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ROTORDYNAMICS AND DESIGN METHODS OF AN

OIL-FREE TURBOCHARGER

Samuel A. Howard*

Case Western Reserve University

Cleveland, Ohio 44106

SUMMARY

The feasibility of supporting a turbocharger rotor on air foil bearings is investigated based upon predicted

rotordynamic stability, load accommodations, and stress considerations. It is demonstrated that foil bearings offer a

plausible replacement for oil-lubricated bearings in diesel truck turbochargers. Also, two different rotor configura-

tions are analyzed and the design is chosen which best optimizes the desired performance characteristics. The

method of designing machinery for foil bearing use and the assumptions made are discussed.

NOMENCLATURE

C bearing clearance

D journal diameter

e eccentricity

h film thickness

h' dimensionless film thickness = h/C

L bearing length

L/D length to diameter ratio

Pa ambient pressure

R journal radius

W dimensionless load W = w/(PaR2 )

w load

ct compliance of the foils

e dimensionless eccentricity (e/C)

H fluid dynamic viscosity

journal rotational speed

A bearing number (6mm/P a R2/C2), also called dimensionless speed

INTRODUCTION

A turbocharger is a turbine driven compressor that uses the waste energy from exhaust gas to increase the

charge mass of air in the combustion chamber of an engine. This process allows more fuel to be burned and thus

increases the power output of the engine. Nearly all commercially available heavy duty diesel truck engines use

turbochargers for increased power output and to compensate for low presures at high altitudes where air is less dense

(ref. 1). Also, by utilizing turbocharging, one engine displacement can be set up to provide a wide range of power
levels.

However, turbochargers on diesel truck engines are vulnerable to failure. This is due, in part, to their oil lubrica-

tion systems. Turbocharger rotors rely on oil lubricated floating sleeve bearings and ring seals. Because turbocharg-

ers operate at high temperatures the oil is subject to degradation and coking. This can lead to catastrophic failure,

*NASA Resident Research Associate at Lewis Research Center.
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increasedparticulateemissionsfromoil leakingintotheairstream,and,inseverecases,enginefires.Becauseof
theseinherentproblemsandtherecentemphasisonmorestringentemissionsstandards,it hasbecomedesirableto
eliminatetheoil lubricatedbearingsinaturbocharger.

Foilbearingsprovideonepotentialmeanstoaccomplishthisgoal.Foilbearingsareself-actingcompliant
hydrodynamicbearingslubricatedbyairandarewellsuitedtohighspeed,lightloadapplications.Theturbocharger
presentsjustsuchasetofbearingconditionsandappearstobeanattractiveapplication.

Foilbearingtechnologyhasbeenusedextensivelyinthelastthreedecadesintheaircyclemachines(ACM)of
manynewercivilianairliners(ref.2).AnACMisaturbocompressorusedtoprovidecabinpressurizationandair
conditioning.TheseACMs,whicharepoweredbycompressorbleed-off,operateundersteadyspeedandloadcondi-
tionsandarenotsubjectedtothedemandsofhightemperature(ref.3).Toextendthetechnologyoffoil bearingsto
highspeedandhightemperatureapplications,themodificationofaturbochargerhasbeenproposed.It ishopedthe
knowledgegainedfromthisapplicationcanleadtomorecomplexusesforfoilairbearings,suchasgasturbine
engines.Finally,turbochargersstandtobenefitfromtheadvantagesofferedbyfoilbearingsoveroil lubricatedbear-
ings,astherearevirtuallynomaintenancerequirementsforthefoilbearings,andtheirlowerpowerloss(ref.4)may
leadtobetterfueleconomy.

Inthisstudy,thegoalistoshowthatair-lubricatedfoilbearingscanbesuccessfullyutilizedinahightempera-
tureenvironmentwithvariableloads.Theworkpresentedistobeusedasapreliminarydesignstudyinanongoing
cooperativeeflorttodesign,build,andtestaworkingoil-freeturbocharger.

FOIL BEAR1NGS

The foil bearing, whose configuration is shown in figure 1, is comprised of a cylindrical shell lined with corru-

gated bump foils topped with a thin, flat foil. The purpose of the foil is to comply to the hydrodynamic pressure

distribution inside the bearing resulting in a larger gap than would be present for an identically loaded rigid gas bear-

ing. There are several benefits gained by this larger gap. The load capacity is increased because the foils deform,

having the effect of spreading the load over a larger area. The larger gap leads to reduced shearing rates resulting in

lower power loss than rigid gas bearings. Foil bearings are less susceptible to damage due to dirt particles not only

because the gap is larger, but also because the foils can deflect to accommodate a large dirt particle instead of seiz-

ing. Foil bearings generally offer more damping than do identical rigid gas bearings. This increased damping is due

to the Coulomb friction dissipation that occurs during shaft deflections causing the bump and top foils to rub

together. Their increased damping gives them more stability at critical speeds. The compliance of foil bearings also

makes them more tolerant of misalignment and centrifugal and thermal growth. This, in turn, lessens the importance

of surface finish and precision tolerances which is especially crucial in the case of rigid gas bearings (ref. 5).

Historically, gas foil bearings have had limitations that have kept them out of wide spread use in high speed

rotating machinery. A serious drawback is the lack of high temperature start/stop cycle endurance (ref. 6). These

bearings are very durable in high temperature environments once they are running, but starting and stopping requires

endurance of high temperature metal to metal sliding. In addition, they lack the high load carrying capacity of oil-

lubricated bearings or rolling element bearings. Typical air foil bearings have internal fluid pressures less than

0.7 MPa (100 psi) while oil film bearings regularly have pressures an order of magnitude higher. These obstacles

have been largely overcome through the recent development of new bearing designs with enhanced damping and

load capacity (ref. 7) and better solid lubricant coatings (ref. 8). Thus, the concept of an oil-free turbocharger war-
rants consideration.

APPROACH

An existing truck turbocharger will be used as the base design and will be modified as needed to accept the foil

bearings. Since the turbocharger will be based upon an actual production unit, the design will allow for a direct com-

parison between the oil-lubricated and air-lubricated prototype bearings to determine the performance changes.

The first step in analyzing the oil-free turbocharger concept is to model the rotor system in a rotordynamics

code. The code to be used, Analysis of Rotor Dynamic Systems (ARDS), was developed by Arizona State Univer-

sity (ref. 9). The code uses finite element analysis to determine rotor-bearing system response. A series of computer
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simulationsiscarriedoutwiththedirectstiffnesscoefficients(Kxx,Kyy)chosenoverawiderange,andthecross-
coupledstiffnesscoefficients(Kxy,Kyx)setequaltozerotomaptheundampedcriticalspeedsoftherotorasafunc-
tionofstiffness.Thismethodwill facilitatechoosingdesiredstiffnessvaluesbaseduponcriticalspeedrequirements.
Sincethesebearingsdonottendtoofferagreatdealofdampingcomparedtooilfilmbearings,it isdesirableto
designtherotorsuchthatthethirdcriticalspeedisabovethemaximumoperatingspeed,andthesecondcritical
speedisbelowthelowestoperatingspeed,typically20000rpm,toimprovethelikelihoodofstableoperation.

Therotor/bearingsystemmustalsobedesignedtooperatebelowthethresholdspeedofinstability.Thisisthe
speedatwhichself-excitedvibrationsbegintooccur.Unlikecriticalspeeds,arotatingmachinecannotbeoperated
atorabovethespeedwhereself-excitedvibrationsbegin.However,it ispossibletoshiftthespeedatwhichthis
occursupordownbyincreasingordecreasingtheamountofdampinginthesystem.Witharotorsystemchosen
baseduponthepreviouslyexplainedstiffnessrequirements,dampingisaddedtothemodelinvaryingdegreesin
ordertoplotthelogdecrementasafunctionofbearingdamping.Thelogdecrementisameasureofvibrationdecay
withtime,andthusgivesanindicationofsystemstability.If thelogdecrementofthesystemispositive,thevibra-
tionamplitudeisdecreasingwithtime.However,if thelogdecrementisnegativetheamplitudeisincreasingwith
timeandthiscorrespondstoself-excitedvibration.Experiencedescribedintheliteraturehasshownthatinorderfor
therotortobestable,thelogdecrementmustbepositiveandgreaterthan0.20(ref.10).

Thestabilityanalysisisdoneataspinspeedof117000rpm,themaximumspeedoftheturbocharger.It is
assumedthatsincethebearingswillbetheleasteccentricatthemaximumspeed,if therotorisstablethere,it will
bestableatlowerspeeds.Thisassumptionisonlyvalidbecausetheoperatingspeedrangedoesnotincludeacritical
speedwheremoredampingwouldbeneeded.

ROTORGEOMETRY

Tworotorgeometrieswereanalyzedinthisstudytodetermineanappropriatesizeforthebearings.Thefirst
designanalyzed(calledtheshortrotor)has2.54cm(1.0in.)longbearings,andashaft9.680cm(3.8in.)longto
maintaintheexistingoveralllengthofthecurrentoil-lubricatedrotor.Thediameterofthebearingsis2.54cmas
well.ThisdiameterwaschosentogiveanL/Dratioof1.Someofthereasonsforthisarethatlongbearingswith
L/D>>1offerlittletolerancetomisalignment.Theyalsolimitcrossflowforcedconvectioncooling.Shortbear-
ings,L/D<<1sufferfromedgelosseswhichreduceloadcapacity.Shortbearingsmayalsobehardtomanufacture
becausethefoilstendtowarpanddistort.Therefore,anL/Dratioof1appearstobearationalselection.

Theinsidediameteroftheshaftisdeterminedbytherequirementthatthebendingcriticalspeedbeabove
117000rpm.Baseduponthisconsideration,therequiredinsidediameteris1.9cm(0.75in.).Thisvaluewasdeter-
minedbychoosinganinnerdiameterandrunningthecomputercodetofindthethirdcriticalspeed.If thebending
criticalspeedwaslowerthan117000rpm,theinnerdiameterwasdecreased.Thisrotorgeometryisshownin
figure2.

Usingthecriticalspeedmap(fig.3),arangeofpossiblebearingstiffnessisfoundtoberoughly175N/cmto
21000N/cm(1000to12000lb/in.)inordertokeeptheoperatingspeedrange(20000to117000rpm)clearof
criticalspeeds.Now,it isnecessarytodeterminethebearingproperties.Fortheshortrotorgeometry,thestaticload
oneachjournalbearingisabout6.7N(1.5lb).Fromthebearingdataintheliterature,it canbeseenthataloadof
6.7N (whichcorrespondstodimensionlessloadW =0.408)canbeaccommodatedinseveralways.Unlikerigid
bearings,whichonlyrequiretheload,speed,andgeometrytobespecifiedinordertodeterminetheeccentricity,foil
bearingsalsorequirespecificationofanadditionalparameter,thecompliance(c0.Thecomplianceisadimension-
lessmeasureoftherigidityofthefoils;zerobeingveryrigid,tenbeingverysoft.However,thecomplianceand
eccentricityarerelatedtoeachother.Thisrelationshiphasbeennumericallydeterminedandisdescribedinrefer-
ence11.Therefore,forafixedspeedandload,onlymatchedpairsofcompliance(c0andeccentricity(E)arepos-
sible.Consequently,theprimarydesignconsiderationscanbecategorizedintotwogroups:therotorenvironment
(loadandspeed),andthebearingcharacteristics(complianceandeccentricity).

Sincethedesignisbeingcarriedoutatthemaximumoperatingspeed,it isdesirabletochooseasmalleccentric-
itysothatwhenthespeedisdecreased,thebearingwillstillhavearelativelysmalleccentricity.Thisisimportant
becausethebearingneedstobeabletotolerateshockloadsthatcouldbemuchlargerthanthedeadweightofthe
rotor.Therefore,it isbesttodesignthebearingstobelightlyloaded(loweccentricity)atmaximumoperatingspeed
sothatwhenthebearingsareoperatedatlowspeedtheystillhavesometolerancetodynamicloads.It isanticipated,
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baseduponthecriticalspeedrequirements(alreadydiscussed)andthedatatakenfromreference11,thatthestiff-
nessrequiredofthejournalbearingswilldictateacompliancenear1.Undertheloadandspeedrangeencountered,a
complianceof 1leadstoaneccentricityof0.45atmaximumspeed.Atminimumspeed,theeccentricityincreasesto
0.90.

Theclearancecanbedeterminedfromthedimensionlessspeed.Theanalysisisdonefordimensionlessspeed
(A)of 1andthedesignisbeingcarriedoutat117000rpm,thereforeA = 1mustcorrespondto117000rpm.
Fromthis,theclearancecanbedeterminedtobe0.0048cm(0.0019in).Now,allbearingparametersareknown:
D= L=2.54cm(1in.),clearance=0.0048cm(0.0019in.),c_= 1,E= 0.45.

SHORTROTORRESULTSANDDISCUSSION

Theundampedcriticalspeedsoftherotorwiththebearinggeometryasgivenaboveareacceptable.Thefirst
andsecondcriticalspeedsarebothbelowthelowestoperatingspeedof20000rpm.Thethird,orbending,critical
speedisroughly150000rpmwhichissafelyabovethehighestoperatingspeed.

TherotorismodeledinARDStodeterminetheamountofdampingneededforstability.Thelogdecrement,as
calculatedbythecomputercode,isshowninfigure4asafunctionofdampingvalues.Fromtheplot,it canbeseen
thatif thedampingcoefficientsofthebearingsareabove315Ns/m(1.8lbsec/in.),thesystemwillbestableat
117000rpm.It isassumedthattherotorwillbestableatallotheroperatingspeedsasstatedearlier.

It is importanttoensurethatthemaximumstressintheshaftislessthanthematerial'syieldstrength.It is
alsonecessarytodeterminehowmuchradialgrowththeshaftwillhaveatthemaximumspeed.Themaximum
centrifugalradialgrowthoftheshaft(notincludingthecenterofthethrustdisk)at117000rpmis0.00091cm
(0.00036in.).Theassociatedstressintheshaftis185MPa(26800psi)(ref.12)whichiswellbelowthe758MPa
(110000psi)yieldstrengthofonecandidaterotormaterial,Inconel713LC,at538°C(1000°F)(ref.13).

Theexpectedtemperatureinthejournalatthecompressorendis461°C(861°F),andis394°C(742°F)atthe
turbineend.Thetemperaturein thebearinghousingatthecompressorendis409°C(768°F),andis369°C
(696°F)attheturbine end. The higher bearing temperatures at the compressor end are due to the different paths

taken by the cooling air flowing through them. The compressor end journal bearings receive cooling air that has

already flowed through the loaded side of the thrust bearing, thus it is hotter than the cooling air for the turbine end

journal bearing which flows through the unloaded side of the thrust bearing. Under these conditions, the shaft and

the housing will grow different amounts. These expansions will cause the clearance to change. The compressor end

clearance will decrease by 0.0008 cm (0.0003 in.) and the turbine end clearance will decrease by 0.00025 cm

(0.0001 in.). When combined with the centrifugal growth, this decrease amounts to less than half of the original

clearance, and will not pose a problem as the foils can elastically deform by several times the original clearance

(ref. 14). This characteristic of foil bearings that gives them their tolerance of misalignment and dirt particles also

provides room for clearance reduction of that magnitude.

Thus, it seems that this configuration will work provided the bearings are capable of delivering at least

315 Ns/m (1.8 lb sec/in.) of damping. Damping values have been estimated using a test rig at the National

Aeronautics and Space Administration Lewis Research Center to be on the order of 350 to 525 Ns/m (2 to

3 lb sec/in.) (ref. 15). Therefore, a stable design appears achievable.

Since there is potentially more damping available than is needed for stability, it may be wise to test for other

possible bearing configurations that will need more damping, but will offer other benefits to make them a better

choice than this design. For instance, since these bearings are somewhat heavily loaded at maximum speed, they are

even more heavily loaded at 20 000 rpm (eccentricity 0.90). This could present a problem with shock loads at low

speed. The dynamic loads could be several times the static loads in an application such as truck engine turbocharg-

ers, so it would be beneficial to design the bearings with extra load capacity at slow speeds.

LONG ROTOR GEOMETRY

With this in mind, it is desirable to consider larger bearings that would be less heavily loaded at low speed in

order to gain shock load capacity. This approach has a disadvantage. The larger bearings would also be lightly

loaded at high speed thus requiring more damping to be stable. For the larger diameter bearings, the rotor length

must be increased to retain the desired L/D ratio of one. This rotor design is designated as the "long rotor" and is

shown in figure 5.
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Thelengthoftherotorislimitedbytheamonntofspaceintheenginecompartment.Themaximumdistance
betweenthecompressorwheelandturbinewheelthatcanbeaccommodatedinthetruckenginecompartmentis
12.8cm(5.04in.).Therefore,theuseof3.8cm(1.5in.)longbearingsispossible.KeepingwiththeL/D= 1con-
straint,theshaftdiametermustalsobe3.8cm.

Justasbefore,thebendingcriticalspeeddictatestheinnerdiameteroftheshaft.Inordertokeepthethirdcriti-
calspeedabovethemaximumoperatingspeed,theinnerdiametermustbe3.3cm(1.3in.).Thisgeometryisshown
infigure5.

Usingthecriticalspeedmap(fig.6)it canbeseenthatbearingswithstiffnesscoefficientsof 175N/cmto
31500N/cm(1000to18000lb/in.)willkeepthecriticalspeedsoutoftheoperatingspeedrange.Theloadoneach
bearinginthisconfigurationisroughly8.9N (2.0lb),correspondingtoadimensionlessloadof0.242.Immediately
onecanseethatthesebearingsarelessheavilyloaded,asthedimensionlessloadfortheshorterbearingswas0.408.

Thenextstepistodeterminetherestofthebearingparameters.FromA= 1,theclearanceisdeterminedtobe
0.0074cm(0.0029in.).Aswiththeshortrotorbearingdesign,theeccentricitywillbechosentobesmallinorderto
maintainarelativelylightloadingatlowspeed.Choosingtheeccentricity=0.3isagoodchoicebecausec_will
againbe1dictatedbythestiffnessrequirementsstatedearlier.All ofthebearingparametersforthisdesignarenow
known:D=L =3.8cm,clearance=0.0074cm,c_= 1,E= 0.30.

LONGROTORRESULTSANDDISCUSSION

Thelongrotorcriticalspeedmaplooksverysimilartotheshortrotorcriticalspeedmap.Thefirsttwomodes
arebothwellbelow20000rpm,andthethirdmodeisabout159000rpm.

UsingtheARDScode,thelogdecrementiscalculatedforthefirsttworigidbodymodesandplottedversus
dampingcoefficient.Theplot(fig.7)showsthatinorderfortheturbochargertobestableinthelongrotorconfigu-
ration,thebearingsneedtosupplyatleast482Ns/m(2.75lbsec/in.)ofdamping,whichiswithinthe350to
525Ns/mrangeforwhichtheyarecapableofbeingdesigned.Therefore,thisrotorshouldbestable.

Theradialgrowthoftheshaftisabout0.0025cm(0.001in.),andthereductionoftheclearanceduetodifferen-
tialthermalgrowthis0.0010cm(0.0004in.)and0.0008cm(0.0003in.)forthecompressorandturbineendsre-
spectively.Whencombined,theyareagainroughlyequaltohalftheoriginalradialclearance.Themaximum
centrifugalstressin theshaft(againnotincludingthethrustdisk)isabout418MPa(60600psi)whichisonlyhalf
ofthe758MPa(110000psi)yieldstrengthofInconel713LCasstatedpreviously.

Theeccentricityatthelowendofthespeedrangein thiscaseisapproximately0.70,indicatingthatthebearings
haveasomewhathighertolerancetoshockloadingthaninthepreviouscaseinwhichtheeccentricitywas0.90.
Fromnumericalstudiesofthesetypesofbearings,maximumloadcapacitytypicallycorrespondstoaneccentricity
of4.0(ref.14).

Ananalysiswith5.08cm(2.0in.)bearingswasconsidered,butbaseduponsomepreliminarycalculations,
usingashaftthatlargewouldcausethecentrifugalshaftgrowthtoberoughlythesameastheinitialsizeofthe
clearance.Also,themaximumstressin theshaftincreases(752MPa(109000psi)forD= 5.1cm)becausethe
outsidediameterislargerandbecausethewallisnotasthick.Therefore,it isnotfeasibletofurtherincreasethesize
ofthebearings.

SUMMARYREMARKS

Theresultsofthisprojectsuggestthatasuccessfuldesignof air-foilbearingsforuseinaturbochargerisfea-
sible.Theworkalsodescribessomeofthestepsinsuchadesignprocessusingpublishedbearingdataandpublic
domaincomputersoftware.Theresultsobtainedinthismannerarepreliminary,butrepresenta startingpointfora
moredetaileddesign.Thisanalysisisvaluableinreducingthedetaileddesigneftort,andeliminatingsomeofthe
guesswork.

Twopossibledesignsolutionswereanalyzedinthefeasibilitystudytodetermineif anair-lubricatedturbo-
chargerispossible.Theresultsarethatbothdesigns,theshortrotorandlongrotordesigns,arecapableofofferinga
solution.However,thelongrotordesignisabettercompromisebetweenthedesiredperformancecharacteristics.It
cantoleratemoreshockloadwhilemaintainingacceptableshaftstresses,thoughit doesrequiremoredampingtobe
stableatthemaximumoperatingspeedofthesystem.
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