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ABSTRACT

Experimental data from jet-engine tests have indi-

cated that unsteady blade row interactions and sepa-

ration can have a significant impact on the efficiency

of low-pressure turbine stages. Measured turbine effi-

ciencies at takeoff can be as much as two points higher
than those at cruise conditions. Several recent studies

have revealed that Reynolds number effects may con-
tribute to the lower efficiencies at cruise conditions.

In the current study numerical simulations have been

performed to study the boundary layer development

in a two-stage low-pressure turbine, and to evaluate

the transition models available for low Reynolds num-

ber flows in turbomachinery. The results of the simu-

lations have been compared with experimental data,

including airfoil loadings and integral boundary layer

quantities. The predicted unsteady results display

similar trends to the experimental data, but signif-

icantly overestimate the amplitude of the unsteadi-

ness. The time-averaged results show close agreement

with the experimental data.

NOMENCLATURE

C a, Skin friction coefficient

H Shape factor
M Mach number

N Nozzle/vane
P Pressure

*Associate Professor, Senior Member AIAA.
a Aerospace Engineer, Senior Member AIAA.
b Engineering Manager, Senior Member AIAA.
c Mgr of Univ. Strategic Alliances and Aero Tech Labs.

Pt Total Pressure

Re Reynolds number (axial chord, exit vel.)

S Entropy, arc length

SSL Normalized suction surface arc length
Tu Turbulence level

u Local velocity

Uo_ Free stream velocity

5* Displacement thickness/suction surface length

r1 Efficiency

Pressure gradient parameter

u Kinematic viscosity

p Density
(r Intermittency function
0 Momentum thickness

fl Rotational velocity

SUBSCRIPTS

tt Total-to-total quantity
wet Wetted distance

0 Momentum thickness

1 First nozzle inlet

2 First nozzle exit/first rotor inlet

3 First rotor exit/second nozzle inlet

4 Second nozzle exit/second rotor inlet
5 Second rotor exit

INTRODUCTION

Experimental data from jet-engine tests have in-

dicated that unsteady blade row (wake) interactions

and separation can have a significant impact on the

efficiency of turbine stages. The effects of these in-
teractions can be intensified in low-pressure turbine

stages because of the low Reynolds number operating
environment. Measured turbine efficiencies at takeoff

can be as much as two points higher than those at

cruise conditions [1]. Thus, during the last decade a
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significantamountof efforthasbeenput intodeter-
miningtheeffectsoftransitionandturbulenceonthe
performanceof lowpressureturbinestages.Experi-
mentalinvestigationshavebeenperformed,forexam-
ple,byHodsonet al. [2, 3, 4, 5], Halstead et al. [6, 7],

Qiu et al. [8], Sohn et al. [9] and Boyle et al. [10].

These investigations have helped identify/clarify the

roles that factors such as the Reynolds number, free

stream turbulence intensity, pressure gradient and

curvature have in the generation of losses. In par-

ticular, it has been determined that [1]:

• At low to moderate Reynolds numbers there is

a laminar region extending some distance from

the leading edge.

• The boundary layer may separate, particularly

on the suction surface of the blade. Separation

may occur in the form of a closed bubble, or

as massive separation with no reattachment (re-
sulting in large losses). The pressure surface may

have cove separation, and small separation bub-

bles may exist near the leading edge. The separa-

tion bubbles often originate in transitional flow,

while reattachment is usually in turbulent flow.

• The interaction of incoming wakes with the

boundary layer often creates a convected tran-

sitional or turbulent patch, which is trailed by a

"calmed" region. The calmed region is a relax-

ation region between the patch and the laminar

boundary layer.

In parallel to the experimental investigations, there

have been significant analytical efforts to improve the

modeling of transition. Examples of such efforts in-

elude the works of Mayle [11], Reshotko [12] and
Gostelow ct al. [13, 14]. These newer models show

promise of providing accurate transition predictions

over a wide rangle of flow conditions [15], although

they have yet to be implemented into the numeri-

cal flow analyses used by the turbine design commu-

nity. Some recent computational investigations of in-
terest include the works of Chernobrovkin and Lab

shminarayana [16], Kang and Lakshminarayana [17],

Huang and Xiong [18] and Eulitz and Engel [19].
The focus of the current effort has been to use

a viscous, unsteady quasi-three-dimensional Navier-

Stokes analysis to study boundary layer development

in a two-stage low-pressure turbine. A two-layer alge-
braic turbulence model, along with two natural tran-

sition models and a bubble transition model, have

been evaluated at both take-off and cruise operating

conditions. The geometry used in the simulations has

been the subject of extensive experiments [6, 7]. The

predicted results have been compared with experi-

mental data, including airfoil loadings and integral

boundary layer quantities.

ALGORITHM

The current work is based on an extension of an

approach developed by Rai [20]. The approach is re-
viewed in brief here. The flow field is divided into

two types of zones. O-type grids are used to re-

solve the flow field near the airfoils. The O-grids

are overlaid on H-grids which are used to resolve the
flow field in the passages between airfoils. The H-

grids are allowed to slip relative to one another to
simulate the relative motion between rotors and sta-

tots. The thin-layer or full Navier-Stokes equations

are solved on both the O- and H-grids. The governing

equations are cast in the strong conservation form.

A fully implicit, finite-difference method is used to

advance the solution of the governing equations in

time. A Newton-Raphson subiteration scheme is
used to reduce the linearization and factorization er-

rors at each time step. The convective terms are

evaluated using a third-order-accurate upwind-biased
Roe scheme. The viscous terms are evaluated us-

ing second-order accurate central differences and the
scheme is second-order accurate in time. Details of

the solution procedure and boundary conditions are

discussed in Ref. [21]

TURBULENCE MODEL

The two-layer algebraic model based on the work

of Baldwin and Lomax (BL) was used to model tur-

bulence [22]. Several modifications were made to the

original BL model based on previous experiences with

compressor and turbine geometries:

• The switchover location between the inner and

outer models cannot move more than a specified

number of grid points between adjacent stream-

wise locations. This eliminates non-physical gra-

dients in the turbulent viscosity near separation

points.

• A second derivative smoothing function is used

on the turbulent viscosity field in separated flow

regions. This also helps remove non-physical gra-

dients in the turbulent viscosity in separation re-

gions.

• A cutoff value is imposed on the turbulent viscos-

ity (nominally 1200 times the free stream lami-

nar viscosity).

The comparison of predicted and experimental in-

tegral boundary layer quantities warrants discussion
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ofthetechniqueusedto determinethelocationofthe
boundarylayeredgein thesimulations.Thefollow-
ingsteps,basedontheworkofDavisel al. [23], were

used to determine the edge of the boundary layer:

1. determine the minimum value of [Uo_ - u I, where
U_ is based on isentropic conditions

2. correct the location based on where the local vor-

ticity exceeds a specified limiting value

3. within the new range, determine where u is

greater than Uo_

TRANSITION MODELS

The low Reynolds number environment in low-

pressure turbines suggests that the flow may be tran-
sitional. Two natural transition models have been

utilized in the analysis: the Abu-Ghannam and Shaw

(ABS) model [24] and the Mayle model [11].

ABS Model

The ABS model determines the start of transition

based on the momentum thickness Reynolds number

Reo= 163+ exp V(ho) g i- ] (1)

where

F(Ae) = 6.91+ 12.75Ae + 63.64(Ae) 2 Ae < ((2)

F(Ae) = 6.91+ 2.48Ae - 12.27(Ae) 2 Ae > 0 (3)

02 dU_
/Xe -- (4)

u dS

This model is considered valid up to turbulence levels

of Tu = 10%. The end of the transition region is
calculated as

ReL = 31.8(Reo)16 (5)

In the region between the start and end of transition
the intermittency function, (r, is determined using the

model developed by Dhawan and Narasimha [25],

(r = 1 - exp (-4.64{ 2) (6)

Note, the intermittency function, which has a value of

(r = 0 for laminar flow and (r = 1 for turbulent flow, is

multiplied by value of the viscosity calculated in the

turbulence model. The current implementation of the

ABS model has been tested on both compressor and

turbine geometries [26, 27].

Mayle Model

The Mayle model also bases the start of transition

on the momentum thickness Reynolds number, where

/_ee = 400Tu e -5/8 (7)

The intermittency function model is the same as out-
lined above for the ABS model. Note that in both

the ABS and Mayle transition models the local tur-

bulence quantities (e.g., the value of Tu) are used to
calculate the start of transition.

Roberts _ Model

For cases involving separation bubbles the model

developed by Roberts [28], and modified by Davis et

al. [29], is used:

Reo = 250001oglo (1/tanh(0.173205Tu)) (8)

Instantaneous transition is assumed using the bubble
model.

GEOMETRY AND GRID

The test article used in this study has been stud-

ied extensively by Halstead el al. [6, 7]. The turbine

is typical of the those found in modern aircraft en-

gines (see Fig. 1). The turbine design parameters are
shown in Table 1.

The experimental turbine contains 82 first-stage

nozzles, 72 first-stage rotors, 108 second-stage noz-

zles and 72 second-stage stators (i.e., a 82-72-108-72
blade count ratio). For modeling purposes a blade

count ratio of 78-78-104-78 was assumed; thus requir-

ing the use of 3 first-stage nozzles, 3 first-stage rotors,

4 second-stage nozzles and 3 second-stage rotors in
the simulations. The airfoils in each blade row were

scaled to keep the pitch-to-chord ratio the same as in

the experiments. The O-grids for each blade row con-

tained contained 251 × 51 (streamwise×tangential)

grid points. The H-grids in the first-stage nozzle pas-

sage each contained 108 × 96 grid points, the H-grids

in the first-stage rotor passage each contained 125 × 96

grid points, the H-grids in the second-stage nozzle

passage each contained 120 × 96 grid points and the

H-grids in the second-stage rotor passage each con-

tained 175 × 96 grid points. Thus, the complete grid

topology contained 329,997 grid points (see Fig. 2,

which shows every fourth point). The average value
of y+, the non-dimensional distance of the first grid

point above the surface, was approximately 1.0 for all

four blade rows. The dimensions of the O-grid were

arrived at based on the value of y+ and the number

NASA/TM-- 1999-208913 3



ofpointswithintheboundarylayer,whilethedimen-
sionsof theH-gridweredeterminedby performing
wakeconvectionsimulationsin theabsenceofairfoils.

ThesimulationswererunonSiliconGraphicsInc.
(SGI)Origin200workstationswith195-MHzproces-
sors.Theaveragecomputationtimewas4 x 10-5
sec/gridpoint/iteration.Eachsimulationwasrun
for20globalperiods,at 18,000timestepsperglobal
period.A globalperiodisdefinedasthesecondrotor
movingthrougha distanceequalto 4 secondnozzle
pitchesor, similarly,thefirst rotormovingthrough
a distanceequalto 3 first nozzlepitches.The20
globalperiodsallowedtheefficiency,lossesandinte-
gralboundarylayerquantitiesto becometimeperi-
odic.

RESULTS

Two different operating points have been stud-

ied: one at takeoff conditions (Point 5A) and one

at cruise conditions (Point 5D). The parameters as-
sociated with the two test conditions are outlined in

Table 2. In accordance with the experiments, the

fl'ee stream turbulence level (used in the transition

models) was set at Tu = 3%.

Point 5A

Entropy contours are useful for tracking the con-

vection of airfoil wakes. Figure 3 illustrates instan-

taneous entropy contours in the turbine. For com-

parison, a sketch of experimental wake convection is

shown in Fig. 4 [7]. In both Figs. 3 and 4 the stretch-

ing of the wakes fl'om the pressure side of an airfoil

to the suction side of the adjacent airfoil is clearly

visible. At takeoff conditions there is little flow sep-

aration, as will be supported by the presentation of

skin fl'iction envelopes.

Numerical and experimental time-averaged load-

ings on the second nozzle and second rotor are shown

in Figs. 5 and 6, respectively. The predicted results

exhibit good agreement with the experimental data,

except in the suction surface leading edge region of

the second nozzle. The differences in this region sug-

gest the flow entering the second nozzle in the simu-

lations has somewhat greater positive incidence. On
the second rotor, both the numerical results and ex-

perimental data show an acceleration region near the

suction surface leading edge followed by a zone of con-
stant velocity, a second acceleration region and finally
a deceleration zone as the flow moves downstream of

the throat into the uncovered portion of the passage.

Figure 7 contain time histories (over 3 wake passing

periods) of the transition locations on two adjacent
second-stage nozzles using the ABS transition model.

The numerical data is plotted at a density of 33 points

per wake passing period; thus, the curves represent

information fl'om every 180th time step. In the region

between the passing wakes the (average) predicted
start of transition is approximately 67% of the suction

surface length on one nozzle and 57% on the adjacent

nozzle, as compared to the experimentally observed

value of 52% [7]. In the presence of the passing rotor

wakes, the prediced start of transition is at 36% of

the suction surface length on one nozzle and 21% on

the adjacent nozzle, as compared to 32% in the ex-

periments. The differences in the predicted location

of transition onset for the two adjacent nozzles may

due to clocking effects induced by the 3-3-4-3 blade
count ratio. The different nozzle counts in the first

and second stages cause the time-averaged location of

the first-stage nozzle wakes in the second-stage nozzle

passages to vary around the annulus of the machine.
Similar behavior was observed in the experimental

study of Ref. [7]. The time-averaged location at the
end of transition is about 95% of the suction sur-

face length on both nozzles interrogated, compared

to experimental values of 80% in the wake-induced

transition region and 73% in the transition region

between wakes [7]. Thus, the transition model ad-

equately predicts the onset of transition in the pres-

ence of the rotor wakes, but predicts the beginning
of transition about 10% too far downstream between

the rotor wakes. The end of transition is consistently

predicted further downstream than indicated by the

experimental data.

A space-time diagram of the predicted shape fac-

tor (over 3 wake passing periods) on the suction

surface of a second-stage nozzle (the adjacent noz-

zle from above) is shown in Fig. 8. For compari-

son purposes, the space-time diagram from an un-

steady boundary layer code (discussed in Ref. [30])

is presented in Fig. 9. Both figures show a large re-

gion of laminar flow downstream of the leading edge.

The current results (see Fig. 8) indicate larger peri-

odic variations than were observed in the unsteady

boundary layer calculation. The predicted transition

length in the wake-induced transition region (denoted

by 1 in Fig. 9) is approximately 74% of the suction
surface length, as compared to 17% in the unsteady

boundary layer calculation and 48% in the experi-

ment [30]. In the region between rotor wakes (de-

noted by 3 in Fig. 9) the current analysis, as well
as the unsteady boundary layer analysis and exper-

imental data of Ref. [7, 30], indicate that the start
of transition moves as far downstream as 90% of the

suction surface length.

Figures 10 thru 17 contain time histories of the dis-

placement thickness and shape factor at 50%, 68%,

NASA/TM-- 1999-208913 4



82%and94%of thesuctionsurfacelengthon the
secondnozzle.Includedin thesefiguresarethepre-
dictedresultsusingboththeABSandMayletran-
sitionmodels,aswellastheexperimentaldata. At
50%of thesuctionsurfacelengththepredicteddis-
placementthicknessdistributionsshowgoodagree-
mentwith theexperimentaldata(seeFig.10).The
predictedshapefactorsexhibitmuchlargertempo-
ral variationsthanwererecordedin theexperiments
(seeFig.11).Similarlarge-amplitudevariationswere
observedin theunsteadyboundarylayercodecalcu-
lationsof Ref.[30].At the50%locationboth the
ABSandMaylemodelsproducesimilardisplacement
thicknesstraces,buttheMaylemodelproducesmuch
largervaluesof theshapefactorin thetimeperiod
just beforethepassingof rotorwakes(i,e,,pathW,
usingthenomenclatureof Refs.[6,7, 30]). This is
causedby the Maylemodelproducingsmallerval-
uesof themomentumthicknessduringthistimepe-
riod.Movingdownstreamto the68%,82%and94%
surfacelengthlocationsthefollowingtrendsareob-
served:

• In theregionbetweenrotorwakes(pathsX and
Y), thepredicteddisplacementthicknesstraces
showfair to goodagreementwith the experi-
mentaldata. At 68%and82%of the suction
surfacelength(seeFigs.12and14)the Mayle
modelshowscloseragreementwith theexperi-
mentaldatathantheABSmodelin theregion
betweenrotorwakes.

• Thepredicteddisplacementthicknessdistribu-
tionsshowlargeamplitudevariationsin therotor
wake(pathW),muchlargerthanthevariations
indicatedbytheexperimentaldata.

• Thepredictedtemporalvariationsin theshape
factoraremuchlargerthanindicatedbytheex-
perimentaldata.In particular,theMaylemodel
producesmuchlargerfluctuationsthroughout
thewakepassingperiod.TheABSmodelshows
somewhatcloseragreementin the regionbe-
tweenwakes,butstillgeneratesshapefactorfluc-
tuationswhicharesignificantlygreaterthanthe
experimentaldata.

As apointof reference,displacementthicknessand
shapefactorhistoriesfromafully turbulentsolution
werealsoinvestigated.Theamplitudeof theshape
factorfluctuationsweregreaterin theturbulentsim-
ulationthanin theABStransitionalsimulation.

Minimum,maximumandtime-averageddistribu-
tionsof the displacementthicknesson the suction
surfaceof thesecondnozzleareshownin Fig. 18,
whilethecorrespondingtime-averagedshapefactor

distributionsareshownin Fig.19.Althoughthepre-
dictedtime-historiesin Figs.10-17showmuchlarger
temporalvariationsthan theexperimentaldatain-
dicate,thetime-averagedvaluesobtainedwith the
ABSmodelshowexcellentagreementwith the ex-
perimentaldata.Thedisplacementthicknessdistri-
butionobtainedwith the Maylemodelshowsvery
goodagreementwith theexperimentaldata,but the
shapefactorissignificantlyoverpredicted.

Consideringthe facts that: 1) the simulations
overpredicttheamplitudeofthedisplacementthick-
nessandshapefactorfluctuations,and2) thetime-
averagedresultsshowcloseagreementwith theex-
perimentaldata,it is reasonableto assumethat the
modeledbladecountratiomaybeaffectingtheun-
steadyresults.Whileaa-a-4-abladecountratioisa
reasonableapproximationto theactualbladecount
ratio,theequalnumberof airfoilsin thefirst nozzle
androtor rowsprobablycausesanoverpredictionof
thepotentialinteraction.

Skinfrictionenvelopesfor eachof thefourblade
rowsaregivenin Figs.20-23,respectively.Thereis
littleunsteadinessin theskinfrictiondistributionon
thepressuresurfaceofthefirst nozzle(seeFig.20).
Thesuctionsurfaceof the first nozzleexhibitsun-
steadinessdownstreamof the throat. In addition,
theflowapproachesseparationnear75%of thesuc-
tionsurfacelength.Thepressuresurfaceofthefirst
rotorexperiencesintermittentseparationin thecove
region,althoughtheflowremainattachedin atime-
averagedsense(seeFig.21).Thereisaconsiderable
amountofunsteadinessgeneratedonthesuctionsur-
faceof the first rotor; the unsteadinessis a result
of: 1)thepassingwakesfromthefirst nozzle,2)po-
tentialinteractionwith thefirst andsecondnozzles,
and3) thetime-varyingtransitionprocess.Thecove
regionsonboththesecondnozzleandrotorairfoils
undergointermittentflowseparation,andapproach
separationinatime-averagedsense(seeFigs.22and
23). The suction surface of the second nozzle and

rotor airfoils show a large amount of unsteadiness,

which correlates closely to the transition regions.
While a considerable amount of effort has been

given to studying the process of transition in low pres-

sure turbines, it is suggested (based on the skin Dic-

tion data) that the cove region of the pressure surface
may warrant further investigation.

Point 5D

Figure 24 illustrates instantaneous entropy con-
tours in the turbine. The wake convection is some-

what similar to that illustrated in Fig. 3, except that

the airfoils generate much stronger/distinct vortex

NASA/TIM-- 1999-208913 5



streets at the lower Reynolds number. This phenom-

ena acts to increase the high-frequency content of the

unsteady flow.

Figure 25 contains a time history (over 3 wake

passing periods) of the transition locations on two

adjacent second-stage nozzles using the ABS transi-

tion model. The numerical data is again plotted at

a density of 33 points per wake passing period. In

the region between the rotor wake passings the pre-

dicted start of transition is 80% of the suction surface

length on one nozzle and approximately 85% on the

adjacent nozzle, compared to the experimentally ob-

served value of 76%. In the presence of the passing

rotor wakes, the prediced onset of transition is at 56%

of the suction surface length on one nozzle and at an

average of 52% on the adjacent nozzle, as compared to

71% in the experiments. Thus, the predicted results

indicate the onset of transition too far downstream

between the wakes and too far upstream in the re-

gion of the passing rotor wakes. In addition, in the

region between rotor wakes bubble transition tends to

occur, while attached-flow natural transition is pre-

dominant in the presence of passing rotor wakes. In

the simulations the end of transition varied between

86% of the suction surface length (instantaneous bub-

ble transition in between rotor wakes) and the trail-

ing edge (attached-flow natural transition in the rotor

wakes), while the experimental data indicate the end

of transition at the trailing edge throughout the wake

passing period.

A space-time diagram of the predicted shape fac-

tor (over 3 wake passing periods) is shown in Fig. 26.

Compared with Fig. 8, the results for the lower

Reynolds number indicate the regions of laminar flow

extending much closer to the trailing edge.

Figures 27 thru 34 contain time histories of the dis-

placement thickness and shape factor at 50%, 68%,

82% and 94% of the suction surface length on the

second nozzle. Included in these figures are the pre-

dicted results using both the ABS and Mayle tran-

sition models, as well as the experimental data. At

50% of the suction surface length the predicted dis-

placement thickness shows good agreement with the

experimental data outside of the region of the rotor

wakes (denoted by paths Z, X and Y in Fig. 27).

In the region of the passing rotor wakes (denoted by

path W), however, the predicted results indicate a de-

crease in the displacement thickness while the experi-

mental data indicate that the displacement thickness

increases slightly. The behavior of the predicted re-

sults in the region of the passing rotor wakes also con-

trasts with the predicted results for operating Point

5A (see Fig. 10). The predicted shape factor exhibits

fair agreement with the experimental data just be-

fore and as the rotor wakes pass, but shows a rapid

decrease in the shape factor as the rotor wakes pass

which is not substantiated by the experimental data

(see Fig. 28). Moving downstream to the 68%, 82%

and 94% length locations the following trends are ob-

served:

• The predicted results show large amplitude

unsteadiness at twice the wake passing fre-

quency, significantly more than was observed at

the takeoff Reynolds number. The increased

high-frequency unsteadiness in the boundary

layer quantities correlates with increased high-

frequency unsteadiness in the pressure field. Fig-

ures 37 and 38 contain Fourier decompositions of

the unsteady pressure at 96% of the suction sur-

face length for operating conditions 5A and 5D,

respectively. There is significantly more high-

frequency unsteadiness in the pressure at the

lower Reynolds number. Some of the unsteadi-

ness may be due to nozzle clocking effects as dis-

cussed in Ref. [71. A portion of the increased

unsteadiness may also be due to the enhanced

vortex shedding shown in Fig. 24.

• The experimental data displays an increasingly

large amount of unsteadiness at twice the wake

passing frequency, although the amplitude is

smaller than predicted by the simulations.

• The ABS and Mayle models produce similar re-

sults at 50% and 68% of the suction surface

length, but start to show discrepancies further

along the surface.

• Both the predicted results and experimental data

indicate increased displacement thickness and

decreased shape factor in the presence of the ro-

tor wakes (path W).

• At 50%, 68% and 82% of the suction surface

length both the predictions and data show a

gradual decrease of the displacement thickness

in the region between rotor wakes (paths X, Y

and Z).

Time-averaged distributions of the displacement

thickness and shape factor on the suction surface

of the second nozzle are shown in Figs. 35 and 36,

respectively. Similar to the results at the higher

Reynolds number, the predicted results show good

agreement with the experimental data. While the

two transition models produce similar results over the

majority of the surface, the Mayle model produces a

small increase in the displacement thickness and a

large increase in the shape factor near the location of

time-averaged transition.
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Skin friction envelopes for each of the four blade

rows are given in Figs. 39-42, respectively. In gen-

eral, the skin friction distributions exhibit more un-

steadiness than at the higher Reynolds number (see
Figs. 20-23). Similar to the results presented in

Figs. 20-23, the cove region on the pressure surface of

all the airfoils, except for the first nozzle, experience

intermittent separation. In contrast to the results for

Point 5A, the suction surfaces of the airfoils in the

first three blade rows show intermittent flow separa-

tion from approximately 75% of the surface length to

the trailing edge.

CONCLUSIONS

A series of numerical simulations have been per-

formed for flow through a two-stage low-pressure tur-

bine. The simulations were performed for two differ-

ent operating conditions (takeoff and cruise), using
two different natural transition models and one bub-

ble transition model. The results of this study have
shown that:

• the Abu-Ghannam/Shaw and Mayle transi-

tion models both yield accurate results for

the time-averaged displacement thickness and

shape factor distributions, although the Abu-

Ghannam/Shaw results shows closer agreement
with the experimental data

• the predicted displacement thickness histories

show similar trends to the experimental data

in the region between rotor wakes, but display

much larger variations than the experimental

data in the region of the rotor wakes

• the predicted shape factor histories show more

unsteadiness than the experimental data; both

the predicted results and experimental data

show significant unsteadiness at twice the blade-

passing frequency near the trailing edge of the
second nozzle

• the predicted transition location histories for ad-

jacent second-stage nozzles suggest that airfoil

clocking plays a prominent role in the transition

process

• the simulations indicate increased unsteadiness

(e,g,, pressure field and enhanced vortex shed-

ding) at the cruise operating conditions

• intermittent cove separation on the pressure sur-
face of the airfoils occurs at both the takeoff and

cruise conditions

• the suction surface of the airfoils intermittently

separate at the low Reynolds number (cruise)
conditions, but not at the high Reynolds number

(takeoff) conditions

Future simulations will focus on quantifying the ef-

fects of nozzle and/or rotor clocking on the boundary

layer development in the turbine.
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Quantity N1 N2 Rotor

Solidity 1.64 1.68 1.48

Aspect Ratio 3.97 5.10 3.87

Chord, mm 76.2 59.7 78.7

Stagger, deg from axial 39.8 22.9 34.9

Camber, deg 60.0 102.4 96.9
No. of airfoils 82 108 82

Axial gap, mm 25.4 25.4

Table 1: Turbine design parameters.

Test Point

Quantity 5A 5D

Ttl(°K) 287.8 287.8

Ptl(N/rn 2) 97,642 100,839

Px(N/rn 2) 96,514 100,716

(_1, deg from axial 0.0 0.0

fI(t_PM) 599.7 185.1

M1 0.1289 0.0417

P;/Ptl 0.8614 0.8614

Table 2: Turbine design parameters.

NASA/TM-- 1999-208913 9



Airflow

Nozzle I N1
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Figure 1: Two-stage low-pressure turbine.
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Rotor-1

Nozzle-1

Rotor-2

Nozzle-2

Figure 2: Two-stage low-pressure turbine.
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Figure 3: Instantaneous entropy contours, Point 5a, ABS.
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Figure 4: Sketch of experimental wake convection.
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Figure 8: Shape factor from current analysis, Point
5A, ABS, Hmin = 1:53, Hmax = 2:64.

Figure 9: Shape factor from unsteady boundary layer
code, Point 5A, ABS, Hmin = 1:53, Hmax = 2:64.
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Figure 10: Displacement thickness, nozzle-2, Point
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Figure 24: Instantaneous entropy contours, Point 5D, ABS.
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Figure 26: Shape factor from current analysis, Point
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