STUDIES ON VAPOR ADSORPTION SYSTEMS

N. Shamsundar
M. Ramotowski
Department of Mechanical Engineering
University of Houston
Houston, Texas
November 1998

Contract NAG-9-853
Project Technical Report
Johnson Space Center
Houston, Texas
Project Manager: J.R. Cornwell
Abstract

This report provides an overview and summary of the work performed in the Mechanical Engineering Department of the University of Houston under contract to the Johnson Space Center of NASA, Contract No. NAG-9-853. The project consisted of performing experiments on single and dual bed vapor adsorption systems, thermodynamic cycle optimization, and thermal modeling.

The work was described in a technical paper that appeared in conference proceedings and a Master's thesis, which were previously submitted to NASA. The present report describes some additional thermal modeling work done subsequently, and includes listings of computer codes developed during the project. Recommendations for future work are provided.
Contents

1 Project Overview and Summary 1

2 Single Bed Adsorption/Desorption Model 8

 2.1 Scope of Chapter .. 8

 2.2 Problem Description 9

 2.3 Governing Equations 10

 2.4 Solution Technique 11

 2.5 Sample Results .. 13

 2.6 Nomenclature .. 19

 2.7 References ... 20

 2.8 Computer code for Single-bed system 21

 2.9 Computer codes for Thermodynamic COP Optimization 27

 2.9.1 Optimization of COP for Water-Zeolite-NaX 27

 2.9.2 Include file ‘fun1’ for Methanol–Carbon–Carbon 35

 2.9.3 Optimization of COP for Methanol–Carbon–Carbon 35
Chapter 1

Project Overview and Summary

This is a report on work done at the University of Houston on vapor-adsorption heat pump systems. In these systems, one or more adsorbent beds are alternately heated and cooled to move the refrigerant through the system, in lieu of the ubiquitous vapor compressor. The tasks in the project were (i) completing the fabrication of a two-bed test setup at the Johnson Space Center (JSC) premises, (ii) running thermal tests at JSC using the apparatus, and (iii) constructing analytical models for the performance of vapor-adsorption systems.

The project was started in early 1996, and the initial work on familiarizing ourselves with the topic was started soon after. During the summer of that year, M. Ramotowski worked at the JSC premises with the objective of completing the assembly and fabrication of a two-bed adsorption system, building upon the spaced spiral tubes and canisters that had already been fabricated by Lovchik and others at JSC. There were insurmountable delays in obtaining shop support and little progress was made as the summer was about to end and Ramotowski had to return to the University of Houston (UH) for her course work and thesis research.
report are provided on an IBM PC-DOS formatted disk. Listings are to be found at the end of Chapter 2 of this report. The Fortran codes will require the use of a nonlinear constrained optimization library package, as the code used by us cannot be distributed outside UH. They will run on any computer with a Fortran-77 compiler and suitable libraries.
Chapter 2

Single Bed Adsorption/Desorption Model

2.1 Scope of Chapter

This chapter contains a partial report on work done under contract to the Johnson Space Center on a vapor-adsorption heat pump system. This chapter, together with a conference technical paper [1] (April 1997) and an M.S. thesis [2] (January 1998) given to JSC earlier are the technical outcomes of the project. An overview of the whole project and the recommendations for future work were presented in the first chapter.

Ramotowski’s M.S. Thesis contains the description of a single-bed electrically heated canister test and an analytical model against which to compare the test results. She ignored the heat capacity of the adsorbed refrigerant and used an explicit finite-difference scheme. The objective of the subsequent work, described here, is to include the ignored heat capacity and to describe an implicit finite-difference scheme, and to display some of the results from it.
The complete project involved three tasks, including (i) a thermodynamic model for a two-bed system with or without regenerative heat exchange, counterflow or cocurrent flow regenerators, (ii) design and construction of the single-bed test rig alluded to above and (iii) completion of a test apparatus involving two vapor-adsorbent beds, using canisters previously constructed at JSC. The first two tasks were completed successfully. The two-bed system was assembled and some tests run, but leaks in the canisters and, less importantly, in other parts of the system, prevented the obtaining of accurate data. The small amount of test results obtained indicated that the canister design as well as the design of the tubes for the heat transfer fluid require significant modifications to work properly.

2.2 Problem Description

The apparatus and the earlier analytical model are described in Ramotowski’s thesis [2]. Consider one-dimensional transient heat transfer in an adsorbent bed. The adsorbent, for example, zeolite, is contained between two electrical heaters in the region $0 \leq x \leq 2L$. The two heaters have identical heat inputs, $2q_e$ each. The temperature, T, and the adsorbed fraction, ω, defined as the ratio of adsorbed fluid mass to dry adsorbent mass, are functions of position and time, that is, of (x, t). By symmetry, we may treat the equivalent problem in the region $0 \leq x \leq L$, with heat input q_e at $x = 0$ and zero heat flux at the symmetry line, $x = L$.
It is assumed that the bed is packed sufficiently loosely that the pressure, p, in the bed is uniform, but can vary in time. The assumption of uniform pressure is reasonable if no sudden and large pressure or temperature changes are imposed on the bed, forcing high refrigerant velocities to occur in the porous bed. We also assume that the thermal conductivity, k, of the zeolite is not significantly affected by the adsorption of refrigerant. Since adsorption occurs at the surface of zeolite granules and the interior of the granules is dry, this may be reasonable. However, if measured values of k in the partial adsorption state become available, the modification required in the equations below is minimal. The specific heats of dry zeolite, c_z, and of adsorbate, c_r, are assumed to be independent of temperature, as well. Operating pressures in heat pumps are usually so low (below atmospheric, often) that the mass of the vapor refrigerant filling the packing space between the zeolite granules is negligible.

2.3 Governing Equations

With these assumptions, it is possible to write the heat conduction equation in the bed as

$$\rho_z \frac{\partial h}{\partial t} = k \frac{\partial^2 T}{\partial x^2}$$ \hspace{1cm} (1)

where h is the enthalpy of the bed per unit mass of dry zeolite, with the boundary conditions

$$-k \frac{\partial T}{\partial x} = q_e, \hspace{1cm} x = 0$$ \hspace{1cm} (2)

$$-k \frac{\partial T}{\partial x} = 0, \hspace{1cm} x = L$$ \hspace{1cm} (3)
The thermodynamics of adsorption (see [1] for details) gives us the relation

\[h - h_{\text{ref}} = (c_z + \omega c_r)(T - T_{\text{ref}}) + \Delta h_a \] \hspace{1cm} (4)

where \(\Delta h_a \) is the heat of adsorption, which is related to the adsorption pressure by

\[\Delta h_a = -R \int_0^\omega b(\omega) \, d\omega \] \hspace{1cm} (5)

and \(b(\omega) \) occurs in the adsorption equilibrium equation,

\[\ln p = a(\omega) + \frac{b(\omega)}{T} \] \hspace{1cm} (6)

where \(p \) and \(T \) are absolute pressure and temperature and \(R \) is the gas constant of the adsorbate. The functions \(a(\omega) \) and \(b(\omega) \) are experimentally obtained functions for each adsorbent/adsorbate pair.

2.4 Solution Technique

We use the effective specific heat concept, which is also used in freezing-melting problems, to convert eq. (4) to the usual heat equation. Thus,

\[c_{\text{eff}} \equiv \left(\frac{\partial h}{\partial T} \right)_p = c_z + \omega c_r - R b(\omega) \left(\frac{\partial \omega}{\partial T} \right)_p \] \hspace{1cm} (7)

and

\[\frac{\partial T}{\partial t} = \alpha_{\text{eff}} \frac{\partial^2 T}{\partial x^2} \] \hspace{1cm} (8)

where \(\alpha_{\text{eff}} = k/\rho c_{\text{eff}} \) is the effective diffusivity.

A uniform grid with nodes numbered 0 (at the heater location) to \(N \) (at the symmetry line) is used, and the heat equation and boundary conditions are discretized.
using central differencing for derivatives with respect to x and the backward implicit
difference for derivatives with respect to t. The resulting equations resemble the
usual tridiagonal equations of one-dimensional transient heat conduction, but they
are nonlinear, and need to be solved together with the adsorption thermodynamics
equations and in keeping with the system constraints.

The method for advancing the solution from t to $t + \Delta t$ will now be described,
for two specific modes of bed operation.

For constant pressure heating, using the current values of ω at the nodes, compute
the valued of c_{eff}. Note that $\partial \omega / \partial T$ can be obtained from eq. (6) using the relation

$$
\frac{\partial \omega}{\partial T} = -\left(\frac{\partial \ln p}{\partial T}\right)/\left(\frac{\partial \ln p}{\partial \omega}\right)
$$

(9)

so that

$$
c_{\text{eff}} = c_z + \omega c_r + R \frac{[b(\omega)/T]^2}{[a'(\omega) + b'(\omega)/T]}
$$

(10)

where primes indicate derivatives with respect to ω.

Substitute these values into the tridiagonal equations and solve to obtain a new
tentative set of improved temperatures, T_1. Insert these improved temperatures in
eq. (6) with the specified pressure and solve for improved values of ω at each node,
using the Newton-Raphson algorithm. If any values of ω are less than zero, replace
them by zeros. Using these improved values of ω, recalculate c_{eff} at all nodes and
re-solve the tridiagonal equations to obtain the temperature distribution at $t + \Delta t$.

By integrating ω over the domain, obtain the total adsorbent fraction, $\bar{\omega} \equiv m_r/m_z$.

12
For heating at constant adsorbed fraction, that is, heating with no refrigerant allowed to enter or leave the canister, calculate tentative improved temperatures T_1 as in the previous case. Using these temperatures and a trial value of the new pressure, compute the ω values at all nodes using eq. (6), and integrate to obtain $\bar{\omega}$ as in the previous case. Recalculate $\bar{\omega}$ using a slightly different pressure, $p + \Delta p$, and obtain an improved p using the secant method. Repeat until p converges to the value at which the $\bar{\omega}$ matches the specified adsorbed fraction. Note that the heat equation has only been solved once in the current time-step. Using the ω distribution that permits the $\bar{\omega}$ to match the specified value, recalculate c_{eff} over the grid and re-solve the tridiagonal equations to obtain the temperature distribution at $t + \Delta t$.

The procedure for constant $\bar{\omega}$ is slightly more time consuming than that for constant pressure. Modification of the two procedures to handle cases where q_e, p and $\bar{\omega}$ are specified to vary with time in known ways is trivial.

2.5 Sample Results

The results to be presented illustrate the application of the calculation method just described. They pertain to Zeolite-NaX/water, and will be presented in nondimensional terms to the extent possible. Temperature cannot be non-dimensionalized since the adsorption properties depend on it in a definitely nonlinear fashion.
Figure 2.1 shows the results for a 51-point grid, for operation with constant moisture. The bed is initially at 300 K and \(\omega = 0.1 \) throughout. The heating rate is such that \(q_e L/k = 1000 \text{K} \), and the temperature profiles show a constant slope at \(\bar{x} = 0 \), as expected. The resemblance to the temperature profiles in a semi-infinite region that is encountered in single-phase heat conduction is evident in the time interval chosen. Given that the temperature at \(\bar{x} = 0 \) is already over the safe temperature for zeolite, we are led to the conclusion that the heater spacing could be reduced, saving both space and zeolite. The calculation used \(\Delta \tau = 0.0005 \), which is over twice the stability limit in the explicit method described in Ramotowski’s thesis.

The corresponding adsorbed fraction profiles are shown in Figure 2.2. The migration of the water from the heated end to the opposite end is very evident. The portion near the heater does go completely dry after \(\tau = 0.06 \), and the moisture driven off accumulates at the other end. In our model, it is assumed that the migration velocities are low enough that the vapor stays in temperature equilibrium with the bed as it moves. Ramotowski observed that when the velocities were increased by turning on a vacuum pump, the thermocouples at the cold end showed a sudden increase in temperature because of the heat of adsorption released there. The analytical model does not account for such effects.

Next, we present results for heating at constant pressure, which requires that the desorbed vapor be allowed to leave the adsorption bed. Figure 2.3 shows the temperature distributions, and it is noted that the hot end gets heated slightly faster than
Figure 2.1: Temperature Distributions, Constant Moisture Heating
Figure 2.2: Adsorbed fraction Distributions, Constant Moisture Heating
in the constant moisture case described above. Figure 2.4 contains the corresponding ω-distributions, from which it is observed that the hot end dries out faster when desorption is allowed from the system. This reduces the effective heat capacity of the bed locally, and causes its temperature to rise faster.

Code was written in Fortran-77 to implement the solution method and used in producing the results just displayed. This code is provided at the end of this chapter.
Figure 2.4: Adsorbed fraction Distributions, Constant Pressure Heating
The code takes 6 seconds to run the constant moisture case and 3 seconds to run the constant pressure case on a 66 MHz AMD-486 personal computer. These timing data indicate that it should certainly be feasible to extend the code to two-dimensional transients. This extension will be rather straightforward for regular geometries such as shell-and-tube heat exchangers, but not for helical or spirally wound tubes.

If JSC contemplates further development work in this topic, it is recommended that a two-dimensional version of the code be developed, and that the code be then used to design a test apparatus with specific performance objectives.

2.6 Nomenclature

- \(a(\omega) \) function in adsorption pressure equation
- \(b(\omega) \) function in adsorption pressure equation
- \(c_r \) specific heat of adsorbed fluid
- \(c_z \) specific heat of adsorbent
- \(h \) enthalpy of adsorbent and adsorbate, per unit mass of adsorbent
- \(k \) thermal conductivity of adsorbent bed
- \(L \) half-spacing between heaters
- \(m_r \) total mass of refrigerant
- \(m_z \) total mass of adsorbent
- \(N \) number of mesh divisions
- \(p \) absolute pressure
- \(q_e \) half of electrical heat output rate per unit area of heater
- \(R \) gas constant of refrigerant
- \(t \) time
- \(T \) absolute temperature
- \(x \) distance from heater
- \(\bar{x} \) \(x/L \)
\(\alpha_{\text{eff}} \) effective thermal diffusivity of bed
\(\alpha_z \) thermal diffusivity of adsorbent
\(\Delta h_a \) enthalpy of adsorption
\(\Delta t \) time step
\(\rho_z \) density of zeolite in bed
\(\tau \) non-dimensional time, \(\alpha_z t / L^2 \)
\(\omega \) mass of refrigerant per unit mass of adsorbent
\(\text{ref} \) effective value

2.7 References

2.8 Computer code for Single-bed system

program snglbed
*** Simulation of single zeolite-water bed with electric heating at x=0 and zero heat flux at x=L (symmetry line). See Chapter 4 of M. Ramotowski, M.S.M.E. Thesis, University of Houston, 1998 for description of experiment and experimental results.

Variables: xbar=x/L, tau=\alpha_z t/L^2

Output: Temperature and adsorbed fraction profiles for plotting in files t.dat and w.dat

Author: N. Shamsundar, University of Houston

Date: August, 1998

implicit real*8(a-h,o-z)
real*8 mw
integer tout,wout
parameter (NN=50)
dimension T(O:NN),TN(O:NN),w(O:NN)
common /zeo/cz,cr,Kref
logical constm

cz=1406d0 ! specific heat of zeolite
cr=4200d0 ! specific heat of adsorbed water
RRef=461d0 ! gas constant of water vapor
mw=0.1d0 ! mass of water/mass of zeolite
n=50 ! number of spatial steps
Ti=300d0 ! initial temperature, K
qLbyk=1000d0 ! (heat input) X L /k, K
dt=0.0005d0 ! step in Fourier number
nt=40 ! number of time steps between plots
nplt=10 ! number of plots
constm=.true. ! true if heating with valves closed
 ! false if heating at constant pressure
tout=7
wout=8
open(unit=tout,file='T.dat',status='unknown')
open(unit=wout,file='w.dat',status='unknown')
do i=0,n
T(i)=Ti
w(i)=mw
end do
write(tout,'(ix,5f7.2)')(T(i),i=0,n)
write(wout,'(lx,5f7.4)')(w(i),i=0,n)

p=4
! trial value
tau=0
call findp(n,mw,T,p,w) ! find initial pressure
s=0
do i=0,n
s=s+T(i)
end do
Tmean=(s-0.5*(T(0)+T(n)))/n
if(constm) then
write(*,'(ix,A)')
+ ' Tau p(Pa) T(x=0) T_mean Grd chk.'
write(*,'(ix,2f8.4,3f8.2)') tau,p,T(0),Tmean,(T(0)-T(1))*n
else
write(*,'(ix,A)')
+ ' Tau mw T(x=0) T_mean Grd chk.'
write(*,'(ix,2f8.4,3f8.2)') tau,mw,T(0),Tmean,(T(0)-T(1))*n
endif

do iplt=1,nplt
do it=1,nt
 call onestep(n,dt,T,w,qLbyk,Tn)
 if(constm) then
 call findp(n,mw,Tn,p,w)
 else
 call totmoist(n,p,Tn,mw,w)
 endif
 call onestep(n,dt,T,w,qlbyk,Tn)
tau=tau+dt
do i=0,n
 T(i)=Tn(i)
end do
end do
s=0
do i=0,n
s=s+T(i)
end do
end do
Tmean=s/n
if(constm)then
 write(*,'(1x,2f8.4,3f8.2)') tau,p,T(0),Tmean,(T(0)-T(1))*n
else
 write(*,'(1x,2f8.4,3f8.2)') tau,mw,T(0),Tmean,(T(0)-T(1))*n
endif
write(tout,'(1x,51fT.2)')(T(i),i=0,n)
write(wout,'(1x,51fT.4)')(w(i),i=0,n)
end do
stop
end

c
subroutine findp(n,mw,T,p,w)
c
Given a temperature distribution,
find a (uniform) pressure such that the total adsorbed mass
= mw X zeolite mass
c
Method: secant method
c
Input parameters : n, mw, T(0:n), guess for p
c
Output parameters : solution p, corresponding w(0:n)
c
implicit real*8(a-h,o-z)
parameter (ITMAX=10)
real*8 mw,mw1,mw0,T(0:n),p,w(0:n)
dp=0.001*p
call totmoist(n,p,T,mw0,w)
do it=1,ITMAX
 p=p+dp
call totmoist(n,p,T,mw1,w)
 dp=(mw-mw1)/(mw1-mw0)*dp
 mw0=mw1
 if(abs(dp/p).lt.1d-4)exit
end do
if(it.eq.ITMAX)stop 'Failed to converge in FindP'
return
end

c
subroutine totmoist(n,p,T,mw,w)
c
Given a temperature distribution and a total pressure (uniform),
calculate the corresponding adsorbed fraction distribution and
the adsorbed mass/zeolite mass ratio for the whole bed

Input parameters : n,p,T(0:n)
Output parameters: mw, w(0:n)
Method: Newton-Raphson

implicit real*8(a-h,o-z)
parameter (ITMAX=10)
real*8 mw,T(0:n),p,w(0:n),lp

The following functions are for Zeolite-NaX + Water

afun(a)=(((1.6448d3*a-7.3176d2)*a+1.10854d2)*a+
 13.4244d0+4.660517d0)
bfun(a)=((-3.4867d3*a+0.56447d4)*a+67.2292d2)*a-7373.78d0
dafun(a)=(3*1.6448d3*a-2*7.3176d2)*a+1.10854d2
dbfun(a)=(-3*3.4867d3*a+2*0.56447d4)*a+67.2292d2
a0=13.4244d0+4.660517d0
b0=-7373.78d0
a1=1.10854d2
b1=67.2292d2

lp=log(p)

mw=0
do i=0,n
 omeg=(lp-a0-b0/T(i))/(a1+b1/T(i)) ! trial solution
 do j=1,ITMAX
 domeg=(lp-afun(omeg)-bfun(omeg)/T(i))/
 \quad (dafun(omeg)+dbfun(omeg)/T(i))
 \quad omeg=omeg+domeg
 if(abs(domeg/omeg).lt.1d-5)exit
 end do
 if(j.eq.ITMAX)stop 'Did not converge in TotMoist'
 w(i)=max(omeg,0d0) ! no negative ads. fract.
 mw=mw+w(i)
end do
mw=(mw-0.5d0*(w(0)+w(n)))/n
return
end

subroutine onestep(n,dt,T,w,qlbyk,Tn)
Do one step of implicit finite-difference integration of one-dimensional transient heat equation, using effective heat capacity technique

Input parameters : n, dt, T(0:n), w(0:n), qL/k
Output parameter : Tn(0:n) (temperatures at tau+dt)

implicit real*8(a-h,o-z)
real*8 T(0:n), w(0:n), Tn(0:n)
common /zeo/cz, cr, Rref
parameter (NN=50)
dimension A(0:NN), B(0:NN), C(0:NN)

The following functions are for Zeolite-NaX + Water

afun(a)=(((1.6448d3*a-7.3176d2)*a+1.10854d2)*a+
 13.4244d0+4.660517d0)
bfun(a)=((-3.4867d3*a+0.564447d4)*a+67.2292d2)*a-7373.78d0
dafun(a)=(3*1.6448d3*a-2*7.3176d2)*a+1.10854d2
dbfun(a)=(-3*3.4867d3*a+2*0.564447d4)*a+67.2292d2

if(n.gt.NN)stop 'Array overrun in OneStep'
do i=0,n
 bb=bfun(w(i))
 da=dafun(w(i))
 db=dbfun(w(i))
 ceff=cz+w(i)*cr+bb*bb*Rref/(T(i)*(da*T(i)+db))
 r=dt*n*n*cz/ceff
 A(i)=-r
 B(i)=1+2*r
 C(i)=-r
 Tn(i)=T(i)
 if (i.eq.0) then
 C(i)=C(i)-r
 Tn(i)=Tn(i)+2*qLbyk*r/n
 else if (i.eq.n) then
 A(i)=A(i)-r
 endif
endo
call tridiag(n, A, B, C, Tn)
return
subroutine tridiag(n,A,B,C,x)

Solve tridiagonal equations \[A(i)x(i-1)+B(i)x(i)+C(i)x(i+1)=D(i) \]
Input parameters : n, A(0:n), B(0:n), C(0:n), D(0:n) in x
Output parameter : x(0:n), with A,B,C destroyed

implicit real*8(a-h,o-z)
dimension A(0:n),B(0:n),C(0:n),x(0:n)
C(0)=C(0)/B(0)
x(0)=x(0)/B(0)
do i=1,n
 t=1/(B(i)-A(i)*C(i-1))
 C(i)=C(i)*t
 x(i)=(x(i)-A(i)*x(i-1))*t
end do
do i=n-1,0,-1
 x(i)=x(i)-C(i)*x(i+1)
end do
return
end
2.9 Computer codes for Thermodynamic COP Optimization

2.9.1 Optimization of COP for Water–Zeolite-NaX

program zeolitew
implicit double precision(a-h,o-z)
parameter (ivar=10)
parameter (iconst=20)
parameter (kworka=IVAR*(IVAR+ICONST+25)+11*ICONST+60)
parameter (kkwork=300)
parameter (imnn2=iconst+2*ivar+2)
parameter (iact=3*iconst+15)
dimension variab(ivar),constr(iconst)
dimension gradof(ivar)
dimension vecmul(imnn2),boulow(ivar),bouupp(ivar)
dimension workar(kworka),iworka(kkwork)
dimension gradco(iconst,ivar)
dimension hessem(ivar,ivar),rhside(ivar)
logical active(iact),lmerit,lql

common/cmache/epslOO,eps2OO,eps300
common /ctrl/Temax,Tcmin,start,fin,num,eregen
real*8 Temax,Tcmin,eregen
logical start,fin

eps100=epsilon(eps100)
eps200=1.d-7
eps300=1.d-3

c NUMBER OF CONSTRAINTS:
 nocons=4

c NUMBER OF EQUALITY CONSTRAINTS:
 noeqco=0

c NUMBER OF VARIABLES
 novari=4

c BOUNDS ON VARIABLES
 boulow(1)=280.0
bouuupp(1)=500.0
boulow(2)=280.0
bouuupp(2)=500.0
boulow(3)=280.0
bouuupp(3)=500.0
boulow(4)=280.0
bouuupp(4)=500.0

c USER SPECIFIED ACCURACY
 accura=1.d-8

c USER SPECIFIED SCALING PARAMETER
 scabou=1.d+3

c PRINT LEVEL SPECIFIED
 iprint=0

c MODE OF OPERATION
 modeal=0

c DESIRED OUTPUT UNIT NUMBER
 ioutst=8

c IF TRUE, USE L2 MERIT FUNCTION. OTHERWISE L1.
 lmerit = .true.

c IF TRUE, USE FULL QP SUBPROBLEM.
 lql=.true.

c ROW DIMENSION OF DG - .GE. (MAX (1, NOCONS))
 non_ax=iconst

c ROW DIMENSION OF C - .GE. (MAX (2, NOVARI))
 nonmax=ivar

c MAX NUMBER OF FUNCTION CALLS DURING LINE SEARCH
 maxfun=8

c UPPER BOUND ON THE NUMBER OF ITERATIONS
 maxite=40

c EQUAL TO NOCONS + NOVARI +NOVARI +2
nomnn2 = nocons + vari + vari + 2

OUTPUT PARAMETER REGD. TERMINATION. SHOULD BE ZERO AT START
infail = 0

WORKING PARAMETER MIGHT HAVE TO BE ENLARGED IF NEEDED
lework = nonmax*nommax + 4*nommax + 4*nommax + 19*nonmax + 55 +
1 1.5*(nonmax+1)**2 + 15*nonmax + 4*nommax + 20

INTEGER PARAMETER TO DETERMINE SPACE FOR SUBPROBLEM SOLUTION
leiwor = 19 + ivar + ivar + iconst

SPACE FOR LOGICAL VARIABLES OF CONSTRAINT ACTIVITY
leacti = 3*nommax + 15

open(unit=ioutst, file='nlpql.res')

INITIAL VALUES OF VARIABLES
open(unit=9, file='dat')
rewind(9)
read(9, *) (variab(i), i=1, novari), eregen
close(9)
Temax = variab(1)
do 1000 Tcmin = Temax + 20, 500

fin = .false.
num = 0
call nlpql1(nocons, noeqco, nommax, novari, nonmax, nomnn2, variab,
1 objfun, constr, gradof, gradco, vecmul, boulow, bouupp, hessem,
2 rhside, accura, scabou, maxfun, maxite, iprint, modeal, ioutst,
3 infail, workar, lework, iworka, leiwor, active, leacti, lmerit,
4 lql)

c
c
OUTPUT RESULT

c
num = infail
fin = .true.
call nlfunc(nocons, noeqco, nommax, novari, objfun, constr,
1 variab, active)
write(*, 9020) infail, -objfun*Id-3, (variab(i), i=1, novari)
9020 format(1x, i4, f8.4, 8f8.2)
1000 continue
```
stop
end

block data
logcal start,fin
common /ctrl/Temax,Tcmin,start,fin,num,eregen
real*8 Temax,Tcmin,eregen
data fin/.false./,start/.true./
end

subroutine nlfunc(nocons,noeqco,nommax,novari,objfun,g,
1 x,active)
implicit double precision(a-h,o-z)
dimension g(nommax),x(novari)
logcal active(nommax),fin,start
common /ctrl/Temax,Tcmin,start,fin,num,eregen

EVALUATION OF PROBLEM FUNCTIONS

afun(a)=(((1.6448d3*a-7.3176d2)*a+1.10854d2)*a+
+ 13.4244d0+4.660517d0)
bfun(a)=(((3.4867d3*a+0.564447d4)*a+67.2292d2)*a-
+ 7373.78d0)
bfuni(a)=(((3.4867d3/4*a+0.564447d4/3)*a+67.2292d2/2)*a-
+ 7373.78d0)*a

data crefr/4200d0/, cbed/1406.0d0/, Rrefr/461.0d0/
data cvap/1925.8d0/

c crefr=cvap
Te=x(1)
Tc=x(2)
T1=x(3)
T3=x(4)
pcond=psat(Tc)
pevap=psat(Te)
omega2=omegaf(pevap,T3)
omega1=omegaf(pcond,T1)
T2=bfun(omega1)/(log(pevap)-afun(omega1))
```
\[T4 = \frac{bfun(\omega_2)}{\log(p\text{cond}) - a\text{fun}(\omega_2)} \]

\[hfg = hfgw(Tc) \]

\[Qih = (cbed + \omega_2 \times crefr) \times (T4 - T3) \quad \text{! Isosteric heating} \]

\[Qdes = Rrefr \times (b\text{funi}(\omega_1) - b\text{funi}(\omega_2)) \]

\[R\text{intc} = \text{quad}(p\text{cond}, \omega_1, \omega_2) \]

\[Qsd = cbed \times (T1 - T4) + crefr \times (\omega_1 \times T1 - \omega_2 \times T4 + \text{rintc}) \]

\[Qic = (cbed + crefr \times \omega_1) \times (T1 - T2) \quad \text{! Isosteric cooling} \]

\[Qads = Q\text{des} \]

\[\text{rinte} = \text{quad}(p\text{evap}, \omega_1, \omega_2) \]

\[Qsa = cbed \times (T2 - T3) + crefr \times (\omega_1 \times T2 - \omega_2 \times T3 + \text{rinte}) \]

\[Q\text{svr} = cvap \times (\text{rinte} - Tc \times (\omega_2 - \omega_1)) \]

\[Q\text{ar} = \text{min}((cbed + crefr \times \omega_1) \times (T1 - \text{max}(T2, T4)) + (cbed + crefr \times \omega_2) \times (\text{min}(T4, T2) - T3)) \]

\[Q\text{con} = \max(Q\text{ic}, 0d0) + \max(Qa, 0d0) + \max(Qc, 0d0) \]

\[Q\text{in} = (Q\text{ih} + Q\text{d}) \]

\[Q\text{ird} = Q\text{ih} + Q\text{des} + Q\text{sd} \]

\[Q\text{ira} = Q\text{ic} + Q\text{ads} + Q\text{sa} \]

\[Q\text{ar} = \min((cbed + crefr \times \omega_1) \times (T1 - \text{max}(T2, T4)) + (cbed + crefr \times \omega_2) \times (\text{min}(T4, T2) - T3)) \]

\[Q\text{cond} = \max(Q\text{ic}, 0d0) + \max(Qa, 0d0) + \max(Qc, 0d0) \]

\[Q\text{in} = (Q\text{ih} + Q\text{d}) \]

\[Q\text{ird} = Q\text{ih} + Q\text{des} + Q\text{sd} \]

\[Q\text{ira} = Q\text{ic} + Q\text{ads} + Q\text{sa} \]

\[Q\text{ar} = \min((cbed + crefr \times \omega_1) \times (T1 - \text{max}(T2, T4)) + (cbed + crefr \times \omega_2) \times (\text{min}(T4, T2) - T3)) \]

\[Q\text{cond} = \max(Q\text{ic}, 0d0) + \max(Qa, 0d0) + \max(Qc, 0d0) \]

\[Q\text{in} = (Q\text{ih} + Q\text{d}) \]

\[Q\text{ird} = Q\text{ih} + Q\text{des} + Q\text{sd} \]

\[Q\text{ira} = Q\text{ic} + Q\text{ads} + Q\text{sa} \]

\[Q\text{ar} = \min((cbed + crefr \times \omega_1) \times (T1 - \text{max}(T2, T4)) + (cbed + crefr \times \omega_2) \times (\text{min}(T4, T2) - T3)) \]

\[Q\text{cond} = \max(Q\text{ic}, 0d0) + \max(Qa, 0d0) + \max(Qc, 0d0) \]

\[Q\text{in} = (Q\text{ih} + Q\text{d}) \]

\[Q\text{ird} = Q\text{ih} + Q\text{des} + Q\text{sd} \]

\[Q\text{ira} = Q\text{ic} + Q\text{ads} + Q\text{sa} \]

\[Q\text{ar} = \min((cbed + crefr \times \omega_1) \times (T1 - \text{max}(T2, T4)) + (cbed + crefr \times \omega_2) \times (\text{min}(T4, T2) - T3)) \]

\[Q\text{cond} = \max(Q\text{ic}, 0d0) + \max(Qa, 0d0) + \max(Qc, 0d0) \]

\[Q\text{in} = (Q\text{ih} + Q\text{d}) \]

\[Q\text{ird} = Q\text{ih} + Q\text{des} + Q\text{sd} \]

\[Q\text{ira} = Q\text{ic} + Q\text{ads} + Q\text{sa} \]

\[Q\text{ar} = \min((cbed + crefr \times \omega_1) \times (T1 - \text{max}(T2, T4)) + (cbed + crefr \times \omega_2) \times (\text{min}(T4, T2) - T3)) \]

\[Q\text{cond} = \max(Q\text{ic}, 0d0) + \max(Qa, 0d0) + \max(Qc, 0d0) \]

\[Q\text{in} = (Q\text{ih} + Q\text{d}) \]

\[Q\text{ird} = Q\text{ih} + Q\text{des} + Q\text{sd} \]

\[Q\text{ira} = Q\text{ic} + Q\text{ads} + Q\text{sa} \]

\[Q\text{ar} = \min((cbed + crefr \times \omega_1) \times (T1 - \text{max}(T2, T4)) + (cbed + crefr \times \omega_2) \times (\text{min}(T4, T2) - T3)) \]
Rintcr = quad(pcond, omega5, omega2)
Qsdr = cbed*(T5-T4) + crefr*(omega5*T5-omega2*T4+Rintcr)
Qbr = Qdesr + Qsdr
else
 Qbr = 0
endif
Qregen = Qar + Qbr
Qregen = max(0d0, Qregen)
cop = (Qcond - eregen*Qregen)/(Qin - eregen*Qregen)
cop = Qcond/Qin ! for basic cycle

c Objective function to minimize, scaled if necessary
c f = -cop*1d3 ! - is for minimizer, scaled up
c
c Equality constraints
c
g(1) = afun(omega2) + bfun(omega2)/T3 - log(pevap)
g(2) = afun(omega1) + bfun(omega1)/T1 - log(pcond)
g(3) = Qria - Qrid ! Regenerator balance condition
c
c Inequality constraints, expressed as G >= 0
g(1) = (T3-280) ! Prevent freezeup of evaporator
g(2) = (500-T1) ! Prevent overheating zeolite
g(1) = (T3-Te) ! Cycle constraint
g(2) = (T4-Tc) ! Desorbed fluid must go out as vapor
g(3) = (Tc-Tcmin) ! Req'd. for rejection of waste heat
g(4) = (Temax-Tc) ! Req'd. for cooling to be possible
g(7) = (T3-280) ! Prevent freezing of zeolite

if(fin.and.num.eq.0)then
 write(*,30)Te, Tc, T1, T2, T3, T4, cop
30 format(/,' Final cycle temperatures : ',6f6.0,f7.4)
 write(*,32)cop, Qcond, Qin, Qregen
32 format(’ COP = ’,f6.4,-3p,’ Qcond = ’,f5.0,’ Qin = ’,f5.0, +’ Qregen = ’,f5.0,0p)
endif
objfun = f
return
end
subroutine nlgrad(nocons, noeqco, nommax, novari, objfun,
1 constr, gradof, gradco, variab, active, coneps)
implicit double precision(a-h,o-z)
dimension constr(nommax), gradof(novari), gradco(nommax, novari),
1 variab(novari), coneps(nommax)
logical active(nommax)
DIMENSION G(2)

evaluation of gradients by finite differences

on=1.d+0
eps=1.d-7
do1 i=1,novari
xeps=eps*dmax1(on,dabs(variab(i)))
xepsi=on/xeps
variab(i)=variab(i) + xeps
call nlfunc(nocons, noeqco, nommax, novari, feps,
1 coneps, variab, active)
gradof(i)=(feps - objfun)*xepsi
do2 j=1,nocons
if (.not.active(j)) goto 2
gradco(j,i) =(coneps(j) - constr(j))*xepsi
continue
1 variab(i)=variab(i) - xeps
return
end

double precision function psat(T)
implicit real*8(a-h,o-z)
data hfg/2462200d0/, R/461d0/, T0/373.15d0/
data p0/101325d0/
psat= exp((1/T0-1/T)*hfg/R)*p0
return
end

double precision function hfgw(T)
implicit real*8(a-h,o-z)
hfgw=2462200d0
return
end

double precision function omegaf(p,T)
implicit real*8(a-h,o-z)
afun(a)=(((1.6448d3*a-7.3176d2)*a+1.10854d2)*a+
 13.4244d0+4.660517d0)
bfun(a)=(((-3.4867d3*a+0.564447d4)*a+67.2292d2)*a-
 7373.78d0)
dafun(x)=(1.6448d3*3*x-7.3176d2*2)*x+1.10854d2
dbfun(x)=(-3.4867d3*3*x+0.564447d4*2)*x+67.2292d2
rp=log(p)
x=(rp-4.660517d0-13.4244d0+7373.78d0/T)/
 + (1.10854d2+67.2292d2/T)
do 10 i=i,20
 dx=(afun(x)+bfun(x)/T-rp)/(dafun(x)+dbfun(x)/T)
 x=x-dx
 if(abs(dx).lt.1d-6)goto 20
continue
20 omegaf=x
return
double precision function quad(p,ome1,ome2)
implicit real*8(a-h,o-z)
parameter (Nint=8)
afun(a)=(((1.6448d3*a-7.3176d2)*a+1.10854d2)*a+
 13.4244d0+4.660517d0)
bfun(a)=(((-3.4867d3*a+0.564447d4)*a+67.2292d2)*a-
 7373.78d0)
funi(x)=bfun(x)/(rlnp-afun(x))

 dx=(ome2-ome1)/Nint
 rlnp=log(p)
 quad=funi(ome1)+funi(ome2)
do 10 i=1,Nint-1,2
 10 quad=quad+4*funi(ome1+i*dx)
do 20 i=2,Nint-2,2
 20 quad=quad+2*funi(ome1+i*dx)
quad=quad*dx/3
return
double precision function quad(p,ome1,ome2)
2.9.2 Include file ‘fun1’ for Methanol–Carbon–Carbon

\[afun(a) = \left(52.3793d0 \times a - 11.66841d0 \right) \times a + 6.53035d0 \times a + 20.3305d0 + 4.660517d0 \]

\[bfun(a) = \left(40.5379d3 \times a - 2.605877d4 \right) \times a + 63.1516d2 \times a - 6003.58d0 \]

\[bfuni(a) = \left(\frac{40.5379d3}{4} \times a - \frac{2.605877d4}{3} \right) \times a + \frac{63.1516d2}{2} \times a - 6003.58d0 \times a \]

\[dafun(a) = \left(52.3793d0 \times 3 \times a - 11.66841d0 \times 2 \times a \right) \times a + 6.53035d0 \]

\[dbfun(a) = \left(40.5379d3 \times 3 \times a - 2.605877d4 \times 2 \times a \right) \times a + 63.1516d2 \]

2.9.3 Optimization of COP for Methanol–Carbon–Carbon

```
program methcarb

implicit double precision(a-h,o-z)
parameter (ivar=10)
parameter (iconst=20)
parameter (kworka=IVAR*(IVAR+ICONST+25)+11*ICONST+60)
parameter (kkwork=300)
parameter (imnn2=2*ivar+iconst+2)
parameter (iact=3*iconst+15)

dimension variab(ivar),constr(iconst)
dimension gradof(ivar)
dimension vecmul(imnn2),boulow(ivar),bouupp(ivar)
dimension workar(kworka),iworka(kkwork)
dimension gradco(iconst,ivar)
dimension hessem(ivar,ivar),rhside(ivar)
dimension active(iact),lmerit,lql

common/cmache/epsl00,eps200,eps300
common /ctrl/Temax,Tcmin,start,fin,num,etareg
real*8 Temax,Tcmin,etareg
logical start,fin

eps100=epsilon(eps100)
eps200=1.d-7
eps300=1.d-3
```
NUMBER OF CONSTRAINTS:
 nocons=4

NUMBER OF EQUALITY CONSTRAINTS:
 noeqco=0

NUMBER OF VARIABLES
 novari=4

BOUNDS ON VARIABLES
 boulow(1)=280.0
 bouupp(1)=500.0
 boulow(2)=280.0
 bouupp(2)=500.0
 boulow(3)=280.0
 bouupp(3)=500.0
 boulow(4)=280.0
 bouupp(4)=500.0

USER SPECIFIED ACCURACY
 accura=1.d-8

USER SPECIFIED SCALING PARAMETER
 scabou=1.d+3

PRINT LEVEL SPECIFIED
 iprint=0

MODE OF OPERATION
 modeal=0

DESired OUTPUT UNIT NUMBER
 ioutst=8

IF TRUE, USE L2 MERIT FUNCTION. OTHERWISE L1.
 lmerit = .true.

IF TRUE, USE FULL QP SUBPROBLEM.
 lql=.true.

ROW DIMENSION OF DG - .GE. (MAX (1, NOCONS))
 nommax=iconst
c ROW DIMENSION OF C - .GE. (MAX (2, NOVARI))
nonmax=ivar

maxfun=8

maxite=40

nomnn2= nocons + novari + novari + 2

infail=0

lework=nonmax*nommax + 4*nommax + 4*nommax +
1 19*nommax+55 +1.5*(nommax+1)**2 + 15*nommax +
2 + 4*nommax + 20

leiwor=19+ivar +ivar+iconst

leacti=3*nommax + 15

open(unit=ioutst,file='nlpql.res')

open(unit=9,file='dat')

rewind(9)

read(9,*)(variab(i),i=1,novari),etareg

close(9)

Temax=variab(1)

do 1000 Tcmin=Temax+20,500

c INITIAL VALUES OF VARIABLES

fin=.false.

num=0

c Call nonlinear constrained optimization routine

call nlpql1(nocons, noeqco,nommax,novari,nonmax,nomnn2,
1 variab,objfun,constr,gradof,gradco,vecmul,boulow,bouupp,
c

OUTPUT RESULT

c
num=infail
fin=.true.
call nlfunc(nocons,noeqco,nommax,novari,objfun,constr,
+ variab,active)
call nlfunc(nocons,noeqco,nommax,novari,objfun,constr,
+ variab,active)
write(*,9020) infail,-objfun*Id-3,(variab(i),i=1,novari)

9020 format(1x,i4,f8.4,8f8.2)
continue
stop
end

block data
logical start,fin
common /ctrl/Temax,Tcmin,start,fin,num,etareg
real*8 Temax,Tcmin,etareg
data fin/./false./,start/./true./
end

subroutine nlfunc(nocons,noeqco,nommax,novari,objfun,g,
1 x,active)
implicit double precision(a-h,o-z)
dimension g(nommax),x(novari)
logical active(nommax),fin,start
common /ctrl/Temax,Tcmin,start,fin,num,etareg

EVALUATION OF OBJECTIVE FUNCTIONS

c
include 'fun1'
c
data crefr/2540d0/, cbed/920.0d0/, Rrefr/259.8d0/
data cvap/1340.0d0/, cliq/2540d0/
c
c crefr=cvap
Te=x(1)
Tc=x(2)
T1=x(3)
T3=x(4)
pcond=psat(Tc)
pevap=psat(Te)

omega2=omegaf(pevap,T3)
omega1=omegaf(pcond,Tl)

T2=bfun(omega1)/(log(pevap)-afun(omega1))
T4=bfun(omega2)/(log(pcond)-afun(omega2))
hfg=hfgw(Tc)

c
Qih=(cbef*omega2*crefr)*(T4-T3) ! Isosteric heating
Qdes=Rrefr*(bfuni(omega1)-bfuni(omega2))
Rintc=quad(pcond,omega1,omega2)
Qsd=cbef*(T1-T4)+crefr*(omega1*T1-omega2*T4+rintc)
Qic=(cbef*crefr*omega1)*(T1-T2) ! Isosteric cooling
Qads=Qdes

c
rinte=quad(pevap,omega1,omega2)
Qsa=cbef*(T2-T3)+crefr*(omega1*T2-omega2*T3+rinte)
Qsve=cvap*(rintc-Te*(omega2-omega1))
Qa=Qads+Qsa-Qsve
Qd=Qdes+Qsd

Qsvc=cvap*(rintc-Tc*(omega2-omega1))
Qc=Qsvc+(omega2-omega1)*hfg
Qe=(omega2-omega1)*(hfg-cliq*(Tc-Te))

c
Qcond=max(Qic,0d0)+max(Qa,0d0)+max(Qc,0d0)
Qcond=Qic+Qa+Qc
if(fin)then
 if(Qic.lt.0.or.Qa.lt.0.or.Qc.lt.0)then
 write(*,*)'Wrong sign'
 endif
 if(Qih.lt.0.or.Qd.lt.0)then
 write(*,*)'Negative heat input'
 endif
endif
Qin=(Qih+Qd)
Qird=Qih+Qdes+Qsd
Qira=Qic+Qads+Qsa
Qar=min((cbef*crefr*omega1)*(T1-max(T2,T4)),

39
\[(\text{cbed}+\text{crefr} \cdot \omega_2) \cdot (\min(T_4,T_2)-T_3))\]

Isosteric regeneration

if \((T_4 < T_2)\) then
 \[\omega_5 = \omega_{af}(\text{pcond}, T_2)\]
 \[T_5 = T_2\]
 \[Q_{desr} = \text{Rrefr} \cdot (\text{bfuni}(\omega_5) - \text{bfuni}(\omega_2))\]
 \[R_{intcr} = \text{quad}(\text{pcond}, \omega_5, \omega_2)\]
 \[Q_{sdr} = \text{cbed} \cdot (T_5 - T_4) + \text{crefr} \cdot (\omega_5 \cdot T_5 - \omega_2 \cdot T_4 + R_{intcr})\]
 \[Q_{br} = Q_{desr} + Q_{sdr}\]
else
 \[Q_{br} = 0\]
endif

\[Q_{regen} = Q_{ar} + Q_{br}\]
\[Q_{regen} = \max(0, Q_{regen}) \cdot \eta_{areg}\]
\[\text{cop} = \frac{Q_{cond} - Q_{regen}}{Q_{in} - Q_{regen}}\]
\[\text{cop} = \frac{Q_{cond}}{Q_{in}} \quad \text{simple cycle w/o regeneration}\]

Objective function to minimize, scaled if necessary

\[f = -\text{cop} \cdot 1d3\quad \text{for minimizer, scaled up}\]
Equality constraints for cocurrent flow

\[g(1) = \text{afun}(\omega_2) + \frac{\text{bfun}(\omega_2)}{T_3} - \log(p_{evap})\]
\[g(2) = \text{afun}(\omega_{al}) + \frac{\text{bfun}(\omega_{al})}{T_1} - \log(p_{cond})\]
\[g(3) = Q_{ria} - Q_{rid} \quad \text{Regenerator balance condition}\]
Inequality constraints, expressed as \(G \geq 0\)

\[g(1) = (T_e - 280) \quad \text{Prevent freezeup of evaporator}\]
\[g(2) = (500 - T_1) \quad \text{Prevent damage to zeolite}\]
\[g(1) = (T_3 - T_e) \quad \text{Cycle constraint}\]
\[g(2) = (T_4 - T_c) \quad \text{Desorbed fluid must go out as vapor}\]
\[g(3) = (T_c - T_{cmin}) \quad \text{Reqd. for rejection of waste heat}\]
\[g(4) = (T_{em} - T_c) \quad \text{Reqd. for cooling to be possible}\]
\[g(7) = (T_3 - 280) \quad \text{Prevent freezing of zeolite}\]

if \((\text{fin.and.num.eq.0})\) then
 write(*,30)T_e,T_c,T_1,T_2,T_3,T_4,cop
30 format(/,' Final cycle temperatures : ',6f6.0,f7.4)
 write(*,32)cop,Q_{cond},Q_{in},Q_{regen}
EVALUATION OF GRADIENTS BY FINITE-DIFFERENCES

on=1.d+0
eps=1.d-7
do1 i=1,novari
xeps=eps*dmax1(on,dabs(variab(i)))
xepsi=on/xeps
variab(i)=variab(i) + xeps
call nlfunc(nocons,noeqco,nommax,novari,feps,
1 coneps,variab,active)
gradof(i)=(feps - objfun)*xepsi
do2 j=1,nocons
if (.not.active(j)) goto 2
gradco(j,i)=(coneps(j) - constr(j))*xepsi
continue
1 variab(i)=variab(i) - xeps
return
end
c
double precision function psat(T)
c
c Vapor pressure of methanol
c
implicit real*8(a-h,o-z)
data hfg/1174109d0/, R/259.8d0/, T0/337.80d0/
data p0/101325d0/
psat = exp((1/T0-1/T)*hfg/R)*p0
return
end
c
double precision function hfgw(T)
c Latent heat of methanol
c implicit real*8(a-h,o-z)
hfgw=1174109d0
return
end
c
double precision function omegaf(p,T)
c implicit real*8(a-h,o-z)
c include 'funl'
c
rp=log(p)
x=(rp-4.660517d0-20.3305d0+6003.58d0/T)/(6.53035d0+63.1516d2/T)
do 10 i=1,20
 dx=(afun(x)+bfun(x)/T-rp)/(dafun(x)+dbfun(x)/T)
x=x-dx
 if(abs(dx).le.1d-6)goto 20
10 continue
20 omegaf=x
return
end
c
double precision function quad(p,ome1,ome2)
c implicit real*8(a-h,o-z)
parameter (Nint=8)
c include 'funl'
c
funi(x)=bfun(x)/(rlnp-afun(x))
c
dx=(ome2-ome1)/Nint
rlnp=log(p)
quad=funi(ome1)+funi(ome2)
do 10 i=1,Nint-1,2
10 quad = quad + 4 * funi(ome1 + i * dx)
 do 20 i = 2, Nint - 2, 2
20 quad = quad + 2 * funi(ome1 + i * dx)
quad = quad * dx / 3
return
end