

NASA/CP-l999-208757
January, 1999

NASA Ames Research Center

orkshop

Author:
Catherine Schulbach

NASA Ames Research Center
Editors:

Catherine Schulbach
NASA Ames Research Center
and Ellen Mata, Ratheon ITSS

TABLE OF CONTENTS
NASA HPCCPICAS Workshop Proceedings

.. HPCCPEAS Ove~ew.. vii
Catherine Schulbach, Manager, Computational Aerosciences Project

Session I: Advanced Computer Algorithms and Methodology .. 1

... Adaptive Computation of Rotor-Blades in Hover 3 -8
Mustafa Dindar and David Kenwright, Renssalaer Polytechnic Institute

Automated Development of Accurate Algorithms and Efficient Codes for Computational
Aeroacoustics.. .9 v ..
John Goodrich and Rodger Dyson, NASA Lewis Research Center

Pe$ormance Analysis of large-Scale Applications Based on Wavefront Algorithms.. .15 -3
Adolfy Hoisie, Olaf Lubeck and Harvey Wasserrnan, Los Alarnos National Laboratory

Virtual PetaJlop Simulation: Parallel Potential Solvers and New Integrators for Gravitational
... Systems.. 21

George Lake, Thomas Quinn, Derek C. Richardson and Joachim Stadel,
Department of Astronomy, University of Washington

The Kalman Filter and High Performance Computing at NASA's id

Data Assimilation Office (DAO) 29 5 ...
Peter M. Lyster, NASA Data Assimilation Office (DAO), and
University of Maryland Earth System Science Interdisciplinary Center (ESSIC)

' G

Session 2: Advanced Computer Algorithms and Methodology 31 W+a@i&tf
Towards the Large Eddy Simulation of Gas Turbine Spray Combustion Processes 33 -6
Joseph C. Oefelein, Department of Mechanical Engineering, Stanford University

Parallelization of lmplicit ADZ Solver FDL3DI Based on New Formulation of - Thomas Algorithm ... 35 7
Alex Povitsky, NASA Langley Research Center
Miguel Visbal, Air Force Research Laboratory

A Compact High-Order Unstructured Grids Method For The Solution -3 .. Of Euler Equations.. 41.
Ramesh K. Agarwal, National Institute for Aviation Research, Wichita State University
David W. Halt, Ford Motor Company

A Neural Network Aero Design System for Advanced Turbo-Engines 4 9 4
Jose M . Sanz, NASA Lewis Research Center,

Session 3: Parallel System Software Technology 51- - rT ..
The SGI/Cray T3E: Experiences and Insights 53 - /o ...
Lisa Hamet Bernard, NASA Goddard Space Flight Center

The Metacenter Roadmap 59 - L/ ...
Mary Hultquist and James Patton Jones, MRJ Technology Solutions
NASA Ames Research Center

The Programming Environment on a Beowulf Cluster ... 65- /p
Phil Merkey, Donald Becker, Erik Hendriks, CESDISJUSRA

Multithreaded Programming in EARTH--Meeting the Challenges of
High Per$ormance Computing .. 67'/3
G. Heber and Guang R. Gao, University of Delaware
R. Biswas, NASA Ames Research Center

An Evaluation of Automatic Parallelization Tools .. 73 -I$J
M. Frurnkin, M. Hribar, H. Jin, A. Waheed and J. Yan, NASA Ames Research Center

An Experiment in Scientific Code Semantic Analysis 79
- 1 ' ...

Mark Stewart, Dynacs Engineering

Session 4: Applications for ParalleYDistributed Computers 85

3 0 Multistage Simulation of GE90 Turbofan Engine 87- / Q ..
Mark Turner and Dave Topp, General Electric Aircraft Engines
Joe Veres, NASA Lewis Research Center

Application Of Multi-Stage Viscous Flow CFD Methods For Advanced
Gas Turbine Engine Design And Development.. .89 - f I ..
Mani Subramanian and Paul Vitt, ASE Technologies
David Cherry and Mark Turner, General Electric Aircraft Engines

The Development of a Multi-Purpose 3-0 Relativistic Hydrodynamics Code 91 - 18
F. Douglas Swesty, National Center for Supercomputing Applications and
Department of Astronomy, University of Illinois

Parallelization of the Physical-Space Statistical Analysis System (PSAS) 9 3 ~ ~ 4 1
Jay Larson, Data Assimilation Office, NASA Goddard Space Flight Center,

Parallelizing OVERFLOW: Experiences, Lessons, Results 95 -2 * ..
Dennis Jespersen, NASA Ames Research Center

Session 5: Applications for ParalleVDistributed Computers 1 0 1 * ~ ,r
Perj4ormance and Application of Parallel OVERFLOW Codes on
Distributed and Shared Memory Platjorms.. ... 103 -2 I
M. Jahed Djomehri, Calspan Co., NASA Ames Research Center
Yehia M. Rizk, NASA Ames Research Center

MLP - A Simple Highly Scalable Approach to Parallelism for CFD 105 'd 2-
James Taft, Sierra Software, NASA Ames Research Center

Massively Parallel Computational Fluid Dynamics Calculations for
Aerodynamics and Aerothermodynamics Applications.. 11 I -2 3 ..
Jeffrey Payne and Basil Hassan, Sandia National Laboratories

Session 6: Multidisciplinary Design and Applications 117 fl ,f ...
Development of An Earth System Model in High Pegormance

.. Computing Environments., I 2 7
C.R. Mechoso, L.A. Drummond, J.D. Farrara and J.A. Spahr,
Department of Atmospheric Sciences, University of California, Los Angeles

Parallel Finite Element Computation of 3D Coupled Viscous Flow
and Transport Processes.. -125 -2 3- ...

Graham Carey, R. McLay, G. Bicken, W. Barth, S. Swift, ASE/EM Department,
University of Texas at Austin,

Engineering Overview of a Multidisciplinary HSCT Design Framework
... Using Medium-Fidelity Analysis Codes.. -1 3342-b

R. P. Weston, L. L. Green, A. 0. Salas, J. C. Townsend, J. L. Walsh,
NASA Langley Research Center,

/-

Session 7: Multidisciplinary Design and Applications 135 -@P/ 1 ...
.. Turbine Engine HP/LP Spool Analysis.. 137*~'

Ed Hall, Rolls-Royce Allison

.. Parallel Aeroelastic Analysis Using ENSAERO and NASTRAN 143 -2 8
Lloyd B. Eldred, Ph.D. and Chansup Byun, MCAT, NASA Ames Research Center
Guru Guruswamy, NASA Ames Research Center

Performance and Applications of ENSAERO-MPI on Scalable Computers 149 02 7
Mehrdad Farhangnia,, MCAT, NASA Ames Research Center
Guru Guruswamy, NASA Ames Research Center
Chansup Byun, Sun Microsystems

OVERAERO-MPI: Parallel Overset Aeroelasticity Code.. 151 ' 0 ..
Ken Gee, MCAT, NASA Ames Research Center
Yehia Rizk, MCAT, NASA Ames Research Center

Development and Validation of a Fast, Accurate and Cost-Effective
Aeroservoelastic Method on Advanced Parallel Computing Systems 157 -3/
Sabine A. Goodwin and Pradeep Raj, Lockheed Martin Aeronautical Systems --

-@Mi! .. Session 8: DesignIEngineering Environments.. .I63
Z b - .. MOD Tool (Microwave Optics Design Tool). .1 65ed3

Daniel S. Katz, Vahraz Jamnejad, Tom Cwik, Andrea Borgioli, Paul L. Springer,
Chuigang Fu and William A. Imbriale, NASA Jet Propulsion Laboratory

An Object Oriented Framework for HSCT Design. 171 *jd ..
Raj Sistla, Augustine R. Dovi and Philip Su, Computer Sciences Corporation

National Cyde Program (NCP) Common analysis Tool for Aeropropulsion 177
Gregory Follen, Cynthia Naiman and Austin Evans, NASA Lewis Research Center

................................ NCC - A Multidisciplinary DesigdAnalysis Tool for Combustion Systems 183 -2?'5F
Nan-Suey Liu, NASA Lewis Research Center
Angela Quealy, Dynacs Engineering, NASA Lewis Research Center

Inlet-Compressor Analysis Using Coupled CFD Codes.. .I89 4 3b ..
Gary Cole, NASA Lewis Research Center
Ambady Suresh and Scott Townsend, Dynacs Engineering

Aerospace Engineering Systems and the Advanced Design Technologies
Testbed Experience .. 197 -37
William R. Van Dalsem, Mary E. Livingston, John E. Melton,
Francisco J. Torres and Paul M. Stremel, NASA Ames Research Center,

3 !-F Session 9: Numerical Optimization ... 205 eP1.

Aerodynamic Shape Optimization Using a Combined DistributedlShared
Memory Paradigm .. -207-3
Samson Cheung, MRJ, NASA Ames Research Center
Terry Holst, NASA Ames Research Center

High-Fidelity Aeroelastic Analysis and Aerodynamic Optimization of a
Supersonic Transport..213 -57
Anthony A. Giunta, NASA Langley Research Center,

Parallel Computation of Sensitivity Derivatives with Application to
Aerodynamic Optimization of a Wing.. .219 /+'& ..
Robert Biedron and Jamshid Samareh, NASA Langley Research Center

Demonstration of Automatically-Generated Adjoint Code For Use
in Aerodynamic Shape Optimization .. 225 +/
Lawrence L. Green, NASA Langley Research Center
Alan Carle and Mike Fagan, Rice University

.............................. Applications of Parallel Processing in Aerodynamic Analysis and Design 231 9 2
Pichuraman Sundaram and James 0. Hager, The Boeing Company

Session 10: Parallel System Software Technology 239 re ..
A Robust and Scalable Software Library for Parallel Adaptive Refinement
on Unstructured Meshes.. .. 2 4 1 -&d
John Z. Lou, Charles D. Norton, and Tom Cwik, NASA Jet Propulsion Laboratory

Parallel Grid Manipulation in Earth Science Applications ... 2 4 7 -w
Will Sawyer, R. Lucchesi, A. da Silva and L.L. Takacs,
Data Assimilation Office, NASA Goddard Space Flight Center

l/O Parallelization for the Goddard Earth Observing System - 5 Data Assimilation System (GEOS DAS) .. 4 9
Robert Lucchesi, W. Sawyer, L.L. Takacs, P. Lyster and J. Zero,
Data Assimilation Office, NASA Goddard Space Flight Center

Portability and Cross-Platform Pe$ormance of an MPI-Based
.. Parallel Polygon Renderer 251 -4?6

Tom Crockett, NASA Langley Research Center

Parallel Visualization Co-Processing of Overnight CFD Propulsion
.. Applications 257@ y7

David Edwards, Pratt & Whitney
Robert Haimes, Massachusetts Institute of Technology

Introduction

This publication is a collection of extended abstracts of presentations given at the HPCCPICAS
Workshop held on August 24-26, 1998, at NASA Ames Research Center, Moffett Field,
California. The objective of the Workshop was to bring together the aerospace high performance
computing community, consisting of airframe and propulsion companies, independent software
vendors, university researchers, and government scientists and engineers. The Workshop was
sponsored by the High Performance Computing and Communications Program Office at NASA
Ames Research Center.

The Workshop consisted of over 40 presentations, including an overview of NASA's High
Performance Computing and Communications Program and the Computational Aerosciences
Project; ten sessions of papers representative of the high performance computing research
conducted within the Program by the aerospace industry, academia, NASA, and other government
laboratories; two panel sessions; and a special presentation by Mr. James Bailey.

Catherine H. Schulbach
Manager, Computational Aeroscience Project
Workshop Chairperson

NASA's HIGH PERFORMANCE COMPUTING
AND COMMUNICATIONS PROGRAM

AND
COMPUTATIONAL AEROSCIENCES PROJECT

Catherine H. Schulbach
CAS Project Manager

In 1977, over 21 years ago, 263 computational aerodynamicists and computer scientists met at
Arnes Research Center to identify the computer requirements for obtaining the desired solutions to
their problems and to define the projected capabilities of the general purpose and special purpose
processors of the early 1980's. They were motivated by: (1) the promise of an important new
technological capability that did not have the limitations of wind tunnels, and (2) the dramatic rate
of reduction in the net cost of conducting a simulation. The workshop was one of the cornerstones
of NASA's entry into supercomputing. It led t ion of the Numerical Aerodynamic
Simulation Facility ten years later. It also influe NASA's direction when NASA became
one of the original participants in the Federal H ance Computing and Communications
(HPCC) Program that was established in 1991

NASA's HPCC Program is an integral part of the Federal multi-agency collaboration in Computing
Information and Communications (CIC). The Federat CIC programs invest in long-term research
and development to advance computing, information, and communications in the United States.
The NASA HPCC Program is aimed at boosting supercomputer speeds by a factor of a thousand
to at least one trillion operations per second and comunications capabilities by a factor of a
hundred or more. The total NASA funding for HPCCP in FY 1998 is $73.8 million. This
includes funds from Aeronautics and Space Transportation Technology, Space Science, Earth
Science, and Education programs. Through HPCCP, NASA is also a major participant in the Next
Generation Internet Initiative, a multi-agency effort that also includes the DOD, the Department of
Commerce, the National Science Foundation, and the National Institutes of Health.

The goals of NASA's HPCC Program are to:
"Accelerate the development, application, and transfer of high-performance computing
technologies to meet the engineering and science needs of the U.S. aeronautics, Earth and space
science, spaceborne research, and education communities, and to enable Federal implementation of
a Next Generation Internet."

The NASA HPCC Program is structured to contribute to broad Federal efforts while addressing
agency-specific computational problems that are beyond projected near-term computing
capabilities. These computational problems are called "Grand Challenges." NASA selected Grand
Challenges in the areas of Computational Aerosciences (CAS), Earth and Space Science (ESS),
and Remote Exploration and Experimentation. The Grand Challenge applications were chosen for
their potential and direct impact to NASA, their national importance, and the technical challenges
they present. The NASA HPCC Program is organized around these Grand Challenges with these
three Grand Challenges forming three of the five HPCCP projects. Learning Technologies (LT)
Project and the NASA Research and Education Network (NREN) are the two additional projects.

Computational aerosciences remain, 20 years later, an important piece of NASA's HPCC Program
through the Computational Aerosciences Project. CAS is a computing and communications
technology focused program oriented around the needs of the aeroscience community. Its mission
is to: (1) accelerate development and availability of high-performance computing technology of use
to the U. S. aerospace community, (2) facilitate adopt~on and use of this technology by the U. S.
aerospace industry, and (3) hasten emergence of a viable commercial ~narket for hardware and
software vendors.

vii

As we move into the twenty-first century the CAS Project faces enormous challenges of how to
meet ever-increasing needs for computation while the market influence of supercomputing
dwindles. Meanwhile, NASA's Strategic Enterprises continue to have bold goals that for
achievement require orders-of-magnitude forward leaps in technology. Information systems
technology, especially high-performance computing, is key to enabling such breakthroughs.
Technology development is not sufficient. Better ways must be found to apply and transfer
knowledge about aeronautics to the problem solving process. The problem solving process itself
is becoming more and more complex as the result of dramatic improvements in the enabling
computer hardware and software. In spite of the obstacles in the past, CAS made significant
contributions toward making simulation an integral part of the design process and will approach the
new challenges in partnership with industry and academia.

. . .
Vll l

Session 1:

Advanced Computer Algorithms
and Methodology

Mustafa Dindar, David Kenwright* and Ken Jansen
Rensselaer Polytechnic Institute

110 8th Street, SCOREC-CII 701 1, Troy NY 12180
6 6

E-mail: mdindar@scorec.rpi.edu Phone: (5 18) 276-6795 3 L& Pdw1;3

ADAPTIVE COMPUTATION OF ROTOR-BLADES IN HOVER

Abstract
An adaptive refinement procedure is developed for computing vortical flows encountered
in rotor aerodynamics. For this purpose, an error indicator based on interpolation error
estimate is formulated and coded into an adaptive finite element framework. It is shown
that the error indicator based on interpolation error estimate is effective in resolving the
global features of the flow-field. Furthermore, for efficiency and problem size
considerations, once the interpolation errors are reduced to acceptable levels, the adaptive
refinement is done only in regions affected by the vortical flows. To do this a novel vortex
core detection technique is used to capture vortex tubes. The combination of interpolation
error estimate and vortex core detection technique proved to be very effective in computing
vortical flow-field of rotor blades. Using this two-level adaptive refinement procedure the
UH-60A BlackHawk rotor is analyzed in hover flow conditions.

Introduction
The ever increasing demand to understand the complex nature of the flow problems
encountered in applied aerodynamics is being met by computational fluid dynamics
(CFD). Pioneering work in fixed-wing aircraft aerodynamics also shed light into rotary-
wing problems [1][2]. Nevertheless, the accurate prediction of rotor aerodynamics using
existing CFD tools still remains a challenge because a rotorcraft often operates in more
severe flow conditions than a fixed-wing aircraft. Even an isolated rotor blade system in
hover conditions is under the influence of its own wake. Rotor blade performance
calculations become a complex task for CFD due to strong blade and tip vortex
interactions. Therefore, an accurate representation of the tip vortex is needed to be able to
predict the thrust loading at the outboard portions of a rotor blade.

Efficient solutions of flow problems can be achieved by adaptive procedures. In h-adaptive
techniques, the main idea is to increase or decrease the mesh resolution in the
computational domain based on some measure of the error of the numerical solution
procedure. Because of their simplicity, error indicators are usually employed to guide
adaptive refinement procedures One possible avenue in designing an error indicator for
flow problems is to use the interpolation error estimates. In this paper, we will be
describing a simple error indicator derived from the interpolation error estimate for linear
finte elements. Furthermore, in rotor-blade calculations, for computational efficiency and
minimum problem size considerations, one may wish to augment the existing error
indicator such that the adaptation is bracketed only in the vicinity of the tip vortex. Of
course, this has to be done only after decreasing the global interpolation errors to acceptable
levels over the computational domain. Such a procedure suggests a two-level adaptation
technique, the first level resolving main features of the flow by reducing the interpolation
errors and a second level that will concentrate on localized features, such as a tip vortex.

MRJ Inc., NASA Ames Research Center

Governing Equations and the Numerical Procedure
Governing equations of an inviscid flow are given by the Euler Equations, which can be
written in conservative quasi-linear form as follows:

q,+A,u, = R (1)
In Eq. (I), U = [p,pu,pv,pw,pe] is the vector of conservative variables where p is mass
density, u, v and w are fluid velocity components and e is the total energy per unit mass. Ai
is the irh inviscid flux vector and R= [O,pv.Q,-puQ,O,O] is the source term to account for
the rotating frame analysis about the z-axis. The inviscid flux vector, Ai is non-symmetric
when written in terms of conservative variables. A symmetrization of inviscid flux vectors
can be achieved by performing a transformation using a change of variables U+V [3]

vT = dHl dU (2)
where, H = -p(s - so) is the generalized entropy function. Details of this transformation
procedure can be found in [3]. After this transformation, Eq.(l) can be re-written as

&V~+&V, = R (3)

where, = dU 1% and 4 = A,A, .Note that, &is a symmetric positive-definte and A,
is a symmetric matrix. A stabilized finite element formulation of Eq.(3) can be obtained
using time-discontinuous Galerkintleast-squares method [3]. All the calculations in this
paper are done using a Galerkideast-squares method, and the GMRES solution technique
is used as a linear equation solver.

Error Estimation/Indication
Understanding the flow fields with vortical structures and adaptive mesh refinement
requires an understanding of finite element approximation. Interpolation errors exist due to
finite dimensional space approximation and depend on the order of the finite element basis.
Therefore, an error indicator that utilizes derivatives of velocities in a vortical flow field has
to be based on the interpolation error of a particular f ~ t e element approximation.

Let us seek L2-norms of error of the vector field u in a finite element procedure which
utilizes linear piecewise polynomials in R3. The semi-norm of error is given by [4]

b10,2 5 QI 21~12,2 (4)
In this case, evaluation of the error requires second partial derivatives of u. Let us denote
the finite element error indicator by the symbol,ei, then a practical error indicator using L2-
norm of the second derivatives of velocity vector is written as

The second derivatives involved in Eq.(5) are obtained by using a quadratic reconstruction
process which requires the solution of a least-squares problem.

Although, in principle one could use the error indicator given in Eq.(5) to drive the
adaptation to resolve all the features of a flow problem, because of computational efficiency
and storage limitations of current computer architectures, this would not be practical. It is
desirable to monitor the global accuracy during the adaptive solution procedure and if
permissible resort to more localized adaptation of the mesh for small-scale features of
specific interest, such as a tip vortex in rotor-blade calculations.

From the topological point of view, a vortex core contains features that can be used to
distinguish it from other regions of the flow-field. First of all a vortex core is a stationary
point where flow trajectories spiral in a plane and the vorticity is maximum at the core
center. For a real fluid viscous effects cause the core of a vortex to rotate approximately as
if it were a rigid body, hence, on the plane of rotation u + 0 at the vortex core. For inviscid
flows with the existence of numerical diffbsion, a vortex behaves much like it is in a
viscous flow. Therefore, we identify a vortex core to be a stationary point. Also, the
velocity-gradient tensor, Vu, has complex eigenvalues if the stationary point is a vortex.
This approach has been used recently to define and extract flow topology information for
scientific visualization [5].

In our adaptive solution procedure, we use the eigenvalue extraction method to identify the
vortical regions in the flow and modify the defmition of error indicator given in Eq.(5) by
the following logic

if a vortex exits on Q
otherwise

Numerical Results
The UH-60A Blackhawk rotor-blade system is selected to carry out the adaptive hover
calculations. An experimental scaled model [6] of the UH-60A blade is used. A summary
of computational results are presented here; more details can be found in [7].

UHQOA at zero thrust
The flow-field conditions used for this case are as follows: tip Mach number Mt=0.628,
rotor speed Q = 1427 rpm, thrust coefficient q o = 0.0, collective setting 8,, = 0.1 lo and
coning p, = -0.20'.

Before doing any adaptive solutions, a mesh sensitivity study is done to establish initial
element size that can be used as a starting point. First, a mesh containing 760,000
tetrahedral elements (see Fig. I), is used to calculate the flow-field. For this mesh the
average global element size is about 0.125R and it is more or less uniform throughout the
domain with the exception of the blade surface which has a finer (down to 0.001R) mesh
resolution than the rest of the domain. Second, a finer mesh, which is manually refined
near the tip-path-plane of the blade, is generated (see Fig. 2). The initial size of this second
mesh is 1,100,400 tetrahedral elements. The average element size in the domain that is
refined manually is about 0.002R. A comparison between the flow-field results from the
two meshes revealed that calculations with the finer mesh are considerably more accurate
than the coarse mesh results. Although the fine mesh does not resolve all the features of the
flow-field, it is a good starting point for adaptive refinement.

Next, the adaptive procedure is applied to the fine initial grid results to improve the solution
further and to locate the vortex structure. With the adaptive procedure, the mesh is refined
in two levels, the first level using the interpolation error estimate and the second level using
the vortex core detection technique. At this point, the mesh size reached 2,164,704
elements. Figures 3 and 4 compare computed values of sectional thrust and sectional
torque with experiment. Notice that the adapted grid enhances the accuracy of the solution
near the tip of the blade. Finally, Figure 5 shows the predicted vortex flow structure which
is calculated by the vortex core detection technique. Note that there is an unexpected vortex

tube located between 75%-80% radius of the blade. This vortex tube is independent of the
tip vortex. The reason for the existence of a vortex tube at 75% radius is hypothesized to be
the differential change in thrust loading from positive to negative as shown in Figure 3.
Finally, there is also a vortex tube emanating from the tip of the blade, but it does not seem
to have a very strong interaction with the blade tip.

UHdOA at design thrust
The final and the most challenging case analyzed for the UH-6OA blade is a design thrust
case where the flow conditions are: tip Mach number Mt=0.628, rotor speed i2 = 1425
rpm, thrust coefficient CJo = 0.085, collective setting 8,, = 10.47", coning Po = 2.31".
This particular case offers a stronger tip vortex structure than the zero thrust case.

The computed sectional thrust and torque coefficient distributions are presented in Figures
6 and 7, respectively. The initial mesh, which could not resolve the tip vortex for the fxst
90 degrees azimuth, resulted in a poor sectional thrust distribution particularly at the
outboard portion of the blade. We emphasize here that all of our attempts to capture the
correct distribution of sectional thrust before resolving the tip vortex properly failed.
Progressive adaptive refinement steps, using both interpolation error estimate and the
vortex core detection technique, resulted in a correct prediction of tip vortex structure. The
sectional thrust distribution with the final adapted mesh shows a remarkable improvement
with respect to initial mesh results. Therefore, it has been concluded that computing at least
the first 90 degrees azimuth travel of the tip vortex is essential for this high thrust UH-60A
blade case. Figure 7 compares the sectional torque coefficient for the refined and initial
meshes against experimental data. Figure 8 shows the change in mesh resolution form
initial mesh to adapted mesh at a cross-section taken at 15" behind the blade. Notice that the
mesh resolution increased in the vicinity of the tip vortex for the adapted mesh. Finally,
figure 9 shows the first 90' azimuth travel of the tip vortex with the adapted mesh.

References
[I] Srinivasan G.R., Beader J.D., Obayashi S., and McCroskey W.J., "Flowfield of a
lifting rotor in hover: A Navier-Stokes simulation", AIAA Journal, Vol. 30, No. 10, pp.
2371-2378. Oct. 1992.
[2] Strawn R.C., and Barth T.J., "A finite volume Euler solver for computing rotary-wing
aerodynamics on unstructured meshes", AHS 48th Annual Forum Proceedings, pp. 419-
428, Jun. 1992.
[3] Hugues T.J.R., Franca L.P. and Hulbert G.M., "A new finite element formulation for
fluid dynamics: VIII. The Galerkinlleast-squares method for advective-diffusive
equations", Journal of Applied Mechanics, Vol. 73, pp. 173-189,1989.
[4] Oden J.T., and Reddy J.N., "An introduction to mathematical theory of finite
elements", John Wiley & Sons, Inc., 1976.
[5] Kenwright D., and Haimes R., "Vortex identification - application in aerodynamics",
IEEEIACM Proceedings of Visualization '97 ACM Press, Phoenix, AZ, Oct. 1997.
[6] Lorber P.F., Stauter R.C., Pollack M.J., and Landgrebe A. J., "A comprehensive hover
test of airloads and airflow of an extensively instrumented model helicopter rotoryy, Vol I-
V7 USAAVSCOM TR 91-D-16E, 1991.
[7] Dindar M, Lernnios A.Z., Shephard M.S., Flaherty J.E, Jansen, K., "An adaptive
procedure for rotorcraft aerodynamics", AIAA Paper 98-2417, 16th Applied
Aerodynamics Conference, Albuquerque, NM, July 1998.

Figure 1: Initial coarse-wake mesh

Figure 3: Sectional thrust distribution

Figure 2: Initial fine-wake mesh

Figure 4: Sectional torque distribution

Figure 5: Computed vortex flow structure for the UH-6OA blade at zero thrust

7

r/R r/R

Figure 6: Sectional t h s t distribution Figure 7: Sectional torque distribution

Figure 8: Initial and adapted mesh cross-section at 15' behind the blade

Figure 9: Adaptively resolved tip vortex structure for the UH-60A blade at design thrust

3LL pj-9
AUTOMATED DEVELOPMENT OF

ACCUR,ATE ALGORlTHMS AND EFFICIENT CODES
FOR. COMPUTATIONAL AER,OACOUSTICS

John W. Goodrich and Rodger W. Dyson
NASA Lewis Research Center

Cleveland, OH 44135

Abstract

The simulation of sound generation and propaga-
tion in three space dimensions with realistic aircraft
components is a very large time dependent computa-
tion with fine details. Simulations in open domains
with embedded objects require accurate and robust
algorithms for propagation, for artificial inflow and
outflow boundaries, and for the definition of geo-
metrically complex objects. The development, im-
plementation, and vaIidation of methods for solving
these demanding problems is being done to support
the NASA pillar goals for reducing aircraft noise lev-
els. Our goal is to provide algorithms which are
sufficiently accurate and efficient to produce usable
results rapidly enough to allow design engineers to
study the effects on sound levels of design changes in
propulsion systems, and in the integration of propul-
sion systems with airframes. There is a lack of design
tools for these purposes at this time.

Our technical approach to this problem combines
the development of new algorithms with the use
of Mathematica and Unix utilities to automate the
algorithm development, code implementation, and
validation. We use explicit methods to ensure effec-
tive implementation by domain decomposition for
SPMD parallel computing. There are several orders
of magnitude difference in the computational effi-
ciencies of the algorithms which we have considered.
We currently have new artificial inflow and outflow
boundary conditions that are stable, accurate, and
unobtrusive, with implementations that match the
accuracy and efficiency of the propagation methods.
The artificial numerical boundary treatments have
been proven to have solutions which converge to the
full open domain problems, so that the error from
the boundary treatments can be driven as low as
is required. The purpose of this paper is to briefly
present a method for developing highly accurate al-
gorithms for computational aeroacoustics, the use

of computer automation in this process, and a brief
s w e y of the algorithms that have resulted from this
work. A review of computational aeroacoustics has
recently been given by Lele [I 11.

1 Linearized Euler Equations

The Linearized Euler Equations 191 can be used for
the simulation of sound propagation if a steady flow
field is known. In the isentropic case with a constant
mean flow, the nondimensionalized equations for the
acoustic disturbance are:

%+~.a"j+* = 0, at ax, ax,

where p is the pressure, uj is the jth velocity compo-
nent of the disturbance, and Mi is the ith component
of the convection field. As an illustrative example we
will present a summary of algorithm development for
propagation in one space dimension.

1.1 Algorithm Development in ID

We begin algorithm development by interpolating
the known data at tn about the grid point xi with
order D polynomials in x,

The expansion coefficients us and p6 for the inter-
polants (2) are obtained from the known data on the
grid by the Method of Undetermined Coefficients,
and approximate the spatial derivatives of u and p.

In one space dimension, the linearized Euler Equa-
tions (1) can be diagonalized and solved by the

Method of Characteristics, with general solution:

where uo(x) = U(X, 0) and po(x) = p(z, 0). If the
local spatial interpolants (2) are taken as initial data
for the solution (3) of (I), then the global solution
is locally approximated in time and space by

At the new time level tn+1 = t , + k, the solution at
the grid point xi is given by

u;" = ~ ~ (0 , k) % u(x.~, tn + k),

(5)
= p~ (0, k) % p(zi, tn + k) .

Equation (5) is a general algorithm form, and r e p
resents a family of algorithms with properties that
depend upon the interpolant. This form can be re-
cast in various ways, such as an expansion in k, or
as a conventional finite difference equation.

The general algorithm form (5) is derived from the
exact local solution (4), so that the algorithms in
this family will correctly incorporate the local wave
dynamics of (1) for the spatial interpolant (2). The
order of accuracy in both space and time for any of
the algorithm realizations of (5) is the same as the
order of interpolation. All of the algorithms based
upon the general form (5) are local single step ex-
plicit methods, and each is stable if < &, for
any M. Note that there is a change in perspective,
away from approximating particular terms in a sys-
tem of partial differential equations, and toward the
local approximation of the solution of the system.
Local approximation of the solution in both space
and time is the viewpoint of both the Method of

Characteristics, and the Cauchy-Kovalevskaya The-
orem [2]. Further details are in [3, 4, 5, 61.

1.2 Hermitian Interpolation

We have developed a family of high resolution al-
gorithms with Hermitian interpolation using u, p,
and their spatial derivatives up to some order. Her-
mitian interpolation has been used by Collatz [I],
and in more recent work such as [13]. If u and p
are interpolated at time t, by (2), then their first x
derivatives can be approximated by

8 % + X, n % (5) = cf=l &p6x6-',

(6)
with similar expressions for other spatial derivatives.
Hermitian interpolation is used to obtain the spatial
interpolants (2) by the Method of Undetermined Co-
efficients with constraints for u and p from (2), and
for their spatial derivatives from (6). As an exam-
ple, a cubic interpolant is possible on a two point
stencil with data for both u and g, where two con-
straints are from (2), and two from (6). The spatial
interpolants (2) are approximations for u and p, and
their x derivatives are obtained from (6) with the
same expansion coefficients.

The derivatives are evolved along with u and p by
algorithms which are consistent with the algorithm
form (5). The spatial derivatives satisfy a system of
equations which is obtained by differentiating (I) ,
and the derivatives of (3) are exact solutions for u,
and p,. The spatial derivatives of the local solution
approximation (4) provide local approximates of u,
and p, in space and time which are consistent with
(4). The local derivative approximations are used to
obtain algorithms for u, and p, just as (4) is used to
obtain the algorithms (5) for u and p. The propaga-
tion algorithms with derivative data and Hermitian
interpolation on central stencils are unstable. Sta-
ble, diffusive algorithms can be developed on alter-
nating grids with a half time step $. Half time step
algorithms can be composed to obtain algorithms for
a full time step k. Further details are in [4, 5; 61.

1.3 Algorithms in 2D and 3D

Algorithm development for (1) in any number of
space dimensions combines a local spatial inter-
polant with a propagator. Genuinely multidimen-
sional spatial interpolation is used. As an example,
a biquadratic interpolant for p on a symmetric three

by three stencil can be written as

Notice that the biquadratic interpolant (7) has co-
efficients representing cross derivatives up to the
fourth order, even though differentiation in either
x or y only goes up to the second order. Many in-
terpolants are possible, with properties that depend
upon the choice of stencil and data. The Method of
Undetermined Coefficients can be used to obtain the
expansion coefficients from the known data on the
interpolation stencil.

The Linearized Euler Equations are non diago-
nalizable in multiple space dimensions, with infor-
mation propagating along characteristic surfaces, so
that the Method of Characteristics cannot be used
to find an exact general solution for (1). A 1o-
cal polynomial expansion in space and time can be
found by applying the method used in the proof
of the Cauchy-Kovalevskaya Theorem [2], with time
derivatives expressed in terms of space derivatives.
A Cauchy-Kovalevskaya process has also been used
in [8]. If a finite degree polynomial expansion in
space is used as the initial data, then it is possi-
ble to obtain a finite degree polynomial which is an
exact solution for the linear system (1). As in the
one dimensional case, multidimensional algorithms
are obtained from the polynomial solution forms in
space and time by using the local spatial interpolants
as initial data.

Artificial boundary conditions are a significant is-
sue in multiple space dimensions, but cannot be
addressed in any significant detail here. Recent
work has provided new radiation boundary condi-
tions that can provide any required degree of ac-
curacy, and that have algorithmic implementations
which are completely analogous to the propagation
algorithms. See [6, 71 for more details.

2 Automated Development

We have developed and used algorithms up to the
2gth order in space and time, in one, two and three
space dimensions. These are all local, single step,
explicit algorithms. One family of algorithms inter-
polates and propagates only the solution variables
on central stencils. and the stencil widths increase
with the order of the algorithm. Wide stencils lead
to a variety of problems that limit the utility of these
methods. A second family of our algorithms interpo-
lates and propagates the solution variables and some
of their spatial derivatives. These algorithms use

alternating offset grids, with high order derivative
data on stencils that vary from two to six grid points
wide, where the derivative order increases with the
order of the algorithm. Algorithm complexity can
arise in either the spatial interpolation or the time
evolution, and the complexity increases both with
the accuracy of the algorithm and with the number
of space dimensions.

2.1 Algorithm Complexity

In multiple space dimensions, our algorithms use
tensor product interpolants such as (7). An or-
der D algorithm in N space dimensions requires
the solution of a linear interpolation problem for
C = (D + l)N expansion coefficients by inverting
a C x C matrix. The number of expansion coeffi-
cients for the pressure or any of the velocity com-
ponents is tabulated by the algorithm order and the
spatial dimension in Table 1. Solving high order

Table 1: Number of Coefficients

Order
2
4
8

10
12
14
16

interpolation problems in three dimensions can tax
the capabilities of current symbolic manipulators on
commonly available computer systems. The tensor
product interpolants can reformulate this problem to
with dimensional recursion as a nested sequence of
one dimensional problems for D + 1 coefficients. The
one dimensional problems are easy to solve and code,
so that the multidimensional tensor interpolants are
readily implemented with succinct, validated codes.
It is well known 1121 that the precision of computer
arithmetic can have a dramatic impact on higher or-
der difference methods. The use of 64bit arithmetic
effectively limits useful finite difference methods to
less than 2oth order.

Local Cauchy-Kovalevskaya expansions are used
to derive our algorithms, and the resulting propa-
gation methods are equivalent to high order series
expansions in time. In N space dimensions, an or-
der D with a local exact polynomial solution to (1)
and a tensor interpolant will have terms up to order
N x D both in the interpolant as cross derivatives,
and in the time evolution propagator. Explicitely

developing these high order propagator forms can on high order geometry definition. The automated
also tax currently available software and hardware. development of algorithms and codes can be ex-
Recurrence relationships from the evolution equa- tended to other systems besides the Linearized Euler
tions can simplify the propagator. As an example, Equations, and we are currently working on prob-
in one space dimension, system (1) gives lems with variable coefficients and nonlinear terms.

&(asu) = as+'
at 57 --d, (8) 3 Typical Numerical Results

The tensor product algorithms have performance

for the first time derivatives of the 6th derivatives which is relatively independent of the space dimen-

of u and p, with the recursion relationship sion. Typical numerical experiments for the Lin-
earized Euler Equations (1) will be presented in one

a6+a+l as+-+' E L (&) = - M J - space dimension, with the periodic solution
atai1 axs atsax*+l atKax6+1 '

Similar forms are available in multiple space dimen-
sions. In the case of algorithms which use Hermi-
tian data, the solution variables and some of their
spatial derivatives must all be evolved in time, so
that the sub-calculations for the recursion relation-
ships produce time evolution terms that can be used
more than once in evolution equations. This results
in a relative computational efficiency for methods
which use higher order derivative information, since
the time evolution terms are used more often, and
for methods in higher space dimensions, since the
time evolution terms are more complex.

2.2 Automation
Reducing the algorithms to simpler recursive forms
with repeatable and extensible patterns has allowed
for the automated development of complex algo-
rithms which do not exceed the capabilities of avail-
able compilers. Computer algebra packages such
as Mathematica or Maple provide the capabilities
that can be used for the automation. We have used
Mathematica in this work. A wide variety of algo-
rithms have been developed and studied in this work,
and we have used FORTRAN shells that were sim-
ply written into Mathematica for code development.
Mathematica is used to develop the various algo-
rithms, and to convert them into FORTRAN seg-
ments that are inserted into the FORTRAN shells:
Algorithms are broken into a series of subroutines
which are contained in separate Mathematica rou-
tines, and results from the Mathematica and FOR-
TRAN routines are compared for validation. This
process can be used to easily and quickly generate
and validate a complex new algorithm and large code
implementation. We have been successful with this
approach for both propagation methods and radia-
tion boundary conditions, and are currently working

u(x, t) = 4 (sin[.rr(x - t)] - sin[n(x + t)]),
(10)

for x E (-1,1]. Note that both the wavelength and
period are 2, and that we are assuming M = 0,
with no mean convection. Grid refinement data will
be reported from various algorithms for mesh sizes
h = 2-m. The grid ratio is always X = = A.
The algorithm names that end in ex correspond to
central explicit methods, and the cn prefuc to their
names refers to a stencil of width n, and an algo-
rithm of order n - 1. The algorithm names that end
in s2 correspond to Hermitian methods on staggered
grids, the cn prefix to their names refers to a sten-
cil of width n - 1, and the od central part of their
names implies the use of derivative data up to order
d. These algorithms have order (d + 1) x (n - 1) - 1.

Figure 1 shows the maximum absolute error in p
or u at t = 10 plotted against the grid density. The
maximum absolute error represents the accumulated
error in both space and time over the course of the
entire simulation. Note that t = 10 corresponds to
five periods of wave propagation. The vertical axis
in Figure 1 is the loglo of the maximum error, and
the horizontal axis is the loga of the number of grid
points per wavelength. The slopes of the plot lines in
Figure 1 corroborate the orders of accuracy for the
corresponding methods. The sequence of plot lines
from upper right to lower left is roughly the same as
the sequence of the orders of the methods. A very in-
teresting feature of Figure 1 is the error data at four
grid points per wavelength. At this grid resolution
most of the methods have 0[1] or 0[10-'1 error, but
the errors of the fifth order c302s2 and seventh or-
der ~ 5 0 1 . ~ 2 methods are 0[10-~] , while the errors of
the seventh order c303s2 and eleventh order ~ 5 0 2 . ~ 2
methods are 0[10-*] and 0 [10-~] , respectively. The
high resolution of these methods at four grid points
per wavelength produces lower errors at greater grid

densities than higher order methods with poor r e
solving power. If this simulation is conducted with
8 grid points per wavelength out to t = 100,000, or
for 50,000 periods, then the maximum absolute er-
ror for the ~501.~2, ~303.~2, and c502s2 methods are
0110-'1, 0[10-~] , and 0[10-~], respectively.

The performance of the Hermitian algorithms is
quite good with respect to grid density, but these
algorithms are more complex than the conventional
mooex methods, so that it is natural to ask which al-
gorithms are more efficient, or how their error levels
compare with respect to the total number of FLOPS.
Figure 2 presents the error data from Figure 1 replot-
ted against the loglo of the total number of multi-
plications required to compute from t = 0 to t = 10.
The number of multiplications is counted since mod-
ern computers have a multiply and add instruction.
The essential point in Figure 2 is that the efficiency
of the algorithms increases with the order of the al-
gorithm, irrespective of the complexity of the algo-
rithm. Note also that there is a range of at least
four orders of magnitude in the number of FLOPS
that are required to attain the modest error level of
0[10-*] at t = 10. Kreiss and Oliger [lo] have shown
that the relative efficiency of higher order methods
increases as the error level is lowered, and as t is in-
creased. This means that the range of required effort
will increase across the spectrum of algorithms as the
error level is lowered, or as the time is increased. We
have also observed that the relative efficiency of our
higher order methods increases with the number of
space dimensions.

4 Conclusions

We have produced an automated method for algo-
rithm development that leads to exceptional numer-
ical algorithms. Our algorithms are local, explicit
methods with the same order of accuracy in both
space and time, and are easily parallelized. We have
developed and used algorithms up to the 2gth order
in one, two, and three space dimensions. The class
of algorithms that uses Hermitian interpolation has
truly spectral like resolution. The efficiency of our
algorithms improves as their complexity increases,
in terms of both FLOPS and required memory. The
relative efficiency of our higher order methods is sev-
eral orders of magnitude greater than conventional
algorithms. The only limit to performance appears
to be machine accuracy. Local, explicit, high order,
and high resolution methods that are capable of ef-
ficiently maintaining accuracy over large times and
distances are particularly suitable for large scale sci-
entific computing on high end parallel systems.

References

[I] L. Collatz, The Numerical Treatment of Difler-
ential Equations, (Springer, Berlin-New York,
1960).

[2] P. Garabedian, Partial Differential Equations,
(Wiley, New York, 1964).

[3] J. W. Goodrich, "An Approach to the Develop
ment of Numerical Algorithms for first Order
Linear Hyperbolic Systems in Multiple Space
Dimensions: The Constant Coefficient Case,"
NASA TM 106928, 1995.

[4] J. W. Goodrich, "Accurate Finite Difference Al-
gorithms," NASA TM 107377, 1996.

151 J. W. Goodrich, "High Accuracy Finite Dif-
ference Algorithms for Computational Aeroa-
caustics," AIAA 97-1584, The 3rd AIA A/CEAS
Aeroacoustics Conference, Atlanta, GA, May,
1997.

[6] J. W. Goodrich and T. Hagstrom, "Accurate
Algorithms and Radiation Boundary Condi-
tions for Linearized Euler Equations," AlAA
961 660, The 2nd AIAA/CEAS Aeroacoustics
Conference, State College, PA, May, 1996.

[7] J. W. Goodrich and T. Hagstrom, "A Com-
parison of Two Accurate Boundary Treatments
for Computational Aeroacoustics," AIAA 97-
1585, The 3rd AIAA/CEAS Aeroacoustics Con-
ference, Atlanta, GA, May, 1997.

(81 A. Harten, B, Engquist, S. Osher and S. R.
Chakravarthy, "Uniformly High Order Accu-
rate Essentially Non-oscillatory Schemes, 111,"
J. Comput. Phys., 71, 231 (1987).

[9] H. 0 . Kreiss and J. Lorenz, Initial Boundary
Value Problems and the Navier Stokes Equa-
tions, (Academic Press, New York, 1989).

1101 H. 0 . Kreiss and J. Oliger, "Comparison of Ac-
curate Methods for the Integration of Hyper-
bolic Equations," Tellus, 24, p199, 1972.

. Ill] S. K. Lele, "Computational Aeroacoustics: A
Review," AIAA 97-0018, The 35th Aerospace
Sciences Meeting, Reno, NV, January, 1997.

1121 M.J.D. ,Powell, Approximation Theory ancl
Methods, (Cambridge University Press, Cam-
bridge, 1981).

[13] H. Takewaki, A. Nishiguchi, and T. Yabe, J.
Comput. Phys., 61, p261, 1985.

Maximum Absolute Error by Grid Resolution
~ 1 0 . klh=0.8. M=O

1 -

-O-o-o-o

.* -
'A * 1 3

\
0 - 0 d d k x

-13 - 'v c302.2 * do282 0 v
-15 - C303r2

. I I . I . I . 1 . I .

2 3 4 5 6 7 8 9 1 0 1 1 1 2

LogZ(Grid Points p y Wavebgth)

Figure 1: Maximum Ahsdute Error by Grid Points per W a d e 1D

F i e 2: Maximum Absolute Error by Total FLOPS: 1D

Maximum Absolute Error By Number of FLOPS
@lo. klh=0.8. M=O

1

-1

-

-

a

\
9 -11-

-13

-1s

0 - 0 c5ooex

v -
'V c302d . - do23 c303*

1 I

3 4 5 6 7 8 9 10

LoglO(Number d Mumjpliatlom) -

Performance Analysis of Large-Scale Applications Based on Wavefront
Algorithms s3=@9 61

Adolfy Hoisie, Olaf Lubeck, and Harvey Wasserman $4 $('&$, *; Choisie, ornl, hjw> @lanl.gov 62r ,

Scientific Computing Group, Los Alamos National Laboratory L 8d0
Los Alamos, NM 87545

505-667-52 16 d ~ .
1. Introduction

Wavefront techniques are used to enable parallelism in algorithms that have recurrences by breaking
the computation into segments and pipelining the segments through multiple processors [I]. First de-
scribed as "hyperplane" methods by Lamport [2], wavefront methods now find application in several
important areas including particle physics simulations [3], parallel iterative solvers [4], and parallel so-
lution of triangular systems of linear equations [5-71.

Wavefront computations present interesting implementation and performance modeling challenges on
distributed memory machines because they exhibit a subtle balance between processor utilization and
communication cost. Optimal task granularity is a function of machine parameters such as raw computa-
tional speed, and inter-processor communication latency and bandwidth. Although it is simple to model
the computation-only portion of a single wavefront, it is considerably more complicated to model multi-
ple wavefronts existing simultaneously, due to potential overlap of computation and communication
and/or overlap of different communication or computation operations individually. Moreover, specific
message passing synchronization methods impose constraints that can further limit the available pard
lelism in the algorithm. A realistic scalability.analysis must take into consideration these constraints. 1,

Much of the previous parallel performance modeling of software-pipelined applications has involved
algorithms with one-dimensional recurrences and/or one-dimensional processor decompositions [5-71. ,

A key contribution of this paper is the development of an analytic performance model of wavefront algo- \,
rithms that have recurrences in multiple dimensions and that have been partitioned and pipelined on i

multidimensional processor grids. We use a "compact application" called SWEEP3D7 a time-
independent, Cartesian-grid, single-group, "discrete ordinates" deterministic particle transport code
taken from the DOE Accelerated Strategic Computing Initiative (ASCI) workload. Estimates are that
deterministic particle transport accounts for 50-80% of the execution time of many realistic simulations
on current DOE systems; this percentage may expand on future 100-TFLOPS systems. Thus, an equally-
important contribution of this work is the use of our model to explore SWEEP3D scalability and to show
the sensitivity of SWEEP3D to per-processor sustained speed, and MPI latency and bandwidth on fu-
ture-generation systems.

Efforts devoted to improving performance of discrete ordinates particle transport codes extended re-
cently to massively-parallel systems 18-12]. Research has included models of performance as a function
of problem and machine size, as well as other characteristics of both the simulation and the computer
system under study. In [3] a parallel efficiency formula that considered computation only is presented,
while [9] a model specific to CRAY T3D communication is developed. These previous models had lim-
iting assumptions about the computation and/or the target machines.

2. Description of Discrete Ordinates Transport

Although much more complete treatments of discrete ordinates neutron transport have appeared else-
where 112-151, we include a brief explanation here to make clear the origin of the wavefront process in
SWEEP3D. The basis for neutron transport simulation is the time-independent, multigroup, inhomoge-
neous Boltzmann transport equation, in which the unknown quantity is the flux of particles at the spatial
point r with energy E traveling in direction Q.

Numerical solution involves complete discretization of the multi-dimensional phase space defined by
r, a, and E. Discretization of energy uses a "multigroup" treatment, in which the energy domain is par-
titioned into subintervals in which the dependence on energy is known. In the discrete ordinates ap-
proximation, the angular-direction Q is discretized into a set a quadrature points. This is also referred to
as the SN method, where (in ID) N represents the number of angular ordinates used. The discretization is
completed by differencing the spatial domain of the problem on to a grid of cells.

The numerical solution to the transport equation involves an iterative procedure called a "source it-
eration" 1131. The most time-consuming portion is the "source correction scheme," which involves a
transport sweep through the entire grid-angle space in the direction of particle travel. In Cartesian
geometries, each octant of angles has a different sweep direction through the mesh, and all angles in a
given octant sweep the same way.

Each interior cell requires in advance the solution of its three upstream neighboring cells - a three-
dimensional recursion. This is illustrated in Figure 1 for a 1-D arrangement of cells and in Figure 2 for a
2-D grid.

Figure 1. Dependences for a 1-D and 2-D (diagonal) Transport Sweep (left, middle). Illustration of the
2-D Domain decomposition on eight processors with 2 k-planes per block. The transport sweep has
started at top of the processor in the foreground. Concurrently-computed cells are shaded. (right)

3. Parallelism in Discrete Ordinates Transport

The only inherent parallelism is related to the discretization over angles. However, reflective bound-
ary conditions limit this parallelism to, at most, angles within a single octant. The two-dimensional re-
currence may be partially eliminated because solutions for cells within a diagonal are independent of
each other (as shown in Figure 1).

Diagonal concurrency can also be the basis for implementation of a transport sweep using a decom-
position of the mesh into subdomains using message passing to communicate the boundaries [12],
shown in Figure 1. The transport sweep is performed subdomain by subdomain in a given angular di-
rection. Each processor's exterior surfaces are computed by, and received in a message from, "up-

stream" processors owning the subdomains sharing these surfaces.
However, as pointed out in [9] and [3], the dimensionality of the SN parallelism is always one order

lower than the spatial dimensionality.
Parallel efficiency would be limited if each processor computed its entire local domain before com-

municating information to its neighbors. A strategy in which blocks of planes in one direction (k) and
angles are pipelined through this 2-D processor array improves the efficiency, as shown in Figure 1.
Varying the block sizes changes the balance between parallel utilization and communication time.

4. A Performance Model for Parallel Wavefronts

This section describes a performance model of a message passing implementation of SWEEP3D.
Our model uses a pipelined wavefront as the basic abstraction and predicts the execution time of the
transport sweep as a function of primary computation and communication parameters. We use a two-
parameter (latencyhandwidth) linear model for communication performance, which is equivalent to the
LogGP model [16]. The demonstrations are sketched only due to space limitations in this abstract.

4.1 Pipelined Wavefront Abstraction

An abstraction of the SWEEP3D algorithm partitioned for message passing on a 2-D processor do-
main (ij plane) is described in Figure 2. The inner-loop body of this algorithm describes a wavefront
calculation with recurrences in two dimensions. Multiple waves initiated by the octant, angle-block and
k- block loops are pipelined one after another as shown in Figure 3, in which two inner loop bodies (or
"sweeps") are executing on a Px by Py processor grid. Using this abstraction, we can build a model of
execution time for the transport sweep. The number of steps required to execute a computation of NS,eq
wavefronts, each with a pipeline length of N, stages and a repetition delay of d is given by equation (1).

Steps = Ns + d(~,,, - I), (1)
The pipeline consists of both computation and communication stages. The number of stages of each

kind and the repetition delay per wavefront need to be determined as a function of the number of proces-
sors and shape of the processor grid.

FOR EACH OCTANT DO
FOR EACH ANGLE-BLOCK IN OCTANT DO

FOR EACH K-BLOCK DO
IF (NEIGHBOR-ON-EAST) RECEIVE FROM EAST (BOUNDARY DATA)
IF (NEIGHBOR-ON -NORTH) RECEIVE FROM NORTH (BOUNDARY DATA)

COMPUTE-MESH (EVERY I,J DIAGONAL; EVERY K IN K-BLOCK;
EVERY ANGLE IN ANGLE-BLOCK)
IF (NEIGHBOR-ON-WEST) SEND TO WEST(B0UNDARY DATA)
IF (NEIGHBOR-ON-SOUTH) SEND TO SOUTH(B0UNDARY DATA)

END FOR
END FOR

END FOR

Figure 2. Pseudo Code for the wavefront Algorithm - 3 i 6 8i, :C,k , -
p y .i .I n I I 01-

4 -
0 -

p x p x

Figure 3. Communication (left) and Computation Pipelines.

4.2 Computation Stages

Figure 3 shows that the number of computation stages is simply the number of diagonals in the grid. A
different number of processors is employed at each stage but all stages take the same amount of time
since processors on a diagonal are executing concurrently. Equation (2) gives the number of computation
steps in the pipeline,

and Equation 3 gives the cost of each step with Nx, Ny, and Nz being the number of grid points in each
direction; Kb is the size of the k-plane block; Ab is the size of the angular block; NgoPs is the number of
floating-point operations per gridpoint; and RJops is a characteristic floating-point rate for the processor.
The next sweep can begin as soon as the first processor completes its computation so the repetition de-
lay, damp, is 1 computational step (i.e., the time for completing one diagonal in the sweep).

4.3 Communication Stages

In Figure 6 edges labeled with the same number are executed simultaneously and the graph shows
that it takes 12 steps to complete one communication sweep on a 4 x 4 processor grid. One can general-
ize the number of stages to a grid of Px by Py :

The cost of any single communication stage is the time of a one-way, nearest neighbor comrnunica-
tion given (5). Latency (to) and bandwidth (B), are defined above.

The repetition delay for the communication pipeline, dot"'", is 4 because a message sent from the top-
left processor (processor 0) to its east neighbor (processor 1) on the second sweep cannot be initiated
until processor 1 completes its communication with its south neighbor from the first sweep (Figure 3).

4.4 Combining Computation and Communication Stages

We can summarize the discussion so far in two equations that give the separate contributions of com-
putation and communication:

T O r n p = [(Px + Py - 1) + (Nsweep - l)] * Tcpu (6) Tom" = [2(Px + Py - 2) + 4(Nsweep - l)]*Tw (7)

The major remaining question is whether the separate contributions, romp and TOtm, can be summed
to derive the total time. We have demonstrated that the total time is the sum of eqns. (6) and (7), where
T,,, is given by eqn. (3) and T,m, is given by eqn. (5). The proof is not presented in this abstract.

5. Validation of the Model

The model was validated with performance data from SWEEP3D on three different machines (SGI
Origin 2000, IBM SP2 and Cray T3E), with up to 500 processors, over the entire range of the various
model parameters. Inspection of eqns. (6) and (7) leads to identification of the following validation re-
gimes:
NxWeep = 1: This case validates the number of pipeline stages in T O t n P and To"'", as functions of (P, +P,).

Nsweep - (P,+P,): Validation of a case where the contributions of the (P,+P,)and NS,,,,, are comparable.

Nsww >> (P,+P,): This case validates the repetition rate of the pipeline.

For each of these three cases, we analyze problem sizes chosen in such a way as to make:

TOtnP >> Tor""'; (validate eqn. (6) only). TOmP = 0; (validate eqn. (7) only). TOmP - To'""'; (validate the
sum of eqns. (6) and (7)).
The agreement of the model with the measured data is very good in all cases (not presented here).

6. Applications of the Model. Scalability Predictions.

ASCI is targeting a 100-TFLOPS system in the year 2004, with a workload defined by specific engi-
neering needs. In this section we apply our model to predict the machine parameters under which the
runtime goal might be met. We assume a 100-Tflops-peak system composed of about 20,000 proces-
sors (based on an extrapolation of Moore's law).

Three sources of difficulty with such a prognosis are (1) making reasonable estimates of machine per-
formance parameters for future systems; (2) managing the SWEEP3D parameter space (i.e., block sizes);
and (3) estimating what problem sizes will be important. We handle the first by studying a range of val-
ues covering both conservative and optimistic changes in technology. We handle the second by report-
ing results that correspond to the shortest execution time (i.e., we use block sizes that minimize run-
time). We handle the third as follows. For particle transport, one ASCI target problem involves 0(109)
mesh points, 30 energy groups, 0(104) time steps, and a runtime goal of about 30 hours. With 5,000 un-
knowns per grid point, this requires about 40 TBytes total memory. On 20,000 processors the resulting
subgrid size is approximately 6 x 6 x 1000. In a different ASCI scenario, particle transport problem
size is determined by external factors. Based on [17], such computations will involve smaller grid sizes
(20 million cells) on the full machine. The 20 million-cell problem would utilize a 2 x 2 x 250 subgrid.

6.1. The 1 billion-cell problem

Plots showing dependence of runtime with sustained processor speed and MPI latency are shown in
Figure 4 for several k-plane block sizes, using optimal values for the angle-block size. Table 1 collects
some of the modeled runtime data for a few important points: sustained processor speeds of 10% and
50% of peak, and MPI latencies of 0.1, 1, and 10 microseconds. Our model shows that the dependence
on bandwidth is small, and as such no sensitivity plot based on ranges for bandwidth is presented. All
results assume 400 Mbytesls MPI bandwidth [18].

We note that runtime under the most optimistic technological estimates in Table 1 is larger than the
30-hour goal by a factor of two. The runtime goal could be met if, with these values of processor speed
and MPI latency, we used what we believe to be an unrealistically high bandwidth value of 4 GBytesIs.

Assuming a more realistic sustained processor speed of 10% of peak, Table 1 shows that we miss the
goal by about a factor of six even when using 0.1 ps MPI latency. With the same assumption for proces-
sor speed, but with a more conservative value for latency (1 ps), the model predicts that we are a factor
of 6.6 off. Our results show that the best way to decrease runtime is to achieve better sustained processor
performance. This is a result of the relatively low comrnunication/computation ratio that our model pre-
dicts. For example, using values of 1 ps and 400 MBIsec for the MPI latency and bandwidth, and a sus-
tained processor speed of 0.5 GKOPS, the communication time will only be 20% of the total runtime.

- 10 k-planes per bkack - 100 k-planerper Mock
hnn 7
- soo k-planes w r Mock - 10 k . p w PerMock - lm k-planes per Mock - Sm k-planes per Mock

J J
O o z m m 600 m 1 m o

Sudalned CW Speed (MFLOPS)

Figure 4. Left: Model-projected sensitivity of the billion-cell problem to MPI latency on a 100-Tflops
system. Sustained CPU speed = 500 Mflops, B = 400 Mbytesls. Right: Model-projected sensitivity of the
billion-cell runtime to sustained processor speed on a hypothetical 100-Tflops. Latency=lSus, B=400 MBIs.

6.2. The 20 million-cell problem

Table 1. Estimates of SWEEP3D Performance on a Future-Generation System as a Function of
MPI Latency and Sustained Per-Processor Computing Rate

The model predicts that communication time ranges from one-half the total time to two-thirds of the
total time depending on specific values for the latency and processor speed. The contribution of the
bandwidth to the communication cost is, again, negligible. For this problem size latency and processor
speed are equally important in decreasing the runtime. Actual plots are not presented here.

MPI Latency
0.1 ps
1.0 p
10 ps

7. Summary

We introduced a performance model for parallel, multidimensional, wavefront calculations with
machine performance characterized using the LogGP framework. The model accounts for overlap in
the communication and computation components. The agreement with experimental data is very good
under a variety of model sizes, data partitionings, blocking strategies, and on three different parallel
architectures. Using our model, we analyzed performance of a deterministic transport code on a
hypothetical 100 Tflops future parallel system of interest to ASCI.

10 % of Peak
Amount of

Runtime (hours) Communication
180 16%
198 20%
29 1 20%

8. Acknowledgements.

50% of Peak
Amount of

Runtime (hours) Communication
56 52%
74 54%
102 58%

We acknowledge the use of resources at the Advanced Computing Laboratory, LANL, and support
from the U.S. DOE under Contract No. W-7405-ENG-36. We thank SGIICRAY for a grant of
computer time on the CRAY T3E system. We acknowledge the use of the IBM SP2 at the LLNL.

9. References.

Please contact any of the authors for the complete reference list.

Virtual Petafiop Simulation: Parallel Potential Solvers and New Integrators
for Gravitational Systems *

George ~ a k e t t Thomas Quinnf Derek C. ~ichardsont Joachirn st adelt

Abstract
The orbit of any one planet depends on the 20

combined motion of all the planets, not to men-
tion the actions of all these on each other. To -
consider simultaneously all these causes of motion - - -
and to define these motions b y exact laws allow- :
ing of convenient calculation exceeds, unless I am e -
mistaken, the forces of the entire human intellect.

- -
5

-Isaac Newton 1687 o
L 15

Epochal surveys are throwing down the gauntlet for cosmo- 5
logical simulation. We describe three keys to meeting the 1
challenge of N-body simulation: adaptive potential solvers,
adaptive integrators and volume renormalization. With 2
these techniques and a dedicated Teraflop facility, simula- 5
tion can stay even with observation of the Universe. -

\

2 We also describe some problems in the formation and 4 lo stability of planetary systems. Here, the challenge is to per- J

form accurate integrations that retain Hamiltonian proper-
ties for 1013 timesteps.

1 COSMOLOGICAL N-BODY SIMULATION Year

Simulations are required to calculate the nonlinear fi- Figure 1: Gains in hardware and algorithms are com-
nal states of theories of structure formation as well as pared for the N-body simulations. Algorithms are
to design and analyze observational programs. Galaxies shown as filled points with the scale to the left, while
have six coordinates of velocity and position, but obser- hardware is open points with the sclale on the right. The
vations determine just two coordinates of position and final algorithmic point should be considered a hopeful
the line-of-sight velocity that bundles the expansion of projection for 1999.
the Universe (the distance via Hubble's Law) together colleagues have cut steel and ground glass to survey
with random velocities created by the mass concentra- a volume" that w e m.ust but we need
tions (see Figure 1). To determine the underlying struc- = 1012 to do this. Direct summation of the grav-
ture and masses, we must use simulations. If we want itational forces using fixed timesteps would take 1010
to determine the structure of a cluster of galaxies, how Teraflop-years.
large must the survey volume be? Without using simu- We will explain why this is a unique time to survey
lations to define observing programs, the scarce resource the Universe as well as describing ,.he technical break-
of observing time on $2Billion space observatories may throughs required to create a better survey of the cos-
be mispent. Finally, to test theories for the formation mos. We will then present the three keys to a realistic
of structure, we must simulate the nonlinear evolution , float count: spatially adaptive potential solvers, 2)
to the present epoch. temporally adaptive integrators and 3) volume renor-

This relationship to observational surveys defines malizations, Another goal of this paper is to define
our goal for the next decade. The Sloan Digital Sky quality simulations,, and the niche science that
Survey (SDSS) (Gunn and Knapp 1992) will produce can be done with - 10s.
fluxes and sky positions for 5 x lo7 galaxies with red-
shifts for the brightest lo6. Our ambitious observational 2 THE PROGRESS OF S1MlJhY'JY.ONS

Over the last 20 years, the N of our simulations has

*Support by NASA HPCC/ESS, IRP and ATP increased as: logloN = 0.3 * (Year - 1973). Figure
~ N A S A HPCC/ESS Project Scientist 1 shows the relative contributions of hardward and
tDepartment of Astronomy, University of Washington algorithms. We can't wait to simulate lo12 particles,

, ~ ~ " I ' " ' I " ' ~ - -

-

-

- -
-

.

-

uee Nned lor pleneleslmal i
-

IIW wm, planetesimal adapUve ~nt-rator-

I I I I I . I

1970 1980 1990

15

10

%
I! -
s"

we have to invent the algorithms that are a thousand
times faster! The power of computers has doubled every
8 months (open circles, log scale to the right) with
algorithmic advances keeping the same pace (closed
circles, log scale to the left). Together, the doubling
time in power is 8 months, accumulating to a trillion-
fold increase in less than 3 decades. We can't wait to
simulate 1012 particles, we have to invent the algorithms
that are a thousand times faster!

There are two constraints on our choice of N.
The cost of computing a full cosmological simulation
is - 105 .7~4 /3 floats (the scaling with N ~ / ~ arises
from the increased time resolution needed as inter-
particle separation decreases). The memory needed
to run a simulation is - 102N bytes. If we fix N
by filling memory, the time to run a simulation is
10 days x (bytes/flop r a t e (~ / 3 0 ~ i l l i o n) ' / ~) . Current
machines are well balanced for our Grand Challenge

tive total energy (sum of gravitional binding and kinetic
energy) of a bound ensemble, like a star cluster. As
a star cluster evolves, stars are scattered out by colli-
sions leaving with positive energy. The remaining stars
remaining have greater negative energies, the cluster
shrinks, the gravitational binding energy increases and
the stars move faster. In galaxies and clusters of galax-
ies, the timescale for this to occur is lo3 to lo6 times the
age of the Universe. In many simulations, the combina-
tion of discreteness in mass, time and force evaluation
can make the timescale much shorter leading to grossly
unphysical results. So, we must use N sufficient that
physical heating mechanisms dominate over numerical
or the numerical heating timescale is much longer than
the time we simulate. We inventoried all the physical
heating mechanisms experienced by galaxies in clusters
and discovered a unique new phenomena we call "galaxy
harassment" .

simulations. With Gigaflops and Gigabytes, we can per-
form simulations with N - 107.5. With Teraflops and

3 PARALLEL SPATIALLY/TEMPORALLY

Terabytes, we can simulate 10'' particles. Simulations
ADAPTIVE N-BODY SOLVERS WITH

with N - 1012 lie in the nether world of Petaflops and
"VOLUME RENORMALIZATION"

Petabytes. Performance gains of the recent past and near future

There are a variety of problems where N -- l o6 rely on parallel computers that reduce CPU-years to

represents a minimum ante. For example, clusters wall-clock-days. The challenge lies in dividing work

of galaxies are extremely important for determining amongst the processors while minimizing the latency

cosmological parameters such as the density of the of communication.

Universe. Within a cluster, the galaxies are 1-10% of The dynamic range in densities demands that spa-

the mass, and there are roughly 103 of them. If the tially and t e m ~ o r a l l ~ methods be used. Our

galaxies have fewer than lo3 particles, they dissolve group has forsaken adaptive mesh codes to concentrate

before the present epoch owing to two-body relaxation on tree-codes (Barnes and Hut 1986) that can be made

in the tidal field of the cluster. To prevent this, we need fully spatially and temporally adaptive. The latter use

N > lo7 per cluster. Scaling to the Sloan Volume yields multipole expansions to approximate the gravitational

N -- 10'2. acceleration on each particle. A tree is built with each

There are - 1020 solar masses within the SDSS node storing its multipole moments. Each node is re-

volume, so even 1012 is a paltry number as each particle cursively divided into smaller subvolumes until the final

would represent 10' solar masses. We nead a ten-fold leaf nodes are reached. Starting from the root node

more to represent the internal structure of galaxies. and moving level by level toward the leaves of the tree,

N will always be far smaller than the true number we obtain a progressively more detailed representation

of particles in the Universe and will compromise the of the underlying mass distribution. In calculating the

physics of the system at some level. We can only force on a particle, we can tolerate a cruder repre-

make sure that: 1) the physics being examined has sentation of the more distant particles leading to an

' not been compromised by discreteness effects owing to O(N log N) method. We use a rigorous error criterion

N-deprivation and 2) gravitational softening, discrete to insure accurate forces.

timesteps, force accuracy and simulation volume don't As the number of particles in a cosmological simu-

make matters even worse. N is not the figure of merit lation grows, so do the density contrasts and the range

in most reported simulations-it should be! The N- of dynamical times (o: l/.\/d&GZ$. If we take the fi-

body Constitutzon (Lake et al. 1995) provides a set nal state of a simulation and weight the work done on

of necessary but not suficzent guidelines for N-body particles inversely with their natural timesteps, we find

simulation. a potential gain of of 50.

The main physical effect of discreteness is the en- The leapfrog time evolution operator, D(7-12)

ergy exchange that results from two body collisions.
Gravity has a negative specific heat owing to the nega-

K(r)D(r/2), is the one most often used: reconstructed using the same low-frequency waves but

1
adding higher spatial frequencies. We have achieved a

Drift, D(r/2); rn+1/2 = r, + -Tvn, resolution of we can achieve lo3 parsec resolution within
2 - a cosmological volume of size lo8 parsec to study the

Kick, K(r); 1 = Yn + r a (~ + l / 2) , origin of quasars (Katz et a(1994).
't - 1

Drift, D(r/2); I,+, - m+l/2 + sTYn+l . 4 SIMULATING T H E SLOAN VOLUME
Our proposed program to simulate the Sloan Volume

where r is the position vector, Y is the velocity, a is before the rnillenia is as follows:
the acceleration, and T is the timestep. This operator . Simulate the entire volume (800 with N =
evolves the system under the Hamiltonian 10l0, each with a mass of 1010.5Mo.

1
HN = H D + HK + Herr = -v2 + V(I) + Herr , 2 -

where Herr is of order r2 (Saha and Tremaine 1994).
The existence of this surrogate Hamiltonian ensures
that the leapfrog is symplectic-it is the exact solution
of an approximate Hamiltonian. Errors explore the
ensemble of systems close to the initial system rather
than an ensemble of non-Hamiltonian time evolution
operators near the desired one.

Leapfrog is a second-order symplectic integrator re-
quiring only one costlyforce evaluation per timestep and
only one copy ofthe physical state of the system. These
properties are so desirable that we have concentrated
on making an adaptive leapfrog. Unfortunately, simply
choosing a new timestep for each leapfrog step evolves
(I, Y, r) in a manner that may not be Hamiltonian, hence
it is neither symplectic nor time-reversible. The results
can be awful (Calvo and Sanz-Serna 1993). Time re-
versibility can be restored (Hut, Makino and McMillan
1994) if the timestep is determined implicitly from the
state of the system at both the beginning and the end
of the step. This requires backing up timesteps, throw-
ing away expensive force calculations and using auxil-
iary storage. However, we can define an operator that
"adjusts" the timestep, A, yet retains time reversibility
and only calculates a force if it is used to complete the
timestep (Quinn et al. 1997). This is done by choosing A
such that it commutes with I(, so that DAKD is equiv-
alent to DKAD. Since I< only changes the velocities, an
A operator that depends entirely on positions satisfies
the commutation requirement. The "natural definition"
of timestep, ec 1/J-, is ideal but it is difficult to
define when a few particles are close together. Synchro-
nization is maintained by choosing timesteps that are
a power-of-two subdivision of the largest timestep, T,.
That is, ri = *, where ri is the timestep of a given
particle. We are currently experimenting with this ap-
proach and encourage others to look at variants.

"Volume Renormalization" uses a large scale simu-
lation with modest resolution to identify regions of par-
ticular interest: sites of galaxy/QSO formation, large
clusters of galaxies, etc. Next, initial conditions are

"Renormalize" dozens of groups, clusters, etc. and
simulate with 1 0 ~ - 1 0 ~ pafticl&.

The total cost for the first simulation is roughly a
Teraflop-year and requires a machine with a Terabyte
of memory. The second sequence of simulations should
be designed to have roughly equal computational cost,
but will require less memory.

5 T H E FATE O F T H E SOLAR SYSTEM
Advances in hardware and numerical methods finally
enable us to integrate the solar system for its lifetime.
Such an integration is a 1,000 fold advance on the best
longest accurate integration ever performed (Laskar,
Quinn and Tremaine 1992) and can address numerous
questions:
I s the Solar System stable? Do all the planets re-
main approximately in their current orbits over the life-
time of the Solar System, or are there. drastic changes,
or perhaps even an ejection of a planet?
What is t h e affect of orbital changes o n the
planetary climates? According to the Milankovich
hypothesis, climate variations on the Earth are caused
by insolation changes arising from slow oscillations
in the Earth's orbital elements and the direction of
the Earth's spin (Berger et al. 1984). Remarkably,
the geophysical data (primarily the volume of water
locked up in ice as determined by the 180/160 ratio
in seabed cores) covers a longer time than any accurate
emphemeris.
How does weak chaos alter the evolution of the
Solar System? Why does the solar system appear
stable if its Lyapunov time is so short?
'What is t h e stability of other planetary sys-
t em? How are the giant planets related to terrestrial
planets in the "inhabitable zone'' between boiling and
freezing of water by the central star? Without such
a cleansing of planetesimals from the solar system by
giant planets (Duncan and Quinn 1993), the bombard-
ment of the Earth by asteroids would be steady and fre-
quent throughout the main sequence lifetime of the Sun
(Wetherill 1994). The chaos produced by the Jupiter
and Saturn may have played a role in insuring that plan-

etesimals collided to form the terrestrial planets l , but We have started a 9 Gyr integration-4.5 Gyr into
too much chaos will eject planets in the habitable zone. the past when the solar system was formed and 4.5 Gyr
While a search for giant planets is the only technically into the future when the Sun becomes a red giant. One
feasible one today, it may be the ideal way to screen basic requirement is a computer with fast quad precision
systems before searching for terrestrial planets. to .overcome roundoff problems. The IBM Power 2 -

6 INTEGRATING N I N E PLANETS FOR lo1'
DYNAMICAL T I M E S

When Laplace expanded the mutual perturbations of
the planets to first order in their masses, inclinations
and eccentricities, he found that the orbits could be ex-
pressed as a sum of periodic terms-implying stability.
~oincar6 (1892) showed that these expan~ionsdon7t con-
verge owing to resonances. Using the KAM theorem,
Arnold (1961) derived contraints on planet masses, ec-
centricities, and inclinations sufficient to insure stability.
The solar system does not meet his stringent conditions,
but this does not imply that it is unstable.

Laskar (1989) tested the quasi-periodic hypothesis
by numerically integrating the perturbations calculated
to second order in mass and fifth order in eccentricities
and inclinations, -150,000 polynomial terms. Fourier
analysis of his 200 million year integration reveals that
the solution is not a sum of periodic terms and implyies
an instability that is surprisingly short, just 5 Myr.

The second method for attacking the stability prob-
lem is to explicitly integrate the planets' orbits (Table
1). As early as 1965, Pluto's behaviour was suspicious.
In the last ten years, it has become clear that the solar
system is chaotic. However, the source of the chaos is
unclear as the system of resonances is complex and the
the Lyapunov exponent appear to be sensitive to fine
details of initial conditions.

Nonetheless, the Solar System is almost certainly
chaotic. Laskar (1994) looked at the fate of Mercury
and estimates the chance of ejection in the next few
billion years approaches 50%. Our belief in the apparent
regularity of the solar system may owe to our inability
to know that before the last few ejections, there were
10, 11 or even 12 planets a few billion years ago. At
the very least, the chaotic motion leads to a horizon of
predictability for the detailed motions of the planets.
With a divergence timescale of 4-5 Myr time, an error
as small as 10-lo in the initial conditions will lead to a
100% discrepancy in 100 Myr. Every time that NASA
launches a rocket, it can turns winter to spring in a mere
10 MY^.^.

'In Ancient Greek, chaos was "the great abyss out of which
Gaia flowed".

2Don't let this go beyond this room, environmental impact
statements are already tough enough! Are the integrations
meaningful given this sensitivity to the initial conditions? We
investigate Hamiltonian systems that are as close to the solar
system as possible. KAM theory tells us that the qualitative

series is the current machine of choice, evolving the solar
system at - lo9 times faster than "real time", this is 1-
3 orders of magnitude faster than other available cpus.
To understand any chaoitic, we will need to see it by an
independent means and devise methods to determine its
underyling source.

Table 1: Solar System Integration History
Year Ref Length # GR? Earth's

1951 Eckert ...
1965 Cohen ...
1973 Cohen ...
1986 Applegate.. .

1986 Nobili
1988 Sussman ...
1989 Richardson ...
1991 Quinn ...

5 no
5 no
5 no
8 no
5 yes
5 no
9 no
9 yes

Moon?

1 1992 Sussman ... 100. 9 ves ves I
1999 us 10,000 9 yes yes

A Parallel Method doesn't seem promising since -
there are only nine planets to distribute among pro-
cessors. We employ a different form of parallelism-
the "time-slice concurrency method" (TSCM) (Saha,
Stadel and Tremaine 1997). In this method, each pro-
cessor takes a different time-slice; processor 2's initial
conditions are processor 1's final conditions and so on.
The trick is to start processor 2 with a good prediction
for what processor 1 will eventually output, and iter-
ate to convergence. This is analogous to the waveform
relaxation technique used to solve some partial differ-
ential equations (Gear 1991). However, Kepler ellipses
are a good guess to the orbits for a timescale that is
proportional to the ratio of the Sun's mass to Jupiter's.
Tests show that it is extremely efficient to iterate to
convergence in double precision (typically 14 iterations
each costing 10-15% of a quad iteration), then peform
just two iterations to get convergence in quad. In this
way, the total overhead pf the full 16 iterations can be
less than a factor of 4. There are still many algorithmic
issues to be addressed.

For long-term integrations, TSCM has been formu-
lated in a way that preserves the Hamiltonian structure

behavior of nearby Hamiltonians should be similar. While the
exact phasing of winter and spring is uncertain after millions of
years, the severity of winter or spring owing to changes in the
Earth-Sun distance and the obliquity are predictable.

and exploits the nearness to an exactly soluble system; ref N t (yr) Aa (AU) Col? G?
otherwise errors grow quadratically with time. TSCM Lecar 200 6 x lo4 0.5-1.5 a n
will enable us to integrate - 0.5 Gyr per day on a 512 Beau&.. 200 6 x lo5 0.6-1.6 abcf n
node SP2-a speed-up over real-time of 10ll. This will Ida ... 800 5000 0.3 - n
make it feasible to study the stability of other solar sys- Aarseth ... 400 1.2 x lo4 0.04 ab n
tems. Detailed development and implementation will Chambers ... 100 lo8 0.5-2.0 a y
be much more challenging than for previous methods, Kokubo ... 5000 2 x lo4 0.4 a n
and our high quality serial integration will be required Richardson ... lo5 lo3 1.2-3.6 a y
for comparison and validation. goal lo7 lo7 0.5-2.0 abcf y

Finally, we will use a new technique to gauge the - -
origin of instabilities (the "tangent equation method") ~ ~ b l ~ 1: ~i~hli~ht. of advances in direct of
(Saha l9g7). In the past, it was integrate the formation of the inner planets. N is the maximum
orbits from many slightly different initial conditions. number of planetesimals used in the t is the
While that works, it is more rigorous and also more longest integration time, and is either the width
economical to integrate the the linearized or tangent of the region at 1 AU or the actual range
equations-the equations for differences from nearby in orbital distance. If collisions are included in the
orbits. We will integrate the tangent equations along s~mu~ations, details are noted by: a=agglomeration;
with the main orbit equations. b=bouncing; c=cratering; f=fragmentation. The final
7 COSMOLOGY MEETS COSMOGONY: column shows whether perturbations from one or more

PLANETARY SYSTEM FORMATION giant planets are included.

Theories of Solar System formation are traditionally di-
vided into four stages (Lissauer 1993): collapse of the lo- our ability to follow planetesimal evolution. At early
cal cloud into a protostellar core and a flattened rotating times, the relative velocities between planetesimals are
disk (Nebular Hypothesis); sedimentation of grains from small and inelastic physical collisions lead to "runaway"
the cooling nebular disk to form condensation sites for growth of planetary embryos (BeaugC and Aarseth
planetesimals; growth of planetesimals through binary 1990). Eventually gravitational scattering increases
collision and mutual gravitational interaction to form the planetesimal eccentricities to such an extent that
protoplanets (Planetesimal Hypothesis); and the final collisions result in fragmentation, not growth. The
assembly to planets with the remaining disk cleansed embryos will continue to grow owing to their large
by ejections from chaotic zones. mass, but at a slower rate as their 'Teeding zones"

Our cosmology code is ideal for the third stage of are depleted (Ida and Makino 1993). The total mass
Solar System formation, particularly in the inner regions of our planetary system is 448Me or 3.6 x ~o~M~,,,,,
where gas was not a primary component and gravita- while the inner planetismal disk amenable to simulation
tional interactions dominated the evolution. The first had a mass - ~o~M~,,,, . To capture both growth and
stage entails magnetohydrodynamics, the complicated fragmentation (Wetherill and Stewart 1989) requires a
small-particle physics and gas dynamics of the second minimum particle mass of 10-5M~,,,T, leading to our
stage is still not well understood, and the fourth is the target N lo7.
purview of long-term stability codes. A detailed direct simulation of planet formation

All that is required for a detailed simulation of can address a variety of important questions, includ-
the third stage is a model of the collisional physics ing: Was there runaway growth of a few embryos, or a
and a code capable of dealing with a large number continuously evolving homogeneous mass distribution?
of particles. However, previous direct simulations of How does the primordial surface density alter the evolu-
the planetesimal stage (summarized in Table 1) fall tion? What fixes the spin orientation and period of the
far short of capturing the full dynamic range of the' planets-uniform spin-up from planetesimal accretion
problem. Our cosmology code has the potential to (Lissauer and Safronov 1991), or a stochastic process
treat as many as lo7 particles simulataneously for dominated by the very last giant collisions (Dones and
lo7 dynamical times, a ten-million-fold improvement Tremaine 1993)? IS it feasible that the Earth suffered
that makes us enthusiastic! Only statistical methods a giant impact late in its growth that led to the forma-
(Wetherill and Stewart 1989) employing prescriptions tion of the Moon (Benz et al. 1986)? How much radial
for the outcomes of gravitational encounters have been mixing was there and can it explain observed composi-
used to peek at this regime. tional gradients in the asteroid belt (Gradie, Chapman

We reach an important threshold at N - lo7 in and Tedesco 1989)? Finally, what is the dominant phys-
ical mechanism that drives the late stages of growth-

n after

Semt-major Ax*. a (AU)

Figure 3: Plot of semi-major axis a vs. eccc:
250 yr. Bright shades represent regions of high density. e for the lo6-particle simulation, showing only every
The dot at the top right is Jupiter. The disk extends looth particle to prevent overcrowding. The peaks in
from 0.8 AU, just inside Earth's present-day orbit, to e correspond to mean-motion resonances with Jupiter;
3.8 AU, near the outer edge of the asteroid belt. The there are similar features in plots of a vs. inclination
gaps and spiral structures in the disk are associated with i (not shown). The circles are scaled by mass for
Jupiter mean-motion resonances. emphasis.

are intrinsic gravitational instabilities between ,embryos
sufficient, or are perturbations by the giant gas plan-
ets required? This last point is of key importance to
future searches for terrestrial planets. We strongly sus-
pect that the end result of our research may be the
assertion that one should concentrate searches for ter-
restrial planets in those systems that have giant planets.

We have begun to address these issues with a
modified version of the cosmology code. Collisions
are detected (rather than "softened away") and the
outcomes are determined by the impact energy, the
lowest energies generally leading to mergers and the
highest energies leading to fragmentation (presently
merging and bouncing are implemented). Integrations
are carried out in the heliocentric frame and may include
the giant planets as perturbers. Auxilliary programs
are used to generate appropriate initial conditions and
to analyze the results of the simulation, but the main
work is performed by the modified cosmology code.

Figures 2 and 3 show the mass density and a vs.
e , respectively, at the end of a 250-yr run that began
with lo6 identical cold planetesimals in a disk from 0.8
to 3.8 AU with surface density proportional to r - 3 / 2 .
The present-day outer planets were included in the
calculation. The simulation took 60 hours to finish
on a Cray T3E with 128 dedicated processors using a
fixed timestep of 0.01 yr. The effect of Jupiter on the
disk, which extends well into the present-day asteroid

belt, can be seen clearly in the density plot: there is a
large density gap a t the 2:1 resonance at 3.2 AU and
a narrow groove at the 3:l a t 2.5 AU along with spiral
wave patterns and other telltale features. There are
corresponding features in Fig. 3 which show how Jupiter
stirs up planetesimals at the mean-motion resonances.
Note that conservation of the Jacobi integral accounts
for the slight bending of the e peaks toward smaller
a . Meanwhile, planetesimal growth has proceeded
unmolested in the inner region of the disk (under
the assumption of perfect accretion). The largest
planetesimal at the end of the run is 8 times its starting
size. As far as we are aware, this is the largest simulation
of a self-gravitating planetesimal disk that has ever been
attempted.

The figures show however that to get to the regime
of runaway growth (- 1 0 ~ - 1 0 ~ yr), a new timestepping
approach is needed. We are currently developing a tech-
nique to exploit the near-Keplerian motion of the plan-
etesimals. For weakly interacting particles, we divide
the Hamilonian into a Kepler component, implemented
using Gauss' f and g functions, and a perturbation com-
ponent owing to the force contributions of all the other
particles. In this regime, timesteps can be of order the
dynamical (1 . e. orbital) time, resulting in compuational
speedups of 10-100. For strongly interacting particles
(defined as particles with overlapping Hill spheres), the
Hamiltonian is factored into the standard kinetic and

potential energy components, with the central force of
the Sun as an external potential. In this regime, par-
ticles are advanced in small steps, which allows for the
careful determination of collision circumstances. It also
allows the detection of collisions in the correct sequence
even if a single particle suffers more than one collision
during the interval.

The challenge is to predict when particles will
change between the regimes of weak and strong inter-
action. One method we are considering is to construct

follow lo6 planetesimals by the year 2000. They claimed
that this would be a seven-year advantage over General
Purpose Computers that would only be able to follow
lo4 particles by the year 2000. Our test simulations
without the new integrator are already 10 years ahead
of their projections. We argue that our approach will
beat efforts that rely on special purpose hardware with
encoded algorithms for at least the next decade.

Sir Isaac would love to see the enhancement of "the
entire human intellect" by high performance computing.

a new binary tree ordered by perihelion and aphelion.
Those particles with orbits separated by less than'a Hill REFERENCES

sphere are flagged for further testing. This screening Aarseth, S. J.; D. N. C. Lin; and P. L. Palmer. 1993.
Evolution of planetesimals. II. Numerical simulations. has a cost of N log N and is only performed once per

long Kepler step. Flagged pairs of particles with phases Ap.J., 403, 351-76.

that are certain to stay separated over the integration Applegate, J. H.; M. R. Douglas; Y. Gursel; G. J .

step are reset. The remaining particles are tested by Sussman and J. Wisdom. 1986. The outer solar system

. solving Kepler's equation in an elliptical cylindical co- for 210 million years. A.J., 92, 176-94.

ordinate system to determine the time of actual ~ i ~ l Arnold, V. I. 1961. Small Denominators and the Prob-

sphere overlap. switching between ~ ~ ~ i l ~ ~ ~ i ~ ~ ~ is not lem of Stability in Classical and Celestial Mechan-

strictly symplectic, but it occurs infrequently enough for ics. In Report to the IVth Math. Congress,

any given particle that it is not a concern. Dissipating Leningrad.
collisions are inherently non-symplectic anyway. Once Barnes, J - 1986- An eficient N-body algorithm for a fine-
particles separate beyond their Hill spheres (or merge), in parallel computer. In The Use of Su~ercom~utefs

they are returned to the Kepler drift scheme. in StelIar Dynamics, P. Hut and S. McMilIan, eds.,
Although much work remains to be done, the Springer Verlag, New York, 175-80.

reward will be the first self-consistent direct simulation Barnes J. and P. Hut. 1986. A Hierarchical O(NlogN)
of planetesimals evolving into planets in a realistic disk. Force-Calculation Algorithm- Nature, 324, 446-50.
The results can be used to study related problems, BeaugC, C. and S. J . Aarseth. 1990. N-body simulations
such as the formation of planetary satellites, orbital of planetary formation. M.N.R.A.S., 245, 30-9.
migration of giant planets in a sea of planetesimals, Benz, W.; W. L. Slattery and A. G. W. Cameron.
and ultimately the ubiquity and diversity of extra-solar 1986. The origin of the Moon and the single-impact
planetary systems. hypothesis. I. Icarus, 66, 515-35.

8 Summary: Vir tual PetaBops Berger, A.; J . Imbrie; J. Hayes; G. Kukla and B. Saltz-
man. 1984. Milankovitch and climate: understanding Past planetesimal simulations used codes with an algo-
the response to astronomical forcing. Reidel. Dordrecht.

rithmic complexity that would be similar to the point
labeled "full tune" in Fig. 1 and computers with speeds Calvo, M. P. and J. M. Sanz-Serna. 1993. The develop-

of - 10 Mflops. (Special purpose "GRAPE" hardware ment of variable-step symplectic integrators with appli-

of - l o6 Mflops has been used, but such implemen- cation to the two-body problems. SIAM J . Sci. Comput.,

tations involve sums over all interactions so they are 14, 936-52.

closer to the direct sum case in floating point cost [cf. J . E. Chambers and G. W. Wetherill, N-body simula-

Kokubo and Ida 19981.) Our algorithms result in a col- tions of the formation o f the inner planets, B.A.A.S.,

lective speed-up 2 10' for simulations with N - lo7 28, (1996), 1107.

(with rough accounting for the reduction in N over the Cohen, C. J. and E- C. Hubbard, 1965. Libration of the

course of the It must be emphasized that Close Approaches of Ph~to to Neptune. A.J., 70, 10-22.

to attain the desired performance, both hardware and Gohen, C. J.; E. C. Hubbard and C- &sterwinter.
algorithm improvements are required. Figure 1 shows 1973. Elements of the outer la nets for a million years.
that the speed-up factor from algorithms vastly exceeds Astron. Pap. h ~ e r . Ephem., 22, 1-5.
that of the hardware. It is not sufficient to simply wait Ihnes L- and S. Bemaine. 1993. On the origin of
for computers to get better, nor does it seem to pay to planetary spins- Icarus, 103, 67-92.
build special hardware. McMillan et al. (1997) asserted Duncan M. and T. Quinn. 1993. The Long-Term Dy-
that if Grape-6 is built, it could use its Petaflop speed to namical Evolution of the Solar System. Ann. Rev. Astr.

Ap., 31, 265-89.

Eckert, W. J.; D. Brouwer and G. Clemence. 1951. Co- Moore, B.; N. Katz; G. Lake; A. Dressler and A.
ordinates of the five outer planets 1653-2060. Astron. Oemler. 1996. Galaxy harassment and the evolution of
Pap. Amer. Ephem., 12, 1-47. clusters of galaxies. Nature, 379, 613-16.
Gear, C. 1991. Waveform methods for space and time Nobili, A. M. 1986. LONGSTOP and the masses of
parallelism. J . Comp. and Appl. Math., 38, 137-47. Uranus and Neptune. In Solid Bodies of the Outer Solar
Gradie, J . C.; C. R. Chapman and E. F. Tedesco. 1989. System. ESTEC. Noordwijk, 9-13.
Distribution of taxonomic classes and the compositional PoincarC, H. 1892. Les methodes nouvelles de la
structure of the asteroid belt. In Asteroids 11, R. P. mechanipue celeste. Gauthiers-Villars. Paris.
Binzel et al. eds., Univ. Arizona PRss, Tucson, 316-35. Quinn, T., N. Katz, J. Stadel and G. Lake. 1997. Time
Gunn J . E. and G. R. Knapp. 1992. The Sloan Digital stepping ~ - b ~ d ~ simulations. In preparation.
Sky Survey. In A.S.P. conf., #43, 267-79. Quinn, T.; S. Tremaine and M. J . Duncan. 1991. A three
Hut, P-; J . Makin0 and S. McMillan- 1994. Building a million year integration of the Earth's orbit. A.J., 101,
better leapfrog. Ap.J.Lett., 443, L93-6. 2287-305.
~ d a , S. and J . ~ a k i n o , 1~92a . N-body simulation of Richardson, D. L. and C. F. Walker. 1987. Multivalue
gravitational interaction between planetesimals and a integration of the equations over the last one-
protoplanet. I. velocity distribution of planetesimals, years. Astrodynamics 1987, Soldner et al, eds.
Icarus, 96, pp. 107-20. Univelt. San Diege. 1473-56.
Ida, S. and J . Makino, 1992b. N-bod~ of Richardson, D. L. and C. F. Walker. 1989. Numerical
gravitational interaction between planetesimals and a of the nine-body planetary system spanning
protoplanet. II. DYnamical friction, Icarus> 98, PP. 28- two million years. J. Astronautical Sci., 37, 159-82. - -
Y (. Richardson, D. C., G. Lake, T. Quinn, and J. Stadel,
Ida S. and J . Makino. 1993. Scattering of Planetesimals Direct of planet formation with a
by a PrOtoplanet: S1owing Down of Runaway Growth. planetesimals: A progress report, B.A.A.S., 30, (1998),
Icarus, 106, 210-27. 765.
Katz, N.; 7'. Quinn; E- Bertschinger and J - M. Gelbe saha p. and S. Tremaine. 1992. sympleCtic integrators
lgg4' Formation quasars at high redshift' M.N'R'A.S., for so(ar system dynamics. A.J., 104, 1633-40.
270, L71-4.

Saha, P. and S. Tremaine. 1994. Long-term planetary
Kokubo' E. and S. Ida' 19967 On runaway gmwth of integration with individual time steps. A.J., 108, 1962-
planetesimals, Icarus, 123, pp. 180-91.

9.
Kokubo, E. and S. Ida, 1998, Oligarchic growth of
planetesimals, Icarus, 131, pp. 171-78. Saha, P., J . Stadel and S. Tremaine. 1997. A Parallel

Lake, G.; N. Katz; T. Quinn and J . Stadel. 1995. "Cos- Integration Method for Solar System Dynamics. A.J.,

mological N-body Simulation". Proc 7th SIAM Conf. on 114,409-15.

Parallel Processing for Sci. Comp., 307-12 Saha, P. 1997. The Use of Tangent Equations to Detect

Laskar, J . 1989. A numerical experiment on the chaotic Chaos in Solar System Dynamics. in preparation.

behaviour of the Solar System. Nature, 338, 237-8. Stadel, J . and T . Quinn. 1998. A generalization of Ewald

Laskar, J . 1994 Large-scale in the solar system. ~ ~ ~ ~ a ~ i o n to arbitrary m ~ l t i ~ o l e order- In preparation.

A.A., 287, L9-12 Sussman, G. J . and J . Wisdom. 1988. Numerical evi-

L ~ ~ ~ ~ , M. and S. J . ~ ~ ~ ~ ~ t h , 1986 A simujation of the dence that the motion of Pluto is chaotic. Science, 241,

formation of the terrestrialplanets, Ap.J., 305, pp. 564- 433-7.
79. Sussman, G. J . and J . Wisdom. 1992. Chaotic Evolution

Lissauer, J. J . 1993Planet formation. Ann. Rev. Astr. the Solar System- Science, 257, 56-62.

Ap., 31, 129-74. Wetherill, G. W. 1994. Possible consequences of absence
Lissauer, J. J . and V. S. Safronov. 1991. The random of " J ~ ~ i t e r s " in planetary systems. AP. SP- Sci-I 212,
component of planetary rotation. Icarus, 93, 288-97. 23-32.
Laskar, J.; T. Quinn and S. Tremaine. 1992 Confima- Wetherill G. W. and G. R. Stewart. 1989. Accumulation
tion of resonant structure in the solar system. Icarus, of a swarm of small planetesimals. Icarus, 77, 330-57.
95, 148-52.
McMillan, S., P. Hut, J . Makino, M. Norman, and F.
J . Summers. 1997 Design studies on petaflops special
purpose Hardware fo r particle simulation. in Frontiers:
6th Symposium on the Frontiers of Massively Parallel
Computing.

/

The Kalman Filter and High Performance Computing - 1 $ $ / a
** -- c

at NASA's Data Assimilation Office (DAO) i >,
R ;. &,\ 2 ,*"? -

I

Peter M. Lyster
NASA Data Assimilation Office (DAO)

/
and University of Maryland Earth System Science Interdisciplinary Center (ESSIC)

Atmospheric data assimilation is a method of combining actual observations with model
simulations to produce a more accurate description of the earth system than the observations alone
provide. The output of data assimilation, sometimes called "the analysis", are accurate regular,
gridded datasets of observed and unobserved variables. This is used not only for weather
forecasting but is becoming increasingly important for climate research. For example, these
datasets may be used to assess retrospectively energy budgets or the effects of trace gases such as
ozone. This allows researchers to understand processes driving weather and climate, which have
important scientific and policy implications. The primary goal of the NASA's Data Assimilation
Office (DAO) is to provide datasets for climate research and to support NASA satellite and aircraft
missions.

This presentation will: (i) describe ongoing work on the advanced KalmanLagrangian filter parallel
algorithm for the assimilation of trace gases in the stratosphere, and (ii) discuss the Kalman filter in
relation to other presentations from the DAO on Four Dimensional Data Assimilation at this
meeting. Although the designation "Kalman filter" is often used to describe the overarching work,
the series of talks will show that the scientific software and the kind of parallelization techniques
that are being developed at the DAO are very different depending on the type of problem being
considered, the extent to which the problem is mission critical, and the degree of Software
Engineering that has to be applied.

A discussion of the scientific and computational complexity of atmospheric data assimilation may
be found at http://dao.gsfc.nasa.gov/DAOOpeople/lys, and for general information on the Data
Assimilation Office view http://dao.gsfc.nasa.gov.

Session 2:

Advanced Computer Algorithms and
Methodology

TOWARD THE LARGE EDDY SIMULATION OF GAS TURBINE SPRAY
COMBUSTION PROCESSES

Joseph C. Oefelein

Center for Integrated Turbulence Simulations &&B-- c a $/&.-:
Department of Mechanical Engineering iJ

Stanford University, Stanford, California 94305-3030
Phone: (650) 723-4220, Fax: (650) 725-3525

Email: jco@ stanford.edu
JLk P ~ J

As part of the Department of Energy Accelerated Strategic Computing Initiative (ASCI), an effort is d Pfi

currently underway to develop improved numerical methods and subgrid-scale models suitable for
performing highly resolved large-eddy-simulations of multiphase combustion processes in gas
turbine combustors. The objective is to provide simulation methodologies that will enable a new
paradigm for the design of advanced systems in which turbulent multiphase combustion plays a
controlling role. Key components of the program include the development of general theories and
models, model validation, and the concurrent development of high-performance parallel algorithms
which support the implementation of massively parallel large-scale simulations. Beginning in the
point-particle ideal limit, a hierarchy of three fundamental systems are being investigated in
swirling coannular dump combustor configurations. These are: 1) particle-laden systems; 2) binary
fuel-air systems; and 3) reacting multicomponent systems. The focus of respective investigations
are: 1) momentum coupling and subgrid-scale modulation effects; 2) mass and energy coupling and
subgrid-scale scalar mixing; and 3) multiphase combustion models. Here, an overview of the
objectives, approach, current status, and future directions will be given with emphasis placed on
model development, accuracy, and parallel implementation.

A result from work in progress is given in Figure 1. This figure shows a simulation of the
Sornmerfeld experiment (J. Fluids Eng., Vol. 114, 1992, p. 648) which provides detailed
measurements of swirling particle-laden flow in a cylindrical dump combustor configuration.
Cross-sections of the instantaneous particle distribution are shown superimposed on the
corresponding turbulent velocity field. The primary jet extends a radial distance of 0.5
dimensionless units from the centerline and is laden with glass beads to obtain a mass loading of
0.034. The annular jet extends over a radial interval from 0.59 to 1 dimensionless units and is
injected with a swirling azimuthal velocity component to obtain a swirl number of 0.47. The
Reynolds number (based on the total volume flow rate and outer radius of the annular jet) is
26200. Results were obtained using the large-eddy-simulation technique and a cylindrical 1.6
million node multiblock grid, with Lagrangan point-particle models employed to handle the
dispersed phase. The established results, and those that follow, will serve as benchmarks to
validate the accuracy of new and existing models and to assess the performance of improved
parallel algorithms. In future studies validated assessments of models used to simulate fully-
coupled spray combustion processes will be provided using data acquired from an experimental
combustor configuration currently under development at Stanford and similar databases established
elsewhere.

Cross-sections of the instantaneous particle distribution superimposed on the corresponding
turbulent velocity field in the cylindrical dump combustor configuration employed by Sommerfeld
et al. (J. Fluids Eng.), Vol. 114, 1992, p. 648).

3 L C, p(-* '.f

Parallelization of AD1 Solver FDL3DI Based on New P P

Formulation of Thomas Algorithm

A.Povitsky
ICASE, NASA Langley Research Center, Hampton, VA 23681-0001

e-mail:aeralpo@icase.edu, phone: (757) 864-4746

M. Visbal
CFD Research Branch, Air Force Research Laboratory, Wright-Patterson AFB, OH 45433-7913

e-mail:visbal@fim.wpafb.af.mil, phone: (937) 255-7127

Introduction. Efficient solution of directionally split banded matrix systems is essential
to compact and implicit solvers. When the AD1 schemes are applied to multi-dimensional
problems, the operators are separated into one-dimensional components and the scheme is
split into two (for 2-D problems) or three (for 3-D problems) steps, each one involving only
the implicit operations originating from a single coordinate [I]. A direct solver, known as
the Thomas algorithm, which is a version of Gauss Elimination method for banded matrix
systems, is used for solution of these systems. Parallelization of the Thomas algorithm is
hindered by global spatial data dependencies due to the recurrence of data within a loop.
Consequently, processors become idle at the switch from the forward to the backward step
of the Thomas algorithm and at the beginning of the computations in the next spatial step.
Thus, straightforward parallel implementation of the Thomas algorithm [2] is of the pipelined
type and is denoted here as the basic pipelined Thomas algorithm (PTA). There are follow-
ing reasons for its poor parallelization efficiency: (i) there is no completed data for other
computational tasks while processors stay idle; (ii) communications control computational
tasks as either the forward step coefficients or the backward step solution must be obtained
from the neighboring processors for the beginning of the forward or the backward step com-
putations.

In order to avoid pipelining, some parallel Thomas algorithms include the reduction of an
O(NtOt) system of equations on P "slave" processors, the solution of the reduced system
of size O(P) on the "master" processor, broadcast this solution to the "slaves7', and simul-
taneous computation of the final solution on P processors. This algorithm includes global
communications of " slave-master" type and additional computations on each "slave" proces-
sor [3].

Implementation of internal boundary conditions eliminates far-field data dependencies, al-
lowing band matrix systems to be solved independently on each processor. However, modi-
fication of either the finite-difference approximation or the implicitness of the scheme due to
interface boundary conditions can deteriorate accuracy, stability and convergence properties

relative to the original serial method [4].

We propose a way to reduce parallelization penalty of the basic PTA where the numeri-
cal algorithm remains the same as the serial one and only order of computations is changed.
To overcome the first problem with the basic PTA (see above), a new pipelined Thomas
algorithm has been developed [5]. This algorithm is designed for parallel solution of banded
matrix linear systems. We called it the Immediate Backward pipelined Thomas Algorithm
(IB-PTA). This algorithm provides exactly the same solution as the serial Thomas algorithm.
The advantage of the IB-PTA over the basic PTA is that some lines has been completed by
the backward step of the Thomas algorithm before the processors are idle. In non-linear and
multi-dimensional problems the IB-PTA may be used for other computational tasks while
processors are idle from the Thomas algorithm computations in the current direction.

To overcome the second problem with the basic PTA and to make the IB-PTA feasible,
the scheduling algorithm has been developed [5]. The static schedule of computations and
communication has been assigned before processors run 3-D AD1 solver [6]. The advantage
of "control by schedule" over "control by communications" is that processors do not wait to
receive necessary data. Instead, processors compute other tasks and switch to receive data
only when these data are available on neighboring processors and necessary in a current
processor. Thus, the 3-D AD1 solver runs on processors in a time-staggered manner without
the idle time of global synchronization, i.e., the first processor completes its computational
tasks first at each spatial step. In turn, the optimal number of solved lines per message is
greater than that for the basic PTA and, consequently, the overall latency time is reduced.

A theoretical model of parallelization efficiency of the 3-D AD1 code based on the proposed
algorithm is presented in [6]. Our model is based on the idealized multicomputer parallel
architecture model [7]. Low-level hardware details such as memory hierarchies and the topol-
ogy of the interconnection network are not introduced in the model. This model is used to
define the optimal number of solved lines per message, to provide asymptotic analysis, to
estimate parallelization efficiency for a large number of processors which are not available
yet, and to compare the proposed algorithm with the basic one. First, this model is used
for a cubic global domain (equal number of grid nodes in all directions). Then an optimal
partitioning for a global domain with unequal number of grid nodes in different directions
is obtained by this model. To provide a unified approach for various MIMD computers,
results are presented in terms of non-dimensional ratios between communication latency and
transfer times to the computation time per grid node.

Here we implement this methodology to parallelization of the target code FDL3DI [8], which
is based on the AD1 method, so as to provide exactly the same solution as the original serial
solver and keep a low parallelization penalty.

Methodology. Consider a non-linear partial differential equation

where U is solution vector, t is the time, S(U) = S, (U) +S, (U) +S, (U) is a spatial differential

operator and Q is a source term. The hgh order AD1 scheme applied to the above Eq.
is solved in three steps as a succession of one-dimensional finite-difference penta-diagonal
systems:

where i = 1, ..., N,, j = 1, .., N,, k = 1, ..., N, are spatial grid nodes, coefficients a, b, c, dl e
are functions of Un and/or time. This system of NzNyNz equations is considered as NyNz
systems of N, equations, where each system of N, equations corresponds to j, k = const.
The above system of linear equations corresponds to the first spatial step; the similar banded
linearized systems must be solved for the second and the third spatial steps of the ADI.

The algorithm denoted as the Immediate Backward PTA (IB-PTA) is described here. First,
lines are computed by the forward step of the Thomas algorithm till the first portion of lines
is completed on the last processor. Then the backward step computations of the Thomas
algorithm for each portion of lines start immediately after the completion of the forward
step computations for the corresponding lines. Each processor switches between the forward
and backward steps of the Thomas algorithm and communicates with its neighbors to get
necessary data for beginning of either the forward or backward computations for a next
portion of lines. Finally, remaining lines are computed by the backward step computations
and there is no available lines for the forward step computations. It is shown in [5] , that
the idle time of both the LB-PTA and the PTA is equal to 2L + 2(P - I) , where L is the
number of portions of lines and P is the number of processors. The idle time of the pth
processor is equal to 2(P - p). The advantage of the IB-PTA over the PTA is that part of
lines has been completed by the Thomas algorithm before processors become idle, and the
idle processors can perform other data-dependent computational tasks while processors are
idle. Additionally, these tasks might be manifold, and the idle processor times are different
for the different processors.

The static scheduling of processors is adopted in this study, i.e., the communication and
computations schedule of processors is assigned before numerical computations are executed.
The recursive scheduling algorithm is presented in [5] . The schedule of processors is stored in
two arrays, where the first array contains the order of computational tasks on each processor
and the second one contains the order of communication with the processor's neighbors.

The additional (penalty) time required for a single time step due to communication and
idle time of processors is composed of the following main contributions: the communication
time due to the transfer of the forward step caefficients and the backward step solution of
the Thomas algorithm; the idle time due to waiting for communication with the neighboring
processor and the communication time due to the transfer of the values of the main vari-
ables between neighboring subdomains. The optimal number of lines solved per message in
forward direction is given as follows:

Here a cubic domain is divided regularly into Nd x Nd x Nd cubic subdomains with the
N x N x N grid nodes each one, y is the ratio between the communication latency and the
characteristic computational time per grid node and p is the ratio between the forward and
the backward step computational times. The values of N, and N& are defined as follows:

Derivation of the above formulae and other results of the model are presented in [6]. The
asymptotic order of the penalty function in terms of the overall number of nodes and the
overall number of subdomains (processors) is shown in [6]. Non-linear Poisson equation is
taken as a test case. Processors compute non-linear coefficients S(U) while they are idle from
the Thomas algorithm computations. Results of multiprocessor runs are presented in Table 1.

Parallelization of t h e target code. Recommendations with regard to the processor
scheduling are applied to the code FDL3DI as follows. This code includes three dimensional
solution of a system of five Euler or Navier-Stokes PDE. The version considered in this study
is based on the diagonalization technique of Pulliam and Chaussee [9] leading to the decou-
pling of variables and solution of five penta-diagonal scalar systems in each direction. For
the scalar penta-diagonal version, one may use processors for local computations while they
are idle from the Thomas algorithm. These local computations include data-independent
computations of discretized coefficients and data-dependent multiplications of intermediate
AD1 functions by transformation metrics.

The legacy code FDL3DI is based on plane-by-plane solution of banded systems. To re-
duce the number of pipelines and to remove local computations from pipelines the code has
been changed as follows. The dimension of arrays of forward step coefficients is increased
to store these coefficients for the entire computational volume. The FDL3DI solves sepa-
rately three scalar penta-diagonal systems with the same coefficient matrices and two scalar
penta-diagonal systems with different coefficient matrix. The data fluxes originated from
these sub-routines are merged. The array governing the order of computational tasks is
placed in corresponding sub-routines via the COMMON block. Calls of MPI communication
procedures are done from the main routine (i.e., separated from computations) and are gov-
erned by the schedule array. To compute local discretization coefficients, the values of main
variables on two near-boundary grid planes of subdomains are transfered to neighboring
processors after each time step. The sample multiprocessor computations were performed
on 64 processors of CRAY T3E MIMD computer. The number of grid nodes per subdomain
varies from 1 5 ~ to 253 (see Table 2).

Future research. The scheduling algorithm will be developed for multi-block parallel
computations. In this case a processor solves banded systems originated from different grids
and receive data from neighboring processors non-regularly. Therefore, each processor can
treat different sub-domains and each sub-domain can be mapped to several processors to
overcome the problem of load imbalance.

This methodology will be implemented to compact explicit schemes where independent
banded systems are solved in spatial directions. Finally, we will implement this method
of parallelization to the multi- block aeroacoustic code which combines the FDLSDI aero-
dynamic solver and a compact aeroacoustic solver.

References
[I] Ch. Hirsch, Numerical computation of internal and external flows, Vol. 1: Fundamentals of numerical

discretization, John Wiley and Sons, 1994.

[2] Naik, N.H., Naik, V.K. and Nicoules, M., Parallelization of a Class of Implicit Finite Difference Schemes
in Computational Fluid Dynamics. Int. Journ. of High Speed Computing, Vol5, No 1, (1993), pp. 1-50.

[3] Gustafson, F.G. and Gupta, A. A new Parallel Algorithm for Tridiagonal Symmetric Positive Definite
Systems of Equations, Proceedings of the third International Workshop of Applied Parallel Computing,
PARA'96, pp. 341-349.

[4] Povitsky,A. and Wolfshtein, M. Multi-domain Implicit Numerical Scheme, International Journal of
Numerical Methods in Fluids, 25, 1997, pp. 547-566.

[5] A. Povitsky. Parallelization of the pipelined Thomas algorithm. Submitted as ICASE Report,
http://www.icase.edu/ N aeralpo

[6] A. Povitsky. Parallel Directionally Split Solver Based on Reformulation of Pipelined Thomas Algorithm.
Submitted as ICASE Report, http://www.icase.edu/ - aeralpo

[7] Ian Foster. Designing and Building Parallel Programs, Addison-Wesley, 1995, http://www-
fp.mcs.anl.gov/division/people/.

[8] Visbal, M and Gaitonde, D., "High-Order Accurate Methods for Unsteady Vortical Flows on Curvilinear
Meshes," AIAA Paper 98-0131, January 1998.

[9] T. H. Pulliam and D. Chaussee, A diagonal form of an implicit approximate-factorization algorithm,
Journal of Computational Physics, 39 (1981), pp. 347-363.

Table 2: Parallelization penalty of the FDL3DI target code

Table 1: Speedup for the benchmark problem on the CRAY T3E multiprocessor system.
NtOt - total number of nodes, N - number of grid nodes per subdomain in a single direction,
K,, Kg and Kz - number of lines solved by backward step per message, Method - method of
computation of K,, Kg and K, values, respectively (1,2 and 3 correspond to the first, second
and third line of Eq (4)), Pn - measured penalty, PnM - theoretical value of penalty

I Problem size I Measured parallelization penalty, % I
- - . .

Proposed algorithm

I Nf,t I N I Basic algorithm I Proposed algorithm I

Basic algorithm
Nt,t I N I Kx I Kg (K, I Method I Pn, % I PnM, % I Kx I K, 1 Kz I Pn, % I PnM, %

partitioning 3 x 3 x 3
39.90
19.97
13.56

4 x 4 x 4
43.94
21.34
13.56

22
27
31

18
22
26

16
19
22

11
13
15

12
15
17

27000
91125
216000

64000
216000
512000

108.35
53.60
33.86

132.4
59.23
39.46

96.74
49.93
31.33

114.53
57.46
36.67

22
27
31

18
22
26

125000
421875
1000000

1000000
3375000
8000000

64000
216000
512000

10
15
20

10
15
20

22
27
31

18
22
26

10
15
20

10
15
20

10
15
20

51
63
74

42
63
74

152.20
70.17
45.08

-
-
-

136.83
61.23
39.23

131.61
66.33
41.59

186.33
93.51
59.09

119.59
59.77
37.71

16
19
22

35
63
74

51
63
74

42
63
74

16
19
22

35
63
74

26
62
74

20
47
74

11
13
15

18
22
26

11
13
15

31
38
44

17
38
67

112
112
111

19
40
74

22
51
74

10
19
35

40
63
74

52.41
23.80
15.01

19
40
74

42
63
74

222
112
112

222
222
222

222
211
111

partitioning
222
112
111

partitioning 5 x 5 x 5

58.71
31.10
15.19

67.29
33.84
16.12

partitioning 10
-
-

partitioning
56.74
23.12
15.11

54.54
22.69
13.01

x 10 x 10
92.66
29.84
13.80

8 x 4 x 2
42.37
20.89
13.56

5s-p r
i>$ 1 5 / 5"

A COMPACT HIGH-ORDER UNSTRUCTURED GRIDS METHOD
FOR THE SOLUTION OF EULER EQUATIONS

R. K. Agarwal, Wichita State University, Wichita, KS, 67260,3 16-978-5226, agarwal@,niar.twsu.edu
D. W. Halt, Ford Motor Company, Dearborn, MI, (3 13) 322-1036, Ernail: dhaIt@,ford.com

ABSTRACT 3 6 ~ 5 h: 5-
Two compact higher-order methods are presented for solving the Euler equations in two
dimensions. The flow domain is discretized by triangles. The methods use a characteristic- $2 $"

based approach with a cell-centered finite-volume method. Polynomials of order 0 through 3 are
used in each cell to represent the conservation flow variables. Solutions are demonstrated to
achieve up to fourth order accuracy. Computations are presented for a variety of fluid flow
applications. Numerical results demonstrate a substantial gain in efficiency using compact
higher-order elements over the lower-order elements.

INTRODUCTION
A compact higher order polynomial reconstruction technique is developed that allows for higher
order characteristic-based numerical solutions to the Euler equations on unstructured grids. This
reconstruction requires extended sets of Euler equations that include as dependent variables not
only the associated physical variables but also their spatial derivatives. These additional
dependent variables are used in a compact polynomial reconstruction process within a finite-
volume framework. The development presented follows some of the ideas in the computational
fluid dynamics (CFD) literature using continuous and discontinuous piecewise polynomial
approximations. Two methods are presented for extending the Euler equations. The first method
solves the spatial derivatives of the governing integral equations. The second method follows
the work of Allmaras [I], where the spatial moments of the governing equations are solved.
Allmaras developed an approach with linear reconstructions on structured grids by using the first
moment equations. This paper extends his approach to higher order and unstructured grids.
Numerical results are presented for the transonic shockless Ringleb flow [2] and transonic flow
past a sinusoidal bump, NACA 0012 airfoil and NLR 7301 airfoil. For Ringleb flow, a matrix of
results is compared with the exact hodograph solution to establish accuracy levels for a two-
dimensional transonic shockless flow. A study is also performed to ascertain the relative
efficiencies of various orders of compact reconstruction.

GOVERNING EQUATIONS
The governing equations for an unstructured two-dimensional grid are written in integral
equation form as follows:

where p is the density, u and v are the velocity components, eo is the total energy per unit mass,
ha is the total enthalpy per unit mass, andp is the static pressure.

METHOD 1 - DERIVATIVE EQUATIONS

The first method considers the spatial derivatives of the governing equation to be an extended set
of governing equations:

where 0 < m < k, 0 r n < k, and 0 5 m + n < k. They are solved simultaneously to level k to
achieve the compact form of the reconstruction. The number of simultaneous equations
necessary for a level k compact reconstruction in two dimensions is

L

The unknowns are the coefficients of the Taylor series expansion of the conservation variables.

Compact Reconstruction
A compact reconstruction polynomial is applied at each cell locally. The dependent variables of
each cell represent the average values that the reconstructed polynomial must have over each
cell. For example, given the average value of the dependent variables Q,, of cell i, a polynomial
of degree k = 1 is reconstructed as follows:

e(.,~)i =a, + G - ~ ,) e , o +Cv-yCblY (5)
where Qmn = (I/ v)S ~(3"' /&"')(3'' /8yn)2dv, and (x,, yc) is the centroid of cell i. Polynomials

of higher order than k = 1 require the use of calculated moments of inertia for each cell. The
reconstruction polynomial is used to determine the left and right states at all Gaussian quadrature
points on the shared cell edge. Flux values are evaluated at each Gauss point by a characteristic
analysis of the left and right states. Numerical integration of the fluxes through each edge is
accomplished by Gaussian quadrature. One Gauss point on the center of each edge is used with
k = 0 and k = 1 reconstructions. This is sufficient for integrations that provide first- and second-
order spatial accuracy, respectively. Two Gauss points on each edge are used with k = 2 and k =
3 reconstructions and are sufficient for third- and fourth-order spatial accuracy, respectively.

Characteristic-Based Flux Model
An appropriate flux vector is determined by approximating a pseudo one-dimensional Riemann
solution between the left and right states at any Gauss point as follows:

'rn" = +F,- S~~A- 'S~(F~& -'~d)l, (6)

where S is the similarity matrix for diagonalizing the Jacobian dF,r/aQm", A is the eigenvalue
diagonal matrix, and I A I refers to the absolute value of A obtained by taking the absolute values
of each eigenvalue in the matrix. Note that the Jacobian is identical for all rn and n, i.e.,

=*lag,==rn,, , (7)
The last term in the flux formula is often referred to as the dissipation term in the numerical
method. It is interesting to note that this term exists for each equation in the extended set;
however, the order of accuracy is not diminished by this. It will be shown for the Ringleb flow
problem that the order of accuracy of k + 1 results from reconstruction polynomials of order k.
The integration of the fluxes through the cell faces is accomplished by the method of Gaussian
quadrature [3]. Given the discrete flux information at certain positions (referred to as Gauss
points) along each cell face, a high-order integration can be performed.

Numerical Method
The computational domain is discretized by a novel cell-centered finite volume method using an
approximate Riemann solver. The dependent variables Q,, are updated by the Jacobi algorithm
for each cell i as follows:

where A, is the area of face j, V , is the volume of cell i and At is the time step. The indexing or
pointer system is based on two primary pointer arrays for each face. The first array points to the
two cells adjacent to each face. The second array identifies the vertices of each face. The
metrics can be efficiently computed from the pointer array defining the vertices of each cell face.
The flow solver initially computes the left and right states for each face. The residuals are
accumulated for each cell by looping through the faces and addinglsubtracting flux contributions
of the face from the associated left and right cells. The scheme then updates the dependent
variables for every cell, and the iteration process is repeated for a desired number of iterations.

METHOD 2 - MOMENT EQUATIONS

The second method requires the solution of the moment equations

where 0 I m 5 k, 0 5 n 5 k, 0 5 m + n < k, and the (x,y) origin is shifted to the centroid of each
cell locally. Equation (3) also gives the number of simultaneous equations for the second
method. The equation for m = n = 0 is the same as Eq. (1) for both methods. All higher order
equations are different for the two methods. The number of equations necessary for a level k
compact reconstruction are the same as Eq. (4). To cast Eq. (9) in a form where spatial
derivatives can be updated in time, Eq. (5) is substituted into Q in Eq. (9). Using the fact that
first moment of inertias about a centroid are zero, the first moment equations reduce to

and

where A , , A, and Ayy are the second moments of inertia. The evaluation of line integrals in
Eqs. (10) and (1 1) is performed by the Gaussian quadrature [3]. The integration of the flux G
and H over the cell volume is done numerically using the efficient quadrature formulas for the
triangle by Dunavant [4]. The characteristic-based flux model for this method is simpler than the
first method and can use standard flux-split formulas such as those of Roe, van Leer, or Osher
and Chakravarthy .

BOUNDARY CONDITIONS

The boundary conditions for the Ringleb flow problem come from the hodograph solution. The
Ringleb boundary values are specified from the exact solution [Z] as the outer state for the cell
edges along the outer boundary. For problems where the outer states are not known, a farfield,
symmetry, and Neumann condition are imposed. In the first method, it is quite difficult to
properly impose these conditions because derivatives of mass, momentum, and energy are
involved in the implementation. The second method uses conventional boundary conditions and
it is much simpler to implement proper boundary conditions. Flow tangency is imposed for the
surface Neumann condition by subtracting the normal velocity component from velocity vector

at Gauss points. The left and right states are set equal here so that zero mass and energy fluxes
are insured through the surface boundary. Characteristic boundary conditions are applied to the
farfield boundary by using the appropriate values of freestream and flowfield Riemann variables.

COMPUTATIONAL TEST CASES

Ringleb Flow
The Ringleb flow is chosen as a model problem because it is a transonic flow and an exact
solution exists for comparison. A triangular region is selected from the Ringleb flowfield as the
model region shown in Fig. 1. A curved region is not selected here because a series of straight-
line segments along the curved boundary would introduce a truncation error fiom modeling the
boundary shape. A matrix of results for various grid sizes is compared with the exact solution so
that the accuracy and efficiency of the compact higher order methods can be demonstrated.

Method 1: A set of computational results is shown in Table 1. In Table 1, k denotes the degree
of polynomial reconstruction. For each k, successive grids are generated by subdividing each
cell into four smaller cells of equal size. L2 error refers to the rms error between the
reconstructed and exact density at the vertices of each cell. SP.RAD refers to the average
spectral radius over the first six orders of magnitude of residual reduction. CPU refers to the
number of microseconds of CPU time per iteration per cell used by a single CRAY YMP
processor. The time steps used were 0.1, 0.05, 0.025, and 0.01 5, respectively, for the 16,64,
256, and 1024 cell cases and were near optimal for the point Jacobi scheme. One Gauss point is
used on each edge when k = 0 or 1, whereas two Gauss points are used when k = 2 or 3. The
order of accuracy is determined to be approximately k + 1 for each k in Table 1. As expected,
the spectral radius increases as the number of cells increases. The CPU time and memory
requirement also increase as k increases because more equations are solved per cell. The
accuracy of the compact scheme is compared with the noncompact scheme of Barth [5] in Fig. 2.
The first method is nearly a half of an order of magnitude more accurate than the noncompact
method for k = 3 and firtherrnore shows a promising slope for extension to k > 3.

Method 2: For the second method, a set of computational results is shown in Table 2. Solutions
fiom 1 cell through 1024 cells are cross-tabulated for constant (k = 0) to cubic (k = 3) polynomial
reconstructions. The errors are significantly lower than corresponding cases in Table 1 when k >
0. However, the spectral radii and CPU times per iteration per cell are higher. The CPU times
are higher primarily because of the increased number of Gauss points needed for numerical
integration. The CPU times are lower than those in Table 1 for the k = 0 cases because of more
efficient programming techniques used for the second method. The memory needed is roughly
the same for both methods. The results for the cases with 256 cells are compared with the first
method and the noncompact method of Barth [S] in Fig. 2. The L2 error is substantially smaller
for the second compact method. For k = 3 solutions, the second method is two orders of
magnitude more accurate than the noncompact result and an order and a half more accurate than
the first compact method.

Sinusoidal Bump
The flow over a sinusoidal bump at fieestream Mach number of 0.3 was selected as a test case to
assess the accuracy of the curved edge model. An unstructured grid of 243 grid points and 425
cells was generated using the advancing fiont grid generator and is shown in Fig. 3 for k = 0
through k = 3 reconstruction. Method 2 is used to perform the Euler calculations. An accuracy
and efficiency comparison is performed for this case between CFL2D [6] and the second

compact higher order method. CFL2D is used for three grid sizes of 61 by 21, 121 by 41 and
24 1 by 8 1. The compact higher order method is used with the order of reconstruction ranging
from k =1 to k =3. Figure 4 compares the efficiency of each result. Plotted along the x axis is
the total CRAY-YMP CPU time used to converge the L2 norm of the continuity equation
residual by three orders of magnitude. The deviation in the peak pressure coefficient is plotted
for each Euler solution along the y axis. The results show the compact higher order method to be
much more efficient in reducing the peak pressure error. The k =2 solution is about an order of
magnitude more accurate than the CFL2D solution on the 241 by 81 grid and f'brthermore uses
an order of magnitude less CPU time.

NLR 7301 Airfoil
The NLR 7301 airfoil was run at Mach 0.721 and -0.194 degrees angle of attack using Method
2. The unstructured grid shown in Fig. 5 is much coarser in comparison to those in 171, yet
accurate results are obtained. The grid is composed of 2379 grid points and 4496 triangles with
234 points on the airfoil surface. The far field is a rectangular box which extends 10
chordlengths from the airfoil surface. A point vortex was added to the far field boundary
condition to better model the circulation in the far field. The compact higher order solution is
shown in Fig. 6 in comparison to the hodograph computed pressures [7]. The pressures match
the hodograph solution very well.

NACA 0012 Airfoil
The standard AGARD [7] 2D Euler test case of flow over a NACA 0012 airfoil at a freestream
Mach number of 0.8 and angle of attack of 1.25 degrees was chosen to test the shock capturing
ability of the second compact high-order method. A high-order solution was computed on the
unstructured grid of 848 grid points and 1586 triangles with 134 points on the airfoil surface
shown in Fig. 7. The results of Jameson and Schmidt [7] using a structured grid of 320 by 64
quadrilaterals are shown for comparison in Fig. 8. A close comparison in surface pressures can
be seen everywhere except near the shocks on both upper and lower surfaces.

CONCLUSIONS
The quadratic and cubic polynomial reconstructions for a given number of cells are demonstrated
to provide much more accurate solutions than lower order reconstructions. A significant gain in
efficiency is also demonstrated over a wide range of accuracy levels since fewer cells are needed
by the higher order methods for maintaining the same level of accuracy. The larger cell size
accommodates larger time steps, which in turn results in quicker convergence rates. This effect
seems to outweigh the burden of extra work needed for the higher order methods. The higher
order solutions were computed an order of magnitude faster (and with less memory) at moderate
error levels than a lower order solution, which needs far more cells. Method 2 (the moment
method) appears more robust than the first method (the derivative method) primarily due to the
simpler boundary conditions.

REFERENCES
1. Allmaras, S. R., "A Coupled Eulermavier-Stokes Algorithm for 2-D Unsteady Transonic

Shock/Boundary-Layer Interaction," Ph.D. Thesis, Massachusetts Inst. Of Technology, Dept.
of Aeronautics and Astronautics, Cambridge, MA, March 1989.

2. Chiocchia, G. (ed.), "Exact Solutions to Transonic and Supersonic Flows," AGARD
Advisory Rept. AR-211, May 1985.

3. Stroud, A. H., Numerical Quadraiztre a id Solztiioi~ of Ordir~ary D~flereiziial Eqzcatioizs,"
Springer-Verlag New York Inc., 1974.

4. Dunavant, D. A., "High Degree Efficient Symmetrical Gaussian Quadrature Rules for the
Triangle," Irzternafional Jouriml for Nzcnterical M e t h d irz Eitgineerirzg, Vol. 21, No. 6,
1985, pp. 1129-1148.

5. Barth, T. and Frederickson, P., "Higher Order Solution of the Euler Equations on
Unstructured Grids Using Quadratic Reconstruction," AIAA Paper 90-00 13, Jan. 1990.

6. Rumsey, C., Taylor, S., Thomas, J., and Anderson, W., "Application of an Upwind Navier-
Stokes Code to Two-Dimensional Transonic Airfoil Flow," AIAA Paper 87-0413, Jan. 1987.

7. Chiocchia, G., "Test Cases for Inviscid Flow Field Methods," AGARD Advisory Rept. AR-
21 1, May 1985.

Table 1 - Ringleb Efficiency Results Using Derivative Method.

Table 2 - Ringleb Efficiency Results Using Moment Method.

Figure 1 - Two Hundred and Fifty-Six Cell Case:
a) Unstructured Grid and
b) Cellwise Continuous Mach Contours for 1x3.

~oncompad' - 381 m k ...- -
.-.-.-.- Compact method 1 - 256 wits

Conoaa-2- 256mlts

I
0 1 2 3

Degree k of reconstruction

Figure 2 - Comparison of L2 Errors Between Compact
and Noncompact Schemes.

61 by 21 Grid %%-"'" 1

loJ I
lo0 10' 10' td

CPU Second s (GRAY-YMP)

Figure 4 - Code Efficiency Comparison for Bump Case.
Figure 3 - Unstructured Grid for Sinusoidal Bump Case

Figure 5 -Unstructured Grid for NLR 7301 Airfoil Case

Figure 7 - Unstructured Grid for NACA 0012 Airfoil Case.

Figure 6 - Surface Pressure Coefficient Distribution
for NLR Airfoil Case.

Figure 8 - Surface Pressure Coefficient Distribution for
NACA Airfoil Case.

A NEURAL NETWORK AERO DESIGN SYSTEM FOR ADVANCED TURBO-
ENGINES

3 && 9&&
Jose M. Sanz

NASA Lewis Research Center i fl
6 I"

An inverse design method calculates the blade shape that produces a prescribed input pressure
distribution. By controlling this input pressure distribution the aerodynamic design objectives can
easily be met. Because of the intrinsic relationship between pressure distribution and airfoil
physical properties, a Neural Network can be trained to choose the optimal pressure distribution
that would meet a set of physical requirements.

Neural network systems have been attempted in the context of direct design methods. From
properties ascribed to a set of blades the neural network is trained to infer the properties of an
'interpolated' blade shape. The problem is that, specially in transonic regimes where we deal with
intrinsically non linear and ill posed problems, small perturbations of the blade shape can produce
very large variations of the flow parameters. It is very unlikely that, under these circumstances, a
neural network will be able to find the proper solution.

The unique situation in the present method is that the neural network can be trained to extract the
required input pressure distribution from a database of pressure distributions while the inverse
method will still compute the exact blade shape that corresponds to this 'interpolated' input
pressure distribution. In other words, the interpolation process is transferred to a smoother
problem, namely, finding what pressure distribution would produce the required flow conditions
and, once this is done, the inverse method will compute the exact solution for this problem.

The use of neural network is, in this context, highly related to the use of proper optimization
techniques. The optimization is used essentially as an automation procedure to force the input
pressure distributions to achieve the required aero and structural design parameters. A multilayered
feed forward network with backpropagation is used to train the system for pattern association and
classification.

Session 3:

Parallel System Software Technology

THE SGUCRAY T3E: EXPERIENCES AND INSIGHTS

Lisa Hamet Bernard S / D - 61
NASA Goddard Space Flight Center

Code 93 1
Greenbelt, MD 2077 1

Lisa.Bernard@ gsfc.nasa.gov 3LL S%!Q 3
301-286-9417

1. Background & /".
The focus of the HPCC Earth and Space Sciences (ESS) Project is capability computing - pushing
highly scalable computing testbeds to their performance limits. The drivers of this focus are the
Grand Challenge problems in Earth and space science: those that could not be addressed in a
capacity computing environment where large jobs must continually compete for resources. These
Grand Challenge codes require a high degree of communication, large memory, and very large VO
(throughout the duration of the processing, not just in loading initial conditions and saving final
results). This set of parameters led to the selection of an SGVCray T3E as the current ESS
Computing Testbed.

In 1996, the ESS Project entered into a series of NASA Cooperative Agreements, one with a
scalable testbed vendor (SGVCray) and nine with Earth and space science Grand Challenge
Investigator teams. All ten awardees were competitively selected. The cooperative agreements are
performance-based, wherein payments are triggered by achievement of milestones. Furthermore,
each Grand Challenge Investigator team agreement includes the ESS Project milestones of
achieving 10,50, and 100 GFLOPS sustaned performance on a code key to the team's research.
These performance milestones are to be met on testbeds provided by SGYCray, which has the
same milestones: to enable the teams to achieve their performance goals. This arrangement led the
way for SGYCray to place a 5 12 processing element (PE) T3E at NASNGoddard Space Flight
Center in March 1997. The system is named jsimpson, in honor of pioneering meteorologist Dr.
Joanne Simpson. Fifty percent of the resources are allocated to the nine Grand Challenge research
teams, 20 percent to the general NASA science community, 15 percent to the NASA
Computational Aerosciences Project, 10 percent to the vendor, and the remaining five percent to
system software research. In March 1998, the NASA Earth Science Enterprise purchased an
additional 5 12 PE's and accompanying disk for the NASA Seasonal to Interannual Prediction
Project (NSIPP). The two "halves" of the system must be managed independently, though they
share key system components. Consequently, HPCC and NSIPP system requirements must be
carefully coordinated to enable success for both projects. It is under these diverse requirements
that jsimpson is managed.

2. T3E Architecture and Configuration

The T3E at GSFC, model T3E-600 LC10241128, is a liquid-cooled, distributed memory system
composed of 1,088 DEC Alpha EV5 chip PE's, each with 128 MB of local DRAM memory and a
peak performance of 600 MFLOPS. Each PE contains an 8 KB primary cache and a 96 KB three-
way set associative secondary cache. The PE's are connected by a low latency, high bandwidth bi-
directional 3-D torus. Interprocessor data payload communication rates are 480 MI3 per second in
every direction through the torus. Each PE contains a C-chip to enable streams, a latency hiding
feature. When the circuitry detects fetches of contiguous addresses in local memory, the system
assigns a stream buffer (one of six) to this load sequence and performs prefetching. Another
hardware feature which can be used to hide the latency of local or remote memory accesses is 5 12
off-chip memory-mapped E-registers.' Note that E-registers bypass cache, and therefore it is
possible to access a memory location simultaneously through stream buffers and E-registers, a
condition that can cause a PE or system hang. This potential situation is blocked through hardware

in later models of the T3E (T3E-900 and T3E- 1200) and is prevented from occurring through
software checks in the PVM and MPI communication libraries.* However, users striving for
optimal performance prefer the SGYCray-proprietary shared memory (SHMEM) communication
library, which has no guard against this conflict. Furthermore, there is no automated mechanism
to determine if a code is "streams-safe". Consequently, jsimpson users are prohibited by default
from using streams (via system parameters) and must have each code hand-checked by on-site
Cray application staff before use of streams is allowed.

The T3E LIO topology consists of multiple GigaRings. Data travel across these counter-rotating,
32-bit dual-ring channels at rates up to one GB per second. There is one channel per 16 PE's. All
channels are accessible and controllable from all PE's. All disk and tape controllers and network
interfaces are GigaRing-attached. There are nine GigaRings in jsimpson. All disks (1,470 GB)
are RAIDed (RAID-5) Fibre Channel and average 25 to 30 MB per second writes. Note that disk
110 performance is highly application-dependent and can be improved by using larger block sizes.

The T3E runs the UNICOSlmk operating system, a serverized, microkernel-based version of
UNICOS, SGIICray's operating system for vector machines. It is derived from the UNIX System
V operating system. UNICOSlmk provides a single-system image; each PE is not configured
individually. Process-specific requests, such as memory allocation and message passing, are
handled locally by the microkernel. Requests for global services are handled by servers which
reside on dedicated PE's, as described in the next paragraph. This operating system is scalable
because the number of servers is determined by the total number of PE's and scales a~cordingly.~
The Network Queuing System (NQS) is the batch queuing system layered on top of UNICOSIrnk.
The global resource manager (GRM) acts as an interface between the operating system and NQS,
assigning PE's to requesting processes."

The 1,088 PE's are designated as application, command, or operatin:: system (0s) PE's.
Application PE's are used by all parallel processes (any process requlrlng more than one PE). The
GSFC T3E is always configured with at least 1,024 application PE's. Command PE's handle all
single PE processes, including user login shells, editing sessions, and compiles. Processes are
distributed among the command PE's by a load-balancing algorithm, and these PE's, unlike
application PE's, are time-shared. On average, there are 30 command PE's on jsimpson.
However, this is also the pool of spare PE's, which are drawn upon when an application PE fails
and must be "mapped out" (process described in section 4) until it can be physically replaced. The
remaining PE's are designated OS PE's, which handle all global system-level functions such as file
space allocation, scheduling and U 0 management. A PE's designation may be dynamically
changed between application and command PE's; adding or subtracting OS PE's requires a reboot.

A Storage Technologies, Inc. Powderhorn silo is directly attached to the GSFC T3E via eight
SCSI-2 fast and wide controllers. The silo contains eight Timberline (linear 36-track, 800 MB tape
capacity) drives, two per controller, and four Redwood (helical 10,25, and 50 GB tape capacity)
drives, each on a separate controller. The silo behaves as virtual disk via the SGIICray Data
Migration Facility (DMF) software. One jsimpson filesystem is the "front-end" of the silo, and
when that filesystem approaches capacity, files are automatically migrated to tape. When a user
accesses a migrated file, it is automatically copied back to disk. File size determines the type of
tape to which a file is migrated. The vast majority of files are small (tens to hundreds of MB), so
they are initially migrated to 800 MI3 tapes, which have the lowest positioning times. Files that
have not been accessed for 90 days are transferred to the larger tapes to conserve silo tape capacity.

3. System Constraints

The T3E architecture presents a unique challenge in maximizing system utilization and throughput
while preserving the capability computing environment. Due to the focus on high speed
communication between PE's, the T3E requires PE's to be allocated contiguously per job. Even

more constraining is the fact that, unlike in the conventional shared-memory vector environment,
jobs cannot execute if the user- andlor code-specified number of PE's is not available. Application
PE timesharing is possible but impractical for the ESS Project because context switching degrades
system efficiency, and with no virtual memory, many codes require the full amount of available
physical memory. A checkpointJrestart facility is available, though very large jobs take a
considerable amount of time (up to 20 minutes), and therefore checkpointing is used only when the
system must be taken down. Consequently, once a job begins, it has a set number of PE's and
associated memory allocation until job completion or reaching the queue runtime limit, whichever
comes first. With a highly varied job mix in both size and runtime of jobs, the resulting scenario is
PE fra,omentation and an inability to achieve near 100 percent utilization.

4. System Management Tools

SGUCray has implemented several tools to help mitigate the effects of the system constraints
described in the previous section5. The political scheduler has many features which give the
system administrator more control over the allocation of resources to particular jobs and users.
One key feature used on jsimpson is the load balancer. At regular intervals, currently running jobs
are migrated within the two predefined PE regions (HPCC and NSIPP) to pack the jobs and move
all avalable PE's in each region into a contiguous block. This addresses the fragmentation
problem and improves throughput for larger PE jobs. Each invocation of the migrate command
halts execution of the effected job for the migration period, which lasts from a few to
approximately 20 seconds, depending on the size of the migrating job and the location of the target
PE's. (If there is overlap between the currently allocated PE's and the target PE's, then all PE's
cannot be moved concurrently; hence the longer delay.) The caveat with this tool is not to run it
too often. First, it introduces system overhead, which can be considerable. Second, in a scenario
with many small jobs (both in number of PE's and runtime), the load balancer clashes with the
resources manager, and both try allocating the same free block of PE's, one for a new job and one
for a migrated job. This does not jeopardize currently running jobs, but it puts the system in
thrashing mode. On jsimpson, NASA has settled on migration frequencies of five minutes and 10
minutes for the HPCC and NSIPP regions, respectively. Furthermore, once a job is migrated, it
will not be considered for another migration for 10 minutes (HPCC) or 20 minutes (NSIPP).

The global resource manager is the mechanism by which a system administrator sets attributes for
particular PE's. The diagram at the end of this section is a portion of the output from the grmview
command. A key attribute used on jsimpson is the PE label. There are both hard and soft labels,
distinguished by the first letter of the label (H or S). To use a labeled PE, the user's executable
must also be tagged with the same label. With a hard label, the executable will not run if the exact
number of PE's with the matching label are not available. With a soft label, PE's with a matching
label are preferred, but the executable will run on other PE's if those are not available. In the case
of jsimpson, hard labels are used to isolate the NSIPP-dedicated PE's from the HPCC PE's. Any
application PE's beyond the 1,024 total (24 currently) are soft-labeled for NSIPP, so that both
groups may access them. Since there is no mechanism to map queues to PE regions, the use of
labels is the method NASA has found to effectively "divide" the PE's. Note that NASA has also
labeled six command PE's as S256. Those PE's have 256 MB of memory, so users doing large
builds can set the preference to have that job execute on a larger memory PE.

One final system management tool of note is SGUCray's recent implementation of the warmboot
feature. If a single PE dies, that PE can be warmbooted without affecting any other PE or running
job. This does not always work, depending on the severity of the error that caused the PE failure.
Nonetheless, it is a large step forward from the previous requirement of a full system reboot to
bring a failed PE back online. Since PE's must be allocated contiguously, an inconveniently
located failed PE severely limits the maximum size of runnable jobs. If a PE fails on a hardware
error, it can be mapped out to defer the time-consuming task of physically replacing the PE. To
map out a PE, a spare PE is assigned the virtual PE address of the one being replaced. In this

instance, high-communication codes may see slight performance degradation due to the longer
physical distance between virtual neighboring PE's. This is a short-term situation, corrected at the
next scheduled maintenance period.

E Map: 1088 (0x440) PEs configured
Ap. Size Number Aps. Abs. c<<< Lists >>>>>

Type PE min max running limit limit Label svc uid gid acid
+ APP 0 2 1048 0
51 1 identical PEs skipped
+ APP 0x200 2 1048 1
255 identical PEs skipped

+ APP 0x300 2 1048 0
255 identical PEs skipped

+ APP 0x400 2 1048 0
23 identical PEs skipped
+ CMD 0x418 1 1
17 identical PEs skipped
+CMDOx42aI 1
5 identical PEs skipped
+ CMD 0x4301 1

8 identical PEs skipped

5. Performance and Utilization

Due to the milestone requirements of the Grand Challenge Investigators on the GSFC T3E, large
job throughput is key to timely debugging and optimization. Therefore, the queues must be
configured such that large PE jobs have priority over small PE jobs, and short jobs requiring 5 12
PE's may run at any time of the day. This eliminates the option of running long, production
queues on a portion of the system during the primetime window (Mon-Fri 8A.M to 8PM ET). Such
a large development time is needed to accommodate users located across the U.S. This scenario
sacrifices high system utilization (capacity computing) for capability computing needs and tends to
lead to more PE idle time during the development window. Our monthly utilization averages 70
percent, which is high for T3E systems not running in operational mode. We categorize the
unused 30 percent time as either "unusable" or "idle". "Unusable" is defined as time accrued by
PE's that are idle because jobs waiting in active queues cannot fit in the contiguous blocks
available. "Idle" is the time that no jobs are waiting to run. During primetime, 36 percent is idle
and 8 percent is unusable. During nonprimetime, 8 percent is idle and 12 percent is unusable. The
combined average is 18 percent idle and 12 percent unusable. Utilization is based on system
availability, which is also high. SGYCray achieved 95 percent availability from May 1, 1997
through April 30, 1998 to meet one of their cooperative agreement milestones. Only six hours per
month are permitted for system maintenance (and therefore not counted against the availability
time), so this achievement reflects excellent system stability and reliability.

The GSFC T3E has demonstrated excellent performance numbers. The Linpack benchmark
achieved 448.6 GFLOPS on the full system, placing jsimpson fifth in the world on the Top 500

Supercomputers List6. More impressive are the sustained performance numbers achieved on real
science applications. A team studying Rayleigh-Benard-Marangoni Problems in a Microgravity
Environment under Principal Investigator Dr. Graham Carey of the University of Texas at Austin
achieved 1 18.7 GFLOPS7. A team studying Turbulent Convection and Dynamos in Stars under
Principal Investigator Dr. Andrea Malagoli of the University of Chicago achieved 114, 101 and
104 GFLOPS on three different codes, respectively, within that research effort8. And a team
studying Multiscale Modeling of the Heliosphere under Principal Investigator Dr. Tarnas Gombosi
of the University of Michigan achieved 67 GFLOPS using just 5 12 PE's. This code scales
linearly, and achieved well over 200 GFLOPS on 1,024 PE's of a T3E-1200 (1.2 GFLOPS peak
performance per PE)~. With the exception of this final example, all of these timings were
accomplished on 1,024 PE's of jsimpson, when it was reconfigured solely for this purpose. The
full machine is not generally available to the user community. Note that NASA did not require the
50 and 100 GFLOPS milestones to be met on the 5 12 PE HPCC T3E. This system only needed to
achieve 25 GFLOPS; larger configurations could be used to attain the higher performance.

6 . Experiences

As a distributed memory system, the T3E must be programmed with explicit message passing,
using either PVM, MPI or the SGKray-proprietary SHMEM library. Although HPF (High
Performance Fortran) was designed to remove this limitation, it has not yet proven to be a viable
option. As reported by C. ~ ing" , HPF averages 2 to 4 times slower than message passing codes
for many applications and does not scale as well. The T3E was not designed for any other
programming style, and the execution of other types of codes leads to unexpected and undesirable
operating system and scheduler behaviors. NASA's experience with jsimpson bears that out.

Two different users ported codes designed to run on workstations which used the programming
model of forking processes. One code forked many single-processor threads. On the T3E, any
process requiring only one processor automatically runs on command PE's. The consequence was
that the command PE's, which also run all user shells and editing sessions, were saturated with
processes, and response time for all users dropped dramatically. In another case, a parallel code
was designed to periodically fork processes and halt the parent process while the children ran.
Queue runtime limits are based on accumulated CPU time of the initial job, which in this case was
the parent process. However, since application PE's are not timeshared, CPU time normally
approximates wall clock time. In this case, though, no child process ran long enough to hit the
runtime limit, and the difference between wall clock time and accumulated CPU time for the parent
process was dramatic. The queue from which it was running had stopped hours before, but
currently running jobs are not stopped (checkpointed) when a queue is stopped. (This job was
lulled once the systems administration staff determined what was happening.) The system was so
confused by this version of parentlchild process that it had a block of PE's allocated to this job the
entire length of the run, even though PE's were regularly freed once a child process ended.

Another frequently observed user strategy that disrupts normal system operation is the auto-
resubmission of batch jobs. Users expect the behavior of this strategy to be that the job goes to the
bottom of the queue, and the job will not run again until the other queued jobs have completed.
Unfortunately, this is not what happens. As soon as the initial job completes, NQS recognizes that
the resubmitted job is the perfect fit for the resources just freed. NQS always attempts to maximize
system utilization and therefore will not wait for other jobs to complete or migration to occur in
order to fit a larger PE job in the system. Consequently, other user jobs are locked out if they do
not fit in the remaining available PE's. Under special circumstances, NASA does allow
autoresubmission, with the constraint that users put a significant time delay in their submission
scripts between job queue submissions. This delay allows other queued jobs to execute and is
more likely to produce the user's intended behavior on the system.

These types of codes negatively impact the T3E by monopolizing resources and subverting
queuing and resource management systems. It is critical to the efficient use of T3E resources that
users understand the programming model of the codes that they wish to run and the allocation
methods used by the T3E. Such was not the case in these instances.

7. Summary

The T3E at the Goddard Space Flight Center is a unique computational resource within NASA. As
such, it must be managed to effectively support the diverse research efforts across the NASA
research community yet still enable the ESS Grand Challenge Investigator teams to achieve their
performance milestones, for which the system was intended. To date, all Grand Challenge
Investigator teams have achieved the 10 GFLOPS milestone, eight of nine have achieved the 50
GFLOPS milestone, and three have achieved the 100 GFLOPS milestone. In addition, many
technical papers have been published highlighting results achieved on the NASA T3E, including
some at this Workshop. The successes enabled by the NASA T3E computing environment are
best illustrated by the 5 12 PE upgrade funded by the NASA Earth Science Enterprise earlier this
year. Never before has an HPCC computing testbed been so well received by the general NASA
science community that it was deemed critical to the success of a core NASA science effort".
NASA looks forward to many more success stories before the conclusion of the NASA-SGIICray
cooperative agreement in June 1999.

References and Notes

1. Anderson, A., Brooks, J., Grassl, C. and Scott, S., "Performance of the Cray T3E
Multiprocessor," Proceedings of the 1997ACMLEEE SC97 Conference, available on CDROM,
November 1997.

2. Cray Research, Inc., T3E Programming with Coherent Memory Streams, 1996. Available
online at http://www.psc.edu/machines/cray/t3e/stres/ses.h. Related description at
http://www.cray.com/products/systems/t3e/streams.html.

3. Broner, G., "UNICOS/mk: A Scalable Distributed Operating System," Proceedings of the
Thirty-Seventh Semi-Annual Cray User Group Meeting, pp. 237-240, March, 1996.

4. Cray Research Inc., UNICOS/mk Resource Administration Manual, SG-2602, 1996.

5. Ibid.

6. "Top500 Supercomputer Sites," http://www.netlib.org/benchrnark/top500.html.

7. Carey, G. F., McLay, R., Bicken, G., and Barth, W., "Parallel Finite Element Solution of 3D
Rayleigh-Benard-Marangoni Flows," to be published in International Journal for Numerical
Methods in Fluids.

8. For a full description of this research activity, including project description, codes and
performance measurements, see http://astro.uchicago.edu/ComputinglHPCC.

9. For a full description of this research activity, including project description, codes, and
performance measurements, see http://hpcc.engin.urnich.edulHPCC.

10. Ding, C.H.Q., "Evaluations of HPF for Practical Scientific Algorithms on T3E," Lecture
Notes in Computer Science, Vol. 1401, P.M.A. Sloot, ed. Springer-Verlag, 1998, pp. 223-232.

1 1. "NASA Strategic Plan," http://www.hq.nasa.gov/office/nsp/.

THE METACENTER ROADMAP s//- &/
Mary Hultquist, James Patton Jones

MRJ Technology Solutions ~/g/-7"7'
NASA Ames Research Center, W S 258-6

Moffett Field, CA 94035-1000
650-604-08 14

Abstract

As scientists increasingly take advantage of high performance computing in their research, the
computational resources at any given slte are not always adequate for the emerging needs of the
scientific community. The focus of the NASA Metacenter Project is to provide these resources by
linking together multiple supercomputing sites while giving the scientific user a single interface to
access the increased computing capabili~es.

This paper discusses the successes of the first NASA Metacenter project, the current development
effort, the coordination necessary to create a metacenter, and a brief look at future directions.

1.0 Phase 1 NASA Metacenter

The Metacenter Project at NASA began in 1995 with the goal of balancing the workloads on IBM
SP2 systems located at NASA-Langley and NASA-Ames. The difference in size and user base on
each system caused an imbalance in the utilization of each system. By effectively merging these
systems, better use could be made of the existing cycles. Talks began between the two sites, and
a common user interface was devised. It was decided that all users on each system would be given
access to both systems in the Metacenter. The batch queuing system, Portable Batch System
(PBS), and the newly developed Peer Scheduler would handle moving the jobs between the
systems.

This first attempt was quite successful, as it achieved more effective use of NASA Supercomputers
by making the systems more easily available to researchers. It provided quicker turn-around for
batch jobs, a larger range of available resources for computation, and a better distribution of the
computational workload across multiple supercomputers.
However, it did require the user to take more responsibility for specifying the resources she would
need for a given job. Since it was possible that the job would execute on a site other than where it
was launched, the required files would have to move with the job. This was quite cumbersome at
the beginning, where a single typographical error could cause a job to fail once it had reached the
top of the queue. A graphical user interface, called xpbs, allowed the user to click on the
requested files, minimizing the typographical error problem.

This first phase continued until the SP2s were decommissioned in February 1998. Since that time,
NASA-Lewis and ICASE have joined the team, a d the architecture has moved from the
homogeneous distributed memory systems to SGI Origin2000s and a cluster of Sun Sparcstations.

2.0 Phase 2 NASA Metacenter

NASA-Lewis joined the Metacenter as the third aeronautics site in the Computational Aerosciences
(CAS) Program in mid-1997. Plans were made to place small SGI Origin2000 systems at the
three centers to continue working on expanding the homogeneous NASA Metacenter to three sites.
With the inclusion of ICASE, the opportunity emerged to examine heterogeneous computing in the

near-term. These developments, as well as plans to support NASA's Information Power Grid
(IPG) effort, have shaped the developmental focus of the second phase.

The current development work being explored by these sites is twofold: (1) being able to share
jobs while maintaining different batch queuing systems, and (2) sharing jobs across heterogeneous
architectures.

The first area of development is being explored using another layer of software such as Globus or
Legion. This additional layer will translate the syntax of one batch queuing system to another,
provide authentication between systems, and manage the job migration and tracking. This is
especially important in the realm of IPG, since most sites involved in such an effort might prefer to
keep their current interface with the grid portions being handled behind the scenes, rather than
retraining their users in some other interface.

Table 1. Initial Sites and Systems in the Phase 2 Metacenter.

Site

NASA-Arnes

NASA-Langley

NASA-Lewis

ICASE

The Globus software is currently being installed and integrated with two job management systems.
NASA-Ames, NASA-Langley, and ICASE are using PBS as the default job management system.
NASA-Lewis is using the Load Sharing Facility (LSF) as its job management system. Each of
these products needs to interact with the Globus software on the Origin2000s and the Sun
Sparcstations.

GLOBUS I

Systems

8 processor SGI Origin 2000

16 processor SGI Origin 2000

24 processor SGI Origin 2000

Sun Sparcstation Cluster

LaRC ICASE Arnes LeRC

Job Management
Systems

Portable Batch System

Portable Batch System

Load Sharing Facility

Portable Batch System

Figure 1. Globus is used as an intermediary between systems running differing job management
systems. PBS jobs can either use the Peer Scheduler to sh&e jobs with other PBS sites or Globus
to share jobs with systems running LSF or another job management system.

Another middleware product under consideration is the Legion software. When choosing between
these two packages, the Metacenter Team decided to integrate Globus first because of its "tools"
approach. The Legion software was not as easy to implement in the current environments, while

Globus allowed for a more piecemeal approach. Both these packages will be studied, as well as
others which may be appropriate, as the IPG effort continues.

3.0 Technology Transfer

The first phase of the NASA Metacenter was deemed a success, not so much for what was
accomplished, but more so that it is considered useful to groups beyond the testbeds. There have
been two off-shoots of the NASA Metacenter. The first, the NAS Cray Metacenter, used some of
the technology of the NASA Metacenter to create a metacenter of the production Cray C90s and
J90s at NAS. This environment is currently in production.

Beyond NASA, and closer to the original Metacenter, NASA is in the process of transferring the
metacenter technology to two Department of Defense (DoD) Major Shared Resource Center
(MSRC) sites: ASC at Wright-Patterson Air Force Base, Ohio, and U.S. Army Corps of
Engineers Waterways Experimental Station (CEWES) in Vicksburg, Mississippi. These sites are
creating an IBM SP metaqueuing environment based on the NASA Metacenter and Peerscheduler
(the PBS scheduler that supports the dynamic movement of workload as needed across the
Metacenter). In an agreement between these three sites, NASA is providing technical assistance in
setting up this metaqueuing environment. This collaboration has been beneficial to all sites; the
MSRCs receive technical assistance for their metaqueuing environment and NASA understands the
requirements of computing environments beyond its gates. Many of the MSRC requirements have
been included in the design of the next Peer Scheduler, as the groups continue the collaboration
beyond the MSRC sites.

4.0 How to Create a Metacenter

The NASA/ASC/CEWES collaboration began with a white paper detailing the necessary steps to
create a metacenter. A number of general issues have been identified as necessary components in
creating any metacentered environment, not specifically NASA or MSRC. These can be broken
down into technical issues and infrastructure. While it may seem that the technical issues would be
more of a challenge, it is the issues of infrastructure that take the most time and energy. This was
true of the first phase of the NASA Metacenter, even though there was considerable software to be
written.

Some of the technical issues for creating a homogeneous metacenter include:
Installing and maintaining the same level of software on each system. This includes
everything from operating system and patch levels to compilers, third party software, and
"home-grown" software.
Expected environments. This includes naming conventions (or global variables) to find home
directories and scratch filesystems, as well as the amount of memory and filesystem space
dedicated to the user's job.
How does a user track her job, once it has entered the metacenter?
The systems must trust each other enough to share jobs. Additional layers of security may be
added, but files must be able to be transferred ineither direction.
The networks between the systems should be the fastest possible, otherwise bottlenecks occur,
and file transfers become an even greater issue.

Additional negotiations are required for some of the technically simpler, but more involved,
infrastructure issues. Some of these include:

Does a user have access to all the systems in the Metacenter?

* Is one approved account request form enough or does a user have to apply for each system in
the metacenter? What if there are different security requirements?

* Are allocations (or time sold) merged for all systems in the metacenter or does a user receive a
separate allocation for each system (or architecture for heterogeneous metacenters)?
How is time tracked across the metacenter? Which site is the "master" for maintaining this
information?
Where does a user go to get help when there is a problem? How does each site's User
Services group handle problems? Are they opened and tracked locally? What happens if the
problem has to do with another site's systems? How does each site ensure that problems do
not get dropped between sites?
Where does a user $0 to get information on how to use the metacenter? Is there a central web
page? If so, on whch site's system does it reside? Is there training? Is it local or is it
standardized to include the environments a user may encounter?

With each additional site that is added to a metacenter, these questions need to be answered anew.
It is especially difficult with sites and systems which are already in production, since the users are
already expecting a given environment, and the infrastructure for handling these types of user
issues are already in place. This requires a change to how each site does business, which can lead
to delays in implementation.

5.0 The Next Peer Scheduler

The NASA/MSRC team has begun to design the next Metacenter, which would considerably
extend the NASA Metacenter. One major decision was to pull forward the Peer Scheduler design,
redesigning and reimplementing as necessary. Where possible, the new Peer Scheduler will reuse
code from existing schedulers.

The new Peer Scheduler will include support for heterogeneous computing, increased scalability,
and increased reliability. It will support redundancy in order to ensure no single point of failure.
The new design will be highly configurable allowing tuning based on many different aspects.
Discussions have included the possibility of proxy users in order to minimize administration
issues. Availability of resources that can satisfy the jobs requirements will be performed shortly
after job submission.

This new scheduler will build upon the experiences and lessons learned from the NASA
Metacenter, the NAS/HSP Cray Cluster, the DoD Origin2000 cluster, and the DoD
MetaQueueDistributor model. Each of these models have requirements and designs unique to their
user community. Addressing these requirements for a combined model will bring multi-site,
heterogeneous computing one step closer to implementation.

6.0 Conclusion

The NASA Metacenter Project began by pulling together unique systems and sites with
considerable coordination and some new software to hold it together. What emerged was a
combined resource that provided scientists greater availability of computing cycles. This
environment, although somewhat unfriendly, allowed them to do more science. The overriding
goal of the next phase of the NASA Metacenter Project is to make that environment more friendly,
so that scientists can concentrate more on science and less on how to get their jobs to run.
Increasing the available types of resources, maintaining their expected environments at their local
sites, and making the back-end as transparent as possible are all steps in creating this truly usable
environment for scientists.

7.0 Additional Information

For more information on some of the work listed above, please refer to the following web pages.

The NASA Metacenter (under construction)
htt~://~arallel.nas.nasa.gov/Parallel/Mer

The Globus Project
h t t r , : / / ~ ~ ~ . ~ l ~ b u ~ . ~ r g /

The Legion Project
http://legion.virginia.edu

The NASJHSP Cray Cluster
http://science. nas.nasa.gov/ACSF/Metacenter

PBS Distribution Site
htt~:Npbs.mj .corn/

Appendix

The NASA Metacenter: Phase 2 Team

Cristy Brickell
Tom Crockett
Archemedes de Guzman
Steve Heistand
Ed Hook
Mary Hultquist
Kim Johnson
James Jones
Isaac Lopez
Piyush Mehrotra
Yvonne Malloy
Chuck Niggley

Jens Petersohn
Bill Petray
Karen Pischel
Karl Schilke
Ian Stockdale
Geoff Tennille
Judith Utley
Rita Williams
Sarita Wood
Lou Zechtzer

/ass o/Yy
THE PROGRAMMING ENVIRONMENT ON A BEOWULF CLUSTER

Phil Merkey, Donald Becker, Erik Hendriks
CESDIS/USRA 3L& PC4 7

f L P
The Beowulf Project at Goddard Space Flight Center is a software development project which
focuses on enhancements to the Linux operating system and a software support for high speed
networks to support cluster computing. Making thls software freely available on the Web
contributes to the NASA Beowulf project's goals of providing cost effective, high-performance
computational resources in the form of cluster computers built entirely from PC-marketplace COTS
components. Several large clusters have been constructed that have obtained sustained performance
of 10 Gflops. However, most systems being installed at NASA sites, government labs and
universities are modest systems of 16 to 64 processors and are being constructed to address the
computational requirements of an increasing diverse community. This talk will focus on the
programming environment provided by a Beowulf cluster and will argue that programming a
Beowulf cluster requires an equivalent level of effort as programming a vendor supplied MPP.

A cluster computer is more tightly coupled than a network of workstations. This enables
configurations that are easier to maintain and easier to program. The software for Beowulf clusters
is based on the integration of freely available system software and programming tools. As such the
programmer is presented with a generic, portable, vendor independent multiprocessor; Beowulf
clusters'support the two most popular message passing packages PVM and MPI along with BSP
and a distributed shared memory package developed at Goddard. Even though MPI and PVM span
the space between NOWs and MPPs, key parameters such as processor speed, task granularity,
communication latency and bandwidth affect performance tuning and scaling. The system software
and programming tools determine the user's perception of the multiprocessor as a single machine.
Together these makeup the "programming environment". This talk addresses these different
programming models and compares them to their counterparts on a tightly coupled MPP and to a
loosely coupled NOW. In addition, the pragmatic issues of program development, portability,
debugging, scaling and performance tuning will be discussed. These issues will be considered
from an application programmer's perspective with illustrations drawn from experiences obtained
by working with the Earth and spaces sciences applications at Goddard.

MULTITHREADED PROGRAMMING IN EARTH - MEETING THE CHALLENGES
OF HIGH PERFORMANCE COMPUTING 3 L L 9

Gerd Heber, CAPSL, University of Delaware, 140 Evans Hall, Newark, DE 197 16,
302-83 1-3276 L A

Rupak Biswas, MRJLNASA Ames Research Center, MS T27A-1, Moffet Field, CA 94035,
650-604-44 1 1

Guang R. Gao, CAPSL, University of Delaware, 140 Evans Hall, Newark, DE 197 16,
302-83 1-8183

1. The Challenges

A key problem in the design and use of modern high performance computer architectures is
latency: how many CPU-cycles does it take to fetch a datum from a local or remote (involving a
network device) memory, or to synchronize two activities in different nodes? This is a serious
issue in getting performance out of large-scale machines with deep memory hierarchies and a
large number of processing nodes. Fine-grain multithreaded architectures [8,9,10,11] strive to
hide this latency through rapid switching between different threads of computation. Another
challenge is to increase the number of instructions which can be issued per cycle in a modern
superscalar processor. Superscalar techniques (branch prediction, speculative execution,
dataldependence speculation, out-of-order execution, register renaming, etc.) require a
tremendous amount of complex hardware and it is questionable whether a sustained issue rate of
two instructions per cycle justifies the hardware investments. On the other hand, as pointed out
for example in [1,2], it is also not clear how a compiler can make the best use of these hardware
capabilities. In addition to its latency hiding capabilities, multithreading can serve as a basis for a
multiple-issue uniprocessor as it has been proposed recently in [1,2].

2. The EARTH Programming Model

In the EARTH (Eficient Architecture for Running THreads) [6,7] programming model, threads
are sequences of instructions belonging to an enclosing function. Threads always run to
completion - they are non-preemptive. Synchronization mechanisms are used to determine when
threads become executable (or ready). Although it is possible to spawn a thread explicitly, in
most cases a thread starts executing when a specified synchronization slot reaches zero. A
synchronization slot counter is decremented each time a synchronization signal is received. In a
typical program, such a signal is received when same data become available. Besides the
counter, a synchronization slot holds the identification number, or thread id, of the thread that is
to be started when the counter reaches zero. This mechanism permits the implementation of
dataflow-like firing rules for threads (a thread is enabled as soon as all data it will use are
available). Key features of the EARTH model are:
(Split-phase communication/synchronization operations designed for variable as well as

unpredictable latencies
(Support for different levels of parallelism (fine, medium, coarse)

(Efficient thread-level dynamic load balancing.

2.1 The EARTH Architecture

An EARTH computer consists of a set of EARTH nodes connected by a communication
network. Each EARTH node has an Execution Unit (EU) and a Synchronization Unit (SU) linked
to each other by queues (see Figure 1). The EU executes active threads while the SU handles the
synchronization and scheduling of threads as well as communication with remote processors.

1 Local Memory I

I Network I

Figure 1 : The EARTH architecture model.

The function of the queues shown in Figure 1 is to buffer the communication between the EU
and SU. The ready queue, written by the SU and read by the EU, contains a set of threads ready
to be executed. The EU fetches a thread from the ready queue whenever the EU is ready to begin
executing a new thread. The event queue, written by the EU and read by the SU, contains
requests for synchronization events and remote memory accesses, generated by the EU. The SU
reads and processes these requests. Requests from the EU for remote data can go directly to the
network or go through the local SU; implementation constraints will determine the best
mechanism, so this is not defined in the model.

To assure flexibility, the EARTH model does not specify a particular instruction set. Instead,
ordinary arithmetic and memory operations use whatever instructions are native to the
processor(s) serving as the EU. The EARTH model specifies a set of EARTH operations for
synchronization and communication. These operations are mapped to native EU instructions
according to the constraints of the specific architecture. For instance, on a machine with ASIC
SU chips, the EU EARTH instructions would most likely be converted to loads and stores
fromlto memory-mapped addresses that would be recognized and intercepted by the SU
hardware.

To maximize portability, the EARTH model makes minimal assumptions about memory
addressing and sharing. An EARTH multiprocessor is assumed to be a distributed memory
machine in which the local memories combine to form a global address space. Any node can
specify any address in this global address space. However, a node cannot read or write a non-
local address directly. Remote addresses are accessed with special EARTH operations for remote
access. A remote load is a split-phase transaction with two phases: issuing the operation and
using the value returned. The second phase is performed in another thread, after the load has
been completed.

2.2 Threads

A thread is an atomically scheduled sequence of instructions. It can be:
(A parallel function invocation (threaded function invocation)
(A code sequence defined (by a user or a compiler) to be a thread.
Usually, the body of a threaded function is partitioned into several threads. A thread shares its
"enclosing frame" with other threads within the same threaded function invocation. The state of
a thread includes its instruction pointer and a "temporary register set".

When an EU executes a thread, it executes the instructions according to their sequential
semantics. In other words, instructions within a thread are scheduled using an ordinary program
counter. Notice that this does not preclude the use of semantically-correct out-of-order and
parallel execution to increase the instruction issue rate within a thread. Both conditional and
unconditional branches are only allowed to destinations within the same thread.

EARTH threads are non-preemptive. Once a thread begins execution, it remains active in the EU
until it executes an EARTH operation to terminate the thread. If the CPU should stall (e.g., due
to a cache miss), the thread will not be swapped out of the EU. There are no mechanisms to
check that data accessed by an executing thread is actually valid or to suspend the thread if it is
not, except for normal register checks such as register scoreboarding. Therefore, data and control
dependences must be checked and verified before a thread begins execution. This is done
explicitly using synchronization slots and synchronization signals. A sync signal is used by the
producer of a datum to tell the consumer that the datum is ready. A sync slot is used to
coordinate the incoming sync signals, so that a consumer knows when all required data are
ready. Each sync signal is directed to a specific sync slot. Sync signals and slots are handled with
explicit EARTH operations, and are made visible in the Threaded-C language.

3. EARTH Implementations and the Threaded-C language

Some multithreaded systems, like the TERA [l l] machine, have direct hardware support and
offer a basic "thread instruction set". The current implementations of the EARTH architecture,
on the other hand, use off-the-shelf RISC processors which represents a trade-off between the
availability of systems, the flexibility of software simulation, and the size of a typical research
budget. The platforms with EARTH implementations available include the MANNA machine,
IBM SP2, and Beowulf workstation clusters. A port for a SMP cluster of UltraSPARC is in
preparation. Generally, there is a trade-off between portability and efficiency. An EARTH
implementation with its communication layer based on TCP/IP is certainly portable. However,

due to the overhead of TCP/IP and an operating system in general, the efficiency of such a
system will be rather poor.

The programming language used for EARTH systems, Threaded-C [3], is ANSI-C with
extensions for thread generation, execution, synchronization, and invocation of parallel threaded
functions. Threaded-C also can serve as the target language for higher level languages like
EARTH-C. The core of the EARTH operations supported by Threaded-C consists of the
following:

o Thread synchronization: SPAWN, SYNC, INCR-SYNC
o Data transfer & synchronization: DATA-SYNC
n Split-phase data requests: GET-SYNC, BLKMOV-SYNC
o Function invocation: INVOKE, TOKEN

Reference [3] is a good introduction to programming in Threaded-C. From a programmers point
of view the Threaded-C language resembles more to a processor instruction set, the EARTH
instruction set, than a library. This gives the user the necessary flexibility to write efficient code
and qualifies the language as a target language for compilers.

4. The Programmers' View

Language shapes the way we think, and determines what we can think about. (B.L.Whorf)

Many applications in high-performance computing demonstrate a lot of parallelism at the
algorithmic level. However, the restricted expressiveness of the programming language and
architectural constraints (e.g., locality, bandwidth, distributed memory) force the user to abandon
a considerable amount of that parallelism and introduce a lot of unnecessary synchronization.
Standard APIs like MPI or OpenMP are oriented towards rather coarse-grained and regular
parallelism, and are of limited use in addressing issues like the latency problem. On the other
hand, languages with support for fine-grained multithreading allow for a considerable relaxation
of synchronization, and support different granularity levels. Threaded-C offers the programmer a
(logically) global address space, but does not support the illusion of uniform and predictable
access times. Communication (= remote memory access) is one-sided and asynchronous.
Therefore, the programmer has not to worry about matching sends and receives in his code and
there is no need for polling.

5. Applications

Reference [5] gives a good overview and a detailed analysis of costs for fine-grained
multithreading with off-the-shelf hardware. A so-called EARTH benchmark suite. (EBS) has
been assembled and is used for evaluation purposes. Table 1 lists some of the benchmarks
contained in the EBS and the speedups achieved on EARTH-MANNA. The code size of the
benchmarks ranges between 70 and about 20,000 lines. The first nine programs are implemented
in Threaded-C and the remaining are written in EARTH-C, which uses Threaded-C as a target
language.

Table 1: Sample Applications from the EBS.

One of the attractive features of the EARTH system is its capability of dynamic load balancing
by thread migration or dynamic function invocation. This is a feature of the EARTH runtime
system and transparent to the user. For example, on EARTH-SP2 there are eight different load
balancers available, and the programmer makes his choice via a compilation flag. Among other
things, we exploited this feature in the parallelization of a raytracing algorithm, and more
recently, in the parallel adaption of unstructured meshes [4,5]. An unevenly distributed mesh
leads to high imbalances in the workload of the numerical computation as well as in the
workload for the adaption itself is imbalanced too. In an MPI style implementation the
programmer has the burden of load balancing, i.e., the partitioning and remapping of the mesh.
Systems with support for object andlor workload migration like EARTH offer a lot of new
opportunities to handle this problem and rely on the runtime system instead of a "handcrafted"
solution, which has to be redone with every new problem. Table 2 lists some sample results
(execution times in ms) from a mesh adaption simulation on EARTH-MANNA and EARTH-
SP2. The simulation is explained in detail in [6,7].

Table 2: Sample results from a mesh adaption simulation [6,7].

Our previous and ongoing experiments show that the EARTH system is a promising approach in
order to make a large class of irregular and dynamic applications accessible to high performance
computing in an efficient manner.

5. Current Research

In our current research at CAPSL (Computer Architecture and Parallel Systems Laboratory) we
try to address a whole spectrum of topics related to hard- and software support for fine-grained
multithreading. Among these are in the field of fine-grained architecture/compiler support:

o Simulation and design of a hardware SU
o Superstrand Architecture [1,2]
o Studies in Instruction Level Parallelism
o Compilation for fine-grained multithreaded systems.

The existing ports of EARTH are for distributed memory machines. The design of an EARTH
system for shared memory and DSM machines is one of our ongoing projects. Ports of EARTH
for the following platforms are in progress or preparation:
1. A cluster of 20 UltraSPARC SMP interconnected by FastEthernet and Myrinet at UDel
2. The PowerMANNA [13], a PowerPC620 based research machine provided by GMD FIRST,

Berlin, Germany.
Our multithreaded application studies deal with adaptive unstructured grid methods, signal
processing transforms (e.g wavelets), and radiocity.

6. References

1. A. Marquez, K.B. Theobald, X. Tang, G.R. Gao: A Superstrand Architecture, CAPSL
Technical Memo 14, University of Delaware, 1997.

2. A. Marquez, K.B. Theobald, X. Tang, T. Sterling, G.R. Gao: A Superstrand Architecture and
its Compilation, CAPSL Technical Memo 18, University of Delaware, 1998.

3. K.B. Theobald, J.N. Arnaral, G. Heber, 0 . Maquelin, X. Tang, G.R. Gao: Overview of the
Threaded-C Language, CAPSL Technical Memo 19, University of Delaware, 1998.

4. G. Heber, R. Biswas, P. Thulasiraman, G.R. Gao: Using Multithreading for the Automatic
Load Balancing of Finite Element Meshes, In Proceedings of Irregular'98, BerMey, Lecture
Notes in Computer Science 1457, pp. 132- 143, Springer, 1998.

5. G. Heber, R. Biswas, P. Thulasiraman, G.R. Gao: Using Multithreading for the Automatic
Load Balancing of 2-D Adaptive Finite Element Meshes, CAPSL Technical Memo 20,
University of Delaware, 1998.

6. H.H.J. Hum, 0. Maquelin, K.B. Theobald, X. Tang, G.R. Gao, L. Hendren: A Study of the
EARTH-MANNA Multithreaded System, International Journal of Parallel Programming Vol.
24, No. 4, August 1996.

7. H.H.J. Hum et al.: A Design Study of the EARTH Multiprocessor, In Proceedings of the
PACT95, pp.59-68.

8. H.H.J. Hum, K.B. Theobald, G.R. Gao: Building Multithreaded Architectures with 08-the
SheZfMicroprocessors, In Proceedings of IPPS794, pp. 288-294.

3L.C,82 p
AN EVALUATION OF AUTOMATIC PARALLELIZATION TOOLS

.*,4 6?
6.. 40

Michael Frurnkin, Michelle Hribar, Haoqiang Jin, Abdul Waheed, Jerry Yan
MRJ Technology Solutions, kc., NASA Ames Research Center

MS T27A-2, Moffett Field, CA 94035- 1000
{ frumkin, hribar, hjin, waheed, yan) @nas.nasa.gov

(650) 604-2782

Abstract. Porting applications to new high performance parallel and distributed computing plat-
forms is a challenging task. Since writing parallel code by hand is time consuming and costly, ide-
ally, porting codes would be automated by using some parallelization tools and compilers. In this
paper, we evaluate three parallelization tools and compilers: 1) CAPTools: an interactive computer
aided parallelization tool that generates message passing code, 2) the Portland Group's HPF com-
piler and 3) using compiler directives with the native FORTAN77 compiler on the SGI Ori-
gin2000. We use the NAS Parallel Benchmarks and a computational fluid dynamics application,
ARC3D.

1 Introduction

High performance computers have evolved rapidly over the past decade. At NASA Ames Re-
search Center, our scientists expend a very large effort porting codes in an attempt to fully utilize
the performance potential of each new high-performance archtecture we acquire. Furthermore,
NASA is currently working on an Information Power Grid Initiative to produce a computational
grid that will work in concert with computational grids being assembled at PAC1 [IS, 161. In an-
ticipation of a widely distributed and heterogeneous computing environment, together with in-
creasing complexity and size of future applications, we will not be able to afford to continue our
porting efforts every three years. Instead, in order to protect investments in code maintenance and
development, the parallelization process needs to 1) require less time and effort, 2) generate codes
with good performance, 3) be able to handle all type of aerospace applications of interest to NASA
and 4) be portable to new machines and the Information Power Grid.

Currently, there are three major approaches besides hand-coding for porting applications to parallel
architectures:

1 .Using semi-custom building blocks (e.g., PETSc [2], NHSE software [14]);

2.Data parallel languages and parallelizing compilers (e.g., HPF [7], FORTRAN-D [I], Vienna
FORTRAN [3], ZPL [19], pC++/Sage++ [lo], HPC++ [9]); and

3.Computer aided parallelization tools and translators (e.g., KAP/Pro Tool-Set [13], SUZF [20],
FORGExplorer [12] and CAPTools [6]).

Given the aforementioned alternatives to writing parallel programs by hand, the effectiveness of the
different approaches is a worthwhile study, especially for the aerospace applications that are of in-
terest to us. We initiated a careful comparison of the effectiveness of the alternative parallelization
approaches using the NAS Parallel Benchmarks and a computational fluid dynamics (CFD) appli-
cation, ARC3D, as the initial test suite. We use the SGI Origin 2000, a distributed shared memory
computer which is the most recent acquisition at NASA Ames. We decided to first evaluate three
parallelization tool/compilers: 1) CAPTools[6], a computer aided translator tool for message pass-
ing code, 2) Portland Group's HPF compiler [l 11, a data parallel language, and 3) the usage of
compiler directives available with the native Fortran77 compiler on the Origin 2000 [18]. We did
not use the semi-custom building blocks since that approach would require rewriting the applica-
tions in terms of pre-defined library functions.

In this study, we evaluate the different approaches in four areas: 1) user interaction, 2) limitations,
3) portability and 4) performance. Berthou and Colombet [4] performed a similar comparison of
an automated parallelization tool, a data parallel language, and hand-written message-passing code
for two applications on the Cray T3D. They found that the message passing code had by far the
best performance. In our study, we use a more powerful parallelization tool and a wider variety of
test programs. We find that some of the automated approaches can achieve very good performance
and show promise for our parallelization needs at NASA. Furthermore, we consider other factors
than just performance in our evaluation.

2 Comparison of Parallelization Approaches

In this study, we evaluate the three parallelization approaches for our test suite on the SGI Origin
2000. We tested each approach for four of the NAS Parallel Benchmarks and for a CFD applica-
tion, ARC3D. The NAS Parallel Benchmarks [5] are derived from CFD codes and are used to
compare the performance of highly parallel computers. Version 2 of the benchmarks are hand-
written codes using FORTRAN 77 and MPI. Four serial versions (LU, SP, BT and FT') of the
benchmarks from the latest release, NPB2.3 are the starting point for our study. ARC3D [17] is a
well-known, moderate size CFD application. It is similar in structure to SP, but is a more realistic
application.

We evaluate each of the approaches in four areas: 1) user interaction, 2) limitations, 3) portability
and 4) performance. Because of space constraints, we can only briefly address each area; for the
full results, please see [a].

2.1 User Interaction

The type of user interaction required by each automated approach is different. Here, we briefly
describe each approach and the user interaction required.

First, the automated translating tool, CAPTools, requires that the user guide the parallelization
process through graphical interfaces. The software performs dependency analysis automatically
and requires only that the user decide which arrays to partition and in which dimensions. The
code is automatically parallelized based on the dependency analysis and array partitioning. The
tool also provides additional capabilities to help tune the code. Generating an initial code with
CAPTools does not require much effort; choosing arrays to partition is the only required decision.
Tuning the code requires more effort. The user must remove unnecessary dependences and ex-
periment with different partitioning techniques and communication schemes in order to achieve
parallel code with good performance. With the benchmarks and ARC3D, the tuning process took a
few weeks for each code.

HPF, the data parallel language, also relies on data distribution to achieve parallelism; the user adds
directives to the serial code whch distribute arrays. Once the arrays are partitioned, the loops are
automatically parallelized by the compiler based on these data distributions. This is similar to the
CAPTools tool; however, the user must enter these directives by hand in HPF instead of with
mouse clicks. The user can also add independent directives to force the parallelization of loops
that the compiler cannot do automatically. Figally, HPF provides an array syntax for array as-
signments that is more efficient than using loops for array assignments. Inserting these directives
and array assignments into serial code by hand can be quite time consuming. For this reason, gen-
erating an initial parallel code using HPF requires the most time of all the approaches. Tuning the
code can be more difficult as well; the HPF model hides details from the user. Nevertheless, we
found that the entire time to program and tune a code in HPF took a few weeks.

Using the compiler directives on the Origin 2000 is similar to HPF; however, it provides directives
to parallelize loops instead of distributing data. In our tests, we used native tools available on the
Origin 2000 to help with the insertion of directives. First, we used the Power FORTRAN Accel-
erator (PFA) which automatically inserts parallelization directives into serial code. We then used

the Parallel Analyzer View (PAV), a graphical tool, to present the results of the automated paralleli-
zation performed by PFA. We then performed further tuning by inserting directives by hand to
parallelize loops and distribute data. Generating an initial parallel code requires just minutes; how-
ever, tuning the test codes took several weeks. We found that we could achieve reasonable code
with little effort; however, we will show that with much more effort, we could achieve code with
excellent performance.

In summary, while the approaches differ in the amount of time required to generate an initial code,
they all required a few weeks to tune each code. In comparison, it took several months to generate
parallel code by hand.

2.2 Limitations

Each approach has some limitations. First, the version of CAPTools that we tested cannot handle
serial code with unstructured grids and indirect array accesses. These characteristics are usually
present in large CFD applications. Furthermore, CAPTools requires that the data distribution re-
main static during the course of the application. For this reason, CAPTools cannot effectively par-
allelize FT. The most efficient way to parallelize the code is to transpose the data so that the EFT
calculation in FT is never performed over a partitioned dimension. CAPTools, however, cannot
change the data distribution during the course of the application.

HPF requires that loops that are performed in parallel have no dependences between processors'
sections of data. This means that the pipelined computation in SP, BT and LU can not be ex-
pressed as parallel loops in HPF. Instead, the data is redistributed so that the pipelined computa-
tion's data dependences are contained withn the processor. For SP, BT and LU, the
communication required for the pipelined computation is much less than for the data redistribution.
For this reason, HPF is not the most effective way to parallelize these codes.

The Origin compiler directives can be used to parallelize any code; however, it is not always effec-
tive for all codes. For example, adding compiler directives did not result in reasonable code for
LU. The main loop in LU has dependences in multiple dimensions which prevented it from being
parallelized.

2.3 Portability

Since the goal of our research is to avoid hand-porting code to new machines, portability of the
resulting codes is an important issue. CAPTools7 communication is performed by calls to a li-
brary. This library is machine-dependent and can be based on MPI, PVM or machine-specific
communication calls or directives. Porting this library to different machines is relatively easy. One
of the purported strengths of HPF is that it is based on a standard and consequently portable. Cur-
rently, there is an HPF compiler for most major high performance systems, but whether this will
remain true in the future depends on the success and acceptance of this language. Finally, the
compiler directives on the Origin 2000 are not portable. However, there are directives based on the
OpenMP standard which could be used instead of the native directives. This would potentially al-
low the code to be portable to other shared memory systems.

2.4 Performance

Figure 1 compares the execution time of the three automated approaches (CAPTools, SGI-pfa and
PGHPF) to the performance of the hand-coded benchmark (NPB-2.3). Figure 2 provides the
comparison for ARC3D. Additionally, in Figure 2, there is a comparison for SP that includes a an
additional comparison labeled "direct". This corresponds to hand-optimizing the Origin 2000
compiler directives code for better cache performance. We provide this version as a means of
comparison, but because it requires much more work, it is more like hand-coding than automated
parallelization.

i nnn 1000

Processors 3 No. of
40 , . . ,

1 10 10 36

Figure 1: Performance Comparison for 4 Benchmarks

100

.-f). NPB23
(MPI) - CAP-

1 O
--t-- SGI-pfa

-4t- 'direct

1
1 10 32

Figure 2: Performance Comparison 'for ARC3D and SP

In general, we note the following trends:

CAPTools consistently produces code with the best performance of the three automated ap-
proaches. Nevertheless, it is unable to parallelize FT, MG and CG.

The HPF code has the worst performance for almost all cases. Its performance on a single
processor is still over twice as slow as the other approaches, signifying that part of the reason
for its relatively poor performance is the compiler. Furthermore, because it must use data
transposition for LU, BT, SP and ARC3D instead of parallel pipelined computation and com-
munication, the performance is worse than the other versions.

* The Origin compiled code has good performance in some cases. For BT, we used the auto-
mated tool and did some tuning to force parallelization of the loops. The performance of the
resulting code is reasonable. However, for SP, when we used just the automated compiler, the
performance was poor. When we did many more optimizations by hand (direct version), the
performance was better than the hand-coded NPB2.3 as shown in Figure 2. These optimiza-
tions optimized the cache usage and improved the serial performance of the code as well.

The good performance of the cache optimized code (direct) emphasizes the importance of serial
optimizations. The original serial test codes were not written with cache performance in mind;
therefore, their performance, both serial and parallel on the Origin 2000 is not as good as it
could be. More work is being done on incorporating these cache optimizations into the gener-
ated parallel codes.

In summary, CAPTools had the best performance of the automated approaches for the applications
it could parallelize. The compiler directives approach has even better performance, however, if the
user performs cache optimizations by hand.

3 Conclusions and Future Research

Comparing CAPTools, HPF and the Origin compiler directives has provided some insight for
automating parallelization of aerospace applications. While all of the approaches are considered
"automated" they still require user input/tuning to generate reasonable code. In summary, HPF
requires the most work for the least payoff in terms of performance. CAPTools requires reason-
able user input and generates code with good performance, but it cannot currently handle some
features that are integral to most CFD applications. Finally, the compiler directives can achieve
great performance, but with a lot of effort and without a guarantee of portability.

More positively, while the study provides an interestin6 comparison of the different approaches,
the preliminary results show that automated parallelization approaches do exhibit promise for our
needs at NASA. In a relatively short amount of time we were able to generate parallel codes with
reasonably good performance. These initial results are part of a more extensive study of evaluating
parallelization tools and compilers for aerospace applications at NASA. We are extending this
study to incorporate the evaluation of other parallelization tools/compilers (e.g. SUIF [20], the D
System [I], other architectures (CRAY T3E and network of workstations), and other more com-
plex applications of interest to NASA (e.g. OVERFLOW). The results of some of these experi-
ments will be reported in an upcoming paper.

4 References

[l] Vikram S. Adve, John Mellor-Crumrney, Mark Anderson, Ken Kennedy, Jhy-Chun Wang,
and Daniel Reed, "An Integrated Compilation and Performance Analysis Environment for
Data Parallel Programs," presented at Supercomputing '95, San Diego, CA, 1995.

[2] Satish Balay, Bill Gropp, Lois Curfman McInnes, and Bany Smith, "PETSc Library" . Ar-
gonne National Laboratory: http://www.mcs.anl.gov/petsc/petsc.htrnl.

[3] S. Benkner, "Vienna FORTRAN 90- An Advanced Data Parallel Language," presented at
International Conference on Parallel Computing Technologies (PACT-95), St. Petersburg,
Russia, 1995.

[4] Jean-Ives Berthou and Laurent Colombet, "Which Approach to Parallelizing Scientific
Codes-That is the Question," Parallel Computing, vol. 23, pp. 165-179, 1997.

[5] NAS Division NASA Arnes Research Center, "NAS-Parallel Benchmarks" ,2.3 ed. Moffett
Field, CA: http://science.nas.nasa.gov/Software/NPB, 1997.

[6] M. Cross, C.S. Ierotheou, S.P. Johnson, P. Leggett, and E. Evans, "Software Tools for
Automating the Parallelisation of FORTRAN Computational Mechanics Codes," Parallel and
Distributed Processing for Computational Mechanics, 1997.

[7] High Performance FORTRAN Forum, "High Performance FORTRAN Language Specifica-
tion Version 1.0," Scientific Programming, vol. 2, 1993.

[8] Michael Frurnkin, Michelle Hribar, Haoqiang Jin, Abdul Waheed, and Jerry Yan, "A Com-
parison of Automatic Parallelization Tools/Compilers on the SGI Origin2000," presented at
to appear in SC98, Orlando, F'L, 1998.

[9] Dennis Gannon, Peter Beckman, Elizabeth Johnson, Todd Green, and Mike Levine,
"HPC++ and HPC++ Lib Toolkit," Indiana University, Bloomington, IN, 1997.

[lo] Dennis Gannon, Shelby X. Yang, and Peter Beckman, "User Guide for a Portable Parallel
C++ Programming System PC++," Department of Computer Science and CICA, 1994.

[I 11 Portland Group, "PGHPF" : http://www.pgroup.com.

[12] Applied Parallel Research Inc., "FORGE Explorer" : http://www.apri.com.

[13] Kuck and Associates Inc., "Parallel Performance of Standard Codes on the Compaq Profes-
sional Workstation 8000: Experiences with Visual KAP and the KAPIPro Toolset under
Windows NT," , Champaign, IL.

[14] NHSE, "HPC-Netlib Software Catalog" : http://nhse.cs.utk.edu/rib/repositories/hpc-
netlibkatalog.

[I51 NPACI, "http://www.npaci.edu/Research" .
[16] PACI, "http://www.cise.nsf.gov/acir/paci.html~7 .

[17] T.H. Pulliam, "Solution Methods in Computational Fluid Dynamics," in Notes for the von
Karman Institute for Fluid Dynamics Lecture Series. Belgium: Rhode-St-Genese, 1986.

[18] Inc. Silicon Graphics, "MIPSpro FORTRAN 77 Programmer's Guide" .
http://techpubs.sgi.com/library/dynaweb~bin/0640/binlnph-
dynaweb.cgi/dynaweb/SGI~Developer/MproF77_Pb/ @ GenericBookView.

[19] Lawrence Snyder, "A ZPL Programming Guide," University of Washington, 1998.

1201 Robert P. Wilson, Robert S. French, Christopher S. Wilson, Saman P. Amarasinghe, Jen-
nifer M. Anderson, Steve W.K. Tjiang, Shih-Wei Liao, Chau-Wen Tseng, Mary W. Hall,
Monica Lam, and John Hennessy, "SUE: An Infrastructure for Research on Parallelizing
and Optimizing Compilers," Computer Systems Laboratory, Stanford University, Stanford,
C A.

AN EXPERIMENT IN SCIENTIFIC CODE SEMANTIC ANALYSIS

Mark E. M. Stewart
Dynacs Engineering, Inc. ~ L L $?7 2,
2001 Aerospace Parkway
Brook Park, OH 44 142

(2 16) 977- 1 163 45 r.
Mark.E.Stewart@lerc.nasa.gov

Abstract

This paper concerns a procedure that analyzes aspects of the meaning or semantics of scientific and
engineering code. This procedure involves taking a user's existing code, adding semantic
declarations for some primitive variables, and parsing this annotated code using multiple,
distributed expert parsers. These semantic parsers are designed to recognize formulae in different
disciplines including physical and mathematical formulae and geometrical position in a numerical
scheme. The parsers will automatically recognize and document some static, semantic concepts and
locate some program semantic errors. Results are shown for a subroutine test case and a collection
of combustion code routines. This ability to locate some semantic errors and document semantic
concepts in scientific and engineering code should reduce the time, risk, and effort of developing
and using these codes.

Introduction

From a syntactic or programming language perspective, scientific programs are uses of a
programming language that specify how numbers are to be manipulated. However, from the
perspective of semantics or meaning, scientific programs involve an organization of physical and
mathematical equations and concepts. The programs from a wide range of scientific and
engineering fields use and reuse these fundamental concepts in different combinations. This paper
explains an experiment in representing, recognizing, and checking these fundamental scientific
semantics.

What motivates this experiment is that scientific code semantics is a central issue in the checking
and documentation of scientific code. Reducing the errors in a scientific or engineering program
until its results are trusted involves ensuring the program's semantics are correct. Further, this
debugging process is expensive and time consuming because it is primarily a manual task. The
existing software development tools (lint, ftnchek, make, dbx, sccs, call tree graphs, memory leak
testing) do not fully solve this problem and deal only superficially with semantics. Further,
verification techniques (comparison with available analytic and experimental results, verification of
convergence and order of accuracy) can only detect the presence of an error, and finding this error
often leads to a time-consuming manual search.

Similarly, the traditional tools for program documentation (suggestive variable names, program
comments, and program manuals) are often not adequate. Understanding another programmer's
code is usually frustrating and time consuming evqn with good documentation. Further, having
confidence in a code requires a large time investment.

Structured programming addresses both of these problems. Currently software reuse through
subroutine libraries and object-oriented programming' also targets these problems, but cannot help
when modifications and custom software are required. Recently there has been work in high-level
specification languagesbhere a symbolic manipulation program (Maple, Mathematica) is used to
write subroutines or even programs. However, high-level specification languages are not
applicable to legacy code and require substantial changes in software development practices.

Ontologies have been developed in other fields. In natural language understanding, ontologies
have been developed to represent written text.' Using. an ontology for engineering knowledge
representation and tool integration has also been stud~ed.~

The current experiment was conducted because of the limitations of these existing tools and
approaches. As a complementary tool, automated semantic analysis5 could reduce the time, risk,
and effort during original code development, subsequent maintenance, second party modification,
and reverse engineering of undocumented code.

Thesis

The principal thesis of this semantic analysis experiment is that fundamental physical and
mathematical formulae and concepts are reused and reorganized in scientific and engineering codes.
Further, a par~er~.~. ' can recognize each reuse.

Method

In outline, the current method for testing this thesis consists of four key stages. First, the user
adds semantic declarations to their existing program (A. 1).

C? M==MASS
C? ACC == ACCELERATION

FF = M*ACC

These declarations provide the mathematical or physical identity of primitive variables in the user's
program. Second, the procedure syntactically parses the user's program into a data structure
representation. Third, a translation scheme converts parts of the user's program into phrases in
different context languages, for example, (A. 1) is converted to its physical dimensions expression
(A.2), and its physical quantity expression (A.3).

(M) * (LT**-2)
MASS * ACCELERATION

These different context languages reflect the ways scientists and engineers consider program
expressions, including physical formula, dimensions, units, geometrical location, geometrical axis
and orientation in a grid. Fourth, distributed expert parsers examine the translated phrases and
attempt to recognize formulae from their area of expertise. For example, a kinematics expert parser

FORCE : MASS * ACCELERATION (A.4)

would include the rule (A.4), and be able to recognize the phrase (A.3) as "FORCE due to
Newton's law. Further, the units expert parser is able to reduce (A.2) as well as performing
various dimensional tests. The other expert parsers act similarly.

When an expert parser recognizes an expression, it annotates the data structure representation of
the user's program with the observation. Other expert parsers can use this observation to
recognize more of the expression. Further, the annotated data structure representation contains all
the results of the semantic analysis, and a graphical user interface (GUI) displays these results as
shown in Figure 1. The user may point to variables and expression in hislher code and any
semantic interpretation and its derivation are displayed. The GUI will highlight recognized errors,
undefined quantities, and unrecognizable expressions. Further, the GUI provides detailed
scientific and technical definitions and explanations.

The expert parsers can recognize more than expressions involving declared and derived variables.
Unique constants such as 3.1415,459.67,6.626196E-34 or 1716.5 are recognized without

this subroutine. Other recognized formulae include temperature formulae, viscosity and thermal
conductivity calculated from the power law, Reynolds number and Prandtl number.

Twenty ALLSPD subroutines (5500 FORTRAN statements) form an additional test case where an
understanding fraction of 0.5 1 has been achieved. This level of understanding was achieved after
adding rules and infrastructure to the procedure, and debugging it with the ALLSPD routines as
test data. Additional work will yield higher levels of understanding.

Conclusions

The current results for this semantic analysis procedure demonstrate potential and provide partial
proof that the method can be a general tool for semantic analysis and code documentation. The
ALLSPD results do not fully prove the generality of the method because different programs use
different subsets of the fundamental physical and mathematical rules. Consequently, the level of
understanding will vary from code to code at least until a comprehensive set of fundamental rules
can be incorporated into the semantic analysis procedure.

To fully develop this potential will require additional work. In particular, additional mathematical,
physical, and geometric knowledge must be added to the expert parsers. It is also important to
develop the infrastructure of the method. However, both of these development directions must be
pursued in tandem while proving the procedure on more scientific and engineering codes. More
theoretically, there are other applications of this procedure that have not been explored, including
tracking physical assumptions and analyzing more geometrical information.
Acknowledgments

This work was supported by the Propulsion Systems Base Program at NASA Lewis Research
Center through the Computing and Interdisciplinary Systems Office (contract NAS3-278 16). Greg
Follen and Joe Veres were the monitors. The author thanks Ambady Suresh and Scott Townsend
for helpful discussions about this work.

Bibliography

W. Y. Crutchfield, M. L. Welcome, "Object Oriented Implementation of Adaptive Mesh
Refinement Algorithms," Scientific Programming 2 (1993) 2, 145- 156.

E. Kant, "Synthesis of Mathematical Modeling Software," IEEE Software, May 1993.

J. Allen, Natural Language Understanding (Benjamin/Curnmings, Menlo Park, 1987)

M. R. Cutkosky, et. al., "PACT: An Experiment in Integrating Concurrent Engineering
Systems," IEEE Computer, Jan. 1993.

M. E. M. Stewart, "A Semantic Analysis Method for Scientific and Engineering Code,"
NASA CR 207402, April 1998.

A.V. Aho, R. Sethi, J. D. Ullman, Compilers: Principles, Techniques, and Tools
(Addison-Wesley , Reading, 1986).

S. C. Johnson, "Yacc----Yet Another Compiler-Compiler," Comp. Sci. Tech. Rep. No.
32. (AT&T Bell Laboratories, Murray Hill, 1977).

J. R. Levin, T Mason, D. Brown, Lex and Yacc (O'Reilly, Sebastopol, 1992).

Shuen, J.-S., Chen K.-H. and Choi Y., "A Coupled Implicit Method for Chemical Non-
equilibrium Flows at All Speeds," J. of Comp. Phys., 106, No. 2, 306, 1993.

1 File Dictionaty M e l c s Highlight Language About C

IF :.......determine inlet static temperature from isentmpic relations

II tsrat - gasisn(emachl.2. g&n)
tsin - tsrat"t0in

C? TSlN -- TEMPERATURE-ABSOLUTE

il c
atsin(i) - tsin - dRodr

locity. viscosity, Reynolds number

uin - emachl*sq~gam'rgas^tsin)
arhoui(i1 = rhoinnuin
auin(i) = uin
visin - visreP(tsinlhrisrt)'Vispwr
recxl - rhoinauin"chordxhrisin

, arecxl (i) - recxl

--I :........determine inlet thermal conductivity and Prandtl number
conin = conreP(tsin/tconrf)'^conpwr
prndll = visin'cepe/(conin'm.649)

I + Quantity: DENSITY
Location: UNKNOWN

I Dimensions: lengtha"-3 mass-1
Units: slugs/ft3
Accuracy:

Metascope I Undefined 1 f
Microscope 1 Error !

Deduced from equation:
DENSITY = PRESSURE I WORK-PUM

Back

Fwd

Expertise: GASDYNAMICS

File: flow-inletf Undefined: 35 Errors: 0 Not Understood: 7

m%fsm& n The mass of a region of space divided by its volume.
I
i

Not Understood

Performance

The discrete derivative of one variable with respect to another (ratio of two DELTAS).
This symbol takes two adjectives: the function (numerator) and the variable (denominator).

Figure 1: GUI display for the semantic analysis program. The top window displays the user's code, and variables
and expressions may be selected for explanation. The middle region explains this selected text. In this case, the
physical quantity is density, it does not have a grid location, and it has the displayed dimensions, units and
derivation. The bottom region displays the semantic dictionary/lexicon.

Figure 2:
contains

Graph showing
165 expressions

added. The subroutine

Session 4:

Applications for Parallel/Distributed
Computers

TURBOFAN ENGINE
3D MULTISTAGE SIMULATION OF EACH COMPONENT OF THE GE9

Mark Turner & Dave Topp(513).243-182, mark.turner@ae.ge.com
General Electric Aircraft Engines - + ~ L C . P ~ J

Joe Veres(2 16)433-2436, joe.veres @lerc.nasa.gov / /"
NASA Lewis research Center

A 3D multistage simulation of each component of the GE90 Turbofan engine has been made. This
includes 49 blade rows. A coupled simulation of all blade rows will be made very soon. The
simulation is running using two levels of parallelism. The first level is on a blade row basis with
information shared using files. The second level is using a grid domain decomposition with
information shared using MPI.

Timings will be shown for running on the SP2, an SGI Origin and a distributed system of HP
workstations. On the HP workstations, the CHIMP version of MPI is used, with queuing
supplied by LSF (Load Sharing Facility). A script-based control system is used to ensure
reliability.

An MPEG movie illustrating the flow simulation of the engine has been created using pV3, a
parallel visualization library created by Bob Haimes of MIT. PVM is used to create a virtual
machine from 10 HP workstations and display on an SGI workstation.

A representative component simulation will be compared to rig data to demonstrate its usefulness in
turbomachinery design and analysis.

3 i S i P Pl ..J
APPLICATION OF MULTI-STAGE VISCOUS FLOW CFD METHODS FOR

ADVANCED GAS TURBINE ENGINE DESIGN AND DEVELOPMENT

S . 'Mani' Subrarnanian and Paul Vitt David Cherry and Mark Turner P.
ASE Technologies, Inc. GE Aircraft Engines
4015 Park Drive, Suite 203 1 Neumann Way
Cincinnati, OH 4524 1 Cincinnati, OH 452 15
(513)- 563 - 8855 (513)- 243 - 1182

The primary objective of the research is to develop, apply and demonstrate the capability
and accuracy of 3-D multi-stage CFD methods as efficient design tools on high-
performance computer platforms, for the development of advanced gas turbine engines.
Propulsion systems that are planned and that are currently in development for next
generation civilian and military aircraft applications under NASA's Advanced Subsonic
Technology (AST), DoD's Integrated High Performance Turbine Engine Technology
(IHPTET) programs will be required to operate under complex flow conditions, imposed
by strict performance expectations and goals. Some of the expectations and goals include
higher thrust, lower emission levels, higher pressure ratios, smaller size, lower weight,
fewer stages, lower fuel consumption and higher efficiency. These goals necessitate blades
with high turning angles, stages with small axial gaps between blade rows, and non-
axisymmetric flowpath. It becomes important to use design methods that treat the stator and
rotor airfoils as a complete system for providing information regarding the influence of one
blade row on the other for overall engine performance. The particular aspect of this very
complex problem that is presently of interest to NASA and to US Aircraft Engine
companies, and the focal point of this research is the prediction and understanding of the
3-D multi-stage interaction effects in advanced gas turbine engines. More importantly, to
use the information for design optimization and performance improvements in next
generation engines to power US commercial and military aircraft.

Using the HPCCP computational resources, several 3-D multi-stage aerodynamic analyses
were performed for high pressure and low pressure turbine designs under flight and rig
conditions. Results are presented here for a Boeing 777 class, high and low pressure turbine
engine stage configuration at take-off conditions. The analysis included cooling flow
addition details and effects of seal leaks through both turbine stages to realistically
represent the actual engine operation. The turbine geometry consisted of 18 blade rows,
that were solved simultaneously due to fully subsonic flow conditions. Using the parallel
version of the average passage code and with a total of 9.4 million grid points, results were
obtained using typically 16 to 60 processors. Load balancing the processors between blade
rows provided good parallel efficiency. The overall agreement of the rig analysis with
experimental data was very good, providing confidence in the average passage solution
approach. The HPCCP computational resource was an excellent testbed for these real world
simulations, and very good parallel performance efficiencies were achieved for these
complex flow analyses.

. Figure 1. Turbine Geometry for Multi-Stage Analysis

J3@S 0 2 J Q '

The Development of a Multi-Purpose 3-D Relativistic Hydrodynamics Code

F. Douglas Swesty 3 ~ (, gas
National Center for Supercomputing Applications & Department of Astronomy

University of Illinois, Urbana IL, 61 801 d f.
email: dswesty@ncsa . uiuc . edu phone: (217)-244-1976

Many of the most interesting phenomena in astrophysics involve gas flows around compact
objects such as white dwarfs, neutron stars, and black holes. Furthermore, a new generation of
NASA high energy astronomy missions is providing an unprecedented quantity and quality of
observational data from such objects that presents a tremendous modeling challenge for
astrophysical theorists. Compact objects posses strong gravitational fields and a correct
quantitative description of fluid flows in and around these objects must take into account
Einstein's theory of relativity. Furthermore, the gravitational fields are created by the fluid itself
and thus the Einstein gravitational field equations must be solved simultaneously and self--
consistently with the fluid dynamics equations.

As one of the NASA ESS HPCC Grand Challenge science teams we have endeavored to meet
these challenges by developing several codes that solve both the relativistic Euler equations of
fluid dynamics and the Einstein field equations describing gravity. This complex set of
equations poses unique design problems. The relativistic analogs of the Euler equations consist
of five hyperbolic equations describing energy, momentum, and baryon conservation which are
similar in structure to the non-relativistic Euler equations. Thus we can apply a wide variety of
traditional explicit fluid dynamics techniques to solve this set of equations. The Einstein field
equations are far more complex and present a more difficult challenge to numerical solution.
The Einstein equations are normally written as a set of sixteen second order differential algebraic
equations (DAEs) that are not amenable to numerical solution. However, with an appropriate
reformulation the equations can be cast into a the form of a set of 37 coupled first order
hyperbolic PDE's. By employing this latter form we can make use of much of our intuition
about CFD to implement a numerical scheme for the solution of these equations.

Because of the complexity of the aforementioned equations the numerical time--evolution during
a simulation requires a large number of floating point operations per zone per timestep.
Additionally, the simulation requires nearly 100 3-D arrays providing a large memory footprint
for the code. These requirement together with the need to evolve for many timesteps, for most
problems of interest, demands the use of cutting edge parallel computing platforms.
Accordingly, we have chosen to implement the codes within a message passing context. This
choice has allowed us to obtain excellent scalability and the widest possible range of portability.
I will discuss our design strategies and choices foi the implementation of these codes. Finally, I
will discuss the testbed problem that we are using to drive the development of these codes:
modeling the merger of two neutron stars in a binary system. Ultimately, our astrophysical goal
in this problem is to provide a systematic comparison of Newtonian, post-Newtonian, and
general relativistic models for this phenomenon. I will briefly present some results for this
testbed problem.

The graphic displays a set of isodensity contours (in the orbital plane) from a Newtonian merger

01 1 I I I I I I I 1 3 I

0 20 40 60
(Ki lometers)

of two neutron stars. The time of this snapshot is approximately 1 millisecond into the merger,
when the neutron stars have started to coalesce. The direction of motion of the stars is counter-
clockwise. The data is from a simulation by Doug Swesty, Ed Wang, and Alan Calder of NCSA.

a E$T
/>&,,% Q&B&

PARALLELIZATION OF THE PHYSICAL-SPACE STATISTICAL
7

ANALYSIS SYSTEM (PSAS)

J.W. Larson, J. Guo, and P.M. Lyster

Atmospheric data assimilation is a method of combining observations with model forecasts
to produce a more accurate description of the atmosphere than the observations or forecast
alone can provide. Data assimilation plays an increasingly important role in the study of
climate and atmospheric chemistry. The NASA Data Assmilation Office (DAO) has
developed the Goddard Earth Observing System Data Assimilation System (GEOS DAS) to
create assimilated datasets. The core computational components of the GEOS DAS include
the GEOS General Circulation Model (GCM) and the Physical-space Statistical Analysis
System (PSAS). The need for timely validation of scientific enhancements to the data
assimilation system poses computational demands that are best met by distributed parallel
software.

PSAS is implemented in Fortran 90 using object-based design principles. The analysis
portions of the code solve two equations. The first of these IS the "innovation" equation,
which is solved on the unstructured observation grid using a preconditioned conjugate
gradient (CG) method. The "analysis" equation IS a transformation from the observation
grid back to a structured grid, and is solved by a direct matrix-vector multiplication. Use of
a factored-operator formulation reduces the computational complexity of both the CG
solver and the matrix-vector multiplication, rendering the matrix-vector multiplications as a
successive product of operators on a vector. Sparsity is introduced to these operators by
partitioning the observations using an icosahedral decomposition scheme. PSAS builds a
large (- 128MB) run-time database of parameters used in the calculation of these operators.

Implementing a message passing parallel computing paradigm into an existing yet
developing computational system as complex as PSAS is nontrivial. One of the technical
challenges is balancing the requirements for computational reproducibility with the need for
high performance. The problem of computational reproducibility is well known in the
parallel computing community. It is a requirement that the parallel code perform
calculations in a fashion that will yield identical results on different configurations of
processing elements on the same platform. In some cases this problem can be solved by
sacrificing performance. Meeting this requirement and still achieving hrgh performance is
very difficult. Topics to be discussed include: current PSAS design and parallelization
strategy; reproducibility issues; load balance vs. database memory demands; possible
solutions to these problems.

PARALLELIZING OVERFLOW: EXPERIENCES, LESSONS, RESULTS

Dennis C. Jespersen
MS T27A-1

NASAIAmes Research Center
Moffett Field, CA 94035-1000

~ C D L P ? ~
(650) 604-6742

{jesperse@nas.nasa.gov) La.
1. Introduction

The computer code OVERFLOW is widely used in the aerodynamic community for the numerical
solution of the Navier-Stokes equations. Current trends in computer systems and architectures are
toward multiple processors and parallelism, including distributed memory. This report describes
work that has been carried out by the author and others at Ames Research Center with the goal of
parallelizing OVERFLOW using a variety of parallel architectures and parallelization strategies.

This paper begins with a brief description of the OVERFLOW code. This description includes the
basic numerical algorithm and some software engineering considerations. Next comes a
description of a parallel version of OVERFLOW, O ~ ~ m o w f f V M , using PVM (Parallel Virtual
Machine). This parallel version of OVERFLOW uses the managerlworker style and is part of the
standard OVERFLOW distribution. Then comes a description of a parallel version of OVERFLOW,
OVERFLOWMPI, using MPI (Message Passing Interface). This parallel version of OVERFLOW uses
the SPMD (Single Program Multiple Data) style. Finally comes a discussion of alternatives to
explicit message-passing in the context of parallelizing OVERFLOW.

2. Basics of the code

OVERFLOW is a computer code for the numerical solution of the Navier-Stokes equations, oriented
toward applications in aerodynamics [1], [2]. [3]. OVERFLOW uses finite differences in space on
structured meshes, implicit time-stepping, and general overlapping grids for dealing with complex
geometries [4]. A variety of different time-stepping methods and spatial differencing schemes are
available. The OVERFLOW code is authored by P. Buning. OVERFLOW has a demonstrated capability
to solve flow problems with a large number of unknowns in complex geometries [5], [6].

OVERFLOW handles general geometries by allowing overset or "chimera" meshes. In ths approach
individual meshes are generated about individual geometrical components such as wings, nacelles,
or pylons, and allowed to overlap or cut holes in one another in an arbitrary fashion. Boundary
data needed at outer or hole boundaries of a $ven component mesh is obtained by interpolation
from another mesh. This overset mesh capability is essential for OVERFLOW in practical situations.

OVERFLOW allows multitasking on multiprocessor machnes such as the Cray-C90. The
multitasking is via explicit directives; different computational planes L = constant or K = constant
are given to different processors. This multitasking can be thought of as a medium-grain
multitasking, as it is above the simple do-loop 1evel.and below the zonal level.

Considerations of software engineering play an important role in working with OVERFLOW.
Maintainability, readability, portability, and ease of revision are all important criteria. OVERFLOW is
a fairly large code. A recent snapshot of the code counted approximately 88000 lines of Fortran
code (Fortran77) and 1500 lines of C code. Of the lines of Fortran code, about one-third are
comment lines, and of these comment lines about one-half are empty comment lines, used to
enhance readability. The snapshot revealed 963 subroutines spread over 952 source files.

 OVER^ is a user-driven code, that is, most of the features in O v ~ ~ n o w are there because of user
request. This implies that parallelization efforts, to be widely useful, have to address most or all of
the components of the code (turbulence models, boundary conditions, implicit solvers, etc.).
Parallelization of a small subset of the code would be of limited use.

Finally, OVERFLOW is a dynamic package, it is not a fixed target. It is continually evolving, so
additions and modifications to the package must be carefully integrated into the package so that
they are intelligible to others who make modifications, and they should be able to be carried
forward into the future.

3. Explicit message-passing with no zonal splitting

A parallel version of OVERFLOW called OVERFLOW/PVM exists. It is integrated in the main
OVERFLOW package and is automatically distributed as part of OVERFLOW. The code is written in the
managerlworker style exploiting parallelism at the zonal level. The code is fault-tolerant, in the
sense that the code can recover from the failure of a worker. There is no splitting of zones across
processors, and each worker handles a single zone. The various output files produced by the serial
version of OVERFLOW (residuals, forces and moments, minimum density and pressure, turbulence
residuals) are also produced by the OVERFLOW/PVM code.

The goal of integrating the parallel code into the main OVERFLOW package was reached by
modifying selected OVERFLOW subroutines with conditional compilation blocks ("#if de f PVM")
that would be activated only if compiling for the PVM target. A total of just 15 OVERFLOW
subroutines were modified in this way. The rest of the new code was separated into 60
subroutines with about 6500 total lines of code. The OVERFLOW subroutines that needed
modification fell into three classes: startup, shutdown, and output. The low number of modified
OVERFLOW subroutines and the absence of modification of the lower-level internal numerical
subroutines greatly eases the burden of maintaining the OVERFLOW/PVM code as the OVERFLOW
package is continually modified and upgraded.

The most serious problem with OVERFLOWPVM stems from the prohibition on splitting zones
across processors. If a zone has too many grid points for the memory of any of the processors,
then either the code performance will suffer greatly due to swapping on the node that has too many
grid points, or else the code will completely fail to run (if the operating system on the node lacks
virtual memory). There are many practical cases in which one or more zones has more grid points
than can be accommodated on a single processor. In order for the OVERFLOWPVM package to be
used in such cases, manual regridding (a tedious and time-consuming procedure) is usually
necessary.

Even if there is sufficient memory on all the nodes there is a fundamental problem having to do
with zone imbalance and maximum possible speedup. Suppose, for example, that a given problem
has one zone with half of the grid points, while the other half of the grid points are spread among
several zones. Then no matter how many processors are used, the speedup for OVERFLOWPVM
cannot be more than 2. This is simply because the largest zone will always be a bottleneck if zonal
splitting is not allowed. This indicates that the OVERFLOW/PVM approach is best suited for cases
where the grid is such that (or can be generated such that) there is no one zone with a large plurality
of the grid points.

4. Explicit message-passing with zonal splitting

The problem with the largest zone being a bottleneck for OVERFLOWPVM motivated the work on
OVERFLOWMPI. The goals of this effort included the following; ability to partition a zone across
multiple processors, to alleviate the largest zone bottleneck; abllity to cluster several zones onto a

single processor, for good load balancing; ability to produce the various output files emitted by the
serial version of OVERFLOW (residuals, forces and moments, minimum density and pressure,
turbulence residuals).

This work was begun in conjunction with Ferhat Hatay (formerly Research Scientist with MCAT,
Inc., now System Engineer with HAL Computer Systems, Inc.) We decided to adopt the SPMD
(single program, multiple data) paradigm for this project. We also decided to adopt \MPI, hoping
for better bandwidth and latency on tightly-coupled multiprocessors.

It should be emphasized at the outset that this parallel version of OVERFLOW could have been coded
with PVM. The term "OVERFLOW/MPI" is simply a convenient way to say "parallel implementation
of OVERFLOW using the SPMD style and allowing zones to be split across processors".

It turns out that we needed to modify 58 subroutines of OVERFLOW (compared to the 15 that needed
modification in the OVERFLOW/PVM project). The rest of the new code was separated into 144
subroutines with almost 20000 lines of code. Allowing for partitioning of a given zone across
multiple processors accounts for the bulk of the increased complexity.

Why is it that allowing partitioning increases the complexity so much? The reasons are several,
and some of them are nonobvious. Allowing an overlap of "halo" points and sending data from
one processor to update a neighbor's halo points is an well-understood idea. OVERFLOW has the
additional complexity of using implicit time stepping (explicit time stepping is not an option!), so
code which solves linear systems (scalar pentadiagonal, scalar tridiagonal, block tridiagonal)
spread across processors must be developed and tested. There are several algorithms for solving
sparse banded linear systems spread across processors. We chose to implement pipelined
Gaussian elimination, both one-way and two-way, as our solvers. Periodic solvers would add an
additional level of complexity (these are not yet implemented into OVERFLOW/MPI).

One nonobvious reason for the increased complexity has to do with boundary conditions. A very
common boundary condition in aeronautics applications is the wake cut boundary condition in a C-
mesh. In this setup, a single physical point corresponds to two distinct computational points and
the flow variable values at these two computational points are determined by averaging the values
from the adjacent points in physical space above and below the cut. In essence, the boundary
condition is nonlocal in computational space. If the grid is partitioned so that the grid points in the
lower part of the wake go to a different processor from the grid points in the upper part of the
wake, then the wake cut boundary condition will require interprocessor communication. In fact,
any boundary condition that is nonlocal in computational space may require interprocessor
communication. There are other boundary conditions in OVERFLOW that are nonlocal in
computational space.

The question of chimera boundary conditions arises for OVERFLOW/MPI. What if a zone is
partitioned across multiple processors and each processor needs to read or write chimera boundary
data? Our solution is to designate one of the processors as the "local master", and to have all
chimera boundary data communication occur via local masters.

The code has been tested on SGI workstations (with the MPICH implementation), on the I ' M
SP2, Cray-T3E, Cray-J90, and on several SGI multiprocessor platforms (Power Challenge,
Onyx2,Origin2000).

Now we consider performance for OVERFLOW/MPI. First we study speedup. The test case is a
69x61~50 mesh (single zone, 210450 points). The case was run on 1,2,4, and 8 nodes on 3
parallel machines: IBM SP2, SGI Origin2000, and Cray T3E. With 2 nodes the mesh was
partitioned 2x1~1 , with 4 nodes the mesh was partitioned 2x1~2, and with 8 nodes the mesh was
partitioned 4x 1x2 (the middle dimension has a periodic boundary condition and partitioning in a

periodic direction is currently not allowed). The data are given in Table 1. They show respectable
speedups for the code, especially in light of the fact that 2 10450 grid points are not too many to
begin with, and that spreading them over 8 processors gives each processor about 26300 grid
points, quite a small number.

Table 1 : Speedup for OVERFLOW/MPI

In the second case for OVERFLOWMPI performance, we show scaled speedup. Here we start out
with the same original 69x61~50 mesh, and for the same geometry generate new meshes with 2,4,
and 8 times the number of mesh points. Thus the four meshes have approximately 210K, 420K,
840K, and 1680K points. These meshes are run with 1,2,4, and 8 processors, respectively, so
the number of grid points per processor remains constant. In Table 2 efficiency is defined as
T(l)/T(N), i.e., time for 1 processor divided by time for N processors.

Table 2: Scaled Speedup for OVERFLOWMPI

Table 2 indicates that the SP2 scaled efficiency degrades gracefully as the number of nodes is
increased. Also, the T3E efficiency degrades slowly (but the single-node performance of the T3E

is significantly slower than the single-node performance of the SP2 or the Origin2000). Finally,
the Origin2000 efficiency suffers a sharp drop in going from 2 to 4 processors, possibly because
of the architecture of that machine which features 2 processors attached to a shared memory as a
single "node".

5. Beyond explicit message-passing

In this section I will try to take a look at explicit message-passing as a general parallelization tool in
the context of OVERFLOW, consider its strengths and weaknesses, and consider possible
alternatives.

It is this author's opinion that manually writing explicit message-passing code is a low-level,
tedious, error-prone task which is not an appropriate or cost-effective use of a human
programmer's time. If explicit message-passing is to be used it should be produced automatically,
either as part of some higher-level programming language or else via some automatic tool with user
input. At least one such tool is available (CAPTools[8]).

Now consider current trends in high-performance computer systems. The trend seems to be away
from pure distributed memory systems and toward some form of shared memory, perhaps
distributed shared memory where the memory is physically distributed across processors but
logically shared. There are even software systems that can run on a set of workstations and make
the separate workstations appear to have a shared memory ([9], [lo]).

It appears that the partitioning and clustering of OVERFLOWMPI is necessary for good performance
and efficiency, but that it creates many headaches in terms of code reliability and maintenance. So
it may be worthwhile to look for another way to exploit parallelism.

James Taft has proposed such a method ([I 11, also this conference). In this method, which he
calls multilevel parallelism, there is no explicit message-passing, yet parallelism can be exploited at
the zonal level and at the intrazonal level. The zones are clustered into groups (a group consists of
one or more zones) and a "master" process is forked for each group. Each forked process also has
one or more threads associated with it. The masters proceed in parallel, and each master utilizes its
given number of threads along with the medium-grain multitasking directives already in OVERFLOW.
Thus there is parallelism at the level of the masters and parallelism beneath each master. Some sort
of distributed shared memory is assumed for the underlying architecture.

This idea has some attractive features. It avoids all explicit message-passing and it uses the
existing multitasking features of OVERFLOW. There is less low-level code modification necessary,
even less than in OVERFLOWPVM; only the low-level portions of the code that deal with writing
files of residuals, etc., need to be modified. This idea should be portable to a variety of machines,
especially since the medium-grain multitasking is compatible with OpenMP [12] and since some
sort of distributed shared memory seems to be more and more common.

In summary, the OVERFLOW code has been parallelized with explicit message-passing in two
distinct fashions: managerlworker style with no splitting of zones across nodes (OVERFLOWPVM),
and in SPMD style with zonal splitting and coalescing (OVERFLOWMPI). The former version is
part of the standard OVERFLOW distribution, and the latter version is ready to be part of the standard
OVERFLOW distribution.

OVERFLOW/MPI, because it allows zonal splitting, is more efficient than OVERFLOWRVM, but this
efficiency comes at a high price in terms of software development cost and code maintainability.
This seems to be inherent in explicit message-passing.

Newer approaches using distributed shared memory and multitasking directives have great promise
and should be vigorously pursued.

A longer version of this paper may be found by following the links from the author's web page
(http://science.nas.nasa.gov/-jesperse).

References

[I] P.G. Buning, I.T. Chiu, S. Obayashi, Y.M. Rizk, and J.L. Steger, "Numerical Simulation
of the Integrated Space Shuttle Vehicle in Ascent", AIAA-88-4359-CP, AIAA Atmospheric
Flight Mechanics Conference, August 1988, Minneapolis, MN.

[2] K.J. Renze, P.G. Buning, and R.G. Rajagopalan, "A Comparative Study of Turbulence
Models for Overset Grids", AIAA-92-0437, AIAA 30th Aerospace Sciences Meeting, Reno,
NV, Jan. 6--9, 1992.

[3] M. Kandula and P.G. Buning, "Implementation of LU-SGS Algorithm and Roe Upwinding
Scheme in OVERFLOW Thin-Layer Navier-Stokes Code", AIAA-94-2357, AIAA 25th
Fluid Dynamics Conference, Colorado Springs, CO, June 1994.

[4] J.A. Benek, P.G. Buning, and J.L. Steger, "A 3-D CHIMERA Grid Embedding
Technique", AIAA-85-1523-CP, July 1985.

[5] J.P. Slotnick, M. Kandula, and P.G. Buning, "Navier-Stokes Simulation of the Space
Shuttle Launch Vehicle Flight Transonic Flowfield Using a Large Scale Chimera Grid
System", AIM-94- 1860, AIAA 12th Applied Aerodynamics Conference, Colorado Springs,
CO, June 1994.

[6] L.M. Gea, N.D. Halsey, G.A. Intemann, and P.G. Buning, "Applications of the 3D Navier-
Stokes Code OVERFLOW for Analyzing Propulsion-Airframe Integration Related Issues on
Subsonic Transports", ICAS-94-3.7.4, Proceedings of the 19th Congress of the
International Council of the Aeronautical Sciences (ICAS 94), Anaheim, CA, Sept. 1994,
pp. 2420--2435.

[7] M.J. Djomehri and K. Gee, personal communication.

[lo] http: / /www. cs .rice. edu/-willy/TreadMarks/overview. h t m l .

[I 11 "OVERFLOW Gets Excellent Results on SGI Origin2000", NAS Newsletter,
http://science.nas.nasa.gov/PubsdNASnews/98/Ol/.

Session 5:

Applications for ParalleVDistributed
Computers

/&J: *"Y
PERFORMANCE AND APPLICATION OF PARALLEL OVERFLOW CODES ON

DISTRIBUTED AND SHARED MEMORY PLATFORMS

M. Jahed Djomehri
Calspan Co., NASA Arnes Research Center, M/S 258-1 JC&Q76-'

Moffett Field, CA 94035
(650)604-62 16, djomehri@nas.nasa.gov

!
Yehia M. Rizk

NASA Arnes Research Center, M/S 258-1
Moffett Field, CA 94035

(650)604-4466, yrizk@mail.arc.nasa.gov

The presentation discusses recent studies on the performance of the two parallel versions of the
aerodynamics CFD code, OVERFLOW-MPI and -MLP. Developed at NASA Ames, the serial
version, OVERFLOW, is a multidimensional Navier-Stokes flow solver based on overset
(Chimera) grid technology. The code has recently been parallelized in two ways. One is based on
the explicit message-passing interface (MPI) across processors and uses the -MPI communication
package. This approach is primarily suited for distributed memory systems and workstation
clusters. The second, termed the multi-level parallel (MLP) method, is simple and uses shared
memory for all communications. The -MLP code is suitable on distributed-shared memory
systems. For both methods, the messa6e passing takes place across the processors or processes at
the advancement of each time step. This procedure is, in effect, the Chimera boundary conditions
update, which is done in an explicit "Jacobi" style. In contrast, the update in the serial code is done
in more of the "Gauss-Sidel" fashion. The programming efforts for the -MPI code is more
complicated than for the -MLP code; the former requires modification of the outer and some inner
shells of the serial code, whereas the latter focuses only on the outer shell of the code.

The -MPI version offers a great deal of flexibility in distributing grid zones across a specified
number of processors in order to achieve load balancing. The approach is capable of partitioning
zones across multiple processors or sending each zone andlor cluster of several zones into a single
processor. The message passing across the processors consists of Chimera boundary andlor an
overlap of " halo" boundary points for each partitioned zone. The MLP version is a new
coarse-grain parallel concept at the zonal and intra-zonal levels. A grouping strategy is used to
distribute zones into several groups forming sub-processes which will run in parallel. The total
volume of grid points in each group are approximately balanced. A proper number of threads are
initially allocated to each group, and in subsequent iterations during the run-time, the number of
threads are adjusted to ach~eve load balancing across the processes. Each process exploits the
multitasking directives already established in Ovefflow.

Performance of the -MPI and -MLP codes on the Origin 2000 128 CPU system is shown on the
next page. The numerical test case used here consist of 41 overlap grid zones about a test article
mounted in the NASA Arnes pressure wind tunnel. The total number of grid points are 16 million.
Table 1 and 2 show performance data, elapsed execution wall time, total floating point counts per
second, and the average counts per CPU. Figures 1 through 3 display plots of scaled
performances; speedup, floating-point, and execution-time per time step for each of the above
parallel codes. A reasonable speedup is observed with each of the codes, with a maximum close to
6000 Mflops for the -MLP code with the 128 processors. The performance on 64 processors is
close to the serial OVERFLOW code performance on the Cray C-90 using 16 processors.

MULTI-LEVEL PARALLELISM (MLP)

A SIMPLE HIGHLY SCALABLE APPROACH TO PARALLELISM FOR CFD

James R. Taft
Sierra Software, Inc.

NASA AMES Research Center ~ L L ~ ? 7
M/S 258-5

Moffett Field, CA 94035 bP f
jtaft @nas.nasa.gov

(650) 604-0704

Abstract

High Performance Computing (HPC) platforms are continually evolving toward systems with
larger and larger CPU counts. For the past several years these systems almost universally utilize
standard off-the shelf microprocessors for the heart of their design. Virtually all hardware vendors
have adopted this design approach as it dramatically reduces costs for building large systems.

Unfortunately, systems built from commodity parts usually force researchers to embark upon large
code conversion efforts in order to take advantage of any potentially high levels of performance.
Historically, this has been a daunting, and often unsuccessful task. For those who have attempted
it, the effort often consumed many man-years of effort. Codes used in heavy production
environments were often deemed to be impossible to convert before the effort was even begun.

Recent developments at the NASA AMES Research Center's NAS Division have demonstrated that
the new generation of NUMA based Symmetric Multi-Processing systems (SMPs), such as the
Silicon Graphics Origin 2000, can successfully execute legacy vector oriented CFD production
codes at sustained rates far exceeding processing rates possible on dedicated 16 CPU Cray C90
systems.

This high level of performance is achieved via shared memory based Multi-Level Parallelism
(MLP). This programming approach, outlined below, is distinct from the message passing
paradigm of MPI. It offers parallelism at both the fine and coarse grained level, with
communication latencies that are approximately 50- 100 times lower than typical MPI
implementations on the same platform. Such latency reductions offer the promise of performance
scaling to very large CPU counts. The method draws on, but is also distinct from, the newly
defined OpenMP specification, which uses compiler directives to support a limited subset of multi-
level parallel operations.

The NAS MLP method is general, and applicable to a large class of NASA CFD codes. The MLP
methodology and techniques are described below. The method is discussed in general terms,
followed by discussion of the technique as applied to the OVERFLOW CFD code. Finally,
performance results are presented for a 35 million point problem executed on Origin 2000 systems
varying in size from 8 to 256 CPUs. Over 20 GFLOPS was ultimately obtained.

1.0 What is Multi-Level Parallelism (MLP)

Simple fine grained automatic parallel decomposition of application codes is not new. It has been
utilized extensively for about two decades. It began with the introduction of the Cray Research
XMP line of supercomputers. Much of the parallelism achieved on this machine was transparently
provided by the compiler at the loop level, in which different iterations of the computational loops
were executed in parallel on different CPUs in the system. In some instances, these parallel loops

contained subroutine calls. Often these routines did a significant amount of work, and the
efficiency of the parallel executions were greatly enhanced when this occurred. This "coarsening"
of the fine grained loop level parallelism supported by the compilers was the major focus of
optimizing efforts for many years, and was the accepted way of achieving high levels of
performance on the ParalleWector machines from Cray, and others.

In the 80's computer budgets began to shrink and many researchers turned to an alternative model
of parallel computation based on simultaneously executing many communicating independent
parallel processes. This true "coarse grained" approach was ideally suited to executions on
networks of inexpensive workstations. Performance however, was often elusive.

Coarse grained parallelism seriously began to be accepted in the community with the introduction
of the platform independent Parallel Virtual Machine (PVM) message passing library from the Oak
Ridge National Laboratory [I]. This was the standard for many years. Today, the most popular
method of implementing this level of parallelism is via the PVM successor, the Message Passing
Interface (MPI) library, from the Argonne National Laboratory [Z].

Historically, codes decomposed with these message passing libraries were most often destined for
execution on networks of single CPU workstations, or their topological equivalents, such as the
Intel Paragon, Thinking Machines CM5, or IBM SP2. Applications developers spent substantial
amounts of time attempting to decompose the problems so that communication between each CPU
on the interconnect was at an absolute minimum. No thought was given to multiple levels of
parallelism as the architectures simply did not support it.

With the advent of inexpensive moderately parallel RISC based SMPs from HP, DEC, Sun, and
SGI, expanding to a second level of parallelism was possible. Users could decompose the problem
at the coarsest level with MPI across SMPs, and use the compiler to provide fine grain parallelism
at the loop level within an SMP via directives such as those within OpenMP [3]. In general
however, clusters of SMPs were still treated as a series of discrete single processor entities, and
MPI messages were still exchanged between CPUs even within a single SMP.

While the MPUOpenMP hybrid approach is potentially better at scaling than the pure MPI solution,
the approach has the major drawback that it is still subject to the relatively high MPI latencies
whenever messages are used. More importantly, it requires a major rewrite of the code to fully
decompose the problem for coarse grained parallel execution.

2.0 What is Shared Memory MLP

Very recently, manufacturers have adopted a new architectural desi~n p-hilosophy resulting in a
hierarchical SMP that supports very large CPU counts (>loo), albe~t w~th non-uniform memory
access (NUMA). The Origin 2000 system from SGI is one such system. For many applications
100 CPUs is more than enough computational power to solve the problem in a reasonable
timeframe, and the need to traverse multiple SMPs to achieve the desired level of sustained
performance is not necessary. This opens the door to some interesting possibilities. In particular,
the high latency HiPPI connections between SMPs can be removed from the problem as there is
only one SMP involved. MPI can also be dropped as there is no need to spawn processes on other
SMPs, and there are much simpler ways of spawning them on a single SMP.

Given a true SMP architecture and a problem that fits within it, one can define a new way of
performing multi-level parallel executions. To distinguish it from past approaches, we define it as
Shared Memory MLP. It differs from the MPYOpenMP approach in a fundamental way in that it
does not use messa~ing at all. All data communication at the coarsest and finest levels is
accomplished via dlrect memory referencing instructions, which are fully supported by the SMP
instruction set and underlying hardware. Furthermore, shared memory MLP is different from just

OpenMP (when used in its limited multi-level mode) in that it makes extensive use of independent
UNIX processes and shared memory arenas to accomplish its goals. These features are not
supported by OpenMP. Both of these features allow shared memory MLP to provide superior
performance to the alternatives. More importantly, they provide a simpler mechanism for
converting legacy code than either OpenMP or MPI.

For shared memory MLP, the coarsest level of parallelism is not supplied by spawning MPI
processes, but rather by the spawning of independent processes via the standard UNIX fork, a
system call available on all UNIX systems. This is a much simpler method in that the user simply
makes fork calls at any time in the execution of his program to create another process. The user
may spawn as many such processes as desired, and each of the processes can execute on one or
more CPUs via compiler generated parallelism. The advantage of the fork over the MPI procedure
is that the forks can be inserted well after all of the initialization phase of a typical CFD code. Thus,
the user does not need to dramatically alter and decompose the initialization sections of major
production codes, a daunting task at best.

Once the forks take place, all communication of data between the forked processes is accomplished
by allocating all globally shared data to a UNIX shared memory arena, another system call
available on all UNIX RISC systems. Again this is a simple process and results in a dramatic
reduction in communication latencies over MPI. By using the arena approach, all global
communication takes place via memory load and store operations requiring just hundreds of
nanoseconds, not the tens of microseconds typical of MPI messaging 1atencles.This dramatic 50-
100 fold reduction in data access times provides the support needed for greatly enhanced parallel
scaling needed in typical applications.

3.0 OVERFLOW-MLP

The shared memory MLP recipe described above is very apropos for the field of CFD. In
particular, it is ideally suited for CFD computations that utilize multi-zonal approaches in which the
total computational domain is broken into many smaller sub-domains. Several production CFD
codes at NASA utilize this solution approach. OVERFLOW is one of them.

OVERFLOW was chosen as the test bed to examine the performance, ease of use, and robustness
of the MLP technique. It is one of the largest consumers of machlne resources at NASA sites.
OVERFLOW is a 3D RANS code solving steady and unsteady flow problems of interest.The code
consists of approximately 100,000 lines of FORTRAN. It is heavily vectorized, and has
historically executed well on the C90 systems at NAS. Typical sustained performance levels are
around 450 MFLOPS per processor, with sustained parallel processing rates of around 4.5
GFLOPS on dedicated 16 CPU C90 systems. As such it is considered a good vector/parallel code.

Shared memory MLP was inserted into OVERFLOW by constructing a very small library of
routines to initiate forks, establish shared memory arenas, and provide synchronization primitives.
Calls to these routines were inserted as needed into the C90 version of the code. This library will
be available to users within the next few weeks.The initial effort to convert OVERFLOW to MLP
required only a few man weeks and a few hundred lines of code changes. The effort involved
slightly modifying the main program, and six other routines out of the nearly 1000 routines in the
code.

Figure 1 shows the minor restructuring of the OVERFLOW logic that was needed to insert the
MLP strategy. As can be seen in the figure, the main calculational sequence is a series of loops
over time and grids. In addition, an outer loop may be executed if the multigrid integration option
is selected. Also, a sub-cycling iteration may be enabled for any particular grid. The major change
for MLP is to sub-divide the serial grid loop into two loops, a loop over groups, and a loop over
the grids within each group. The outer loop is done in parallel, with one group assigned to each

I
MLP process. Each process performs the inner loop over just the grids assigned to it. All
initialization and wrapup tasks remain unchanged from the C90 code, as do all of the solvers, etc. i

I

OVERFLOW C90 Version

Mvltigrid toop
1

"Tme toop-
*d-koop-------

-Svb-tycle -Loop------

0 VERFLO W MLP Version

Figure 1 - Logic flow for C90 and MLP Versions of OVERFLOW

The MLP processes performing the work only need to communicate boundary data at a few key
points in time during the course of the calculation. The remainder of the time is spent doing
computations totally independent of each other.

Figure 2 depicts the MLP layout of the data and communication occurring within the Origin 2000
architecture. Each MLP process is assigned a given number of CPUs. The CPU count for each
process is determined from a load balance analysis at run time that attempts to keep the number of
points solved by each process about the s,ame. Each process solves only those grids assigned to it.
The grids for each process are allocated to memories close to the CPUs executing the MLP process
assigned to the grids. The boundary data is archived in the shared memory arena by each process
as it completes ~ t s processing of a grid. Other processes read this data directly from the arena as
needed. At the end of a time step all processes are synchronized at a barrier, and the procedure
repeats for each time step taken.

Shared Memory Arena . . .J .* . >< - a - .-
I I I

I , MLP Process 1 C I I ML P Process 3 t

L - - - _ - - - - - - - - -
MLP Process 21 I

- - - - - - - - - - I
1

1 -----,,---------- J

Figure 2 - Shared Merzory MLP Organization for Multi-Zonal CFD

Doing the computation of zones in parallel is not new. In fact the MPI version of OVERFLOW
already does this. The unique feature of the shared memory MLP approach is that it does so with
no message passing and only a few hundred lines of code changes. The MPI implementation
requires approximately 10,000 additional lines of code. The end result is that the MLP code is

simpler to maintain, continues to execute well on G90 systems, and now executes well on parallel
systems at very high sustained levels of performance as seen below.

4,C) OVERFLOW-MLP Performance Results

The major focus during the development of the MLP technique was on obtaining efficient parallel
scaling. It is a fact that all of the best RISC based microprocessors rarely achieve in excess of 100
MLFOPS per processor on typical production CFD codes. Memory access is almost always the
inhibitor to higher levels of single CPU performance. Thus, unless a large CFD problem can scale
to more than a hundred processors, sustained computation in excess of 10 GFLOPs is not likely.
At least 10 GFLOPS is needed on the important large problems of today in order to solve them in
an acceptable time frame.

It was clear that the MLP technique offered the promise of a tremendous reduction in
communication latencies over an MPI implementation. In order to stress test the technique to the
fullest, a large real production problem was selected that fully exercised OVERFLOW'S typical
options for solvers, smoothers, and turbulence models. The problem selected consisted of 35
million points divided among 160 3D zones. The zones varied in size from - 1.5 million points to
- 15 thousand points. A total of 10 time steps were executed on various numbers of CPUs. Figure
3 shows the results of this test.

GFLOPS = Billions of Floating Point Operations per Second

Figure 3 - OVERFLOW-MLP Performance versus CPU Count for Origin 2000

As can be seen the performance scales almost perfectly linearly with increasing processor count.
Performance on 64 CPUs is about 5 GFLOPS. Performance on 128 CPUs is about 10 GFLOPS,
and performance on 256 CPUs was 20.1 GFLOPS. Performance per CPU remained steady at
about 80 MFLOPS.

The code under test is the standard C90 version of OVERFLOW 1.8. It contains no single CPU
optimizations whatsoever. This was intentional as major modifications to the hundreds of routines
to optimize them for RISC systems would make it extremely difficult to maintain synchronization
with the OVERFLOW releases from NASA Langley. As it is, the MLP functionality can be added
in less than one day once a new C90 release is received.

The fact that OVERFLOW-MLP is a pure vector code and yet executes at sustained performance
levels in excess of 20 GFLOPS on RISC systems is remarkable. Essentially this indicates that the

new RISC systems will be able to significantly extend the performance envelop for large vector
oriented production CFD codes for the first time. At the same time the codes can maintain
compatibility (and performance) with the existing vector architectures. This is a very important
feature as we enter this transition period from vector to RISC over the next few years.

5.0 Summary

The development of the MLP technique, implementation in the OVERFLOW code, and
achievement of 20 GFLOPs of sustained performance required about a one man-year level of
effort. The vast majority of that time was spent in learning the OVERFLOW code itself.

The test case presented above clearly demonstrates that the MLP technique is robust. It has been
used by several groups at this point, and has been shown to perform well on problems ranging
from a few million points to over 35 million points. Tentative work indicates 40+ GLFOPS are
achievable in the near term on the 35 million point problem and 5 12 Origin processors.

The new techniques of Multi-Level Parallelism developed under the 02000 Optimization Effort
have demonstrated dramatic cost and performance benefits for production CFD codes at NASA
AMES. The popular CFD code, OVERFLOW, has sustained 20 GFLOPs in performance when
solving the largest CFD problem ever attempted at NAS. If success continues, the newly
developed MLP techniques will allow fast code conversions, a dramatic reduction in run times for
the largest CFD problems, and allow this on platforms that are an order of magnitude lower in cost
than typical traditional vector supercomputer resources.

References

1. A. Geist, etal. PVM: Parallel Virtual Machine A Users' Guide and Tutorial for Networked
Parallel Computing, MIT Press, Cambridge, MA, 1994.

2. W. Gropp, etal. Using MPI: Portable Parallel Programming with the Message Passing
Interface, MIT Press, Cambridge, MA, 1994.

3 . OpenMP Architecture Review Board. OpenMP. A proposed Standard API for Shared
Memory Programming. October 1997.

MASSIVELY PARALLEL COMPUTATIONAL FLUID DYNAMICS CALCULATIONS FOR
AERODYNAMICS AND AEROTHERMODYNAMICS APPLICATIONS

Jeffrey L. Payne and Basil Hassan
Sandia National Laboratories

Aerosciences and Compressible Fluid Mechanics Department
3 LAC, 6 s ~

Mail Stop 0825
P. 0. Box 5800 d f.

Albuquerque, NM 87 185-0825

E-mail: jlpayne@sandia.gov; Phone: (505) 844-4524
E-mail: bhassan@sandia.gov; Phone: (505) 844-4682

Abstract
Massively parallel computers have enabled the solution of complicated flow fields (turbulent,
chemically reacting) that were previously intractable. Calculations are presented using a
massively parallel CFD code called SACCARA eandia Advanced Code for Compressible
Aerothermodynamics Research and Analysis) currently under development at Sandia National -
Laboratories as part of the Department of Energy (DOE) Accelerated Strategic Computing
Initiative (ASCI). Computations were made on a generic reentry vehicle in a hypersonic
flowfield utilizing three different distributed parallel computers to assess the parallel efficiency
of the code with increasing numbers of processors. The parallel efficiencies for the SACCARA
code will be presented for cases using 1, 10,50, 100 and 500 processors. Computations were also
made on a subsonic/transonic vehicle using both 236 and 521 processors on a grid containing
approximately 14.7 million grid points. Ongoing and future plans to implement a parallel overset
grid capability and couple SACCARA with other mechanics codes in a massively parallel
environment are discussed.

Introduction
The massively distributed parallel CFD code currently under development at Sandia National
Laboratories as part of the Department of Energy (DOE) Accelerated Strategic Computing
Initiative (ASCI) Program is called SACCARA (Sandia Advanced Code for Compressible
Aerothermodynamics Research and Analysis). SACCARA is currently being developed from -
PINCA [1,2], a distributed parallel version of the commercial, finite volume, Navier-Stokes
code, INCA [3], from Amtec, Inc. SACCARA solves the 2-D/Axisymmetric and 3-D Full
Navier-Stokes equations for laminar and turbulent flows in thermo-chemical nonequilibrium.
SACCARA is applicable from subsonic through hypersonic flows and can allow for perfect gas,
equilibrium, and finite-rate chemistry. Standard zero-, one-, and two-equation turbulence models
are also available. The code employs multiblock structured grids with point-to-point matchup at
the block interfaces. The solution is driven to a steady state using the lower-upper symmetric
Gauss Seidel (LU-SGS) or diagonal implicit solution advancement scheme based on a

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United
States Department of Energy under Contract DE-AC04-94AL85000.

combination of the work of Yoon et al. [4,5] and Peery and Imlay [6]. The inviscid fluxes are
evaluated using the flux vector splitting of Steger and Warming [7] or the symmetric TVD flux
function of Yee [a]. The viscous terms employ a standard central differencing scheme.

Parallel Implementation of SACCARA
SACCARA can be run on a variety of shared memory or distributed memory parallel platforms
as well as in a serial mode. The code can be compiled using the standard message-passing
interface (MPI) [9] as well as Intel's native NX [lo] parallel calls. Currently SACCARA can
only allow for a single grid block per processor. Communication between the grids is handled
through a layer of ghost cells at each block interface where pertinent information is updated
explicitly after each global iteration step. All the input information, including the block interface
information, is contained in a single input data file using a namelist format. The multiblock,
structured grid is input in standard PLOT3D format [l l] or in INCA format [3]. Both the input
data file (IDATA) and input mesh file (IMESH) are the same for either serial or parallel
operation.
The grids used in SACCARA are typically made using GRIDGEN [12] or any other multiblock
structured grid generator. GRIDGEN has the ability to generate not only the IMESH file in
PLOT3D format but also much of the IDATA file, including the block interface information.
The blocking structure of the grid is generally created based on the topology of the geometry of
interest, without regard to the number of processors that will be used to solve the problem. The
DECOMP [1] code is used to subdivide the grid into the number of blocks that equals the total
number of processors desired for parallel operation. DECOMP, which uses many of the
SACCARA subroutines, was recently modified to include part of the BREAKUP [13] code. The
inputs to DECOMP are the IDATA and IMESH files and the total number of desired processors.
Given the original blocking topology, DECOMP will determine the optimal load-balanced
system. DECOMP first determines the total number of grid points and divides it bjj the number
of total processors to obtain an average number of grid points per processor. DECOMP then
begins subdividing those blocks whose total number of grid points is greater than the average
along the I, J, and K coordinate directions. Blocks with fewer than the average number of grid
points are not subdivided. DECOMP then chooses the divisions in the coordinate direction which
best minimizes the surface area to volume ratio of each new grid block to ultimately reduce
communication time during the solution. In addition, DECOMP may slightly reduce or increase
the total number of processors if it determines it can create a more load-balanced decomposition
with a different number of total processors. Finally, DECOMP creates the new DATA and
MESH files to be used as input to SACCAM for parallel execution.

Results
SACCARA computations have been made on a hypersonic flowfield surrounding a generic
reentry vehicle utilizing three different computer platforms. The calculations were made on three
machines: the ASCI Red (Intel) at Sandia National Laboratories, the ASCI Blue ID (IBM SP2),
and ASCI Blue TR at Lawrence Livermore National Laboratories, using 1, 10, 50, 100, and 500
processors to assess the parallel efficiency of the code with increasing numbers of processors.
The size of the computational grid was varied to maintain 13,000 grid points on each processor.

The ASCI Red machine has 4500+ nodes. Each node has two 200-MHZ Pentium Pro processors
with 128 Megabytes of memorylnode. The ASCI Blue ID machine had 128 nodes. Each node has
one IBM 66-MHz Power2 processor with 256 Megabytes of memory. The ASCI Blue TR
machine, which recently replaced the ASCI Blue ID machine, has 158 nodes. Each node has four
E M 332-MHz 604e processors with 5 12 Megabytes of memorylnode.
The parallel efficiency is defined as the ratio of the main loop serial CPU time to the main loop
parallel CPU time with the number of grid points per processor remaining fixed. The efficiency
of the code (Figure 1) is seen to drop off as expected due to increasing communication overhead
as more processors are used. In Figure 1 a direct comparison of parallel efficiency can be made
between the ASCI Blue ID and the ASCI Blue TR machine. There are a number of factors that
increase the parallel overhead of the ASCI Blue TR machine. A major factor is the ASCI Blue
TR machine requirement that distributed parallel codes use the slow IP method to communicate
between nodes. The IP communication method is approximately three times slower than IBM's
high-speed switch in dedicated mode. There is a planned update to the ASCI TR Machine to
modify the current method for running a distributive parallel code on the TR machines to allow
the use of the high-speed switch. This modification should provide a substantial increase in the
parallel efficiency.
Computations were also made on the subsonic/transonic vehicle shown in Fig. 2 on 521
processors (ASCI Red) and 236 processors (ASCI Blue). The entire grid contained
approximately 14.7 million grid points. The computational grid size and point distribution was
based on previous axisymmetric solutions of a nonfinned vehicle at 0" angle of attack. The
axisymmetric solution was run on a sequence of grids to determine the solutions senitivity to the
grid resolution. The decomposed block structure on the surface and pressure contours are also
shown in Fig. 2. The simulation of the subsonic/transonic vehicle in Figure 2 was performed at a
Mach number of 0.8 and an angle of attack of 5". The flowfield around the vehicle was assumed
to be fully turbulent, and the one-equation, Baldwin Barth model was used to model the turbulent
flowfield. The simulation was run on 236 processors and took 12.7 days of CPU time to reach a
converged solution on the ASCI Blue TR machine. The simulation required 147,000 iterations to
reach convergence and ran at aproximately 23 Gflops. The solution was considered converged
when the global L2 norm of the momentum residuals had dropped by five orders of magnitude
and the surface quanities no longer changed. The SACCARA code utilizies a point implicit
method in its solution algorithm. This method is very efficient and highly stable but is inherently
slow to converge. The resulting 147,000 iterations to reach convergence for this type of problem
is not unexpected. The aerodynamic coefficients resulting from the simulation are shown in
Table 1. The aerodynamic coefficients are presented in the form of percent difference compared
to wind tunnel data and parameterized coefficients based on flight test data. The wind tunnel data
is from a test performed in Sandia's Trisonic Wind Tunnel (TWT). The parameterized
coefficients were determined by fitting the aerodynamic coefficients until the accelerometer and
rate gyro data obtained from trajectory simulations matched those obtained in flight testing.
The parameterized coefficients can be viewed as a set of aerodynamic coefficients that, when
used in a trajectory simulation code, accurately reproduce the vehicle's dynamic motion in flight.
The accuracy of the single set of parameterized coefficients is not known. However it is

instructive to see how these coefficients compare with wind tunnel measurements and the
coefficients computed with SACCARA. Table 1 shows good agreement between the pitching
moment (C,) and normal force coefficient (CN) measured in the wind tunnel and the coefficients
predicted by the CFD simulation. There is a larger discrepancy between the parameterized
normal force coefficient and the normal force coefficient predicted in the CFD simulation. The
almost zero percent difference with the center of pressure (X,&) indicates that ratio of pitching
moment-to-normal force is consistent between the different data sets. The rolling moment (CI)
coefficient comparison in Table 1 shows good agreement with the parameterized flight test data
but a larger percent difference with the wind tunnel data. The largest disagreement is with the
total axial force coefficent (CA). It is believed that most of the difference in the prediction of
axial force coeffcient is due to error in predicting the base pressure properly. The Balwin-Barth
turbulent model is known not to accurately model the free shear layer in the base region. A 1
percent change in the average pressure acting on the base of the vehicle can result in a 20 percent
change in the axial force coefficient. Additional work is planned to examine these results in more
detail and run additional simulations using the Spalart-Allmaras one-equation model and the k-o
two-equation turbulence. Comparing these solutions should provide insight into the base pressure
predictions and sensitivity to different turbulence models.

Table 1: Force and Moments

Ongoing and Future Work
SACCARA is continually being modified to handle new problems of interest. A multilevel
overset, or Chimera, grid capability is being added to SACCARA to be used in a parallel
environment. This capability will reduce the dependence on having point-to-point match up at
the grid block interfaces, which can complicate the grid generation process on complex vehicle
geometries. Overset grids will allow griding of individual geometric or flowfield features without
regard for the overall grid topology. This will simplify the multiblock structured grid generation
as well as reduce the total number of grid points necessary to solve a particular problem. In
addition, overset grids will allow the solution of moving or multibody problems, such as store
separation, without having to regrid as one body is moved relative to the other.
Work is also being performed to couple SACCARA with other mechanics codes in a distributed
parallel environment. This work has included coupling SACCARA7s compressible fluid
mechanics capability to a parallel material thermal response code, COYOTE [14,15], for
hypersonic reentry vehicle ablation prediction [O]. Ablation of an axisymmetric sphere-cone
nosetip along a given trajectory using the coupled technique is shown in Figure 3. Current
coupling between the codes has been achieved by exchanging surface interface information via
file transfer. Ongoing work will allow these codes to be coupled using parallel calls. Finally,

plans are underway to couple both SACCARA and COYOTE to a six degree-or-freedom flight
dynamics code for a full trajectory simulation of an ablating hypersonic vehicle.

References
1. Wong, C. C., Soetrisno, M., Blottner, F. G., Imlay, S. T., and Payne, J. L., "PINCA: A Scalable Parallel

Program for Compressible Gas Dynamics with Nonequilibrium Chemistry," SAND 94-2436, Sandia National
Laboratories, Albuquerque, NM, 1995.

2. Wong, C. C., Blottner, F. G., Payne, J. L., and Soetrisno, M., "Implementation of a Parallel Algorithm for
Thermo-Chemical Nonequilibrium Flow Solutions," AIAA Paper No. 95-0152, Jan. 1995.

3. INCA User's Manual, Version 2.0, Amtec Engineering, Inc., Bellevue, WA, 1995.
4. Yoon, S., and Jameson, A., "An LU-SSOR Scheme for the Euler and Navier-Stokes Equations," AIAA Paper

NO. 87-0600, Jan. 1988.
5. Yoon, S., and Kwak, D., "Artificial Dissipation Models for Hypersonic External Flow," AIAA Paper No. 88-

3708,1988.
6. Peery, K. M., and Imlay, S. T., "An Efficient Implicit Method for Solving Viscous Multi-Stream

NozzleIAfterbody Flow Fields," AIAA Paper No. 86-1380, June 1986.
7. Steger, J. L., and Warming, R. F., "Flux Vector Splitting of the Inviscid Gasdynamic Equations with

Applications to Finite Difference Methods," Jounull of Computational Physics, Vol. 40, 198 1, pp. 263-293.
8. Yee, H. C., "Implicit and Symmetric Shock Capturing Schemes," NASA TM-89464, May 1987.
9. Message Passing Interface Forum. Document for a standard message-passing interface. Technical Report No.

CS-93-214, University of Tennessee, Knoxville, TN, April 1994
10. McCurley K. S., "Intel NX compatibility under SUNMOS," SAND 93-2618, Sandia National Laboratories,

Albuquerque, New Mexico, June 1995
11. Walatka, P. P., and Buning, P. G., "PLOT3D User's Manual," NASA TM 101067, 1989.
12. GRIDGEN User's Manual, Version 12, Pointwise, Inc., Bedford, TX, Nov. 1997.
13. Barnette, D. W., "A User's Guide for BREAKUP: A Computer Code for Parallelizing the Overset Grid

Approach," SAND 98-0701, Sandia National Laboratories, Albuquerque, New Mexico, April 1998.
14. Gartling, D. K., and Hogan, R. E., "COYOTE I1 - A Finite Element Computer Program for Nonlinear Heat

Conduction Problems, Part I - Theoretical Background," SAND 94-1173, Sandia National Laboratories,
Albuquerque, New Mexico, October 1994.

15. Gartling, D. K., and Hogan, R. E., "COYOTE I1 - A Finite Element Computer Program for Nonlinear Heat
Conduction Problems, Part I1 - User's Manual," SAND 94-1 179, Sandia National Laboratories, Albuquerque,
New Mexico, October 1994.

16. Hassan, B., Kuntz, D. W., and Potter, D. L., "Coupled FluidIThermal Predictions of Ablating Hypersonic
Vehicles," AIAA Paper No. 98-0168, January 1998.

Number of Computer Nodes

Figure 1. Parallel efficiency of SACCARA on DOE ASCI machines.

115

Figure 2. Decomposed block structure and pressure contours on subsonic/transonic vehicle.

Figure 3. Ablated surface shapes at selected trajectory points for a sphere-cone re-
entry vehicle (every other trajectory point shown).

Session 6:

Multidisciplinary Design and
Applications

DEVELOPMENT O F AN EARTH SYSTEM MODEL IN HIGH PERFORMANCE
COMPUTING ENVIRONMENTS

C.R. Mechoso, L.A. Dmmmond, J.D. Farrara, J.A. Spahr
Department of Atmospheric Sciences

-3 - L-, ,' , "- University of California, Los Angeles
405 Hilgard Ave

Los Angeles, CA 90034 " &" t- 9
drummond@atmos.ucla.edu

(3 10) 825-9205

Abstract

Under the framework of NASA High Performance Computing and Communications for the Earth
and Space Sciences (HPCC-ESS) program, we are developing an Earth System Model (ESM).
The ESM produced by this effort will be used for ensembles of climate simulations in high
performance computing environments to study the coupled atmosphere/ocean system dynamics
with chemical tracers. Here, we outline the design, implementation, optimization and performance
of two modules of the ESM: 1) Models (dynarmcal and chemical), and 2) Data Broker. As
illustrated in Figure 1, The Data Broker module is used for handling the communication between
the Models module and the Earth System Model Information System (ESMIS) module.

Figure 1
Schematic of the Earth System Model

1. The Models Module

Currently the "Models" module includes an atmospheric general circulation model (UCLA
AGCM), an oceanic general circulation model (Parallel Ocean Program, POP), and an atmospheric

chemistry model (UCLA ACM). The UCLA AGCM is a state-of-the-art finite-difference model of
the g!obal atmosphere that is constantly undergoing code and algorithmic revisions to improve its
phys~cal parameterizations, dynamics and computing (Mechoso et al. [1998]). The UCLA AGCM
has been implemented in parallel using a two-dimens~onal domain decomposition in the horizontal
(Wehner et al. 1995). In this decomposition each subdomain is a rectangular region which
contains all grid points in the vertical.

Figure 2 presents an schematic of the major components of the UCLA AGCM. The
AGCMDynarnics computes the evolution of the fluid flow governed by the primitive equations
and the AGCMPhysics computes the pararneterizations. The results obtained by the
AGCMPhysics are supplied to the AGCMIDynamics as forcing for the flow calculations. The
parallel performance of the UCLA AGCM in MPP environments is impacted by load imbalances
and poor cache reusability in both AGCM/Dynarnics and AGCMPhysics. Load imbalances in the
AGCMIDynamics are primarily static and due to the use of polar filters that are required to avoid
use of the extremely small timestep necessary to satisfy the Courant Friedrich-Levy (CFL)
condition near the pole. Thus, the filters are not applied to all latitudes.

Figure 2
An schematic of the UCLA AGCM computational loop.

In the AGCMRhysics, the load imbalances are primarily dynamic and due to physical processes
that vary in time and space leading to more computations in one subdomain than in others. The
parallel version of the UCLA AGCM was optimized to achieve a level of performance that
approaches 40 GFLOPS on a CRAY T3E-600 computer.

The POP code is also based on a two-dimensional (longitude-latitude) domain decomposition
(Smith et al., 1992), and uses message passing to handle data exchanges between distributed
processes. The UCLA AGCM has been coupled to POP in a task parallel paradigm (see Figure
3) in which both models periodically exchange information at the air-sea interface during a
simulation. The AGCM sends wind stress, heat and water fluxes to POP at the end of each
simulated day. POP sends back sea surface temperatures (SSTs) to the AGCM half a simulated
day later. The coupled system completes a day of simulation in 54 seconds on 787 T3E-600

Figure 3
AGCM/POP coupling interval. Both codes run simultaneously and exchange fields at given coupling intervals.

Figure 4
In the X-direction, the upper pannel shows the number of T3E-nodes dedicated to the
AGCM and the lower pannel the number of T3E-nodes dedicated to POP.

The UCLNAGCM and POP are independent codes and ideally can be run in distributed computing
environments as long as it can be guaranteed that both models will be running at the same time and
are available to be synchronized for coupling. In the CRAY T3D and T3E series, this is only
possible when both codes are combined in a single executable. Combining the codes in a single
executable sets limits to the resolution of the models in the coupled system because of the
individual memory requirements.

Based on the individual performances of the parallel UCLNAGCM and the POP code, Figure 4
presents a curve of the expected performance (in GFLOPs) of the coupled system after distributing
5 12-nodes of a CRAY T3E computer between the two models. In this case a maximum of 36.6
GFLOPs was found when dedicating 327 nodes to the AGCM and 185 to the POP code.

fa)
Figure 5

i$w
Performance of the AGCMJACM on CRAY T3E-600. The AGCM resolution is 2.5' lon. x 2' with 29 vertical
layers . In Figure 5a, the ACM includes 2 active species (CFCl1 and CFC12) and one inactive specie. In Figure
5b, the ACM includes 19 active species and 6 inactive species .

The AGCM has also been coupled to an atmospheric chemistry model (ACM). The ACM
describes transformations of chemical active gas and aerosol tracers in the atmosphere and includes
algorithms to solve photochemical and thermochemical coupled systems, a detailed treatment of the
microphysics of small particles including growth,evaporation, coagulation, sedimentation and
deposition, and a fully integrated radiation package (Elliot et all, 1995).

The AGCWACM coupling has been implemented in such a way that AGCM and ACM codes are
combined in a single executable. We chose this configuration because the ACM uses
computational modules (like the advection scheme) that are already available and optimized in the
AGCM code. Figure 5 presents the performance of the AGCWACM. The timing curves refer to
the wall-clock time in seconds per simulated day of the AGCM/Physics, AGCMJDynamics,
Chemistry model and Total AGCWACM. In Figure 5-a, the chemistry includes two CFC active
species and Ozone as an inactive specie, the AGCM has a timestep of 1 hour while the chemistry
model is called every 6 simulated hours. In Figure 5-b, the chemistry includes 19 active species, 6
inactive ones, and the chemistry is called every 2 simulated hours. In the latter case, we observed
that most of the CPU time is consumed by the ACM.

2. The Data Broker Module

The "Data Broker" module has been designed and implemented to perform the data exchanges and
synchronizations involved in coupling different models with different global resolutions and scales
running in distributed environments. The data broker has been implemented in a distributed
manner to avoid potential bottlenecks from a centralized processor performing all the Data Broker
tasks. The Distributed Data Broker (DDB) consists of three library components: Data
Transformation Library (DTL), Model Communication Library (MCL) and the Communication
Library (CL).

The DTL contains a set of callable routines for performing data transformations from one grid scale
to the other. The MCL contains two sets of callable routines to support communication between
applications. A set of routines in the MCL allow a model to register into a coupled system
environment using the DDB. During registration, a model specifies all of the data that it will be
consuming andlor producing, the geographical domain of data, the size of the computational grid
and the frequencies for data production andlor consumption. In addition, there has to be a
dedicated process to fill the role of Registration Broker (RB) at registration time. The RB is only
active at the beginning of a coupled run and can be used as one of the parallel processes working in
one of the models. The RB gathers domain and grid information from models to be coupled, and
creates tables that are later used by other MCL routines.

The other set of MCL routines supports high-level data exchanges, in which a process producing
data has to make a single call to transfer the produced data to one or more consumers. Likewise, a
single MCL call is necessary to request data from one or more producers and the consumer process
waits until the requested data has completely arrived. The CL is a set of routines for implementing
the actual message passing interface between the models. A single MCL calls gets translated into
one or more CL calls depending on the information supplied by consumers and producers at
registration time. Currently, the CL is implemented using PVM 3.

Conclusions.

The current performance of the Models module of the UCLA ESM approaches 40 GFLOPS in 768
nodes of a CRAY T3E-600, with chemistry that includes only CFC emission, dispersion, and loss
through stratospheric photodissociation. A version of AGCMIOGCWACM that runs on the
CRAY T3E series and can be ported to other parallel machines is available. An Oceanic Chemistry
Model (OCM) is being added to the Models module. We are currently performing high-resolution
AGCMIOGCM simulations.

The DDB was successfully tested for global model domains. The DDB is being used in the
implementation of a coupled system that involves the UCLA AGCM and a mesoscale model
running in a metacomputing environment. In this scenario, the DDB will handle the
communication between the models and interface with the Metacomputing system named
LEGION.

Acknowledgments.

This work has been supported by CAN-2 1425/04 1

References.

Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-
scale environment. Part I., J. Atmos. Sci., 31, 674-701.

Elliot, S., X. Zhao, R. Turco, C.-Y. Kao and M. Shem., 1995: Photochemical numerics for
global scale modeling: Fidelity and GCM: testing. J. Applied Metereology, 34,694-7 18.

Harshvardhan, R. Davies, D. A. Randall, and T.G. Corsetti, 1987: A fast radiation
parameterization for atmospheric circulation models. J. Geophys. Res., 92, 1009-1016.

Mechoso, C.R., J.-Y. Yu, and A. Arakawa, 1998: A coupled GCM pilgrimage. From climate
catastrophe to ENS0 simulations. General Circulation Model Development: Past, Present, and
Future: Proceedings of a Symposium in Honor of Professor Akio Arakawa., D. A. Randall, Ed.,
Academic Press, submitted.

Mechoso, C.R., L.A. Drummond, J.D. Farrara, and J.A. Spahr, 1998b: The UCLA AGCM in
High Performance Computing Environments. To appear in Proceedings from SC98.

Smith, R.D., J.K. Dukowicz, and R.C. Malone, 1992: Parallel ocean general circulation
modeling. Physica D, 60, 38-61.

Wehner, M.F., A. A. Mirin, P.G. Eltgroth, W.P. Dannevik, C. R. Mechoso, J. D. Farrara, and
J. A. Spahr, 1995: Performance of a distributed memory finite-difference atmospheric general
circulation model. Parallel Computing, 21, 1655- 1675.

3LL pya,
Parallel Finite Element Solution of 3D
Rayleigh - BQnard - Marangoni Flows. PC

G. F. Carey, R. McLay, G. Bicken, B. Barth, A. Pehlivanov
The University of Texas At Austin

August 25, 1998

Abstract

A domain decomposition strategy and parallel gradient-type iterative solution scheme have
been developed and implemented for computation of complex 3D viscous flow problems involving
heat transfer and surface tension effects. Details of the implementation issues are described
together with associated performance and scalability studies. Representative Rayleigh-Benard
and microgravity Marangoni flow calculations and performance results on the Cray T3D and
T3E are presented. The work is currently being extended to tightly-coupled parallel "Beowulf-
type" PC clusters and we present some preliminary performance results on this platform. We
also describe progress on related work on hierarchic data extraction for visualization.

1 Introduction

Our main objective in the present work is t o develop effective parallel algorithms and a distributed
parallel implementation capable of high resolution 3D coupled flow and heat transfer computations
including surface tension effects. This will permit us to make fundamental phenomenological flow
studies a t the grid resolution necessary t o represent the fine scale surface-driven phenomena and to
study the associated nonlinear free surface behavior. The discretization involves 3-D isoparametric
"quadrilateral brick" finite elements with triquadratic velocity, trilinear pressure and triquadratic
temperature approximation on the elements. A non-overlapping domain decomposition of the grid
is generated with processor interfaces coincident with a subset of element surfaces. This implies
that nodes on the subdomain interfaces are shared by adjacent processors. A secondary objective
is t o explore hierarchic approaches for extracting and visualizing the solution a t a desired fidelity.

2 Discussion

We consider the transient flow of a viscous incompressible fluid as described by the Navier-Stokes
equations coupled to the transport of heat by conduction and convection in the fluid. Buoyancy is
included by means of the Boussinesq approximation as a temperature dependent body force term
in the momentum equations and the velocity field enters the convective term in the heat transfer
(energy) equation. The effect of thermocapillary surface tension enters as an applied shear stress
which is also dependent on the surface temperature gradient. The Navier Stokes equations for
viscous flow of an incompressible fluid may be written

in flow domain R where u is the velocity field, T is the stress tensor and is specified by Stokes
hypothesis for a Newtonian fluid, f is an applied body force, g is the gravity vector, T* is the
reference external temperature, T is the fluid temperature and ,d is the thermal coefficient. At
the solid wall boundaries the no slip condition applies so u = u, where u, is the specified wall
boundary velocity.

At the free surface, a shear stress due to thermocapillary surface tension acts. For example, on
a horizontal free surface the tangential shear stress component rZx is given by

with a similar expression for rZy, where y(T) is the surface tension and T is temperature. The heat
equation is

d T
pep (z + u - VT) - v (LVT) = Q. (4)

where k is the thermal conductivity of the fluid, p is the density, ep is the heat capacity, and &
is a heat source term. Temperature, flux or mixed thermal boundary conditions may be applied.
For example, in the R-B-M test problem later, we specify temperature T = Tb on the base, zero
normal flux kdTl8n = 0 on the side walls, and mixed conditions kdT/Bn = a (T - T*) (Robin)
on the free surface, where T* is the exterior temperature, and a is the heat transfer coefficient for
the medium. Then (I), (2), (4) constitute a coupled system t o be solved for velocity, pressure and
temperature.

Introducing test functions v, q in a weighted-residual statement for (1)-(2), integrating by parts
using (3) and introducing the Stokes hypothesis, we obtain the weak variational statement: find
the pair (u, p) E V x Q with u = u, a t the wall boundaries and such that

and / n ~ . u q d x = o (6)

hold for all admissible (v, q). Similarly, the weighted integral for (4) yields: Find T E W satisfying
any specified (essential) temperature boundary conditions and such that

for all admissible test functions w with w = 0 on those parts of the boundary where T is specified.
The finite element formulation for (5) , (6), (7) follows immediately on introducing the approx-

imation subspaces Vh, Qh, Wh for V, Q and W respectively.
The fully coupled scheme requires that the linearized coupled system be solved each timestep.

Introducing the discretization of elements with finite element basis functions and substituting in
the approximate weak statement we have a semidiscrete finite element system of the form

A variety of integration schemes are applicable to advance the solution from a specified initial
state U(O), T(0). In the results shown later we employ the midstep 8 = 112 scheme.

Both the coupled and decoupled algorithms require repeated system solves within each timestep.
These systems are sparse and nonsymmetric but the asymmetry in the R-B-M microgravity problem
is not strong. This implies that iterative methods with Jacobi preconditioning should be quite
effective in solving each linear subsystem. In the present work we solve the respective systems in
parallel over subdomains using biconjugate gradient iteration (BCG) with diagonal preconditioning.

The main computational steps in this solution algorithm are matrix-vector products, transpose
matrix-vector products and vector dot products. Since the matrices are sparse (because of the local
support of the element bases) we require fast parallel sparse matrix-vector product (MATVEC)
routines in particular and also a fast parallel dot product routine. Frequently, in the parallel
iterative literature the MATVEC is left t o the user t o provide but this is the 'heart' of the calculation
and must be handled carefully if a fast scalable parallel solver is to be designed. We elaborate on
the parallel MATVEC and dot product routines in the next section.

In the present work we use a non-overlapping decomposition by elements. This implies that
the processor interfaces coincide with a subset of element faces and the nodes on those faces are
shared by adjacent processors. This is natural in a finite element framework since i t implies that
the element calculations can be parallelized easily over the processor partition and also lends itself
t o element-by-element solution strategies by either iterative schemes or frontal elimination within
each subdomain.

A subdomain element-by-element approach (in which each subdomain contains a sufficient num-
ber of elements) provides an efficient parallel strategy. Here the dense matrix operations at the
element level can be exploited in the intensive computational kernels and the communication a t the
processor interface nodes can be overlapped with computation in the interior of each subdomain.

Let us consider a typical interior subdomain R, containing elements w,S, e = 1,2, ..., Es and let
B;, j = 1,2, ..., J denote those border elements of 0, that are adjacent to the subdomain boundary
dR,. Let I;, k = 1,2, ..., K denote the remaining eIements interior to the subdomain. Computations
involving this interior subset are local to the processor. This implies that communication requests
can be initiated for the subdomain border element calculations while computation begins on the
interior subset. Then the border element computations can be completed. Provided there are
sufficient elements in the interior subset, this strategy will permit complete communication overlap.

For simplicity, consider an interior cube subdomain. There are 6 surface subdomain neighbors,
12 edge subdomain neighbors (that are not also surface neighbors) and 8 further vertex neighbors.
Hence there are 26 subdomain neighbors involved in message passing to or from any given interior
subdomain cube. For the border elements the interior face nodes are duplicated twice, once on
each neighboring processor, interior edge nodes are duplicated four times and corner nodes are
duplicated eight times. This has some bearing on the way we compute the global dot products in
the algorithm. More specifically, a "masked" dot product is computed with masking weight, w; for
node i. Here wi is the reciprocal of the number of subdomains sharing node i. e.g. w; = 1 for
subdomain interior node i , w; = for face interior node etc.

The element matrix calculations are trivially parallelized. over the processor subdomains and
the subdomain matrix vector product can be conceptually separated as follows:

For elements e in the border:
Compute EBE matrix-vector product.
Sum element result into nodal result vector.

Extract interface nodal MVP results to send buffers and transfer to neighbor processors.
For elements e in the interior

Compute EBE matrix-vector product.
Sum element result into nodal result vector.

Sum receive buffer data for neighboring processors into nodal MVP result vector.

We use a combination of MPI and SHMEM to handle the communications. (SHMEM is used
where speed is important, but SHMEM is less portable.) For example, global operations with
SHMEM require a buffer at the same address on all processors. Hence, for operations like dot
products, only one global location is needed and SHMEM is used. Operations that require broad-
casting buffers of unknown size, are more difficult and we use MPI here.

MGFLO is designed for unstructured mesh finite element simulations on irregular partitions
such as those generated by Chaco [?I or Metis [?I. This flexibility is facilitated by means of lists
in C. Each processor has a set of elements which is further broken down to (1) "frame" elements
which have a face, edge or corner shared with elements residing on another processor and (2) the
remaining "interior" elements on the processor. Accordingly, we use three lists of pointers-one list
is t o all elements of the processor and the other two to the respective frame and interior elements.
Note that elements are only stored once but there are two pointers t o each element. To process
elements we simply loop over the appropriate list (all elements, frame elements or interior elements).
We remark that essential boundary conditions are stored nodally whereas flux data is stored by
elements. Communication between processors is implemented using a list of nodes that are shared
by each processor.

In the numerical studies presented later we consider only structured subdomains and use a
simple mesh generator that can be partitioned simply. That is, the mesh routine knows that it has
a structured mesh to create and partition. It also creates the three element lists and the list of
nodes that need t o be exchanged between processors. (For more general partitionings and grids
one must set up the communication node lists accordingly).

3 Results

Beowulf-type Clusters

We have recently assembled a Beowulf-type cluster comprised of 16 Intel Pentium I1 processors for
the investigation of parallel computing on workstation clusters. ~ a c h node is equipped with a single
Pentium I1 processor with 128 MB of RAM. The processors are interconnected with a crossbar hub
running 100 MBit Fast Ethernet.

Concurrently with this network performance study, the flow analysis program with MPI has
been implemented for this architecture and preliminary performance studies have been carried
out. Figure 1 shows the results of a scaled speed-up study on our Beowulf-cluster. Four cases
were examined in this study: Coupled and Decoupled flow and heat transfer with non-optimized
FORTRAN-coded BLAS and Coupled and Decoupled flow and heat transfer with Pentium I1 opti-
mized assembly-coded BLAS. In the non-optimized case, the results show almost linear scaling for
both coupled and decoupled flow regimes, with the variation from linearity due to system software

running in the background. In the optimized case, linear scaling is seen up to 8 or 9 processors
after which the performance begins to tail off. This degradation in performance may be showing
the communications boundedness of these workstation clusters as computation begins t o out run
communication.

Figure 1: Parallel speedup scaling on the Beowulf cluster

0
0 200 400 600 800 lo00 1200

Number of processors

Figure 2: Parallel speedup scaling on the T3E900

T3E Thermocapillary Studies

A study was first undertaken for scaling through 1024 processors on the T3E900 as shown in
Figure 2 and delivers a maximum of approximately'l18 gigaflops. This result is for scaled problem
size (the subgrid size per processor is fixed and sufficiently large.

As a phenomenological study, we then considered the fluid flow in a L x L x L/4 domain driven
by an axisyrnrnetric Gaussian heat flux distribution given by q = exp(-50((x - 0.5)~ + (y - 0.5)~))
and dy/dT = 5 N/m-K on the top surface of the domain. Here L = 1 m is taken as the reference
length of the problem. On the other faces of the domain, Dirichlet boundary conditions are applied
(i.e., zero velocity, reference temperature T = 10' C). The Prandtl number is 0.3 and we simulate
the flow under low gravity (g = 0.01 m/s2) on a 16 x 16 x 8 mesh with an 8 x 8 x 4 processor

partitioning. The Rayleigh and Marangoni numbers are 761 and 43.25, respectively, where the
reference temperature difference AT = 10.38OC is taken to be the difference between the maximum
local temperature in the flow and the reference temperature. The flow pattern and temperature
distribution on the mid vertical (y = 0.5 m) plane are given in Figure 3. The maximum local
velocity obtained is 27.7 m/s.

Figure 3: Temperature plot and vector velocity plot on the section y = 0.5.

4 Hierarchic Adaptive Extraction

Part of our work involves techniques for hierarchic visualization of very large scale data sets such as
those obtained in the previous flow simulations. The basic approach is motivated by the ideas used
in adaptive mesh refinement and coarsening strategies, multigrid solution schemes and wavelet mul-
tiresolution techniques. The work exploits tree-traversal algorithms and data structures for adaptive
refinementlcoarsening t o enable selective hierarchic extraction and compression of solution data for
visualization locally or a t a remote site. Error or feature indicators provide a theoretical framework
to guide adaptive mesh schemes and provide a mechanism for selectively screening the simulation
results. A prototype "data handler" that incorporates some of these primitives is under develop
ment and testing. Representative examples involving meshes of "quadrilateral brick" elements in
3D are investigated. These illustrate, for instance, how selective hierarchic visualization using a
feature indicator can be applied. Supporting timing studies for remote visualization of hierarchic
data using nested meshes or multiresolution approaches are also presented. The extension of these
schemes to parallel distributed data sets using mesh partitioning strategies is also considered.

In the most basic case the results are known a t all levels of a uniformly refined structured grid
and there is a supporting uniform tree data structure. Then this tree can be traversed to collect
data from a given level or different levels to be sent for local or remote visualization. Similarly,
if the grid is generated by uniform refinement of a coarse unstructured grid, then the same basic
approach is applied. Note that the tree can be traversed either from the top level (leaf level) down
to the lowest (root) level or vice versa. Since we are interested in a minimalist approach to large
data sets, it will generally be preferable to begin at the root level and work up the tree selectively
refining rather than at the leaf level working down the tree with selective coarsening. However,
this is secondary since the main issue is the size of the data to be transferred and this is the same
independent of the direction of traversal.

A preferable approach is to reconstruct an adaptively graded mesh using some quasi-uniform
coarse level grid and the approximate solution or problem data as the grading function t o guide
refinement. For example, we can superpose a containing cube on the applications grid, then refine
to an octet. Subcubes are then selectively refined based on the application grid density function
or a feature/error indicator computed from the solution on the application grid. Several variations
on this theme can be easily deduced. Note that this form of hierarchic approach also permits easy
parallel implementation as described later.

Significant mesh irregularity is allowed; i.e. any adjacent elements do not necessarily lie on ad-
jacent tree levels. In the present implementation, the numbering of the leaf elements corresponds to
the Morton space-filling curve which will be used in the parallel implementation for load balancing.

In order t o demonstrate the procedure, data was adaptively extracted for a function with larger
gradients defined on the unit cube. Then a slice through the cube is taken. The image from the
extracted data set in is very similar to that obtained from the full data set.

Composing a hierarchic visualization from multiple processors may be achieved by parallel
generation of a compressed file and then transfer of the compressed data for viewing. Since this
will consist essentially of nodal data for elements at a given level it can be handled in the proposed
visualization framework. More specifically, We implemented the RemoteBroker on a Cray T3E.
Processor 0 is responsible for the socket communications with the LocalBroker and VisBroker.
Also, it synchronizes the other processors. As a test example, we approximated an analytical
function using the relative error in L2-norm as a feature indicator. In our case the threshold level
was set t o 0.001. Also, the maximum element level (i.e. the tree depth) was limited to 5. Adaptive
octree without restriction on mesh "irregularity7' was used. For this test the domain (the unit
cube) was subdivided into 8 equal subcubes and each of them assigned to a different processor.
Because of the fixed domain partition, the busiest processor was handling approximately 116th
of the total work. The CPU times (in seconds) for octree creation, octree processing (assigning
local node numbers, etc.) are determined. Also the wall-clock time for MPI communications and
sending data through sockets is presented. Approximately 1.5 MB reduced data was sent t o the
local machine (SGI Onyx). These timing results have been compared to those in the case of a single
processor. The speedup is approximately equal to 6, as expected.

Concluding Remarks

The present work is part of a grand challenge HPC study funded by NASA to investigate scalable
parallel coupled viscous flow and heat transfer analysis to explore microgravity and thermocapillary
free surface effects. The basic analysis code is, however, more general and provides a framework
for scalable distributed HPC applications to this class of transport processes of interest t o NASA,
industry and elsewhere. We have developed a Galerkin finite element formulation and solution
algorithm for both fully coupled and decoupled strategies with an implementation using noweb and
C. Noweb enables the use of alternate compiler systems and enhances portability of the code (e.g.
the "same" code runs MPI only on our Beowulf system and both MPI and SHMEM on the Cray
T3E). The program is also designed for analysis with unstructured grids and irregular partitions,
this being achieved through the use of lists.

Acknowledgments
This research has been supported by NASA ESS Grand Challenge Project NCCSS- 154 and by

DARPA grant DABT63-96-C-0061. We express our appreciation t o D. Cline, H. Swinney and S.
van Hook for their suggestions, and to S. Swift, C. Harle for and V. Carey their assistance.

References

[I] Carey, G. F. (Ed). 1989. Parallel Supercomputing: Methods, Algorithms and Applications,
John Wiley & Sons, U.K.

[2] Gillion, P., and G. M. Homsy. Combined Thermocapillary-Bouyancy Convection in a Cavity:
An Experimental Study. Physics of Fluids, 8(11):2953-2963,1996.

[3] Koschmieder, E. L., and DS. A. Prahl. Surface-Tension-Driven BBnard Convection in Small
Container. Journal of Fluid Mechanics, 215:571-583, 1990.

[4] McLay, R., S. Swift, and G. F. Carey. 1996. "Maximizing Sparse Matrix-Vector Product Per-
formance on RISC based MIMD Computers? J. of Parallel and Distributed Computing, 37,
146-158.

[5] Schatz, M. F., S.J. Vanhook, W.D. McCormick, J.B. Swift, H.L. Swinney: "Instability and
transition to disorder in surface-tension driven BBnard convection" In preparation.

B
0 ;P 8 &"2 &"

p 27,. L~A/LY
i

Engineering Overview of a Multidisciplinary HSCT Design
Framework Using Medium-Fidelity Analysis Codes

R. P. Weston, L.L. Green, A.O. Salas, J.A.Sarnareh, J. C. Townsend, J.L. Walsh
MultiDisciplinary Optimization Branch

NASA Langley Research Center, Hampton, VA 23681-2199

3 r, c, PP,<J.
Abstract dk

Submitted for the NASA Computational Aerosciences Workshop 98, NASA Ames Research Centel;
Aug. 25-27, 1998.

An objective of the HPCC Program at NASA Langley has been to promote the use of advanced
computing techniques to more rapidly solve the problem of multidisciplinary optimization of a
supersonic transport configuration. As a result, a software system has been designed and is being
implemented to integrate a set of existing discipline analysis codes, some of them CPU-intensive,
into a distributed computational framework for the design of a High Speed Civil Transport
(HSCT) configuration. The proposed paper will describe the engineering aspects of integrating
these analysis codes and additional interface codes into an automated design system. Information
about the CORBA-based computational environment will appear in a separate paper (ref. 1).

The objective of the design problem is to optimize the aircraft weight for given mission condi-
tions, range, and payload requirements, subject to aerodynamic, structural, and performance con-
straints. The design variables include both thicknesses of structural elements and geometric
parameters that define the external aircraft shape. An optimization model has been adopted that
uses the multidisciplinary analysis results and the derivatives of the solution with respect to the
design variables to formulate a linearized model that provides input to the CONMIN optimization
code, which outputs new values for the design variables.

The analysis process begins by deriving the updated geometries and grids from the baseline
geometries and grids using the new values for the design variables. This free-form deformation
approach (ref. 2) provides internal FEM grids that are consistent with aerodynamic surface grids.
The next step involves using the derived FEM and section properties in a weights process to cal-
culate detailed weights and the center of gravity location for specified flight conditions.

The weights process computes the as-built weight, weight distribution, and weight sensitivities for
given aircraft configurations at various mass cases. Currently, two mass cases are considered:
cruise and gross take-off weight (GTOW). Weights information is obtained from correlations of
data from three sources: 1) as-built initial structural and non-structural weights from an existing
database, 2) theoretical FEM structural weights and sensitivities from Genesis, and 3) empirical
as-built weight increments, non-structural weights, and weight sensitivities from FLOPS.

For the aeroelastic analysis, a variable-fidelity aerodynamic analysis has been adopted. This
approach uses infrequent CPU-intensive non-linear CFD (ref. 3) to calculate a non-linear correc-

tion relative to a linear aero calculation for the same aerodynamic surface at an angle of attack that
results in the same configuration lift. For efficiency, this nonlinear correction is applied after each
subsequent linear aero solution during the iterations between the aerodynamic and structural anal-
yses. Convergence is achieved when the vehicle shape being used for the aerodynamic calcula-
tions is consistent with the structural deformations caused by the aerodynamic loads. To make the
structural analyses more efficient, a linearized structural deformation model has been adopted, in
which a single stiffness matrix can be used to solve for the deformations under all the load condi-
tions.

Using the converged aerodynamic loads, a final set of structural analyses are performed to deter-
mine the stress distributions and the buckling conditions for constraint calculation. Performance
constraints are obtained by running FLOPS using drag polars that are computed using results
from non-linear corrections to the linear aero code plus several codes to provide drag increments
due to skin friction, wave drag, and other miscellaneous drag contributions.

The status of the integration effort will be presented in the proposed paper, and results will be pro-
vided that illustrate the degree of accuracy in the linearizations that have been employed.

References:

1. Sistla, Raj, et al; "An Object Oriented Framework for HSCT Design," Submitted to the NASA
Computational Aerosciences Workshop, August, 1998.

2. Samareh, J. A.; "Geometry Modeling and Grid Generation for Design and Optimization,"
ICASE/LaRC/NSF/ARO Workshop on Computational Aerosciences in the 2 1st Century, Hamp-
ton, VA, April 22-24, 1998.

3. Biedron, R.T., et al; "Parallel Computation of Sensitivity Derivatives With Application to Aero-
dynamic Optimization of a Wing," Submitted to the NASA Computational Aerosciences Work-
shop, August, 1998.

Session 7:

Multidisciplinary Design and
Applications

Edward J. Hall 52 7- 07'
Rolls-Royce Allison

2001 S. Tibbs, T-14A
01 $2-

Indianapolis, IN 46206-0420
Edward. J.Hall@ al1ison.com

(3 17) 230-3722 3 (4 ~ - % ? ~ ~
J ' f S'-Q

TURBINE ENGINE HP/LP SPOOL ANALYSIS

Abstract
The primary objective of this task is to develop and demonstrate the capability to analyze
the aerodynamics in the complete high pressure (HP) and low pressure (LP) subsystems of
both the NASAlGeneral Electric (GE) Energy Efficient Engine (EEE) and the Allison
AE3007 engine using three-dimensional Navier-Stokes numerical models. The analysis
will evaluate the impact of steady aerodynamic interaction effects between the components
of the HP and LP subsystems. The computational models shall be developed from the
geometric components contained in the HI? and LP subsystems including: engine nacelle,
inlet, fan blades, bifurcated bypass and core inlet, bypass vanes, core inlet guide vanes,
booster stage, core compressor blades, high pressure turbine blades, low pressure turbine
blades, mixer, and exhaust nozzle. Predictions will be obtained using the ADPAC
aerodynamic analysis code. The analysis shall be performed and optimized for workstation
cluster computing platforms using parallel processing techniques. The concept of
"zooming" in the analysis shall be demonstrated by substituting a lower order cycle model
of the HP or LP subsystems using results from the National Cycle Program (NCP).
Ultimately, the analysis will include the effects of operation at angle of attack by modeling
a complete rotation of the fan wheel.

Introduction
The motivation for this program is based on three primary elements. First, the NASA
vision for technological advances under the Computational Aerosciences (CAS) and High
Performance Computing and Communications programs are focused under the Numerical
Propulsion System Simulation (NPSS) project. The NPSS system is intended to provide a
computational framework for design and analysis of complete gas turbine engine systems.
Second, the growing maturity of computational fluid dynamics (CFD) tools, particularly
with respect to turbomachinery flows. Finally, competitive trends in the gas turbine
industry which seek to reduce engine development time and cost, while improving engine
performance.

This project is dedicated to develop and demonstrate the capability to analyze the
aerodynamic performance of the complete high pressure (HP) and low pressure (LP)
subsystems of two modem gas turbine engines as part of the NPSS system capability. The
engines considered are the NASAIGE Energy Efficient Engine (EEE) and the Rolls-Royce
Allison AE3007 engine. The analysis employs combined 3-D ~avier-stokes and simplified

cycle pePEommce malyses to lpepreserrt &e pePPomaflce of individual subsys~ems in the
overall engine sirnula~on.

A primary objective of this =search is to demonsmte the NPSS goal ofzooming in the
simulation of a complete propulsion system.&oming is losely defined as the ability to
substitute models of varying levels of fidelity (I-D, 2-D, 3-D, etc.) for subsystems in the
overall engine simulation. To achieve this goal, this study focuses on employing combined
analyses with both essentially 0-D cycle deck performance analyses based on the National
Cycle Program (NCP) and complex 3-D analyses based on the ADPAC Navier-Stokes
analysis tool. As a first step in this procedure, NCP performance models are developed for
the complete EEE and AE3007 engines. The sections which follow briefly describe tasks
related to the development of the complete NCP and CFD models for the EEE and
AE3007 engines, respectively.

Description of the Energy Efficient Engine
The Energy Efficient Engine (EEE) program [l J was developed to create fuel saving
technologies for transport aircraft engines whichwould be introduced into service in the
late 1980's and 1990's. The EEE development cycle included candidate engines from two
manufacturers: Pratt & Whitney and General Electric. Both manufacturers designed and
tested components as part of the technology demonstrations necessary to validate the final
engine designs. The General Electric design was selected for engine testing, and included
separate tests of the core and integrated coreAow spool (ICLS) configurations. The flight
propulsion system was projected to have a thrust specific fuel consumption of 0.55 1
Ibm/hr/lbf at the maximum cruise deqign point (35,000 ft. ISA). The ICLS achieved a
static corrected take-off thrust of 37,415 lbf. Technology developed during the EEE
program has since been applied in the development of modern, high bypass ratio turbofan
engines such as the GE90 and the Pratt and Whitney 4084. Both the GE90 and P\&W
4084 engines were recently flight certified by the FAA and are currently being introduced
on Boeing's latest commercial aircraft, the Boeing 777 (see Figure 1).

Figure -4, General Electric Energy Eficient Engine test hardware and
current Energy Efficient Engine technology aircraft application (Boeing
777).

Descdp~on @f Ule Alliison AEM7 Eerie
The Allison AF, 3007 (pictured in Figure 2) is a 7,000-9,000 pound &rust-class hrbofm
engine designed for the growing regional jet and medium-to-large business jet markebs.
This engine is part of the Allisoncommon core engine family, and is therefore closely
related to the T4-06 (V-22 tilt-rotor aircraft) and AE 2100 (C-1305 transport aircraft)
turboprop engines. As such, the AE3007 engine benefits from the shared development

Figure 2. Allison AE3007 engine and installation on the Embraer RJ-145
regional airliner.

The AE3007 engine family features a dual spool (separate high pressure @P) and low
pressure (LP) shafts) configuration. ThesAE3007 engine cycle employs a moderate 5: 1
bypass ratio, with an overall pressure ratio of 23: 1. The engine's operating cycle balances
the requirements of low fuel burn and operabilitylreliability margin while low emissions
and low noise characterize the AE 3007 as a good neighbor. The AE3007 engine series
(A, C, and H designations) provides power for a number of high performance aircraft.
The AE3007A powerplant is featured on the Embraer (Empresa Brasileria de
Aeronautica S.A.) RJ145 50-passenger regional jet, and the Embraer RJ135 35-passenger
regional jet (see e.g. Figure 2). The AE3007C (a derated version of the AE3007A) was
developed for the Cessna Citation X business jet. The AE 3007H was selected to power
the Teledyne Ryan Global Hawk high altitude, long range unmanned surveillance aircraft.

Description of the National Cycle Program
The National Cycle Program (NCP) provides an architectural framework for NPSS
project. The initial focus of the NCP is on the aerothermodynarnic cycle process. It is a
catalyst for establishing new standards for interfacing with tools of different disciplines.
The NCPmchitecture provides the capability to zoom to models of greater fidelity, and
will couple more directly to modeling tools for other disciplines. Representatives from
government and the aeropropulsion industry determined that an object-oriented approach
would meet and exceed the and simulation requirements of the aerothermodynamic cycle
simulation process while also creating an extensible framework for the NPSS system. To
ease the integration with external applications Common Object Request Broker
Architecture (CORBA) was selected.

The NCP is the first step toward building a complete object-oriented architectural
framework for NPSS. This framework successfully demonstrates the capability of the
object-oriented paradigm to model a complex aeropropulsion process. Integration with
external codes using CORBA has proved to be a viable high performance option to
solving distributed code coupling problems. Detailed engine component hierarchies can
now be created within the NCP architecture with components inside or outside its
boundaries.

Description of the ADPAC CFD Program
The aerodynamic predictions for the cases described in this study were obtained using the AllPAC
analysis code. The ADPAC code is a general purpose aerospace propulsion aerodynamic
analysis tool which has undergone extensive development, testing, and verification [2]
131. The ADPAC analysis solves a time-dependent form of the three-dimensional
Reynolds-averaged Navier-Stokes equations using a proven time-marching numerical
formulation. The numerical algorithm employs robust numerics based on a finite volume,
explicit Runge-Kutta time-marching solution algorithm. Several steady-state convergence
acceleration techniques (local time stepping, implicit residual smoothing, and multigrid)
are available to improve the overall computational efficiency of the analysis. A relatively
standard implementation of the Baldwin and Lomax turbulence model with wall functions
is employed to compute the turbulent shear stresses and turbulent heat flux.

An attractive feature of the ADPAC code is the versatility and generality of mesh systems
upon which the analysis may be performed. The4DPAC code permits the use of a
multiple-blocked mesh discretization which provides extreme flexibility for analyzing
complex geometries. The block gridding technique enables the coupling of complex,
multiple-region domains with common (non-overlapping) grid interface boundaries
through specialized user-specified boundary condition procedures. ADPAC supports
coarse-grained computational parallelism via block boundary-specified message passing.
Interprocessor communication is controlled by the Message Passing Interface (MPI)
communication protocol. Parallel computations employed during this study utilizied a
wide range of high speed processors, workstation clusters, and massively parallel
computing platforms,.

Steady-state aerodynamic predictions for multistage turbomachinery are performed using
a specialized boundary procedure known as a "mixing plane". The mixing plane strategy
was developed to permit numerical simulations based on only a single blade passage
representation for each blade row, regardless of the differences in circumferential spacing
for each blade row. This simplification is afforded by circumferentially averaging data on
either side of the interface between blade'rows (the mixing plane), and then passing that
information as a boundary condition to the neighboring blade row. An algebraic model
representing the time-averaged effects of deterministic unsteadiness is employed to
provide a more realistic simulation of complex turbomachinery flows.

LP Subsystem Simulation
Mesh systems for the EEE and AE3007 engines were generated using algebraic
constuction techniques. Individual blade row meshes employ an H-type format with
mixing plane boundary conditions employed between adjacent blade rows. Figure 3
illustrates the geometry and axisymmetric projection of the mesh system employed for the
EEE simulation.

Qua*er Bypass
Nacelie Fan, Stage, Booster Dud L. P. Turbine

High Pressure Core Engine

3-D
Mavier-Stokes
Analysis

High Pressure Care Engine
from NCP Cycle Analysis

3-C1
Navier-Sto kes
Analysis

Figure 3. Energy Efficient Engine High PressureILow Pressure Spool
Analysis illustrates coupling between 3-0 CFD simulation (ADPAC) and
engine cycle simulation (NCP).

The corresponding NCP model for the EEE engine is illustrated in Figure 4. Individual
engine components are simulated in block fashion using the object-oriented system
simulation capability afforded by the NCP architecture.

- - - - - - - HP Shaft -
~~t~~~~t~~srna~t~8;~~tii1~~~~s~s~~~1~~~&i~i~1ai1ii~~1~i1ti~~1i~~it~11iia:1~~i11i1r11i11~i~~1~a1D

SVDSSS Flow Stream - -
s2 - - -

t i -

Figure 4. NCP block model diagram for the EEE engine.

Multi-disciplinary coupling is provided in both the NCP and ADPAC models by equating
power requirements for common shaft-mounted components. For example, the equilibrium
speed of the LP shaft is determined by equating the power requirements of the LP
compression system with the power provided by the LP turbine system. A shaft power
balance procedure has been developed which iteratively alters the LP shaft rotational
speed until a proper power balance is provided. In practice, for the large scale CFD
simulations, this iterative process must be underrelaxed slightly, and requires 5-6 global
iterations until the component power balance is within a 1% tolerance.

Conclusions
A combined CFD/cycle gas turbine engine performance analysis procedure has been
developed and is currently being applied to two modem gas tirbine engine designs.
Multidisciplinary coupling is established in the large scale CFD simulations through a shaft
power balance procedure. Coupling between the CFD simulations and the reduced order
cycle analysis is accomplished through a CORBA interface controlled by an external
JAVA application. This procedure will continue to be refined as part of the overall NPSS
full engine analysis capability.

References
[l] Saunders, N. T., Colladay, R. S., and Macioce, L. E., "Design Approaches to More
Energy Efficient Engines,'' A H A and SAE 14th Joint Propulsion Conference, Las Vegas,
Nevada, July 25-27, 1978.

[2] Hall, E. J., "Aerodynamic Modeling of Multistage ompressor Flowfields-Part I :
Analysis of Rotor/Stator/Rotor Aerodynamic nteraction," ASME Paper 97-GT-344, 1997.

[3] E. J., "Aerodynamic Modeling of Multistage Compressor Flowfields-Part 2: Analysis
of Rotor/Stator/Ro tor Aerodynamic Interaction,' ' ASME Paper 97-GT-345, 1997.

PARALLEL AEROELASTIC ANALYSIS USING ENSAERO AND NASTRAN

Lloyd B. Eldred*, Chansup Byunt, and Guru P. Guruswamy*
Applied Computational Aerodynamics Branch - tt-\ d+j -4-

a L P G & . &"'& 2
NASA Ames Research Center, Moffett Field, California 94035-1000

Abstract craft components as plates, bars, and beams and the

A high fidelity parallel static structural analysis
capability is created and interfaced to the multidis-
ciplinary analysis package ENSAERO-MPI of Ames
Research Center. This new module replaced EN-
SAERO's lower fidelity simple finite element and
modal modules. Full aircraft structures may be
more accurately modeled using the new finite ele-
ment capability. Parallel computation is performed
by breaking the full structure into multiple substruc-
tures. This approach is conceptually similar to EN-
SAERO's multi-zonal fluid analysis capability. The
new substructure code is used to solve the structural
finite element equations for each substructure in par-
allel. NAS TRAN/COSMIC is utilized as a front end
for this code. Its full library of elements can be used
to create an accurate and realistic aircraft model.
It is used to create the stiffness matrices for each
sub-structure. The new parallel code then uses an
iterative preconditioned conjugate gradient method
to solve the global structural equations for the sub-
structure boundary nodes. Results are presented for
a wing-body configuration.

Accurate structural modeling of a real aircraft by
discretization has constraints that are completely in-
dependent from those faced by the aerodynamics dis-
cipline. A structural model focuses on the main in-
ternal features of the aircraft: the wing's spars and
ribs and the fuselage's bulkheads and stringers. An
aircraft aerodynamic model focuses on critical aero-
dynamic features: regions of separation, shocks, etc.
These major features of interest are completely un-
related to each other. An attempt at using common
meshes is at best doomed to inefficiency, and more
likely to failure. A much more efficient and power-
ful approach is to interface the highest fidelity single
discipline technologies available. ENSAEROI-~ im-
plements the Reynolds averaged thin-layer Navier-
Stokes equations. NASTRAN4's element library al-
lows the accurate finite element modeling of the air-

'Research Scientist, MCAT Inc., AIAA Member,
eldredOnas.nasa.gov, (650) 604-2402
+senior Research Scientist, MCAT Inc., AIAA Member
$Senior Research Scientist, AIAA Associate Fellow

sub-structure based structural system solver allows
for efficient parallel solution of the structural equa-
tions.

A fluid-structure interface calculation is per-
formed on the aircraft skin. Fluid forces cause
structural loading, causing deflection, which in
turn chaages the fluid field. Since the fluid sur-
face grid does not, in general, correspond to the
structural grid on the aircraft skin, an interpola-
tion/extrapolation scheme is used to transfer the
fluid loads to the structural nodes and the structural
deflections to the fluid grid.

This work builds on earlier domain decomposi-
tion work by Byun and Guru~wam~l-~ . That work
involved interfacing the Navier Stokes/Euler solver
with structural models. The structural models in-
cluded a modal model and a parallel finite element
model, using a partitioning approach.

APPROACH

A high fidelity parallel static finite element capa-
bility, "ENSAERO-FE" , has been developed. Par-
allel computations are performed on multiple sub-
structures with an iterative scheme used to calcu-
late the boundary values. A standard finite element
package, in this case NASTRAN/COSMIC, is used
as a preprocessor to generate the substructure stiff-
ness matrices. The new parallel code solves the sys-
tem of equations. Figure 1 shows how the structural
solution is calculated in parallel.

The interactive parallel solution of the finite ele-
ment system is strongly based on that proposed by
Carter, et. alW5. It uses a preconditioned conjugate
gradient method. That scheme has been adapted to
run on the IBM SP-2 and SG1 Origin 2000 at NASA,
Ames Research Center using the MPI for interpro-
cess communication.

To use this scheme, the full structure is broken
into substructures. The finite element stiffness m a
trices are assembled for each substructure, but never
for the full structure. The use of connectivity in-
formation allows dat'a to be exchanged about nodes
that are shared between two or more substructures.
This method has been shown to be scalable and
efficient5.

ENSAERO-FE is dependent on an external code

to generate the substructure stiffness matrices. As
this is a one time operation for linear structures,
there is little to be gained by parallelizing it. And,
there is no need to go to the effort and expense of du-
plicating standard codes that are readily available.
In this case, NASTRAN/COSMIC4 was used as a
front end, although any similar code should be eas-
ily adaptable. This also allows access to the full
range of standard preprocessing and CAD tools de-
signed for NASTRAN, as well as use of the supply
of existing data decks.

Once the user has used the front end program to
create the substructure stiffness matrices, he builds
input files describing the substructure connectivity
and boundary conditions. Depending on the case
being run, he may also set up load input files, or have
the loads calculated by an attached aerodynamics
wde. In this case, ENSAERO-MP16 is used.

ENSAERO-MPI is an aeroelastic analysis pack-
age which couples the Reynolds averaged thin- layer
Navier-Stokes equations with structural analysis. Its
existing, limited, low fidelity simple finite element or
modal structural capabilities were replaced by the
new finite element code. ENSAERO's internal in-
terpolation/extrapolation capability was adapted to
exchange the aircraft aeroelastic data between the
two disciplines.

The codes for the two disciplines are run in par-
allel on the IBM SP-2. ENSAERO uses one proces-
sor per aerodynamic zone. ENSAERO-FE similarly
uses one processor per substructure. The number of
processors used varies substantially from problem to
problem, depending on problem size and desired per-
formance. For this work, the aerodynamic code has
typically used around ten processors and the struc-
tural wde around five. The MPI library is used for
communication between like codes as well as across
disciplines. NASA Ames' MPIRUN library is used
to manage processor allocation and some communi-
cations set-up chores.
Interpolation/extrapolation of loads and deflec-

tions is performed using an intermediary interface
grid. This interface grid is made of the structural
skin elements (internal structural elements such as
spars are ignored). These skin elements are con-
verted to triangular interface elements for ease of
interpolation. A search algorithm locates fluid grid
points that fall within each triangular interface ele-
ment and computes the appropriate bilinear interpo-
lation coefficients. Figure 2 illustrates the matching
of the two domain grids. Very dense fluid grids near
the wing tip and at wing mid span (near a control
surface) result in a large number of fluid points per
interface triangle in these regions.

AEROEL ASTIC VALIDATION

A wide variety of detailed aircraft configurations
are being analyzed. The combination of ENSAERO
with finite element structural analysis has proven to
be an accurate and efficient tool.

The first configuration is a Boeing SST wing-body
model. This is a relatively simple model with a rigid
fuselage and a flat, trapezoidal wing. The aircraft
was modeled using 8 fluid zones and 3 substructures,
as shown in figure 3. Only the 4 fluid zones for the
top half of the domain are shown; the bottom half
is similarly modeled. Also, the structure is modeled
in rectangular plates (QUAD~S), but plotted as tri-
angular elements.

Figure 4 shows an aeroelastic solution. The right
half of the figure colors the stuctural grid by sub-
stucture. The left half of the figure shows the pres-
sure field on the aircraft surface. Both halves of
the figure show the aeroelastically deflected aircraft
shape. By careful comparison of the deflected struc-
tural and aerodynamic grids, the deflection/load in-
terface code was validated.

To validate the new code in its entirity, this
aeroelastic solution was compared to one using
ENSAERO-MPI's older modal structural code.
NASTRAN used the exact same structural model
to compute the first 6 stuctural modes. The finite
element code produced a leading edge tip deflections
that was about 3.6% lower than the modal solution.

The second model being examined is a high-
fidelity wing model, modeling the ARW-2 research
wing 6 . The model includes the major internal de-
tails of the wing including ribs and spars. Final mod-
eling is underway.

More detail on this work can be found in a related
conference papers.

CONCLUSIONS

The interfaced ENSAERO-FE and ENSAERO-
MPI codes are a powerful analysis tool. They're ac-
curate, efficient, and allow the high-fidelity aeroelas-
tic modeling of aircraft. The use of standard struc-
tural codes as a front end package provides efficient,
easy user access to the codes.

The choice of NASTRAN as the code preproces-
sor provides a number of advantages including access
to large libraries of tools, elements and data decks.
Construction of a new custom parallel solver capabil-
ity resulted in a custom, streamlined, parallel, high
fidelity analysis capability.

Performance of the finite element code module is
excellent for sufficiently large problems. For very
small problems the communications overhead can re-
duce performance. Aeroelastic analysis of very flexi-

ble structures requires artificial damping to acceller-
ate convergence.

This work was completed using the resources of
the High Performance Computing and Communica-
tion Program (HPCCP) at NASA Ames Research
Center. The work done by the first author was
funded through NASA Ames Research Center Fluid
Dynamics Analysis Contract NAS2-14109.

REFERENCES

[I] Byun, C., and Guruswamy, G. P., "Wing-Body
Aeroelasticity on Parallel Computers," AIAA
Journal, Vol. 33, No. 2, Mar.-Apr. 1996, pp. 421-
428.

[2] Guruswamy, G. P. "ENSAERO - A Multidis-
ciplinary Program for Fluid/Structural Interac-
tion Studies of Aerospace Vehicles," Comput-
ing Systems Engineering, Vol. 1, Nos. 2-4, 1990,
pp.237-256.

[3] Byun, C., and Guruswamy, G. P., "Aeroelastic
Computations on Wing-Body-Control Configu-
rations on Parallel Computers," AIAA Paper
96-1389, April 1996.

[4] "NASTRAN User's Manual," NASA SP-
222(08), June 1986.

[5] Carter, W.T., Sham, T.-L., Law, K. H., "A Par-
allel Finite Element Method and its Protoype
Implementation on a Hypercube," Computers
B Str~lctures, Vol. 31, No. 6., pp. 921-934, 1989.

[6] Byun, C., and Guruswamy, G. P.,
"ENSAERO-MPI Parallel Multi-Zonal Version
User's Guide," 1996.

[7] Sanford, M.C., Seidel, D.A., Erkstrom, C.V.,
Spain, C.V. "Geometrical and Structural Prop-
erties of an Aeroelastic Research Wing (ARW-
2)," NASA T.M. 4110, April 1989.

[8] Eldred, L.B., Byun, C., Guruswamy, G . P., "In-
tegration of High Fidelity Structural Analysis
into Parallel Multidisciplinary Aircraft Analy-
sis," presented at the 39th AIAA/ ASME /
ASCE /AHS /ASC Structures, Structural Dy-
namics, and Materials Conference, Long Beach,
CA, AIAA 98-2075, April 1998.

r - - - - - - - - - - - - ~
A Computation Node

I it

Aerodynamic Loads

Internal Deflections

Solution at Boundaries

Final Deflections

Interpolation to CFD grid

Substructures

I
' Daea f r o m Aerodynamics

C o n v e r t and i n t e r p o l a t e
nerodynami c p r e s s u r e s
to f o r c e s on s t r u c t u r e s
g r i d

7; : I t e r a t i v e S o l u t i o n
: o f e a c h s u b s t r u c t u r e
: u n t i l boundary
: d e f l e c t i o n s c o n v e r g e

-5' --.

n

C o n v e r t and i n t e r p o l a t e
s t r u c t u r a l d e f l e c t i o n s
t o d e f l e c t i o n s o f
a e r o d y n a m i c g r i d

=+
D a t a t o Aerodynamics

Fig. 1. Parallel Aeroelastic Structural Analysis using Substructuring

#of Fluid Grid Pts Mapped

Fig. 2. Arrow Wing Structure-Fluid Grid Matching

Fig. 3. Arrow Wing-Body Partial Fluid and Structural Grids

Fig. 4. Aeroelastic Solution for Arrow Wing-Body Configuration

#hswA ~YJ'J

PERFORMANCE AND APPLICATIONS OF ENSAERO-MPI ON SCALABLE COMPUTERS

Mehrdad Farhangnia, MCAT Inc, NASA Ames Research Center, MS 258-1, (650) 604-4496,
farhangn @nas.nasa.gov

Guru Guruswamy, NASA Ames Research Center
Chansup Byun, Sun Microsystems Inc 3LLd9 8%

Intoduction " f .
The latest improvements and results generated by ENSAERO-MPI are presented in this talk. "
ENSAERO-MPI is a parallelized, high-fidelity, multi-block code with fluids, structures and
controls capabilities developed at NASA Ames Research Center under the support of HPCC. It is
capable of multidisciplinary simulations by simultaneously integrating the Navier-Stokes
equations, the finite element structural equations as well as control dynamics equations using
aeroelastically adaptive, patched grids. Improvements have been made to the code's robustness,
moving grid capabilities and performance.

Multi-Zonal Parallel Implementation
The code is parallelized on a coarse g~ain level using the Message Passing Interface (MPI) for
communication. The different disciplines are solved independently on separate nodes, with the
flow domain partitioned further into a number of subdomains. There is also multi-parameter
parallelization, where various parameter sets are run concurrently for a particular configuration.
The partitioning and loading of the executables from each module onto the computational nodes is
enabled using the MPIRUN library, which itself is based on MPI. This allows ENSAERO-MPI
the portability to run on any shared or distributed memory, scalable computer supporting the MPI
standard.

Adaptive Grids
Multidisciplinary simulation of an aircraft needs more advanced technology in moving grids
because multi-zonal grids are common in complex geometries such as full aircraft configurations.
For such g~ids used in ENSAERO-MPI, Trans-Finite Interpolation (TR) based multi-block
moving grids scheme is developed with non-matched block boundary interfaces. It provides a
more general and flexible capability for aeroelastic applications of complex geometries. In addition,
this moving grid capability is an efficient procedure for aeroelasticity simulations since the grid
perturbation is done in parallel.

Applications
Several configurations have been analyzed with rigid and aeroelastic computations using
ENSAERO-MPI on various parallel platforms. A wing-body, wing-body-empennage and a wing-
body-nacelle topology of a high speed civil transport (HSCT) have been simulated and validated
with various numerical and experimental results. Results of these computations can not be fully
presented due to their proprietary nature, however, other configurations, such as the Boeing
arrow-wing-body and the F-18IA full configuration will be presented. Figure 2 shows the CFD
grid and pressure coefficient distribution of an 18 block, F- 181A geometry resulting from a high a
Navier-Stokes calculation.

Scalability and Performance
A scalability and performance study of ENSAERO-MPI has been done on two different IBM
SP2s, an SGI Origin 2000 and a Sun HPC 6000. A wing-body-empennage configuration,
consisting of 1.25~106 grid points and a wing-body configuration with 5.1~105 grid points are
used for evaluation. Results on the SGI have thus far been most encouraging with performance up
to 100 MFLOPSIproc, including superlinear scalability. With the multi-parameter option, several
cases can be computed concurrently resulting in potentially 25 GFLOPS performance on the 256
processor Origin 2000.

Flgore 2. (a) Ah 18 block, 1.7 nill lion slid poi ht patched slid. (b) F~xsut.c c&cient distlibutioh.

Flgnre 3. [a) Sin k-p~m~mlcr pctfutmilnana d wi h sunfigutaliun, (b) multipl~prrrinclrt
pct%~~mncc on scvccud swlablc pht h m

OVERAERO-MPI: PARALLEL OVERSET AEROELASTICITY CODE

Ken Gee 3 ~ ~ 9 8 3
MCAT, Inc., MS 258-1, Ames Research Center, Moffett Field, CA 94035

(650) 604-4491, gee@nas.nasa.gov Lfl

Yehia M. Rizk
NASAIAmes, MS 258-1, Ames Research Center, Moffett Field, CA 94035

(650) 604-4466, yrizk@mail.arc.nasa.gov

1.0 Objective

An overset modal structures analysis code was integrated with a parallel overset Navier-Stokes
flow solver to obtain a code capable of static aeroelastic computations. The new code was used to
compute the static aeroelastic deformation of an arrow-wing-body geometry and a complex, full
aircraft configuration. For the simple geometry, the results were similar to the results obtained
with the ENSAERO code and the PVM version of OVERAERO. The full potential of this code
suite was illustrated in the complex, full aircraft computations.

2.0 Technology Impact

The flexibility of modern aircraft has an impact on the aerodynamic performance and design of
the aircraft and can be predicted using computational fluid dynamics. The code suite presented in
this paper provides a means for solving static aeroelastic problems for complex aircraft
configurations modeled by overset grids on parallel computing systems. Overset grids simplify
the modeling of complex aircraft geometries, which may include nacelles, pylons, and high-lift
devices. Flows of interest are typically viscous and separated, requiring solution of the Navier-
Stokes equations to accurately model the flow features. Such computations are resource- and
time-consuming, requiring the use of vector supercomputers or massively parallel systems. The
code suite provides an additional tool for use in the aircraft design process and can help improve
the final aircraft design.

3.0 Technical Approach

The code suite consisted of the OVERFLOW-MPI code1 and the modal structural analysis code
that was part of ENSAER0.2 The modal code was adapted for use with overset grids. In an
overset grid system, grids of varying densities and topologies overlap, as shown in Fig. la. In
addition, some grids can contain blanked regions, The structural grid has its own density and
topology and may be unstructured, as shown in Fig. lb. A binary tree search algorithm3 was used
to efficiently find neighbors between the two grid systems in order to interpolate surface pressure
onto the structural grids and the surface deformation onto the fluids grids. Both fluids and
structural surface grids were triangulated by the structural analysis code to simplify the search
procedure and the bookkeeping of the donor data. The equation of the plane, defined by the three
points of the donor grid triangle, was used to compute the interpolated data.

a) Overlapped, blanked fluids grids b) Structural grid over same area

FIGURE 1. Examples of grid overlap in overset fluids grid and between fluids and structures grids.

Interpolation of the deformation data onto the fluids grid surfaces was facilitated by treating each
fluids grid surface as one of four types. Fluids grid surfaces were classified as flexible, referenced
to the structural grid(s); flexible, referenced to a fluids grid(s); rigid, referenced to a fluids grid;
and, rigid, non-moving. Deformation or translation data were obtained from the reference grid.
This was suKicient to account for all fluids grid surfaces in the full aircraft case. The
classiiication procedure was performed by the user.

The fluids volume grids were updated using the deformed fluids grid surfaces. The outer
boundaries of most volume grids were allowed to be free-floating. This reduced the likelihood of
crossed grid lines caused by the deformation. However, it introduced a slight error in the Chimera
boundary interpolation data. This error was minimized if the surface deformation was small and
if the grid outer boundary was sufficiently far from the surface such that the flowfield was close to
freestream. The outer boundaries were fixed for volume grids with two or more surfaces on
opposite faces, i.e., a surface at 1 = 1 and 1 = I-. A linear decay function based on the arclength
of the grid line was used to keep the opposing outer boundary fixed.

Loosely- and tightly-coupled versions of the code were developed. In the loosely-coupled code, a
fluids solution was computed using the original fluids grids. The flow solution was then used to
compute the deformation on the structural grids. The fluids volume grids were updated and the
fluids solution continued using the updated fluids grids. The number of fluids iterations between
structural code updates could be varied. In the tightly-coupled version, a structural update was
computed after every fluids iteration. This could be used for time-accurate results at a later date.
Tightly-coupled versions of the code were developed for both the OVERFLOW_PVM and
OVERFLOW-MPI parallel overset flow codes.

The codes were used to compute the static aeroelastic deformation on an arrow-wing-body test
case and a full aircraft case. The arrow-wing-body case was used to compare the accuracy and
performance of the overset aeroelastic code with an existing patched aeroelastic code. The full

aircraft case demonstrated the ability of the overset aeroelastic code to handle large, complex grid
systems in an efficient and consistent manner.

3.1 Arrow-Wing-Body Test Case

The arrow-wing-body test case, computed by Byun and Guruswamy4 using the ENSAERO
patched-grid aeroelastic code, was computed using the different versions of the parallel overset
aeroelastic code. The arrow-wing-body geometry was a generic HSCT configuration, as shown in
Fig. 2. It consisted of two grids totaling 510,400 grid points. The original patched grids were
modified by overlapping the patched surfaces between the two grids to work with the overset
codes. Fig. 3 shows a comparison of the grid densities of the wing portion of the fluids grid (Fig.
3a) and the structures grid (Fig. 3b). Note that the fluids grid required a much greater grid density
to resolve the flow features, whereas the structural problem required a much coarser grid.

FIGURE 2. Arrow-wing-body surface geometry.

a) Arrow-wing-body wing grid portion (fluids) b)' Arrow-wing-body wing grid portion (structures)

FIGURE 3. Comparison of arrow-wing-body grids.

The OVERAERO-MPI codes produced results similar to those obtained using the loosely- and
tightly-coupled versions of OVERAERO-PVM, and the ENSAERO codes, as shown in Fig. 4.
Differences in the convergence rate between the OVERAERO-MPI, OVERAERO-PVM, and

ENSAERO solutions were due to the different values of physical dt used in the structural code of
each solution. For the OVERAERO-MPI solution, the physical dt was obtained using the mean
aerodynamic chord (MAC) and the non-dimensionalization used in the OVERFLOW code. The
OVERAERO-PVM solution used a smaller value for the reference length, leading to a smaller
physical dt in the structures calculation. The value obtained from the ENSAERO code was based
on the time scale of the structural response.

DiEerences in the converged value of the tip deflection were due to the difterent methods used to
compute the wing area. The method used to compute the surface area in OVERAERO-MPI was
generalized so that it could be applied to other configurations without modification. The method
used in OVERAERO-PVM was similar to the method used in ENSAERO, and was specific to the
arrow-wing-body grid topology. This resulted in the better match between these two solutions.
The differences in the computed wing surface area led to differences in the normal force
distribution over the wing surface, resulting in the difference in the final computed tip deflection.

- OVFRAFRlY MPI fTlrUTI Y-CXXIPI F n l

0 200 400 600 800 1000

ITERATIONS

FIGURE 4. Comparison of OVERAERO and ENSAERO results for arrow-wing-body leading-edge tip
deflection.

The performance of the OVERFLOW-MPI and tightly-coupled OVERAERO-MPI codes
computing the arrow-wing-body problem on the Origin 2000 are shown in Figure 5. Figure 5a
shows the walltime required for the baseline OVERFLOW-MPI code, the additional compute
time required by the structures code, and the additional time required to send data between the
fluids and structure node via MPI. The sum total is the time required by the tightly-coupled
OVERAERO-MPI code. Since the structures portion ran on a single node regardless of the fluids
code partitioning, the compute time required by the structures code was fairly constant. The
communication time increased with the number of CPUs used due to the additional messaging
required to first collect grid and flow data from the fluids worker nodes, and then distribute
updated grid data to the fluids worker nodes. This caused a performance penalty as shown in Fig.
5b. The baseline OVERFLOW-MPI code scaled fairly well compared to the ideal linear increase.

However, the constant structures code compute time and additional MPI messaging time required
cause the tightly-coupled OVERAFiRO-MPI code to scale with a much flatter slope, although
there was an increase in performance with an increase in the number of CPUs used.

OVERFLOW-MPl
STRUCTURES
ADMTlONAL MPI COMM

FLUIDS CODE CPUs CPUs

a) Walltime required per iteration b) MFLOPs obtained

FIGURE 5. Performance data for arrow-wing-body case.

3.2 Full Aircraft Configuration

The loosely-coupled version of OVERAERO-MPI was applied to a full aircraft configuration.
The full aircraft grid system consisted of 150 grids totalling 32.3 million grid points. The grid
system modeled the fuselage, wing, pylons, nacelles, and deployed high-lift system.

A rigid solution was obtained on the SGI Origin 2000 using OVERFLOWWMPI. A rigid flow
solution was computed using 64 CPUs and required approximately 80 seconds per iteration. The
solution required two subiterations per timestep to converge. This was due to the sensitivity of the
solution to the order in which the Chimera boundary data was updated in the flow code. In the
serial version of OVERFLOW, the Chimera boundary data was updated after each grid completed
a time step. Thus, subsequent grids used a mix of n and n + l level Chimera boundary data.
However, in the parallel version of the code, the Chimera boundary data was updated at the end of
the time step, which meant that all grids used n level Chimera boundary data. This change caused
some grids to diverge unless two subiterations were computed during each time step for those
particular zones.

A static aeroelastic solution was computed using the loosely-coupled OVERFLOW-MPI code. A
structural update was computed after 100 flow iterations. A converged static aeroelastic solution
was obtained after 8 structural updates, based on the tip deflection history. Loosely-coupled static
aeroelastic solutions were also computed using the OVERFLOW-MLP code developed by James
TaftSs The OVERFLOW-ML,P code allowed for updates of the Chimera interpolation data after
each grid time step, as was done in the serial version of OVERFLOW, or after the completion of
the entire time step, as was done in OVERFLOW-MPI. The static aeroelastic solutions obtained
using both methods agreed with the results obtained from the OVERFLOW-MPI computation.

Sample performance data for the various flow codes are listed in Table 1. For the
OVERFLOW-MPI solutions, two subiterations were used only in those zones requiring it for
convergence. Also, the partitioning scheme used to distribute the grids over the number of CPUs
varied in each case, which explained why the performance does not scale with the number of
CPUs for these two cases. For the OVERFLOW-MLP solutions, the serial update option required
one process with 32 CPUs. It was found that 8 processes with 8 CPUs each provided the best
performance in the parallel update option solution.

TABLE 1. OVERFLOW-MPI Performance on Full Aircraft Problem.

4.0 Status of Technology

CODE

OVERFLOWWMPI (iter=2, some zones)

OVERFLOW-MPI (iter-2, some zones)

OVERFLOW-MLP (serial update)

OVERFLOW-MLP (parallel update,
iter=2, all zones)

The overset aeroelastic codes presented in this abstract have been demonstrated to produce results
similar to an existing patched aeroelastic code on a simple arrow-wing-body test case. The
overset aeroelastic codes have also been applied to a large, complex aircraft configuration. The
results indicated the code can successfully treat such a complex grid system.

Further testing is required to determine the accuracy of the method for the complex aircraft case.
Further improvements to the code include automating the fluids surface grid classification
process, improving the robustness of the interpolation scheme, and incorporating higher-fidelity
structural methods into the code. Future plans include applying the code to other complex, full
aircraft geometries.

Number of CPUs

35

64

32 (1 x 32)

64 (8 x 8)

5.0 References

1) Hatay, F. F., Jespersen, D. C., Guruswamy, G. P., Rizk, Y. M., Byun, C., and Gee, K., "A Multi-
level Parallelization Concept for High-fidelity Multi-block Solvers," SC97: High Performance
Networking and Computing, San Jose, CA., November, 1997.

seconds/iteration

176

81

90

87

2) Byun, C. and Guruswamy, G. P., "Wing-Body Aeroelasticity Using Finite-Difference Fluid1
Finite-Element Structural Equations on Parallel Computers," AIAA Paper 94-1487, April, 1994.

total MFLOPs

994

1183

nla

nla

3) Aftosmis, M. J., "Solution Adaptive Cartesian Grid Methods for Aerodynamic Flows with
Complex Geometries," von Karman Institute for Fluid Dynamics Lecture Series 1997-02, March,
1997.

4) Byun, C. and Guruswamy, G. P., "Static Aeroelasticity Computations for Flexible Wing-Body-
Control Configurations," AIAA Paper 96-4059-CP, August, 1996.

5) Taft, J., private communication, June, 1998.

Development and Validation of a Fast, Accurate and Cost-Effective
Aeroservoelastic Method on Advanced Parallel Computing Systems

~3 / - k L
Sabine A. Goodwin & P. Raj

(770) 494-8587; (770) 494-3801
p'? B/dLb

svermeersch@fsl.mar.lmcom~~m;raj@mar.lmco.com

Lockheed Martin Aeronautical Systems
3~681F-'7

Dl73-07,210685
86 S. Cobb Drive

Marietta, GA 30063-0685

Progress to date towards the development and validation of a fast, accurate and cost-effective
aeroelastic method for advanced parallel computing platforms such as the IBM SP2 and the SGI
Origin 2000 is presented in this paper. The ENSAERO code, developed at the NASA-Arnes
Research Center has been selected for this effort. The code allows for the computation of
aeroelastic responses by simultaneously integrating the Euler or Navier-Stokes equations and the
modal structural equations of motion1".
To assess the computational performance and accuracy of the ENSAERO code, this paper
reports the results of the Navier-Stokes simulations of the transonic flow over a flexible
aeroelastic wing body configuration. In addition, a forced harmonic oscillation analysis in the
frequency domain and an analysis in the time domain are done on a wing undergoing a rigid
pitch and plunge motion. Finally, to demonstrate the ENSAERO flutter-analysis capability,
aeroelastic Euler and Navier-Stokes computations on an L-1011 wind tunnel model including
pylon, nacelle and empennage are underway. All computational solutions are compared with
experimental data to assess the level of accuracy of ENSAERO. As the computations described
above are performed, a meticulous log of computational performance in terms of wall clock time,
execution speed, memory and disk storage is kept. Code scalability is also demonstrated by
studying the impact of varying the number of processors on computational performance on the
IBM SP2 and the Origin 2000 systems.

ENSAERO Solver Description

ENSAERO is a multidisciplinary aeroelastic code which solves the Eulermavier-Stokes
equations coupled with structural equations. ENSAERO has time-accurate methods based on
both central difference and upwind schemes" Baldwin-Lomax and Johnson-King turbulence
models are included for viscous flows. To represent the response of the structure due to external
loads, the modal equations of motion are included in the analysis and a transfinite interpolation
algorithm is applied to deform the grids for aeroelastic computations. The constituent parts of the
applications in the parallel code communicate with each other using the Message Passing
interface4 (MPI) protocol.

Model Descriptions and Results

Aeroelastic Research Wing; (ARW-2)

As shown in Figure 1, this wing body configuration is composed of a supercritical airfoil section
and has an aspect ratio of 10.3 and a leading edge sweep back angle of 28.8 degrees. The model
was tested in the Transonic Dynamics Tunnel (TDT) at transonic Mach numbers and three
different wind tunnel stagnation pressures5.
The H-H type computational Navier-Stokes grid contains a total of 2.6 million nodes (196 in the
streamwise direction, 112 in the spanwise direction and 60 normal to the surface). The surface
and field Navier-Stokes grid for the ARW-2 configuration is illustrated in Figure 2. Grid points
were clustered near the surface to insure a proper resolution of the boundary layer. The grid was
split up into eight blocks of equal size (330,000 points each) to assure a load balanced
com~utation.

4s.-

R~DHT %WE VIEW TOP VIEW

Figure 1 : ARW-2 geometry Figure 2 : ARW-2 Navier-Stokes grid

Aeroelastic computations at M=0.8, ol=0 deg, Reynolds number = 4.2 x 10' and dynamic
pressure (q) = 0.86 psi were performed. The first five structural modes were included in the
analysis. The simulation was started from a rigid steady state solution followed by a static
aeroelastic calculation with a large amount of structural damping. Because the structures
computations require only a very small amount of CPU time compared to the fluids

- .

Rigid Wing

Figure 1 : Deflected and undeflected wing
shape for the ARW-2

computations, structural deflections were
calculated at every timestep. The interactions
between fluids and structures modules were
continued until no further change in the wing tip
deflections was observed and therefore a static
aeroelastic solution was obtained.
The time history of the generalized displacements
for the first four modes shows that the first mode
(first bending) is the dominating mode in the
aeroelastic deflection. Figure 3 is an illustration of

/ M=0.8 - 70.7% span 1 1 M4.8 - 87.1% span 1

Static Aeroelastic (Computatio
0 Experiment I - - - Steady State (Computation)

0.51 - Static Aeroelastic (Computation)
0 Experiment

Steady State (Computation)

l.0.0 0:2 0.4 0.6 0.8 1 .O
Wc

Figure 2 : Upper and lower surface pressures from steady state and aeroelastic solutions at 70 % and 87 %
span for the ARW-2

the initial (undeflected) and final (deflected) wing shapes. Figure 4 shows the pressure
coefficient (Cp) distribution at the 70.1% and the 87.1% span stations. Error bars indicate the Cp
variation in the experiments due to unsteadiness in the flow. The steady state Cp differs
significantly from the experimental data. One can clearly see that the rigid computations result in
a shock on the upper surface of the wing while the experimental upper surface Cp's remain
smooth. When the wing is allowed to deform due to the normal aerodynamic forces, surface
pressures after the static deflections match the experimental data very well. Figure 5 shows the
upper surface pressure for the steady state solution and the static aeroelastic solutions and it
clearly indicates the significance of the aeroelastic effects for the ARW-2.

Steady State Solution Static Aeroelastic Solution

Upper Surface Cp U P P ~ SulIkCe Cp

Figure 3 : Upper Cp from rigid (left) and aeroelastic (right) solution for the ARW-2

The results of the ARW-2 test case usinn
: results lor the ARW-2 multiblock grids also provide a good illustratio~

"'"Y state s'l~tion at Md*' on IBM SP2 (2' of the current perfOmance capabilities of the million grid points)
ENSAERO code. To demonstrate scalability, i-e.
computational speed-up with increasing number
of processors, the grid was divided into four,
eight, sixteen and thirty-two subgrids. The
computational domain was decomposed by
splitting the full grid such that each block had
exactly the same number of grid points.
Table 1 shows the ENSAERO performance for
the ARW-2 steady state solution using the IBM-
SP2. Good actual scalability compared to
theoretical scalability was obtained up to 16
processors. When using 32 processors, the
communication overhead leads to a deterioration
from linear speed-up.

Benchmark Models Supercritical Wing (BMSW)

This supercritical wing is the second in a series of three similar models that the Benchmark
Models Program is testing in the TDT. The model is a rigid rectangular wing with a NASA
SC(2)-0414 second generation supercritical airfoil. The chord of the BMSW is 16 inches and the
span is 32 inches. The mount system in the tunnel is a flexible mount system called the Pitch and
Plunge Apparatus (PAPA) and it provides a well defined, two-degree-of-freedom dynamic
system on which rigid models encounter classical flutter in the TDT~. Figure 6 shows the
planform and airfoil section of the model. An H-H grid with a total of 1.15 million grid points
(128 points in the chordwise direction, 66 points in the spanwise direction and 65 points in the
normal direction) was generated.
Computations are performed at M=0.77, a=O deg, Reynolds number=1.055~10~ and q=1.17 psi.

Methods in the frequency and time domain are used
~c-------- 32- to determine the flutter boundary for this wing.]ml Several cycles of a forced harmonic oscillation (at

different reduced frequencies) are calculated to
section obtain the generalized forces as a function of reduced

1.v frequency. Multiple time marching computations are
required at various reduced frequencies to generate

~bnfo- of model. Dimensions arc tn inches. the GAF's for each structural mode (pitch/plunge).
Computations for this geometry are underway at the

- - time of writing.
Figure 7 shows the ENSAERO performance for the

Figure : Navier-Stokes g*d for BMSW BMSW steady state and dynamic aeroelastic
analysis. As for the ARW-2 testcase, good actual
scalability was obtained up to 16 processors.

Steady State Analysis Dynamic Aeroelastic Analysis

l ' ! ! ! ! ' ! !

number of processors

Figure 5 : Scalability results for BMSW on the IBM SP2

L- 101 1 Wind Tunnel Model

The L-1011 wind tunnel model is a 0.02 scale model of the Lockheed "Tristar" L1011-500
configuration. The L1011-500 is a wide-bodied, three engine, commercial aircraft which was
developed and manufactured by the Lockheed-California Company.
An 83 block grid of a total of approximately 9 million grid points was generated. The grid
topology is H-H around the pylon/nacelle, C-H around the wing and H-H in the farfield. Figure 8
shows the surface and field grid around the body and the pylon/nacelle. The spacing near the
surface is such that the computations will result in a Y+ of order 1.
To demonstrate the ENSAERO flutter-analysis capability, aeroelastic Euler and Navier-Stokes
computations are currently being performed at M=0.80, using the grid shown in Figure 8. The
solutions and the flutter characteristics will be compared to experimental data available for these
flow conditions. Figure 9 shows the steady state Euler solution which was obtained using 35
processors of an Origin 2000 system. The maximum time per step for these computations was
13.7 seconds and approximately 10,000 iterations were required to reach convergence. This
computation required approximately 3.1 gigabytes of memory. The dynamic aeroelastic analysis
for this case is underway at the time of writing.

Figure 6 : Surface grid on L-1011 geometry Figure 9 : Steady state solution on LlOll geometry
at M=0.8

Concluding remarks

This work will help us obtain a more detailed understanding of the high performance computing
environments so that they can be used cost-effectively to solve aerospace engineering problems.
The resulting capability will significantly enhance the aerodynamic loads and flutter analysis
methodologies crucial to achieving "optimal" structural design while meeting performance goals.

Acknowledgments

This research was performed under the NAS2-14092 contract sponsored by NASA-Ames
Research Center with Dr. G.P. Guruswamy as the technical monitor. Thanks are due to Dr.
Guruswamy of NASA Ames Research Center , Dr. C. Byun and Mr. M. Farhangnia for their
support and councel. The use of the NASA-Ames DBM SP2 and SGI Origin 2000 system is
gratefully acknowledged

References

1. Guruswamy, G.P. " User's Guide for ENSAERO - A Multidisciplinary Program for
Fluid/StructuraVControl Interaction Studies of Aircraft" NASA TM 108853, October 1994

2.Byun, C. and Guruswamy, G.P. "A Comparative Study of Serial and Parallel Aeroelastic
Computations on Wings," NASA TM 108805, January 1994

3. Obayashi, S., Guruswamy, G.P., and Goorjian, P.M., "Application of a Streamwise Upwind
Algorithm for Unsteady Transonic Computations over Oscillating Wings, " AIAA Paper 90-
3 103, August 1990

4. Dongarra, J., Hempel, R., Hey, A., Walker, D. "A proposal for a User-Level, Message Passing
Interface in a Distributed Memory Environment", ORNL/TM- 1223 1, June 1993

5. Eckstrom, C.V., Seidel, A.S. and Sandford, M.C., "Measurements of Unsteady Pressure and
Structural Response for an Elastic Supercritical Wing" NASA TP 3443, November 1994

6. Dansberry, B.E., Durham, M.H., Bennett, R.M., Turnock, D.L., Silva, W.A., and Rivera, J.A.,
"Physical properties of the Benchmark Models Program Supercritical Wing." NASA TM 4457,
September 1993.

Session 8:

Designmngineering Environments

MOD TOOL (MICROWAVE OPTICS DESIGN TOOL) 36,L a 70
4 & Daniel S. Katz, Andrea Borgioli, Tom Cwik, Chuigang Fu, William A. Irnbriale, 2 2 8

Vahrsu, Jamnejad, and Paul L. Springer

Jet Propulsion Laboratory

(contact: Daniel S. Katz, 4800 Oak Grove Drive, MS 168-522, Pasadena, CA, 91 104,
voice: 8 18-354-7359, fax: 8 18-393-3 134, e-mail: Daniel.S.Katz@jpl.nasa.gov)

I. Introduction

The Jet Propulsion Laboratory (JPL) is currently designing and building a number of instruments
that operate in the microwave and millimeter-wave bands. These include MIRO (Microwave
Instrument for the Rosetta Orbiter), MLS (Microwave Limb Sounder), and IMAS (Integrated
Multispectral Atmospheric Sounder). These instruments must be designed and built to meet key
design criteria (e.g., beamwidth, gain, pointing) obtained from the scientific goals for the
instnunent. These criteria are frequently functions of the operating environment (both thermal
and mechanical). To design and build instruments which meet these criteria, it is essential to be
able to model the instrument in its environments.

Currently, a number of modeling tools exist. Commonly used tools at JPL include: FEMAP
(meshing), NASTRAN (structural modeling), TRASYS and SINDA (thermal modeling),
MACOSAMOS (optical modeling), and POP0 (physical optics modeling). Each of these tools is
used by an analyst, who models the instrument in one discipline. The analyst then provides the
results of this modeling to another analyst, who continues the overall modeling in another
discipline.

There is a large reengineering task in place at JPL to automate and speed-up the structural and
thermal modeling disciplines, which does not include MOD Tool. The focus of MOD Tool (and
of this paper) is in the fields unique to microwave and millimeter-wave instnunent design. These
include initial design and analysis of the instrument without thermal or structural loads, the
automation of the transfer of this design to a high-end CAD tool, and the analysis of the
structurally deformed instnunent (due to structural andlor thermal loads).

MOD Tool is a distributed tool, with a database of design information residing on a server,
physical optics analysis being performed on a variety of supercomputer platfonns, and a
graphical user interface (GUI) residing on the us'er's desktop computer. The MOD Tool client is
being developed using Tcl/Tk, which allows the user to work on a choice of platforms (PC, Mac,
or Unix) after downloading the Tcl/Tk binary, which is readily available on the web. The MOD
Tool server is written using Expect, and it resides on a Sun workstation. Clienuserver
communications are performed over a socket, where upon a connection from a client to the
server, the server spawns a child which is be dedicated to communicating with that client. The

server communicates with other machines, such as supercomputers using expect with the
usemame and password being provided by the user on the client.

11. User Interface

The initial MOD Tool screen requires the user to provide a username and password, and to select
an old or new design on which to work. The client communicates with the server to check this
data, and to reach the area of the database containing this design. At this point, the main MOD
Tool screen comes up, allowing the user to work in one of six modes.

1. Design Mode

This mode allows the user to load, modify, and save a design. A design is primarily a set of
physical optical elements (reflectors), but it also includes two non-physical elements, the location
of a feed, and the location for outputs to be gathered. Reflectors are designed as conic sections
cut with an arbitrarily-defined oval cutting cylinder. These conic sections may be either flat
plates, paraboloids, ellipsoids, or hyperboloids. A feed location is defined by a point at the feed
aperture, a direction in which the feed is pointed, and the major and minor radii of the aperture.
An output system is defined by a point and a direction. The design information is shown in two
forms: a table and a graphic window. The table presents coordinates of the points that determine
the object (for a paraboloid, these would include the vertex, the focus, a point on the paraboloid
and a point off the paraboloid to determine the axis of the cutting cylinder, and the major and
minor radii of the cylinder) and other information that might be useful to the designer (again for
a paraboloid, this includes the distance from the vertex to the focus). The graphics window
shows this objects determined fiom this data in 2-D slices, and allows the user to move points on
the screen. Changes in either form are reflected in the other (if a graphic point is moved, the
table is updated to reflect the new data, and vice versa). Our current plans for the graphics frame
in the design mode are to allow the user to work on any Cartesian plane (for example, the x-y
plane at ~ 1 . 4 mrn). The designs are examined and modified by the GUI client, but the data is
loaded fiom and saved to the server's database.

2. Prescription Mode

This mode allows the user to specify and modify the objects that will be used in a given analysis.
The user can choose objects and order a subset of the objects from the current design, or load an
old prescription. Objects may be modified in location andlor orientation in order to perform a
tolerancing analysis. Once the objects are chosen and possible modified, the user can save the
prescription. The prescriptions are examined and modified by the GUI client, but the data is
loaded from and saved to the server's database. See Figure 1 for an example of this mode.

3. Geometric Optics Analysis Mode

This mode allows the user to perform geometric optics calculations on the prescription and
design that have been previously specified. This is done by converting the designlprescription

information into a MACOS input file, and running MACOS under control of the GUI. The
conversion is performed by the server, which also runs MACOS. Results are transferred to and
displayed by the client. This analysis is quite fast, and may be used for initial design work.

4. Physical Optics Analysis Mode

Physical Optics (PO) is a much more precise analysis method, which is used when the objects
being analyzed are relatively small (size is in terms of wavelengths). This mode allows the user
to set up and launch PO runs, which generally are fairly time consuming and are done on a
supercomputer. Currently, the PO code used at JPL has been ported to the Cray J90, and HP
SPP-2000, and Beowulf systems. Starting a PO job on a supercomputer involves the server
converting the design and prescription information to a format the PO code understands, the
client obtaining a username and password for the supercomputer from the user, and the server
transferring the files to the supercomputer and starting the job. Additionally, the PO code can be
used to analyze surfaces that have been structurally or thermally deformed by the server using
mesh and load file which have been submitted (using the following two modes), calculating the
coefficients of a bipolynomial surface for the deformation of each surface, and transferring this
information to the supercomputer. In order to do this, the server strips the information about
each surface from the mesh and load files, and uses MATLAB to calculate the desired
coefficients.

5. Submitting a Mesh Mode

This mode is used by the structural engineer. Once he has created a mesh, either based directly
on the design, or based on a CAD model which was built from the design, he uses this mode to
submit it from the client to the server, and store it in the database associated with the design.
MOD Tool currently uses FEMAP neutral files for meshes, which are unit-independent.
Therefore, the structural engineer must also provide information about the units that were used in
the mesh.

6. Submitting a Load Mode

This mode is also used by the structural engineer. Once a mesh has been created, it is normally
deformed by either structural or thermal loading. MOD Tool currently accepts NASTRAN .f06
files that contain the deformation of each node of the mesh. This information is used by the PO
code, as described in the Physical Optics Analysis mode.

111. Conclusions and Future work

MOD Tool is being built in conjunction with MIRO. The motivation for this is both to help the
MIRO project by providing the analyses required in a timely manner as well as to help MOD
Tool by providing a real instrument as a test case. The figures in this extended abstract all come
from MIRO. The close involvement of the two projects has been very valuable, and while the
measure of success for MIRO will not be seen for many years until it is flying and sending back

data, the measures of success for MOD Tool will be seen sooner, as MOD Tool itself is
(hopefully) used and supported by more flight projects, and as the pieces that make up MOD
Tool are used by other software projects.

Future needs that MOD Tool is designed to be able to meet include using analysis of a metrology
input (the instrument as-built), and design optimization. As MOD Tool develops, these
capabilities will be added, as will others that are have not yet been identified. MOD Tool has
been designed as a framework to which many things can be added. It already includes the use of
TclITk code on multiple platforms, Per1 scripts, Fortran programs, and MATLAB code on a
workstation, as well as Expect to allow use of networked supercomputers with proper
accounting. One of the considerations in this work was developing as little as possible, and thus,
reusing previously developed tools and components as much as possible. Figure 2 shows the
overall MOD Tool process, which clearly contains many tools that can be used independently.

>';.2,:d',.!.::F,.J! . a \. 2 :tA';

- ~

i- 1 w r - e 2. Conceptual process rn bepperfonmed by 1,48C? Tool - -2

AN OBJECT ORIENTED FRAMEWORK FOR HSCT DESIGN

Raj Sistla, Augustine R. Dovi & Philip Su
Computer Sciences Corporation

3217 N. Arrnistead Avenue, Hampton, VA 23666 3& loBy /
r.sistla@larc.nasa.gov (757) 766-8233 C, f i

Introduction
Aircraft design is inherently iterative in nature and multidisciplinary in composition. The process is
complicated by the fact that the focus and approach of each discipline can be quite distinct, and
multiple invocations of the discipline programs are required to arrive at a feasible design. The
usual result is a design procedure that is largely inflexible and computationally taxing. An earlier
effort within the Framework for Interdisciplinary Design and Optimization (FIDO) project used
Parallel Virtual Machine (PVM) to handle communicat~ons between discipline codes executing in a
"host/slave" mode. This framework was sensitive to the host operating system and changing the
analytical connectivity or switching discipline codes required major programming intervention.

The goal of the current framework is to provide a programming environment for automating the
distnbution of a complex computing task over a networked, heterogeneous system of computers.
These computers may include: engineering workstations, vector supercomputers, and parallel-
processing computers. They work on their individual parts of the desip, in parallel whenever
possible, and have access to centralized data. Each computational task IS assigned to the most
appropriate computer type. The present framework provides a means for automating the overall
design process. It provides communication and control between components, which include the
diverse discipline computations in a design problem and the system services facilitating the design.

The Framework
A multidisciplinary analysis and optimization system has been developed that is capable of
concurrent analyses using several disciplines such as aerodynamics, structures, performance,
propulsion and optimization. This system uses Common Object Request Broker Architecture
(CORBA), a client - server paradigm, in an Object Framework [I] for the integrated design of a
High Speed Civil Transport (HSCT) aircraft across a networked system of heterogeneous
computers. The Beans Development Kit (BDK) is used to provide a JavaBeans-based graphical
interface for user input, interactive and visual object connectivity, and for monitoring the progress
of problem execution. Java's Database Connectivity, JDBC, is used by the client and the server
objects to communicate with a central database. The primary objective of the design framework is
to optimize the aircraft weight for given cruise conditions, range and payload requirements, subject
to aerodynamic, structural, and performance constraints. The design variables include both
structural thicknesses and geometric parameters defining aircraft shape. The framework provides
the capability to switch between low-, medium-, and high fidelity codes with ease.

Common Obiect Reauest Broker Architecture (CORBA):

The Common Object Request Broker Architecture is a specification adopted by a consortium of
industry representatives known as the Object Management Group (OMG) to define a framework
for developing object-oriented distributed applications. In this model, an object is an encapsulated
entity with a unique identity whose services can be accessed only through a well defined inteiface.
Clients issue requests to objects to perform services on their behalf. The object implementation
and location are transparent to the requesting client.

CORBA can be thought of as a "software bus" [Fig. 11 connecting various objects, both
application and service, on a network of computers. Objects on the bus can be used by any other
object on the bus, with the Object Request Broker (ORB) mediating the transfer of messages
between them.

Obiect Reauest Broker (ORB):

The ORB is a software implementation of the CORBA specification [Fig. 21. The key feature of
the ORB is the transparency of how it facilitates the client-object communications. The client is not
required to know where the target object resides, how and in what programming language it was
implemented, or the operating system of the target host. When a client makes a request, it is not
concerned whether that object is currently activated and ready to accept requests. The ORB
transparently starts the object, if required, before delivering the request. The client does not need
to know what underlying communication mechanism the ORB uses to mediate the message passing
between the client and the server. All these enable the user to generate 'thin clients' i.e., all the
number crunching is done on the server-side on computers most appropriate for the task. It also
frees the application developer to concentrate more on the application domain issues and less about
the low-level distributed system programming issues.

An ORB is one component of the 0MG7s Object Management Architecture (OMA). The others
include the application objects, CORBA services, and CORBA facilities. Services include:

Naming Service - which allows clients to find objects based on names,

Trading Service - which allows clients to find objects based on their properties.

Different commercial implementations of the ORB must all be able to talk to each other using a
standard network protocol called the Internet Inter-ORB Protocol (IIOP).

Within an object framework, each component communicates with others on a peer-to-peer basis.
Each component is a client of other services and a server for the services it provides. Very often,
a client for one request is a server for another. This architecture facilitates network programming
by allowing the creation of distributed applications as sets of cooperating reusable objects that
interact as though they were implemented in a single programming language on one computer.

Interface Definition Langua~e (IDL):

Before a client can make a request to an object, it must know the types of operations supported by
the object. An object's interface specifies the operations and types that the object supports and thus
defines the requests that can be made to the object. Interfaces for objects are defined in the OMG
Interface Definition Language (DL). Interfaces are similar to classes in C++ and to interfaces in
Java. IDL is a declarative language, not a programming language. It forces interfaces to be
separate from object implementa~ons. To use a discipl~ne code, the user needs to know only what
interfaces are implemented by that code.

Obiect Creation:

In the current implementation, Iona Technologies' implementation of the C O D A standard for the
Java programming language, OrbixWeb, was chosen as the ORB. As a first step, all codes to be
wrapped as objects are Identified using a criterion such as reusability for their selection. Next, for
each object, an interface file is written in IDL identifying the services offered by that object, the
inputs, the outputs, and the types of errors the object can "throw". The object and its services
(interpreted as function calls) are then implemented in Java. A service call is associated with the
invocation of a discipline code. Discipline codes are mainly legacy codes written either in
FORTRAN or C and are accessed through an intermediate function following Java's Native
Interface (JNI) guidelines. Within the implementation file, a central relational database is queried
for needed data and file information. Any required file management is done based on this file
information. The third code component in this process of "objectifying" discipline codes is writing
the "Server" class code. This component ties the implementation class to its IDL interface.
Servers provide objects for use by clients and other servers.

A 'master' client program is then written to implement the design analysis algorithm by making
service calls to the distributed application objects. When the master program is executed, the client
calls are transferred to the ORB which then passes the function calls through the server code to the
target object. Components of the ORB are implemented by the OrbixWeb daemons running on the
client and the server hosts. After the target object execution is completed, responses are
communicated back to the client via the ORB and as possible updates to the central database.

The Problem

This section describes the implementation of a simplified aircraft design optimization benchmark
problem in the CORBAIJava based Object Framework. This problem is considered an excellent
multidisciplinary optimization test case since it includes the interplay of multiple disciplines while
carrying along only a small number of design variables, constraints, and a single objective
function. The principal disciplines for the design problem are: aerodynamics, structures,
propulsion, and performance. The design objective is to minimize the aircraft gross take-off
weight for given cruise conditions, range, and payload requirements. The weight is minimized
subject to aerodynamic, structural, and performance constraints such as limiting values of lift and
drag, maximum stresses at critical points on the wing inboard and outboard panels, and range.
Design variables include wing sweep, root chord, distance to break, and inboard and outboard skin
thickness. Figure 3 shows the example HSCT model, without empennage and control surfaces,
that was studied within this framework. Figure 4 describes the discipline segments and the
information flow necessary for the design and analysis of an optimal HSCT configuration.

Implementation:

The discipline codes are "wrapped" using JNI methodology and encapsulated as objects in a
CORBA Object Framework, for a network of Sun workstations. Sub-processes are also
implemented as objects which use the lower level objects for their functionality.

The main program, the 'master' client written in Java, implements the design algorithm. It sends
out requests for the services of the discipline objects residing on remote networked host
computers. The BDK provides a graphical interface for user input, interactive visual object
connectivity, and problem execution progress monitoring. To create the master client, selected
object clients are implemented as JavaBeans and connected together using Java Studio, which is an
interactive visual beans work environment. JavaBeans are depicted as icons (which can be
animated). These can be equipped with "customizers", which are Motif style windows, that permit
user interaction with the underlying object variables. User selections in these customizer windows
override the default values programmed in the object definitions.

The OrbixWeb daemons must be up and running on the host and client computers before problem
execution can begin. The ORB mediates the communication of the marshalled requests and starts
the remote object, if required, before delivering the request. After the remote object completes
servicing the request, the results are communicated back to the client by the ORB and as possible
updates to the database.

At the start of the design process, initial run conditions are obtained from a central database and the
various discipline segments are initialized. This initialization can be done in parallel on respective
host computers because the disciplines are uncoupled at this stage. After initialization, the design
optimization process cycles through analysis, gradient computation, and optimization phases until
an optimum weight is obtained and the design variables have converged, or the specified limit on
number of cycles is reached.

Analysis Phase:

The analysis phase begins with a calculation of drag polars using the medium-fidelity code
Wingdes. Lift and drag values for a range of angles-of-attack are used in generating parametric
representations of aerodynamic responses. All subsequent aerodynamic analyses for that design

cycle will utilize these drag polars to compute lift and drag. The next step in the analysis phase is
the iteration for airplane weight convergence. The weight iteration loop begins with a static trim
analysis where force balance is computed for two different load factors: a) load factor = 1.0 for
drag calculation used in performance analysis, and b) load factor = 2.5 for loads calculation in
structural design. The propulsion segment computes the current fuel flow rate. Next, the
performance segment uses this flow rate to produce an estimate for fuel weight.

Structural analysis to determine structural weight is required only during the first iteration. A loads
transfer program converts the aerodynamic pressure distribution to vertical forces on the structure
at a trimmed angle-of-attack and a load factor of 2.5. The structural analysis program used in this
problem is the Equivalent Laminated Plates Solution, ELAPS [Ref. 21. The total weight is then
computed as the sum of the fixed weights, structural weight, and the fuel weight. The
aerodynamic, propulsion, and performance analyses are conducted iteratively until the total weight
converges within a predefined tolerance.

Gradient Phase:

In the next phase, all the system response derivatives required by the optimizer are computed. The
gradients of aerodynamic and structural constraints are computed using finite-differences.
Gradients of the fuel weight with respect to design variables are obtained using a closed-form
expression.

Optimization Phase:

Conmin with linear function approximations [Ref. 31 is used as the optimization program. The
optimizer attempts to minimize the objective function, total airplane weight, subject to the
aforementioned design constraints and computes an updated set of values for the design variables.

Results:

A typical HSCT configuration flying at Mach 2.4 at an altitude of 63,000 feet was analyzed using
the analytical connectivity shown in Fig. 4. Figure 5 shows the variation of the structural design
variables with cycle number while Figure 6 shows the variation of the airplane weight components
with cycle number. These results are plotted along with similar results from an implementation of
the current problem in the earlier Framework, FIDO.

These results indicate that the benchmark problem has been successfully implemented in the Object
Framework and fully validated in comparison with the earlier implementation.

Conclusion:

Conceptual design systems like the one described here provide the aircraft designer with the
analysis tools required to manage the complexity of multidisciplinary analysis and to unleash the
computational resources required to design a realistic HSCT configuration. This approach is now
being applied to a more realistic conceptual aircraft design problem using high fidelity analysis
codes such as CFL3D for nonlinear aerodynamics, the Genesis structural analysis code, a detailed
as built weights module, along with mission/performance and optimization codes using detailed
structures, nonlinear aero- and linear aero- grids for multiple load conditions and configurations.

References

1. Steve Vinoski, "CORBA: Integrating diverse applications within distributed Heterogeneous
Environments", IEEE Communications, Vol. 14, No. 2, February 1997.

2. Giles, G. L., "Equivalent Plate Analysis of Aircraft Wing Box Structures with General
Planform Geometry", Journal of Aircraft, Vol. 23, No. 11, 1986, pp. 859-864.

3. Vanderplaats, Garret N., "CONMIN - a FORTRAN Program for Constrained Function
Minimization User's Manual", NASA TM-X-62282, August 1973.

n SU~SPARC Sun SPARC

sun SPARC Sun SPARC Sun SPARC

Figure 1. CORBA as a 'software bus'.

Client Host Server Host

Function

Figure 2. The Object Request Broker, ORB.

Figure 3. HSCT model problem and design point data.

i,.. ~,i-,-;. -- * --
I Drag Polars

Weight_E_stim_at:lon - - - - - - - - - - - - - - - - ,
A

Aerodynamic Analysis *
[Propulsion *
I Performance

f
Structural Analysis

1 Aerodynamic I I Structural (I Performance I I -

+yes
EXIT

Figure 4. Flowchart for aircraft design optimization.

Outboard

0.3 4 . , , , , , , , , , ,

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

Cycle Number

0
e e @ @ O e e e o

2.5 . . i

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

Cycle Number

Figure 5. Variation of structural design variables. Figure 6. Variation of airplane weights.

NATIONAL CYCLE PROGRAMOIJCP) COMMON ANALYSIS
TOOL for AEROPROPULSION

3Lb k92,
G. Follen, C. Naiman, A. Evans/NASA Lewis Research Center

Gfollen~lerc.nasa.~ov, (216)433-5193 tzle /.

Within NASA's High Performance Computing and Communication (HPCC) program,
NASA Lewis is developing an environment for the analysisldesign of aircraft engines
called the Numerical Propulsion System Simulation (NPSS). NPSS is focused on the
integration of multiple disciplines such as aerodynamics, structures and heat transfer with
numerical zooming on component codes and computing/communication technologies to
capture complex physical processes in a timely and cost-effective manner. The vision for
NPSS is to be a "numerical test cell" that enables full engine simulation overnight on
cost-effective computing platforms.

Through the NASAIIndustry Cooperative Effort (NICE) agreement, NASA Lewis and
industry partners are developing a new engine simulation, called the National Cycle
Program (NCP), which is the initial framework of NPSS. NCP is the first phase toward
achieving the goal of NPSS. This new software supports the aerothermodynarnic system
simulation process for the full life cycle of an engine. The National Cycle Program
(NCP) was written following the Object Oriented Paradigm (C*, CORBA). The
software development process used was also based on the Object Oriented paradigm.
Software reviews, configuration management, test plans, requirements, design were all
apart of the process used in developing NCP. Due to the many contributors to NCP, the
stated software process was mandatory for building a common tool intended for use by so
many organizations. The U.S. aircraft and airframe companies recognize NCP as the
future industry standard for propulsion system modeling.

While NCP uses "Cycle" in its name, it by no means represents what cycle simulations
had been characterized by in the past. The NCP was written to have all the features that
currently existed in cycle simulations as well as having the ability to exercise the NPSS
concepts of component code zooming, distributed/parallel processing and introduces
through an API a means to conduct Multi-discipline simulations all from a "System"
point of view. The NICEINCP team found a way to come together into a pre-
competitive environment to create a Common Analysis Tool for Aero~ro~ulsion where
the pooling of expertise and the sharing of the best features of all the companies could be
leveraged and merged into one single effort. The NPSSNCP team consists of
representatives from:

NASA Lewis General Electric Aircraft Engines Pratt & Whitney
The Boeing Company AlliedSignal Engines Allison
Williams International Teledyne Ryan Aeronautical WPAFB
AEDC

""BTP-Breaking the Paradigm"
NCP is being developed as the NPSS standard analysis framework based on the object-
oriented paradigm featuring technologies like GORBA (Common Object Request Broker
Architecture) by which aeronautics codes can be linked together in a collaborative
environment. Executing a distributed simulation is now possible using the CORBA
capabilities implemented within NCP. NCP is able to perform all the functions of a
classical "cycle analysis code" as well zoom to higher order codes both within
aerodynamic and structural class codes. Pictorially, what NCP has now allowed is
illustrated by the following figure 1.

NPSS Environment

To,> .,d..
s"5-.. " ,

< J .I..... - .. r; ""I,:'

Figure 1. NCP and zooming

Historical Cycle Simulations
In a thermodynamic cycle system model of the engine, each component is represented by
an overall (lumped) performance characteristic map. NCP is the model that is used to
simulate the thermodynamic engine cycle. This model is obtained by matching the
characteristics map of each component of the engine in the system model. During
conceptual design of an engine, the performance of each component is estimated from an
empirically derived database or from prior rig testing. In the case of a new component
with no prior test history, the component performance is derived from a database and is a
first approximation. In the conceptual design of an engine, component modeling codes
are used to approximate the thermodynamic performance characteristics. These
component performance characteristic maps are updated at a later point in the design
cycle based on analysis of the components with Navier-Stokes flow codes, and eventually
with test data.

In place within the Aeropropulsion Industry, many FORTRAN based simulation systems
exist. Each of these systems mentioned here can potentially be replaced with NCP:

SOAPP - State of the Art Performance
Program, initially developed at Pratt &
Whitney in 1 97 1.
ROCETS- modular rocket design and
analysis system
CWS-GE Aircraft Engines engine
performance system, developed in the 80's

supported by NASA Lewis Research
Center

GSA- research propulsion program used by
Boeing written in the 1960's

FAST-in use at Allied Signal developed in
the 1980's.
ATEC- Aerodynamic Turbine Engine
Code used at AEDC, simulates dynamic

-

RRAP-modular simulation system in use
by Rolls Royce.

NNEP- a simulation program currently
Performance Program.

behavior
TERMAP- used by Allison Engine
Company, namelist input format

BIEPP-the Boeing installed Engine

The NCP Team has collected the "best of the best" in defining the requirements for a
cycle analysis tool with extensions in this tool for zooming principles and establishing the
effects of multi-disciplines. The use of a common tool and just as important, the
knowledge of the physics within NCP, is invaluable to the NPSSNCP team. Companies
spent huge sums of money and exhaust many person hours in matching and integrating
data from differing cycle systems with their own simulation systems. NCP offers many
advantages over the current industrial practices which is characterized by as many
different simulation systems as there are companies. A few advantages to an industry
wide tool are:

This is not another cycle tool: NCP preserves the cycle system view and extends
it to allow for the creation of better models;
Common tool reduces matching of answers when multi-company contracts are
awarded;
Company proprietary issues are still preserved because data used within the NCP is
still held proprietary;
Reduced costs in training and needed knowledge of other's systems;
NCP was built based upon the object oriented paradigm that facilitates re-use of
tested objects, sharing of created objects and permits the creation of new objects.

National Cycle Program Simulations
The NCP preserves what "Classical Cycle Simulations" have done and what they are
needed for: Steady state aerothermal system performance, Calibration to measured
behavior, Open loop transient performance predictions and Closed loop coupled
aerothermallContro1 system performance predictions. More importantly though, NCP
was written to extend these features to include the integration of higher order CFD, multi-
disciplines and parallel/distributed processing of each engine element while preservin~ an
overall engine system view.

Common Objects within NGP
NCP simulations are built from the follow objects:
* Elements: Compressor, Turbine, Inlet, etc
a Subelements: Compressor Map, Turbine Map, Nozzle Map, etc
* Ports: Fluid, Fuel, Mechanical Rotation, Thermal Heat Transfer

Flow Stations: Therrn Library, JANAF Library, CEC
* Tables: 1 ", 2nd , 31d order Lagrangian

Output Objects: Data dump, Page & window viewers
* NCP Input syntax allows for user defined elements and subelements and provides a

macro language for user input

NCP's current delivery schedule is as follows and is illustrated in Figure 2.:

Figure 2. NCP schedule

In FY99, the NCP team will complete the major pieces of the Cycle system including
Customer Deck generation, Dynamic solver capability and finish off the complete set of
engine components. At the same time, NCP's development will shift to a major emphasis
on Zooming. NASA Lewis is completing the connections between NCP and Wate
through the NCP's External Element BPI definition. Additionally, Pratt and Whitney
will define the object layer for connecting NCP to 1 and 2 Dimensional meanline and
streamline codes for use in companies design process. NCP will also be connected to the

LAPIN inlet code which introduces a number of interesting engineering and computer
science issues: Dynamic solver, geometry, multiple solvers.

Summary
The NCP offers a unique opportunity to the US Aeropropulsion Industry in that this
group found a pre-competitive business area where they come together to build a
common tool and push a new technology (NPSS). Many known and quantifiable benefits
exist for the adoption of a common cycle analysis tool such as NCP. These benefits
will be further extended as NPSS conducts "zooming" technology pushes from NCP to
meanline/streamline codes through 3Dimensional Aero codes. These zooming activities
are a focus of the NPSS project in FY99.

The NCP as part of NPSS is supported under the NASA High Performance Computing
and Communications Program.

BIBLIOGRAPHY
1. "Numerical Propulsion System Simulation's National Cycle Program", A. Evans, G.
Follen, C. Naiman, 1998 Joint Propulsion Conference AIAA-98-3 1 13.

2. "The National Cycle Program: A Flexible System Modeling Architecture", R.
Ashleman, T. Lavelle, F. Parsons, 1998 Joint Propulsion Conference AIAA-98-3 1 14.

NCC - A MULTI-DISCIPLINARY DESIGNIANALYSIS TOOL FOR
COMBUSTION SYSTEMS

JLL P 7,-
Nan-Suey Liu 4 P.

NASA Lewis Research Center, MS 5-11, (216)433-8722, Nan-Suey.Liu@Ierc.nasa.gov
And

Angela Quealy
Dynacs Engineering NASA LeRC, (216)977-1297,quealy@lerc.nasa.gov

NASA Computational Aerosciences Workshop 98 (8125-8127)

1 Introduction

A multi-disciplinary designlanalysis tool for combustion systems is critical for optimizing the
low-emission, high-performance combustor design process. Based on discussions between
NASA Lewis Research Center and the jet engine companies, an industry-government team was
formed in early 1995 to develop the National Combustion Code (NCC), which is an integrated
system of computer codes for the design and analysis of combustion systems. NCC has
advanced features that address the need to meet designer's requirements such as "assured
accuracy", "fast turnaround", and "acceptable cost". The NCC development team is comprised
of Allison Engine Company (Allison), CFD Research Corporation (CFDRC), GE Aircraft
Engines (GEAE), NASA Lewis Research Center (LeRC), and Pratt & Whitney (P&W). This
development team operates under the guidance of the NCC steering committee (Ref. [I]).

The "unstructured mesh" capability and "parallel computing" are fundamental features of NCC
fiom its inception. The NCC system is composed of a set of "elements" which includes grid
generator, main flow solver, turbulence module, turbulence and chemistry interaction module,
chemistry module, spray module, radiation heat transfer module, data visualization module,
and a post-processor for evaluating engine performance parameters. Each element may have
contributions fiom several team members. Such a multi-source multi-element system needs to
be integrated in a way that facilitates inter-module data communication, flexibility in module
selection, and ease of integration.

2 Status

The development of the NCC beta version was essentially completed in June 1998. A brief
description of the various elements follows.

Grid Generator

CFD-GEOM is an established geometry modeling and structured grid generation system
developed and commercialized by CFDRC. Under the NCC development effort, it has been
further developed to enable unstructured grid generation and direct CAD interfacing. An
overview of this module can be found in Ref. [2]. It should be noted that other grid generators
could be used with NCC if the mesh information is written in the Patran neutral format.

Main Flow Solver

The original flow solver (CORSAIR) was developed at P&W, under the present effort; it has
been upgraded to CORSMR-CCD, which is the current baseline gaseous flow solver for the
NCC. CORSAIR-CCD is a 3-dimensional, Navier-Stokes flow solver based on an explicit
four-stage Runge-Kutta scheme, using unstructured meshes, and running on networked
workstations. The discretization begins by dividing the spatial computational domain into a
large number of elements, which can be of mixed type. A central -difference finite-volume
scheme augmented with a dissipative operator is used to generate the discretized equations,
which are then advanced temporally by a dual time procedure for computing the low Mach
number compressible flows. The history and capabilities of this solver, and some validation
test cases are given in Ref. [3]. Its use in a design system is demonstrated in Ref. [4]; and ten
benchmark test cases have been reported in Ref. [5].

Turbulence Module

Originally, the turbulence closure is obtained via the standard k-epsilon model with high
Reynolds number wall function. Under the present effort, the following capabilities have been
added: a low Reynolds number wall integration scheme, a new non-linear k-epsilon model for
swirling flows, and a model which does not contain wall distance in its formulation. The details
of these new models and their validations can be found in Refs. [6],[7],[8], and [9].

Turbulence / Chemistry Interaction Module

Several options are available in the NCC, they are: a single-step eddy breakup model for
mixed-is-burned situations; an assumed Probability Density Function (PDF) model for finite-
rate chemistry; and a model based on solving the transport equation for the joint PDF of
scalars. The assumed PDF model uses an enthalpy variance transport equation, with an
assumed beta-PDF for modulation of the foiward and backward kinetic rate coefficients.

In order to better account for the interactions between turbulence and chemical reaction rates, a
scalar PDF module for unstructured mesh and parallel computing has been developed and
coupled with the main flow solver. This module solves a transport equation for the joint PDF
of scalars (species, enthalpy, etc.) by using Monte Carlo techniques. The chemical reactions
and their interaction with turbulence appear in a closed form in this transport equation and need
not be modeled. Details of this module and its validation are given in Refs. [lo] and [l 11.

Chemistry Module

Several reduced chemical mechanisms have been developed for use in NCC to compute NOX
concentrations in the combustion of Jet-A and methane fuels. Refs. [5] and [12] describe the
reduced mechanisms based on quasi-steady state and partial-equilibrium assumptions. A set of
transport equations for the species retained in the resulting reduced mechanism needs to be
solved along with other tramport equations for flow variables. Alternatively, a code has been
developed to automatically simplify full chemical mechanisms. The method employed is based
on the Intrinsic Low Dimensional Manifold @DM) method. The resulting simplified
mechanism is stored in look-up tables, which contain both reaction rate information and fluid
properties. The implementation of the ILDM look-up tables in the NCC and its performance
are discussed in Ref. [13]. It is shown that the ILDM kinetics approach results in significant
reduction in CPU time.

Spray Module

In NCC, a Lagrangian based dilute spray model provides the solution for the liquid phase
equations. Ref. 1141 discusses its coupling with the gaseous flow solver and the scalar PDF
module. A more detailed description of this module can be found in Ref. [15].

Radiation Heat Transfer Module

The present version of the module performs a finite-volume three-dimensional radiative heat
transfer analysis using body-fitted structured meshes. Models for non-gray media including the
non-gray interaction between certain gaseous species, as well as models for luminous radiation
fiom soot, have been developed (Ref. 1161). A radiation module for unstructured mesh and
parallel computing is currently being developed under the present effort.

Data Analysis

Several commercial software packages have been used for data visualization: Tecplot,
Fieldview, Pv3-Gold, and CFD-View. A post-processor, CORPERF, has been developed to
provide combustor performance parameters.

Integration Framework

Integration of the various modules is not fidly modularized yet. The key NCC integration
software technologies are the Data Transfer Facility (DTF) and the Multi-Disciplinary
Computing Environment (MDICE) both developed at CFDRC. The DTF is used for static (file-
based) coupling between modules, while the MDICE is used for dynamic (run-time) data
exchange between NCC modules, as well as for integration between NCC and other flow
andor structural codes. A more detailed description is given in Ref. [2].

3 Parallel Performance

The objective of the NCC parallel processing effort is to reduce the overall turnaround time of a
large-scale, fully reacting combustor simulation to 15 hours. The resulting code must continue
to be portable to a wide variety of computing platforms and must run efficiently on a given
target platform. Such a parallel improvement effort contributes significantly to the overall
reduction in time and cost of the combustor design cycle.

The original solver (CORSAIR) was developed to run in a networked workstation environment
using a proprietary message passing library (PROWESS). It was later ported to both PVM and
MPI message passing libraries. The current NCC baseline flow solver (CORSAIR-CCD) may
select any of the three message passing libraries at compile time. MPI has been used for this
performance evaluation effort due to the availability of vendor optimized versions of MPI on
target platforms of interest. CORSAIR-CCD was first ported to the IBM SP-2 and is now
being further refined to run efficiently on an SGI Origin 2000. The code remains portable and
efficient on a variety of parallel platforms including networks of personal computers. Some of
the performance results have been reported in Refs. [I], [5], and 1171.

A Lean Direct Inject (LDI) Combustor is being used to measure the performance of a typical
large-scale combustor simulation. A 12 species, 10 steps reduced kinetics is being used to
account for the amount of computational resources required for chemistry simulation. Current
test cases consist of both a 444 thousand (444k) element and a 971 k element geometry,
however the problem size of interest is approximately 1.3 million elements. Until a geometry
of this size becomes available the performance results of these smaller test cases are scaled up
to estimate the performance of the larger problem.

Performance profiling tools have been used to identifl where CORSAIR-CCD is consuming
time and these sections of code have been systematically improved. Initial effort focused on
streamlining the chemistry section of CORSAIR-CCD when profiling tools indicated this
section consumed 54% of the execution time. Improvements such as eliminating unnecessary
indexing and using more efficient operations yielded a 1 . 8 ~ (1.8 times) improvement in
performance. Replacing one statement which executed an exponentiation operation (a* *0.25)
with square root intrinsics (sqrt(sqrt(a)) resulted in a 1 . 3 ~ improvement in performance alone.
A more deadlock resistant communication pattern algorithm allowed increasing the number of
processors in use resulting in additional performance savings. Finally the ILDM kinetics
module was integrated with CORSAIR-CCD and was used as an option to provide the finite
rate chemistry information, yielding a 4 . 7 ~ hprovement in performance for a large-scale, fully
reacting combustor simulation.

Performance results from both the 444k element and 971 k element LDI Combustor test cases
currently indicate that a solution to a large-scale, fully reacting combustor simulation (1.3
million elements) can be achieved within an 18 hour turnaround. This is a performance
improvement of almost 30x over the 1995 baseline and approximately a 175x improvement
using this same baseline on a 1992-era parallel machine such as the Intel Paragon. CORSAIR-
CCD currently achieves 1.4 GFLOPS using 32 processors on the SGI ORIGIN 2000 when
running the 444k element LDI test case. The speedup is 24.2 and the efficiency is 76%. Effort
is currently focusing on reducing the impact of message passing in order to improve the overall
performance efficiency on the ORIGIN platform. Very recent benchmarks indicate a 15-hour
turnaround is now achievable due to upgraded processor speeds of 250 MHz on the ORIGIN
2000.

4 Concluding Remarks

The development of the NCC beta version is essentially completed. Elements such as
CORSAIR-CCD, Turbulence Module, and the Chemistry Module, have been extensively
validated; and their parallel performance on large-scale parallel systems has been evaluated and
optimized. However the scalar PDF Module and the Spray Module, as well as their coupling
with CORSAIR-CCD, were developed in a small-scale distributed computing environment. As
a result, the validation of the NCC beta version as a whole is quite limited and its overall
performance on large-scale parallel systems is yet to be evaluated and optimized. Future work
includes porting the NCC beta version to large-scale parallel systems to conduct validation
cases of practical interests and to evaluate and optimize the overall parallel performance. In
addition, the integration of NCC elements via DTF and MDICE will be continued to achieve a
bbplug-and-play" capability.

Acknowledgements

The NASA High Performance Computing and Communications Program (HPCCP) and the
Smart Green Engine Program (SGE) have supported this effort.

REFERENCES

[I] Stubbs, R.M., and Liu, N.-S., "Preview of National Combustion Code," AIAA Paper 97-
3 1 14, July 1997.
[2] Harrand, V. J., Siegel, J.M., Singhal, A.K., and Whitmire, J.B., "Key Components and
Technologies for the NCC Computing Framework," AIAA Paper 98-3857, July 1998.
[3] Ryder, R.C., "The Baseline Solver for the National Combustion Code," AIAA Paper 98-
3853, July 1998.
[4] Brankovic, A., Ryder, R.C., and Syed, S.A., "Mixing and Combustion Modeling for Gas
Turbine Combustors Using Unstructured CFD Technology," AIAA Paper 98-3854, July 1998.
[5] Chen, K.-H., Norris, A.T., Quealy, A., and Liu, N.-S., "Benchmark Test Cases for the
National Combustion Code," AIAA Paper 98-3855, July 1998.
[6] Chen, K.-H., and Liu, N.-S., "Evaluation of A Non-Linear Turbulence Model Using Mixed
Volume Unstructured Grids," AIAA Paper 98-0233, January 1998.
[7] Shih, T.-H., and Liu, N.-S., "A k-epsilon Model for Wall-Bounded Shear Flows," AIAA
Paper 98-2551, June 1998.
[8] Shih, T.-H, Chen, K.-H., and Liu, N.-S., "A Non-Linear k-epsilon Model for Turbulent
Shear Flows," AIAA Paper 98-3983, July 1998.
[9] Nikjoo, M., and Mongia, H.C., "Study of Non-linear k-epsilon Model for Turbulent
Swirling Flows," AIAA Paper 98-3984, July 1998.
[lo] Raju, M.S., "Extension of the Coupled Monte-Carlo-PDFISPRAYICFD Computations to
Unstructured Grids and Parallel Computing," AIAA Paper 97-080 1, January 1997.
[l 11 Anand, M.S., James, S., and Razdan, M.K., "A Scalar PDF Combustion Model for the
National Combustion Code." AIAA Paper 98-3856, July 1998.
[12] Kundu, K.P., Penko, P.F., and Yang, S.L., "Simplified Jet-A/Air Combustion Mechanisms
for Calculation of NOX Emissions," AIAA Paper 98-3986, July 1998.
1131 Norris, A.T., "Automated Simplification of Full Chemical Mechanisms: Implementation in
National Combustion Code," AIAA paper 98-3987, July 1998.
[14] Raju, M.S., "Combined Scalar-Monte-Carlo-PDFICFD Computations of Spray Flames on
Unstructured Grids with Parallel Computing," AIAA Paper 97-2969, July 1997.
[15] Raju, M.S., "LSPRAY-A Lagrangian Spray Solver-User's Manual," NASA CR-97206240,
November 1997.
[16] Kumar, G.N., Mongia, H.C., and Moder, J.P., "Validation of Radiative Heat Transfer
Computations Module for National Combustion Code," AIAA Paper 98-3985, July 1998.
[17] Liu, N.-S., Quealy, A., Kundu, K.P., Brankovic, A., Ryder, R.C., and Van Dyke, K.,
"Multi-Disciplinary Combustor Design System and Emissions Modeling," NASA CDCP-
2001 1, Proceedings of the 1996 Computational Aerosciences Workshop, May 1997, pp. 49-54.

US.? J 0 $ 8 622.. * s

Gary Cole
NASA Lewis Research Center

21 000 Brookpark Rd., Cleveland OH 441 35 3L~6 i?y&
Gary.Cole@lerc.nasa.gov, 21 6-433-3655

Ambady Suresh and Scott Townsend
Dynacs Engineering Co., Inc.

200 1 Aerospace Parkway
Brook Park, OH 44142

Arnbady.Suresh@lerc.nasa.gov, 21 6-977- 1384
Scott.Townsend@lerc.nasa.gov, 2 16-977- 1080

INLET-COMPRESSOR ANALYSIS USING COUPLED CFD CODES

Introduction

Propulsion performance and operability are key factors in the development of a successful
aircraft. For high-speed supersonic aircraft, mixed-compression inlets offer high performance
but are susceptible to an instability referred to as unstart. An unstart occurs when a disturbance
originating in the atmosphere or the engine causes the shock system to be expelled from the inlet.
This event can have adverse effects on control of the aircraft, which is unacceptable for a
passenger plane such as the high speed civil transport (HSCT).

The ability to predict the transient response of such inlets to flow perturbations is, therefore,
important to the proper design of the inlet and the control measures used to prevent unstart.
Computational fluid dynamics (CFD) is having an increasing role in the analysis of individual
propulsion components. Isolated inlet studies are relatively easy to perform, but a major
uncertainty is the boundary condition used at the inlet exit to represent the engine - the so-called
compressor face boundary condition. A one-dimensional (1-D) Euler inlet simulation (ref. 1)
showed that the predicted inlet unstart tolerance to fiee-stream pressure perturbations can vary by
as much as a factor of about six, depending on the boundary condition used. Obviously, a
thorough understanding of dynamic interactions between inlets and compressors/fans is required
to provide the proper boundary condition.

To aid in this understanding and to help evaluate possible boundary conditions, an inlet-engine
experiment was conducted at the University of Cincinnati (ref. 2). The interaction of acoustic
pulses, generated in the inlet, with the engine were investigated. Because of the availability of
experimental data for validation, it was decided to simulate the experiment using CFD. The
philosophy here is that the inlet-engine system is best simulated by coupling (existing)
specialized CFD component-codes. The objectives of this work were to aid in a better
understanding of inlet-compressor interaction physics and the formulation of a more realistic
compressor-face boundary condition for time-accurate CFD simulations of inlets. Previous
simulations have used I-D Euler engine simulations in conjunction with I-D Euler and
axisymrnetric Euler inlet simulations (refs. 3,4). This effort is a first step toward CFD simulation
of an entire engine by coupling multidimensional component codes.

Inlet-Engine Experiment

A sketch of the inlet-engine experiment conducted at the University of Cincinnati is shown in
figure 1. The inlet is a constant-area annular duct. An acoustic pulse generator in the inlet is
composed of an inflatable, flexible bump around the hub of the inlet and a unique mechanism
internal to the hub for rapidly collapsing the bump. A bellmouth and constant area section of
duct, upstream of the bump, are not shown in the sketch. The inlet is connected to a GE T-58
engine modified for cold operation. The engine has a ten stage compressor, preceded by a
variable inlet guide vane (VIGV). The bump collapse results in two well-defined acoustic pulses
(expansion waves), one traveling upstream and the other traveling downstream that interacts with
the engine. Static pressure time histories were measured by high-response transducers located at
the four axial stations shown in figure 1.

Inlet Simulation

The inlet, up to the engine face, and collapsing-bump portions of the experiment were simulated
using NPARC (ref. 5), a general purpose CFD code capable of handling moving grids. Although
the flow in the duct is axisymmetric, it was solved here as an Euler 3-D flow through a sector,
since the inlet simulation is coupled to a 3-D turbomachinery simulation.

The inlet simulation used a single-block grid consisting of 186 x 33 x 13 points in the axial,
radial, and circumferential directions, respectively. The NPARC default AD1 algorithm was
used to obtain the reference steady-state solution for the isolated inlet. The exit boundary
condition was chosen to match the experimental inlet mass flow rate. A Newton iterative
solution, which uses iterations of the steady-state algorithm, was used for the unsteady
computations. This allows larger time steps than the default explicit algorithm far unsteady
calculations. The bump height and collapse time used in the simulation were chosen to match
the experimental pressure profile of the initial pulse, because of the uncertainty of the exact
values during the experiment.

Engine Simulation

The engine was approximated by the first stage rotor and was simulated by using ADPAC (ref.
6), a turbomachinery code. The first stage rotor was gridded over one blade passage using a C
grid. The domain was divided into seven blocks, each grid consisting of 18 x 33 x 33 points. A
steady reference solution was also obtained for the isolated rotor simulation. The exit boundary
condition of static pressure at the hub was adjusted to achieve the experimental mass flow rate.

The real engine has a variable inlet guide vane (VIGV) upstream of the rotor to permit optimal
performance of the engine at off-design conditions. An unsteady simulation of both the VIGV
and the rotor requires the solution of a rotor-stator interaction, an extremely complex and
computationally intensive problem. It was desired to avoid this complexity, but the turning
provided by the VIGV could not be ignored because without it the rotor solution was close to
stall and very different from the experimental condition being simulated. As a first
approximation, the problem was solved by imposing a turning angle on the flow at the rotor inlet.

In effect, the flow fi-om the inlet is instantaneously turned by the full metal angle of the VIGV
blade. This procedure conserves the mass flow rate but not the total energy.

The engine (rotor) computations were viscous, using the Baldwin-Lomax turbulence model. For
the unsteady simulation, the ADPAC implicit unsteady algorithm was chosen because the time
step restrictions of the explicit option are prohibitively expensive. An unsteady non-reflecting
condition was used at the exit boundary to prevent the interference of reflections not relevant to
the experiment. Initially a single-block solution was used, but ultimately the ADPAC domain
was divided into seven blocks and run in parallel to achieve faster execution.

Code Coupling Approach

Once the isolated component solutions are obtained, it is necessary to connect the codes in some
fashion to achieve the coupled inlet-engine solution. Since NPARC and ADPAC are both multi-
block codes, the basic method used to couple the codes is similar to that used to couple two
blocks of a single multi-block code. Even though both codes are multi-block, there are a number
of issues that required resolution to make the coupling successful, including: NPARC is finite
difference whereas ADPAC is finite volume; NPARC exchanges data once per time step,
ADPAC once per Runge-Kutta stage; the types of variables exchanged between blocks are
different.

The actual software mechanism used to couple the codes is the Visual Computing Environment
(VCE, ref. 7) being developed by CFD Research Corporation. (The current software is called
Multi-Disciplinary Computational Environment or MDICE and is intended to facilitate coupling
of multi-dimensional/disciplinary codes.) The software consists of a graphical user interface and
subroutine libraries that provide means to control the execution of one or more (possibly
distributed) application codes and the communication between them, as well as grid generation
and visualization tools. A script approach is used to drive the process and the PVM message-
passing paradigm is used to transfer data.

Modifications to NPARC and ADPAC were obviously required to accommodate the code
coupling and integration with VCE. The differences in the codes also required some
approximations so that the coupled codes cannot claim to have the same accuracy as a single
multi-block code. Therefore, the coupled-code accuracy was assessed by solving some well-
known unsteady test cases with good results.

Results

Visualization software was used to monitor the flow field and pressure time histories at the four
sensor locations during execution of the coupled inlet-engine simulation. A snapshot of the
monitor screen near the end of the simulation is shown in figure 2. The time histories clearly
indicate the passage of the expansion pulse at the four sensor locations. The flow visualization
portion shows pressure contour plots. The entire NPARC domain is not shown, only a portion
near the NPARCIADPAC interface (indicated by the heavy vertical line at the beginning of the

duct turning). A direct comparison of the computational and experimental results are shown in
figure 3 where the change in pressure at each station from its initial steady-state value divided by
its initial steady-state value is shown as a function time. Both sets of data were filtered to
eliminate frequencies above 2000 Hz. This was done to eliminate a 3000 Hz oscillation,
believed to be due to transverse mode oscillations setup by the bump collapse. The oscillation is
clearly visible in the station 1 runtime result beginning at about 0.008 second in figure 2, and it
was in good agreement with the amplitude and frequency of the unfiltered experimental data.
The computed and experimental incident waves at stations 1-3 are in especially good agreement
both having the same "peak" amplitude of about -0.038 at all three stations. The time history at
station 4 is of major interest because, in the time frame shown, it is the only one influenced by
the reflection from the engine. It can be noted that the peak amplitude is about -0.043, greater
than that for the other three stations. The peak values at station 4 show excellent agreement, but
in the region of four milliseconds the agreement could be better. It is expected that the addition
of more compressor stages to the simulation would improve the agreement in that time frame.
However, adding more stages would significantly increase the complexity of the simulation and
the associated execution time.

The coupled NPARC-ADPAC solution, shown in figure 3, took approximately 32.5 hours for a
10.4 millisecond transient. (Time equal zero corresponds approximately to the start of the bump
collapse, which occurred after several milliseconds of initialization.) The computations were
made in a distributed computing environment under nearly dedicated conditions with VCE and
NPARC running on a two-processor machine and ADPAC on an eight-processor machine. All
processors were SGI R10000s. Initially the simulation was run with a single ADPAC block and
took several days to execute on two non-dedicated processors. Some timing benchmarks on
nondedicated machines indicated that dividing the ADPAC domain into seven (almost) equal
blocks would result in a speedup of about 4.5, which seems to be confirmed by the results.
ADPAC still dominates the execution time. It is believed that additional parallelization of
ADPAG and running on a dedicated shared-memory machine with native message passing will
improve the speedup. Still, significant speedup is required for practical inlet analysis and design
run times and begs for a simplified compressor face boundary condition that will accurately
represent the engine. Such a boundary condition was recently proposed in reference 1.

Concluding Remarks

This investigation indicates that coupling inlet and turbomachinery CFD codes is a feasible
approach to study inlet-engine interaction problems. A multi-block coupling offers a quick and
relatively easy way to couple together two CFD codes for both steady-state and unsteady
computations. This approach offers the possibility of including other specialized codes (e.g.
combustor) to provide a full engine simulation. The computational results gave good agreement
with the collapsing bump experiment, but significant speedup is required to make the approach
practical as a designlanalysis tool. The coupled NPARC-ADPAC codes could also serve as a test
bed for exploring other flow perturbations of interest, such as convective temperature and
tangential velocity disturbances, and for vaIidation of simplified boundary conditions.

Acknowledgments

The authors would like to thank the General Electric Company for making available the T-58
flow path and blade geometries. Thanks are also due to Rod Chima and John Slater of NASA
Lewis for their help with grid generation and other advice, Christopher Miller of Lewis and Ed
Hall of Allison for help with ADPAC, Jim Schmidt of Dynacs for help with the T-58 blade
design, and Anthony Opalski of the U. Cincinnati for filtering the simulation results in the same
manner as the experimental data.

References

1. Paynter, G. C., Clark, L. T., and Cole, G. L., "Modeling the Response from a Cascade to an
Upstream Acoustic Disturbance," AIAA paper 98-0953, January 1998.

2. Freund, D. and Sajben, M., "Reflections of Large Amplitude Pulses from an Axial Flow
Compressor," A I M paper 97-2879, July 1997.

3. Garrard, D., Davis, M. Jr., Wehofer, S., and Cole, G., "A One-Dimensional, Time Dependent
Inlet 1 Engine Numerical Simulation for Aircraft Propulsion Systems," ASME paper 97-GT-
333, June 1997.

4. Numbers, K. and Hamed, A., "Development of a Coupled Inlet-Engine Dynamic Analysis
Method," AIAA paper 97-2880, July 1997.

5. Chung, K., Slater, J. W., Suresh, A., and Townsend, S., "NPARC v3.1 User's Guide,"
October 1997.

6. Hall, E. J. and Delaney, R. A., "ADPAC User's Manual," NASA CR 195472, May 1996.
7. "VCE Reference Manual, Version 2.6," CFD Research Corporation, October 1997.

Figure 1. - Schematic of U. Cincinnati inlet-engine acoustic pulse experiment and pressure -
sensor locations (dimensions in centimeters).

Figure 2. - Snapshot of (partial) NPARCIADPAC pressure contour plots and pressure time
histories at sensor locations during simulation of U. Cincinnati experiment.

Experi ment
NPARC-ADPAC simulation

0.010

-0.010

-0.030

-0.050
0.0100 I I

-0.010 - Sta 2

-0.030 -
I I

5 P
-0.050

- 0.0100 I I
"

P
-0.010 - Sta 3

-0.030 -
-0.050 I I

0.010 I

-0.01 - Sta 4

4.03 -
-0.05 1 I

0.0 2.0 4.0 6.0
Time, milliseconds

Figure 3. - Comparison of experimental and NPARC-ADPAC simulation results for inlet static
pressures at four axial locations (Sta 1-4).

AEROSPACE ENGINEERING SYSTEMS --

AND THE
ADVANCED DESIGN TECHNOLOGIES TESTBED EXPERIENCE JLtbB9P

p12
William R. Van Dalsem, Mary E. Livingston, John E. Melton,

Francisco J. Torres, and Paul M. Stremel
Aeronautical Information Technologies Division

NASA Ames Research Center
Moffett Field, California, United States 94035

Introduction
Continuous improvement of aerospace product development processes is a driving requirement
across much of the aerospace community. As up to 90% of the cost of an aerospace product is
committed during the flrst 10% of the development cycle, there is a strong emphasis on capturing,
creating, and communicating better information (both requirements and performance) early in the
product development process. The community has responded by pursuing the development of
computer-based systems designed to enhance the decision-making capabilities of product
development individuals and teams.

Recently, the historical foci on sharing the geometrical representation and on configuration
management are being augmented:

- Physics-based analysis tools for filling the design space database;
- Distributed computational resources to reduce response time and cost;
- Web-based technologies to relieve machine-dependence; and
- Artificial intelligence technologies to accelerate processes and reduce process variability.

The Advanced Design Technologies Testbed (ADTT) activity at NASA Ames Research Center was
initiated to study the strengths and weaknesses of the technologies supporting each of these trends,
as well as the overall impact of the combination of these trends on a product development event.
Lessons learned and recommendations for future activities are reported.

Motivation
Product development process improvement has become a pervasive theme. The motivations are
long-standing and fundamental, as the communities that produce better products can, in general,
enjoy a higher standard of living. There are, however, at least four specific reasons for the current
intense interest in product development process improvement:

International Free Market
With the emergence of a worldwide free market supported by an international information-sharing
system (e.g., the World Wide Web) and an effective international transportation system, an
organization can no longer rely solely on locality, political boundaries, or marketing to maintain
market shares. Product effectiveness is paramount, and to succeed, a product must be among the
best in the world.

Workforce Challenges
Knowledge Reuse
Knowledge from past development events can often be of use in new product development
activities. In the aerospace community, however, major design events occur infrequently. As a
result, we are at times trying to reuse expertise attained 10,20, or even 30 years ago. A timely
example is the current interest in Earth reentry aerothermodynamics, an area last studied intensely
many decades ago during the Space Transportation System, Apollo, Gemini and even Mercury
programs.

Rapid Technology Refresh
Driven in part by the pace of the computer industry, engineering tools are becoming more complex
and changing faster. For example, CAD systems are "better" than drafting boards, but it typically
requires from 1-2 years to learn to use an advanced CAD system, and the systems are typically
updated every 6-12 months. Because of the array of computer-based tools that a typical designer
uses, the designer is challenged to just maintain proficiency with the tools of the trade.

Product Development Environment Dynamics
In even the simplest of product development events, one can easily imagine on the order of 100
interacting elements, including, for example, the various tools, facilities, members of the team,
design requirements, and the design itself. In typical modern aerospace design events, one can
easily imagine at least 1000 or even 10,000 elements in a design event. In the future, as we strive
for even better products, one can easily imagine the number of distinct interacting elements
increasing at least an additional order of magnitude.

Given N elements in a design event, one can compute from basic permutation mathematics (Ref. 2)
the maximum possible number of element-to-element interactions:

If one element of a design changes, it is possible that this change will alter some element-to-
element interactions:

Altered Interactions =
aN!

2(N - 2)!

The degree of influence of the change is characterized by a , where 0 I a I 1. If AN objects
change per design event, the total number of altered element-to-element interactions is:

AN aN!
Total Altered Interactions = 2:

b=12(N - 2)!

As an example, suppose the following:
N Elements in design 6
AN Element changes 2 (a1=0.80 and qz0.40)

The total altered element-to-element interactions are 18. Even in a very simple design domain (just
6 objects), with just a few changes in the included objects (2), one can encounter many changes in
the interactions between pairs of objects (18). The magnitude of the product development event
and the dynamics of the element-to-element interactions pose severe obstacles to effective product
development processes.

Engineering Challenges
We have before us challenging engineering goals. Representative are NASA's Aeronautics and
Space Transportation Enterprise technology goals (Ref. 1) that, for example, call for an order-of-
magnitude reduction in the cost of space transportation within ten years and a 50% reduction in the
cost of air travel within twenty years. In many cases, we have already extracted most of what can
be obtained from single discipline or single sub-system refinement and optimization. We have also
achieved significant, if loosely coupled, synergy between the various disciplines and sub-systems,
and exploited the upstream use of manufacturing and operational considerations. Achieving these
new goals is all the more challenging because of past engineering accomplishments.

Response
In response to these product development challenges, a range of technologies are being developed:

- Data creation (e.g., numerical simulation software)
- Data uselmanagement (e.g., databases)
- Knowledge extraction (e.g., visualization, feature extraction)
- Process creation/matlagement (e.g., design systems)

These tools are being developed by at least three types of organizations: non-profit academic and
government organizations, manufacturing companies, and software f m .

This diversity of technologies and sources is exciting, but overwhelming. Within a manufacturing
company, the focus is on improving the product development process with the minimum
expenditure. Typically, this involves the procurement and integration of a subset of these tools.
The challenge is to select, from the myriad of technologies and sources, a set of tools that together
results in a cost-effective improvement of the product development process.

There are at least three specific obstacles to these efforts:
Nomenclature:
No standard vocabulary exists for describing the capabilities of many of the tools. It is therefore
possible for two individuals to discuss the capabilities of a particular piece of software at length
and still walk away from the discussion with completely different views of the software's
capabilities. For example, consider the range of meanings of the following commonly used words:

- Automated
- Object-Oriented
- SearnlessPlug and Play
- Machine-IndependentfCross-Platform
- Multi-Disciplinary Analysis/Coupling

Both a simple spread sheet with analytic closed form functions and a system integrating CAD,
Navier-Stokes fluid simulations and finite-element structural analysis are described by these
commonly used words, but the two systems are of fundamentally different character and
capabilities.

SociaLEconomic Pressures:
Software often cannot meet all of the customer's functional requirements. Due to the lack of a
precise nomenclature, the customer frequently discovers these limitations only after purchasing and
attempting to use the software. At this point, it is often prudent for the customer to invest further
in the software rather than begin anew with another product. As a result, the software
representative does not have an overwhelming motivation to acknowledge all functional limitations
before purchase.

Discontinuous Migration Functionality and Costs:
New types of software are often prototyped by an academic or government organization. This
software can be an effective first step into a new domain. For example, PLOT3D (Ref. 3),
developed at NASA Arnes Research Center, was one of the very first computational fluid dynamic
visualization software systems and, in large part, paved the way for the current computational fluid
dynamics visualization industry.

Such freeware is often unsupported, forcing the eventually transition to supported software. If the
path of internal software is chosen there is usually a second transition to commercial software.
Software transition may also be required when a particular vendor has fallen behind another
vendor. Often the jumps between these different levels or suppliers of software can be costly in
terms of both software licensing and reduced productivity. A representative history of software
functionality versus time is presented in Figure 1.

Fig. 1 Software functionality and cost with time.

For an organization that is attempting to improve its product development process, the lack of a
precise nomenclature to define software capabilities, the sociaVeconomic pressures that can
preclude up-front acknowledgment of software limitations, and the need to not infrequently
upgrade the various elements of a design system all make the management of the typical aerospace
engineering software system a continuous challenge,

ADTT
Given these challenges to the aerospace community, the Advanced Design Technologies Testbed
(ADTT) was initiated with support from NASA's IT Base and HPCC programs as well as close
collaboration with NASA's AST program. The objectives of this activity are four fold: - Facilitate improvements in representative and important aerospace design processes.

- Provide a pragmatic proving ground for many of the most promising product
development process tools and technologies.

- As required, develop bridging tools and technologies to facilitate integrated solutions.
- Disseminate the results of lessons learned to the aerospace and information technology

communities

Context
Since the early 1970's, NASA . h e s Research Center has had a major and sustair~ed effort to
improve the utility of computational physics tools and, more generally, computational software and
hardware systems in the development of aerospace products. From this effort have grown
innovative computational physics codes such as OVERFLOW (Ref. 4) and TIGER (Ref. 5) ,
advanced computational facilities such as NAS, and ongoing focused programs such as HPCCP
CAS. All of these are focused on exploiting advances in computer-based technologies to improve
the product development processes.

In the early 1990's, NASA Arnes Research Center re-invigorated a long-term interest in improving
the effectiveness of experimental facilities within the product development process. This has
resulted in the development of innovative instrumentation technologies (such as pressure sensitive
paint) and improved operational processes, along with efforts to create a synergy between the
experimental and computational elements of the design process. The IofNEWT (Ref. 6) activity
facilitated the comparison of experimental and computational data during the wind tunnel test. The
intent was to improve the interpretation and quality of the data, and identify fruitful directions for

further wind tunnel runs during a tunnel entry. Ensuing efforts, such as DARWIN (Ref. 7), have
extended this approach to allow robust and secure real-time remote access to experimental data.

Initial Design Domain
All of the above efforts have, for the most part, been successful. The initial objective of the ADTT
effort is to build the next natural evolution from these past successes. The current focus of the
AD'IT activity is to streamline the re-design of elements of a wind-tunnel model and the rapid
sharing of that new design, allowing the manufacturing and testing of the new model elements
during a wind tunnel test. If successful, this will allow a very rapid and synergistic use of
computational and experimental technologies to rapidly evolve improved designs.

Engineering Requirements
A system is required that integrates:

- configuration and geometry manipulation and management;
- aerodynamic, structural, and system levels analysis; and
- data analysis and presentation.

The system must also enable access to other systems that capture and manage the experimental data
and support rapid model manufacturing. Though not all desired functions are in place, such a
system has been developed and tested, with the resulting new wind-tunnel model elements
scheduled for testing in the near future.

Technology Evaluation Requirements
In order to adequately test and evaluate technologies for applicability to product development
process improvement, they must be applied within realistic events. This testbed environment must
allow the easy insertion of new tools and technologies. To be a representative testbed, it is
important that the system can also simultaneously support access by individual software tool
experts as well as overall product development experts, a requirement that requires an adaptive
interface. A mature testbed environment should maintain baseline analysis and design functions so
that all new technologies may be tested against baseline capabilities and metrics.

Existing Framework Technologies
A survey of potentially applicable frameworks showed that there are many products advocated as
the generic solution to all product development processes, an example being Product Data
Management (PDM) systems. Most existing frameworks are applicable to a well-structured
process that can be managed and tracked, invoking relevant applications in a lock-step fashion.
Existing frameworks generally support distributed users accessing centralized applications (e.g.,
CAD drawing manipulation or logistics management systems) and moderate size data sets. After
many product reviews and even a few costly prototype activities, we concluded that for a dynamic,
computationally-intensive (e.g., high-fidelity, physics-based computational analyses), and
distributed product development event no existing framework has the required cross-platform
capability, flexibility, and scalability.

Framework Approach
A ground-up approach was called for in which we could develop the flexibility needed to handle
the changing requirements and environment while providing a stable schema for data storage and
access. An underlying UNIX environment was able' to provide a coherent framework for
applications invocation and data sharing across multiple users. One of the goals of the system,
however, was to distance the user from the specifics of the environment - directory structures, file
names, UNIX commands, etc., and from the specifics of changes made to applications that might
be reflected in launch commands or namelists. A graphical user interface and underlying process
management capability was required to make this structure accessible to the user. The ADTT
interface and architecture are designed to:

- Simplify user access to design tools and analysis applications.
GUIs and underlying rule-based input advisory allow the user to interact with all
applications at the parametric input level, rather than requiring expertise in the
specifics of the applications or their invocations.

- Provide user guidance through the steps of the design process.
Rule-based process management ensures the user is informed of options available
given the state of the design.

- Provide the ability to generate large numbers of designs or analyses from a single input.
Underlying application launch and post-processing capabilities allow designers to
launch virtually unlimited numbers of jobs to the CAD systems, grid generation
programs, or flow solvers. Rule-based systems build and coordinate input files,
perform job routing and partitioning, and postprocessing and data storage.

- Provide job and design process status information to the user.
At-a-glance information on the availability of requested information and status of
analyses queued or running on any platform.

- Build a coherent data model for the organization and rapid access of analytical data.
Store data fdes in unique and meaningful directory structures based on a data object
model of the application.

- Allow remote access and collaboration.
Ensure security for proprietary data and provide support of remote access to
distributed applications within a dispersed heterogeneous computational
environment. Through a secure Web site and COTS collaboration tools, ADTT
supports access to design data and visualization capabilities.

- Provide flexibility in the addition andlor modification of applications within the system.
GUIs, input files, data objects, and directory structures are built from text files.
When a parameter changes, the system responds automatically.

Application Experience
The ADTT system is currently being used in conjunction with the wind tunnel test of a transport
aircraft configuration. The standard high lift system consists of a leading edge slat and two trailing
edge elements: a small vane flap and a larger main flap. Production cost could be reduced if a
single trailing edge flap system of sufficient performance was developed. The ADTT system has
been used to develop a single element design that does not compromise short field performance.

The redesign process began with the evaluation of several different single element flaps. Midway
through this process, the decision was made to change the flap deployment kinematics due to
system-level considerations. The flexible design of the AD'IT simplified the tasks of regenerating
the GUIs used to enter the appropriate deployment parameters and reconfiguring the CAD system
to accommodate the new deployment schedules. A total of 36 designs were evaluated over a
period of 2 weeks. The geometry manipulation, creation of input files, launching of codes,
storage, and post-processing of the over 2200 datasets would have been extremely difficult to
organize and accomplish without a system such as ADTT.

With the number of design variables involved and the overwhelming volume of data produced, it
was imperative to develop a comprehensive method for comparing designs. While plots of
aerodynamic coefficients versus angle of attack and surface pressure distributions were available,
the number of configurations investigated quickly made it difficult to determine optimal designs
using these traditional data presentation methods. A specialized interpolation process was
developed to provide a flexible means of interrogating the many datasets subject to a variety of
constraints. The interpolated results were then provided in a series of contour maps.
Incorporating this new capability directly into the ADTT system allowed the developers to take
advantage of the organized storage of the data and provide a consistent look and feel to the post
processing. This interpolation procedure and the data presentation format were essential for

extracting the relevant design information from the large design space. The successful last-minute
addition of this crucial data presentation format attests to the flexible design of the ADTI' system.

Once the best design was determined, the CAD model used for the analyses was transferred to the
manufacturing shop, where tool paths were generated and the corresponding part was machined.
The customer, using an in-house technique, also independently confirmed the AD'IT-developed
predicted performance. This new flap is scheduled for evaluation as part of a current wind tunnel
test. Once the experimental results from this design are available, the design process will be
repeated, with the goal of producing a further improved design that will be manufactured and tested
before the completion of the test program.

Lessons Learned
The initial application described here has demonstrated that an ADTT-like system does improve the
speed and effectiveness of re-design and design trade-off studies. One important key to success
with any aerospace system is to supply the required analyses, process, and data management
capabilities within a framework that allows rapid, if not automated, adaptation to change.
However, experience shows that the key to success is a very strong partnering between the
aerospace system software designers and developers, the partners developing and maintaining the
computational infrastructure, the partners developing intelligent systems technologies, and, of
critical importance, the designers using and evaluating the system.

In the future, as the amount of generated data grows, we must find better ways to portray to the
designers the state of both their own and their colleagues' designs, as well as allow the rapid
comparison of designs, acknowledging that each designer may use different design metrics. We
must work with the developers of advanced computational infrastructures to enable the scheduling
of distributed computational systems (compute nodes, data storage systems, networks, and more)
to optimize the productivity of the designers. For example, the computational infrastructure must
be able to rapidly disperse and execute large numbers of jobs and must provide fast and reliable
access to the results. To provide improved process advisory and streamlining to the users, using
artificial intelligence support technologies, we must continue to develop tools and methods that
facilitate the effective capture and organization of detailed design process and rationale knowledge.

Conclusions
In the ongoing effort to develop computational systems, such as ADTT, to support the product
development process areas that require further research are continuously identified. Work to date
suggests that significant development in the areas of data presentation, computational
infrastructure, process assistance, and rationale capture and use are required.

The efficient extraction of information is of increasing importance as more high fidelity data
becomes available. To be useful, the information must be: 1) easily accessible in near real time, 2)
correlated against similar results in other data repositories, and 3) coalesced and presented in visual
forms that are meaningful to the designers. Synergistic solutions to these three challenges must be
constructed. Components of future systems for design space mapping will likely include:

- Archival database systems capable of cataloging thousands of high-fidelity simulations
while providing efficient "at-your-fingertips" retrieval of individual datasets.

- Metadata architecture that enables the correlation of both computational and experimental
information stored in heterogeneous databases.

- Data mining techniques that allow the perusal, analysis, correlation, identification, and
summary extraction and presentation of design characteristics.

- New data presentations and filters that prevent designers from being overwhelmed by the
sheer volume of information that results from a thorough examination of a multi-parameter
design space.

Successful data mining methodologies for design space maps will need to be both applicable to
broad classes of projects and easily custornizable for specific designs. Techniques borrowed from
disciplines such as digital image and signal processing may be useful.

The ability to launch virtually unlimited numbers of analyses also presents a new set of
computational challenges. If we are to truly reduce the design cycle time, it is not enough to
increase the capacity of job queuing - the bottleneck then becomes the availability of the resources
rather than the time required for job setup. The ultimate goal is not to get the jobs into the queue
faster but rather to make results available to the user more quickly. Reductions in run time through
more intelligent job monitoring and intervention may provide a partial solution to this problem.
However, the real breakthrough will be realized through access to a truly distributed, powerful
computing environment (e.g., Computational Grids, Ref. 8). Revolutionary ways to organize and
store the unprecedented flood of data that will be generated by these jobs and that must be rapidly
accessible within the design environment are also required. Fast, distributed storage, data
compression and rapid search techniques are among the relevant technologies for exploration.

Expert process assistance for the designer will provide the benefits of reduced design time with
higher quality results, as well as historical reference for future designers and design applications.
To accomplish this requires in-depth understanding of both the actual design process and, more
importantly, the rationale behind the designers' decisions. To this end, technologies such as
context understanding, mapping and recall, and other knowledge and rationale capture technologies
are being developed as integral system components. When there is a more complete understanding
of the principles that underly the design process, we can apply this knowledge, through planning
and scheduling techniques, agent technology, reasoning techniques and other applicable
technologies to assist the designer in further streamlining the process.

Acknowledgments
These activities have been made possible by the NASA IT Base, HPCC, and AST Programs, as
well as the Aeronautics DesignlTest Environment (ADTE) Project. Many engineers from Boeing
and NASA Ames' Aeronautics, Information Systems, and Research and Development Directorates
have worked together to explore the potentials of integrated design systems as reviewed in this
paper. This introductory paper will be followed by future papers that will discuss in substantial
details the work only outlined here.

References
1. NASA Office of Aeronautics and Space Transportation Goals:

http://www .hq.nasa.gov/office/aero/oastthp/brochure/brochure.htm.
2. Kreyszig, E., Advanced Engineering Mathematics, Third Edition, John Wiley and Sons, Inc.

New York, 1972, pg. 719.
3. Buning, P. G. and Steger, J. L., "Graphics and Flow Visualization in Computational Fluid

Dynamics," AIAA-85- 1507-CP, July 1985.
4. Renze, K. J., Buning, P. G., and Rajagopalan, R. G., "A Comparative Study of Turbulence

Models for Overset Grids," AIAA-92-0437, January 1992.
5. Melton, J. E., Berger, M. J., Aftosrnis, M. J., and Wong, M. D., "3D Applications of a

Cartesian Grid Euler Method," AIAA Paper, 95-0853, January 1995.
6. Koga, D. J., Schreiner, J. A., Buning, P. G., Gilbaugh, B. L., and George, M. W.,

"Integration of Numerical and Experimental Wind Tunnels (IofNEWT) and Remote Access
Wind Tunnel (RAW) Programs of NASA," AIAA-96-2248, June 1996.

7. Koga, D. J., Korsmeyer, D. J., and Schreiner, J. A., "DARWIN Information System of
NASA-An Introduction," AIAA-96-2249, June 1996.

8. Foster, I. and Kesselman, C., "The Grid: Blueprint for a New Computing Infrastructure,"
Morgan Kaufmann Publishers, San Francisco, 1998.

Session 9:

Numerical Optimization

Aerodynamic Shape Optimization
Using A Combined DistributedIShared Memory Paradigm

Samson Cheung
MRJ Technology solutions

Terry Holst
NASA Ames Research Center

Moffett Field, CA 94035

Abstract
Current parallel computational approaches involve distributed and shared memory paradigms. In the
distributed memory paradigm, each processor has its own independent memory. Message passing
typically uses a function library such as MPI or PVM. In the shared memory paradigm, such as that used on
the SGI Origin 2000 machine, compiler directives are used to instruct the compiler to schedule multiple
threads to perform calculations. In this paradigm, it must be assured that processors (threads) do not
simultaneously access regions of memory in such a way that errors would occur. This paper utilizes the
latest version of the SGI MPI function library to combine the two parallelization paradigms to perform
aerodynamic shape optimization of a generic winglbody.

O~timizer
The / M A parallel numerical optimizer,' which employs an unconstrained quasi-Newton method using a
self-scaling BFGS algorithm? is utilized in this study. Like all gradient optimizer algorithms, the present
method requires two types of inputs, design-space sensitivity derivatives and line search information.
The sensitivity derivatives tell the optimizer the impact of design variable changes on the objective
function. The search direction information, obtained after each set of sensitivity derivatives is computed,
helps the optimizer set step sizes, i.e., how much should each design variable be changed. In the
present approach, derivatives of the objective function with respect to the design variables, are obtained
using the finite-difference method. With this approach for computing design space sensitivity derivatives,
constraints are easily added to the optimization process. For all computational results presented herein
the following objective function is used:

In the above equation CDri is the inviscid pressure drag coefficient computed from the CFD flow solver,
C,,, is the viscous drag coefficient set equal to 0.0250 for all cases, and CL is the inviscid lift coefficient

also computed from the CFD flow solver. Note the penalty-type constraint on the lift coefficient built into
this objective function definition that forces the lift coefficient to be near 0.409 (the unoptimized
geometry's lift coefficient). During an optimization iteration, the distributed andlor distributedlshared
memory paradigm is used to perform the function evaluations that are necessary for these derivative
computations as well as the line search process used to find the optimal design point. Each processor is
assigned to a particular design variable (see Fig. I).

CFD Flow Solver
The TOPS3v4 CFD code is utilized in this study to perform all objective function evaluations. This code is a
three-dimensional full potential solver that utilizes a chimera zonal grid approach for handling complex
geometries. It has the capability of producing complete numerical solutions about winglbody
configurations (-200K grid points) in 1-2 min on a single SGI Origin 2000 processor. Each run consists of
surface and volume grid generation; winglfuselage line of intersection computation; chimera hole cutting,
donor cell search, and interpolation coefficient computation; and, finally, the flow solver step. Each of
these steps is automatically coupled and executed without user intervention. This makes the
IDWAITOPS coupling easy and efficient.

Distributed /.,' \\ P - d b

Th&d 1 Thhad 2 Thmd I Thread 2

Fig. 1 Schematic of the aerodynamic optimization code system. The upper level (optimizer) uses the
distributed memory paradigm and the lower level (CFD Code) uses the shared memory paradigm. Note:
DV stands for design variable.

Additional improvements in wall-clock time are obtained using the shared memory paradigm for flow solver
implementation. To efficiently parallelize the code using this paradigm, computationally intensive regions
of code are selected for the creation of multiple threads (see Fig. 1). Care must be taken in this process so
that the regions of code selected have the necessary data independence. Once these regions are
identified, compiler directives, such as C$DOACROSS, are placed in the code to implement the
multithread operations at FORTRAN do loops. A simple example is given below:

The SGI FORTRAN compiler provides an option (-pfa) to perform Power Fortran Accelerator. This will
conservatively multi-thread all the do loops in the compiled routines. Although it is very convenient, it may
not be the best way to perform multi-thread parallelization. This is because some of the do loops being
parallelized may not have enough work for multiple processors to share, especially when the additional
overhead of multi-threaded parallelism is considered. Therefore, a more computationally efficient, albeit
more tedious, approach is to add compiler directives, such as C$DOCROSS, by hand. Only
computationally intensive do loops are executed in parallel. In the present implementation (as a test of this
idea), the grid generation, chimera (hole-cutting, donor-cell search, and interpolation) routines and about
one-third of the flow solver are not parallelized. The routines utilizing the C$DOCROSS directive are
compiled with the -mp option; and before execution, the environment variable MP-SET-NUMTHREADS
is set to the number of desired threads (processors).

Results
The RAE winglbody configuration is used as the initial condition in this optimization study. This geometry
involves a symmetric wing mid-mounted onto an ogive-cylinder fuselage. A three-zone grid with a total of

210K grid points is employed to calculate each flow field (see Fig. 2). There are two inner grid zones, a G
H topology grid around the wing and a C-0 topology grid around the fuselage. These two inner grids are
generated using the HYPGEN grid generation code.5 Once the wing grid is generated, the grid surface
lying next to the winglfuselage juncture is interpolated onto the fuselage surface using bi-cubic-spline
interpolation. Thus, flow tangency boundary conditions are implemented in the wing grid along two grid
surfaces, the wing surface and the fuselage surface. These two inner grid zones are connected to the
freestream using the third grid zone, an outer, sheared-stretched, Cartesian-like grid. The flow conditions
chosen for this study are M, = 0.84 and a = 4". Once the design optimization is complete the initial and
final geometries are rerun with afiner grid involving about 500K points. These fine grid results are then
used for analysis and plotting.

Fig. 2 Three-Zone grid about the RAE Wing A + cylindrical body B2

Case 1 (10 desian variable, distributed case)
In the first case presented, ten design variables are used to discretize the design space. Geometric
changes for only the upper wing surface are considered and are implemented using four thickness design
variables and one twist design variable at each of two spanwise stations (root and tip). The thickness
design variables are distributed on the upper surface at chordwise stations ranging between 0.15 and
0.65. The upper wing surface thickness distribution between 0.06 and 0.75 is held fixed during the
design optimization process. This simple definition of the design space is chosen because the emphasis
in this study is on implementationlparallelization efficiency, and not aerodynamic efficiency. The first
optimization was performed using ten Origin 2000 CPUs (via MPI).

The total number of function calls (i.e., flow solver solutions from TOPS) was 385. The total wall clock time
of this optimization run was about 66 mins, which is a speedup over the totally serial case of 8.1. There
are two primary reasons this number is not closer to the ideal value of ten. First, at the beginning of the
optimization iteration a single solution is required, which requires only a single processor. Second, during
the line search, if a local minimum is detected, additional function evaluations are required to enrich the
definition of the search direction. These extra line search enrichment solutions, in the present
implementation, are performed serially, and thus, require only a single processor. A parallel
implementation of the line search enrichment step is theoretically possible, but has not been
implemented to date.

The result of the Case 1 optimization process, which required 18 optimization iterations, is about a 17%
decrease in the objective function as can be seen from Fig. 3. The results of this optimization on the wing
surface pressures and the wing shape are displayed in Figs. 4 and 5. Figure 4 shows the surface
pressures at four wing stations ranging from 16 to 83% of the semi-span. The y/b=0.16 result (Fig. 4a)
corresponds to the winglfuselage juncture. Note that both the baseline (unoptimized) and optimized
surface pressures are included in each of these plots. Generally, the transonic shock strength has been
weakened at each station, while the lift has remained approximately constant. Figure 5 shows the wing
surface shapes at the same wing semi-span stations as those displayed in Fig. 4. Note that the zfc
coordinate has been multiplied by a factor of ten to better see the shape modifications chosen by the
optimizer. Keep in mind that (except for twist) the airfoil shape on the entire lower surface and upper
surface forward of 0.06 and aft of 0.75 was frozen throughout the optimization process. Generally, the
airfoil thickness has been increased at the tip, decreased at the root, and a lift-neutral, "wash-out-type*
twist distribution has been introduced.

- a n t I a * 3 - I . ' ' ' I m ' 9 '
0 5 10 15 20

OPTIMIZATION ITERATION, n

Fig. 3. Objective function versus optimization iteration for case 1 involving ten design variables and ten
processors.

Case 2 (1 0 desian variable. distributedlshared case)
The aerodynamic optimization for the next case is the same as the previous case, but the computation
involves 20 processors and a combined distributedlshared implementation as described in the above
CFD flow solver section. Each function evaluation is performed using two threads, i.e.,
MP-SET-NUMTHREADS is set to 2. The results of the numerical optimization, as expected, are identical
to the above results for Case 1. The wall clock time is reduced to 43.7 mins. This is a factor of 1.50 speed-
up over the previous 10 processor case and represents a speedup over the totally serial case of 12.2.
Since only about half of the total code was affected by the compiler directives (its difficult to be precise on
this point), this timing result is about as expected.

Case 3 (44 desian variable. distributed case)
The aerodynamic optimization for the next case is likewise the same as the previous case, but the design
space discretization is much finer involving a total of 44 design variables. Geometric changes for only the
upper wing surface are considered and are implemented using ten thickness design variables and one
twist design variable at each of four equally-spaced spanwise stations between the root and tip. In
addition, a new perturbation grid generation option was utilized for this computation. Before the
optimization run initiates, the baseline geometry volume grid for all three grid zones is saved in a file. Then,
instead of using a "from scratch" grid generation for each function evaluation, the saved grid is read in and
modified using the new perturbed wing surface geometry. The new perturbation grid generation option is
about ten times faster than a call to HYPGEN and produces a grid very close to the original grid.

1

Q
+- 0.5

I
I! IL 0 I L

w
8
w9.5
a
2
(I) $ -1
a

-0.2 0 0.2 0.4 0.6 0.8 1
AXIAL DISTANCE. xlc

-0.2 0 0.2 0.4 0.6 0.8 1
AXIAL DISTANCE, r/c

vn
I - - 1

E
0.5

8
0
w 0
LI:
3
(I)
(I)
w-0.5
E

-0.2 0 0.2 0.4 0.6 0.8 1

AXIAL DISTANCE, xlc

-0.2 0 0.2 0.4 0.6 0.8 1
AXIAL DISTANCE, xlc

Fig. 4 Pressure coefficient distributions at several spanwise stations showing the effects of the
wing shape optimization, ten design variables.

This optimization was performed on 44 processors and required a total of 20 design iterations,
1810 flow solver runs (function evaluations), and 65 mins of cpu time. This corresponds to a
speedup over the totally serial case of 36.2 or about 82.3% of ideal. This particular computation
required 6 serial function evaluations, i.e., TOPS computations run on a single processor with the
other 43 processors sitting idle. These serial solutions (as previously mentioned) correspond to
the initial solution and (for this particular case) 5 line search enrichment computations. if these 6
serial computations are removed from consideration, the computational statistics become 1804
function evaluations in about 57.2 mins. This corresponds to a speedup over the totally serial
case of 41 or about 93% of ideal. Thus, it can be concluded that the IKIWA optimizer overhead for
this computation is about 7% of the total computer time.

Conclusions
The TOPS full potential chimera aerodynamic analysis code has been coupled with the IOWA
gradient optimizer. The IOWPJTOPS combination has been used to compute optimized wing
shapes on a parallel computer using the distributed and distributedlshared paradigms with good
success. The distributed cases showed good processing rates with speed-up factors ranging
around 80% of ideal. The improvement in speed up for the distributedlshared case was not as
good being only about 60%. The lower speed up for the distributedlshared case was due to only
partial implementation of the shared paradigm, however, and requires more investigation.

-0.2 0 0.2 0.4 0.6 0.8 1
AXIAL DISTANCE, xlc

AXlAL DISTANCE, xlc

-0.2 0 0.2 0.4 0.6 0.8 1
AXIAL DISTANCE, xlc

. 9 . i ~ . * i . . (i . . . J 1 9 . / . . n
-0.2 0 0.2 0.4 0.6 0.8 1

AXIAL DISTANCE, x/c

Fig. 5 Wing shape distributions at several spanwise stations showing the effect of optimization on the
symmetric baseline wing. Note that the z-coordinate has been magnified by X10.

References
'Cheung, S., "Parallel CFD Design on Network-Based Computer," J. of Aircraft, Vol. 33, No. 3, May-June
1 996.

2Luenberger, D., Linear and Nonlinear Programming, 2nd Ed, Addison-Wesley, pp. 261-288, 1984.

3Holst, T. L., "Full Potential Equation Solutions Using a Chimera Grid Approach," AIAA Paper No. 96-
2423, June, 1996.

4Holst, T. L., "Multizone Chimera Algorithm for Solving the Full-Potential Equation," J. of Aircraft, Vol. 35,
No. 3, May-June 1998, pp. 41 2-421.

5Chan, W. M., Chiu, I., and Buning, P. G., " User's Manual for the HYPGEN Hyperbolic Grid Generator and
the HGUI Graphical User Interface," NASA TM 108791, Oct. 1993.

HIGH-FIDELITY AEROELASTIC ANALYSIS AND AERODYNAMIC
OPTIMIZATION OF A SUPERSONIC TRANSPORT

Anthony A. Giunta
Postdoctoral Fellow, National Research Council

NASA Langley Research Center, Mail Stop 139, Hampton, VA 23681-2199, USA
L r.

Phone: 7571864-3 176, E-mail: a.a.giunta@larc.nasa.nov

INTRODUCTION
A suite of modular government/comrnercial off-the-shelf (GICOTS) software packages has been
created to perform high-fidelity aeroelastic analysis and aerodynamic optimization of aircraft
configurations. While the current status of the software permits multidisciplinary analysis and
single-disciplinary optimization, the goal of this research is to develop a high-fidelity
multidisciplinary optimization (MDO) capability in which various MDO methods will be
examined on realistic aircraft design problems. The existing MPI-based parallel computing
capability in some elements of the GICOTS software is a key component in realizing the goal of
high-fidelity MDO. In particular, the parallel computing capabilities allow the efficient
calculation of sensitivity derivatives needed to perform gradient-based optimization. To
demonstrate the utility of this modular GICOTS software approach, an aeroelastic analysis and
aerodynamic optimization of a high-speed civil transport (HSCT) are examined.

SOFTWARE AND ANALYSIS MODELS
The software suite includes the following GICOTS elements: the EulerINavier-Stokes solver
CFL3D from NASA Langley (Ref. I), the aerodynamic grid generator CSCMDO (Coordinate
and Sensitivity Calculator for Multi-disciplinary Design Optimization) from NASA Langley
(Ref. 2), the finite element analysisloptimization package GENESIS from VMA Engineering,
Inc. (Ref. 3), the aerodynamic loads interpolation package FASIT (Fluids and Structures
Interface Toolkit) from Georgia Tech and the U.S. Air Force (Refs. 4,5), and the gradient-based
optimizer DOT (Design Optimization Tools) from Vanderplaats Research and Development, Inc
(Ref. 6). This collection of GICOTS software is loosely coupled using UNM scripts and
common geometry descriptions such as the PLOT3D format and the NASTRAN Bulk Data
format. Currently, the suite is executed serially on a network of UNIX workstations but parallel
computing is possible with both CFL3D and GENESIS. Figure 1 shows the arrangement of the
software modules when performing aeroelastic analysis and Figure 2 shows the software
organization used in aerodynamic optimization. Note that the block entitled "Geometry" denotes
the use of an in-house parametric model of the HSCT configuration employing 104 variables (64
planform and shape, 40 internal structure).

The aerodynamic volume grid is created using the data in the parametric HSCT model along
with CSCMDO and a baseline volume grid of the initial HSCT configuration. Here, a transfinite
interpolation scheme is used in CSCMDO to produce a new volume grid for each iteration of the
aeroelastic analysis or aerodynamic optimization. Thus, each new grid is a perturbation of the
baseline HSCT volume grid. The aerodynamic volume grid is a two-block C-0 mesh with
approximately 300,000 grid points and overall dimensions of 12 1 x4 1 x6 1 (Fig. 3). Using

CFL3D, an inviscid aerodynamic analysis requires 1.3 CPU hours on a Silicon Graphics (SGI)
workstation (195 MHz IP30 processor). Subsequent CFL3D analyses make use of the restart
capability in the flow solver and require approximately 16 CPU minutes.

The finite element structural model is generated based on the 40 sizing variables. Of these, 26 of
the variables are skin panel thickness values (13 panels on each of the upper and lower body
surfaces), 12 of the variables are spar cap areas, and two of the variables are rib cap areas. The
finite element structural model originally was developed by Balabanov (Ref. 7) and consists of
1130 elements with 1254 degrees of freedom (Fig. 4). Using GENESIS, a single structural
analysis of this model requires about 50 CPU seconds on an SGI workstation.

For the aeroelastic analysis process, FASIT is used to calculate the aerodynamic loads from the
CFL3D data and to interpolate the loads from the surface of the aerodynamic grid to the surface
of the finite element structural model. FASIT is ideally suited for this loosely coupled approach
to computational aeroelasticity, as it accepts several widely used file formats employed by
computational fluid dynamics solvers and finite element analysis software. FASIT provides a
suite of interpolation schemes for transferring the aerodynamic loads from the aerodynamic
surface grid to the structural surface grid. The thin plate spline method of Duchon (Ref. 8) was
used in this study, as recommended in the FASIT User% Manual (Ref. 5). Note that the
interpolation methods in FASIT conserve the total force and moments for all three axes when
transferring loads from the aerodynamic grid to the structural grid. The loads transferred to the
structural grid are written in the NASTRAN Bulk Data format. Since this NASTRAN format is
compatible with the GENESIS input format, no translation is needed between FASIT and
GENESIS. The computational expense of running FASIT is approximately 10 CPU seconds.

The structural deflections in an aeroelastic analysis are transferred back to the aerodynamic
surface and volume grids using some in-house software that calculates the change in each of the
64 HSCT external shape parameters. With an updated parametric description of the HSCT, a
new aerodynamic volume grid is generated using CSCMDO, and the aeroelastic analysis process
starts another iteration. A similar procedure is used in the aerodynamic optimization where the
optimizer specifies changes in the variables and a new aerodynamic volume grid is generated
based on the updated HSCT geometry.

AEROELASTIC ANALYSIS AND AERODYNAMIC OPTIMIZATION
The static aeroelastic analysis case is performed at 1.0g Mach 2.4 cruise conditions for a fixed
angle-of-attack of 3.5 degrees (with respect to the fuselage centerline). A constant factor under-
relaxation method converges the aeroelastic analysis in six iterations and 2.7 CPU hours.
Without relaxation, the aeroelastic analysis procedure converges slowly and was terminated after
19 iterations (Fig. 5). The wing deflection is shown in Figure 6 where airfoils at the wing root,
leading-edge break, and wing tip are shown for the initial undeformed shape and the final
deformed shape. The elastic structural model results in a lift reduction of 5.7 percent as
compared to the rigid model. Note that no structural sizing is performed during the aeroelastic
analysis. However, prior to the aeroelastic analysis the structural elements are sized to meet von
Mises yield stress criteria and local buckling constraints for a 2.5g pull-up maneuver at Mach
2.4.

The aerodynamic optimization problem employs 10 of the 64 parameters that define the wing
planform and shape. The planform variables are the inboard and outboard leading edge sweep

angles (AI, Ao), chord lengths at the leading edge break and wing tip (G&, Ctip), the spanwise
location of the leading edge break (Ybreak), and the semispan (Ytip). The airfoil shape variables
are the thickness-to-chord ratio (t/c) at the leading edge break and the wing tip ((t/c)-, (t /~)~~p),
the leading edge radius parameter (b), and the chordwise location of maximum thickness on the
wing (Gax). Camber and twist parameters are held fixed during this optimization case. The
optimization problem is formulated to minimize drag subject to two constraints. One constraint
requires the lift to meet or exceed 210,000 lb, and the other constraint specifies a minimum chord
length at the leading edge break to maintain a reasonable planform geometry. Using the SQP
optimizer in DOT, the aerodynamic optimization yields a drag reduction of about three counts (-
5.8 percent) while meeting both of the constraints. The computational cost of this optimization
is approximately 16 CPU hours on an SGI workstation. The initial and optimal variable values
are listed in Table 1 and the corresponding wing shape improvements are shown in Figures 7 and
8. Note that a single processor workstation was used for the optimization and that sensitivity
derivatives were computed using forward finite difference methods. Thus, these results represent
a worst-case evaluation of computational costs. Future aerodynamic optimization and MDO
investigations will benefit substantially from the use of the parallel version of CFL3D to
efficiently compute the needed sensitivity derivatives.

CONCLUSION
In progress toward the goal of high-fidelity MDO for aircraft configurations, an initial capability
has been developed to perform multidisciplinary analysis for static aeroelastic problems. The
solution of the coupled aerodynamic-structural system is an important precursor to performing
aircraft MDO. In addition to the multidisciplinary analysis capability, a single-disciplinary
aerodynamic optimization capability was developed to demonstrate the methods needed to
interface high-fidelity analysis software and optimization software. The use of modular GICOTS
software facilitates the exchange or replacement of analysis codes according to the needs of the
user.

Future use of the parallel computing capabilities in CFL3D and GENESIS will allow for the
efficient calculation of sensitivity derivatives needed in aircraft MDO studies. These coupled
system MDO cases will involve the combined sizing and shape optimization of an HSCT
configuration subject to aerodynamic, structural, and performance constraints. Several methods
for solving MDO problems involving coupled systems will be investigated including those based
on Global Sensitivity Equations as well as Collaborative Optimization techniques.

REFERENCES
1. Taylor, A. C., HI, Oloso, A., and Newman, J. C., III, 'CFL3D.ADII (Version 2.0): An

Efficient, Accurate, General-Purpose Code for Flow Shape-Sensitivity Analysis," AIAA
Paper 97-2204,1997.

2. Bischof, C . H., Jones, W. T., Mauer, A., and Samareh-Abolhassani, J., "Application of
Automatic Differentiation to 3-D Volume Grid Generation Software," Proceedings of the
1995 ASME Znt. Mech. Engr. Congress and Exposition, volume FED 232, San Francisco,
CA, pp. 17-22,1995.

3. GENESIS User's Manual Version 4.0, Vanderplaats, Miura and Associates, Inc., Colorado
Springs, CO., 1997.

4. Smith, M. J., Hodges, D., and Cesnik, C., "An Evaluation of Computational Algorithms to
Interface Between CFD and CSD Methodologies," Flight Dynamics Directorate, Wright
Laboratory, Wright-Patterson Air Force Base, OH, Report WL-TR-96-3055, 1995.

5. Smith, M. J., Hodges, D., and Cesnik, C., 'Fluids and Structures Interface Toolkit (FASIT),
Version 1.0," Georgia Tech Research Institute, Atlanta, GA, Report GTRI A-9812-200,
1996.

6. DOT User3 Manual Version 4.20, Vanderplaats Research and Development, Inc., Colorado
Springs, CO, 1995.

7. Balabanov, V. O., Development of Approximations for HSCT Wing Bending Material Weight
Using Response Surface Methodology, Ph.D. thesis, Virginia Polytechnic Institute and State
University, Blacksburg, VA, 1997.

8. Duchon, J., 'Splines Minimizing Rotation-Invariant Semi-Norms in Sobolev Spaces,"
Springer-Verlag, Berlin, eds. W. Schempp and K. Zeller, pp. 85-100, 1977.

Table 1. Initial and optimal values for the 10 variable HSCT aerodynamic optimization case.

Variable Initial Value Optimal Value

AI 74.0 O 75.0

Ao 45.0 O 45.0 O

cbreak 42.4 ft 44.7 ft

c t i p 9.3 ft 10.0 ft

ybreak 28.6 ft 28.1 ft

y t i p 67.3 ft 70.0 ft

(f/c) break 2.15 % 1.50 %

(f/c> tip 2.36 % 1.50 %

Rp (nondirnensional) 4.5 3.5

Cmax 45.0 % 46.0 %

Results Initial Value Optimal Value

cD lo4 52.74 49.70

Lift 202,000 lb 210,000 lb

Planform Area 4,610 ft2 4,745 ft2

Geometry

Figure 1. The software organization used in
HSCT static aeroelastic analysis.

4

CSCMDC

CFL3D

7

Interface CSCMDO *'+

I

Figure 2. The software organization used in
HSCT aerodynamic optimization.

GENESIS FASIT

Figure 3. One of two blocks in the
aerodynamic model showing the starboard
wing and fuselage along with the x-z plane
of symmetry and the exit plane.

--).

Figure 4. Structural model of the HSCT
showing the wing skin elements (port) and
the riblspar elements (starboard).

Figure 5. The convergence history of the
aeroelastic analysis both with and without
under-relaxation.

Figure 6 . The initial undeformed (dashed)
and final deformed (solid) airfoil sections
obtained from the static aeroelastic analysis.

Y (feet)

Figure 7. The initial (solid) and optimal
(mesh) HSCT planforms in the aerodynamic
optimization.

Figure 8. The initial (dashed) and optimal
(solid) airfoil sections obtained from the
aerodynamic optimization.

PARALLEL COMPUTATION OF S E N S m DERIVATIVES WITH APPLICATION TO
AERODYNAMIC OF'TIMEATION OF A WING

Robert T. Biedron (r.t.biedron@larc.nasa.gov 757-864-2156) JLG 70 1'
Jamshid A. Samareh (j.a.samareh@ larc.nasa.gov 757-864-5776)

Lawrence L. Green (1. Lgreen @ larc.nasa.gov 757-864-2228)

NASA Langley Research Center
Hampton, VA 2368 1-2 199

ABSTRACT

This paper focuses on the parallel computation of aerodynamic derivatives via automatic
differentiation of the EulerNavier-Stokes solver CFL3D. The comparison with derivatives
obtained by finite differences is presented and the scaling of the time required to obtain the
derivatives relative to the number of processors employed for the computation is shown. Finally,
the derivative computations are coupled with an optimizer and surface/volume grid deformation
tools to perform an optimization to reduce the drag of a three-dimensional wing.

INTRODUCTION

Recently researchers have shown a great deal of interest in the application of advanced CFD
methods to aerodynamic optimization, for both single-discipline and multidiscipline applications.
Central to any aerodynamic optimization problem is the evaluation of solution derivatives with
respect to the chosen design variables. Differentiation of the CFD source code used to obtain the
solution gives exact derivatives of the discrete equations, without the step size problems of finite
differences. Although quite tedious to perform by hand, exact differentiation of a source code is
readily accomplished using an automatic differentiation (AD) tool such as ADIFOR'. The
computational time for AD derivatives scales with the number of design variables, and the
computational time may be prohibitive for large number of design variables. One way to reduce the
effective computation time (wall time) is to subdivide the computational domain and compute each
subdomain on a different processor. For this approach to be useful, the computational code must
scale well with increasing number of processors.

The CFD code used for this study, C F L ~ D ~ , has been widely used for aerodynamic analysis on
complex configurations. One version of the code (CFL3Dv4. lhp) has recently been ported to
parallel computer architecture via the use of MPI protocols. Studies have indicated good scaling on
Origin 2000 testbeds for Euler and Navier-Stokes solutions3. Even more recently the parallel code
has been passed through the ADIFOR automatic differentiation tool to generate code capable of
computing both the solution and the gradient of the solution with respect to geometric design
variables.

PAFLWlETERIZATION AND DESIGN VARLABLES

For aerodynamic optimization, a parameterized surface definition that relates the shape to geometric
design variables is required. In many instances, a computational grid defining the baseline shape of
the configuration is readily available, but a parameterization of the surface is not.

A surface parameterization scheme that overcomes this difficulty has recently been developed by
the second author4 The method is a free-form deformation approach very similar to morphing
techniques used in computer animation. It can simulate planform, twist, dihedral, thickness, and
camber variations. In a sense, the model is treated as putty or clay in areas where it can be twisted,
bent, tapered, compressed or expanded, but retains the same topology. The method is equally
applicable to computational structures grids, and thus is ideally suited for aerostructural
calculations.

An existing grid defining the ONERA M6 wins was parameterized with 52 parameters. Of those
52 parameters, 3 1 were chosen as design variables: 5 planform, 4 twist, 4 shear, 9 thickness and 9
camber. Figure 1 shows the locations of the design variables chosen for the wing optimization.

COMPARISON WITH F!INTJE DlFFERENCES

As a validation that the AD code produces the correct derivatives, comparisons with central finite
differences (FD) were made using double-precision arithmetic. The AD derivatives and finite
differences were computed for inviscid flow over the M6 wing with the design variables described
above. The flow conditions were Mach 0.84 and . A coarse grid of dimensions 97x17~17 in the
streamwise, spanwise and normal directions, respectively, was used for the derivative validation
studies. For the FD results, residuals were driven to machine zero; for the AD results,
computations were stopped when derivatives no longer varied in the fifth decimal place. All finite
differences were computed using a step size of Experience has shown that single precision is
sufficient for inviscid analysis, e.g. negligible difference in force coefficients between single and
double precision. The AD calculations were repeated with single precision to see if the same would
hold true for derivatives of the force coefficients.

The results are summarized in Table 1 for several representative design variables. Similar results
are obtained for other derivatives and other force coefficients. It is evident that the AD code does in
fact produce the correct derivatives. Note that the AD results are the same for both single and
double precision, at least to 4 decimal places, a result typical of other derivatives as well. Thus, the
AD code can be used reliably with single precision, at least for the inviscid flow considered here.
The advantage is that the code runs approximately 40% faster in single precision. Although not
shown, it should be noted that when used with single precision, finite differences could not be
obtained with better that approximately one percent error as compared to double precision.
Furthermore, different design variables required different step sizes to obtain even that level of
accuracy.

SCALING STUDY

The scaling study was carried out for inviscid flow over a High Speed Civil Transport (HSCT)
configuration at Mach 2.4. The grid used was comprised of approximately 540,000 cells in 64
equal sized blocks. The surface was parameteri2ed with 27 design variables in a manner similar to
that used for the M6 wing described above. For the scaling studies, 100 three-level multigrid
iterations were used, resulting in derivatives that remained unchanging with iteration number
through the fifth decimal place. The computations were carried out in single precision. The results
were obtained on Origin 2000 computers, using from 1 to 32 compute processors (an extra
processor functions as the host, performing I/O tasks which consume relatively little CPU time).
Each case was run at least twice to try to account for run-to-run variations due to system load.

The scaling results are shown in Figure 2. Computing only the solution (no derivatives) required
0.787 hours on a single processor, dropping to 0.023 hours on 32 processors. Computing the 27
AD derivatives along with the solution required nearly 33.5 hours on a single processor, dropping
to 1.05 hours on 32 processors. The speedup was essentially linear for both solution and solution
plus gradient calculations.

WING OPTIMIZATION

As an application of the parallel AD code, an aerodynamic optimization of an ONERA M6 wing
was carried out. The objective of the optimization was to minimize the drag while maintaining the
same lift as the baseline design. As for the derivative validation, inviscid flow at Mach 0.84 and
was used, however a finer grid of dimensions 197x33~33 was employed for the optimization. The
design variables used were the 3 1 shown in Figure 1, although for the current study the planform
variables were constrained so that they did not change during the design, resulting in a fixed wing
area. This eliminated the need for an additional code to calculate the wing area and derivatives of
the wing area with respect to the design variables. Also, to prevent negative cell volumes near the
tip, thickness variables Th3, Th6, and Th9 were constrained so as not to change. Design variable
limits were arbitrarily chosen as follows: twist, +I- ; all others, +I- 1 percent span.

The optimizer used for this work is a modified version of the CONMIN code6 known as JOPT7.
Within each optimization cycle, the solution and gradient data provided to the optimizer are used to
determine a linear approximation to the objective function and constraints used in the 1D line
searches. This makes each line search much faster, but the linear approximation is only valid with a
small region of the current solution. User-defined move limits for the design variables are required
to insure that the optimizer searched only where the current linear approximation was reasonable.

The solution and design-variable changes suggested by the optimizer were incorporated into the
surface model using the geometry deformation scheme mentioned earlier. Next, an AD version of
the CSCMDO code8 was used to propagate the difference between the old and new surfaces
smoothly throughout the volume p d , determining the grid sensitivities in the process.

Figure 3 shows the design cycle hlstory for both lift and drag. In this optimization, the angle of
attack is fixed, and it was found that in order to move away from the current design, the constraint
on the lift coefficient had to be relaxed temporarily. This is shown clearly in the figure: for the first
19 design cycles, C, is allowed to deviate by up to 0.01 from the desired value. After design cycle
19 the tolerance on the lift constraint is tightened to 10'~. The drag increased slightly when the lift
constraint was tightened, but after the initial rise there was no further change in drag at the target
lift coefficient. The net result was approximately 29 counts of drag reduction at the baseline lift.
Figures 4 and 5 show comparisons of the solutions computed on the initial and final designs. The
results indicate a significant reduction in the shock strength at most spanwise stations. Also shown
in Figure 5 are initial and final wing sections at selected spanwise stations.

Using 16 compute processors on a 250 Mhz Origin 2000, each design cycle took approximately
115 minutes, of which approximately 100 minutes was spent in evaluating the 3 1 gradients, using
300 multigrid cycles. The time per design cycle can be reduced as desired by increasing the number
of processors employed. Although not done in this preliminary study, it should be possible to
further reduce the total optimization cost by utilizing the mesh sequencing option in CFL3D to
perform most of the design variable changes on a coarser level, and only then moving up to the
finest level for the final design cycles.

CONCLUDING REMARKS

A parallel, differentiated version of the CFL3D code has been demonstrated to yield accurate
derivatives with respect to geometric design variables. Furthermore, these computationally
intensive derivative calculations have been shown to scale well with increasing number of
processors. The parallel AD code was coupled to grid deformation and optimization packages and
used to reduce the inviscid, transonic drag on a wing. Future applications will consider viscous
flows.

REFERENCES

1. Bischof, C., Carle, A., Khademi, P., Mauer, A., and Hovland, P.; "ADFFOR 2.0 User's
Guide," Argonne National Laboratory Mathematics and Computer Science Division Technical
Memorandum No. 192, August, 1995.

2. Krist, S. L., Biedron, R. T., and Rumsey, C. L.; "CFL3D Users Manual (Version 5.0),"
NASA TM- 1998-208444, June 1998.

3. Faulkner, T.; "Origin 2000 Update: Studies Show CFL3D Can Obtain Reasonable
Performance," NAS News, Vol. 2, No. 27, Nov.-Dec. 1997.

4. Samareh, J. A.; "Geometry Modeling and Grid Generation for Design and Optimization,"
ICASE/LaRC/NSF/ARO Workshop On Computational Aerosciences In The 21 st Century,
Hampton, VA, April 22-24, 1998.

5. Schmitt, V., and Charpin, F.; "Pressure Distributions on the ONERA-M6 Wing at Transonic
Mach Numbers," Experimental Data Base for Computer Program Assessment, AGARD-AR-138,
May 1979, pp. B1-1 - B1-41.

6. Vanderplaats, G. N.; ''CONMTN- A FORTRAN Program For Constrained Function
Minimization," NASA TM X-62282, August, 1973.

7. Walsh, J. L., Young, K. C., Pritchard, J. I., Adelman, H. M., and Mantay, W. R.; "Integrated
Aerodynamic/Dynamic/Structural Optimization of Helicopter Rotor Blades Using Multilevel
Decomposition,", NASA TP 3465 / ARL TR 518, January, 1995.

8. Jones, W. T., and Samareh-Abolhassani, J.; "A Grid Generation System for Multi-disciplinary
Design Optimization," Proceedings from the 12th AIAA Computational Fluid
Dynamics Conference, AIAA-95-1689, San Diego, CA, June 1995, pp. 657-669.

Table 1. Accuracy of lift and drag coefficient
derivatives computed using automatic
differentiation and central finite differences. DP
denotes double precision; SP denotes single
precision.

HSCT C~flfigufatiin
M = 2.4 a = 3 . 4 O Inviscid
540,000 Cells 64 Blocks
27 Design VarIaMs
Slngk PlecUon

r 16

-0- Function+ Gradient -

8 --D-- Function

Number of Compute Processors

Unear Speedup

-0- Function

Number of Compute Processors

Figure 1. Design variable locations; Ca!I"I' denotes
camberlthickness variables at points indicated by
the solid circles; Sh/Tw denotes shearltwist
variables, defined along the dashed lines; Plan
denotes planform variables, at points indicated by
the empty circles.

1
C, constraint = 0.29176 +I- 1 .e-6

0.290

0.280

CL
/

C, constraint = 0.291 76 +I- 1 .e-2
0.270 1
0m250i o ' ' ' ' ' ' ' 10 ' ' ' '15' ' ' '2'0' ' ' '!5

Design Cycle

Figure 2. Origin 2000 scaling for both solution
o ' ' ' ' ' ' '1, ' '15' '*o

'25

and solution plus gradient evaluation for an HSCT . Design Cycle

configuration with 27 design variables.
Figure 3. Design cycle history for ONERA M6
wing optimization.

0.013

0.012

0.011

C~
' 0.010

0.009

. . . 1

-

-

29.4 counts:
-

-

Baseline Design

CFD Baseline = 0.20
CFD Final

0.20 Experiment Baseline 1 .o

-0.05 . . . ' . I -1 .O
0.0 0.2 0.4 0.6 0.8 1.0

xlc

-0.05 -1 .O
0.0 0.2 0.4 0.6 0.8 1.0

xlc

0.1 5
Figure 4. Comparison of surface pressures on the z/c
final wing design with the baseline M6 wing.

0.1 0

0.05

-0.05 -1 .O
0.0 0.2 0.4 0.6 0.8 1.0

xlc

Figure 5. Comparison of initial and final Cp
distribution and wing cross section at selected
spanwise stations.

DEMONSTRATION OF AUTOMATICALLY-GENERATED ADJOINT CODE / p2 7 6 FOR USE IN AERODYNAMIC SHAPE OFTIMEATION .

Lawrence L. Green
Mail Stop 159 NASA Langley Research Center, Hampton, VA 23681-2199

l.l.green@larc.nasa.gov 757-864-2228

Alan Carle and Mike Fanan 36L 52x2~
Mail Stop 134, Rice University, 6100 Main street, Houston, TX 77005-1 892

carle@cs.rice.edu 7 13-285-5368
mfagan@cs.rice.edu 7 13-285-5 178 L P

Introduction

Gradient-based optimization requires accurate derivatives of the objective function and
constraints. These gradients may have previously been obtained by manual differentiation of
analysis codes, symbolic manipulators, finite-difference approximations, or existing automatic
differentiation (AD) tools such as ADIFOR (Automatic Differentiation in FORTRAN)[l]. Each of
these methods has certain deficiencies, particularly when applied to complex, coupled analyses
with many design variables. Recently, a new AD tool called ADJIFOR (Automatic Adjoint
Generation in FORTRAN), based upon ADIFOR, was developed and demonstrated[2]. Whereas
ADIFOR implements forward-mode (direct) differentiation throughout an analysis program to
obtain exact derivatives via the chain rule of calculus, ADJIFOR implements the reverse-mode
counterpart of the chain rule to obtain exact adjoint form derivatives from FORTRAN code.

Automatically-generated adjoint versions of the widely-used CFL3D computational fluid
dynamics (CFD) code[3,4] and an algebraic wing grid generation code were obtained with just a
few hours processing time using the ADJIFOR tool. The codes were verified for accuracy and
were shown to compute the exact gradient of the wing lift-to-drag ratio, with respect to any number
of shape parameters, in about the time required for 7 to 20 function evaluations[2]. The codes
have now been executed on various computers with typical memory and disk space for problems
with up to 129 x 65 x 33 grid points, and for hundreds to thousands of independent variables.

These adjoint codes are now used in a gradient-based aerodynamic shape optimization problem
for a swept, tapered wing. For each design iteration, the optimization package constructs an
approximate, linear optimization problem, based upon the current objective function, constraints,
and gradient values. The optimizer subroutines are called within a design loop employing the
approximate linear problem until an optimum shape is found, the design loop limit is reached, or
no further design improvement is possible due to active design variable bounds andlor constraints.
The resulting shape parameters are then used by the grid generation code to define a new wing
surface and computational grid. The lift-to-drag ratio and its gradient are computed for the new
design by the automatically-generated adjoint codes. Several optimization iterations may be
required to find an optimum wing shape. Results from two sample cases will be discussed. The
reader should note that this work primarily represents a demonstration of use of automatically-
generated adjoint code within an aerodynamic shape optimization. As such, little significance is
placed upon the actual optimization results, relative to the method for obtaining the results.

Problem Description

The grid generation code was created in FORTRAN specifically for use with ADIFOR and
ADJIFOR automatic differentiation studies. A simple, algebraic grid generation method for a wing
alone is used. The user specifies the number of grid points to be generated in each coordinate
direction, the number of wing sections to be input, and eight parameters for each wing section that

describe both the wing planform and its cross-sectional shape at the specified wing stations. The
wing section inputs are used to construct a wing surface composed of an expanded family of
NACA four-digit airfoils, defined by real numbers rather than integers; this construction provides
continuous cross-sectional shape derivatives and allows for perturbing the wing section shape by
small amounts. The number of shape parameters used as design variables within the optimization
problem is proportional to the number of input wing sections. The wing surface is wrapped in a
single-block volume grid with C-0 topology that can be split into a multiblock grid via a utility
program developed by Beidron of the NASA Langley Research Center. The grid generation
program provides for limited control on the spacing of the grid points in each direction, but does
not include many other features commonly found in grid generation software. Grid quality and
good resolution of the flow field details were not considered to be high priorities in this work.

This work is primarily a demonstration of the ADJIFOR-generated adjoint capability. As such,
it is best to use as many shape design variables within the optimization process as possible.
However, the ADJIFOR-generated gradients must be verified for accuracy by other means that are
less practical for many design variables on large grids (ADIFOR or finite differences). Test
problems were chosen as "large enough" to demonstrate adjoint efficiency, while allowing for
gradient verification by other means.

The CFD code used in this work is the CFL3D program[3,4] developed by Thomas, Rurnsey,
and Beidron of NASA Langley Research Center. For this work, both the sequential version 5.0
and the Message-Passing Interface (MPI) parallel version 4.1 codes were used. Both codes solve
the Euler or Navier-Stokes flow equations in conservation form and include numerous solver, gnd
interface, and turbulence modeling options. As described in reference 2, the codes were entirely
differentiated by ADJIFOR, except for the turbulence models and the patched- and overset-grid
options. Of the many solver and grid options available in the ADJIFOR-generated CFL3D codes,
only a subset of these options have been exercised in this demonstration. One notable option that
was differentiated, and not exercised in reference 2, but is used within the Dresent work, is the use
of multigrid to converge the flow derivatives in adjoint form. The use of multigrid has been found
to ~ i ~ c a n t l y reduce the number of iterations required of the adjoint flow solver and made
practical the grid runs for grids of sizes up to 129 x 65 x 33.

For this work, ADJIFOR was applied to the grid and CFD codes. The resulting codes produce
exact adjoint form derivatives of the wing lift-to-drag ratio with respect to many wing shape
pararneters. For each design iteration, the current objective function and its gradients are used to
construct an approximate, linear optimization problem. The optimizer code repeatedly interacts
with this linear optirnizaton problem during a design iteration to maximize the wing lift-to-drag
ratio within the design variable bounds. Move limits are also imposed to prevent large design
variable changes during one design iteration. The resulting shape variables are then used to
construct a new wing surface and volume grid for which the lift-to-drag ratio gradient is then
computed via ADJIFOR-generated code. This process, illustrated in figure 1, may be repeated
until an optimum wing shape is found.

Results

The objective function (wing lift-to-drag ratio) history for a 33 x 9 x 9 grid in transonic flow
(M=0.84, a=3.06") for 15 optimization iterations is shown in figure 2. In this example, the wing
is described by 11 input wing sections. The gradients are computed for 88 design variables and
the optimization allows both section and planform design variables to change, except at the wing
root and tip, which are fixed. Each optimization cycle imposes a ten percent move limit on the
design variables. The objective function increases almost linearly and has not reached a maximum,
suggesting that perhaps the move limits could be increased for this case and that more optimization

iterations should be executed. The baseline and optimized wing sections and planforin are shown
in figures 3 and 4, respectively. The optimized wing has thinner wing sections, shorter chord
lengths, and some cambering toward the wing tip. The optimized planform has increased leading
edge sweep, except where the tip was constrained to prevent negative cell volumes occurring in the
grid generation process.

The objective function (wing lift-to-drag ratio) history for 129 x 65 x 33 grid in transonic flow
(M=0.84, ~ ~ 3 . 0 6 ~) for nine optimization iterations is illustrated in figure 5. In this example, the
wing is described by 21 input wing sections (168 design variables) . The optimization allows both
planfom and thickness design variables to change, except at the wing root, which is fmed to
prevent negative cell volumes. Move limits of 10 percent were initially used; these were
subsequently reduced to only one percent to prevent negative cell volumes from occurring in the
grid generation process. The objective function increases and apparently has almost reached a
maximum. The baseline and optimized wing planforms are shown in figures 6 and 7, respectively;
shading is proportional to the surface pressure coefficient resulting from a 33 x 9 x 9 grid analysis
of the final 129 x 65 x 33 grid design. The optimized wing exhibits a different shock pattern than
the baseline wing and has more highly swept and more elliptical planform than the baseline wing.
Gradients for 168 design variables were obtained in about the time required for 15 function
evaluations using 33 nodes on the NAS Origin 2000 parallel computer.

These optimizations illustrate the ability of ADJIFOR to compute derivatives for complex flow
regimes. Both section and planform design variables were allowed to change in the optimization to
provide as many design variables as possible for the adjoint formulation. However, planform
optimization in transonic flow results in unusual wing shapes that are still being investigated.

Conclusions

This work is primarily a demonstration of using automatically-generated adjoint code to
efficiently compute derivatives for an aerodynamic shape optimization in from a complex flow
regime with a multigrid algorithm . Sequential and parallel automatically-generated adjoint
versions of the CFL3D computational fluid dynamics code, coupled with an adjoint-form grid
generation code, have been successfully demonstrated within an aerodynamic shape optimization in
transonic flow, for grids including up to 129 x 65 x 33 points. Gradients for up to 168 shape
design variables were computed in about the time required for 15 function evaluations using 33
nodes on the NAS Origin 2000 parallel computer. The resulting designs improved the wing lift-to-
drag ratio over that of the baseline wing, although little significance is attached to the specific
optimization results.

References

1. Bischof, C.; Carle, A; Corliss, G.; and Griewank, A.: ADIFOR Generating Derivative Codes
from FORTRAN Program. Scientific Programming, vol. 1, 1992, pp. 11-29.

2. Carle, Alan; Fagan, Mike; and Green, Lawrence .L.: Preliminary Results From the Application
of Automated Adjoint Code Generation to CFL3D. AIAA 98-4807, Sept. 1998.

3. Beidron, R.; and Thomas, J.: A Generalized Patched-Grid Algorithm with Application to the F-
18 Forebody and Actuated Control Strake. Computing Systems in Engineering, vol. 1, No. 2-4,
1990, pp. 563-576.

4. Rumsey, C.; Beidron, R.; and Thomas, J.: CFL3D: Its History and Some Recent Applications.
NASA TM 1 12861, May 1997.

Design variables X

MYGRID Design variables AX

1 Grid

F = F, + (dF I dX)&

Function +
Gradient

JOPT

CFL3D.ADJ CONMlN

Design variables X
Intermediate adjoint

MYGRID.ADJ

$ Gradient, dF I dX -

Figure 1. Optimization process flow chart.

b
OO 5 10 15

DESIGN ITERATION

Figure 2. Optimization history (33 x 9 x 9
grid, 88 design variables, M = 0.84, a =
3.06").

WlNG SECTIONS

BASELINE OPTIMIZED

0 - - C
0 - - -
C - - 0

Figure 3. Baseline and optimized wing
section with root and tip fixed (33 x 9 x 9
grid, 88 design variables, M = 0.84, a =
3.06').

WlNG PLANFORM

BASELINE OPTIMIZED

Figure 4. Baseline and optimized wing
planform with root and tip fixed (33 x 9 X 9
grid, 88 design variables, M = 0.84, a =
3.06").

2 4 6 8 I 0
DESIGN ITERATION

Figure 5. Optimization history (129 x 65 x 33
grid, 168 design variables, M = 0.84, a =
3.06")-

Figure 6. Baseline wing planform with root
fixed (129 x 65 x 33 grid for design, 33 x 9 X
9 grid for analysis 168 design variables, M =
0.84, a = 3.06").

Figure 7. Optimized wing planform with
root fixed (129 x 65 x 33 grid for design, 33
x 9 x 9 grid for analysis 168 design
variables, M = 0.84, a = 3.06").

APPLICATIONS OF PARALLEL PROCESSING IN AERODYNAMIC ANALYSIS
AND DESIGN

Sp-0-
P. Sundaram and James 0. Hager

Phantom Works, The Boeing Company 0 /84 '77
Long Beach, CA

pichuraman.sundaram@boe~ng.com, james.o.hager@boeing.com 6 3 ~

Introduction
The continuously growing size and computational complexity of CFD-based aerodynamic analysis
problems demand larger and larger computational resources. In addition, quick turn-around time
for design and synthesis are necessary to make high fidelity, CFD-based techniques practical.
Typical full-configuration, Navier-Stokes analysis grids tend to have more than 10 million points,
and the solutions to these problems require very large amounts of CPU time and memory. Also,
CFD-based nonlinear shape optimization of full aircraft configurations is required within a few
weeks to meet the cost and schedule challenges of today's aerospace customer. Traditional
sequential computers cannot deliver these large computing resources, and no new large sequential
vector supercomputers are under development. Thus, parallel processing has emerged as the most
efficient and cost-effective method to achieve the large computational resources required for these
advanced CFD applications.

This paper presents the recent progress made in the application of the CFL3Dhp parallel code for
configuration analyses and aerodynamic shape optimization at Boeing-Phantom Works (BPW).
CFL3Dhp is the coarse-grain parallel version of the CFL3D Euler/Navier-Stokes solver developed
at NASA LaRC. CFL3Dhp utilizes the MPI message-passing library to exchange information with
other task processors as well as with the host. CFL3Dhp runs on most available parallel platforms
and distributed environments. Several utilities have been developed at BPW to provide a user-
friendly parallel environment.

CFL3Dhp Parallel Preprocessine Tools

In the CFD analysis of a multiblock grid on a sequential shared memory supercomputer, variations
in the size of the grid blocks is not an issue. For coarse-grain parallel processing on distributed
memory platforms, it is necessary to split the large grid blocks that may be too large for a
processor (PE) memory prior to mapping them onto the PEs. However, with CFL3Dhp, when
grid blocks are split, the input files must be re-created, including the patched-interface interpolation
file. The precflinp utility developed at BPW automatically prepares the input files for both
CFL3Dhp and the patched-interface interpolation file generation program, ronnie, when blocks are
split.

Another CFL3Dhp utility, precjl3d, provides the work array size parameters needed for CFL3Dhp.
precjload, developed at BPW, is a corollary to precfl3d and outputs the load-balancing efficiency
for all possible block-to-processor mappings. The actual number of processors to be used is
determined based on both load-balancing efficiency and the maximum load. Finally, to provide
fault-tolerance, in case of a processor failure during the execution in distributed computing, it is
necessary to recombine the grid, solution, and restart files to exclude the failed PE. This is
performed using the Splicom utility developed at BPW that will split and combine grids and
solutions.

Parallel Performance Enhancement

Load-balancing and scalability are vital to achieve high parallel efficiency. Two problems are used
to illustrate this. The first problem is a 42-block grid with 13.6 million points for a
wing/fuselage/nacelle/diverter/empennage full-configuration in sideslip Navier-Stokes analysis.
Figure 1 shows the efficiency curve and the corresponding load distribution for various block-to-
processor mappings. If the 42-block grid is mapped onto 42 PEs, it would yield a poor load-
balancing efficiency of only 42%. Mapping the same grid onto 3 1 PEs gives nearly 52%
efficiency. When the grid is mapped onto 14 PEs, it gives nearly 97% load-balancing efficiency.
The load distribution for this last mapping is given by the "circle" symbols. This mapping,
although efficient, uses only 14 PEs and hence takes long wall-time for completing the solution. It
would be desirable to use more number of PEs to reduce wall-time for the run and still maintain -
high load-balancing efficiency.

To increase the number of PEs, and maintain good load-balancing, it is necessary to split the
blocks. Block-splitting also increases the flexibility to map the blocks to PEs compared to the
original 42-block grid. Indeed, by splitting this grid into 170 blocks and mapping it onto 3 1 PEs,
nearly 95% efficiency can been achieved (as seen in the 170-block efficiency curve). The nearly
uniform processor loads corresponding to this mapping is shown by the "delta" symbols. To
reduce wall-time, this split grid can be mapped unto 106 PEs and still achieve nearly 90%
efficiency. A five-point, supersonic Navier-Stokes polar for this problem was obtained in one day
on a 106 PEs CRAY T3E.

The second example is a 37 block 9.5 million points grid for a Navier-Stokes simulation of an
installed, powered nozzle. The 37-block 9.5 million-point grid isgplit into 254 blocks to improve
parallel efficiency. The load-balancing efficiency and the load distribution for this problem are
shown in Figure 2. The mappings of this split grid onto 64, 80, and 122 PEs yield greater than
94% efficiency. These mappings provide the CFL3Dhp scalability data shown in Table 1. It can
be seen that CFL3Dhp scales well

with an increasing number of PEs. Also shown in Table 1 is the timing of a single PE run on
CRAY C90 for this problem whlch requires 400 MW of memory. The 122 PE run produces an
aggregate processor speed of nearly 4.5 GigaFLOPS.

Table 1. Table highlighting scalability of CFL3Dhp with increasing PEs

Parallel ADIFOR Sensitivities

Thus far, the details of the CFL3Dhp parallel environment for CFD analyses have been presented.
Now, some significant progress made at BPW in the area of aerodynamic shape optimization using
parallel processing is described. In any gradient-based aerodynamic optimization procedure,
calculating the sensitivity of the flow to geometry changes requires the most CPU time. Here,
CFL3Dhp has been used as the analysis code from which to obtain computer generated analytical
flow gradients.

To compute the grid and flow sensitivities, the Automatic Differentiation of FORtran (ADIFOR')
software has been used. ADIFOR augments computer codes to compute derivatives of their
outputs w.r.t. inputs by applying the chain rule. ADIFOR generates accurate analytic sensitivities
and avoids the step-size issue associated with finite-difference calculations. The gradient
calculations using ADIFOR require CPU times and memory proportional to the number of design
variables (DVs). Specifically, the CPU time is at least (nDV+ 1) times the function evaluation CPU
time, where nDV is the number of DVs. Because the ADIFOR-computed sensitivities are accurate
even with single-precision variables, it is possible to reduce the memory required on some
platforms by using single-precision instead of the default double-precision.

To compute grid sensitivities, the BPW grid tools were ADIFORed to obtain the corresponding
sensitivity codes. The grid tools are geoml, which applies shape-function perturbations to a
baseline geometry using a set of DVs to generate the perturbed geometry; qgrid, which generates
the surface grid for the perturbed geometry; andflexmesh, which perturbs a reference volume to
conform to the perturbed-geometry surface grid. The grid-generation steps are performed in
parallel for each DV.

To compute flow sensitivities, the incremental iterative version of CFL3Dhp, C F L ~ D ~ ~ A D I I * ,
has been chosen in order to reduce the CPU time. The parallel environment allows both the wall
time and memory requirements of a large design to be distributed over a number of PEs. The
sensitivity calculation is broken up three ways. First, the grid is split and mapped onto a group of
PEs. Second, a subset of DVs are computed on each PE group. Third, multiple PE groups are
used to evaluate multiple DV subsets simultaneously. Thus, each PE solves for the flow and the
gradients of its part of the grid for its group of DVs. The CPU time required to calculate the Euler
flow sensitivities for 50 DVs on a grid with 0.5 million points using a 24 PE SGI Origin 2000
system is 63 times the function evaluation time. This problem is too large for sequential systems
because CFL3Dhp.ADII would require approximately 10 Gigawords of memory and 400 single-
PE Origin 2000 CPU hours. Using 24 PEs, the wall-time required on Origin 2000 is small. The
drag-to-lift (DL) sensitivity to a set of 26 representative DVs as computed by finite-differences and
CFL3Dhp.ADII are compared in Figure 3.

Parallel ADJIFOR for Adioint Sensitivities

Recently, the ADIFOR software has been enhanced to allow it to be applied in the reverse mode
(ADJIFOR) to automatically generate adjoint code. In the reverse mode, sensitivities of the
analysis code output with respect to intermediate quantities are calculated but reversing the program
flow and storing the intermediate values that have a nonlinear impact on the result. After the
adjoint is computed, there is a small CPU time overhead that is required to obtain the flow

sensitivities by taking the dot product of the adjoint and the grid sensitivity for each DV. The in-
core memory for ADJIFORed and ADIFORed codes are comparable. However, the disk-storage
required by the ADJIFORed code can become very large because of the log files created to store the
intermediate values.

With the aid of parallel processing, it is possible to distribute the memory needed, as well as the
I/O load, over many PEs.

CFL3Dhp has been ADJIFORed to produce CFL~D~~.ADJI- ' . For a grid with 0.5 million points,
the CPU time to obtain the adjoint solution using CFL3Dhp.ADJI is nearly twenty times the
function evaluation time on a 24-PE Origin 2000; merely 15 single-PE hours. The temporary log
file for this problem is nearly 16 Gigabytes. However, since the VO load is shared by the 24 PEs,
it is not a bottleneck. Once the adjoint is calculated, the dot product of the adjoint with the grid
sensitivities is computed and accumulated in 3 minutes of single PE CPU time. The CPU time
required to calculate the flow sensitivities using CF'L3Dhp.ADJI is 25-times less than that when
using CFL3Dhp.ADII. Figure 4 compares the sensitivity calculated by these two methods.

Aerodynamic O~tirnization Using Analytical Sensitivities

To perform nonlinear shape optimization, the AEROdynarnic SHape Optimization (AEROSHOP)
system developed at BPW is used. AEROSHOP is a user-friendly, script-based, modular

optimization tool that adapts to any CFD environment, and runs on many serial and parallel
platforms. The sensitivities computed using either the CFL3Dhp.ADII forward-mode or the
CFL3Dhp.ADJI reverse-mode flow sensitivities are easily incorporated into AEROSHOP.

To demonstrate the advantages of performing design optimization in a parallel environment, a
winghody design was performed using more than 400 DVs and 55 constraints. The resulting,
realistic design has more than a 5% increase in aerodynamic performance over the linear-theory-
based configuration. In addition, this design was obtained fairly quickly using the parallel
platform.

Conclusion and Future Work

The padlel computers available through HPCCP have vastly improved the CFD capabilities at
Boeing-PW. First, it is possible to obtain a full-configuration, Navier-Stokes drag polar in a day.
Second, the innovative application of ADIFOR-generated sensitivity codes makes this technique
practical for the first time. Euler-based aerodynamic shape optimization can now be performed on
complex configurations with a large number of'design variables with good turn-around time.
Larger analysis problems and Navier-Stokes-based designs are planned in the future.

References

1. Christial Bischof, Alan Carle, Peyvand Khademi, and Andrew Mauer, "ADIFOR 2.0:
Automatic Differentiation of Fortran 77 Programs", IEEE Computer Science and Engineering,
3(3), 18-22, Fall 1996.

2. Arthur Taylor - Private Communications, 1998.

3. Alan Carle, Mike Fagan, and Lawrence Green, "Preliminary Results from the Application of
Automatic Adjoint Code Generation to CFL3DW, CRPC-TR98741, February 1998.

Session 10:

Parallel System Software Technology

A ROBUST AND SCALABLE SOFTWARE LIBRARY FOR PARALLEL ADAPTIVE
REFINEMENT ON UNSTRUCTURED MESHES

John Z. Lou, Charles D. Norton, and Thomas A. Cwik
National Aeronautics and Space Administration

Jet Propulsion Laboratory, California Institute of Technology
MS 168-522,4800 Oak Grove Drive, Pasadena, CA 91 109-8099, U.S.A. (=. -

(John.Lou, Charles.Norton, Thomas.Cwik)@jpl.nasa.gov

Abstract

The design and implementation of Pyramid (http://wtvw-hpc.jpl.nasa.gov/APPS/AMw), a soft-
ware library for performing parallel adaptive mesh refinement (PAMR) on unstructured meshes, is
described. This software library can be easily used in a variety of unstructured parallel computa-
tional applications, including parallel finite element, parallel finite volume, and parallel visualiza-
tion applications using triangular or tetrahedral meshes. The library contains a suite of well-
designed and efficiently implemented modules that perform operations in a typical PAMR pro-
cess. Among these are mesh quality control during successive parallel adaptive refinement (typi-
cally guided by a local-error estimator), parallel load-balancing, and parallel mesh partitioning
using the ParMeTiS partitioner. The Pyamid library is implemented in Fortran 90 with an inter-
face to the Message-Passing Interface (MPI) library, supporting code efficiency, modularity, and
portability. An EM waveguide filter application, adaptively refined using the Pyramid library, is
illustrated.

1. Introduction

Adaptive mesh refinement (AMR) represents a class of numerical techniques that has demon-
strated great effectiveness for a variety of computational applications including computational
physics, structural mechanics, electromagnetics, and semiconductor device modeling. When an
application domain is discretized into a computational mesh, various portions of the mesh can be
refined, or coarsened, in regions where varying degrees of accuracy are required. This approach
saves memory and computing time over methods that use a uniform resolution over 'the entire
application domain.

Unfortunately, the development of an efficient and robust adaptive mesh refinement component
for an application, particularly for unstructured meshes on multiprocessor systems, is very com-
plex. The motivation for our work is to provide an efficient and robust parallel AMR library that
can be easily integrated into unstructured parallel applications. Therefore, our library approach
separates support for parallel adaptive refinement and mesh maintainence techniques from any
application-specific solution processes.

Research on parallel AMR for unstructured meshes has been previously reported [1,8]. Most
efforts are based on C++, and many realize that mesh quality control during successive adaptive
refinement is an active research topic. Our work features the use of Fortran 90 and MPI for paral-
lel AMR on unstructured triangular and tetrahedral meshes, the implementation of robust schemes
for parallel adaptive refinement and mesh quality control during a repeated AMR process, and a
"plug-in" component for stiffness matrix construction in finite element applications. We selected

Fortran 90 for our implementation because it provides new abstraction modeling facilities benefi-
cal for parallel unstructured AMR development. This approach also simplifies interface concerns
with scientific application codes, many of which were developed in Fortran 77 for high perfor-
mance.

General organization of the parallel AMR process for unstructured meshes.

2. The AMR Components

The general organization of the parallel AMR process is illustrated. Initially, the (generally ran-
dom) input mesh must be repartitioned and redistributed after loading from the disk. The applica-
tion computation and local error-estimation step occur, after which a logical AMR process occurs.
(Load balancing can occur based on this process since the refinement scheme is completely
defined, although it has not yet physically occurred.)

The load balancing process moves coarse elements from the logical refinement, based on a
weighting scheme, to the proper destination processors using the migration module. At this point,
the physical AMR step occurs by applying local refinement processes.

Finally, the element quality can be checked by performing an explicit mesh smoothing operation
'or by ensuring high quality element creation during refinement. We apply the latter approach
since it prevents degradation of mesh quality after successive adaptive refinements. Every stage of
our AMR process is performed using parallelism.

3. Fortran 90 and Abstraction Modeling Principles in Parallel AMR Development

Fortran 90 modernizes traditional Fortran 77 scientific programming by adding many new fea-
tures. These features allow programs to be designed and written at a higher level of abstraction,
while increasing s o h a r e clarity and safety without sacrificing performance 171. Fortran 90's
capabilities encourage scientists to design new kinds of advanced data structures supporting com-
plex applications, like parallel AMR. These capabilities extend beyond the well-known array syn-
tax and dynamic memory management operations.

While Fortran 90 is not an object-oriented language (certain 00 features can be emulated by soft-
ware constructs) the methodology simplifies library interfaces such that the internal details are
hidden from library users [5] . Fortran 90 modules and derived types allow user-defined types, like
the mesh, to be defined with associated routines. Modules that capture essential features of paral-
lel AMR can be combined with each other, adding to the flexibility and organization of the soft-
ware design. These techniques, and other features, allow the library to contain clearly organized
interfaces for use in parallel applications.

4. The Adaptive Refinement Process

The adaptive refinement process is based on logical and physical refinements. The logical refine-
ment step uses an iterative procedure that traverses through elements of the coarse mesh repeat-
edly to "define" a consistent mesh refinement pattern on the coarse mesh. The result of the logical
refinement is stored in the data structure of the coarse mesh, which completely specifies whether
and how each element in the coarse mesh should be refined. Our adaptive refinement scheme is
based on "edge-marking'' for both triangular and tetrahedral meshes. Starting from a predeter-
mined subset of elements, the logical refinement scheme proceeds by marking (or logically refin-
ing) element edges wherever necessary, and the refinement pattern for each element is determined
by the number of marked edges in that element.

With information generated from the logical refinement step, the actual mesh refinement becomes
conceptually simpler, since it is completely specified how each element should be refined. To
make the physical refinement process simpler and efficient, low-level objects are refined before
refining high-level objects. On a triangular mesh, it means edges are refined before refining ele-
ments.

To perform a parallel logical adaptive refinement, we extend the serial scheme so that after tra-
versing the local element set for edge-marking, each processor updates the status of edges on
mesh partition boundaries by exchanging the edge status information (i.e. marked or not marked)
with its neighboring processors.

5. Mesh Quality Control

A problem associated with repeated AMR operations, typically guided by a local-error estimator,
is the deterioration of mesh quality. Most mesh smoothing schemes tend to change the structure of
a given mesh to achieve the "smoothing effect" by rearranging nodes in the mesh. The changes
made by a smoothing scheme, however, could modify the desired distribution of element density
produced by the AMR procedure, and the cost of performing a global mesh smoothing could be
very high. Nevertheless, applying a relatively efficient smoothing scheme over the last adaptively
refined mesh is probably reasonable for mesh quality improvement. Alternatively, it is possible to

prevent, or slow
down, the degrada-
tion of element qual-
ity during a repeated
adaptive refinement
process.

The mesh quality
control scheme we
have applied classi-
fies elements based
on how they were
refined. This allows
us to forsee the
potential of creating

Original Refinement Moditied Refinement
elements with poor
aspect ratios in the A A A A next refinement.
After identifLing
those elements, we
can replace them
with a refinement

Possible Refinement Patterns

pattern that improves
upon the geometry.

The figure shows the original refinement of a coarse element (2-3-4). Successive refinements will
destroy the aspect ratio of existing elements, leading to poor mesh quality The approach we apply
modifies the coarse element refinement, as shown, should either of the child elements require fur-
ther refinement (due to local errors or mesh consistency constraints from neighbor element refine-
ment). This process controls the mesh quality, at the slight expense of creating more elements.

We integrate the mesh quality control feature into our adaptive refinement scheme, for triangular
meshes, by defining all possible refinement patterns for a pair of "twin7' transitional elements
(child elements of element 2-3-4 in the original mesh). During the logical refinement step the
scheme checks all marked edges of the twin elements allowing one of the indicated refinement
patterns to be selected. To simplify the physical refinement stage we ensure that the partitioner
will not place the twin elements onto different processors. This guarantees that once mesh migra-
tion has occured, the physical refinement for the parent element (2-3-4) will create child elements
in a local manner. Refinement patterns are also applied for tetrahedral meshes as well.

6. Interlanguage Communication and Load Balancing Issues

Our software needs to communicate with the ParMeTiS parallel mesh partitioner, which is written
in the C programming languauge 161. We have a single routine that acts as the conduit between
our Fortran 90 system and the C ParMeTiS library. Interlanguage communication between Fortran
90 and C is not a problem, provided the linker knows the format of external routine names (gener-
ally, underscore, doubleunderscore_, UPPERCASE, or lowercase). Fortran 90 derived type

objects can be passed by reference to C structures, or simple arrays can be communicated, but we
advise using the Fortran 90 SEQUENCE attribute to request the proper byte-ali
The weighted gaph helps ParMeTiS attempt to minimize element movement and the number of
components on partition boundakes.

This process involves converting the distributed mesh into a distributed graph by computing the
dual of the mesh. When the partitioner returns, a mapping for every element is specified. The
migration module redistributes the elements among the processors based on this mapping. Since
the communication is irregular, and unpredictable, an efficient non-blocking inegular communi-
cation scheme has been developed for the element redistribution. In the final stage, the mesh data
structure is reconstructed using efficient heap-sorting techniques. This entire process occurs in a
parallel and distributed manner.

7. Application to an EM Waveguide Filter

Our AMR library has been tested in the finite-element simulation of electromagnetic wave scatter-
ing in a waveguide filter [4]. The problem is to solve Maxwell's equation for the electromagnetic
(EM) fields in the filter domain. A local-error estimate procedure based on the Element Residue
Method (ERM) is used in combination with the AMR technique to adaptively construct an opti-
mal mesh for the problem solution.

The adaptive refinement and partitioning of a finite element mesh for EM scattering in the
waveguide filter is illustrated on 16 processors of the NASA Goddard Cray T3E. An example of
adaptive refinement for a 3D tetrahedral mesh is available.

Adaptive refinement, mesh partitioning, and migration applied to a waveguide filter.

8. Summary

A complete framework for performing parallel adaptive mesh refinement in unstructured applica-
tions on multiprocessor computers has been described. This includes a robust parallel AMR
scheme, mesh quality control, load-balancing, the implementation technique using Fortran 90 and
MPI, and the interlanguage communication issues. Electromagnetic scattering in a waveguide fil-
ter has been demonstrated. Parallel performance results on several multiprocessor systems will be
given in our final paper. More information on Pyramid: A JPL Parallel Unstructured AMR
Library is also available.

The Table 1 gives performance results of the AMR (logical and physical) step and the load bal-
ancing and migration step. The refinement randomly chooses half of the elements per processor.
The number of elements increases with the partitioning slightly due to maintinain mesh consis-
tency constrains based on this refinement scheme.

Acknowledgments

The research described in this paper was performed at Jet Propulsion Laboratory, California Insti-
tute of Technology, under contract to the National Aeronautics and Space Administration. The
supercomputers used in this work were provided with funding from the NASA offices of Space
Science, Aeronautics, and Mission to Planet Earth.

Table 1 : Results for Waveguide Filter after 3 Refinements on the NASA Goddard Cray T3E

References

1. R. Biswas, L. Oliker, and A. Sohn. "Global Load-Balancing with Parallel Mesh Adaption on
Distributed-Memory Systems." Proceedings of Supercomputing '96, Pittsburgh, PA, Nov. 1996.

Number of
Elements

292,6 12

295,405

305,22 1

335,527

397,145

2. E. Boender. "Reliable Delaunay-Based Mesh Generation and Mesh Improvement." Communi-
cations in Numerical Methods in Engineering, Vol. 10,773-783 (1994).

Load Balancing
(Migration) Time

15.36 sec

3.75 sec

1.65 sec

1.5 1 sec

1.86 sec

of Processors

3 2

64

128

256

512

3. Graham F. Carey, "Computational Grid Generation, Adaptation, and Solution Strategies".
Series in Computational and Physical Processes in Mechanics and Thermal Science. Taylor &
Francis, 1997.

AMR Time

57.34 sec

13.55 sec

2.93 sec

0.54 sec

0.27 sec

4. T. Cwik, J. Z. Lou, and D. S. Katz, "Scalable Finite Element Analysis of Electromagnetic Scat-
tering and Radiation." to appear in Advances in Engineering Software, V. 29 (2), March, 1998.

5. V. K. Decyk, C. D. Norton, and B. K. Szymanski. "Expressing Object-Oriented Concepts in
Fortran 90". ACM Fortran Forum, vol. 16, num 1, pp. 13-18, April 1997. Also as NASA Tech
Briefs, Vol. 22, No. 3, pp 100-101, March 1998 (reduced version).

6. G. Karypis, K. Schloegel, and V. Kumar. "ParMeTiS: Parallel Graph Partitioning and Sparse
Matrix Ordering Library Version 1 .Ow. Tech. Rep., Dept. of Comp. Science, U. Minnesota, 1997.

7. C. Norton, V. Decyk, and B. Szyrnanski. "High Performance Object-Oriented Scientific Pro-
gramming in Fortran 90". Proc. 8th SIAM Conf. on Parallel Proc. for Sci. Comp., Mar. 1997.

8. M. Shephard, J. Flaherty, C. Bottasso, H. de Cougny, C. Ozturan, and M. Simone. "Parallel
automatic adaptive analysis". Parallel Computing 23 (1 997) pg. 1327-1347.

Squ- 72-
o/&.?avy

&.&s, P.J'Jry
PARALLEL GRID MANIPULATIONS IN EARTH SCIENCE CALCULATIONS

W. Sawyer, R. Lucchesi, A. da Silva, L' L. Takacs 3& a-+
Data Assimilation Office, NASA GSFC, Code 910.3, Greenbelt MD, 20771

E-mail: sawyer@dao.gsfc.nasa.gov, Phone: 301 286 6543

The National Aeronautics and Space Administration (NASA) Data Assimilation OEce @AO) at the
Goddard Space Flight Center is moving its data assimilation system to massively parallel
computing platforms. This parallel implementation of GEOS DAS will be used in the DAO's
normal activities, which include reanalysis of data, and operational support for flight missions.
Key components of GEOS DAS, including the gridpoint-based general circulation model and a
data analysis system, are currently being parallelized. The parallelization of GEOS DAS is also one
of the HPCC Grand Challenge Projects.

The GEOS-DAS software employs several distinct grids. Some examples ari: an observation
grid- an unstructured grid of points at which observed or measured physical quantities from
instruments or satellites are associated-a highly-structured latitude-longitude grid of points
spanning the earth at given latitude-longitude coordinates at which prognostic quantities are
determined, and a computational lat-lon grid in which the pole has been moved to a different
location to avoid computational instabilities. Each of these grids has a different structure and
number of constituent points. In spite of that, there are numerous interactions between the grids,
e.g., values on one grid must be interpolated to another, or, in other cases, grids need to be
redistributed on the underlying parallel platform.

The DAO has designed a parallel integrated library for grid manipulations (PILGRIM) to support
the needed grid interactions with maximum efficiency. It offers a flexible interface to generate new
grids, define transformations between grids and apply them. Basic communication is currently
MPI, however the interfaces defined here could conceivably be implemented with other
message-passing libraries, e.g., Cray SHMEM, or with shared-memory constructs. The library is
written in Fortran 90.

First performance results (Figure 1) indicate that even difficult problems, such as above-mentioned
pole rotation-a sparse interpolation with little data locality between the physical lat-lon grid and a
pole rotated computational grid--can be solved efficiently and at the GFlopIs rates needed to solve
tomorrow's high resolution earth science models. In the subsequent presentation we will discuss
the design and implementation of PILGRIM as well as a number the problems it is required to
solve. Some conclusions will be drawn about the potential performance of the overall earth science
models on the supercomputer platforms foreseen for these problems.

1 1 0 Parallelization for the Goddard Earth J f a

0 bserving System Data Assimilation
System (GEOS DAS)

R. Lucchesi, W. ~awyert, L. L. Takacs, P. ~ystert , J. Zero
Data Assimilation office

NASAIGSFC, Code 910.3
Greenbelt MD, 20771

Email: 1ucchesi~~dao.gsfc.nasa.gov

Additional affiliation: University of Maryland, CoIlege Park, 20742

July 21, 1998

Abstract

The National Aeronautics and Space Administration (NASA) Data Assimilation Office
(DAO) at the Goddard Space Flight Center (GSFC) has developed the GEOS DAS, a
data assimilation system that provides production support for NASA missions and will
support NASA's Earth Observing System (EOS) in the coming years. The DAO's sup-
port of the EOS project along with the requirement of producing long-term reanalysis
datasets with an unvarying system levy a large I/O burden on the future system. The
DAO has been involved in prototyping parallel implementations of the GEOS DAS for a
number of years and is now converting the production version from shared-memory par-
allelism to distributed-memory parallelism using the portable Message-Passing Interface
(MPI). If the MPI-based GEOS DAS is to meet these production requirements, we must
niake 1/0 from the parallel system efficient.

T,'CTe have designed a scheme that allows efficient I/O processing while retaining portability,
reducing the need for post-processi~lg, and producing data formats that are required by
our users, both internal and external. The first phase of the GEOS DAS Parallel I/O
System (GPIOS) will expand upon the common method of gathering global data to a
single P E for output. Instead of using a PE also tasked with primary computation, a
number of PEs will be dedicated to 1 /0 and its related tasks. This allows the data
transformat ions arid formatting required prior to output to take place asynchronously
with respect to the GEOS DAS assimilation cycle, improving performance and generating
output data sets in a format convenient for our users. 1/0 PEs can be added as needed
to handle larger data volunies or to meet user file specificatioris. l i e will show I/O
performance results from a prototype MPI GCM integrated with GPIOS. Phase two

of GPIOS development will examine ways of i~itegrating new software technologies to
further improve performance and build scalability into the system. The maturing of
MPI-I0 implementations and other supporting libraries such as parallel KDF should
provide performance gains while retaining portability.

Example: m Dedicated I10 PEs with n Compute PEs

Once transfer from c o m p u t e ' ~ ~ s to 110 PEs is complete, compute
PEs are released to continue processing while 110 PEs transform
and write to disk.

Figure 1: In the GPIOS parallel 1/0 concept, PEs are split into compute and I/O nodes. The
top group of PEs is dedicated to the primary computation, while the middle row depicts a pool
of I/O PEs. For output, each 110 PE writes to an independent file. While data input can be
performed in an analogous manner, the amount of input data are small in comparison to the
output data.

PORTABILITY AND CROSS-PLATFORM PERFORMANCE OF AN
MPI-BASED PARALLEL POLYGON RENDERER

Thomas W Crockett

Institute for Computer Applications in Science and Engineering
MS 403, NASA Langley Research Center, Hampton, VA 23681-2199

tom@icase.edu / (757) 864-2182
d l@*

1. Introduction

Visualizing the results of computations performed on large-scale parallel computers is a challeng-
ing problem, due to the size of the datasets involved. One approach is to perform the visualization
and graphics operations in place, exploiting the available parallelism to obtain the necessary ren-
dering performance. Over the past several years, we have been developing algorithms and soft-
ware to support visualization applications on NASA's parallel supercomputers. Our results have
been incorporated into a parallel polygon rendering system called PGL [I].

PGL was initially developed on tightly-coupled distributed-memory message-passing systems,
including Intel's iPSC/860 and Paragon, and IBM's SP2. Over the past year, we have ported it to a
variety of additional platforms, including the HP Exemplar, SGI Origin2000, Cray T3E, and clus-
ters of Sun workstations. In implementing PGL, we have had two primary goals: cross-platform
portability and high performance. Portability is important because (1) our manpower resources
are limited, making it difficult to develop and maintain multiple versions of the code, and
(2) NASA's complement of parallel computing platforms is diverse and subject to frequent
change. Performance is important in delivering adequate rendering rates for complex scenes and
ensuring that parallel computing resources are used effectively. Unfortunately, these two goals are
often at odds. In this paper we report on our experiences with portability and performance of the
PGL polygon renderer across a range of parallel computing platforms.

2. The Application

Parallel rendering is a demanding application which is both computation- and cornmunication-
intensive. The heart of the rendering computation is a projection from three-dimensional object
space onto a two-dimensional image plane. Extensive parallelism is available in both spaces, but
exploiting it requires massive interprocessor communication [2]. In PGL, objects are modeled as
collections of triangular facets. Variations in the size and distribution of these facets, along with
changes in scene content and viewing parameters, lead to computations which can be highly irreg-
ular. The resulting communication patterns are data-dependent and dynamic, but can generally be
characterized as many-to-many or all-to-all.

These considerations have led us to develop multiplexed asynchronous algorithms which use non-
blocking communication and buffering to minimize idle time, provide latency tolerance, reduce
contention, and amortize start-up costs [3,4]. Conceptually, there are three activities that proceed
concurrently on each processor: a transformation phase, which projects object-space primitives

This work was supported by the National Aeronautics and Space Administration under Contract Nos. NAS1-18605,
NASI-19480, and NAS1-97046 while the author was in residence at the Institute for Computer Applications in Sci-
ence and Engineering (ICASE), MIS 403, NASA Langley Research Center, Hampton, VA 23681-2199.

into screen space; a rasterization phase, which computes individual pixel values; and a termina-
tion detection algorithm. The latter is necessary since an individual processor has no way to deter-
mine a priori how many screen-space primitives will be sent to it for rasterization. In practice,
these three tasks are implemented as a single thread of computation with periodic polling to con-
sume incoming messages.

To achieve portability, PGL is written in ANSI C, using the MPI message-passing standard for
interprocessor comm~nication.~ MPI is the only mechanism currently available which will sup-
port this type of algorithm across a wide range of parallel architectures.

3. Performance Comparisons

3.1 Methodology. We have implemented both serial and parallel versions of PGL and its associ-
ated benchmark programs. The serial and parallel rendering computations are practically identi-
cal, except that the serial version of the code omits the extra control and communication logic
needed in the parallel case. When porting PGL from one platform to another, we modify the code
base as little as possible, making only those changes needed to assure successful compilation and
correct operation. Non-portable functions (e.g., high resolution clock timers) are abstracted into
platform-specific header files. For each platform, we run extensive tests with the serial code to
determine the best settings for compiler optimization flags. These settings are then used for the
parallel code as well. We make no effort to tune the parallel code for specific platforms, except to
set runtime flags or environment variables as needed for correct operation or as recommended by
the vendor.

The results presented here span four generations of parallel computer architecture. During that
time, PGL has been under continuous development, so that recent performance numbers reflect
improvements not only in hardware, but also in algorithms and compilers. Results for the Para-
gon, T3E, Origin2000, and Exemplar are contemporary, reflecting essentially the same version of
the code. The SP2 and iPSCl860 results were obtained using an older, less efficient termination
detection algorithm; the iPSCl860 results also lack several improvements to the sequential render-
ing routines.

We have chosen 128 processors to be our primary configuration for benchmarking purposes. We
consider this to be no more than a mid-range system by today's standards, but it is large enough to
determine scalability trends. Our standard benchmark scene, chosen because of its convenient
analytical properties, consists of 100,000 equal-sized triangles randomly oriented within a cubic
volume (Fig. la).

We repeat each experiment four times at each data point. The first pass ensures that code and data
pages are loaded into memory and that caches are primed. We ignore the time required for this
pass and report the average of the three subsequent passes. Parallel efficiencies are computed rela-
tive to the serial implementation, rather than to the parallel implementation running on a single
processor.

3.2 Uniprocessor results. Figure 2 illustrates comparative performance of the serial rendering
code for the three scenes shown in Figure 1. iPSCl860 results are available only for the random

'. PGL implementations on the iPSCl860 and Paragon predate the development of MPI, and are based instead
on Intel's NX message-passing library, which provides comparable functionality.

252

(a) rand100k: 100,000 random triangles, 5 12 x 5 12 image resolution.

(b) lwt: CFD boundary grid, 3 1,27 1 triangles, (c) ropes: hairpin vortex visualization,
800 x 640. 245,616 triangles, 800 x 640.

Figure 1. Benchmark scenes.

triangle scene. As can be seen, the 250 MHz MIPS RlOOOO processors used in the Origin2000
offer a clear performance advantage in this application.

3.3 Parallel results. Figure 3 illustrates comparative performance as a function of message length
for the random triangle scene using 128 processors.2 Message length is determined by the number
of data items which are buffered together for transmission. The maximum (54 in this case) is
scene-dependent and is based on the expected number of data items which will be sent from a typ-
ical processor to each of the others. Individual data items are 24 bytes long, except on the T3E,
where differences in word length and structure padding dictate 32-byte items.

Figure 4 shows parallel efficiencies from 2 to 128 processors, based on performance at the opti-
mum message length for the number of processors in use.3 Results for the four distributed-mem-

2. The Origin2000 line currently supports a maximum of 128 processors. To avoid interference from operating
system processes, we employed only 120 processors in our tests on that platform.

3. Determining the optimum message length is an interesting problem in itself, but limitations on space prevent
us from examining that here.

Uniprocessor Rendering Rates

randlook I W ropes
Scene

Figure 2. Comparative performance of renderer.

ory systems (iPSCf860, Paragon, SP2, and T3E) are re y similar, with the Paragon
demonstrating the best scalability? The two distributed-shared-memory (DSM) systems (Exem-
plar and Origin2000) are also similar in their performance trends. The Exemplar shows strongly
superlinear performance in small configurations, but performance degrades rapidly beyond 32
processors. The Origin2000 pays a high penalty going from the serial code to its parallel equiva-
lent, and also scales poorly beyond 32 processors. Consequently, the highest rendering rates with
120-128 processors are obtained with the T3E (Fig. 3), even though it has to move one-third more
data than any of the other systems, and its uniprocessor performance is only a third that of the
Origin2000.

3.4 Discussion. Our asynchronous message-passing strategy works reasonably well on distrib-
uted-memory systems, with the primary impediment to scalability being the high software over-
heads associated with message transmission and reception. Although we expected that message-
passing would not be the optimal programming paradigm on newer DSM architectures, we never-
theless thought that shared memory support would lead to efficient MPI implementations which
would compare favorably with those on distributed-memory systems. Our results indicate that
with large numbers of processors, this is not the case. Detailed internal measurements show that
message-passing overheads are much higher and much more variable on the DSM architectures,
with the variability introducing more idle time. Several factors seem to contribute to this poor per-
formance, including inefficient MPI implementations, contention for shared data structures, mem-
ory management and process scheduling issues, and the absence of message co-processors.
Polling operations appear to place particularly heavy demands on the system. Experiments con-
ducted in-house at HP using our code indicate that reducing the number of MPI-Test() calls can

4. Scalability results for the iPSCl860 and SP2 at 128 processors would be somewhat better with the current ter-
mination detection algorithm, leaving the T3E as the least scalable of the four distributed-memory systems.

Comparative Polygon Rendering Performance
100,000 random triangles, 128 processors, PGL wl MPI

3.0E+6

T3E (6198)

m
m

0 10 20 30 40 50
Data Items per Message

a 120 PEs

NX message passing

Figure 3. Comparative rendering rates for 100,000 random triangles with 128 processors.

boost performance by about a factor of two. We are currently investigating ways of reducing the
polling frequency while maintaining a practical, deadlock-free algorithm.

4. Summary

We have examined the performance of a parallel polygon renderer on six different parallel archi-
tectures. The four distributed-memory systems exhibit reasonably good scalability on a fixed-size
problem through 128 processors, while the two distributed-shared-memory systems scale very
poorly to this level. While improvements to vendor-supplied MPI implementations and tuning of
the parallel rendering algorithms may increase performance on the DSM platforms, it appears
doubtful that a message-passing paradigm will be able to achieve the desired efficiencies. We
therefore plan to develop an explicit shared-memory version of the code in an effort to reduce
communication overheads to a minimum. The results of that experiment will help us to determine
whether the current performance problems on DSM systems are due to MPI, or whether they
reflect fundamental limitations of the hardware and software architectures.

Peak Parallel Efficiency
100,000 random triangles, 2-128 PEs, optimum msg lengths

Figure 4. Parallel efficiencies from 2 to 128 processors using optimum message lengths.

Acknowledgments

The experiments described here were performed on computer systems provided by NASA's
HPCCPICAS Project and by Caltech's Center for Advanced Computing Research. We thank the
system support personnel at NASA Langley, NASA Ames, NASA Goddard, and Caltech for
assistance in using their facilities. Jimmy Guo at Hewlett-Packard and Bron Nelson at Silicon
Graphics also provided valuable insights and assistance. Data for the benchmark scenes was con-
tributed by Toby Orloff, Dimitri Mavriplis, and David Banks.

References

[I] T. W. CROCKETT. PGL: a parallel graphics library for distributed memory applications,
ICASE Interim Report 29, http://www.icase.edu/reports/interim/29/, Feb. 1997.

[2] T. W. CROCKETT. Parallel rendering, in Encyclopedia of Computer Science and Technology,
Vol. 34, Suppl. 19, A. Kent and J. G. Williams, eds., Marcel Dekker, 1996, pp. 335-371.

[3] T. W. CROCKETT and T. ORLOFF. Parallel polygon rendering for message-passing architec-
tures, IEEE Parallel and Distributed Technology, 2(2), Summer 1994, pp. 17-28.

[4] T. W. CROCKETT. Design considerations for parallel graphics libraries, ICASE Report No. 94-
49 (NASA CR 194935), ftp://ftp.icase.edu/pub/techreports/94/94-49.pdf, June 1994.

Parallel Visualization Co-Processing of Overnight CFI) Propulsion Applications

David E. Edwards
Pratt & Whitney

400 Main Street, MIS 163-17
East Hartford, CT 06 108

(860) 565-5591
edwardde@pweh.com

Robert Haimes
Massachusetts Institute of Technology

dl?
77 Mass Ave

Cambridge, MA 02139 36 1 q,
(61 7)253-75 18

(-g 8%.Jp

Abstract
An interactive visualization system pV3 is being developed for the investigation of advanced
computational methodologies employing visualization and parallel processing for the extraction
of information contained in large-scale transient engineering simulations. Visual techniques for
extracting information fiom the data in terms of cutting planes, iso-daces, particle tracing and
vector fields are included in this system. This paper discusses improvements to the pV3 system
developed under NASA's Affordable High Performance Computing project.

\

Introduction
A goal of the Affordable High Performance Computing (AHPC) Project is the achievement of
overnight turnaround of large three-dimensional aerospace CFD simulations. This required that
improvements to the processing of information created fiom the numerical simulations be made.
To address this problem a team fiom Pratt & Whitney, Massachusetts Institute of Technology
(MIT), CFDRC and NASA was formed. Post-processing software that supports large scale
propulsion simulation applications on clustered workstations in the design environment was to
be developed. A requirement of the software was for it to to be made fast and efficient to enable
rapid design evaluation. A decision was made to build the visualization system using the MIT
pV3 [1,2] as the basis system.

pV3 is a visualization turnkey system for the examination of data that is either structured or
unstructured. The system can process volumetric data that is represented as tetrahedral, pyramid,
prism or hexahedral cells. The pV3 system also accepts structured multi-block data with
PLOT3D blanking.

Specific enhancements to pV3 include:

Motif Graphical User Interface
Batch collector/playback viewer
Multi-disciplinary viewing of multiple scalar and vector fields

e Solution Sub-sectioning/Replication
Annotation
MPEG Animation
Collaboration Capability

The remainder of this paper will describe the new features in the visualization system.

Figure 1 - AHPC Project Visualization System

AHPC Project Visualization System
The visualization system developed in this program system is shown in Fig. 1. The pV3 system
consists of a collection of multiple pV3 clients which contains tools to extract point, lines and
surface information from a volumetric database. The clients can either be attached directly to the
solvers or used to read solution files. Requests for specific information comes from a pV3 server
that can run in either an interactive mode or a batch mode. The batch mode stores requested
extracts to disk that can be displayed using an interactive playback viewer. Animation can be
stored as MPEG files from either the interactive viewer or the playback viewer.

Motif Graphical User Interface
At the onset of this program, a recognized deficiency in the pV3 system was its graphical user
interface (GUI). The original pV3 GUI shown in Fig. 2 is divided into six different windows
(3D Graphics, 2D Graphics, 1D Graphics, Key, Dial and Text). The functions invoked by
mouse, button or keyboard input are dependent upon the position of the cursor. While MIT
developed the system with a significant number of post processing techniques, the user was not
always aware of the capability unless he referred to the documentation.

A key feature in this program was to give the user the ability to modify pV3's user interface
using advanced programming calls from pV3. To demonstrate this new capability, a Motif GUI
was developed by Pratt & Whitney and integrated with the pV3 visualization server (see Fig. 3).
The Motif GUI is an event-driven interface. An event is defined as an occurrence caused by user
input through either mouse, keyboard or input devices attached to serial ports. When an event is
detected by the user interface, the system will updates information in the data structures and calls
the appropriate procedure in pV3. The selected visualization procedure will then read the
necessary information from the data structures and construct the visual objects that are displayed
in the ID, 2D or 3D graphics windows. Documentation on the Motif GUI was provided as Web
pages that could be launched though the Motif GUI using either Netscape or Explorer Web
browsers.

Figure 2 - Original pv3 GUI Figure 3 - pV3 with Motif GUI

Batch collector/vla~back viewer
Another weakness in the original pV3 system is that the user may not be around to start the
interactive pV3 server and view the results. Even if someone is looking at the data, when the
image on the screen is updated, the old information is not saved for later retrieval. The problem
with saving away the entire volume of data for post-processing is that the time-step selected for
the visualization is based on the available disk space and not the physical time scales of the
integration. The pV3 system does not exhibit this problem because co-processing is fully
supported To resolve these issues another new module has been added to the system (Fig. l),
the batch server. In this case, the pV3 client side remains totally unchanged.

When a batch job starts, the batch pV3 server is also started. Data is read on where and what
tools and probes are to be active and their locations. The results are collected and written to disk
for later playback using a MIT Generic Extraction Data Structure (GEDS) file format. This is
different fiom the normal post-processing in that the entire volume of data is not written to disk
every iteration. The purpose of the batch server is to write the visualization data to disk

The end result is something that is not interactive in the placement of tools, but can be thought
of as analogous to a wind-tunnel experiment. Some knowledge of the flow must be used in the
placement of probes to extract data of interest. If important information is missed the 'tunnel'
will have to re-run. A simple pV3 viewer was developed to playback the results. The Motif
interface was integrated with this viewer.

Figure 4 shows a snap shot of a hot streak migration in the UTRC Large Scale Rotating Rig
(LSRR). The results were generated with the pV3 system in a batch mode to collect the results a
hot streak migration simulation. The size of GEDS file generated fiom this simulation was
significantly smaller than saving the entire volume (5% of the original file). An animation of
these results was generated.

Figure 4 - MIT GEDS Extraction File Applied to Collect Transient Information Hot
Streak In Large Scale Rotating Rig Simulation

Multidiscivlinary viewing. of multivle scalar and vector fields
The client-side of pV3 has been altered to extract information simultaneously fkom a set of
different disciplines. A discipline is one or more similar clients. All clients that are members of
the discipline must have the same set of field variables. The classic example of multidiscipline
visualization is a structuredfluids coupled simulation. In this case the volume for the fluid and
the volume for the structure would abut. The nodes that make up the fluid volume usually
contain variables such as density, energy and momentum. The nodes of the solid may contain
variables such as deflection and stress. Other quantities are constructed fkom these state vectors
and displayed during the visualization session. A new capability allowing the simultaneous
visualization of multi-disciplines has been developed by MlT and integrated into pV3's
visualization servers and clients. A discipline is one or more similar clients. The classic example
of MDV is a structures/fluids coupled simulation. All pV3 clients belonging to the same
discipline are assumed to have the same field variables (i.e. scalar, vector, and etc.).

The design of the server (and post-processing viewer) for multi-disciplinary cases assumes there
is a current active discipline. All user interaction effects that discipline.

Sub-SectioninErJRevlication of the solution
pV3 was modified to allow the visualization server to select the portion of the simulation for
viewing. Either the entire simulation can be viewed or specific pV3 clients can be selected.
Addition tranformations can be made to each client to allow replication (or duplication) of client
surfaces which was consider an important requirement for turbomachinery applications. An
example of this can be seen in Fig. 5. This figure shows the pressure on the blades of the
multistage compressor. The simulation is a three-dimensional steady flow Navier-Stokes
simulation of a complete high-pressure compressor with 23 airfoil rows. Approximately 2000
blades are in Fig. 5b.

Figure 5 -Multistage High Pressure Compressor CFD steady State Simulation

Annotation
Another limitation of pV3 was its lack of providing the user the ability to write text in the
graphics windows. The capability to position user specified text and arbitrary drawing objects
into pV3's 3D and 2D windows was added to the pV3 system.

MPEG Animation
A new capability was developed to allow key frame viewing positions to be saved with
animation of the viewing position accomplished by cycling tbrough the key frames. This allowed
for recording/collection of frames from either the 2D or 3D graphics window during an
interactive session that can be combined '.into a Moving Picture Experts Group (MPEG) file
using a MPEG encoder. This technique was developed to allow the engineer to create quick
animation that is stored in an MPEG -1 digital format for archiving or distribution through either
the WWW or electronic e-mail. An example of this can be seen in Fig. 6. This figure shows a
snapshot of the pressure on the blades and midspan of a compressor. The simulation is a three-
dimensional unsteady Navier-Stokes simulation of resonant stress attributable to rotorlstator
interaction. The animation was created by collecting information using the pV3 batch processor
coupled with the CFD solver to create a pV3 GEDS extract file. The pV3 viewer was then used
to generate the frames for the MPEG file.

Collaboration techniaues
The pV3 visualization system was redesigned to add the ability for collaborative visualization
where multiple visualization viewers can be used in a single session or a single user to examine a
simulation with multiple viewers (either for examining the results fkom different view points or
for examining different variables simultaneously). Each viewer has complete independence -- no
viewer to viewer communication.

A new feature tested allows multiple visualization servers to be coupled to the simulation as it is
running thus allowing both the co-processing visualization sewer and the batch collector to run
simultaneously. This feature would also allow remote users to link into the simulation.

a) Pressure at Mid-Span b) Pressure on Blade Rows
Figure 6 -Compressor Resonant Stress CFD Unsteady Simulation

Conclusion
An interactive visualization system pV3 is being developed for the investigation of advanced
computational methodologies employing visualization and parallel processing for the extraction
of information contained in large-scale transient engineering simulations. Visual techniques for
extracting information from the data in terms of cutting planes, iso-surfaces, particle tracing and
vector fields are included in this system. This paper discussed improvements to the pV3 system
developed under NASA's Affordable High Performance Computing project.

Acknowledgments
This work was sponsored by the Affordable High Performance Computing project at NASA
Lewis Research Center with Theresa Babraucb as the Technical Monitor.

References
1. Robert Haimes, pV3: A Distributed System for Large-Scale Unsteady Visualization, AIAA

P w 94-0321,1994.
2. Robert Haimes and David Edwards, Visualization in a Parallel Processing Environment

AIAA Paper 97-0348, 1997.

R

b '

Edited by Catherine Schulbach

Ames Research Center
Moffett Field, CA 94035-1000

National Aeronautics and Space Administration
Washington, DC 20546-0001 NASAITM-1999-208757

(650) 604-3 180

Unclassified - Unlimited

shop held on August 24-26, 1998, at NASA Ames Research Center, Moffett Field, California. The objective
of the Workshop was to bring together the aerospace high performance computing community, consisting of
airframe and propulsion companies, independent software vendors, university researchers, and government
scientists and engineers. The Workshop was sponsored by the High Performance Computing and Communi-
cations Program Office at NASA Ames Research Center.

The Workshop consisted of over 40 presentations, including an overview of NASA's High Performance
Computing and Communications Program and the Computational Aerosciences Project; ten sessions of
papers representative of the high performance computing research conducted within the Program by the
aerospace industry, academia, NASA, and other government laboratories; two panel sessions; and a special
presentation by Mr. James Bailey.

Computational aerosciences, High performance computing, Grand challenges
16. PRICE CODE

A14
20. LIMITATION OF ABSTRACT

NSN 7540-01 -280-5500 Standard Form 298 (Rev. 2-89)
Prescrtbed by ANSI Std 239-18
9Qi7 1n7

19. SECURITY CLASSIFICATION
OF ABSTRACT

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

