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Figure 2.

USML-2 payload crewmembers; red team: Albert Sacco and Kathryn Thornton, blue team: Catherine Coleman and Fred
Leslie.
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EXPERIMENT XXXV:

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Experimental apparatus flown in USML-1. Pump base unit and the eight modu-
lar experiment chambers are shown. For scale, the windows of the modules are 5
by 5 cm. Each self-contained module is plugged into the base to provide a pulse
of compressed air that disperses the grains inside the experiment volume. The
volume is not pressurized by this action because the air escapes (without the grains)
through chamber-wall screens. The compressed air (~12 psig) is held in a small
reservoir in the pump and 1s derived by operation of the crank handle at right
which actuates a small compressor piston. Pressure is released into the chambers
by an externally operated shutter mechanism built into the base of each module.
Magnified (x 4) video images were obtained of all the experiments; grains were
imaged as silhouettes against a diffuse backlight panel placed behind the rear

WINAOW Of €aCh MOAUIE. ... oen e e 35-590

Two views of aggregates formed from a dense dispersion of 0.4-mm quartz grains.
The various aggregate shapes are essentially all expressions of the basic filamen-
tary “building block™ aggregate structure. Note also the complex network-like
structure formed by the filaments. These aggregate populations were formed within
the first 3060 seconds of the experiment and experienced virtually no subse-
quent changes with time. Field of view in both cases is approximately 2.5 cm

ACTOSS . et e e e e s 35-591

Length of aggregates versus time for 0.4-mm quartz grains (USML-1 data). Note
the rapid rise in length from the monodispersed state to “full aggregation” within
the first few tens of seconds (corresponding to the period of turbulent damping).
The data points represent average aggregate lengths determined from 100-200
aggregates for each still frame taken from the video. The number of grains per
aggregate takes into account the foreshortening effect of the 3-dimensional struc-

tures as seeén on 2-ditnensional VIAED IMATES. - .. aossrmaispssasssmmsoninsssssnsserisoms 35-592

Giant “clod-like” aggregate formed in microgravity during manipulation of ex-
periment chamber by the astronaut. Note filamentary, tentacle-like growths from
surface. The aggregate is composed of several thousand 0.4-mm quartz grains.
All of the remaining free grains within the field of view are being drawn towards
the aggregate at speeds up to 1 cm/sec as a result of the strong electrostatic field

produced by the aggregate itself. Field of view =3 cm across. ...........cccccceeeieinnnne 35-592
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German Space Agency]

Double Crystal Rocking Curve
Drop Dynamics Module
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DESY Deutsches Elektronen-Synchrotron [Hamburg, Germany]

DLR Deutsche Forshungs-und Versuchsanstait fiir Luft-und Raumfahrt [German Aerospace
Research Establishment, used to be “DFVLR”]

DLS Dynamic Light Scattering

DPM Drop Physics Module

EDX Energy Dispersive X-ray Analysis

EMBL European Molecular Biology Laboratory [DESY, Hamburg, Germany]

EPD Etch Pit Density

ESA European Space Agency

ESTEC European Space Research and Techology Center

FCC Fluidized Catalytic Cracking

FO Functional Objective

FPA Fluids Processing Apparatus

FSDC Fiber-Supported Droplet Combustion

FTIR Fourier Transform Infra-Red

FWHM Full-Width Half-Maximum

GBX Glovebox

GBX-ZCG  Zeolite Glovebox Experiment

GCEL Ground Control Experiments Laboratory [NASA MSFC]

Ge Germanium

GFFC Geophysical Fluid Flow Cell

HgCdTe Mercury Cadmium Telluride

Hgl, Mercuric lodide

HI-PAC High Packed Digital Television

ICE Interface Configuation Experiment

IML-1 First International Microgravity Laboratory [STS-42 Shuttle mission, launched in January
1992]

IML-2 Second International Microgravity Laboratory [STS-65 Shuttle mission, launched in July
1994]

IR Infra Red

ISOVPE Isothermal Vapor Phase Epitaxy

JPL Jet Propulsion Laboratory [Pasadena, CA, managed by the California Institute of Tech-
nology]
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JSC
KSC
LaRC
LeRC
LMS
LPE
MAWS
MBE
MET
MOCVD
MPESS
MSAD

MSD
MSFC
NASA
NIST
NSLS
NRC
OARE
OIrE
PCEF
PCGG
PDE
|
PIMS
PLP
POCC
PR
PSD
PSD

NASA Johnson Space Center [Houston, TX]

NASA Kennedy Space Center [Cape Canaveral, FL]
NASA Langley Research Center [Hampton, VA]

NASA Lewis Research Center [Cleveland, OH]

Life and Microgravity Spacelab [STS-78 Shuttle mission, launched in June 1996]
Liquid-Phase Epitaxy

Microgravity Acceleration Workstation

Molecular Beam Epitaxy

Mission Elapsed Time

Molecular Chemical Vapor Disposition

Mission Peculiar Experiment Support Structure [Shuttle]

Microgravity Science and Applications Division [NASA MSFC; also used to be the
acronym for an OLMSA division at NASA Headquarters before name was changed
to“Microgravity Research Division™ (still Code UG)]

Microgravity Science Division [NASA LeRC]

NASA Marshall Space Flight Center [Huntsville, AL]
National Aeronautics and Space Administration

National Institute for Standards and Technology [Boulder, CO]
National Synchrotron Light Source

National Research Council

Orbital Acceleration Research Experiment

Oscillatory Thermocapillary Flow Experiment

Protein Crystallization Facility

Protein Crystal Growth Glovebox

Particle Dispersion Experiment

Principal Investigator

Principal Investigator Microgravity Services [NASA LeRC]
Precision Lattice Parameter

Payload Operations and Control Center [NASA MSFC]
Photoreflectance

Particle Size Distribution

Power Spectral Density
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RPI
SACA
SAMS
SEM
SMBT
SPCG
STABLE
STDCE
STES
STS

SWBT
TBE
TCS
TEA
TEM
UAB
UAH
USML-1

USML-2

VDA
WPI
XPD
2CGG
Zn:CdTe

Rensselaer Polytechnic Institute [Troy, NY]

Sample/Ampoule Cartridge Assembly

Space Acceleration Measurement System

Scanning Electron Microscope

Synchrotron Monochromatic Beam Topography

Single-locker Protein Crystal Growth

Suppression of Transient Acceleration By Levitation Evaluation
Surface Tension Driven Convection Experiment

Single-locker Thermal Enclosure System

Space Transportation System [Shuttle/external tank/solid rocket booster system, also a
Shuttle mission designation]

Synchrotron White Beam Topography
Teledyne Brown Engineering

Triple Crystal Spectroscopy
Triethanolamine

Transmission Electron Microscope
University of Alabama at Birmingham
University of Alabama in Huntsville

First United States Microgravity Laboratory [STS-50 Shuttle mission, launched in June
1992]

Second United States Microgravity Laboratory [STS-73 Shuttle mission, launched in
October 1995]

Vapor Diffusion Apparatus

Worcester Polytechnic Institute [Worcester, MA]
X-ray Power Diffraction

Zeolite Crystal Growth Glovebox

Zinc Alloyed Cadmium Telluride
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1. INTRODUCTION

1.1 Overview

The Second United States Microgravity Laboratory (USML-2) Space Shuttle mission was launched
October 20, 1995, and landed November 5, 1995. The mission lasted 15 days and the Shuttle crew per-
formed extensive microgravity science research during that time. The principal investigators for the mis-
sion submitted science reports of their research findings to the mission scientist for USML-2, and those
reports were compiled into the USML-2 One Year Report. The purpose of the USML-2 One Year Report
is to inform the microgravity science community and the public of the results of the experiments flown on
the Shuttle mission.

The USML-2 One Year Report represents the culmination of many years of sustained effort on the
part of the investigators, mission management, and support personnel, and is intended not only for the
scientific community, but also for general public awareness and education. This mission gave the micro-
gravity science community outstanding research opportunities not only to report and verify results ob-
tained in previous flights, but to perform new experiments which contributed substantially and uniquely to
the technological and commercial knowledge of the United States and its international partners. The re-
sults obtained and the lessons learned from this and future missions will lead us into a new era of micro-
gravity research, to the Space Station and beyond.

The launch of the Space Shuttle Columbia with the USML-2 payload continued the legacy of one
of NASA’s most successful scientific mission series. Using the knowledge gained from the USML-1 mis-
sion, scientists were able to prepare and improve their investigations and experiments by enhancing proce-
dures, refining operations, modifying hardware, and expanding methods for gathering data. The seven-
member Shuttle crew performed the USML-2 experiments around the clock in order to maximize the
science on orbit and interacted with scientists on the ground for a perfect example of interactive science in
a unique laboratory environment.

The USML-2 mission was dedicated entirely to microgravity research and included 37 investiga-
tions in materials science, fluid dynamics, combustion, biotechnology, and technology demonstrations
supported by 11 facilities and 3 acceleration measurement systems. Along with investigations that previ-
ously flew on USML-1, several new experiment facilities flew on USML-2. The Advanced Protein Crys-
tallization Facility (APCF) was the first facility to use three methods of protein crystal growth: liquid-
liquid diffusion, dialysis, and vapor diffusion. The High Packed Digital Television (HI-PAC) Technical
Demonstration gave scientists on Earth the ability to view multiple channels of real-time video and to
monitor and change experiment parameters as needed. This improved the quality and quantity of downlinked
data, thus enhancing science returns. Ground-to-Air Television was first used on the USML-2 mission and
allowed the scientists on the ground and the Shuttle crew to talk with and see each other as they discussed
science operations. The Geophysical Fluid Flow Cell (GFFC) experiment, which studied how fluids move
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in microgravity, first flew on Spacelab-3 in 1985 and was extensively refurbished for this mission. The
facilities that measured the microgravity environment added to the success of the mission by providing a
complete picture of the Shuttle’s acceleration environment and disturbances. The Orbital Acceleration
Research Experiment (OARE) provided real-time acceleration data to the science teams. The Microgravity
Acceleration Workstation (MAWS) operated closely with OARE, comparing the environment models pro-
duced by MAWS with the actual data gathered by OARE. Two other instruments, the Space Acceleration
Measurement System (SAMS) and the Three-Dimensional Microgravity Accelerometer (3DMA), collected
data throughout the mission. The data were then provided to the experimenters.

The Spacelab Glovebox (GBX) provided by the European Space Agency (ESA) offered investiga-
tors the capability to carry out experiments, test science procedures, and develop new technologies in
microgravity. It enabled crew members to handle, transfer, and otherwise manipulate experiment hardware
and materials in ways that would be impractical in the open Spacelab. In addition, the facility allowed a
visual record of experiment operations by means of video and photographic systems. Many investigations
benefited from increased crew involvement and video downlink. There were seven separate USML-2
investigations carried out in the Glovebox facility: two of these were in the materials science discipline,
two were solution crystal growth investigations, two studied fluid dynamics, and one was a combustion
investigation. Details on each are to be found elsewhere in this publication.

The investigations performed on USML-2 brought together a large number of researchers from
government, academia, and private industry. Combining the strengths of these communities allowed for
more extensive ground-based research, advanced research techniques, improved microgravity experimen-
tation, and a wider distribution of the knowledge gained in the process.

Among the mission highlights and successes:

» The processing of cadmium zinc telluride in the Crystal Growth Furnace (CGF) demonstrated that
crystals grown in space without touching the walls of their containers are of markedly higher qual-
ity than Earth-grown crystals. This is expected to promote the use of these crystals in critical elec-
tronic applications such as radiation detectors, sensors, etc.

» The GFFC experiment sought to better understand the flows in the oceans and atmospheres of
planets and stars. The study showed “banded” rotational patterns of flows like those seen in the
atmosphere of Jupiter. These observations are expected to be of great importance in understanding
weather patterns and climatic conditions on Earth.

» The protein crystal growth experiment was successful in obtaining antithrombin crystals. This pro-
tein, which controls blood coagulation in human plasma, is very difficult to grow in Earth-based
laboratories. Its successful growth in space made it possible to further define its molecular model
and understand how it works in the human body. This has important implications for medicine.

* In the Drop Physics Module (DPM), the influence of surfactants was examined. It was found that
surfactants can change the hydrodynamics of droplets. The findings will lead to new and improved
technologies in manufacturing cosmetics and synthetic drugs, in the recovery of oil, and in envi-
ronmental clean-ups. The behavior of liquid drops was also studied in this facility. It was found that

XXXIX



drops subjected to sound waves showed unusual rotation and oscillation patterns. Findings from
this study promise improved technologies in the paint, pharmaceutical, and chemical processing
industries and a better understanding of rain formation and weather patterns.

KEY USML-2 PERSONNEL

USML-2 Program Scientist: Mark Lee (NASA Headquarters)

USML-2 Mission Scientist: Marcus Vlasse (NASA Marshall Space Flight Center)

USML-2 Mission Manager: Paul Gilbert (NASA Marshall Space Flight Center)

USML-2 Payload Operations Director: Bob Little (NASA Marshall Space Flight Center)
USML-2 Project Scientist for APCF: Gottfried Wagner (University of Giessen, Germany)
USML-2 Project Scientist for CGBA: Louis Stodieck (University of Colorado at Boulder)
USML-2 Project Scientist for CGF: Martin Volz (NASA Marshall Space Flight Center)
USML-2 Project Scientist for CPCG: Karen Moore (University of Alabama at Birmingham)
USML-2 Project Scientist for DPM: Arvid Croonquist (Jet Propulsion Laboratory)
USML-2 Project Scientist for GBX: Don Reiss (NASA Marshall Space Flight Center)
USML-2 Project Scientist for GFFC: Fred Leslie (NASA Marshall Space Flight Center)
USML-2 Project Scientist for PIMS: Roshanak Hakimzadeh (NASA Lewis Research Center)
USML-2 Project Scientist for STDCE: Alex Pline (NASA Lewis Research Center)
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ABSTRACT |

The bacteriorhodopsin (BR) crystal growth experiment in the Second United States Microgravity ‘
Laboratory was done in order to stabilize the weak hydrophilic interactions, which are critical for the |
single BR filaments to pack together and form crystals close to the micellar consolution boundary.

In diagnostic analysis of growth conditions relevant to microgravity, micelles of three typical sizes
were determined on Earth through dynamic light scattering as a function of the detergent cocktails used.
Consistently, the BR crystal growth experiments have resulted in three different habits of BR crystals,
namely 1) needle-shaped, 2) cubic-shaped, and 3) balk-shaped crystals of excellent morphology, large size

\ (up to 1.35 mm in length) and improved diffraction power (resolution limit of up to 3.8 A).

1. INTRODUCTION
BR, a small amphiphilic photochromic retinal protein, has small surface protrusions emerging out
of the cell membrane of Halobacterium halobium . After membrane solubilization through detergent, BR

will be embedded in micelles.>* Detergent-solubilized BR molecules tend to form filamentous crystals like
micelles do in the hexagonal phase.* The contacts that cause the BR filaments to pack together are
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hydrophilic interactions between the loop regions of protruding BR molecules in aligned filaments. The
hydrophilic interactions are weak and easily disturbed, resulting in considerable disorder in the BR crystal-
line array in the presence of convective turbulence and sedimentation.’

Dynamic light scattering enables determination of the size of occurring micelles. Particles in a
liquid show Brownian molecular movement because of the thermodynamic movement of the liquid mol-
ecules. Thus monochromatic light is scattered by the particles and the shift of the frequency relative to the
primary optical frequency can be measured. The three different micelle sizes received in detergent solu-
tions after BR solubilization are compatible with the three different habits of BR crystals, grown in the
microgravity of the USML-2 experiment and as ground control.

2. RESULTS

BR forms typical micelles in detergent solution with a substantial part of the interaction defined by
the detergent coat as if the micelle would be protein-free (mixed micelle). Micelle radii were determined
through dynamic light scattering® using the DLS-system of Dierks & Partner, Systemtechnik (Hamburg,
Germany) and Protein Solutions (Charlottesville, VA, U.S.A.) respectively, and plotted in figure 1 as a
function of detergent and additives in absence and presence of BR.

Micelle radii prior to solubilization of BR range from 20 nm for micelles of N-Octyl B-D-
Glucopyranoside (OG) to 6 nm for the cocktail of OG, Benzamidine (B) plus Polyethylene glycol (PEG).
The mixed micelle radii, after BR solubilization, extended more than 10 times. Disregarding this large
increase in mixed-micelle radius upon dissolution of BR, the tendency of the radius as a function of the
detergent cocktail used remained unchanged. The radius of the micelles with OG was reduced by the
addition of PEG or Benzamidine, and enlarged by the addition of Europium (Eu).

Conditions favorable for the growth of cubic crystals showed the largest micelles measured. Needles
occur if the protocol conditions show smaller micelle radii, and the micelle radii of the cocktail favorable
for the growth of balk-shaped crystals are the smallest.

Consistent with the different micelle sizes observed through dynamic light scattering in the pres-
ence and absence of the additives Benzamidine, PEG, and Eu, respectively, three different habits of BR
crystal growth were observed, namely needle-, cubic-, and balk-shaped crystals.

In the USML-2 microgravity experiment, the molecular rods of BR were tightly packed, as re-
ported before,** and the crystal morphology exhibited smooth surfaces and sharp edges of up to 1 mm in
length. The needle-shaped crystals (fig. 2) increased under microgravity by the factor of 1.5 in length,
compared to the ground control.

Upon variation of the crystallization protocol in microgravity, the experiment leads to the growth
of cubic crystals (fig. 3), while the ground control produced crystals of the needle habit. Hypothetically,
under microgravity conditions the altered crystal growth protocol of enlarged micelle size stimulated the
transition of BR mixed micelles from columnar hexagonal needles to the cubic habit, and the cubic habit
was stabilized. Multicrystalline needle clusters (fig. 4) and single needles were produced both on Earth and
in microgravity upon slightly altering the protocol conditions in salt-, additive-, and/or protein-conditions.
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Cross-reactive agents, such as Gly-Gly free base,” tended to favor the conditions for growth of
cubic crystals on Earth, but did not have a clear impact on cubic crystal formation under microgravity.

The experiments performed under microgravity and as ground control led to a new experiment
protocol. We were able to crystallize a new type of BR crystal with the habit of balks and an extended
growth perpendicular to the longitudinal balk axis. Single crystals grew up to a length of 1.35 mm and
width of 120 um. The good quality BR crystals, combined with excellent synchrotron facilities,® allowed
partial data collection to a resolution limit of up to 3.8 A (fig. 5).

CONCLUSIONS

Polyethylene glycol is described as having a long-term effect at relatively high salt concentrations
by decreasing the net rate of misincorporation of protein molecules into the crystalline lattice, either di-
rectly, because the protein in solution is solvated in a different way, or indirectly, by facilitating the reori-
entation or dissolution of misincorporated molecules. It also might keep supersaturation at a point where
formation of additional nuclei is relatively improbable and eliminates unwanted protein-protein interac-
tions and so prevents premature termination of growth or excessive showering of small crystals, or both.’?

Polyethylene glycol, combined with chosen BR mixed-micelle size and suppression of gravity-
driven convection and sedimentation of BR in the process of crystallization, enabled the growth of tightly
packed crystals with smooth surfaces and sharp edges of different habits.

The resolution limit of 3.8 A reached so far for the new balk-shaped BR crystals is unmatched for
the triclinic space group of this protein. The progress encourages the future use of microgravity as a favourable
environment of improved crystallogenesis of difficult membrane proteins such as BR.
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Figure 1. Micelle radius formed by the detergent N-octyl B-D-glucopyranoside (OG) in the experiment
protocol and change in micelle size through the additives Europium (Eu), Polyethylene glycol
(PEG), Benzamidine (B), and their combinations as shown in the abscissa in the absence and
presence of bacteriorhodopsin (BR). The micelle size is indicated in absolute values with stan-
dard deviations (- 4-) and in relative units (histogram) from different series of experiments. The
relative units given in the histogram are normalized to the micelle radius of OG in the experiment
protocol. Left side: Both experimental set-ups (- ¢ -; histogram) used in the DLS analysis, showed
arise in value after the addition of Eu to OG and a steady decline with the smallest value mea-
sured for the cocktail of OG + B + PEG. Right side: Upon dissolution of BR, the level of micelle
radius in absolute values as a function of the additives used increased more than ten times (data
not shown). The pattern of the histogram, however, remained essentially the same (compare left
to right side).
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Figure 2. USML-2 Flight Experiment: Bacteriorhodopsin (BR) crystal in needle habit of about 500 um in
length. Here, the molecular rods of BR are closely packed together to form a crystal of compact
morphology which resulted in sharp edges and smooth surfaces.
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Figure 3. USML-2 Flight Experiment: Bacteriorhodopsin (BR) crystal in cubic shape with axes of 150 um
in length.
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Figure 4. USML-2 Flight Experiment: Multicrystalline needle cluster of bacteriorhodopsin (BR) with a
diameter of 300 um. The cluster seems to consist of single needles which fall apart easily. The
individual needles show similar sharp edges and smooth surfaces as shown in figure 2.

Figure 5. Oscillation diffraction pattern recorded at the synchrotron beam line X11; EMBL-outstation,
Hamburg. The diffraction pattern of balk-shaped bacteriorhodopsin (BR) crystal shows resolu-
tion up to a limit of 3.8 A in the direction perpendicular to the purple membrane plane.
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ABSTRACT
The protein apocrustacyanin C has been crystallized by vapor diffusion in both microgravity (The

Second United States Microgravity Laboratory (USML-2) mission) and on the ground. Rocking width
measurements were made on the crystals at the ESRF Swiss-Norwegian beamline using a high-resolution

* This paper was previously published in Acta Cryst., D53, 231-239, 1997.
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y-circle diffractometer from the University of Karlsruhe. Crystal perfection was then evaluated from com-
parison of the reflection rocking curves from a total of five crystals (three grown in microgravity and two
Earth controls) and by plotting mosaicity versus reflection signal/noise. Comparison was then made with
previous measurements of almost “perfect” lysozyme crystals grown aboard IML-2 and Spacehab—1 and
reported by Snell et al.' Overall, the best diffraction-quality apocrustacyanin C, crystal was microgravity—
grown, but one Earth-grown crystal was as good as one of the other microgravity-grown crystals. The
remaining two crystals (one from microgravity and one from Earth) were poorer than the other three and of
fairly equal quality. Crystal movement during growth in microgravity, resulting from the use of vapor-
diffusion geometry, may be the cause of not realizing the “theoretical” limit of perfect protein crystal
quality.

1. INTRODUCTION

Microgravity has been used as a crystallization environment for improving protein crystal quality
through reduced sedimentation and convection effects. Growth in microgravity has been shown to reduce
the mosaicity of lysozyme crystals with a resulting increase in the signal-to-noise ratio of reflection inten-
sity data, thereby facilitating measurement of weaker high-resolution data. > The mosaic spread, unlike
resolution limit, is a crystal parameter which can be independent of the incident x-ray beam and detector
setup and gives a direct indication of the geometric perfection of a crystal. It does, however, require a
finely collimated beam and high-resolution diffractometer to avoid the beam effects smearing out the
rocking width so as to analyze the reflection in detail.?

In the event of a reduction in mosaicity in the crystal, this should manifest in an enhancement of the
signal-to-noise ratio of the reflection intensity measured, provided extinction is absent, and is particularly
valuable for considering the optimization of the measurement of weak high-resolution protein diffraction
data. In our previous report,' this was strongly manifest in favor of microgravity-grown crystals of lysozyme
over Earth-grown controls on two separate missions measured by two different methods. Moreover, the
microgravity-grown crystals were the most perfect protein crystals ever reported to date, very close to the
theoretical limit, and thereby setting bounds on the size of diffraction apparatus that might usefully be
considered (e.g., several meters for the crystal-to-detector distance, which in turn defines a maximum
useful detector size for a given x-ray wavelength). In Snell et al.,' it was readily possible to find reflections
at 1.2 A by use of a 0.0002° angular step scan, with an instrument resolution function of 0.00195° on the
ESRF Swiss-Norwegian bending magnet beamline. In contrast, with a 1° scan, Vaney, Maignan, Ries-
Kautt, and Ducruix* at the LURE synchrotron obtained a resolution limit of 1.4 A for a microgravity-
grown lysozyme crystal.

The purpose of this paper is to extend the comparisons of protein crystal quality to other protein
cases. We report here the mosaicity measurements on apocrustacyanin C, .
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2. EXPERIMENTAL
2.1 Crystallization

The crystallization of the protein apocrustacyanin C,, a subunit of the o-crustacyanin protein re-
sponsible for the blue coloration of the carapace of the lobster Homarus gammorus, has been described
elsewhere.” Apocrustacyanin C , molecular weight 20 kDa, crystallizes in space group P22 2, a=42.1,
h=81.0, c=110.7 A and a=p=y=90° with two subunits per asymmetric unit. For the experiment reported
here, the protein solution (20 mgeml™ in 0.1 M Tris-HCI, 1 mM EDTA pH 7.0) was mixed 1/1(v/v) with a
reservoir solution (5 percent (v/v) 2-methyl-2,4-pentanediol (MPD), 1 mM EDTA, 0.1 M Tris-HCI pH 9.0

and 1.9 M ammonium sulfate) to form 50—l drops.

The microgravity equipment for crystallization was the European Space Agency (ESA) Advanced
Protein Crystallization Facility (APCF).*’ The APCF is a modular system containing 48 reactors each
allowing one of three modes of crystallization, namely dialysis, liquid-liquid (free interface), and vapor
diffusion. The vapor-diffusion reactor used in this case consists of a reservoir formed by two porous, ultra—
high molecular weight, polythene blocks (each holding 0.35 ml of solution) and protein solution held in a
glass cylindrical tube which can be raised to activate crystallization. The APCF was flown on board the
USML-2, STS-73, NASA Space Shuttle mission. Crystallization took place over a period of 14 days,
11 hours, 17 minutes (347 hours, 17 minutes) of microgravity time at a temperature of 273 = 0.1 K. Ground
controls were grown simultaneously with identical materials in identical apparatuses with temperature
control also to £ 0.1 K.

2.2 Data Collection

Measurement of the rocking widths by monochromatic methods requires a synchrotron x-ray beam
with very low divergence and small 8A/A. This has to be combined with a small angular step-size
diffractometer to fully probe the rocking width in detail. Data collection took place on station A of the joint
Swiss-Norwegian beamline at the ESRF. The Swiss-Norwegian beamline has a Huber y-circle diffractometer.
The primary role of this diffractometer is the direct determination of triplet phases.*® The instrument con-
tains two circles (8, v) for the detector with axes perpendicular to each other and four circles for the crystal
motion. The first crystal axis is parallel to the first detector axis (»-26 relation). Perpendicular to the o-axis,
a second axis for the y rotation is installed. This y-axis bears an Eulerian cradle with motions y and o.
Thus, an arbitrary scattering vector & can be aligned with the y-axis and a y-scan (i.e., rotation around a
reciprocal lattice vector for any hkl) performed by moving only one circle (with a consequent improvement
in accuracy).

A total of three microgravity-grown crystals and two Earth-grown crystals (fig. 1) were mounted in
glass capillaries of 1.0 mm diameter for data collection. The three microgravity crystals were of approxi-
mate volume 0.108, 0.06, and 0.03 mm?* (labeled microgravity 1, 2, and 3 respectively). No artificial mother
liquor was used, but plugs of stabilizing solution (2.0 M ammonium sulfate) were placed at either end of
the capillaries before sealing with wax. Unfortunately, the largest microgravity crystal, microgravity 1,
showed a crack across it halfway down its length. The two ground control crystals were of approximate
volume 0.11 and 0.01 mm® (labeled Earth 1 and 2, respectively) and were also mounted in 1.0-mm glass
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capillaries. For each crystal the same set of 60 different reflections (over a resolution range of 12.39 to 1.44
A) were measured at three y angles of -45°, 0°, and 45°. There was no appreciable difference in the inci-
dent intensity between the start and end of the reflection scans. Figure 2 shows, as examples, the rocking
curves for the (4 19 1) reflection for three y settings for each of the five crystals and, likewise, figure 3
shows the curves for the (11 22 43) reflection.

The instrument resolution function (IRF")!° was calculated at 0.00195° excluding the reflection-
dependent (AM/A)tan® component, which was dealt with on a per-reflection basis (i.e., according to the
appropriate 6 angle). The source-to-instrument distance was 45 m with a double crystal Si(111) monochro-
mator providing a 1 A wavelength beam. The vertical beam source size was, at full width at half maximum
(FWHM), 200 um and the wavelength bandpass, 81/A, equal to 2 x 10,

2.3 Data Processing

The boundary of the reflection was determined by the Lehmann-Larsen' method. This allows
determination of the reflection background boundary as a minimum in o(/)/I over the range of each reflec-
tion profile. This was used because some of the reflections were quite weak. The scattering angle, 6, was
then evaluated and also the FWHM, ¢, of the reflection measured. The crystal sample mosaicity, n, can be
determined by deconvoluting out these geometric and spectral parameters from the measured ¢, by use of:

n= (¢2R_[RF’2)1/2 )

where IRF is the reflection-dependent instrument resolution function.'
3. RESULTS AND DISCUSSION

Table 1 illustrates the maximum, minimum, and standard deviation of the mosaicity values ob-
tained from the crystals. Crystal microgravity 1, which displayed a crack (as referred to above), displayed
the second highest average mosaicity as well as the worst maximum and minimum values. Because of the
crack, this crystal must, unfortunately, be discounted for the purposes of comparison (other than its vol-
ume). None of the minimum values reach the quality of the lysozyme mosaicity results obtained previ-
ously.! On the basis of the number of unit cells in each direction of the crystal habit (and the respective unit-
cell size in each direction), we can calculate minimum mosaicity values® (e.g., for Earth 1, of 0.00021° x
0.0019° x 0.0016°). Hence, the theoretical limit isn’t approached either. On the basis of table 1, there is no
clear distinction in favor of microgravity versus Earth-grown crystals, microgravity 2 being marginally the
best (n) and with the lowest maximum 7, but Earth 1 and microgravity 3 have the best minimum n. A
population analysis of the mosaicity values for the crystals is shown in figure 4. If any discrimination 1s to
be found between the crystals grown by the two different routes, we need a more sensitive measurement
than the mosaicity provides in this case. Towards that end, a plot of mosaicity versus peak/background was
investigated and is shown in figure 5. It can be seen clearly (also in the raw data in figures 2 and 3) that
microgravity 2 produces much higher peak-to-background ratio (i.e., better signal-to-noise ratio) than the
other crystals for the same set of reflections. One other microgravity crystal and an Earth crystal are of
comparable, very good quality (microgravity 3 and Earth 1). The poorest quality crystals are microgravity
1 and Earth 2, the former’s low quality was probably a result of crystal splitting. The poor quality of
microgravity 1 and Earth 2 is clearly seen in figure 3, the high-resolution reflection (11 22 43) is well
measured for microgravity 2, microgravity 3 and Earth 1 only.
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Table 1. Analysis of n values (°) for the apocrustacyanin C, crystals measured.

Crystal Max 1 Minn () o(n) Reflections
microgravity 1 0.2160 0.0167 0.0393 0.0328 148
microgravity 2 0.0648 0.0143 0.0303 0.0118 168
microgravity 3 0.0708 0.0131 0.0378 0.0118 164

Earth 1 0.0840 0.0118 0.0344 0.0110 165
Earth 2 0.0780 0.0131 0.0501 0.0164 44

We suspect that a large range of values within the crystals (table 2) strongly suggests an anisotropic
mosaicity for the crystals. To investigate the possible anisotropy in the mosaicity, a “mosaicity volume”
plot can be made (i.e., plotting the unit diffraction vector of a reflection along with its magnitude as the
mosaicity (a mosaicity vector). Figures 6(a) and 6(b) show this for the apocrustacyanin (Earth-grown and
microgravity-grown reflections, respectively) and figures 6(c) and 6(d), for comparison, show values from
our previous work with lysozyme (Earth-grown and microgravity-grown, IML-2 mission, respectively)'
using the same scale. This demonstrates pictorially the level of improvement that can be made towards
producing perfect crystals (in the ideal case of an infinitely large perfect crystal the rocking volume would
be a point). Figure 7 illustrates the relative dimensions of the unit cells in the same orientation of the
mosaicity volume plot with figure 1 showing the crystal habit of apocrustacyanin C,. Figure 8 shows the
2-dimensional projection of the “mosaicity volume™ onto the 4k and A/ planes. The “mosaicity volume” is
evaluated as the volume of an ellipsoid having values of principal half axes as maximum mosaicity magni-
tude in x, y, and z real-space directions (for space group P2 2 2 , coaxial with 4, k, and  directions). Table
2 gives these ellipsoid parameters for the apocrustacyanin C, and comparison values for lysozyme. In the
case of apocrustacyanin C, the consistently smallest mosaicity occurs along the 4 axis, correlated with the
theoretical mosaicity along a. This is demonstrated in table 2 with the exception of the cracked microgravity
1 crystal. With lysozyme, by comparison, the mosaicity is isotropic.

Table 2. Mosaicity volume ellipsoid parameters for both apocrustacyanin C, and lysozyme crystals.

Crystal n, n, n, 1 volume
microgravity 1 0.1624 01777 0.1446 0.01748
microgravity 2 0.0298 0.0641 0.0459 0.00037
microgravity 3 0.0364 0.0496 0.0592 0.00045

Earth 1 0.0397 0.0681 0.0754 0.00085

Earth 2 0.0258 0.0743 0.0543 0.00044

Earth lysozyme 0.0254 0.0254 0.0341 0.00009
microgravity lysozyme 0.0069 0.0100 0.0069 0.000002

The parameters n . n . and n, being the maximum mosaicity vector, in the x, y, and z directions,
respectively (values in ©).
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4. CONCLUDING REMARKS

The plot of mosaicity versus signal/noise is very sensitive to crystal quality. In the case of
apocrustacyanin, the main noticeable improvement in crystal quality through microgravity growth is in-
deed as measured by this plot and manifest really only for one crystal. This is in contrast to the clear
improvement for all the lysozyme crystals in our previous study.! How can this be explained? CCD obser-
vation of the vapor-diffusion crystallization of apocrustacyanin C, in microgravity has shown a rapid mo-
tion of crystals within the drop.'? CCD observation of other microgravity crystallizations based on differ-
ent methods (e.g., dialysis crystallization of lysozyme!® and free interface crystallization of o-crustacyanin
on board an unmanned space platform' has shown a little and no motion, respectively). In the vapor-
diffusion case for the apocrustacyanin C , this motion, probably resulting from Marangoni convection,"> '
may well be the limiting factor on the quality of the crystals that can be produced. In comparison with the
microgravity-grown lysozyme crystal case, there is room for improvement for the apocrustacyanin C,, at
least as evidenced by the mosaicity volume plots and the CCD video monitor. Hence, a repeat experiment
of apocrustacyanin C, crystal growth in microgravity but using dialysis or liquid-liquid diffusion (rather
than vapor diffusion) suggests itself, whereby the crystals would remain stationary during the growth
process. Moreover, with lysozyme, instead of dialysis,> vapor diffusion might be used, inducing crystal
movement even in microgravity, so as to reduce the crystal perfection from that obtained previously.'
Finally, in the Protein Crystallization Diagnostic Facility (PCDF) being planned by ESA [Stapelmann et
al., unpublished work], a detailed history of a particular crystal growth process will be established via laser
light scattering (nucleation step), interferometry (growth stage), and CCD video monitoring (to track crys-
tal movement and growth), all prior to harvesting and full x-ray diffraction characterization and data col-
lection for protein structure analysis.
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Microgravity 2

Microgravity 3

Crystal habit

Figure 1. Dimensions of apocrustacyanin C, crystals used for data collection (not to scale). The relation-
ship of the crystal habit and the unit-cell parameters is also shown.
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Figure 2. Rocking curves for the (4 19 1) reflection (4 A resolution), as a representative example, at three
Y settings (left to right), for each of the five crystals, microgravity 1 (first row), microgravity 2
(second row), microgravity 3 (third row), Earth 1 (fourth row), and Earth 2 (fifth row). The three
curves for microgravity 1 (first row) were measured in single-bunch mode; i.e., where the circu-
lating current is approximately 1/10th of the current available for all the other curves.

16-389



Microgravity—grown apocrustacyanin Cy

1 |
2 120
300 100
3 s = 10
3 2 3 -
° ' o °
5 5 ) S z %
of, "M -
e
0 E -
1580 1575 -1570
Omeocs (cea Omeca icea!
- 500
500 800
400
500
v & 800 o
M e
2 a0 3 % a0 f )
S 300 b 3 400 | 1 3
: 5 200
200 : 3 4 -
: 200 b .
. et a o \
2 a2 2 L T A ~ ‘o, ;
100 o0 ar g Vit N MW AN AN T e el \v'.\w\,"*,—.'\-l.._'.\r.»,- %
-1sec 1575 -1570 -15.65 56 -15.80 1575 15.70 1565 s&
Omeca loea Omeaa loeal
1 — 300 s
N
20 4 { <
200 2%
_ 20} v T
B s Z 200
L z L
2 f 0 =
NS0, 2 =
3 3 2 w0 =
oo 100
- IR .
P Fo A 2o ta,]
50 b ; S
b
580 1575 1560 575
— ™
200
200 . 20
- 250
" _ 150 =
250t £ 3
> = 3 20
2 B > 150
100 *. o X
o A ’
5 e K SR ) V6o Cars
it o o 5 e, o A0
L B . SN : N
» - o o ETS N SR e
1589 575 15 m 1565 5 & ses S & 15,8 575 5 70 565 56
Omeaa Iosa Omean loca
. 140
\
160 ' 140 . :
e > 120
140 Vs s
= ~ 120} 3 @
2 E E £
> > >
= = BT i e “
= 5:V00 K 3 o T n
b : SRR
13 8 i
80 ]' 5
1585 1480 1575 570 I 5 B3 570
Omeqa (dea Omoaa |sea!

Figure 3. Rocking curves for the (11 22 43) reflection (1.85 A resolution), as a representative example, laid
out in the same format as in figure 2. This reflection, being at high resolution, was measured near
the start of the run for each crystal [unlike the (4 19 1) reflection which was measured near the
end of the sequence of reflections, being at low resolution]. This essentially avoids any impact of
radiation damage.
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ABSTRACT

This experiment addressed the potential of microgravity for crystallization of the visual pigment
rhodopsin. The high-resolution structure of this protein is unknown, which seriously hampers studies of
the signal transduction mechanism on a molecular level. Better insight will increase our basic knowledge
of this protein and may have medical and pharmacological applications. Hardware problems were encoun-
tered in four of the six reactors. Of the remaining two reactors, one had some small crystalline objects and
the other one showed an abundance of small needles, including some clusters. All objects were shown to
contain rhodopsin but were too small (<80 pum in the largest dimension) for diffraction analysis.

1. INTRODUCTION

Rhodopsin is the light-sensitive protein (visual pigment) of the rod photoreceptor cell in the verte-
brate retina. It is a member of the large family of G-protein coupled receptors. To understand receptor
properties and signal-transduction mechanism of this membrane protein family on a molecular level, de-
tailed knowledge of the three-dimensional structure is essential. Since these proteins are too large (40 to
70kD) to allow structural analysis by NMR techniques, crystallization with high-resolution analysis by x-
ray diffraction is the only feasible approach. This requires relatively large amounts of purified protein, and
bovine rhodopsin is the only representative of this receptor family that can be isolated and purified from its
native source in sufficient quantities for this purpose. The amino acid sequence of bovine rhodopsin was
elucidated a decade ago, and very recently a low-resolution projection structure obtained from 2-dimen-
sional crystals was reported. However, a detailed three-dimensional structure is still not available.

We have obtained crystals of rhodopsin (40 kD) in our laboratory using the sitting-drop vapor
diffusion technique, but so far they were too small or disordered to provide any diffraction information. A
major problem with crystallization of membrane proteins is their amphipathic character, requiring deter-
gents and detergent phase-shift modifiers, and their relatively low polar surface area prohibits extensive
strong protein-protein interactions. We have investigated many parameters to produce optimal conditions
(protein concentration, type and concentration of detergents, type and concentration of precipitant, buffer,
pH, temperature, lipids, and stabilizing or micelle-modifying additives).
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Evidence is accumulating that microgravity not only could be beneficial to protein crystallization
in that larger size or better ordered crystals can be obtained than at 1g, but also that diffractable crystals are
generated from proteins that on Earth only give low-order or microcrystals. The latter condition prevails
for rhodopsin.

2. RESULTS

Six different crystallization conditions that generated small crystals of various shapes on Earth
were tested in hanging-drop Advanced Protein Crystallization Facility (APCF) reactors. The APCF reac-
tors were fitted with long-pass filters (690 nm cut-off) to ensure that rhodopsin was not exposed to any
light (to which it is very sensitive (280-650 nm)) during handling of the reactors.

Screening for crystal formation was done microscopically in red light (Schott long-pass filter RG645)
using shape and birefringence as criteria to identify crystals. Mother liquor and crystalline structures were
screened for the presence and quantity of intact protein by immunoblot analyzing using specific antibod-
ies.

Unfortunately, we seem to have had some hardware problems. Two of the six reactors had partially
or completely lost their hanging drop and two other reactors had not (well) equilibrated (almost no reduc-
tion in volume of protein solution). Of the remaining two reactors one had some small crystalline objects
and the other one showed an abundance of small needles, including some clusters. All objects were too
small (maximally 80 um in only one dimension) to attempt x-ray diffraction analysis (this would require a
minimal size of 50 to 100 um in all dimensions).

Electroimmunoblotting analysis showed that the needle-shaped objects contain rhodopsin. This
could not be unequivocally demonstrated for the other shape, possibly since the amount of protein was
below the detection level. As far as we could determine, there was no sign of spectral deterioration of the
samples, indicating that the precautions taken to prevent light damage had worked properly.

These results are less positive than those obtained with earlier flights. The hardware problems so
far are unexplained but do not appear to depend on the type of detergent used. Although crystal sizes are
usually smaller in the ground controls, laboratory-grown crystals tend to grow larger upon prolonged incu-
bation (4 to 12 weeks). This would suggest performing crystallization experiments with rhodopsin under
microgravity for more prolonged time periods (1 to 3 months).

3. CONCLUSIONS

Earlier experiments indicated that microgravity seems to have a positive effect on the rhodopsin
crystallization process. One option to explore further is to try more extended crystallization time periods
(>1 month). Another option to explore further is based on the recent observation that the optimal crystalli-
zation conditions in microgravity might slightly differ from those on Earth. This would prompt crystalliza-
tion trials in microgravity using a range of conditions close to the optimal ones found at 1g.
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1. PURPOSE

The bacteriophage lambda lysozyme is a small protein of 158 amino acids. Like other known
lysozymes, it is involved in the dissolution of the cell walls of bacteria. This enzyme is remarkable in that
its mechanism of action is different from the classical lysozyme’s mechanism; moreover, from the point of
view of protein evolution, it shows features of lysozymes from different classes. After many years of
efforts toward crystallization of the native enzyme, no suitable crystals could be obtained. Before this
mission, different mutants also were tested, and it appears that the best results were obtained after replace-
ment of the tryptophane residues by aza-tryptophanes, using the hanging drop technique. Investigators
were able to grow only very small crystals of this mutant, even after seeding experiments. These crystals
were too small for complete structure analysis but allowed determination of preliminary crystallographic
data. The aim of this investigation was to produce well-ordered crystals suitable for high-resolution x-ray

structure determination and analysis.

2. METHOD

\ The crystallization experiment of the bacteriophage lambda lysozyme was achieved using the va-
por diffusion method. Five 8-ml handgun drop reactors were available for the experiment. Crystallization

occurred at 20 °C in the same conditions used for the laboratory-grown crystals.

3. RESULTS

Crystallization of the protein occurred in two of the allocated reactors. Several very thin needles
(fig. 1) were picked out but appeared to be smaller than the crystals grown on the ground and were, there-
fore, unusable for high-resolution x-ray structure determination and analysis. Precipitates were found in

the other reactors.



4. PRELIMINARY CONCLUSIONS

It was concluded that the crystallization conditions of the bacteriophage lambda lysozyme seem to
have changed during the microgravity experiment on USML-2. It can be assumed that it will be possible to
optimize the microgravity crystallization parameters to obtain crystals of suitable size for x-ray analysis.

Figure 1. Very thin, needle-like crystals of bacteriophage lambda lysozyme were grown in two reactors on
USML-2.
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ABSTRACT

Lysozyme has been widely used as a standard protein for protein crystal growth. Lysozyme crystals
are extremely polymorphic. Triclinic and monoclinic crystals of lysozyme were grown under a microgravity
environment using an APCF instrument during the USML-2 mission. Proper ground controls were per-
formed using different techniques (solution or gel growth) as well as different chemical compositions of a
crystallizing agent. Space-grown crystals and ground controls were analyzed using synchrotron radiation
to assess their diffraction limits. Ground- and microgravity-grown crystals are isomorphous. The best
resolution for ground- and microgravity-grown crystals is the same (1.45 A) for both crystal forms. Tri-
clinic crystals were only partially recorded for a statistical analysis because ground crystals diffracting to
0.99 A were already recorded by another group. As for the monoclinic form, because the highest resolution
of chicken egg white lysozyme deposited at the PDB is 1.72 A resolution, it was decided to collect a full
data set with microgravity-grown crystals. The structure is under refinement.

1. INTRODUCTION

Due to the multiparametric aspect of protein crystallization,' it is somewhat difficult to quantify the
influence of one particular parameter on protein crystal growth and crystal perfection. Important biophysi-
cal parameters such as pH and temperature can be analyzed by measuring their effectiveness on protein
solubility.? Purity of lysozyme can be assessed by many means including ion-spray spectroscopy.’ One
must find a way to quantify the influence of microgravity on crystal quality. Two parameters are good
candidates: mosaicity and resolution. In both cases, the use of synchrotron radiation appears to be crucial
but results are quite dependent on experimental set-up. Mosaic spread, describing crystal perfection, is
experimentally measured by rocking curves.*> Resolution gives the crystal diffraction limit. However, the
operational definition of resolution limit varies depending on authors. It is sometimes related to the ratio
(I)/ (o(I)) as a function of resolution shells or on values of Rgy, (the relative disagreement between intensi-
ties of symmetry equivalent reflections) as a function of the resolution S. In order to perform appropriate
comparison between space- and ground-grown crystals, one may either compare the space-grown crystals
to the best ever ground crystal or use rigorously the same experimental conditions such as protein concen-
tration, pH, temperature, volume or transportation conditions, time of storage, etc. In the present work, we
have used both approaches.

We initially planned to use APCF reactors to study the influence of microgravity for two proteins,
Grb2 and chicken egg white lysozyme, which have been studied in our group.
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Grb2 is an “adaptor” protein which on one side binds to the phosphotyrosine of a receptor, and on
another side to a proline-rich domain of Sos, a guanine nucleotide exchange factor of Ras. Crystals do not
diffract better than 3.1 A, and we expected a better resolution from space-grown crystals. Unfortunately,
the Grb2 samples proved to be unstable a few weeks before launch, and there was no time for another
purification process. Therefore, the corresponding APCF reactors (six) were returned to ESA, and we
focused on lysozyme crystals.

Lysozyme (14306 Da molecular weight) is a monomeric enzyme of 129 amino acids (pI 11.1)
which has been used systematically as a model by protein crystal growers over the last decade. The protein
is not glycosylated, and there is no free cysteine. There are three disulfide bridges. Its physical-chemistry
properties® and 3-dimensional structure’® °° have been thoroughly described. For the sake of clarity, we
have summarized all the space group data concerning chicken egg white lysozyme from the Brookhaven
Protein Data Bank (PDB)" (table 1). Four space groups are currently explored by several laboratories
(table 2). In SpaceHab—01, a previous flight in 1993, we studied the tetragonal form. Although results were
better than any previous ones (crystals diffracted to 1.3 A), there is no significant difference between
ground control and space experiments.'®? During the USML-2 mission, we aimed at producing large
crystals of triclinic and monoclinic chicken egg white lysozyme under a microgravity environment using
an APCF instrument for mosaicity, rocking curve and topography studies.
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PDB
code

193L
194L
1LZB
1LZA
1HEL
1LSA
1LSB
1LSC
1LSD
1LSE
1LSF
1LSM
1HEW
1HEM
1HEN
1HEQ
1HEP
1HEQ
1HER
1LZC
1LZD
1LZE
1LZG
SLYT
6LYT
1LSY
1LSN
1LSZ
2LYM
3LYM
1LYz
2LYZ
3LYZ
4LYzZ
5LYZ
6LYZ
4LYM
8LYZ
9LYZ
132L
1RCM
2LZH
1LYS
1LMA
3LYT
4LYT
1LYM
1LZH
1UCO
5LYM
1LZT
2LZT
7LYZ
THWA

space
group

U U U U U
J;AJ;EAA
W W W W ww
NN NN NN
Bl I G G W—
PN PN NN

P432 2
P44242
P43242
P43212
P45242
P4q242
P43212
P43212
P44242
P43242
P45242
P43242
P45242
P44242
P43242
P43212
P45242
P43242
P43212
P43242
P43212
P43212
P43212
P43212
P43242
P43242
P43212
P43242
P43212
P43242
P43212
P43212
P43212
P242124
P242424
P212121
P24

P24
P24
P24

P24
P24
P1

P1

P1
NMR

Table 1. Hen egg white lysozyme (Gallus Gallus).

solvent
Nb Wat

142
138

97
104
185
127
122

157

78
133

215
148
406
191

266
111
220
249

97

reso

(A)

1.33
1.40
1.50
1.60
1.70
1.70
1.70
1.70
1.70
1.70
1.70
1.70
1.75
1.80
1.80
1.80
1.80
1.80
1.80
1.80
1.80
1.80
1.80
1.90
1.90
1.90
1.90
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
210
2.50
2.50
1.80
1.90
6.00
1.72
1.75
1.90
1.90
2.50
6.00
2.00
1.80
1.97
1.97
2.50

comments

SpaceHab-01 ground control
SpaceHab-01 space experiment
+ tri-N-acetylchitotriose

recombinant form

120 K

180 K

250K

280 K

295K

95K

mutant (155L, S91T, D101S)

+ tri-N-acetylchitotriose

mutant (S91T)

mutant (155V, S91T)

mutant (155V)

mutant (T40S, 155V, S91T)
mutant (T40S, S91T)

mutant (T40S)

+ tetra-N-acetylchitotetraose
mutant (W62Y)

mutant (W62Y) + tri-N-acetylchitotriose
mutant (W62F) + tri-N-acetylchitotriose
100K

298K

mutant (D52S)

mutant (155L, S91T, D101S)
mutant (D52S) + product GIcNAc4
1 atm - 1.4 M NaCl

1000 atm - 1.4 M NaCl

set W2

set RS5D - different refinement
set RS6A - different refinement
set RS9A - different refinement
set RS12A - different refinement
set RS16 - different refinement
low humidity form
jodine-inactivated

nam-nag-nam substrate only
reductively-methylated lysines
partially reduced,carboxymethylated
carbon alpha atoms only

313K

low humidity form - 2 nitrates
100K

298K

carbon alpha atoms only
6 nitrates
9 nitrates

NMR, minimized average

references

(Vaney et al., 1996)
(Vaney et al., 1996)
(Maenaka et al., 1995)
(Maenaka et al., 1995)
(Wilson et al., 1992)
(Kurinov et al., 1995)
(Kurinov et al., 1995)
(Kurinov et al., 1995)
(Kurinov et al., 1995)
(Kurinov et al., 1995)
(Kurinov et al., 1995)
(Shih et al., 1995)
(Cheetham et al., 1992)
(Wilson et al., 1992)
(Wilson et al., 1992)
(Wilson et al., 1992)
(Wilson et al., 1992)
(Wilson et al., 1992)
(Wilson et al., 1992)
(Maenaka et al., 1995)
(Maenaka et al., 1995)
(Maenaka et al., 1995)
(Maenaka et al., 1995)
(Young et al., 1994)
(Young et al., 1994)
(Hadfield et al., 1994)
(Shih et al., 1995)
(Hadfield et al., 1994)
(Kundrot et al., 1987) -
(Kundrot et al., 1987)
(Diamond, 1974)
(Diamond, 1974)
(Diamond, 1974)
(Diamond, 1974)
(Diamond, 1974)
(Diamond, 1974)
(Kodandapani et al., 1990)
(Beddell et al., 1975)

(Kelly etal., 1979)
(Rypniewski et al., 1993)
(Hill et al., 1993)
(Artymiuk et al., 1982)
(Harata, 1994)
(Madhusudan et al., 1993)
(Young et al., 1993)
(Young et al., 1993)

(Rao et al., 1983)
(Artymiuk et al., 1982)
(Nagendra et al., 1996)
(Rao et al., 1996)
(Hodsdon et al., 1990)
(Ramanadham et al., 1990)
(Herzberg et al., 1976)
(Smith et al., 1993)
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Table 2. List of international laboratories involved in crystallographic lysozyme studies.

Space group Resolution Mosaicity
Triclinic Gif, Hamburg Gif, Paris
Monoclinic Gif, Gif, Paris
Othorhombic Gif, Daresbury Gif, Paris
Tetragonal Gif, Daresbury Gif, Paris, ESRF, Huntsville, Granada
Gif: LEBS CNRS (France)

Paris: LMCP CNRS (France)

ESRF: Grenoble (France)

Daresbury Chemistry Dept., Manchester (UK)

Granada IACT CSIC (Spain)

Huntsville CMMR and NASA, Huntsville (USA)

2. RESULTS
2.1 Crystallization

A set of five FID reactors each containing 450—l lysozyme solutions were used for dialysis tech-
nique. The reactors were filled in Strasbourg (France) on September 19, 1995, according to table 3.

Table 3. Crystallization conditions (T for triclinic and M for monoclinic).

T T2 M3 M4 M5
Nominal final concentration 158 158 295 295 295
of NaNO, (mM)
Protein (450 pl) lyso/Tp 10y 10y 12y 10y 8y

NaNO,/Tp 450 mM 450 mM 0 0 0
Piston (235 pl) NaNO./Tp 0 0 340 mM 340 mM 340 mM
Reservoir (598 wl) NaNQ,/Tp 0 0 500 mM 500 mM 500 mM
2.2 Mission

Ground controls were run in parallel in our laboratory using spare reactors. A temperature of 4 °C
was selected for transportation of the flight reactors to KSC. All reactors were activated on October 20
after several launch delays. The protein is extremely stable, and this property has been very useful in the
present case of repeated launch delays. The active crystallization experiments were performed at 18 °C.
The microgravity experiments flew during the 16-day USML—-2 mission of the Shuttle Columbia which
landed on November 5. Two days after landing, the reactors were recovered and analyzed in France. Tem-
perature was continuously recorded in the APCF unit and in the transport containers from the time of
reactor filling to that of crystal recovery in Europe.
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2.3 Analysis

Crystals of both monoclinic and triclinic Iysozyme were immediately mounted in glass capillaries
and were submitted to x-ray radiation for diffraction limits. First of all, it should be noted that using
synchrotron radiation instead of a rotating anode is generally a major parameter improving resolution. This
is true for lysozyme and most proteins. All the crystals were analyzed at 4 °C on the wiggler beam line
DW32'2 at LURE (Synchrotron, Orsay, France) using a wavelength of 0.981 A and a Mar-Research image
plate system (diameter of the plate is 300 mm). Crystal to detector distance was 100 mm. Because synchro-
tron beam time allowance was limited, it was not possible to record full data sets for all crystals, and we
verified that for partial data sets the quantity of data recorded in reciprocal space was large enough to give
a number of unique reflections and a completeness statistically significant. For each crystal a partial data
set was recorded in order to analyze statistically the difference of diffraction quality between them. As
lysozyme crystals proved to be homogenous in function of the analyzed orientation, a continuous range
(rotation of 20°) of reciprocal space was recorded for all crystals. Data treatment convinced us that it is
better to perform a continuous rotation rather than sampling with small rotations in different zones of
reciprocal space.

2.4 APCF performance
The postflight controls revealed the following:

» The reactors did not leak, as final salt concentrations were nominal;
» Temperature recorded data was nominal (18 °C);

» pH was close to nominal for the five reactors; and

« Crystals grew 1n all reactors (flight and ground controls).

Therefore, the APCF device proved to work successfully as concerning activation, deactivation,
equilibration of protein/reservoir solution, leaking, and thermal regulation. As concerning video recording,
a technical problem prevented recording and therefore analysis.

2.5 Crystal quality
Unit cell is a=34.2, b=31.8, c=27.1 A, a=111.6, p=108.3, y=88.8° for the triclinic crystals belong-
ing to the space group P1 with one molecule in the asymmetric unit. For the P2, monoclinic form, crystals
(fig. 1) belong to space group P2 with a=27.96, b=60.61, c=62.94 A, B=90.82° and two molecules in the

asymmetric unit. Ground- and microgravity-grown crystals are isomorphous.

It is to be noted that visual inspection of digitized images of diffracted intensities gives a fairly
close approximation of resolution limit.
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The best resolution is 1.45 A for both monoclinic and triclinic microgravity and ground crystals
which is better than any published values. Because the highest resolution of monoclinic HEW lysozyme
deposited at the PDB is 1.72 A resolution (table 1), it was decided to collect a full data set with a microgravity-
grown crystal and refine the structure. As far as the triclinic crystals are concerned, the highest resolution
deposited at the PDB is 1.97 A, but it was known (Keith Wilson, private communication) that ground
crystals diffracting up to 0.99 A resolution were analyzed at the EMBL out-station in Hamburg. Therefore,
only partial data were collected but proved to be difficult to process.

2.6 Mosaicity

Ground crystals of monoclinic and triclinic lysozyme crystals were analyzed using the quasi-planar
wave produced by a four-reflection monolithic Si crystal on the standing wave station'* D25B at LURE-
DCI (France). Ground crystals of both monoclinic and especially triclinic crystals displayed a surprisingly
large mosaicity of the order of a tenth of a degree.

Unfortunately, beam time was not available when we mounted microgravity-grown crystals. The
experiment should be repeated with freshly grown crystals.

3. CONCLUSION

Lysozyme proved to be a good candidate for the understanding of the influence of microgravity for
protein crystal growth. Polymorphic crystal forms display a variety of behavior for resolution and mosaicity
and this should help to answer the question of a putative correlation between these two parameters. Fur-
thermore, because the different space groups observed for lysozyme crystals are generally correlated to the
chemical nature of the crystallizing agent, we intend to uncouple the influence of microgravity from the
chemical one.
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Figure 1. Crystals of triclinic lysozyme (a) and monoclinic lysozyme (b).
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1. PURPOSE

Ribonucleic acids (RNA's) are essential macromolecules in living cells because they can assume
not only structural functions (in the ribosomes) but also enzymatic functions (ribozymes) and can act as
carriers of genetic information. This diversity has led to a new research field, called RNA-technologies, in
which the structural and functional potentials of RNA are used in the areas of molecular biology, biotech-
nology, and medical diagnostics and therapy. To develop the RNA-technologies, it is essential that the
structures of RNA molecules be determined at atomic resolution. The large size of RNA molecules limits
structural determination to x-ray crystallography. One problem with the x-ray method is that it requires
crystals of suitable size and quality for successful analysis. It is known that more than 20 different param-
eters influence the crystallization of biological molecules. Gravity is one of these influencing factors.

The goal of this APCF project was to analyze the influence of gravity on the crystallization of RNA
molecules. The RNA molecules chosen for this study are ribosomal 5S RNA’s (5S rRNA’s) from Thermus
flavus. The 5S rRNA molecules are essential components of the ribosomes, which are large RNA-protein
complexes responsible for the synthesis of all cellular proteins. Since the 5S rRNA crystals obtained so far
have exhibited a resolution of only 8 A, which is not enough for x-ray analysis, the USML-2 experiment
was designed to improve the quality of these crystals and to determine whether this improvement can be
achieved under microgravity conditions.

2. METHOD

The crystallization experiments performed during the USML-2 mission consisted of Thermus flavus
5S rRNA species, which had been engineered at their 3'- and 5'-ends in such a way that their structures
were more stable than the wild-type molecule. It was anticipated that the structurally stabilized 5S rRNA
variants would be better suited for the crystallization and x-ray analysis.

The crystallization experiments were performed in five APCF reactor chambers (15-pl volume).
The crystallization method used was microdialysis.
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3. RESULTS

Of the five crystallization experiments performed, three yielded crystals. The crystals obtained
were larger in size and more numerous than those obtained in simultaneous ground-control experiments.
The largest space-grown crystals exhibited a length of 0.7 mm. In the ground-control experiments, only
two chambers yielded crystals. These were smaller in size and less numerous than those grown in space.
The largest crystal had a length of 0.45 mm. Figure 1 shows samples of the ground- and space-grown
crystals.

All crystals were analyzed by synchrotron radiation at the DESY facility in Hamburg, Germany, 6
days after landing. Both space and ground-control crystals exhibited a resolution of 13 A.

4. PRELIMINARY CONCLUSIONS

The results show that the crystallizations performed in space yielded more and larger crystals than
those in the ground experiments. The fact that the space crystals did not exhibit a better resolution by x-ray
analysis may be connected to the last launch delay. During the 7-day delay, the RNA samples were stored
at 20 °C. Ground-control studies have shown that an 11-day storage period at 20 °C caused a yield in only
two of five crystal growth chambers. Storage at that temperature for 4 days has shown crystal growth in
four of five chambers. The results, therefore, imply that an extended storage of the RNA molecules at 20 °C
will have a negative effect upon the crystallization process. Better results are anticipated in future missions
in which the nominal period of storage (4 days) is not exceeded.
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Figure 1. Crystals obtained from Thermus flavus engineered 5S rRNA molecules grown under microgravity
conditions (a) and in a laboratory control experiment (b).
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COMPARATIVE ASSESSMENT OF MICROGRAVITY- AND EARTH-GROWN CRYSTALS
THAUMATIN AND ASPARTYL-tRNA SYNTHETASE

Joseph D. Ng
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Richard Giegé
UPR 9002 IBMC du CNRS
15 rue Descartes
F-67084 Strasbourg Cedex, France

The plant sweetening protein, thaumatin, from Thaumatococcus daniellii (molecular weight of
25kD)" and the thermophilic aspartyl-tRNA synthetase (ttAspRS) from Thermus thermophilus (molecular
weight of 120 kD)* were studied here as model proteins for crystallization under microgravity aboard the
U.S. Space Shuttle mission USML-2 (STS-73). Following retrieval of the samples, postflight microscopy
and x-ray analyses were carried out on the crystals grown in microgravity and on ground controls prepared
in parallel. We have evaluated and compared the quality of space- and Earth-grown thaumatin crystals for
x-ray diffraction studies characterized by size, relative plots of I/sigma versus resolution, and mosaicity.

1. CRYSTALLIZATION APPARATUS AND CONDITIONS USED

We have utilized dialysis liquid diffusion reactors (DIA) for crystallization within the Advanced
Protein Crystallization Facility (APCF) developed by Dornier Deutsch Aerospace® * aboard the Space
Shuttle. The dialysis reactor consists of two quartz glass blocks separated by a dialysis membrane. The
upper block contains the protein solution (67 pl or 188 ul), the lower block, the salt solution. A cylindrical
quartz glass plug containing a buffer solution separates the salt and buffer chambers. Upon rotation of the
glass plug, all chambers become open and all volumes then come into contact. Likewise, the plug is rotated
back during deactivation before returning to Earth. Reactors for space and ground controls were prepared
in exactly the same manner and underwent the exact same transport and prelaunch conditions (including
any delay in launch time). The DIA ground control reactors were also activated for the same period of time
as the ones that were launched in space in parallel with the time of flight.

1.1 Thaumatin

Thaumatin was purchased from Sigma (St. Louis, MO). A single batch (Cat. No. T-7638, lot
108F0299) of dry protein powder was used. The protein was dissolved in a buffer prepared with 0.1M N-
[2-acetamido]-2 iminodiacetic acid (ADA) (Cat. No. A-98883, lot 92H5635, Sigma) adjusted at pH with
NaOH to a protein concentration between 6-20 mg/ml. For crystallization, the precipitant stock solution
was 1.6M sodium DL t-tartaric acid (Cat. No. T-5259, lot 101H0695, Sigma) in 0.1M ADA titrated with
NaOH to pH 6.5. All solutions were prepared with ultrapure sterile water (Fresenius, Louviers, France) and
sterilized by filtration through 0.22-um pore size membranes (Millex, Millipore). A concentrated stock
solution of thaumatin was freshly prepared by adding 1 ml of ADA buffer pH 6.5 to 100 mg protein
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powder. After dissolution, the solution was centrifuged for 20 min at 15,000 g. The supernatant was filtered
through 0.22-um Utrafree low binding membranes (Cat. No. UFC# 0GV 00, Millipore). The protein con-
centration was calculated from the UV absorbance of a 1/250 dilution using a molar extinction coefficient
of 28,270 (based on the tryptophan and tyrosine content).

Five APCF dialysis (DIA) reactors were used to investigate crystal growth under microgravity
conditions. These include four 188-ul DIA reactors, each one containing thaumatin solutions in the pro-
tein, buffer, piston T-type, and salt chambers. A 67-ul DIA reactor with the same chamber components also
was used, but it included different protein concentrations. Ground controls for all DIA reactors were pre-
pared in exactly the same manner as the microgravity experiments and underwent the exact same transport
and prelaunch conditions, including the launch delay time.

1.2 Aspartyl-tRNA Synthetase

Thermophilic AspRS has been cloned and overexpressed in E. coli. The protein was purified in a
three-step procedure, including a flocculation at 70 °C and two chromatographies on DEAE-cellulose and
hydroxyapatite columns. Starting with 50 g of overexpressing E. coli cells yields about 50 mg of pure
enzyme. As estimated by activity assays, gel electrophoresis, and dynamic light scattering, the enzyme is
pure and conformationally homogeneous.

AspRS was prepared in three 67-ul dialysis and two 80-ul hanging droplet reactors. The dialysis
reactors were prepared as described above. The protein chamber contained 10 mg/ml in 5-percent satu-
rated sodium formate in 25 mM Tris-HCI pH 7.5, 1 mM MgCl_, and 0.1 mM EDTA. The buffer volume
contained the same reagent as the protein chamber without the enzyme. The piston and salt chambers
contained 30-percent, 35-percent, and 40-percent saturated sodium formate in 25 mM Tris-HCI pH 7.5,
1 mM MgCl,, and 0.1 mM EDTA in each respective reactor. In the hanging droplet reactors, 10 mg/ml of
AspRS in 12.5-percent and 15-percent saturated sodium formate mixed with 25 mM Tris-HCI pH 7.5, 1
mM MgCl,, and 0.1 mM EDTA were set to equilibrate to 25-percent and 30-percent saturated sodium
formate respectively in the two separate hanging drop reactors.

2. X-RAY INTENSITY MEASUREMENTS

Three—dimensional x-ray data were collected at the EMBL Outstation DESY, Hamburg, Germany,
on beam line X11 using a MAR Research image plate. Complete data sets of space thaumatin crystals and
their corresponding Earth controls were obtained using crystals of same size and volume. Data were col-
lected at 20 °C with a crystal-to-detector distance of 250 mm. Oscillation angles of 0.5° were used with an
x-ray wavelength of approximately 0.91 A with exposure time varying from 20 to 30 sec. Data collection
was evaluated on line with the programs DENZO and SCALEPACK? at the DESY synchrotron station.
Both Earth- and microgravity-grown crystals were collected to 1.6 A with R_ . ranging from 0.025 to
0.115 to the limits of resolution of the data set for reflections having an I/c greater than 3.

Laue diffraction patterns have been recorded with synchrotron radiation at the same facility as
previously described above for two microgravity- and two Earth-grown crystals. The Laue geometry is
particularly sensitive to mosaic spread and a relationship between mosaic spread and Laue spot extension
was deduced. The reflection profile was used to make deductions about the mosaic spread and its unifor-
mity. Medium intensity diffraction spots were collected in all cases to avoid any flaring of spots.
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3. RESULTS AND DICSUSSION
3.1 Thaumatin
3.1.1 Visual and Microscopic Observations

The number and sizes of crystals were assessed with an optical microscope and are summarized in
table 1. Each of the flight reactors contained 30 to 250 crystals having a size range of 0.4 mm to 1.8 mm.
The corresponding ground control reactors contained approximately 550 to more than 1,000 crystals hav-
ing a size of 0.1 mm to 0.9 mm. Figures 1 and 2 contain representative photographs of the microgravity-
grown crystals compared to corresponding Earth-grown crystals. The average length or volume of protein
crystals grown under microgravity was approximately 5 times larger with about 100 times less nucleation
than to their corresponding Earth control crystals.

Table 1. Number and size of space- and Earth-grown crystals in APCF dialysis reactors.

Space Corresponding Earth Controls
Average Size (mm) Average Size (mm)
Reactor No. of Crystals (longest dimensions) | No. of Crystals (longest dimensions)
(Protein chamber size)
1 (67 ul) 30 1.5 550 0.8
2 (188 pl) 150 0.6 1,000+ 0.1
3 (188 ul) 50 0.6 1,000+ 0.1
4 (188 ul) 275 05 1,000+ 01
5 (188 ul) 150 05 1,000+ 0.1

Reactors containing more than 1,000 crystals are noted as 1,000+. The number of crystals exceeding
over 1,000 could not be measured with high accuracy; therefore, a more precise number was not indicated
in these reactors.

Visually, the quality of the crystals, particularly those growing free of any surfaces and including
the largest, was very high. They appeared virtually flawless, with no observable imperfections, striations,
or habit anomalies. Crystals attached to the cell walls (and which presumably nucleated there) did show
defects near the sites of growth initiation but became flawless as growth proceeded into the bulk solution.

3.1.2 X-ray Intensity Measurements

Thaumatin crystals obtained on Earth and in space are tetragonal having space group P4 2 2 with
unit cell dimensions of a= b=58.6 A, c= 151.8 A, a=p=y=90°. A complete data set from a crystal grown in
microgravity was analyzed by comparing the average intensities divided by their estimated error (I/c) as a
function of resolution along with comparable data from the Earth-grown control (fig. 2). The amount of
data greater than 3¢ (the average I/c in all resolution ranges) was better by a considerable extent for the
microgravity crystal than for that grown on Earth. Both Earth and space crystals diffract easily beyond
1.6 A with the inclination of the space-grown crystal to extend to higher resolution. The true limit of
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resolution for microgravity crystals was never measured in this analysis because technical constraints
prevented collection of data beyond 4.6 A resolution. These results are similar in most cases to other
protein crystals grown in microgravity.®’

We have performed mosaicity studies on the thaumatin crystals grown in space in comparison to
those obtained on Earth to see if there is any direct association between improved I/c values for weak
reflections with the mosaic properties in the crystals. Representative samples of reflections at various
Bragg angles were scanned, and the full widths at half maximum intensity were quantified (table 2). Crys-
tals grown in space have lower mosaicity than those grown in laboratories on the ground. These measure-
ments were made on a synchrotron beam line assumed to have an almost parallel beam, such that the
angular width of the diffraction profile would be dominated by the mosaicity of the crystal rather than the
x-ray beam divergence or spectral spread.

Table 2. Crystal mosaicities estimated from Laue spot sizes.

EARTH 1 EARTH 2 SPACE 1 SPACE 2
n 0.0081 0.0075 0.0049 0.0035
dev. 0.0003 0.0005 0.0006 0.0007
spots 10 9 12 1

Reflection spot sizes were converted to mosaic spread values, 1 according to the formula (Andrews,
Hails, Harding & Cruichshank, 1987) A . = 2nDicos?2@where A, is the spot size, with the direct

beam size at the detector subtracted out, D is the crystal-to-detector distance and the O Bragg angle of
a Laue spot.

radial

3.2 Thermophilic Aspartyl-tRNA Synthetase

None of the reactors that contained AspRS contained any crystals of diffractable size. Most of the
reactors contained slight precipitation, and in one of the dialysis reactors, very small crystals were ob-
served. These small crystals had an estimated size of less than 0.050 mm. We have speculated that the
activity of this particular enzyme did not withstand the flight delay of this mission. Even though AspRS-is
known to retain its activity longer than most enzymes, the observation of precipitation suggests that the
protein had denatured during the extended delay. This was also observed in the ground-control reactors
where the preactivation and activation conditions were treated as identically as possible. Earlier ground-
control tests did produce crystals under the same crystallization conditions, where the duration of the
preactivation step was not as long.

4. CONCLUSION

The improvement of mosaicity in space-grown crystals over Earth-grown is certainly linked to the
improved I/c values for all reflections. The most striking observation is that the increase in peak count is
more than expected from the consideration of crystal volume. Overall, our observations here with thaumatin
indicate that its crystal growth is more favorable in a gravity-free environment. In a practical sense, these
studies contribute to the understanding and improvement of measuring weak reflections such as that occur-
ring at high diffraction resolution for structure determination.
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Apart from lysozyme, no other protein has been used to investigate the direct mosaicity differences
between Earth-grown and space-grown crystals. We show here the mosaicity values of microgravity-grown
thaumatin are improved by about a factor of two over the Earth-grown control values. This is comparable
to what has been observed for tetragonal lysozyme where space-grown crystals were improved by a factor
of three over its corresponding Earth control.®” ' It is evident that the decrease in mosaicity values ob-
served in the thaumatin space-grown crystals is accompanied by a reduction in the number of mosaic
blocks in a crystal. Further investigations with thaumatin and other proteins are needed to determine whether
crystals grown under nonconvective flow environment (e.g., microgravity, gels) can be consistently corre-
lated to their smaller mosaic spread.

The general conclusion for thaumatin crystal growth is that microgravity provides better looking
and higher crystallographic quality crystals as judged by their intensity of diffraction and mosacity.

The data reported here have contributed to a formal publication'’.
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Figure |
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. Comparison of thaumatin crystals grown on Earth (a-c) to those grown in microgravity (d-f).

Only the protein containing chambers of the reactors are shown, and those seen here represent
what is typically observed in the 188-ul volume APCF dialysis reactors with low concentrations
of thaumatin (6 mg/ml). Numerous and extremely small crystals are observed in the ground
controls compared to only a few larger crystals in space. The average longest dimensions mea-
sured for crystals grown on Earth and in space were 0.1 mm and 0.5 mm, respectively. All images
are at the same magnification.



Figure 2. Earth-grown thaumatin crystals (a) compared to space-grown crystals (b) in a 67-pl volume
APCEF dialysis reactor. The images show the protein chambers containing crystals grown at high
concentrations of thaumatin (20 mg/ml). Crystals grown on Earth ranged in size from 0.1 mm to
[.2 mm in the longest dimensions, and most of the crystals are seen to have sedimented to the
bottom membrane. Space-grown crystals, on the other hand, grew with a size range of 0.5 mm to
[.7 mm from apex to apex. Fewer and larger crystals were observed in this space reactor than for
the corresponding Earth-control reactor.
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Figure 3. Graph of the intensity (/) versus estimated error (o) ratio as a function of resolution [1/d (A?)] for
thaumatin Earth- and space-grown crystals.
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1. INTRODUCTION

The de novo design of proteins is an original and promising approach to elucidate the forces stabi-
lizing well-defined protein tertiary structures. Determination of de novo structures using x-ray crystallog-
raphy provides the most critical test for the concepts and principles used to guide protein design.

To date, two generations of octarellins, artificial proteins modeled on the o/B-barrel fold, were
completed in our laboratory."* * Octarellins I and II exhibit an eight-fold symmetry, since a basic motif
(loop—B-strand—loop—oi-helix) is repeated eight times; while in octarellin III, the B-strands exhibit a four-
fold symmetry. All attempts to crystallize octarellin I, generated during the first design cycle, failed, and
the low compactness of this protein was believed to be the main reason why it was so hard to crystallize.
This is why the major aim when designing octarellins II and III, which belong to the second generation of
artificial proteins, was to improve the proteins’ compactness and solubility. Spectroscopic and biophysic
characterizations revealed that both octarellins II and III are more compact and soluble than octarellin I.?
Octarellin II, which is only marginally stable, binds the hydrophobic probe ANS and exhibits no CD signal
in the near-UV. On the contrary, octarellin III exhibits a high conformational stability and has a character-
istic CD signal in the near-UV. Preliminary crystallization experiments were performed on octarellin II,
notably during the IML-2 flight of July 1994. Very small crystals, unsuitable for data collection, were
obtained and used as seeds for further crystallization experiments.

To determine the structural parameters leading to stable o/p-barrel folds, two natural proteins were
also included in these crystallization experiments. Both are triosephosphate isomerases (TIM’s), dimeric
enzymes composed of two identical o/B-barrel monomers. The first one is a mutant of human TIM (hTIM),
engineered to form a stable monomeric o/B-barrel protein.* > The second is TIM from the hyperthermophilic
bacterium Thermotoga maritima. Analysis of these o/B tridimensional structures (a monomeric and a ther-
mostable TIM barrel) will contribute to the design of more stable “octarellin folds.”
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2. OBJECTIVE

The objective of the microgravity experiments performed during the USML-2 flight was to pursue
the crystallization of both natural and de novo designed o/B-barrel structures. Crystallization of octarellin
IT was continued on the basis of the experimental conditions previously selected. Since octarellin III dis-
plays the best structural characterizations among the three artificial proteins, determination of its 3-dimen-
sional structure appears to be of the highest interest and was initiated. Crystallization of Thermotoga mar-
itima TIM and of the stable, monomeric mutant of human TIM was also initiated, to determine the struc-
tural parameters leading to a stable o/f-barrel fold. By including TIM crystallization trials, our aim was to
obtain a set of data concerning a native o/fB-barrel for use as a reference with which to compare the space-
collected data of octarellins.

3. PROCEDURE

The production and thorough purification of large amounts of the various proteins to be studied
were performed in the Liege-based laboratory. Preliminary crystallization assays were performed in Pr.
Wijns’ laboratory (University of Brussels, Belgium). Based on this screening, various conditions were
selected for the hanging drop and FID reactors.

4. RESULTS
Reactors Experimental conditions Observations and results
FID 312 Protein chamber: Needle-shaped micro-crystals
200 ul Octarellin II: 10.1 OD (fig. 1)

Bottom solution:
295 ul of 8—percent PEG 6000;
100 mM Tris/HCI, pH 8.5

HD 107 Protein drop: No crystals obtained
80 ul 12 ul of Octarellin III (5 mg/ml)
in Tris/HCI 50 mM pH 8 + 68 ul

bottom solution
Bottom solution:
25-percent PEG 5000;
0.01M NiZnSO,;

100 mM MES pH 6.5
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HD 184 Protein drop: Many small and very regular
80 ul 40 wl of Thermotoga maritima TIM crystals (fig. 2)
Video (1.6 mg/ml) in Triethanolamine/HCI

100 mM pH 7.6 + 40 ul bottom solution

Bottom solution:

2-percent PEG 400;

2M (NH,),SO,;

100 mM HEPES pH 7.5
FID 305 Protein chamber: Very small needle-shaped
200 ul hTIM: 14.02 OD crystals
Video Bottom solution + salt chamber:

295 ul of 15—percent PEG 5000;
100 mM MES pH 6.5

FiD 311 Protein chamber: Very small needle-shaped
200 ul monomeric hTIM mutant: 2.26 OD crystals

Bottom solution + salt chamber:

295 ul of 15-percent PEG 5000;

100 mM MES pH 6.5

5. CONCLUSIONS
The most significant results were obtained with octarellin II and Thermotoga maritima TIM.

Needle-shaped microcrystals of octarellin II were obtained in the space reactor (fig. 1) as well as in
the Earth control. They were investigated at the synchrotron in Grenoble. In addition to this, three small
crystals (10 microns) grown on Earth were found to diffract to below 3 A and were quite resistant to
radiation damage. With these three crystals, 70 percent of data were collected. The results obtained through
this project should be of considerable impact since no artificial protein with the size of octarellins has been
crystallized to date. What’s more, this project should enable us to integrate the tridimensional structural
data obtained through the building of a third generation of octarellins.

Many small and very regular crystals of Thermotoga maritima TIM were obtained in the space
reactor (fig. 2). They were used for diffraction assays at the synchrotron in Grenoble and were found to
diffract to a resolution of 3 A. Crystals were also obtained in the ground control reactor (HD 102). We
noted two different morphologies—a lot of needle-shaped crystals and some rare regular crystals bigger
than those obtained in space. The latter diffracted up to 2.3 A. All these crystals were very sensitive to
radiation damage. As a result, only a partial data set was collected.

For hTIM and the monomeric hTIM mutant, very irregular, needle-shaped crystals were obtained.
They were unsuitable for data collection.
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