2*fs*sqrt((1 +al l+al 2)/(1-al 1+a12));

_eq2[index]=2*fs*sqrt((l+a21+a22)/(1-a21+a22));

dampl [index]=2*fs *(1-al2)/(_eql [mdex]*(1-al l+a12));

damp2[hadexl=2*fs*(1-a22)/(_eq2[hadex]*(1-a21+a22));

mode 1[index]=4*b 1/(1-a 11+a 12);

rnode2 [hldex]=4*b2/(1-a21 +a22);

count2 = O;

index += 1;

}
counter = O;

}/* end of if statement that sets effective fs */

}/* end of Interrupt Ser_ce Routine */

m

i

i

I

illi

m

ill

i

D

=
lid

m

m

I

m
I

hm
m

[]
I

li

m

l

I

C6

m

l

m

li

[1 i i-_

w

Appendix C

w

W

[!

|3
w

[J
W

W

r_

M

PROGRAM: C40DDOF.CMD

DESCRIPTION: A linker command file that contains the linker options, standard

memory configuration and sections allocation to be used with the C40DDOF.C code

shown in this appendix. This file is called by the batch file that runs the compiler.

Hadi Alhassani, KUAE

12/26/1996

/* 1) Linker Options */

-X

-C

-o C40DDOF.OUT

-m C40DDOF.MAP

C40DDOF.OBJ

-i c:\dsptools
-1 rts40.1ib

-1 prts40.1ib
-e c int00

/* Reread libraries if unresolved symbols have not been found.*/
/* ROM autoinitialization. */

/* Linker option to name the output file. */

/* Linker option to generate a map file. */

/* Input file specification.*/

/* PRSL directory */

/* Link small memory C40 PRTS Library.*/
/* Link PRSL. */

/* Define the entry point */

/* 2) Standard Memory Configuration */
MEMORY

IRAM0: origin = 002FFg00h length = 0400h

IRAMI: origin = 002FFC00h length = 0400h

ERAM0: origin = 00300000h length = 10000h

/* ERAMI: origin = 0030800011 length = 8000h

PEROM: origin = 40000000h length = 8000h

ERAM2: origin = 80000000h length = 8000h

/* Internal 0, lk */

/* Internal 1, lk */

/* External 0, 64k */

/* External 1, 32k */*/

/* EPROM, 32k */

/* External 2, 32k */

/* 3)
SECTIONS

{
.text

.data

.vector align=512

.cinit

.bss

.stack

}

Allocate Sections into memory */

• {} > ERAM2.
• { } >ER_M0
• {} > IRAM1
• {} > IRAM1
• { } > ERAM0
• {} >roAM0

C7

AppendixC

PROGRAM: PCDDOF.C (Host PC code)

DESCRIPTION: This is the PC Host code that downloads the C40DDOF.OUT

executable file onto the C40 system using the application NETAPI library. Dynamic

memory allocation is used to store six large arrays that are sent back by the C40 system

when the system identification process is complete. These 6 arrays contain the modal

parameters of the first and second modes of the structure. They are written to data

files that can be read be MATLAB and then displayed.

Hadi Alhassani

12/26/1996

Header Files and Definitions

#include <stdio.h> /* Standard I/O library for C code*/

#include <conio.h> /* Standard Console and Port I/O library */

#include "cAxapp.h" /* NETAPI Applications library */

#include "chkerror.c" /* Subroutine for NETAPI error handler */

#define C40 FILE "C40DDOF.OUT" /* The executable to be downloaded */

#define BUF_SIZE 3000 /* size of data arrays */

void checkRemrnCode(UINT remmCode); /* error code function prototype */

Main Program

void main (void)

{
hat i;

ULONG NumToRec I;

UINT buf_length = BUF_SIZE;

UINT ret;

PROC_ID *handle;

FILE *cfPtrl, *cfl_tr2;

float *wl;

float *z I;

float *al;

float *w2;

float *z2;

float *a2;

! _7 -

wl = calloc(BUF_SIZE,sizeof(float));/* Dynamic memory allocation */

C8

i

I

f

I

I

w

= ,

t ;L •

t_

I: 1

L _

L _

t_

E_

}=_

Appendix (2

zl = calloc(BUF_SlZE,sizeof(float));

al = calloc(BUF_SlZE,sizeof(float));

w2 = calloc(BUF_SIZE, sizeof(float));

z2 = calloc(BUF_SlZE,sizeof(float));

a2 = calloc(BUF_SlZE,sizeof(float));

if(w 1=NULLIIz 1--NULLIla 1=NULLIIw2_NULLIIz2_--NULLIIa2_--NULL)

printf("Sorry, dynamic memory could not be allocated. ");

else{

system("cls"); /* clear screen */

/***** Reboot the C40 system *****/

printf("_q.ebooting the C40 system kn");

ret = Global_Network_Reboot0;

checkRetumCode(ret);

/***** Open Processor on Site A*****/

printf("Opening processors kn");

ret=Open_ProcessorID(&handle,"CPU_A",NULL);

checkRetumCode(ret);

/***** Download C40 program to processor *****/

pfintf("krd.,oading program %s to C40 in Site A _a", C40_FILE);

ret=Load_And_Run._File_LIA(handle, C40_FILE);

checkRetumCode(ret);

/* Wait for data to arrive and receive when ready */

printf("Training ");

ret=Read_LIA_Words_32(handle, 1,&NumToRec 1);

ret =Read_LIA__Float s._32(handle, buf_length, w 1);

ret=Read_LIA_Words_32(handle, 1,&NumToRec 1);

ret=Read_LIA_Float s_32(handle,buf_length, z 1);

ret=Read_LIA_Words_32(handle, 1,&NumToRec 1);

ret=Read_LIA_Float s_32(handle, buf_length, a 1);

ret =Read_LIA_Words__32(handle, i ,&NumToRec 1);

ret =Read_LIA_Float s_32(handle,buf_length, w2);

ret=Read_LIA_Words_32(handle, l,&NumToRec 1);

C9

w

Appendix C

ret=Read_LIA_Floats_3 2(handle,bur_length, z2);

ret=Read_LIA_Words_3 2(handle, 1,&NumToRec 1);

ret=Read_LIA_Fioats_3 2(handle,buf_length, a2);

printf("LrtData has been successfully received.kn");

/* Write results to data files */

if ((cfPtr 1 = fopen("DDMP 1. dat","w")) _- NULL)

printf("File could not be opened._");

else{

for (i=l; i<BUF_SIZE; i++)

fprintffcff'tr 1,"%. 5fin",w 1 [i]);

for (i=l; i<BUF_SIZE; i++)

fprintf(cflatr 1,"%. 5fin",z 1[i]);

for (i=l; i<BUF_SlZE; i++)

fprintf(cff'tr 1,"%. 5tLr_",a 1[i]);

fclose (cflatrl);

if ((cfPtr2 = fopenCDDMP2.dat","w")) _--- NULL)

printf("File could not be openedAn");

else{

for (i=l; i<BUF_SIZE; i++)

fprintffcff'tr2,"%. 5tha",w2 [i]);

for (i = 1; i<BUF_SlZE; i++)

fprintf(ctgtr2,"%. 5tYn",z2[i]);

for (i= 1; i<BUF_SIZE; i++)

fprintffcfl_tr2,"%. 5fin",a2[i]);

fclose (cfPtr2);

}
/* Free memory */

ret=Close.._ProcessorID(handle);

checkReturnCode(ret);

Clear All Lib_Memory0;

checkReturnCode(ret);

free(wl);

free(zl);

free(al);

free(w2);

flee(z2);

fr a2);
)
}/* end of main program */

CI0

g

I

m

i
III

m

g

l

imm

I

m

II

III

|

w

g

!
mm

I

m
B

I

i_l ! 1I_

Appendix C

= ;

2

L_

W

H

w

w

%%%

% PROGRAM: C40DDOF.M

%

%

%

%

%

%

DESCRIPTION: This MATALB M-file reads the six data arrays created by the

PCDDOF.C program which contain the modal parameters of the first two modes of

vibration of the structure.

Hadi Alhassani, KUAE

% 12/26/1996

%%%

clear all

% Read Data

cd c:\..\worldale

fidl--fopen('DDMP1 .dat'); % read mode 1

[IV[P1,NP 1]--fscanf(fid 1,_/_f);

fclose(fid 1);

fid2--fopen('DDMP2.dat'); % read mode 2

[MP2,NP2l--fscanf(fid2,'%f);

fclose(fid2);
cd c:_matlab

% Rearrange Data

npl = NP1/3;

np2 = NP2/3

freql=MPl(1 :npl);

dampl=MPl(npl+1:2*npl);

model=MPl(2*npl+1:3*npl);

fleq2=MP2(1 :np2);

damp2=MP2(np2+ 1:2" np2);

mode2=MP2(2* np2+ 1:3 *np2);

% Plot Results

figure, subplot(311),plot(freq 1(10:np 1)),title(Tirst Mode Frequency')

subplot(312),plot(damp 1(10:np 1)),title(Damping')

subplot(313),plot(model(10:npl)),tit[e(_M0dal Constant')

figure,subplot(311),plot(ffeq2(10:np2)),fitle('Sec.ond Mode Frequency')

subplot(312), plot(damp2(10: np2)),title(_Damping ')

subplot(313),plot(mode2(10:np2)),title('Modal Constant')

k

-'z

Cll

AppendixD

PROGRAM: C40DDOFF.C (C40 Source Code)

DESCRIPTION: This program is downloaded onto the C40 system using the

PCDDOFF.C host program via the application library. The code in the ISR reads two

signals, an excitation and a response of a low frequency flexible structure, apply a low-

pass butterworth filter to isolate the first mode and a band-pass filter to isolate the

second mode and use a SDOF adaptive IIR filter to identify the first two modes of
vibration in real-time.

>>> SAMPLING FREQUENCY = 4 kHz <<<

Hadi Alhassani, KUAE

12/26/1996

Header Files

#include "c:\dsptoolskmath.h" /* math library */

#include "c:\dsptoolskintpt40.h" /* interrupt support (PRSL) */

#include "c:\dsptools\compt40.h" /* communication port support 0aRSL) */

#include "carrier.h" /* defines pointers to DSPLINK registers for DM */

Define Constants

#define BUF_SIZE 3000 /* define array size */

#define LIA_CHAN_NO 1 /* comm port channel number */

Global Variables

long int counter = 0, index = 0, count2 = 0;

long
float

float

float

float

float

float

float

float

float

float

float

y, u;

yk=0,ykl=0,yk2=0,uk_,ukl_,uk2=0; .: -= :_ .

ykb=0,yk 1b-=0,yk2b=0,ukb=0,uk 1b=0,uk2b=0;

Freq 1[BUF_SIZE], Damp 1[BUF_SIZE], Mode 1[-BUF_SIZE];

Freq2[-BUF_SIZE], Damp2[BUF_SIZE], Mode2[BUF_SIZE];

PI=0, P2=O, P3=0, alphai=0.009, fs=250;

Plb--_, P2b=0, P3b--_, alpha2=0.015;

TY, TU, FYL=0, FUL=0, FYB=0, FUB=0;

yal=0, ya2=0, ya3=0, ya4=0;

y =O, yf3---o,yf4=o;
yalb=0, ya2b=0, ya3b=0, ya4b=O;

yflb=0, yf2b=0, yf3b=0, yfab--_;

D1

m

w

• J

• l

b ,

i.

t 4

w

H

u

Appendix D

float xa=0, xa 1=0, xa2=0, xa3=0, xa4=0;

float xf-=-0, xfl =0, x£2=0, xf3=0, xf4=0;

float Wl=0, W2=0, W3=0, yout=0, val=0, tempi--0;

float el=0, omegal=0, zetal--0, msl=0, bl--0, al 1=0, a12=0;
floatWlb=0, W2b=0, W3b=0, youtb=0, valb=0, temp2--0;

float e2=0, omega2=0, zeta2=0, ms2=0, b2=0, a21=0, a22--0;

**

void c_int04(void); /* Function prototype for the IIOF1 ISR */

..... Main Program
**

void main(void)

{
volatile int dummy;

for(index=0; index<=BUF_SIZE - 1; index++) {

Freq 1[index]--0;

Damp 1[index]--0;

Mode 1[index]=0;

Freq2[index]=0;

Damp2[index]=0;

Mode2[index]=0;

}
index=0;

asmC PUSH AR0");

asm(" PUSH DP");

asmC LDI 030H, AR0");

asm(" LSH 16,AR0");

asmC IACK *AR0");

asm(" POP DP");

asmC POP AR0");

/* Set Up C40 Interruptts */

/* assembly language instructions */

/* needed tO perform an interrupt */

/* acknowledge instruction to allow */

/* external interrupts to the C40. */

INT_DISABLE0; /* Global disable of interrupts */

set_ivtp(DEFAULT); /* Set IVTP on 512 word boundary,*/
.... /* see vector in linker file */

install int vector((void *)c_int04, 0x04); /* Set the IIOF1 int vector */

load_iif(0x00B0); /* Enable the IIF01 pin to be level trigger interrupt */

/* Set up DSPLINK registers for the DMCB and DM. */

dummy = *DMI_RESET; /* Do a read to Reset the Site A DM */

*DMI_ROUTE = 0x0000; /*_ getLI_LK1 to choose MCLK1 as system clock */

DMI_INT_MASK = 0x00010000; / Interrupt when Input Data Regs are full */

D2

AppendixD

DM1 AMELIA CTRL = 0xB30000; / CM6=0, board now in reset */

DMI_AMELIA_CTRL = 0xF30000; / CM6=I, calibration cycle started */

/* CM0=I CMI=I and CM4=I; use MCLKI as system clock*/

DMI_USER_CONTROL = 0xASE00000;/ Selcet prescale factor, clock source */

/* PTI I=PT10=I,CS11--CS10=0,MCDI=I and MCD2=I */

/* SAMPLING RATE IS NOW SET TO 4kHz */

DMI_CONFIGURATION = 0xB3900000_ Write the KEY for the Crystal ADM */

INT ENABLE0; /* Globally enable interrupts */

/* create a while loop that activates an INT_DISABLE function to halt the C40

operations as soon as the arrays are full, then send the data to the Host PC */

while(index <= BUF_SIZE){

if(index _ BUF_SIZE){

INT_DISABLE0;

send_msg(LIA_CHAN_NO,Freq 1,BUF_SIZE, 1),

while(chk_dma(LIA_CHAN_NO));

send_msg(LIA_CHAN_NO,Damp I,BUF_SlZE, 1);

while(chk_dma(LIA_CHAN_NO));

send_msg(LIA_CHAN_NO,Mode 1,BUT_SIZE, 1);

while(chk_dma(LIA_CHAN_NO));

send_msg(LIA_CHAN_NO, Freq2,BUF_SIZE, 1);

while(chk_dma(LIA_CHAN_NO));

send_msg(LIA_CHAN_NO, Damp2,BUF_SIZE, 1);

while(chk_dma(LIA_CHAN_NO));

send_msg(LIA_CHAN_NO,Mode2,BUF_SIZE, 1);
while(chk_dma(LIA_CHAN_NO));

} /* end of if statement */

} /* end of while loop */

} /* end of main program */

Interrupt Service Routine

This subroutine contains the data ac,qu_stion and system identification code. It is

executed at the sampling rate.

void c_int04(void)

{
volatile long clear;

clear = *DMI_INT_STATUS;

y= *DM I_CH0_IN_DATA;

/* Read Interrupt Status Register */

/* to Clear Interrupts */

/* Read Channel OInput Data Register */

D3

i

m

L_

R

i

U

w

Appendix D

= =

=

: 7

[:!I
r_

u = *DMI CH1 IN DATA;

y = (y >> 16);

u = (u >> 16);

TY = - 1*((float)y)/16384;

TU = - l*((float)u)/16384;

/* Read Channel 1 Input Data Register */

/* Shitt data by 16 bits to map DSPLINK */

/* True value in volts */

/* Implement a 4th order digital low-pass Butterworth filter to isolate the first mode of

vibration (wc = 20Hz) */

/* Response Signal (Channel 0) 8/

xa4--xa3;

xa3--xa2;

xa2--xa 1;

xal--xa;

xa=TY;

ya4=ya3;

ya3=ya2;

ya2=ya 1;

yal=FY'L;

FYL=3.917907865"ya 1-5.757076379"ya2+3.760349508'ya3

-0.921181929"ya4+ 1.0e-08"(5.845142437"xa+23.380569747"xa 1

+35.070854487*xa2+23.380569747*xa3+5.845142437"xa4);

/* Excitation Signal (Channel 1) */

xf4--xf3;

xf3--xf2;

xf2--xfl;

xfl- ,
xf=-TU,

FUL=3.917907865"yfl -5.757076379"yt2+3.760349508*yf3

-0.921181929"yf4+ 1.0e-08"(5.845142437"xf+23.380569747"xfl

+35.070854487*xf2+23.380569747*xf3+5.845142437"xf4);

/* Now, implement 4th order digital band-pass butterworth filter to isolate the second

mode of vibration (wl = 30, wh = 70Hz) *************/

/* Response Signal (Channel 0) */

ya4b=ya3b;

D4

Appendix D

ya3b=ya2b;

ya2b=yalb;

ya I b=FYB;

FYB=3.901065092 *ya 1b-5.717572207*ya2b+3.731457273 * ya3 b-

0.914975835*ya4b+9.44691844e-04*xa+ 1.33226763e-015*xai
- 1.88938369e-03*xa2+3.55271368e-015"xa3+9.44691844e-04*xa4;

/* Excitation Signal (Channel 1) */

yfab---y_b;

yf3b---Tf2b;

yf2b--yflb;

y b--VUa;
FUB=3.901065092*yflb-5.717572207*ytRb+3.731457273*yf3b-

0.914975835*yf4b+9.44691844e-04*xf+ 1.33226763e-015*xfl

-1.88938369e-03*xf2+3.55271368e-015"xf3+9.44691844e-04*xf4;

counter += 1;

if(counter _ 16){ /* time decimation to set effective fs */

/****** REAL-TIME SYSTEM IDENTIFICATIOIN CODE ******/

/** FIRST MODE */

yk2=yk 1;

ykl=yk;

yk=FYL;

uk2--ukl;

ukl--uk;

/* filtered system response, first mode only */

/* Normalizer */

/* linear combiner output */

/* Error */

/* Update the weights */

uk=FUL; /* filtered system excitation, first mode only */

P 1 = uk-(2* uk 1)+uk2; /* linear combiner (adaptive IIR filter) inputs */

P2 =ykl;

P3 = yk2;

val = P l *P I+P2*P2+P3*P3;

your = P l *W I+P2*W2+P3*W3;

el = yk-yout;

Wl = Wl+el *alphal*(P 1/val);

W2 = W2+el *alphal*_2/V__); :

W3 = W3+el *alphal ,(P3/val);

bl = Wl; /* Evaluate first adaptive filter coefficients using LC weights */

al 1 = -W2;

a12 = -W3;

tempi = (l+al l+al2)/(1-al l+a12);

omegal = 2*fs*sqrt(templ); /* modal parameters of first mode */

zeta 1 = 2" fs *(1-a 12)/(omega 1* (1-a 11 +a 12));

D5

g

I

w

Ill

II

m

m

i

w

÷

o

w

w

Appendix D

msl = 4*bl/(1-al l+a12),

/* SECOND MODE */

yk2b=yk 1b;

yk 1b=ykb,

ykb=FYB;

uk2b--uklb;

uklb--ukb;

/* Filtered system response, second mode only */

ukb=FUB; /* Filtered system excitation, second mode only */

Plb = ukb-(2*uklb)+uk2b; /* Linear combiner (adaptive IIR filter) inputs */

P2b = yklb;

P3b = yk2b;

valb = Plb*Plb+P2b*P2b+P3b*P3b; /* Normalizer */

youtb = Plb*Wlb+P2b*W2b+P3b*W3b; /* linear combiner output */

e2 = ykb-youtb; /* Error */

Wlb = Wlb+e2*alpha2*(Plb/valb); /* Update the weights */

W2b = W2b+e2*alpha2*(P2b/valb);

W3b = W3b+e2*alpha2*(P3b/valb);

b2 = Wlb; /* Evaluate second adaptive filter coefficients using LC weights */

a21 = -W2b;

a22 = -W3b;

temp2 = (1 +a21 +a22)/(1-a21 +a22);

omega2 = 2*fs*sqrt(temp2); /* modal parameters of second mode */

zeta2 = 2*fs*(1-a22)/(omega2*(1 -a21 +a22));

ms2 = 4*b2/(1-a21 +a22);

count2 += 1;

if(count2 _ 2){

Freq 1[index]=omega 1;

Damp 1[index]=zeta 1;

Mode 1[index]--ms 1;

Freq2[index]=omega2;

Damp2[index]=zeta2;

Mode2[index]=ms2;

index += 1;

count2 = 0;

}
counter = 0;

}/* end if statement that sets effective fs */

}/* end Interrupt Service Routine '1

/* keep every count2 result */

/* store modal parameters in arrays */

w i

E D6

AppendixD

PROGRAM: C40DDOFF.CMD

DESCRIPTION: A linker command file that contains the linker options, standard

memory configuration and sections allocation to be used with the C40DDOFF.C code

shown in this appendix. This file is called by the batch file that runs the compiler.

-X

-C

-o C40DDOFF.OUT

-m C40DDOFF.MAP

C40DDOFF.OBJ

-i c:\dsptools

-1 rts40.1ib

-1 prts40.1ib
-e c int00

/* Reread libraries if unresolved symbols have not been found.*/

/* ROM autoinitialization. */

/* Linker option to name the output file. */

/* Linker option t o generate a map file. */
/* Input file specification.*/

/* PRSL directory */

/* Link small memory C40 PRTS Library.*/

/* Link PRSL. */

/* Define the entry point */

/* 2) Standard Memory Configuration */
MEMORY

IRAM0: origin = 002FFS00h length = 0400h

IRAMI: origin = 002FFCO0h length = 0400h

ERAM0: origin = 00300000h length = 10000h

/* ERAMI: origin = 00308000h length = 8000h

PEROM: origin = 40000000h length = 8000h

ERAM2: origin = 80000000h length = 8000h

/* Internal 0, lk */

/* Internal 1, lk */

/* External 0, 64k */

/* External 1, 32k */*/

/* EPROM, 32k */

/* External 2, 32k */

/* 3)
SECTIONS

{
.text

.data

.vector align=512

.cinit

.bss

.stack

}

Allocate Sections into memory */

• {} > ERA_
"{ } > ERAM0

• {} >_1
• { } >ERAM0

-{} >mAMO

i

I

=

u

m

U

I

I

B

m

J

m

l

i

i

m

D

1Ira

m

g

g

D7

!
_l I1

AppendixD

t

w

I" :i

w

PROGRAM: PCDDOFF.C (Host PC code)

DESCRIPTION: This is the PC Host code that downloads the C40DDOFF.OUT

executable file onto the C40 system using the application NETAPI library. Dynamic

memory allocation is used to store six large arrays that are sent back by the C40 system

when the system identification process is complete. These 6 arrays contain the modal

parameters of the first and second modes of the structure. They are written to data

files that can be read be MATLAB and then displayed.

Hadi Alhassani, KUAE

12/26/1996

Header Files and Definitions

#include <stdio.h> /* Standard I/O library for C code*/

#include <conio.h> /* Standard Console and Port I/O library */

#include "c4xapp.h" /* NETAPI Applications library */
#include "chkerror.c" /* Subroutine for NETAPI error handler */

#define C40 FILE "C40DDOFF.OUT" /* Executable file to be downloaded */

_klefine BUF_SlZE 3000 : i* size of data arrays */

void checkReturnCode(UINT returnCode); /* error code function prototype */

Main Program

void main (void)

{
int i;

ULONG NumToRec 1;

UINT buf_length = BUF_SIZE;

UINT ret;

PROC ID *handle;

FILE *cfl_trl, *cfl_tr2;

float *w 1;

float *zl;

float *al;

float *w2;

float *z2;

float *a2;

wl = calloc(BUF_SIZE, sizeof(float));/* Dynamic memory allocation */

D8

AppendixD

zl = calloc(BUF_SIZE,sizeof(float));
al = calloc(BUF_SIZE,sizeof(float));
w2 = calloc(BUF_SIZE,sizeof(float));
z2= calloc(BUF_SIZE,sizeof(float));
a2= calloc(BUF_SIZE,sizeof(float));

if(w I=NULLIIz I=NULLIla 1=NULLIIw2--_-NULLI[z2_NULLII a2=NULL)
printf("Sorry, dynamic memory could not be allocated. ");

else{

system("cls");]* clear screen */

/***** Reboot the C40 system *****/

printf("haRebooting the C40 system ha");

ret = Global_Network_Reboot0;

checkRetumCode(ret);

/***** Open Processor on Site A*****/

printf("Opening processors ha");

ret=Open_Proeessor_ID(&handle,"CPU_A",NULL);

checkReturnCode(ret);

/***** Download C40 program to processor *****/

printf("haLoading program %s to C40 in Site A ha", C40__FILE);

ret=Load_And_Run_File_LIA(handle,C40_FILE);

checkRetumCode(ret);

/* Wait for data to arrive and receive when ready */

printfCTraining ");

ret=Read_LIA_Words_32(handle, 1,&NumToRec 1);

ret=Read_LIA_Float s_32(handle,buf_length, w 1);

ret=Read_LIA Words_32(handle, 1,&NumToRec 1);

ret=ReadLIA._Floats_32(handle,buf_length, zl);

ret=Read_LIA_Words__32(handle, 1,&NumToRec 1);

ret=Read_LIA_Float s__32(handle,buf_length, a 1);

ret=Read_LIA_Words_32(handle, 1,&NumToRec 1);

ret=Read_LIA_Floats_32(handle,buf_length, w2);

ret=Read_LIA_Words_32(handle, 1,&NumT oRec 1);

D9

L_

a

z

I

6

ii

m

I

w

m

i

I

I

I

gl

I

M

m

m

l

!1 i]i

Appendix D

i i

Z

w

w

= :

J_

L

ret=Read_LIA_Floats_32(handle,bufJength, z2);

ret=Read_LIA_Words_32(handle, 1,&NumToRec 1);

ret=Read_LIA_Floats_32(handle,bufJength, a2);

printf("lnData has been successfully received.In");

/* Write results to data files */

if ((ctPtrl = fopen("ModParl.dat","w")) _ NULL)

printf("File could not be opened.In");

else{

for (i=l; i<BUF_SIZE; i++)

fprintf(cff_tr 1,"%. 5fin",w 1[i]);

for (i=l; i<BUF_SIZE; i++)

fprintffcfPtr 1,"%. 5tEn",z 1 [i]);

for (i= 1; i<BUF_SlZE; i++)

fprintf(ctPtr 1, "%. 5tkn",a 1[i]);

fclose (cfl_trl);

}
if ((cff_tr2 = fopen("ModPar2.dat","w")) _--- NULL)

printf("File could not be opened.In");

else{

for (i= 1; i<BUF_SIZE; i++)

fprintf(cti_tr2,"%.5fin",w2[i]);

for (i=l; i<BUF_SlZE; i++)

fprintf(ctPtr2,"%.5fua",z2[i]);

for (i=l; i<BUF_SIZE; i++)

fpdntf(cflatr2,"%.5tln",a2[i]);

fclose (cfPtr2);

}
/* Free memory */

ret=Close_ProcessorlD(handle);

checkRetumCode(ret);

Clear All Lib_Memory0;

checkRetumCode(ret);

free(wl);

free(zl);
fi'ee(al);

free(w2);
free(z2);

free(a2);

)
}/* end of main program */

D10

AppendixD

%%%%%%%%%°,4%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% PROGRAM: C40DDOFF.M

%

% DESCRIPTION: This MATALB M-file reads the six data arrays created by the

% PCDDOFF.C program which contain the modal parameters of the first two modes
%of vibration of the structure.

%

% Hadi Alhassani, KUAE
% 12/26/1996

%%%

clear all

% Read Data

cd c:\..\workfile

fidl---fopen(_DDMP 1.dat'); % open file

[MP1,NP1]-=fscanf(fidl,_Af); % read first mode data

fclose(fidl);

fid2---fopen('DDMP2.dat'); % open second file

[MP2,NP2]--fscanf(fid2,_/of); % read second mode data

fclose(fid2);
cd cAmatlab

% Rearrange Data

npl = NP1/3;

np2 = NP2/3;

freql=MPl(1 :npl);

damp I =MP 1(np 1+ 1:2*np 1);

model=MPl(2*npl+1:3*npl);

freq2=MP2(1 :np2);

damp2=MP2(np2+ 1:2" np2);

mode2=MP2(2*np2+1:3*np2);

% Plot Results

figure, subplot(311),plot(freq 1(10:np 1)),title('First Mode Frequency')

subplot(312),plot(damp 1(10:np 1)),title('Damping')

subplot(313),plot(mode 1(10:np 1)),fitle('Modal ConstanO

figure, subplot(31 l),plot(freq2(10:np2)),title('Second Mode Frequency')

subplot(312),plot(damp2(10:np2)),titleCDamping')

subplot(313),plot(mode2(10:np2)),title('Modal Constant')

Ill

B

i

l
I

m

i

W

U

II

i

Illll

U '

I

;1 I:] :

Dll

J

I

m
m

