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This proposal was to observe the luminous radio-loud quasar 3C351 with the ROSAT

PSPC to study the ionized absorption along its line of sight. More in general, we used these

data, together with ROSAT archive data, to address the problem of photoionization equilib-

rium. Standard ionized absorber models assume photoionization equilibrium in a gas cloud

at constant temperature and density. These models often fails to describe the complexity of

the observed X-ray spectra. We developed more complete and complex models investigating

the possibility that collisional ionization or mixed photoionization and collisional ionization

are at work, and the possibility of time evolving photoionization. We applied these models to

the ROSAT observations of 3C351 and the low luminosity, rapidly variable, Seyfert 1 galaxy

NGC4051. We found that the absorber in 3C351 is probably in photoionization equilibrium

while that of NGC4051 is far from equilibrium and the gas response to the X-ray source

variability is smoothed and delayed. From these delays we could estimate the gas density

and its distance from the X-ray source.

These studies and the ROSAT observation are reported in two papers published in The

Astrophysical Journal (here included) and in several Conference contribution papers.
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ABSTRACT

We present two ROSAT PSPC observations of the radio-loud, lobe-dominated

quasar 3C 351, which shows an 'ionized absorber' in its X-ray spectrum. The

factor 1.7 change in flux in the -,_2 years between the observations allows a test

of models for this ionized absorber.

The absorption feature at _ 0.7 keV (quasar trame) is present in both

spectra but with a lower optical depth when the source intensity - and hence the

ionizing flux at the absorber - is higher, in accordance with a simple, single-zone,

equilibrium photoionization model. Detailed modeling confirms this agrement

quantitatively. The maximum response time of 2 2'ears allows us to limit the

gas density: ne > 2 x 10 4 cm-3; and the distanc_ of the ionized gas from

the central source R < 19 pc. This produces a str)ng test for a photoionized

absorber in 3C 351: a factor 2 flux change in ,-_1 week in this source must show

non-equilibrium effects in the ionized absorber.
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1. INTRODUCTION

The most luminous known AGN with an ionized absorberis the radio-loud lobe-
dominated 1 quasar3C351 (L0.1-2kev= 2.3 x 104_erg s-1, z=0.371, Fiore et al., 1993).
Ionized absorbersarecommonin low redshift, low luminosity Seyfert 1 galaxies(Reynolds,
1997),but rare in higher redshift, higher luminosity quasars. High luminosity AGNs are
very likely physically larger and so may exhibit slowertime variability and have different
physical conditions. 3C 351hasa very high UV to X-ray ratio (o*ox = 1.55,Tanambaunet
al., 1989)and its IR to UV spectrumdoesnot showany evidenceof reddening, in contrast
to severallow redshift Seyfert 1 galaxiesthought to host dusty/warm absorbers2 Only
two other radio-loud quasars,3C 212(Mathur et al., 1994)and 3C 273 (Grandi et al, 1997),
havecandidate ionized absorbers.

The main absorption feature in the ROSAT PSPCX-ray spectrumof 3C 351is a deep
edgeat --, 0.7 keV (quasar frame), which is likely to be due to OVII-OVIII. Mathur et al.

(1994) built a simple one-zone model of this absorber that also explained the OVI, CIV and

Lya UV absorption lines seen in a nearly simultaneous HST FOS spectrum. Such simple

models, although elegant, have come under criticism. Ionized absorbers in some Seyfert

galaxies show different variability behavior in different absorption features, some of which

are not as predicted for gas in photoionization equilibrium. Multiple absorbing zones have

been introduced to explain these effects (e.g. Reynolds 1997). In another paper (Nicastro et

al., 1998) we instead explore additional physics (non-equilibrium photonionization models

and collisional models) while retaining a single zone of absorbing gas. 3C 351 is a relatively

slowly varying source, compared to the rapidly variable Seyfert with warm absorbers. This

persistent variability on timescales that span possible ionization and recombination times

makes it hard to define an initial equilibrium state. In contrast 3C 351 presents a simplified

situation in which to study changes in the ionization state in response to luminosity

changes. Here we show that in 3C 351 at least the simplest photoionization equilibrium,

single zone model continues to be sufficient.

3C351 was observed twice by ROSAT, on 1991 October and 1993 August. The first

observation was reported by Fiore et al. (1993). The second observation was then proposed

in order to search for time variability that could test photoionization models. Fortunately a

factor 1.7 decrease in the PSPC count rate was seen, providing just such a test. Here we

present the second data set and compare the results with predictions.

lonly 0.65 % of the flux density is contained in the compact core at 6 cm, (Kellerman et al., 1989).

"i.e. IRAS 13349+2438, Brandt et al., 1996, 1997; IRAS 17020+4544, Leighly et al., 1997, Komossa K:

Bade, 1998; MCG-6-30-15, Reynolds et al., 1997.
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2. Observations and Data Analysis

We considered the two PSPC observations of 3C351 taken roughly two years apart, in

1991 October and 1993 August. Table 1 gives, for each observation, the observation date,

its duration, the net exposure time, the net source counts, the count rate, and the signal to

noise ratio. The data reduction and the timing analysis were performed using XSELECT.

We reduced the second PSPC observation of 3C351 following the procedures used in

Fiore et al. (1993) for the first observation. For the first observation we used the spectrum

and light curve obtained by Fiore et al. (1993). The source intensity was consistent with a

constant value during both PSPC observations, with no more than 20% change in the --, 2

day and -,, 13 day spans of the two observations. 3C 351 thus appears more stable than the

lower luminosity seyferts with ionized absorber (Reynolds, 1997). Since 3C 351 has a flat

X-ray spectrum and broad optical emission lines it is consistent with the trend exhibited

by the three similar but radio-quiet, PG quasars of the Fiore et al. (1998) sample. Those

quasars show little or no variability on timescales as short as 10 days (compared to the

narrow line objects of that sample which are rapidly variable and have steep X-ray spectra).

However the mean count rate dropped by a factor ,,- 1." during the 22 months between

the observations (see Table 1), again consistently with the Fiore et al. (1998) discovery.

Hereinafter we shall call these the 'High' and 'Low' states, respectively.

3. Ionization Models

We produced equilibrium photoionization models an t pure collisional ionization models

using CLOUDY (version 90.01, Ferland 1996) to fit to the PSPC spectra of 3C 351. We use

a Friedman cosmology with H0 = 50 km s -I Mpc -1 and q0 = 0.1 to derive a luminosity of

L2k_" "_ 3 x 1044 erg s -1 kev -I for the quasar. This determines the distance scale in the

absorber for a given value of the ionization parameter, U.

3C 351 is a radio-loud lobe-dominated quasar and, as Fiore et al (1993) and Mathur et

Table 1: ROSAT PSPC observations of 3C 351

Start Date Duration Exposure Net Counts Count Rate S/N State ROR I
(ksec) (ksec) ct s -1

91 Oct 28 168 13.1 1390 0.1:0 31.0 High rp700439
93 Aug 23 1143 15.4 980 0.0t34 26.0 Low rp701439 J
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al (1994) have shown, the ionization state of the gas strongly depends on the spectral energy

distribution (SED) of the ionizing continuum, from radio to hard X-rays. We therefore

made our photoionization models using the observed SEDs for 3C351 (Mathur et al 1994).

We varied the ill-determined energy at which the X-ray spectrum turns up to meet the

ultraviolet using a broken power-law with a break energy from the unobserved EUV range

to well within or above the PSPC range, as in Mathur et al (1994). The low energy spectral

index is fixed by the observed flux in the UV at one end, and the break energy at the other.

The high energy spectral index above the break energy is fixed at aE = 0.9. This is typical

for lobe dominated radio loud quasars (Shastri et al., 1993). In the following we present a

spectral analysis using a photoionizing continuum with a break energy of 0.4 keV (quasar

frame) and UV-to-soft-X-ray index of aE = 1.5. We note however that this continuum

model, although providing a good description of the PSPC data, should only be thought as

one of the possible continuum parameterization connecting the UV and the soft X-ray data

of 3C 351. No break energy is required by data, which are well fitted by a simple power law

with aE = 0.9 across the whole PSPC band.

3.1. Spectral Analysis

The spectral analysis was performed using XSPEC and the latest version of the 256

channels PSPC response matrix ("pspcb_gain2_256.rsp", released on January 12, 1993).

We binned each spectrum in channels with at least 50 counts, to warrant the poissonian

statistics to be used.

We first fitted the high and low state spectra with a simple power law model reduced at

low energy by Galactic absorption (2.26 x 102o cm -2, Elvis et al., 1989). Only 2 parameters

were left free to vary: the photon spectral index F and the normalization F0. In both the

cases the X 2 is unacceptably high: X_ = 2.99 and 3.09, for 46 and 19 degree of freedom

respectively. The upper panels of Fig. 1 (a) and (b), show the data and the best fit simple

power law models folded with the PSPC response, for the High and Low state respectively

High otLow(t_ E = 1.3 and = 1.0). Lower panels show the ratio between the data and the best

fit models. The deficit of counts at ,-_ 0.6 keV (rest frame) is evident in both spectra. We

tested more complex models for the intrinsic continuum, adding a second power law, and

a low energy black body component. In the latter case the X z was still unacceptably high,

while a double power law, though producing acceptable fits by the X2 point of view, gave

uncommon spectral index values for this class of sources. Furthermore in both the cases

negative residuals were still evident around 0.6 keV (observed). Following Fiore et al.

(1993) we then interpret these features as due to a blend of OVII-OVIII absorption K-edges
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caused by ionized gas along the line of sight. A test of this by making a fit of a single

power law with a notch at 0.6 keV (observed) - a simplistic ionized absorber model - gave

acceptable X2:1.1 (45 dof) and 1.0 (18 dof) for the High and the Low state respectively.

We then fitted both spectra using the equilibrium photoionization models described

above. Only three parameters were left free to vary in the fit: the normalization (F0), the

ionization parameter U= (fl+y°°d FEdE)/(4rcR2nec) and The warm absorber column density

NH. The soft (E< 0.29 keV) and hard (0.29 < E < 2.5 keV) spectral index were fixed at

a Uy-x = 1.4 and aE = 0.9, the values of the ionizing continuum used to build the models

(see above). Table 2 gives the best fit parameters. While the best fit values of NH are

consistent with a constant value, there is marginal evidence (at the 2 a level) of variation
in U.

We then fitted the high and low state spectra simultaneously, fixing NH to the best

fit value found in the high state, since this has the best statistics. Table 2 gives again the

best fit values for U and the F0 in the two spectra (with the 90% confidence intervals for

one interesting parameter). The best fit U and F0 are linearly correlated with each other

(Figure 2), in the manner expected if the gas is in photoionization equilibrium with the

ionizing continuum . Table 2 also gives the best fit abundances of OVII and OVIII and

their ratio. The change of U translates to a factor of th'ee change in the OVII to OVIII

ratio as the source intensity drops by about 70 %.

Collisional ionization models can fit the data equally well, as they should at low column

densities (Nicastro et al., 1997). To do so however they require arbitrary changes, by a

factor 1.5 in temperature or a factor 2 in NH. Instead photoionization equilibrium models

predict the observed correlation with the ionizing contir uum. To the authors this is a

strong argument in favor of a photoionization model.

Table 2: Equilibrium Photoionization Model Fits

Spectrum Log(NH) Log(U) _F0 )c2(d.o.f.) nov111 novzu nOVHI/nOVH
High 22.14 +°14_o.1T v.,__ o.13av_+o.21 8.9_+ 1.8 0.89(45) 0.783 0.168 0.03

Low 21.89+_)._s_._ ,,._o o3onAa+o.23 5.0_+0.1 0.89(18) 0.822 0.081 0.10

High+Low 22.14 (frozen) a -za+ol-_ n nq+o.to 8 7+o.9 _ n+O.' 0.99(62)v. ''-0.09, 'J''_'-0.09 " -0.8, u'v-0.._

a in 10-5 ph s -1 cm --_ keV -1 (at 1 keV).
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Fig. 1.-- High and low state PSPC spectra of 3C 351 along with the best fit simple power law models

folded with the PSPC response (Fig. la and lb respectively, upper panels). Ratio between the data and the

best fit models (lower panels).
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Fig. 2.-- Best fit ionization parameter U versus best fit 1 keV normalizations F0 for spectra 'High' and

'Low'. The solid line shows the linear relationship U(F0) expected if photoionization equilibrium applies.
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3.2. X-ray Colors of the warm abs)rbers in 3C 351

The behavior of the main physical properties of the absorber can be seen in a

color-color diagram. In Fig. 3 we plot the hardness ratios HR=H/M against the softness

ratio SR=S/M from the count rates in three bands (S=0.15-0.58 keV, M=0.88-1.47 keV,

and H=1.69-3.40 keV, at z=0.371) for theoretical curves (for log(NH)=21, 21.5, 22 and

22.14) obtained by folding the equilibrium photoionization models (for log(U) in the range

-0.3-1.5, and Galactic NH) with the response matrix of t_ae PSPC.

The position of a point in this diagram readily gives the dominant ion in the gas.

The rapid change of SR as U increase from 0.5 to 5.5 (on the curve corresponding to

log(Ng)=22.14) corresponds to large increases of the transparency of the gas at E< 0.5

keV as H and He becomes rapidly fully ionized. As U further increases from 5.5 to 16.5

the SR color changes more slowly, and inverts its trend _tt U_,- 11, with HR now changing

more rapidly than SR. The inversion point indicates the switch from an ionization state

dominated by OVII to that dominated by OIX. In the last part of the curve as U increases,

SR and HR decrease until all the ions in the gas are fully stripped and the gas is completely

transparent to radiation of any energy.

The two data points show the two 3C 351 observations. The best fit U in the High

observation is marked on the log( NH )=22.14 curve along with the value obtained by scaling

by the intensity ratio between the two observations (a factor 1.7). The two points are

consistent with the position of the observed colors of 3C:_51 in the two observations, so the

predictions of the simple equilibrium photoionization model is consistent with the data.

4. Discussion

The as predicted change of the ionization parameter in the 3C 351 absorber to a

change in the ionizing continuum is strong evidence that photoionization is the dominant

ionization mechanism. We also see that the absorber comes to ionization equilibrium within

22 months, and can use this to constrain the physical properties of the absorber.

The time t_q measures the time the gas needs to _each equilibrium with the

instantaneous ionizing flux (Nicastro et al, 1997). This ;ime depends on the particular

ionic species considered. The ionic abundances of Oxygen in the absorber in 3C 351 are

distributed mainly between only two ionic species: OVII and OVIII. In this simple case a

useful analytical approximation for t_q is:



-8-

rv
:E

1.6

1.4

1.2

0.8

0.6

;).5

0 3C351 (Oc191)

• 3C351{Aug 93)
A U=6.0

_ U=3.5

i ,5

. 21 /I .TI.5 .J

0 1 2 3

SR

Fig. 3.-- Color-color diagram of the two observations of 3C351. Lines are theoretical photoionization

curves, built folding equilibrium photoionization models with the response matrix of the PSPC. Different

lines correspond to two different values of the gas column density: log(NH)=22.14 (solid line), log(Ng)=22

(dashed line). On each curve the ionization parameter U increases going from top to bottom. U values

are indicated on the log(NH)=22.14 line. On the same curve we mark two points: a) the best fit U to the

october 1991 observation, and b) this value scaled by the factor 1.7 (the ratio of the source fluxes).
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OVII,OVIII
(t --+t + .,.

a_(OVlI, T_),qn_ [(_¢(OVZ,T_)'_ (__alZZ_] ]
' [_,_,_(OVZl,To)/_q + _ ,,ov. ;_qj

t+At

where eq indicates the equilibrium quantities.

By requiring that t_q for OVII and OVIII species is shorter than the 4.2 × 107 s (quasar

frame) elapsed between the two observations, we can find a lower limit to the electron

density of the absorber: n_ > 2.5 x 103 cm -3. Since we know the values of U and F0, this

density limit translates into a limit on the distance of the ionized gas from the central

source, R< 50 pc.

These limits are consistent with the upper limit of ne < 5 x 107 cm -3, and R> 0.3 pc,

found by Mathur et al. (1994) using a lower limit for tl-_e distance of the cloud from the

central source, based on the absorber being outside the broad emission line region.

The relative closeness of these two limits (factor --_100) implies that a variation in

shorter times (--- 1 month), would be likely to show nol-equilibrium effects (Nicastro

et al, 1997). If a factor 2 flux change in .5<1 week showed no such effects the simplest

photoionization model would have to be abandoned.

5. Conclusion

We have tested ionization models for the ionized aksorber in 3C 351. In particular,

we tested a simple one zone photoionization equilibrium model on two PSPC spectra of

3C 351 that show a factor ,,- 2 decrease in flux. The mo(iel correctly predicts the sense and

amplitude of the observed change in the ionization state of the absorber, correlated with

the ionizing continuum flux.

Given that photoionization equilibrium applies we ,:an derive a lower limit to the

electron density of the absorber: n_ > 2.5 x 103 cm -3. :?his is consistent with the upper

limit of n_ < 5 x 107 cm -3 found by Mathur et al. (19c4). The distance of the ionized

gas from the central source is then 0.3 pc < R < 50 pc. The closeness of these two limits

creates a strong test of photoionization models: factor 2 variations in 3C 351 on timescales

of order a week must show non-equilibrium effects.
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ABSTRACT

In this paper we explore collisional ionization and time-evolving photoion-

ization in the, X-ray discovered, ionized absorbers in Seyfert galaxies. These

absorbers show temporal changes inconsistent with simple equilibrium models.

We develop a simple code to follow the temporal evolution of non-equilibrium

photoionized gas. As a result several effects appear that are easily observable;

and which, in fact, may explain otherwise paradoxical behavior.

Specifically we find that:

1. In many important astrophysical conditions IOVII, OVIII dominant; and

high (>1022Scm-2) column density) pure ccllisional and photoionization

equilibria can be distinguished with moderate spectral resolution observa-

tions, due to a strong absorption structure bet_,een 1 and 3 keV. This feature

is due mainly to iron L XVII-XIX and Neon K IX-X absorption, which is

much stronger in collisional models. This abscrption structure may be mis-

interpreted as a flattening of the intrinsic emission spectrum above ,-_ 1 keV

in low resolution data.

2. In time-evolving non-equilibrium photoionizatlon models the response of the

ionization state of the gas to sudden changes of the ionizing continuum is

smoothed and delayed at low gas densities (usually up to l0 s cm-3), even

when the luminosity increases. The recombination time can be much longer

(up to orders of magnitude) than the photoi(,nization timescale. Hence a
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photoionized absorber subject to frequent, quick, and consistent changes of

ionizing luminosity is likely to be overionized with respect to the equilibrium

ionization state.

3. If the changes of the ionizing luminosity are not instantaneous, and the

electron density is low enough (the limit depends on the average ionization

state of the gas, but is usually ,,- l0 T cm -3 to ,-_ 10s cm-3), the ionization

state of the gas can continue to increase while the source luminosity de-

creases, so a maximum in the ionization state of a given element may" occur

during a minimum of the ionizing intensity (the opposite of the prediction

of equilibrium models).

4. Different ions of different elements reach their equilibrium configuration on

different time-scales, so models in which all ions of all elements are in pho-

toionization equilibrium so often fail to describe AGN spectral evolution.

These properties are similar to those seen in several ionized absorbers in
J

AGN, properties which had hitherto been puzzling. We applied these models to

a high S/N ROSAT PSPC observation of the Seyfert 1 galaxy NGC 4051. The

compressed dynamical range of variation of the ionization parameter U and the

ionization delays seen in the ROSAT observations of NGC 4051 may be simply

explained by non-equilibrium photoionization model, giving well constrained pa-

t1 0+1.2_ 0 s +0.s0 1016 (--_ 3 lightrameters: ne = _ - -0.s) × 1 cm -3, and R= (0.74_0.40) × cm

days).
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1. INTRODUCTION

The detection and the study of ionized absorbersis more difficult than that of cold
neutral absorbers,but can yield much more detailed information about the nature of the
absorbersand the state and geometry of the nuclear regionsof AGN. If photoionization
appliesthen the electrondensity of the gasand its distancefrom the ionizing sourcecanbe
estimated.

Absorption featuresfrom ionizedgas,arecommonin the X-ray spectra of Seyfert Galax-

ies and some quasars 1. Deep oxygen VII and VIII absorption edges at 0.74 keV and 0.87

keV (rest) have been detected by the ROSAT PSPC a:ld the ASCA SIS in quite a large

number of Seyfert 1 galaxies (Reynolds, 1997).

We do not know yet what is the origin of the gas ionization. Models to date have

assumed the simplest equilibrium photoionization case (e.g. Fiore et al., 1993; Guainazzi

et al., 1996; Reynolds et al., 1995). In this case, if the gas is confined in a single cloud

of constant density, and if the recombination time is smaller than the typical variability

timescale, then the ionization parameter, and hence the ionization state of the gas, should

follow closely the intensity of the ionizing continuum. This is not always observed. In

two ASCA observations of MGC-6-30-15 (Fabian et al. 1994, Reynolds et al. 1995) the

best fit ionization parameter is higher when the ionizing flux is lower, in contrast with the

expectations of the simplest equilibrium photoionization model; the ASCA observations of

MR2251-178 show a roughly constant ionization parameter despite large variation in the

2-10 keV flux (Reynolds & Fabian, 1995); finally, in a ROSAT observation of NGC 4051

(McHardy et al., 1995), the ionization parameter does not linearly track the luminosity, but

shows changes that are smoothed and delayed with respect to the luminosity changes. It

seems clear that, at least in the above three cases (which are also the best studied), the

simp-lest photoionization equilibrium model is inadequate. We clearly need more complete

and consistent models to interpret the available data. the gas could well be distributed

in an irregular region with varying density. Different ionization states would then apply to

different region of this gas. Other authors have adopted such multi-zone models (Otani et

al. 1996, Kriss et al. 1996). In those models the authols assume that absorption features

a NGC 4051: Mc Hardy et al. 1995; Guainazzi et al., 1996; :¢IGC-6-30-15: Nandra & Pounds, 1992,

Reynolds et al. 1995, Orr et al., 1997; NGC 3783: Turner et al. t993, George et al., 1996, George et al.,

1998; NGC 985, Brandt et al. 1994, Nicastro et al., 1997; NGC 55z.8: Done et al. 1995, Mathur et al. 1995;

NGC 3227, Ptak et al. 1994; NGC 3516, Kriss et al. 1996; IC 4:;29A, Cappi et al. 1996; PG 1114+445:

Laor et al. (1997), George et al., 1997, Mathur et al., 1998; MR "251-178, Halpern (1984), Pan, Stewart

and Pounds (1990); 3C 351, Fiore et al. (1993), Nicastro et al., 19!'8; see also Reynolds (1997)
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from different ions of the sameelementare imprinted on the spectrum by the transmission

of the ionizing radiation through multiple distinct clouds of gas with different geometrical

configurations, ionization states and densities. This is of course a possibility, but to us it

seems rather 'ad hoc'.

In this paper instead we discuss the additional physics of collisional ionization, and of

time-evolving photoionization in a single zone model. Time-evolving photoionization models

have been applied in the past to the extended narrow line emitting region of radio galax-

ies, to predict the evolution of the line ratios in low-density (n, = 1 cm-3), low ionization

(LogU-_ -3), multi-zone photoionized gas after the switch-off of the ionizing source (Binette

et al., 1987). We present here an iterative solution of the time-dependent ionization balance

equations (accounting for all ions of the most abundant elements in gas with solar composi-

tion), and apply our models to a drastically different physical and geometrical configuration:

a relatively high-density (n, = 106 - 109 cm-3), medium-high gas ionization (LogU -._ -1,

1), geometrically thin (DeltaR/R .._ 10-3), single zone absorber along the line of sight,

undergoing rapid and persistent variations of the ionizing flux.

As an example, we apply our models to the ROSAT data of the Seyfert 1 galaxy

NGC 40.51. A detailed analyses of the time behaviour of ionized gas in Seyfert 1 galax-

ies, using the ASCA-SIS relatively high resolution data, is deferred to a future pubblication.

2. Ionization Models

The innermost regions of an AGN are likely to be 'active', in the sense that the gas

there confined is expected to be involved in significant bulk motion, as in strong outflows

(Arav et al., 1995) or inflows. In particular the evidence for ionized outflows from the cen-

tral regions of AGN is strong (Mathur et al. 1994, 1995, 1997, 1998). Hence sources of

mechanical heating of the gas (for example adiabatic compression by shock waves) may well

be at work in the high density clouds, making collisional ionization the dominant ionization

mechanism. In the low density clouds the gas could be far from photoionization equilib-

rium, because the recombination timescales have become greater than the X-ray continuum

variability timescales. Hereinafter, by photoionization time (tph) and recombination time

(t_c) we mean the time necessary for the gas to reach photoionization equilibrium with

the ionizing luminosity during increasing and decreasing phases respectively. We discuss in

turn the possible importance of collisional ionization and time-evolving photoionization, in

determining the final transmitted spectrum that we observe in AGN.
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2.1. Collisional Ionization Models

To study collisional ionization we constructed a series of pure collisional ionization

models and compared them with the equilibrium photoionization models. The models were

created using CLOUDY (version 90.01, Ferland, 1996), fixing the ionization parameter (i.e.

the dimensionless ratio between the number of Hydrogei_ ionizing photons and the electron

density of the gas) U to 10 -5 and calculating the spectra transmitted through clouds with a

total column density, NH = 1022.5 cm -2, constant density and temperature (the calculation

of the physical condition of clouds in coronal or collisional equilibrium is one of the options of

CLOUDY; Ferland, 1996). The distribution of fractional _bundances for the most important

ions is essentially independent of the electron density value: for 10 < n_ < 1012 cm-3; the

variation is smaller than 13% for ions with fractional abundances greater than 0.01.

For temperatures T_ in the range l0 s - 1071 the main edges imprinted on the spectra

are roughly the same as those in the spectra from photoionized gas with -1 < log(U) < 1.5.

However, the distribution of the different ionic species is very different in the two cases, and

so the relative optical depth of the edges differ markedly. High quality X-ray spectra, where

more than one edge is visible, could then discriminate between the two cases.

The different ionic abundances in the collisional and photoionized cases can be seen in

Figs. la,b and 2a,b. Here we plot the fractional abundances of NeVIII-NeXI and OVI-OIX

(Fig. 1) and FeXIV-FeXXV (Fig. 2), computed in the ca_,e of photoionization and collisional

ionization respectively as a function of U and T_. As Fibre et al (1993) and Mathur et al.

(1994) have shown, the photo-ionization state of the ga.' depends strongly on the spectral

energy distribution (SED) of the ionizing continuum, frorl radio to hard X-rays. To simplify

the comparison between photoionization models and the data, we therefore used an ionizing

continuum similar to the SED of NGC 4051 (Done et al 1990).

Firstly we note that the fractional abundances in plLotoionized gas are more smoothly

distributed than those of collisionally ionized gas. Let us consider the regime in which

the OVII and OVIII fractions are higher than _ 0.2, so that both OVII and OVIII edges

are present in the emerging spectrum, as sometimes found in Seyfert galaxies spectra (e.g.

Otani et al. 1996, Guainazzi et al. 1996). In the photoionization case the range of U where

this occurs is 1.2-3.6, a factor 3. This is twice as wide as the corresponding range of T_:

1.5 x 10 6 - 2.4 x 10 6 K (a factor of 1.6: dotted lines in p_.mels a and b of Fig. 1). Moreover,

NeIX is abundant and Carbon is almost fully stripped in the collisional case, but not in the

photoionized case.

The difference in the resulting spectra is shown in Fig. 3a. Here we show the ratio

between two power law spectra emerging respectively from clouds of collisionallly ionized
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(Te = 1.8 x 106K) gas,and photoionized (U=2) gaswith solar abundances(the choicesof
Te and U were made by looking for similar OVII-OVIII abundances: see Fig. la). Below

1 keV there is a large feature due to the deep CVI K absorption edge in the photoionization

case. The most important feature above 1 keV is the NeIX absorption edge in the collisional

case, but this feature is smoothed by the presence, in both cases, of deep OVII and OVIII

absorption edges. Reynolds (1997), fitted both a simple OVII and OVIII K-edges model

and a physical photoionization model to ASCA SIS spectra of a sample of Seyfert 1 known

to host a warm absorber. Comparing the results he found that in some cases, the best

fit 2-edges model continue to show residuals at the energy of CVI K edge, while residuals

to physical photoionization model do not. This may point to photoionization as ionizing

mechanism. Spectra with higher resolution from 0.4 keV to 3 keV should therefore allow one

to diagnose absorption by collisionally ionized or photoionized gas that has significant OVII

and/or OVIII abundances (e.g. Otani et al. 1996, Guainazzi et al. 1996).

The other important feature of collisional models is the inertia of the heavy elements

(from Ne to Fe) against becoming highly ionized, even when the oxygen is almost fully

stripped. In Fig. la and lb we have marked the range of U for which OIX is by far the

dominant ion (noix_>0.8) and OVIII is the only oxygen edge in the emergent spectrum

(r_<0.8, for an Nn of 1022"s cm -2 and solar abundances). These same intervals of U and T,

are also shown in Fig 2a and 2b. In the photoionization case Neon is almost fully stripped

(NeXI), and the dominant ions of the iron are FeXVIII to FeXXIII. Instead in the collisional

case there is a range of temperature for which Neon and Iron are much less ionized, with

the dominant ions being NeIX-NeX, and FeXVI to FeXX. In particular we note the large

abundance of FeXVII (FeXVII and FeXXV are respectively Ne-like and He-like, and so very

stable). The different ionization level of Neon and Iron implies a very different emergent

spectrum between 1 and 3 keV.

This is illustrated in Fig. 3b which shows the ratio between spectra transmitted from

collisionally ionized gas with T, = 3.9 x 106 K, and photoionized gas with U=10 (both with

Nn = 1022.5 cm-2). With these values of T, and U, nolx "" 0.8 in both collisional ionization

and photoionization models (see Fig. la). The ratio does not show any significant feature at

E< 1 keV (implying similar ionization states of Carbon, Nitrogen and Oxygen), but between

1 and 3 keV, the spectrum from collisionally ionized gas shows a large and complicated ab-

sorption structure due mainly to iron L XVII-XIX and Neon K IX-X absorption (Fig. 3b).

This absorption structure may be mis-interpreted in moderate quality spectra as a flatten-

ing above --, 1 keV. Again, higher spectral resolution data with good S/N can distinguish

between photoionization or collisional equilibrium.

That the NeIX and FeXVII edges are of similar depth is due to a coincidence of cross-



sections and abundances. The photoelectric cross section of the iron L shell atoms ranges

from ,-_ 2 x 10 -19 cm 2 for the Lp levels of FeXVI-FeXIX (E _ (1.17-1.47) keV), to _ 3 × 10 -20

cm 2 for the Lp level of FeXXII (E=1.78 keV) (Kallman & Krolik, 1995). 2 Furthermore

in the collisional case the relative abundance of FeXVI1 is in the range 0.2-0.7, compared

to ,<0.25 in the analogous photoionization case. The relative abundance of the NeX, in the

collisional case, is greater than 0.25, but NeX ,<0.4 in the analogous photoionization case,

while 0.05 <, (NelX)con _<0.40 and (NelX)phot _<0.05 (Fig. 1 a,b). The K-edge energy of NeX

is 1.36 keV the same of that of the FeXVIII Lp-edge. V_bile the photoelectric cross-section

of Neon is about a factor 4 lower than Iron, the solar abundance of the Neon is about a

factor 4 greater than that of Iron (Grevesse & Anders 1_!89). Furthermore the cross-section

of NelX is about a factor 3 higher than NeX. As a result_ spectra from a cloud of collisional

ionized gas at Te "-_ 4 - 6 x 106 K, will show a very deep (rFeLPXV u ,-_ 1.0 x NH_3) edge

at the FeXVII Lp-edge energy (1.26 keV), a deep (rF, LPXVm+N,K x -_ 0.7 X NH23) edge at

1.36 keV due to the comparable contributions of the NeX K-edge and the FeXVIII Lp-edge,

and a similarly deep absorption edge at the NelX K-edg e energy (EK(NelX) = 1.196 keV,

rN,_,Xx "_ 0.6 x NI42_). In the corresponding photoionization case, the relative abundances

of both NelX-X and FeXVII-XVIII are too low (Fig. la,b, 2a,b) to imprint similar features

on the spectrum.

When collisions are the dominant ionization process, (U_<0.01) we can estimate the

minimum distance, R, between the ionized gas cloud and the central source. For an ionizing

luminosity Lio,_, we find: R > 1.6 x 1016(n_10)-o5(Qs2) °5 (with net0 being the electron density

in units of 10 l° cm -3, and Q52 the rate of photons ionizing hydrogen in units of 1052 ph s-l:

(2 = f_dE(Lio,_(E)/E)). For typical AGN ionizing c:mtinuum shapes and luminosities

(Lion = 1042, 1045 erg s-l), and assuming n_10 = 1, we fird R > 6.2 x 1016 cm, 2 x 10 is cm,

respectively, similar to the size of the BLR for such AG1 _ (Peterson et al., 1993).

2.2. Mixed Collisional and Photoic,nization Models

The above discussion concerns gas in pure collisional equilibrium. If the gas density is

low enough and/or if the gas is close enough to the central X-ray source then photoionization

can be important too. We examined a number of models with a varying mixture of collisional

-_The photoelectric cross section of the Ls levels of the iron ions, is about one order of magnitude lower

than the correponding Lp cross sections, and the Lp levels of the ions FeXXlII-FeXXVI are not populated
in ordinary conditions.
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ionization and photoionization. For T, = 2.5 x 10 _ we find that for values of U <0.1 the main

features of the fractional abundance distribution are still those of pure collisional ionized gas.

Increasing U to 0.3 causes a sharp change in the ionization structure. For 0.3 < U < 100

(the exact value of the upper limit depending on the equilibrium temperature determined

by collisional mechanisms) the ionization structure is determined by both processes, and the

transmitted spectra resemble those from pure photoionized gas of much higher ionization

parameter. This is shown in Fig. 4 where we plot in the lower panel three spectra from

purely photoionized gas (column density logNH=22.5 and log(U)=0.7, 1.1 and 1.4), and in

the upper panel 5 spectra from gas in which both mechanisms are at work (logNH=22.5,

T, = 2.5 x 106 and log(U)=-2, -1, 0.3, 0, 0.4). The pure photoionization spectra with

log(U)=0.7, 1 (lower panel) are very similar to the mixed collisional and photoionization

spectra with a factor 4-10 times lower U (log(U)=-0.3, 0.4; upper panel). Fitting the mixed

spectra with pure photoionation models would give a much more compressed range of U

than the real one, as found by McHardy et al. in NGC 4051. The above spectra in the two

panels of Fig. 5 are practically undistinguishable even at high resolution, because the shape

of the fractional abundance distributions when both processes are working, closely resemble

those of a purely photoionized gas (see upper panels of Fig. 1 and 2). Fortunately the two

models predict quite different delay properties (§2.3).

2.3. Time-evolving Photoionization Models

If photoionization is the dominant process (the gas being purely photoionized, or the

density enough low to give U > 0.1) the main features of the fractional abundance distribution

are those of photoionized gas. However. if the X-ray source is variable, photoionization

equilibrium will apply only if the density is high enough to make the ion recombination

timescales shorter than the variability timescales. There are regimes where photoionization

equilibrium does not apply at all. Here we investigate the low density case in some detail,

beginning with a discussion of the relevant physics.

2.3.1. Equilibrium photoionization

Let us suppose that a geometrically thin single cloud of optically thin, gas is illuminated

by an intense flux of ionizing radiation emitted by a variable source located at a distance R

from the cloud.



We cancalculate the equilibrium distibution of the ionic speciesin the cloud, by setting
the photoionization rate equal to the radiative recombinationrate 3 (see,e.g.,Netzer, 1990).

( ]eqYtXi+l _. FXi

(1) \ nx, ] a_,_(Xi,T_)n, '

and adding the condition for charge conservation _inx_ = 1. Here ar_c(Xi,T_) is the

radiative recombination coefficient (in cm 3 s-l), which includes recombination to all levels,

and Fx. is the photoionization rate of the ion X i, which, for optically thin gas clouds, can

be written (see, eg., Netzer, 1990):

(2) - du a,,(X').
47rR_ x,

The lower limit of the integral is the threshold ionization frequency of the ion X i. a,,(X i) is

the photoelectric absorption differential cross section of the ion X i.

In this simple scheme the ionization state of the gas is completely determined, at equi-

librium, by the value of the ionization parameter U = FHl/n_c. 4

With these approximations the ionization paramete:' U can be written as a function of

the ratio between any two consecutive ionic species of the generic element X:

\ nx, / \ Fx, ] c

3Neglecting the normally small effects of Auger ionization, collisional ionization and three body

recombination.

4The inverse of the photoionization and radiative recombination cates are usually referred in the literature

as the photoionization and recombination times:

x' 1 tx, = 1
(3), (4) tl = Vx-"_' " o, _¢(X i, T_)n_"

Instead in this paper we refer to different quantities as photoiomzation time and recombination time: see

eq. 7.
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2.3.2. Time-evolving photoionization: Equations

If the gas is not in equilibrium eq. 5 is of course meaningless. However, it is still possible

to use it formally by introducing an ionization parameter U xi'x'+L(t) which depends both

on time and on the specific ionic species under consideration.

The time evolution of the relative density of the ion i of the element X, considering only

radiative recombination and photoionization, is then given by (Krolik and Kriss, 1995):

dnx,

(6) dt
i_ + "x' + + ..c(X ,Vo).enx,+,

The first term on the right of eq. 6, is the destruction rate of the ion X i, both by

photoionization X i _ X i+l and radiative recombination X i --+ X i-1, while the other two

terms indicate the formation rate of the ion X i by photoionization of the ion X i-1 and

radiative recombination of the ion X TM respectively.

The solution of eq. 6 is a system of N coupled integral equations in the N unknowns

nx,, which is analytically solvable only for N=2, with the addition of the charge conservation

condition. These solutions define the time scale t,q, that measures the time necessary for the

gas to reach photoionization equilibrium with the ionizing continuum. This time is given at

any point of the light curve of the ionizing continuum by the inverse of the destruction rate

of the ion X i (following Krolik & Kriss 1995). A useful analytical approximation for t,q is:

(7) tx"x'+_(t -+ t +dt)

eq k nxl ] t+dt

where eq indicates the equilibrium quantities. During increasing ionization flux phases we
.X i Xi+l

call t,q ' photoionization time, tph; during decreasing ionization flux phases we call t x_'xi+_

recombination time, t_,c. These times are generally different from tl and t2 in eq. 3 and 4.

Equation 7 shows that the time t X''x'+a(t --+ t + dr) necessary for the gas to reach

equilibrium depends explicitly on the electron density n, in the cloud, and on the equilibrium

ratio between two consecutive ionic species calculated at the time t+dt. This is the key result

of this work, which has major consequences:
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1. the time scaleon which the gas reachesequilibrium with the ionizing continuum de-
pendson the electrondensity, even when the continuum increases (Fig. 5);

2. different ions reach their equilibrium relative abundances at different points of the light

curve (Fig. 6);

3. if changes of intensity are not instantaneous (dL/dt< oz), the time behavior of the

relative abundance of a given ion can be opposite to that of the ionizing source (Fig.

6).

All of these effetcs have been seen in ionized absorbers in AGN. Using these effects non-

equilibrium photoionization models can strongly constrain the physical state of the absorber.

2.3.3. Time-evolving Photoionization: Calculations

We created a program to solve the first order differential equation system of eq. 6 for

all the ions of the elements H, He, Li, C, N, O. The program uses an iterative method

(see Gallavotti, 1983), that permits the solution of any system of N first order differential

equations in the N unknowns xi, of the form 2(r) = f(x(r)), (VT > 0), with the only

conditions being that fi E C _ and a limited ensemble _ exists, such that xi E ft.

We consider the photoionization from the K-shell of each element, and radiative recombina-

tion to all levels for each ion.

We use the recombination rates tabulated by Shull and Van Steenberg (1982) for the

metals. We take the values of the recombination rate of hydrogen from Ferland (1996); we

get the total recombination rate by summing over levels r=1,20. We calculate the photoion-

ization rate from the K-shell of each ion, carrying out the integrals in eq. 2, using for the

spectral shape of the ionizing continuum, from the Lym_n limit to 7-rays, a simple power

law with a = 1.3 (similar to the observed SED of NG(4051). We use the photoelectric

K-shell cross section tabulated by Kallman and Krolik (1995).

We carry out the calculation of the time-evolving hefting-cooling balance, as described

below. We calculate with CLOUDY (Ferland, 1996) a grid of models for 300 values of U (from

0.01 to 100), and build the curve U=U(Te), using the te:hnique described in Kallman and

Krolik (1995). W_ then interpolate on these, to obtain the initial self-consistent equilibrium

electron temperature of the gas. The time evolution of the temperature in the cloud is carried
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out performing an iterative calculation of the time dependent photoionization equations,

using the definition of U xqx_+_ (t) given above.

The inputs the program needs are: (a) the initial equilibrium value of the ionization

parameter U; (b) the spectral shape of the ionizing continuum; (c) the light curve of the

ionizing continuum; (d) the electron density n,; (e) the ratio, P, between the source intensity

and the intensity the source should have in order to produce the observed degree of ionization,

assuming equilibrium at the beginning of the light curve.

The output of the program is a list of the relative ionic abundances of the chosen element,

and the source flux at the illuminated face of the cloud as a function of time.

2.3.4. Limits of the code

We neglect photoionization from the L-shell. This affects the computation of the abun-

dance balance when the gas is allowed to recombine to medium-to-low ionization states, with

the Li-like ions (or lower) being highly populated. However this is not likely to be the case

for warm absorbers in AGN, for which the mean degree of ionization is usually very high, and

the most abundant element (C to Ne) are almost equally distributed between He-like and

fully stripped ions (see Fig. la). Our code can provide accurate results only at medium-high

ionization regimes, those of interest for the astrophysical problem discussed in this paper.

We have also neglected Iron ions. This will likely cause an overestimation of the OVII-IX

and NeIX-XI K-shell photoionization, since all these ions compete for the same photons. By

comparing the OVII-IX, NeIX-XI equilibrium abundances obtained with our method with

those obtained with CLOUDY for U in the range 0.1-50 we estimate that the percentage

differences are smaller than 7 %

The iterative technique presented in the previous section is only an approximation to

the correct self-consistent time-evolving heating-cooling calculation accounting for all the

physical and dynamical heating-cooling mechanisms. We verified that for high gas electron

densities (and therefore in a situation close to equilibrium) this method is rather accurate. By

comparing the equilibrium relative abundances of the main ions obtained with our method

with that obtained using CLOUDY we estimate that for U in the range 0.1-50 the method

works with a precision better than 10%. In the opposite case, when the density is sufficiently

low, the gas remains basically in the same state and does not respond to variation of the

ionizing continuum. Of course in this case our approximation is also very good, albeit
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uninteresting. In the intermediate cases,when the heating timescalemay be longer than
the typical photoionization timescale,the recombination rate coefficientsmay be greater
than thoseestimated by our assumption. We have tried to estimate the magnitude of the
uncertainty on the ion abundancedistribution induced by this effect by performing the
time-evolving calculations fixing the temperature at a constant value equal to the initial
value, and letting the ionizing intensity be free to vary by a factor of 10. For an average
gasionization state typical of AGN warm absorbers(U = 0.1-50),the percentagedifference
betweenthe relative abundancesof the main ionscalculatedwith the iterative solution of the
time dependentphotoionization equations,and thosecalculated for a gas with a constant
temperatureare 515 - 20%. The difference is so small because of the rather small dymamic

range spanned by the temperature in a photoionized gas with U=0.1-50 (3 x 10 4 5 Te < 3 X 10 s)

and of the weak dependence of the recombination rates on T_ (about the square root of T_,

see Shull and Van Steenberg, 1982).

Given the configuration of the gas we considered (a thin, plan-parallel slab obscuring

the line of sight), and the range of electron and column densities, the light-crossing time

is smaller than both the typical source intensity variability timescales and the associated

photoionization recombination timescales. We can then neglect the effects of the light-

crossing time through the cloud of photoionized gas (see Binette, 1988).

2.3.5. The Step Function Light Curve

The simplest case is that of a two state light curve. Let us suppose that the ionizing

continuum intensity goes instantaneously from a "low" to a "high" state and comes back to

the "low" state after a time t._r (Fig. 5a). The time beh,tviour of the ionization state of the

gas irradiated by this continuum depends on the value ol the ratio t,_r/t x_'x'+l (t -+ t + dt),

and the amplitude of the flux variation (here we adopt a factor 10 change in flux).

We considered the case of an optically thin cloud of gas with an initial ionization such

that the most relevant ionic species of the oxygen are :)VIII and OIX (corresponding to

equilibrium value of U > 5 with the adopted SED).

The time behavior of the relative density of noIx is s:lown in Fig. 5b. In both panels

different lines identify different values of the electron density, ne = 10 7, 5 x 10 7, l0 s, 10 9

cm -3. In the upper panel different n_ imply four values o" the distance of the cloud from the

ionizing source.

_OVIII,OIX
The photoionization time _ph (eq. 7) of the _as becomes progressively longer as
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the density decreases:from about 3 x 103s for n_ = 10s cm -3, to -,- 104 S for n_ = 5 x 107

cm -3 to even longer timescales for n_ = 107 cm -3 (for n_. < 106 cm -3 the changes of noix

during the firt 104 s are < 10 %). Note that this is not true for tl in eq. 3, which is the

definition of photoionization time usually found in litterature.

Formally the dependence of tph on n_ is introduced by the choice of a particular set of
-X i Xi+, (boundary conditions when solving eq. 6, and hence defining teq ' ,t -+ t +dt). Physically,

fixing the boundary conditions of the system means to choose a particular initial ionic dis-

tribution in the gas, and hence its initial ionization state. Different values of n_, given the

initial ionization state of the gas (and hence the ratio between the flux of ionizing photons

at the illuminated face of the cloud and the electron density), imply different distances of

the gas from the X-ray source. This is clear in the upper panels of Fig. 5 where the ionizing

flux at the illuminated face of the cloud is plotted for different values of n_.

Recombination times are generally longer (_OIX,OVIII > tvar), and can be order of mag-
\ -rec

nitude longer. At the highest density tested (he = 109 cm -3) the ionization state of the gas

is able to relax to the initial equilibrium state in less than 104 s after the source switch off.

Recombination time scales for ne _< l0 s cm -3 are long, the order of many times 104 s. Since

the source switch off is instantaneous the relative density of OIX never increases after the

switch off.

This case illustrates clearly how photoionization recombination timescales can have

a strong effect on the changes observed in ionized absorbers and why the photoionization

timescale depends on electron density. In the following section we present a more realistic

light-curve, and discuss in detail the main features of our models.

2.3.6. The gradual rise _ decay light curve: dL/dt< oc

We now consider a more realistic light curve. In this case the source intensity goes from

a low state to a high state in a finite time (4,000 s), and after 2,000 s comes back to the

initial low state with the same absolute gradient (Fig. 6a). The entire up & down cycle lasts

10,000 s. As in the previous case the change in flux is a factor 10. The corresponding light

curves of the relative abundances of the fully stripped ions of three different elements, CVII,

NVIII and OIX, are shown in Fig. 6b. In both panels different lines correspond to different

values of the electron density, n_ = 10 s, 109 cm -3.

The gradual changes of the ionizing continuum produce time delays between the source

light curve and the relative ion abundance light curves. In the lower density case (n_ = l0 s
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cm-3 solid lines), nolx reaches its maximum value (well below the equilibrium value ,-, 1)

around the minimum of the luminosity intensity (at --_ 10,000 s). During the whole decreasing

luminosity phase nolx is slightly increasing or constant. X-ray spectra taken during the high

luminosity phase and the decreasing luminosity phase would show an OVIII absorption edge

correlated with the intensity of the ionizing continuum, as seen in MGC-6-30-15 (Fabian

et al., 1994, Reynolds et al., 1995). At this density CVII is able to reach its maximum

equilibrium value (Fig. 6b), but even this ion does not relax to its initial equilibrium value

for many times up and down cycle time. Fig. 6b also shows that the ions reach their

maximum values at different times, ncvlI reach its maximum value about 4,000 s before

r_o lx .

At higher densities (n, = 109 cm -3, dashed lines), the fractional abundance of each of

the three ions reaches its maximum equilibrium value during the first 6,000 s, and relaxes

to its minimum equilibrium value during the following 2.4 × 10 4 S, but with different times-

scales: OIX reaches its minimum equilibrium value after a time corresponding to two cycles,

about one cycle after CVII. This could help to explain why models in which all ions of all

elements are in photoionization equilibrium, so often fail to describe AGN spectral evolution.

Spectra accumulated immediately after a very steep decr_ asing intensity phase could contain

no significant absorption features at the energies of OVII-OVIII K-edge (the oxygen being

completely ionized), but still show a deep absorption edge at E-,_ 0.5 keV, due to the presence

of a large amount of recombined CVI-CVII in the absorbing gas. High quality spectra would

allow powerful tests of non-equilibrium photoionization models.

A general result is that the observation of any delay's in the response of the absorber

to flux changes on time scales of _ 5000 - 1000 s, immediately implies photoionization with

a density in a reasonably restricted range, 106<he < 109 cm -3 (depending on the average

ionization state).

3. Modeling the ROSAT data of NGC4051

As an example of applicability of our models we lzresent here the case of a ROSAT

PSPC observation of the low luminosity, rapidly variable Seyfert 1 galaxy NGC4051.

Both the soft and hard X-ray flux of NGC4051 vary l:y large factors (up to 20) on a time

scale of hours (e.g. Lawrence et al., 1985, Guainazzi et al. 1996) in a roughly correlated way.

The presence of an ionized absorber in this source was first proposed on the basis of variations

of the GINGA softness ratio correlated with the flux (tiore et al. 1992). ROSAT PSPC
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observations,and subsequentlyobservationswith the higher resolution CCDs on board of
the ASCA satellite (Poundset al. 1994,Mc Hardy et al. 1995,Mihara et al. 1994, and
Guainazziet al. 1996),also suggestedthe presenceof a high column density, highly ionized
absorberthrough the detection of a deepabsorption edgeat 0.8-0.9keV.

McHardy et al. (1995),find that a simplesinglezoneequilibrium photoionization model
canprovide a reasonablygoodrepresentationof spectraaccumulatedin 1000-3000seconds,
but the best fit ionization parameterdoesnot track the sourceintensity, as required by the
model. This behaviourcannotbeexplainedin a singlezoneionization equilibrium model and
thereforeNGC4051is a good target to test our time-evolving photoionization and collisional

ionization models. We decided to compare our models to the ROSAT PSPC data aquired

on 1991 November 16, and reported by McHardy et al. (1995), when the source count rate

showed large and rapid variations (up to a factor of 6 in a few thousand sec., see figure 5 of

McHardy et al., 1995). Analysis of the ASCA observation is deferred to a future pubblication.

The data reduction and the timing analysis were performed using the PROS package in

IRAF. The observation spanned 77 ksec and contained 28.7 ksec of exposure time. NGC 4051

gave a mean count rate of 1.6 s-1. We accumulated eight spectra (a - h), using a 3' radius

extraction region, accumulating contiguous data with similar count rates. Background counts

and spectra were accumulated from an annulus of internal and external radius of 3'.5 and 6'

respectively.

3.1. Hardness ratio analysis: the absorber is not in photoionization

equilibrium

Independent of any spectral fit the behavior of the main physical properties of the

absorber can be seen in a color-color diagram. In Fig. 7 we plot the hardness ratios HR=H/M

against the softness ratio SR=S/M from the count rates in three bands (S=0.1-0.6 keV,

M=0.9-1.5 keV, and H=1.7-2.5 keV) for theoretical curves (for log(NH)=22, 22.5 and 23)

obtained by folding the equilibrium photoionization models (for log(U) in the range -0.3

to +1.5, and Galactic NH: 1.31x 102° cm -2, Elvis et al. 1989) with the response matrix of

the PSPC. We also plot the colors of the source in the eight spectra (a - h). All the data

points lie in a region of this diagram corresponding to the high U ends of the photoionization

theoretical curves where both SR and HR decrease, as U increases, until all the ions in the gas

are full stripped and the gas is completely transparent to radiation of any energy. The colors

of NGC 4051 are all consistent with the OVIII-OIX ions being dominant. Filled circles on

the log:YH=22.5 curve mark values of U in the range 4.0-7. All the data points are between
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the two extreme valuesof U, a factor ,_ 1.5 change, while the source intensity varies up to a

factor ,-_ 6 in the eight spectra. The gas is clearly not responding to the continuum variations,

a conclusion equivalent to that obtained by McHardy et al. (1995) using spectral fits with

equilibrium photoionization models (see their figure 5). In the framework of the models

discussed in this paper this behavior suggests three different possibilities (we do not take

in account pure collisional ionization in this case because the observed spectral variations

should be attributed to 'ad-hoc' changes of Te or NH on time scales as short as 2000-4000

s):

1. the gas is far from ionization equilibrium;

2. the gas has a distribution of densities;

3. both collisional and photoionization processes are comparably important in the same

physical region.

We investigated these possibilities in turn using detailed spectral fits.

3.2. Time-evolving photoionization

From Fig. 1 we see that a given ionization state can be roughly determined by the

measure of at least two consecutive ion abundances, e.g. OVII and OVIII. The measure of a

single edge in fact would not distinguish between 'low' and 'high' ionization solutions. The

same measured feature could be produced by a lower N_r, lower mean ionization gas, or by

an higher NH, higher mean ionization state gas.

The best derived quantities to compare observed speztra with our several physical mod-

els are atomic edge strengths. Here we are mainly interested in the OVII and OVIII because

they are the strongest and therefore the easiest to detect and measure. However, with the

PSPC OVII and OVIII edges are not individually discerltable, and we must resort to model

fits with multiple components. Our choice is to use tie components that can ensure an

estimate of the OVII and OVIII r as unbiased as possible.

3.2.1. A 3-edge 'Model Independent' Spectral Fit
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We fitted the eight spectra with a model consisting of a power law reduced at low energy

by the Galactic column density, the OVII and OVIII edges and another edge at 1.36 keV

to account for possible spectral complexity in the 1-2 keV region (in particular the NeIX-X

K and Fe XV-XX Lp absorption discussed in §2.1). Five parameters were at first allowed

to be free to vary: the spectral index aE, the OVII and OVIII edges % the 1.36 keV edge

r and the model normalization. The results are presented in Table 3. The fits with the 3

edges model are acceptable in all cases. We stress that T(1.36 keV) in Table 3 should not

be regarded as a true measure of the optical depth of Ne K and Fe L ions. This feature

provides only one of the possible parameterizations of the spectrum in the 1-2 keV range, a

band in which a change in the continuum spectral index could also be present (the 2-10 keV

Ginga and ASCA spectra of this source are typically flatter by _ 0.5 than the PSPC 0.1-2

keV spectra). As discussed in §2.1 is difficult to discriminate between Ne absorption and a

real spectral flattening above 1 keV with instruments of moderate spectral resolution like

the PSPC. We have performed a series of fit using a broken power law with break energy in

the 1-2 keV band and the two oxygen edges, obtaining 7" similar to those reported in Table

3. We are therefore confident that the estimation of the oxygen edge _- is robust, within the

rather large uncertainties given in Table 3. In principle, a way to reduce the uncertainties

is to fix the continuum spectral index to a common value. The results of this series of fits

are again given in Table 3. The uncertainies on r(OVII) and r(1.36 keV) are indeed smaller

than in the previous case but this is not true for the r(OVIII) uncertainties. The reason is

that there is a strong anti-correlation between aE and rovu. A similar anti-correlation is

present between aE and r(1.36keV). In contrast no correlation is present between aE and

T(OVIII). This is illustrated in Fig. 8 where we show the X 2 contours of these parameters

for spectrum g. Since the r(OVII) values could be biased in the fit with fixed aE by the

r(OVII)-aE correlation, we prefer to compare our time-evolving models to the OVII and

OVIII optical depths obtained leaving aE free to vary.

In all but one case (spectrum d) the depth of the OVIII edge is higher or comparable to

that of OVII, suggesting a 'high' ionization solution (U>4, see Fig. 1), consistent with the

hardness ratio analysis of Fig. 7.

2.2.2. Comparison between models and the oxygen edge depths: evidence for a

non-equilibrium photoionization absorber?

We converted the best fit _- into OVII and OVIII relative abundances assuming a solar

oxygen abundance and a total hydrogen column density NH. An indication of NH comes from
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Table 1: NGC 4051: 3-Edge Model Fits
Spectrum r(0.74 keV) r(0.87 keV)

0 5+0.5 n _a+ o._a - -0.4 v"-'1- 0.33

eta 0"29 0 _A+0.31
-,-'=t_ 0.23 v-,-,__ 0.32

r(1.36 keV) aE x2(d.o.f.)

1.0+0.4 1.3±0.1 0.84(21)

0 _1+o._8 1.34 (fixed) 0.82(22)-v_--0.23

b < 0.5 0.66±0.21 0.7+0.3 1.3±0.1 1.19(23)

qq+0.19 0.66±0.21 0 71+°.18 1.34 (fixed) 1.14(24)"_'°-0.16 .... --0.16

0 5 +0.5 0 41+0.31
" --0.4 "'I J" -- 0.34

0 _t_t+0"33 0 AI+0.31
"vu-0.26 .... --0.34

< o.6 1.3±0.1 0.85(22)

< 0.42 1.34 (fixed) 0.82(23)

d < 0.7 < 0.3

0 99 +0.22• -0.35 < 0.32

1+08 6+o.1•"-o.6 1. -0,2 0.95(18)

1 a_+o.81 1.34 (fixed) 1.08(19)"J'J--0.54

0.5 +°4_o3 0.86±0.28 0.54-0.3 1.4±0.1 1.30(22)
O a9 °'28 o _+0.28

•w-o.2_ ..... 0.30 0.65±0.19 1.34 (fixed) 1.25(23)

< 0.6 1 n,+ °.24..... o.._3 < 0.5 1.4±0.1 1.41(23)
0 _A+ 0.20 09+0.23

.... o.18 1..__o._s 0.44±0.14 1.34 (fixed) 1.42(24)

g < 0.5

< 0.18

1.47±0.29

1 ag+° 16
"_-0.24

< 0.5 1.3+0.1 0.65(22)

< 0.21 1.34 (fixed) 0.67(23)

1 o+0'6 n 7a+o 3s 0 9+0.4 1.2±0.1 0.72(22)•_-0.5 _'" _-0.42 • -0.3

0 ¢_,_+0.33 /3 _;+0.33 13 a_+o.2o 1.34 (fixed) 0.82(23)""'J-- O. 25 v"Jv-o.35 v'_'-"- O. 19
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the color-color diagram of Fig. 7. Although calculated using a photoionization equilibrium

model, the theoretical curves in this diagram suggest a value for logNH between 22 and 23,

and so we adopt logNH=22.5. The three panels of Fig. 9 show the light curves of the source

count rate (upper panel) and of the OVIII and OVII abundances (middle and lower panels

respectively).

The time evolution of the ionization structure of a cloud of gas photoionized by a variable

source is complex and its behaviour sometime counter-intuitive. We then discuss first the

simplest case: high electron density, for which each ion is close to its equilibrium state. We

examine next the case of lower densities and hence non-equilibrium solutions.

The dotted curves on the middle and lower panels of Fig. 9 show the n, = 101° cm -3,

P=I (the ratio of the incident flux to that needed to produce the initial ionization distribution

assuming photoionization equilibrium) curves, when the gas is close to equilibrium. While

the equilibrium OVII curve tracks the count rate variations (it is strictly anticorrelated with

the count rate light curve), the OVIII curve does not. The different OVIII behaviour is due

to the different balance in the destruction rates of OIX and OVIII. When the ionizing flux

is at its maximum most of the oxygen is OIX. When the flux decreases from the maximum

(from point b to d) OIX recombines to OVIII increasing the OVIII abundance. When the

flux decreases from point e to point f at first OVIII increases again because of the high

destruction rate of OIX, but after a certain point the amount of OVIII recombining to OVII

start to be higher than the amount of OIX recombining to OVIII, and so the total OVIII

abundance start to decrease. Instead, the amount of OVIII recombining to OVII is always

higher than the amount of OVII recombining to OVI. This gives rise to a different behaviour

of the OVIII and OVII curves in response to the same ionizing flux variations. It is interesting

to note that in this case while the dynamical range of variation of the OVII curve is larger

than that of the ionizing flux, the OVIII equilibrium curve shows a more compressed range

of variations (when the ionizing flux varies by a factor of 6 the OVIII and OVII abundances

vary by a factor of 3 and 30 respectively, see Fig. 9). Therefore variations of OVIII would be

much more difficult to detect than variations of OVII, at least at these regimes of ionization.

We re-emphasize: the behaviour of a single edge does not provide a unique interpretation of

the data.

As explained in §2.3.3, a grid of theoretical OVII and OVIII light curves was generated

using our time-evolving photoionization code for 28 values of n, from 5 x 106 cm -a to 109

cm -3 and 15 values of P from 0.5 to 2.

We compared these curves with the measured relative abundances of OVII and OVIII and

found the best fit model using a X 2 technique. The thick solid lines in the lower and middle

panels of Fig. 9 represent the best fit non-equilibrium OVII and OVIII curves. The agreement
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between the best fit model and the observed OVII and OVIII abundances is good: X2 = 1.17

/ 1 0 +1-2_for 14 dof. The best fitting values for n, and P are tight!y constrained: n_ = t . -o.s) x l0 s

cm -3, P--- 1.5 +°"4_0.3.From the best fit ne we can estimate the distance of the absorbing cloud

from the central source. We obtain R= _(0.74 +°'s°__0.40jx 10 TM cm (3 light days).

The dashed lines represent the solutions obtained using the 1 ¢r confidence interval on

ne and P. The best fit curves (and the 1 a confidence intervals curves) show a compressed

dynamical range of OVIII and OVII abundances variations and a delay between the source

maxima and the ion abundance minima of 3000-6000 sec. The compressed dynamical range

is due to a mean over-ionization of the gas. While the best fit P shows that the gas in the

initial point a is near to equilibrium, it departs strongl 3 from equilibrium during the later

low intensity states (spectra d to h). So, despite the fac', that the source spends more time

in low states than in high states, the gas density is sufficiently low that the gas does not have

time to fully recombine after the few events when it suffers high illumination and becomes

highly ionized.

The above results were obtained assuming a total hydrogen column density of log(NH)=22.5.

Assuming an higher (lower) column would imply a mean lower (higher) OVII and OVIII rel-

ative ion abundance. Therefore, in principle the accu:ate measure of both edges would

constrain also the total warm column density. The urcertainties on the PSPC determi-

nations however preclude this possibility, and better resolution measurements are therefore

needed. The energy resolution of the ASCA SIS, for example, is just sufficient to separate the

OVII and OVIII absorption edges. A quantitative test of non-equilibrium photoionization

model using the ASCA data and a comparison between ROSAT PSPC and ASCA data of

NGC 4051 is beyond the scope of this paper and will be presented in a future pubblication.

A much better separation, and therefore characterizatior, of the absorption features will be

possible with the high resolution (factor of 10-30 better taan ASCA SIS) gratings on AXAF

and XMM.

3.3. Other model,

Despite the success of time-evolving photoionizatior models, alternatives do exist. We

discuss two of them in the following.

3.3.1. Large density variations in the absorbing gas
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If the gas is not confined to a single cloud with constant density but rather is distributed

in a region with, say, an increasing density, then different ionization equilibria could apply

to different regions in the cloud. Two extreme regions may exist: in the region with higher

density, lower U, collisional ionization will be the dominant ionization mechanism and the

spectra transmitted by this region would show always the same features, irrespective of the

source intensity; the other region, with lower density and higher U, is completely ionized (for

carbon, oxygen, neon and iron ions up to FeXXII) when the source is in the high state, but

when the source is in a low state the abundances of OVIII are sizeble and imprint the edges

in the spectrum seen in low intensity spectra. Here we are assuming that the density of the

photoionized region is high enough for the gas to be in instantaneous equilibrium with the

ionizing intensity. If not, the average ionization degree of the gas would be very high during

the whole observation, and the gas would be always almost transparent at the energies of

the relevant absorption edges.

We tested this hypothesis by fitting the highest intensity spectrum (b) with a simple

power law model plus a collisionally ionized absorber, using the method of Fiore et al. (1993).

The best fit temperature and NH are 2.8 ± 0.1 × 106 K and 1 5+°T•' -0.s × 1022cm-2 respectively.

We then used the same model (with fixed continuum parameters, fixed temperature and

_r H but variable normalization) with the inclusion of an additional OVIII edge to mimic a

variable ionization state, equilibrium photoionization absorber. The fits are all acceptable.

The worst fit is that of spectrum (d) (X2 = 1.4, 21 dof, probability of 10.4 %). In Fig. 10

we plot T(OVIII) as a function of the time. The dynamic range of variations of _- is here

larger than that on noyur in Fig. 9 but is still more compressed than that predicted by

equilibrium photoionization model (solid line). We can therefore exclude the possibility that

a major part of this absorber could be in pure photoionization equilibrium with the ionizing

intensity.

3.4. A "hot" photoionized absorber

The other possibility is that both collisional and photoionization processes are important

in the same physical region. In this case the transmitted spectra are very similar to those

transmitted from purely photoionized clouds of gas which much higher ionization parameter

(§2.1, Fig. 4). The electron temperature of the gas is mainly determined by collisions, and

is higher than that expected in pure photoionization equilibrium. The ionization parameter

U is no longer linearly correlated with the ionizing intensity, and then its dynamical range

of variations is compressed by a factor > 2 compared to the pure photoionization case.
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This could in principle explain the compression observed in the measured dynamical

range of variation of novlu, but could not account for the delays observed on the response

of the ionization state of the gas to source intensity variation. Unfortunately there is no way

to distinguish between 'hot' photoionized absorber models and simple pure photoionization

models on the only basis of the spectral analysis. Nevertheless the delay observed in the

response of the ionization degree of the gas between spectrum (b) and (c) suggests that a

non-equilibrium photoionization component is mainly required by data.

4. Conclusion

We have investigated ionization models for AGN in different regimes of gas volume

densities and photoionization states. In particular we focussed on 'high gas density, low pho-

toionization parameter' gas clouds, where collisional ionization is likely to play a significant

role in the gas ionization, and on low gas densities, where the photoionization may be far

from equilibrium.

We presented detailed model calculations in both reg mes. While the time-evolving pho-

toionization models in §2.3 are far from being complete or exhaustive they are nevertheless

instructive, and reveal the main features of these kinds of models.

Our main findings can be summarized as follows:

.

.

In many important astrophysical conditions (OVII, OVIII regime) the fractional abun-

dances of the most important ions of O and Ne in photoionized gas are more broadly

distributed in U than those of collisionally ionized gas are in T.

In the collisional ionization case the heavy elements show a strong inertia against

becoming highly ionized, even when lighter elemeats, like Oxygen, are almost fully

stripped. In this case the transmitted spectrum sho vs a large and complicated absorp-

tion structure between 1 and 3 keV, mainly due to i:on L XVII-XIX and Neon K IX-X

absorption, which is much less visible in spectra err erging from photoionized gas with

similar OVII and OVIII abundances. This absorption structure may be mis-interpreted

as a flattening of the spectra above ,,_ 1 keV, when fitting low energy resolution data

with a photoionization equilibrium model. Higher spectral resolution and good S/N

observations are therefore needed to distinguish between collisional ionization and pho-

toionization.
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.

In non-equilibrium photoionization models the response of the ionization state of the

gas to sudden changes of the ionizing continuum is delayed even during increasing

luminosity phases. The delays increase for decreasing electron densities, as changes of

n,, require changes of the intensity of the ionizing flux, i.e. changes of the distance of

the gas from the X-rav source (taking as fixed the initial ionization state of the gas).

The recombination timescale is generally much longer (up to orders of magnitudes)

x',x'÷' (t -+ t + dt)than the photoionization timescale, because of the dependence of teq

on the equilibrium ratio (nx,÷l/nx,), evaluated at the time t + dt. This means that a

photoionized absorber undergoing frequent, quick, and consistent changes of ionizing

luminosity is likely to be overionized with respect to the equilibrium ionization, a state

that would be reached only after a sufficiently long low intensity phase.

If the changes of the ionizing luminosity are not instantaneous, and the electron density

of the cloud is low enough, the ionization state of the gas could continue to increase

during decreasing source luminosity phases. This means that we may measure a max-

imum in ionization state of a given element, when the ionizing flux is at a minimum

(opposite to what is expected in equilibrium models).

Different ions of different elements reach their equilibrium abundance on different

timescales. This is again because of the dependence of t x''x'+_(t _ t + dr) on the

ratio (nx,+_/nx,). Therefore in the same cloud of gas carbon could be in equilibrium

while oxygen could be very far from equilibrium. This may help in explaining why

models where all ions of all elements are in photoionization equilibrium so often fails

to provide a reasonable description of AGN spectra and spectra evolution

We have tested the above models in the case of the Seyfert 1 galaxy NGC4051. The

ROSAT observations of NGC4051 are not consistent with a simple equilibrium model, but

can be explained straightforwardly by our time-evolving photoionization models. The two

main features in the non-equilibrium best fit models are: (a) the compressed range of vari-

ability of the measured OVII and OVIII relative abundances with respect to the amplitude

of the source variations, and to the amplitude of the variations of the abundances of these

ions expected in equilibrium photoionization models; (b) the 3000-6000 sec delay between

the maximum intensity state of the source (spectrum b) and the minimum of the best fit

OVIII abundance curve, i.e. the maximum ionization state of the gas (spectrum c). As

= (1 0 +1"2 (assum-result we were able to estimate the gas electron density, n_ _ • -0.s) x l0 s cm -3

ing logNH=22.5) and hence the distance of the ionized gas cloud from the X-ray source in

R= t/0.74+°s°_-0.40)x 1016 cm (:3 light davs).. We explored alternative models and we also ex-

plored alternatives which we find to be less likely; we discuss ways to distinguish between

them conclusively.
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We concludethat non-equilibrium photoionization and collisional modelsapply to wide
zonesof gasdensity and ionization, zoneswhichareexpectedin AGN. Theseeffectsmust be
consideredin understandingionizedabsorbers,and seemlikely to explain otherwisepuzzling
behavior, without resorting to ad hoc distributions of gas. Severalclear diagnosticsof these
modelsexist sothat decisivetests will soonbe possible.
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Fig. 1.-- Fractional abundances of NeVIII-NeXI, and OVI-OVIX, calculated in the case of

photoionization (Fig. la: upper panel), and collisional ionization (Fig. lb: lower panel).

The two intervals of U and T_ highlighted are: (a) the interval for which both OVII and

OVIII abundances are greater than 0.2 (dotted lines), and (b) the one for which the OIX

relative abundance is greater than 0.7.5.



Fig. 2.-- Like Fig. 1, for the relative abundances of the ons FeXIV-FeXXV.
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Fig. 9.-- Light curve of NGC 4051 during the November 1991 ROSAT-PSPC observation

(Upper panel). Middle and lower panel: Best fit no,cell and novu abundances (points

with errorbars), obtained by fitting a power law continuum plus 3-edge model to the 8

spectra, and by using log(N/-/)=22.5. Solid lines in the two panels represent the best fit non-

equilibrium photoionization model to the rtOVli I and novu data respectively, while dashed

lines are the solutions obtained using the 1 cr confidence intervale on ne e P. Dotted lines

are the equilibrium novlii and novu curves, and was obtained using the non-equilibrium

photoionization code by fixing n+ = 10 l° cm -3 and P=I.
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Fig. 10.-- Similar to Fig. 9 but the lower panel shows the OVIII edge r obtained fitting

the eight spectra with a model consisting of a power law with energy index 1.3 (fixed in the

fit) plus a collisional ionized absorber with NH = 1.5 x 1,322 cm -2 and T=2.8 × t06 K (fixed

in the fit) plus an edge at 0.87 keV. Two parameters o:fly are allowed to vary: the model

normalization and the OVIII edge r.


