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Abstract

The effects of Reynolds number and turbulence on surface heat-transfer rates

are numerically investigated for a 0.015 scale X-34 vehicle at wind tunnel con-

ditions. Laminar heating rates, non-dimensionalized by Fay-Riddell stagnation

heating, do not change appreciably with an order of magnitude variation in

Reynolds number. Modeling a turbulent versus laminar boundary layer at the

same Reynolds number increases the windside heating by a factor of four, por-

tions on the leeside by a factor of two, and causes a 30 percent increase in

wing leading edge heating. A discrepancy between laminar and turbulent heat-

ing trends on the windside centerline is explained by the presence of attached

windside vortices in the laminar solutions, structures that are inhibited by the

turbulence modeling.

Nomenclature

CD

CL
CM
Cp
i, j, k

L/D
M

Q
Re
T

V

x,y,z

P

Drag coefficient
Lift coefficient

Pitching-moment coefficient
Pressure coefficient

Streamwise, circumferential, and body-normal computational indices

Lift-to-drag ratio
Mach number

Nondimensionalized heat-transfer rate

Reynolds number based on model length

Temperature, K

Velocity magnitude, m/s

Cartesian coordinates, m

Density, kg/m 3

Subscripts

oc Freestream

1 Introduction

X-3411, 2] is a NASA program with Orbital Sciences Corporation as the prime

contractor[3]. The X-34 purpose is to demonstrate next-generation reusable
launch vehicle technologies. The X-34 program goals are to build a flight vehicle

with first-flight in 1999, demonstrating fully-reusable operation with efficient

ground support and quick turn-around times. It is anticipated that a more

aircraft-like operational capability will lead to greatly reduced launch costs over

current space transportation systems.

The X-34 will be air-launched from an L 1011 airplane. Landing will be

on a conventional runway. An artist's sketch of the flight sequence, taken from
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Figure 1:X-34 flight sequence, taken from Ref. [4].

Ref. [4], is depicted in Fig. 1. Flight tests will focus on both low and high-speed

performance, with a peak Mach number of 8. Peak heating is expected to occur

around Mach 6, with turbulent flow.

NASA Langley has participated in a task agreement with Orbital Sciences

to assist in the prediction of the X-34 aerothermodynamic environment and the

analysis of the aerothermal design of the vehicle. To this end, a series of wind

tunnel experiments and numerical simulations have been performed. Berry et

a/[5] and Merski[6] conducted a matrix of ground-based experimental heating

tests using the thermographic phosphor technique at Mach 6 and Mach 10 for

both laminar and turbulent flows. Kleb et al[4, 7] and Riley et a/J8] have com-

puted heating rates at flight conditions covering Mach 3 7, with most of the
calculations for turbulent flow. Comparisons between the experimental heat-

ing data, extrapolated to flight values, and computations has been presented in

Refs. [4]-[7].
The present study seeks to provide overlap between the numerical and exper-

imental data sets by performing computational simulations of the X-34 vehicle

at wind tunnel conditions. The primary emphasis is on the detailed definition of

the thermal environment, though vehicle aerodynamic coefficients and flowfield

features are also presented.

2 Configuration

The geometry is a 0.015 scale model of the X-34 outer mold lines, including the

thermal protection covering, truncated at the body-flap hinge line. The body

flap and rocket nozzle were omitted from the calculations, with an assumed base

pressure equal to freestream static pressure. A depiction of the model used in

this study is presented in Fig. 2.

The model length is 0.246 m. For convenience, moments are taken about the

nose tip, the reference length for aerodynamic coefficients is the model length,

and the reference area is the model length squared.



Figure2: PerspectiveviewsofX-34model.

3 Computational Method

3.1 Solver

Computations were performed using the Langley Aerothermodynamic Upwind

Relaxation Algorithm (LAURA)[10, 11, 12]. Perfect-gas air flows were simulated

using the upwind-biased, point-implicit scheme for both laminar and turbulent
boundary layers.

Thin-layer approximations to the Navier[13]-Stokes[14] viscous terms were
applied, retaining only the wall-normal terms in grid blocks adjacent to the
vehicle surface. The inclusion of additional viscous terms in the wake of the

wing was found to help stabilize and converge the solutions.

The Baldwin-Lommx[15, 16] algebraic Reynolds'-averaged turbulence model

was used for the turbulent cases. Fully-turbulent computations, with no transi-

tion region, were specified.

LAURA has previously been benchmarked against the Shuttle orbiter[19] at

flight conditions, and has been applied to a spectrum of configurations includ-

ing the X-33[17] and SSV[18] entry vehicles, giving confidence in its predictive

capability for the complex hypersonic flows considered here.



Wing

:_iiiiiiiiii:_iiiiiliiiii_ C
iiiiiiiiiiiiii_

iiiiiiiiiiiiiiii rank Nose

Aftbody _iiiiiiiiiiiiiiiiii__ Strake \

Forebody\...... .......
' -0.'25 -0'.2 -0.'15 -0'.1 -0.'05

z,m

Figure 3: Streamwise blocking for circumferential coarsening.

3.2 Grid

The structured computational mesh contains 369 points in the streamwise di-

rection, 305 points around the vehicle from the windside to leeside symmetry

planes, and 65 points normal to the surface. An additional 72 x 16 x 80 grid was

inserted behind the wing trailing edge. Details of the grid generation process,

including grid-quality assessments, have been reported by Alter[9].
The domain was partitioned into six streamwise blocks, referred to as the

nose (i=1 21), forebody (i=21 61), strake (i=61 133), crank (i=133 225), wing

(i=225 297), and aftbody (i=297 369). The number of circumferential points,

305, was chosen to resolve all surface features around the wings. Fewer points

are needed to resolve the geometrically simpler cross sections forward of the

wings. Hence, the strake and crank blocks were coarsened, in the circumferential

direction only, by a factor of two, the forebody by a factor of four, and the nose

by a factor of eight. A planform view of the configuration with breaklines for

the six streamwise blocks is shown in Fig. 3.

The domain was further split into a total of 31 blocks to reduce mere-

ory requirements. With this mesh and blocking scheme, the solution required

530 MWords of memory on a 16-processor Cray C-90. Grid adaption was per-

formed to align the mesh with the bow shock and to cluster points in the bound-

ary layer. Solutions required approximately 200 CPU hours each on the C-90.

4 Cases

Two sets of freestream conditions simulate the perfect gas flow of air in a Mach-6
wind tunnel. The core flow is assumed to be uniform.

For the low Reynolds number case: Vo_ = 927 m/s, T_ = 60.7 K, and
p_ = 0.0160 kg/m 3. This corresponds to M_ = 5.94 and Re = 0.9 x 106 based

on model length. A laminar solution was computed at these conditions.

For the high Reynolds number case: Vo_ = 954 m/s, T_ = 62.4 K, and
p_ = 0.1136 kg/m 3. This corresponds to M_ = 6.02 and Re = 6.4 x 106. Both

laminar and turbulent solutions were computed at these conditions.

The wall temperature is held constant at 300 K and the angle of attack is



Re x 10 -_ Boundary layer CD CL CM L/D
0.9 laminar 0.003467 0.008280 -0.005813 2.39
6.4 laminar 0.003180 0.008358 -0.005807 2.63

6.4 turbulent 0.003410 0.008472 -0.005932 2.48

Table 1: Aerodynamic coefficients.

15 deg for all cases. Heating results for the high Reynolds number case are nor-

realized by 405 kW/m 2 and for the low Reynolds number case by 128 kW/m 2.

These values are determined by a Fay and Riddell[20] stagnation point calcula-

tion on a sphere of radius 2.5 mm at the same freestream conditions.

5 Results

5.1 Aerodynamics

To illustrate the effects of Reynolds number and turbulence on the static longi-

tudinal aerodynamic characteristics, lift, drag, and pitching-moment coefficients

are presented in Table 1. Recall that the X-34 configuration modeled in this

study lacks the aft body flap and bell nozzle present on the true vehicle.

Increasing Reynolds number is seen to reduce CD and increase C5, leading

to a 10 percent increase in lift-to-drag ratio. Forcing a turbulent boundary layer

at the higer Reynolds number further increases CL by another 1.4 percent, but

the 7 percent increase in CD, leads to an overall 6 percent reduction in L/D.

5.2 Surface Heating

Contour plots of normalized surface heat-transfer rates are presented in Figs. 4 9

for windside, leeside and starboard views. The two laminar solutions, for the

low and high Reynolds number cases, are compared side-by-side in Figs. 4 6.

Variation of Reynolds number changes neither the contour patterns nor the mag-

nitude of the normalized heating. The only exception is a numerical anomaly

in the low Reynolds number case on the fuselage side at the wing-aftbody block

boundary, Fig. 6. The localized erratic heating fluctuation at this point is re-

lated to a local numerical instability aggravated by very low densities in that

region, and is an unreliable representation of the physical heating at that point.

Laminar versus turbulent heating is compared in Figs. 7-9 for the higher

Reynolds number case. Windside heating for the turbulent case is as much

as four times greater than for the laminar case, though the contour patterns

remain largely the same. Turbulent leeside heating, Fig. 8, is about twice as

high as laminar heating. The turbulent contours also suggest stronger scrubbing

on the leeside fuselage. On the fuselage side, Fig. 9, the turbulent heating on

the forebody is about twice the laminar value, but in the middle section of

the fuselage both solutions show low heating values. Puselage heating on the
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Figure 4: Laminar heat transfer comparison with Reynolds number variation;
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Figure 5: Laminar heat transfer comparison with Reynolds number variation;

leeside. Contours vary on [0, 0.2] with 0.02 increment.
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Figure 6: Laminar heat transfer comparison with Reynolds number variation;
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Figure 7: Laminar/turbulent heat transfer comparison; windside. Contours
vary on [0, 0.3] with 0.03 increment.
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Figure 8: Laminar/turbulent heat transfer comparison; leeside. Contours vary

on [0, 0.2] with 0.02 increment.
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aftbody is more than twice as high in the turbulent solution than in the laminar

solution, though the contour on the sides of the vertical tail are similar for the
two sets of results.

Next, line plots of normalized surface heat-transfer rates are presented, ex-

tracted froln representative cuts along the vehicle. Windside and leeside cen-

terline heating is shown in Figs. 10 and 11, respectively, for all three cases.

Turbulent windside heating is seen to be as much as four times greater than the

laminar heating. The effect of turbulence on the leeside centerline produces the

most change on the forebody region, where the turbulent heating exceeds the

lalninar values by more than a factor of two. Increasing the Reynolds number

lowers the normalized windside laminar heating between 0 10 percent, but dou-

bles the leeside centerline normalized laminar heating on the rear three-quarters

of the vehicle. Normalized heating rates on the vertical tail are similar for all

three cases, with the low-Reynolds-number case experiencing some localized nu-

merical difficulties due to extremely high kinetic to internal energy ratio in that
region. Both of the laminar solutions show a sudden increase in windside cen-

terline heating at z = -0.08 m. This is due to a windside vortex structure,

to be discussed in more detail in a following section, upstream of that point.
The turbulent solution does not exhibit the same windside vortex structure and

subsequent similar heating change there.

Another axial heating plot is shown in Fig. 12. The cut is taken from the

nose to the end of the wing tip, following the leading edges of both the strake

and the wing. Along the leading edge of the forebody, the turbulent normalized

heating is elevated over the laminar values by 50-200 percent. Turbulence has

a much smaller effect on the strake leading-edge heating, but then causes about

a 30 percent increase in the wing leading-edge heating. Heating along the wing

leading edge is seen to be comparable to that at the nose stagnation point.
Normalized heat-transfer rates taken from three cross-sectional slices on the

vehicle are presented in Figs. 13 15 versus the x-axis station (positive z points

"up" relative to the vehicle). The cuts are from stations z = -0.03, -0.13,

and -0.16 m. The windside and leeside contour plots of Figs. 7 and 8 can be
used to locate these z locations on the vehicle.

The first cross-sectional slice is taken on the forebody at z = -0.03 m,

Fig. 13. This station corresponds to the location of the windside vortices in

the laminar solutions. Figure 13 shows the laminar heating rates drop on the

windside by an order of magnitude between the chine and the centerline (left

end of the plot). Normalized turbulent heating is 50 percent higher than the
laminar values on the chine and twice the laminar values on the leeside.

The second cross-sectional heating cut, Fig. 14, is taken on the strake at
z -- -0.13 m. This station is where the leeside fuselage transitions from a round

to rectangular profile. Normalized windside heating distributions for the two

laminar solutions are qualitatively similar. The turbulent windside heating is

elevated by a factor of three over the laminar values toward the centerline.

However, the peak normalized heating on the strake leading edge is comparable

for all three cases, at 0 =0.13 0.18. Laminar heating rates on the side of the

fuselage are half the turbulent levels, with the trends suggesting a small separa-
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tion region in the turbulent solution, a separation covering approximately half

the fuselage side for the high Reynolds number laminar case, and a separation

extending the full height of the fuselage at the lower Reynolds number.

The final cross-sectional heating cut, Fig. 15, is taken through the peak-

heating point on the wing leading edge, at z = -0.16 m. Turbulent heating is

still a factor of three higher than the laminar results on the windside and at

least 50 percent higher on the fuselage side. However, there is less difference in
the peak heating on the wing leading edge between the laminar and turbulent

solutions, at approximately the same value as the nose stagnation-point heating.

5.3 Windside Vortices

A closer look is taken in this section at the generation and decay of windside
vortices present on the forebody in the laminar solutions. The location of these

vortices coincides with the drop in windside centerline heating seen in Fig. 10.
The sudden rise in centerline heating at z = -0.08 m, Fig. 10, corresponds with

the region where these windside vortices rapidly dissipate.

A sequence of crossflow streamline patterns are shown in Figs. 16-19, taken

at z = -0.002, -0.01, -0.06, and -0.08 m, respectively. Each of the figures has

the same scale, with the focus being on the windside portion of the flowfield.

On the spherical nosecap at z = -0.002 m, Fig. 16, there is no evidence of

crossflow vortices. As the geometry transitions to a triangular cross-section

12
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Figure17:Crossflowstreamlinepatternsat z = -0.01 m (windside close-up).

on the forebody, z = -0.01 El, Fig. 17, an inboard component develops in

the flowfield on the windside, eventually rolling up into a pair of well-defined

vortices, Fig. 18. These vortices scrub toward the vehicle centerline, where
the streamlines lift off the surface. A little further downstream the vortices

dissipate rapidly, as by z = -0.08 m, Fig. 19, only a weak circulation remains.

Further downstream the circulation is gone, leaving an outboard scrubbing on

the windside for the aft three-quarters of the vehicle.

Seeking the source of these windside vortices, pressure coefficient contours

in the crossflow plane are shown at two locations. At z = -0.01 m, where

the vortex structure begins to develop, Fig. 20, the highest pressures are on

the chines, with a lower pressure on the windside centerline. This windside

inboard pressure gradient, resulting from the change in geometric cross section

from circular to triangular, provides the driving potential to establish the vortex

formation. Further downstream at z = -0.08 m, Fig. 21, the highest pressures

are on the windside, with a monotonically decreasing pressure trend toward

the chines. The driving potential for the vortical velocity component no longer

persists at this point, and viscous damping combined with boundary layer build-
up contribute to the dissipation of the vortex pair.

Evidence of boundary layer thickening along the windside centerline of the

forebody is shown in Fig. 22, where normalized density contours are presented
at z = -0.06 El. A bulge of low-density fluid is accumulated at the centerline

by the converging, inboard surface shearing. This thickening of the windside

centerline boundary layer, created by the windside vortex pattern, coincides with

the decreased centerline heating on the forebody in the laminar solutions,Fig. 10.

The turbulent solution, in contrast, exhibits neither a depressed forebody

14



Figure18:Crossflowstreamlinepatternsat z = -0.06 m (windside close-up).
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Figure 19: Crossflow streamline patterns at z = -0.08 m (windside close-up).
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Figure22:Densitycontoursin thecross-flowplaneat z -- -0.06 m (windside

close-up).

centerline heating nor windside vortices on the forebody. The much greater

effective boundary layer viscosities for the turbulent case may inhibit the for-
mation of these structures.

6 Summary of Results

A computational study has been performed for the X-34 vehicle (truncated at

the body-flap hinge line) at Mach 6 wind tunnel conditions. Two Reynolds

numbers are considered, with both laminar and turbulent solutions obtained at

the higher Reynolds number.

The effects of Reynolds number variation and turbulence on normalized

surface heat-transfer rates are compared using both surface contour plots and

extracted-data line plots. Reynolds number variation on laminar solutions has

little effect on the normalized windside heating. Some variation in leeside center-

line heating is seen between the laminar solutions at different Reynolds numbers.

The increase in heating due to turbulence is seen to vary with location on the

vehicle. General trends show windside turbulent heating to be as much as four

times greater than laminar heating. On the leeside, the effect of turbulence is

most pronounced on the forebody, where heating is elevated by a factor of two.
Wing leading edge heating, which is comparable in magnitude to the stagnation

point heating, is less effected by turbulence, showing a 30 percent rise over the
laminar values.

An abrupt increase in windside centerline heating is indicated for the lain-

inar cases at one-quarter of the vehicle length, unexpected because of the flat,

17



featurelessbottomonthevehicleat that point.Furtherinvestigationrevealsa
pairofwindsidevorticesupstreamoftheheatingrise,generatedbythenosecap-
to-forebodychangein crosssectionon thevehicle.Thesevorticesdissipateat
exactlythesamelocationastheheatingincrease.Thepostulationis thatthese
vorticesaccumulateathickerwindsideboundarylayeralongthecenterlineover
thequarterforebodyofthevehicle,locallydepressingthecenterlineheating.As
thesevorticesdissipate,thecenterlineheatingrisesto thegeneralvalueoverthe
wholeoftheflatwindsidefuselage.Neitherthewindsidevorticesnoraheating
changeat thequarterforebodylocationareobservedin theturbulentresults.
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