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ABSTRACT

Title of Dissertation: Stability and Interaction of Coherent

Structure in Supersonic Reactive Wakes

Suresh Menon, Doctor of Philosophy, 1983

Dissertation directed by: Dr. John D. Anderson, Jr.
Professor

Department of Aerospace Engineering

and

Dr. Shih I Pai

Professor Emeritus

Institute of Physical Science

and Technology

A theoretical formulation and analysis is presented for a study of

the stability and interaction of coherent structure in reacting free shear

layer. The physical problem under investigation is a premixed hydrogen-

oxygen reacting shear layer in the wake of a thin flat plate. The coher-

ent structure is modeled as a periodic disturbance and its stability is

determined by the application of linearized hydrodynamic stability theory

which results in a generalized eigenvalue problem for reactive flows. De-

tailed stability analysis of the reactive wake for neutral, symmetrical

and antisymmetrical disturbance is presented. Reactive stability criteria

is shown to be quite different from classical non-reactive stability. The

interaction between the mean flow, coherent structure and fine-scale tur-

bulence is theoretically formulated using von-Karman integral technique.

Both time-averaging and conditional phase averaging are necessary to sep-

arate the three types of motion. The resulting integro-differential

equations can then be solved subject to initial conditions with appropri-

ate shape functions. In the laminar flow transition region of interest,

the spatial interaction between the mean motion and coherent structure is
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calculated for both non-reactive and reactive conditions and compared with

experimental data wherever available. The fine-scale turbulent motion is

determined by the application of integral analysis to the fluctuation

equations. Since at present this turbulence model is still untested,

turbulence is modeled in the interaction problem by a simple algebraic

eddy vlscosltymodel. The applicability of the integral turbulence model

formulated here is studied parametrically by integrating these equations

for the simple case of self-similar mean motion with assumed shape func-

tions. The effect of the motion of the coherent structure is studied

and very good agreement is obtained with previous experimental and theo-

retical works for non-reactive flow. For the reactive case, lack of

experimental data made direct comparison difficult. It was determined

that the growth rate of the disturbance amplitude is lower for reactive

case. The results indicate that the reactive flow stability is in quali-

tative agreement with experimental observation.

_Imum..m
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I. INTRODUCTION

The study of the interaction between turbulence and chemical reac-

tions is a region of continued interest in fluid dynamics. A better

understanding of the complexity involved will enhance design and predic-

tive capability of advanced and more efficient propulsion systems. Of

particular interest here is the combustion system of a Supersonic Combus-

tion R_ Jet engine (SCRAMJET) being currently studied at NASA Langley

Research Center [l]. In the combustor of a SCRAMJET, hydrogen fuel is

injected at near sonic condition into a supersonic air stream and com-

bustion occurs in the recirculatory zone inside the combustor. The analy-

sis of such a high temperature, turbulent reactive flow is complicated by

the ongoing interaction between fluid mechanical and chemical effects,

whereby, the reactants first mix and then combine to release chemical

energy which in turn significantly alters the flowfield. The analysis

of such an interaction is so complicated that without some simplifica-

tion the problem remains intractable. However, with some reasonable

assumptions an understanding of the complex interaction can be obtained.

The application of the eddy-viscosity models developed for non-

reactive flows in cmnbustion studies has met with only limited success

[2]. The use of gradient diffusion models have been shown to be incorrect

in reactive and recirculatory flows where counter gradient diffusion is

present [3, 4]. It became quite clear that new approaches were necessary

to handle the complexity of reactive flows. This led to the counter gra-

dient model [3] and probability distribution and functional formulations [5-

8]. Though these models have been successful in predicting some of the phe-

nomena inherent in reactive flows, there are still many unanswered ques-

tions concerning the interaction between chemical kinetics and flow

w
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turbulence.

Ever since the existence of large scale coherent structures in tur-

bulent shear flows became evident, the effect these coherent structures may

have on combustion processes has been subject to speculations [g-l_. This

has led to various new models, for example, Spalding's ESCIMOmodel [13,14]

which accentuates a genuine property of turbulent flows that is evidently en-

hanced by large coherent structures: the stretchingoflocal flame elements

due to the straining motion of the flow. Anothermodel by Marble and

Broadwell [15] studies the diffusion flame structures as opposed to the

premixed flame model of Spalding. The influence of fluid dynamics on com-

bustion has been considered by Chorin [16] using a numerical method based

on vortex dynamics which has been also extended by Ghoniem, Chorin and

Oppenheim to non-constant density flows with the aim of modeling combus-

tion in coherent structures [17].

There is now much experimental evidence of the existence of large scale

coherent structures in free shear turbulent flows[9,1O,18]. Through flow

visualazation, Moore [Ig] showed that a turbulent round jet also has a defi-

nite coherent structure that starts as an instability wave in the shear

layer. Earlier experiments by Pai [20] had first pointed out the existence

of secondary flow inside rotating cylinders. More recently, Ganji and Sawyer

[21] observed large structures dominating mixing layer that develops behind

a step under non-reacting and reacting conditions. In comparing reacting

and non-reacting flows, they found that the reacting eddies have a lower

growth rate, and more closely distributed in space and have a slightly

smaller ratio of coalescence than non-reacting eddies. In turbulent

flames Yule et. al [22,23] found that combustion driven instabilities

effect the coherent structure growth and decay. In fact, they found
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at least two combustion driven instabilities, an inner high frequency

and an outer low frequency phenomena. These instabilities are genuine

properties of flames and do not occur in non-reactive flows, leading to

the term'combustion driven coherentstructures'[24]. Such experimental evi-

dence supports Roshko's [25] conclusion that coherent structures play a cen-

tral role in the development of many turbulent shear flows such as mix-

ing layers, boundary layers, and the early regions of jets and wakes.

It has also been noted that combustion in non-premixed flames seems

to conserve coherent structures in the flow by delaying transition to

turbulence [26]. All available data seems to indicate that coherent struc-

tures are potentially more important in combustion systems than any other

flow systems due to the strong influence they have on the turbulent mix-

ing of reactants and to the stabilization of existing structures by com-

bustion.

The transport processes across the mixing layer is considerably

under-predicted by all theoretical models leading to the point of view

that the effect of large scale coherent structures on scaler mixing pro-

cesses cannot be predicted by methods that use scalar flux approximations.

Therefore, it seems clear that a different closure model is necessary to

handle the combustion problem in turbulent flow.

The present investigation considers the theoretical analysis of the

laminar-turbulent transition of compressible reactive wakes. Experimen-

tal measurements in non-reactive wakes behind flat plates and slender

wedges [27,28] have shown remarkable similarity with the low-speed wake

transition analysis by Satoand Kuriki [29]. Due to their inherent dynamic

instability, wakes sustain travelling wave disturbances. The development

of these instability waves and their consequent interaction with the mean

3
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velocity, thermal and concentration fields and the fine-scale turbulent

fields constitutes the interaction problem considered here. The coher-

ent structure discussed above is modelled as an instability wave which

developes from a linear growth region into a nonlinear growth and finally

into three dimensionality. The disturbance amplitude is very small in

the linear region and the mean field is uncoupled from the disturbance

field. However, in the nonlinear region, the amplitude becomes large

and there is a strong interaction between the mean field and disturbance

field causing the mean field to decay more rapidly than in the linear

region. Beyond the nonlinear region, the disturbance becomes three

dimensional and for high enough Reynolds number the flow becomes turbu-

lent. This is the general picture of wake transition although the actual

extent of each region depends upon flow field parameters like the Rey-

nolds number and Mach number.

This analysis considers the motion of the turbulent fluid as a com-

bination of three distinct motions: the mean motion, the large-scale

coherent structure motion and the fine-scale turbulence. Such a splitting

procedure was first used by Reynolds and Hussain [30] and has been used

extensively by Liu et. al [31-34] in their study of coherent structures.

More specifically, Liu and Merkine [33], Liu and Alper [34], Alper and Liu

[35] and Gatski and Liu [36] have studied the interaction between a mono-

chromatic component of the large-scale coherent structure and the fine-

grained turbulence in developing mean flows with inflexional profiles.

There, the nonlinear interactions between the three components of flow are

depicted in terms of the non-equilibrium adjustments between the mean shear

layer growth rate and the integrated energy densities of the large-scale

structure and the fine-grained turbulence. Their analysis was limited to

4
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incompressible non-reactive flow, however, they found reasonable agree-

ment with experiments for the spatial spreading rate of the shear layer.

The present theoretical study is an analysis of the nonlinear inter-

action between the three motions in a compressible multicomponent reac-

tive flow. Two averaging procedures are necessary to consider the inter-

action among the three components of flow: conditional phase averaging

which explicitly filters the coherent structure from the total fluctua-

tions containing both random and coherent components; and the conven-

tional Reynolds averaging which separates the mean flow from the fluc-

tuations. Due to the complexity of the resultant equations, finite-

difference computations of the interaction is very complicated. Stuart

[37] and Ko, Kubota and Lees [38] analysed the development of finite

amplitude disturbances in incompressible shear flows using von Karman

integral formulation. Integral considerations were also used by Liu

and Gururaj [39] to study compressible wake transition and they obtained

good agreement with experimental data for hypersonic wakes [27, 40]. Ac-

cordingly, the present study incorporates yon Karman integral method to

obtain the conservation equations for the mean flow. The mean flow is

then characterized by the wake width, the wake centerline values of the

mean velocity defect, the mean temperature excess and the mean specie

mass fraction defects. The disturbance is characterized by its am-

plitude and its variation across the shear layer is determined by the

application of hydrodynamic stability theory to the disturbance equa-

tions. The integral technique is also applied to the fine-scale turbu-

lence equations to achieve closure. Though the present formulation is

simplified by various assumptions (to be discussed later}, it is expected

that this formulation can be used to obtain a better understanding of the
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interaction between the three components of flow during combustion, an

area of research that has not been studied so far.

The physical problem studied at present is the growth of a multi-

component free shear layer inthewakeof a flat plate (Figure l). For sim-

plicity we consider a supersonic premixed stream of hydrogen, oxygen,

hydroxyl radical and water vapor in the shear layer. The interaction

problem for both non-reactive and reactive flow conditions is studied

and the changes in the organized motion due to reaction is discussed.

In Chapter II the governing conservation equations of the interaction

problem is formulated and the various assumptions used are discussed.

Chapter Ill describes the numerical methods used to solve reactive sta-

bility problem and the integral equations of motion. In Chapter IV the

results of the numerical calculations are presented and compared with

other theoretical studies and experimental data wherever possible.
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If. FORMULATION OF THE PROBLEM

2.1 The Governin9 Equation

The general conservation equations for a multicomponent mixture in a

cartesian coordinate system can be written in dimensional form as

a)

b)

c)

d)

Mass conservation ..

+  pui

Species Conservation

@PYk _

B'-_'t--*_-RTiPYk(ui * Uki) = rk

Momentum Conservation

BPUi B

--,/-t--+ _ (pui uj

Energy Conservation

(i)

o k = l.,-'u (2)

i)

+ P_ij ) = @x-_ Tij
(3)

+ qi ) = 0 (4)
_-_ (pH - p) + _ (PUiH - ujTji

e) Equation of State

p = pT_RkY k (5)
k

Here Tij is the shear stress tensor given as

@uk Bu i @u.

H is the total enthalpy defined as

H = (u 2 + v 2) + _ (m_T + _ Yk (7)
k

@*
. . ik/T

where mk= (nk + e_ /T )Rk gives the translational and rotational de-

Ik -l

* @*

grees of freedom (by nk) and ik gives the i-th vibrational degree of
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freedom for the k-th specie and E_f is the heat of formation for k-th

specie.

qi is the heat flux defined as

*@T

qi = "K x_-xT + kZ p Yk hk Uki (8)

where hk = ek + Rk T is the static enthalpy for the k-th specie; ek and

Rk are the specific internal energy and specific gas constant for the

k-th specie. Uk. is the diffusion flux velocity for the k-th species
1

given by

_ Dk _Yk

Uki Yk _xi ' k = l,...v (9)

where Dk is the molecular diffusivity of the k-th specie and <* is the

thermal conductivity.

2.2 Filtering Procedure

The above equations (I - 9) are now reduced to the integral form to

be used in this analysis. Though turbulence is essentially three-dimen-

sional, for numerical simplicity, we consider two-dimensional flow. Ex-

tention to three-dimensional flow will not change the governing equations

appreciably. In wake type flows, it has been shown that the detailed

distribution of the disturbances is not very sensitive to the viscous

terms leading to the 'inviscid' considerations [39,41]. Though molecular

transport phenomena is important in turbulent reactive flows, it is

smaller in comparison to the transport due to turbulent stresses and may

be neglected in comparison. We include only a simplified form of the

dissipation terms in the governing equations and neglect the fluctuations

in the transport properties.

Any instantaneous flow variable, q(x,y,t) is then decomposed as

follows:

8



q(x,y,t) = _ + q'(x,y,t) + q"(x,y,t) CIC)

Here q is the mean flow component, q' and q" the corresponding

coherent structure and fine-scale turbulent components respectively.

On using (lO) in the Navier-Stokes equations and time averaging we get

the equations governing the mean motion. Subtracting the mean motion

equations from the original equations and then taking phase averaging

we extract the equations governing organized motion. When wesubtract

the equations for organized motion from the total fluctuation equation we

obtain the equations governing fine-grained turbulence (see Appendix B).

The two averaging processes as discussed above are defined as follows:

where T

at least.

Time average is

_(x,y) = T-_ q(x,y,t)dt

0

is greater than the period T

The conditional phase average is

Lim l N

<q(x,y,t)> = N+_ N- Z q(x,y,t + nT)
n:O

(ll)

of the large-scale structure

(12)

=

w

-V

The conditional and time average of a turbulent quantity, c,'(×,y,t),

are zero by definition. The conditional average of a large scale structure

quantity, q'(x,y,t) reproduces itself and its time average is zero. We

assume that the two components of the fluctuations are not correlated.

Furthermore, the conditional average of two fine-scale turbulent quantities

after subtracting the steady part, <q"q"> - q"q'" , is periodic and

oscillates at the same frequency as the large-scale structure [31].

Though the large-structure may have many frequency components, at

present we consider the propagation of only the fundamental component.
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This is a reasonable approximation because it has been shown experiment-

ally that through proper control it is possible to get a single mode

propagation in the flow [42]. Furthermore, as a first approximation, the

energy this fundamental mode exchanges with other frequency components

can be neglected with respect to the energy it exchanges with the mean

flow or the fine grained turbulence.

v

¢./

m

_J

2.3 Conservation Eouations for the Mean Flow

To derive the mean flow equation we nondimensionalize all variables

with respect to the free stream conditions which are assumed to be con-

stant. Thus, velocity and coordinates are nondimensionalized by the free

stream velocity, u®, and reference length, L respectively; the pressure,

temperature and density are made dimensionless by their corresponding

free stream values p=, T= and p=.

The time averaged equations obtained are complicated and contain

many unknown correlations of the fluctuations. To reduce the complexity,

we make some approximations which have been shown to be reasonable by

past analysis of wake flows. Since we are considering free shear

flows at present, we can apply the boundary layer approximations without

losing significant accuracy. We further use von Karman integral technique

to integrate the governing equations across the shear layer (normal direc-

tion) and obtain a set of integro-differential equations. In deriving

these equations we assume that all fluctuation correlations vanish far

away from the flat plate and shear layer region. The problem then reduces

to determining the shape functions for the mean flow variables associated

with the von Karman integral formulation.

After some manipulation we get the following integral equations:

10
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2.3.1 Specie Integral Equation

dlDk ,d pu(_ k-l) dy = - _ + Rk; k = 1 ... v species (13)

D m

Here, p and u are the dimensionless mean density and streamwise

velocl ty respectively.

kth specie

fraction and

specie.

Y'k is the normalized mean mass fraction of the

defined as _rk = Tk*/Yk® , where Y-k* _s the mean mass

Yk® is the freestream value of mass fraction of the kth

IDk is the species diffusion flux integral for the kth specie

I c

made up of contributions from the organized structure motion, Dk
I T

and the fine-scale turbulence, Dk . They are given as

and

so that

I c _ Y-_+ u -'Y-_] dyDk = [p-T_(Y"k-l) + p u' k P k

T FIDk : [p,---r_(Tk_ l) + p u"Y_---_ + u p"Y_' + p"u"Y_' ] dy

c T

- IDk + IDkIDk-

(]4)

(15)

(15)

y

Rk* is the integrated mean rate of production of the kth

as !

r. fm ___._Rk rk dy

_¢ID

Here r-k° is the dimensionless mean rate of production of the

and is defined in Appendix B.

specie given

(17)

kth specie

11



2.3.2 Streamwise Momentum Integral Equation

- dl Md-_ pU-(u-l) dy = - (18)

The momentum diffusion integral,

I M : IMc + IM T + IMp

whe re

I M is defined as

IMC : [_--_r (2u'-l) + p u'2] dy

IMT I ® - • u,,2 ]: [p'-'n"u'n(2"u-I) + p u''2+ p" dy

-- 00

(19)

(2O)

(2])

IMp C1 p- dy (22)
Q Om

dx

In the free shear layer, pressure is nearly constant and so tile term

is negligible in equation (18) and Cl=pjr, u 2

2.3.3 Normal Momentum Integral Equation

- d-_ i y 'v u"vp : 1 - C_ [P-(v'2 + v'-_) + {p- (u '+ "1

+ _- (_--_-_r+ p-_ + p-'n"u-'n'_} dy]
(23)

It has been show_ by Liu and Gururaj [39] that for wake flows the last

term on the right side of equation (23) is negligible relative to the

others and pressure p can be determined from the reduced equation.

12



2.3.4 Energy Integral Equation

d J_ diEp-E (H-l) dy : " -a'_-
(24)

The total enthalpy integral, IE is defined as

(25)
IE = IEC +IET

where

_IEc = [p-_+ u p'HI"+ (H--l) p-_ dy

f_IET : [p-_ + u p"H_ + (H'-l) p"u" + p"u"H---_dy

m_

and the mean total enthalpy,
m

H is given as

(26)

(27)

%) V

: Q2+s mkDk (T?-k +_ + T"Y_')+ S E Yk (28)
k=l k=l kf

where Q2 : ½ (-_2+ u-_2-, + v-_' + u-_'2+ v-_'2) is the total mean kinetic

energy. The fluctuation contribution to the total enthalpy are

V

H' = u- u' + _- (Ruu + Rvv) + S
k=l mkDk(TY _ + T'?"k + RTyk)

V

+ Z Y_ (29)
k=l Ckf

l

|--_

- 1 Lvv)H" = u u" + (Luu + +
k:1

+ Z Y_
k=l ekf

13

mkDk(T-Y_ + T"_k + LTy k)

(30)



The term R¢_ and L¢_ appearing in equations (2g) and (30) are defined

explicitly for any variable ¢ and _ as

Re@ : <@'¢'> - _ +<¢"_"> - ¢"_"

and (31)

L¢_ = ¢'_' - <¢'¢'> + ¢"¢" - <_"_">

Cl, Dk and Ekf are constants given as

p® _T_Yk _ okf YK
C1 = 2 ' Dk : _ and Ek - 2 (32)

p u® kU® f u

Here, R is the universal gas constant and _kAnd,_k_///" are the molecular

weight and heat of formation of the k-th _peci_7/ Also
I //

N /

Oki/_ _--__

mk : INk + s eki/T- ] (33)
i:l (e -l)

gives the translational, rotational(by Nk) and vibrational degrees of

freedom with eki as the characteristic dimensionless temperature for

the i-th vibrational frequency of k-species.

2.3.5 Equation of State

_j

: z C_ [p T Yk+ p(T'Y'

k=l

k + T'n_-_-'_k'+ T(P-tY'k + P-n_k)

Where

2,3.6

+ Yk(P'T' + p'--_F"-) + pT_T"Y"k]

(34)

p®RT

C_ = A_k p® Yk (35)

Mean Kinetic Energy Integral

It is also necessary to derive the integral equation governing the

14



total meankinetic energy and can be written as

l d I ® u-2 dlkE_-B'x PU ( -l)dy --- dx
Q_

IRS + Ip- I¢ (36)

Here, IkE represents the mean flow kinetic energy diffusion flux integral

and is defined as

c T

Ik E = Ik E + ik E (37)

c T

where IkE and IkE are the diffusion flux integrals due to organized

structure motion and fine-scale turbulence respectively. They are given

as

and

J'c c 2 u'2
IkE = (3u Ql) _+ p U ] dy

(38)

IkET : _[ (3u 2-I) p"U" + Tu u''2+ p"u ''-2-]dy (39)

IRS represents the total turbulent stress production integral contributing

to the mean flow. It is defined as

c T

IRS = IRS + IRS (40)

where IRS c

motion

C

I
RS

is the Reynold stress production due to organized structure

I_[ - - _-: _ (__ + p u-_,)BUax+ (Tu'v'+ v p'u_)_
w_

+pv,2 B_____] dy
By

(41)

15



w

and IRST the corresponding stress production integral due to fine scale

turbulence

IRS T S - ,, ,,2", au:- [(up"u"+ p _ + p u JT_+ (T
_ram

+- "u'--_ _) _ v''2 p"v--__'') T#]dyv p + T_+ (p + _T

Ip denotes the pressure integral given as

(42)

I = I + I (43)
P Pl P2

where

and

: d f (p- I) _ dy (44)Ip I -CI d-_
w_

= BU BV
Ip2 C1 (p-l) (Tx + Ty ) dy (45)

m_

, Ipl gives the work doneHere is the pressure diffusion integral and Ip2

due to expansion. The mean flow viscous dissipation integral is simply

taken to be

Is : RTL dy (46)

w

where p is the dimensionless viscosity coefficient and ReL = p=u=L/_

is the Reynolds number based on freestream conditions.

2.4 Shape Assumptions for Mean Flow

Experimental investigation indicates that in a wake the momentum

thickness B*, is very nearly constant. Equation (18) may then be rewrit-

ten as

16
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/ p G (u - I) dy : Constant (47)

by neglecting the integral I .
M

On using the definition of momentum thickness

CD
O* = f_ p u (I - u) dy : T : constant (48)

o

where, CD is the body drag coefficient, along with equation (47) a rela-

tion between the wake width and the centerline velocity defect can be

obtained as shown later.

The solution of the governing integral equations for the mean motion

depends upon the proper choice of the shape functions characterizing the

variation of the mean flowfield in the wake. It is well known that the

Von Karman integral method allows quite accurate calculations of the

gross features while remaining quite insensitive to the finer-details,

provided of course, that the shape function representation is physically

reasonable. The distribution of the mean flow variables across the wake

has been experimentally shown to be nearly Gaussian [27,65]. Therefore, the

the mean flow is represented by

(x,n) = 1 - V (x) exp (-n 2)
C

T (x,q) = 1 + Tc (x) exp (-n2) (49)

_ (x,q) = l + Yk (x) exp (-q_), _ = l,...v
C

where all variables are non-dimensionalized with respect to their edge

values. Here, Vc(X), Tc(X ) and Ykc(X ) are the mean horizontal velocity

defect, temperature and k-specie mass fraction excesses at the centerline

of the wake. The coordinate q, is defined as the Howarth transformed

variable given by

17



Y - (50)
n = Y p dy /_(x)

where 6(x) is the dimensionless shear layer thickness which can be shown

to be related to the centerline velocity defect Vc(X) by equation (48)

to give

CD/2 ._

- Vc(C' _ C2Vc) (51)

2 _2n2
where C2 =._p_n dn and, C2 = .®P d_

Therefore, the mean flow can then be characterized by Vc(X), Tc(X),

and (x). The variation of mean density p(x, _) and pressure,
Ykc

p(x, _) can be represented in terms of Vc(X), Ykc(X) and Tc(X) in the

governing equations with the help of normal momentum equation (23) and

the equation of state (34). The mean flow field can then be completely

defined in terms of the variable Vc(X), Tc(X) and Ykc(X).

2.5 Coherent Structure Closure

The equations described in Section 2.3 govern the mean flow. How-

ever, they contain correlations due to the fluctuations of the coherentJ

structure variables and also fine-grained turbulence. Here, we discuss

the closure of the coherent structure correlations. As mentioned before,

the equations governing the coherent structure motion are derived using

the hydrodynamic stability theory. The coherent structure is assumed to

have a wave-like periodicity is is defined by its amplitude A(x) and

its frequency of oscillation B. By choosing appropriate shape functions

for the coherent structure variables we derive the local eigenvalue equa-

tion which is solved using local linear stability analysis.

To facilitate numerical solution we define local coordinates given

as

18



X- X 0

=

w

",,,,atom

Y
(52)

where for the eigenvalue problem the dimensionless shear layer thickness

6(x) is considered locally a constant and xo Is a location close to x

such that the mean flow streamwise gradients are negligible.

2.5.1 Shape functions for Organized Structures

The shape functions assumed for the coherent structure in their

dimensionless form can be written in the local coordinates as

u'({.n._)/Vc

v'({._.:)/Vc

p'(_._._)

p'({,n,_)

T'(_._._)

Y_({,n,T),k:l,v

-- A(x)

0(,)

=;(,)

_(_)

_(_)

T(.)

Yk(n),k=l,v

e-iBT+ C-C + O(IAI 2) (53)

w

Here, c'c denotes the complex conjugate and the complex eigenfunctions

....of the fundamental component u, v, p, p, and correspond to the

wave streamwise velocity, normal velocity, density, pressure, temperature

and kth species mass fraction respectively Furthermore, B = B*
, " Uao

is the real dimensionless frequency, IB* the physical frequency; and

a = _* 6(x)L is the dimensionless complex wavenumber and a* its dimen-

sional value. The local stremwise derivatives of the disturbances
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are evaluated by the local relation [31].

dA
d-_ = i _ A (54)

On using (53) and (54) in the linearized inviscid equations for the

organized motion and on some algebraic manipulation (see Appendix A), the

governing equation in terms of the pressure Perturbation P(n) can be

written as

w

i

^ ^ _ T' S'P" + P' [" +T (v*l)- _--_]

^

+pE
(w-c)2Vc2

T *(J-Cls- Js2r2:o

where w = (u-l)/V c and c is the dimensionless complex phase velocity

defined as c=(6/_-l)/V c. Here, prime denotes differentiation with re-

spect to n, and

(55)

S : sv C_ _Tk , S' : s vk:l k:l C_ _rk' and M : k:ls v mkDk3rk (561

Also, _(: v R + ivl ) and _(=_R + i_l) are complex terms appearing

due to the presence of finite rate kinetics and are described in Appendix

A. We note here that this eigenvalue problem eq. (55) reduces to the

classical Lees and Lin [43] problem when the flow is non-reactive and

single specie. For multi-component non-reactive flow

_R=I , Vl=O

S!

-_.B.: - _ , __x: o

(57)

The eigenvalue equation (55) is solved for the assumed mean flow

profiles and appropriate boundary conditions for a given frequency B
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^ ^ ^and complex wave number _. All other eigenfunctions u, v, p, and

Yk are subsequently determined from the local solution for

Inherent in such a consideration described above is the assumptions of

'local similarity' which implies that the eigenfunction p(n) adjusts

instantaneously to the mean flow. To complete the closure of the

coherent structure we need to determine the amplitude A(x) appearing

in equation (53). This is given by the equation governing the time-

-averaged kinetic energy production associated with wavelike motion of

the organized structure.

2.5.2 Coherent Structure Kinetic Energy Integral

d i -- kc c IRsCT I c i¢c (58)d--x p u dy = IRS - + -
P

n_

where kc { (u'_+ v'-_-) is the organized structure mean kinetic energy.

The eigenfunctions are normalized such that IA[ 2 is the dimensionless

kinetic energy per unit length, of the instability wave across a slice

of the shear flow [39]:

[A]2 1 _ kC 1 i 2 2): ,-7-2- dn - 2 (u' + v' dn (5 °)
Vc __ 2Vc _®

and may be considered as the energy density in terms of the transformed

coordinate n.

IRSc is the Reynolds stress production integral defined in equation

(41). IRS cT is the kinetic energy integral for the exchange between

the organized structure and the fine scale turbulence and is given as
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where

cT I Bu'IRS " ['Ruu B--_-"
(Bu' + Bv')_ Bv' l

Ruv "By Bx- Rvv _-. dy

i Bv']+ _ [-Rpu _ - Rpv -_-_-,dy

Dm

i + _x') dy+ [.Spuu _Bu'. Spuv (Bu',By " Spvv Bv'IBy"

(60)

-.mmm,

= ,
Ipc

given as

S+ _ B = <¢"_"B"_ - _ (61)

is the pressure gradient work integral of the disturbance and is

Ipc - - C] _ [u' Bp'+Bx v' Bp']Bydy (62)

D_

and the viscous dissipation integral for the disturbance is simply

taken to be [4l]:

I c l _ [4 {( + "-_-" "B-x By
ReL

(63)

(Bu' _v')2]+ ,_-+ -- dy.

I¢c generates mean flow thermal energy at the expense of disturbance

kinetic energy.

The energy exchange integral IRsCT which describes the interaction

between the coherent structure and fine-scale turbulence is in a form

that requires closure. The terms R_ are specified in terms of an eddy

viscosity and disturbance strain rate model similar to Liu [31] such that
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-Ro.,  o2,.2,

-Rvv- v"2> = 2E @v'
By

(Bu' Bv'_
-Ruv = u-_- <u"v"> =2e ,_}--, _x"

(64)

and

-Rpu = p-_-<p"u"> = op*6p @p'Bx

Bp

-Rpv = _- <p"V"> = 0:6 0

On neglecting the terms larger than O(IAI2), IRscT

(65)

can be written as

IRScT =2j=;_ [(___i)2+ _u'+_v_2+ _vS2]dy
- "_y Bx • •_y •

- _ _u' + _ av' 1 dy
+op*_=: ®uEp[Bx _--x- @y _y =

(66)

The eddy viscosity(,_ used in this closure is obtained in terms of

the turbulent kinetic energy and dissipation determined in the next sec-

tion, and _ * is a constant. To first approximation, ( --(.
p P

2.6 Closure for the Fine-Scale Turbulence

The equations governing the fine-scale turbulent quantities can be

obtained by subtracting the contributions to the mean and organized

structure motion from the instantaneous equations. These equations

are quite complex and will not be shown here. Here we present a closure

model for the turbulent fluctuation correlations. Since the mean motion

and the organized structure motion have been formulated using integral

technique, we follow similar steps to develop the turbulent equations.

Essentially, we manipulate the turbulent fluctuation equations and write

equations for turbulent-density correlation p,-_Z,turbulent-specie mass

fraction correlation Yk_'' , turbulent-total enthalpy correlation
7
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and turbulent kinetic energy q,,2. On integrating the resultant equations

across the shear layer and assuming that all fluctuation correlations

vanish far away from the shear layer we get the following integral

equations.

2.6.1 Density FlUctuation Integral Equation

1 d I - 2 +I -Id_ u p" dy : - IpD PS P3
(67)

where I

PD

by

.2
is the production ofp due to mean strain rate and is given

= p,,2 1 ___uu+ av
IpD [2 ax _-_] dy

(68)

I is the diffusion flux integral given as
PS

and I
P3

I
PS

= --

-- _U" _V"

p p" (-_-- + _-_-) dy - [_ _x + _,"v'" ] dy

is th<diffusion integral for higher order correlation.

Ip3 . d _ p"Ldx c
_oo

y [Lpu _# + L --] dy (70)dy- _ " 5:,"
;x p v ;y

We observe that there are terms given above

tions. Hence we make the following assumptions.

strain rate is given as

where ¢
P

_V" E
p. (_U" + "V": + )

that require closure assump-

The turbulent density

is a constant and x is the Taylor's microscale characteristic

(71)

of this problem to be defined later.
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We further use a simplified gradient formulation to model terms

like L¢_. Thus I )

and

_Lpu = (p Bp"ax

=. ap"_ L

pv ay

• ax • • By " p

(72)

(73)

W

w

The integrals I and I in equations (53) and (54) then become
PS P3

and

[B_-_+ ] dy

--GO

Ip3 Spl (p _ p dy + Sp Ep dy
--¢)0 .oO

(74)

(75)

where S and S are constants that have to be adjusted with
P Pl

of experimental data and _p is the eddy mass diffusivity.

2.6.2 Specie Fluctuation Integral Equation

l d _ _ Ick -Ik3+ Ipk+IDk, k=l,...v2 dx p u Yk dy = - IFk
m_

the hel p

(76)

where I
ck

is the convective flux integral given as

Ick ½ _ [)-_-x_+ B--_-_-lay"dy
(77)

IFk is the diffusion flux integral due to mean concentration gradient.
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iIFk .

(78)

Ik3 is the turbulent diffusion of species and is given by

i - V "L
ik3 = d [p V "L + u ] dyk uYk k PYk

I BY_ BY_ BY ". [p _ + LvYk ____} _ k] dy{Luy k + Lpy k

(79)

I is the production integral for the k-th species due to chemical
Pk

reaction

I = ) Yk" °" dyPk rk
(8O)

011

where rk is the turbulent production rate of the k-th specie due to

finite-rate kinetics and is obtained from the total species production

rate.
IDk is the diffusion flux integral due to species diffusivity.

} ,ID k = P Dk Vk" V2Yk '' dy (8])
--eO

Here, Dk is the mean molecular diffusivity of the k-th specie and

is defined later. Vie neglect any fluctuations in DK at present,

To model the unknown correlations we follow similar approximation

steps. For example,
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P"Yk"
Y "L Y " _ - e (
k pu = " (p k ax = p p },

and

Y "Lp = Y,_-Lk v K pU

yk,,L _ -Dk B
uYk 2 Bx Yk''-'2"

Y "L - Dk a
k vYk 2 By Yk ''-'Z

aYk" BY " Yk''_

Luy k B_ = - Dk ¢k)2 :_ Dk _-2

BY "

(82)

(83)

On replacing these approximations in the integrals in Equations (61),

(62), (63) and (64) we get

Fk
[{p .,,.-n" _ o,,--n¥7} aYku "k + (g - c )p P k ax

IT". E
+ {v,,Yk p

BYk
(_-P-p"Yk"}-_-] dy

(84)

D

k
3

1 d

2 dx " _ Yk"2_k_ Yk''2dy+sk [_-Dk _2

Yk" 2 i/2 _ a_. ( ) p,,y--'_'n"(__ + ___)] dy

(85)

and

Yk" 2P Dk 2 dy
IDk : CDk

(86)

where Sk and CDk are constants that are adjusted with available experi-

mental data.
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2.6.3 Turbulent Kinetic Energy Integral Equation

dd-x ! p U _ dy = IRST IRSTC IpT. + - I¢ T (87)

_ Tl (u,-_-_-,+ v,,2) is the turbulent kinetic energy and IRSwhere q'--_-#'= 2

is the Reynold stress integral associated with the fine-scale turbulence

interaction with mean flow and is given in Equation (33).

TC
IRS is the Reynold stress production integral associated with

the interaction of fine scale turbulence with itself and is given as

a U"iRSTC : _[-Luu Tx-- Luv
_U 11 _V I| _V |I

(-_-+_) - Lvv Ty-] dy

I au" av"+ _ [-Lpu _- Lpv-_-] dy
(88)

+
i au"[- Mpuu ax

au" av" av"

Mpuv (Ty + Tx -) " Mow -_'-] dy

where

On neglecting fourth order terms at present and following the previous

closure approximation we get

TC
IRS _- au" av"}2 _I: 2 T_'rc_u-_ + + + dy

"'ax" (-_- -a-x-" "ay" -

-- " aU" . ay ay"

where k3* and k4* are adjustable constants.

(90)
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The terms appearing in (90) measure the effect of viscous decay on the

second order correlations. We follow here Varma et. al. [44] approach

which is an an istropic dissipation model and is shown to have correct

expression In the limits of small and large Reynolds number.

we write

II

6lj (u_, I u_,j) - 0

In general

m

k_ 3x2 A-2 u_ 6k_

r_

_m _

=--

w

t

w

r

w

w

where x is the Taylors microscale length and is related to the macro-

scale A by the Rotta's form

z2 = A2

a + b(q"2)I/2A
V

where

A_ O.5a and v = _/p

(92)

The study of incompressible boundary layer led to values of constants

a and b as a = 3.25 and b = 0.125. However, for compressible flows

they may have to be readjusted [44].

The dissipation correlations involving scalar fluctuations are

modeled in the following form

I| II

6ij u_, i p" j = S Uk p
, p2 _2

(93)

where

I

and can be split into

S : 1.0.
P2

T
is the pressure work integral due to fine scale turbulence

P

two parts.

T T
I :I

P Pl

T
+I

P2

(94)

T
where I

Pl
is the pressure work due to expansion and is given as
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T
and I

P2

d _ _ dy (95)IP)T = - Cl d-'_

is the pressure-strain rate

Ip2T = Cl i

BU" _V"

p"(-_- + -_-) dy
(96)

To determine these terms we follow Varma et. al [44] approach to model the

pressure diffusion term as follows

- (97)
p"u" = p A [P2 (q,,2)l/2 + Pl A _]

where Pl and P2 are constants. We take P2 : 0.1 and Pl which is

associated with the mean strain, needs to be adjusted with available

data. The pressure-strain rate is given by the form developed by Launder

et. al. [45] which includes the tendency towards isotropy terms.

BU." BU ."

p- _ + ) : Cl _ [Tij aij

_ .2 p][Pij 6ij

^ r _2 aij p]- B LDij -

- y [Sij]

where the first-term is proportional to the anistropy of the turbulence.

The other terms are due to the interaction between turbulence and mean

flow and is given by production terms

- la
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depends upon the size of eddy we apply the knowledge from simple spectral

analysis to find the variation of dissipation rate in the shear layer.

We shall return to the determination of c later on.

Finally, IT is the turbulent viscous dissipation integral due

to fine scale turbulence. We model this term in a form similar to

the viscous dissipation due to organized structure motion. It is then

given as

1iIT¢ = RT d _-_-_-)+

Bu" BY" _21 dy+ (3}-* _x"_

(1o5)

J

IL ;d

= =

w

w

= __

u

where _ is the mean molecular viscosity and we neglect any fluctuation

IT¢in transport properties, generates mean flow thermal energy at

the expense offine-scale turbulent kinetic energy.

Since the energy conservation requires balance of the kinetic ener-

gy in the three modes of motion, Mankbadi and Liu [48] determined equations

where the stress term IRScT in equation (5B) appeared with an opposite

sign in equation (87). Since at present, equation (87) does not con-

tain any term defining the interaction between the turbulent and dis-

TC = -I cT
turbance field, to the first approximation we replace IRS RS

in equation (87).

2.6.2 Total Enthalpy Fluctuation Integral Equation

4 •= . IHc IHC - IH3 IH¢
.om X

(Io6)

where IHc is the convective flux integral due to mean strain rate and

is given by
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(lO7)

IH is the diffusive flux integral due to mean total enthalpy gradients.

Cx

aH
IH - - [7_+_+ H_p _-_dy

Cx

and

(IOB)

IH3 is the®turbulent ehthalpy® diffusion integral

IH3 =_x I PHLurr_dY" f [u-H"B_L+ H'-_pH_ ''] dy

IH¢ is the dissipation integral which we neglect at present•

Following the same closure approximations we get the following

(log)

integrals

IHCx = . -= [_-_ + (-__SH I f) p--_-_-r]_'x dy

and

IH3 -

dy- SHI

• p-_'_{_-+_-_ dy

where and are constants.
SH l SH2

(llO)

(iii)
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Here, H is the turbulent total enthalpy diffusivity and is defined by

the tel ation

_H = CH'k3/¢H = _* {q'-'T_'2")3/_H

where CH is a constant and CH Is the dissipat!on rate for total

enthalpy fluctuation correlation

It should be noted here that the closure form used here in terms of

H'--_'contains implicitly the combined effect of turbulent kinetic energy,

the turbulent thermal energy and the turbulent chemical energy. There-

fore, the turbulent total enthalpy diffusivity H can be used instead of

DK in the equation for Yk ''2 . Since, momentum dissipation _ and enthalpy

dissipation cH are very important in the turbulent field development, we

determine them by using a simplified spectral analysis using the multiple

scale approach of Hanjalic et al [49]. The underlying physical mechanism

of energy transfer in turbulent flows is complicated further due to the

presence of finite rate kinetics and therefore a multiple scale process

of energy transfer seem more appropriate for the present problem.

2.6.5 Basis for Spectral Analysis

It is well known that turbulent energy transport occurs due to the

motion of turbulent eddies in the flow. Besides kinetic energy of the

motion, thermal energy and chemical energy due to reactions is also

being transported when different species mix and react at the molecular

level within these eddies.

The complex interaction of the turbulence and chemical reaction

leads to growth and decay of turbulent eddies in a manner significantly

different from non reactive flows. Previous analysis of energy cascade

34
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phenomena in turbulent flows assumes that energy is extracted from the

mean flow and transfered in proportion, from the largest eddies to the

smallest eddies where it _s dissipated. Recent developments bring to

light the complex nature of energy exchange even in homogeneous flows

and it seems that the concept of one-sided energy cascade has to be

reexamined [50]. Typically, in some experiments extended areas of

'negative' turbulent production has been revealed [5]]. This is very

pertinent to reactive flows where due to reactions, energy _s absorbed

and released in a manner that could possibly enhance the reverse cascade

phenomena.

The fine grained turbulence derives energy from the mean and organ-

ized motion and dissipates some of it but returns some of the energy

to support the generation of the larger structures. The turbulent

kinetic energy is contained mainly in the larger eddies and only a small

amount resides in the smaller eddies where viscous dissipation is impor-

tant. On the other hand, for chemical reactions the species must first

mix at the molecular level which is more likely to occur in smaller

eddies. Therefore spectral variation of turbulent total enthalpy

fluctuation, H'--_-', may be different from the variation of kinetic energy,

q'--_-_'.However, at present we disregard this difference for the sake of

simplicity.

In the determination of the dissipation rates c and cH, we there-

fore assume that there are two distinct ranges of wave numbers. There

exists a range of smaller wave numbers {large eddies} in which viscous

dissipation is negligible. In the other end of the wave number spectrum

there is a range of large wave number (small eddies} _n which viscous

dissipation is important. Between these two is the _nertial subrange
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which contains most of the turbulent kinetic energy q-_-2'2andturbulent

total enthalpyH '-'T_-'.

In the past, investigators studied turbulent energy transfer by ap-

proximating Reynold stresses in terms of turbulent kinetic energy, k

@u."

and viscous dissipation _ ---v(_-5_-)2 such that the characteristic time
v-,_.

scale for the turbulent field was (k/c). However, it is generally recog-

nized that turbulent interaction time scales vary in different parts of

the energy spectrum and single scale model accounts for only the energy

containing large eddies. Based on physical arguments and simple closure

model Hanjalic et al. [49] developed a multiple-scale model which showed

striking improvement in the level of agreement with experiment over that

obtained with single scale models [49]. Essentially, they partition the

turbulent kinetic energy spectrum E(K) between the production region

(K _ KI) and transfer region (_I < _ < K2) with negligible energy in the

viscous dissipation region (K > K2) such that the total turbulent kinetic

energy is given by Figure 40.

Kl

k : ½ (u'-_' + v'-'_-') : Of E(K)dK +K{ ® E(_)d(K) = kp+k T (ll3)

where K_ is the wave number at which partitioning takes place.

Energy is transported from the production (low wave number) region

at a rate Ep and enters the dissipation region (high wave number) at a

rate c. The energy transfer rate in the transition region is Cs [49].

In terms of the energy spectrum these dissipation terms may be written

as

c = 2v fmK2E (K) dk (ll4)

O

and

36



i

m

w

_A

i

-mu_,

z

W

w=

I

v

W

m

w

+ £S = ofK2D(K)-- dk +K_=D(_) dk (115)Ep

where D(K) would then represent the partitioned energy spectrum in terms

of kp and kT . Balance equations were modeled for the kinetic energy and

dissipation rates in the production and transition regions and for spec-

tral equilibrium in very small eddies, the rate c becomes identically

equal to Es . The various improvements possible with such a multiple

scale modeling was discussed in reference [49], and specially for reac-

tive flows this model's ability to account for different time scales of

interaction seems promising. Beside characteristic time scales of kinet-

Ic energy transfer, in chemically reacting fTows, the model must also

allow for the characteristic time scale of chemical production rate. In

the present formulation, this is attempted by considering a turbulent

total enthalpy fluctuation spectrum N(K) such that

H'--:'= °p N(_)dk= °/_' N(_)dk+ _{=N(_)dk
(116)

=(7)p+
This spectrum is also partitioned in a manner similar to the kinetic

energy spectrum (Figure 40). The spectral transfer rate of enthalpy is

then in the production region, in the transition region and EH
CHp CHs

in the dissipation region. Balance equations are then written for these

rates along with the equations for energy dissipation rates. The basic

modeling formulation follows Hanjalic et. al.[49] and the effect of the

density fluctuation is modeled in a very simple manner. Since the pres-

ent formulation is basically an integral one, the differential balance

equations are integrated across the shear layer which results in the fol-

lowing integral equations.
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a) Dissipation in the Production zone:

°i _ Cp dy = IPp- IPD + IPDi + IPG (I17)

and
ClO

d I --d-_ p u _ dy = Ip
.® Hp Hp

+ Ip + Ip
IPHD HDi GH

(liB}

where IPp and IPHp are the production integrals for the turbulent kinetic

energy and turbulent total enthalpy respectively and are given as:

i! _ @-_i
= Cpl _ (q,--_E,)p

(I19)

! ¢H _

Ip = P {p H''2+ 2 H P")i"} aui

Hp CHI . (H-_2'2)P Bxi dy

Ip and IPHD are the decay integrals for cD p

They are given by

E2IPD = Cp2 _- P dy

_= (q,-_2-,)p

and

Hp

IPHD : CH2 [ p dy

-.

and c respectively.
Hp

(12o)

IPDi and Ip are diffusion integrals and are written asHDi
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and

IPDI =C¢ _ "_ p_[u'--_'_+""-_"" u"v" BEp] dy
p .= p _x _y

i! @EH BEH
IPHDi Hp _ . Hpe By

Here, , , , C_ and C
CpI Cp2' CHl CH2 P c

are constants defined later.

Hp

IPG and IPGH are the generation terms due to mean vorticity.

and

¢_mk Cijk p dy

a_ a_iIPGH = XH (H'--_-')paxm axj C£mk ¢ijk p dy

where C£mk is the alternating third order tensor and Xq = XH : O.l.

This term vanishes for an irrotational flow and was found necessary to

include for rotational flows [49].

b) Dissipation in the Transition zone:

and

d I - - = Is ISD sd-_ p u E dy - + Is p Di

d I - - IS " Is " Is
dx p u dy = Hp HDeHs HDi

here ISp and ISHp are the production integrals for the dissipation

rates Cs and CHs in the subrange. They are

(121)

(122)

(123)

(124)
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and

i Cp c s
= _" dy

ISp Csl "= (q'-';:)")s

Hp cH3 ("'-_')s

ISD and Is are the decay integrals and are given as
HD

isD CS 2 - s
_® (q"2)s

dy

2

i HSIs = CH4 -
HD P (H--_,)s

dy

(125)

(126)

And finally ISDi and Is are the diffusion flux integrals in
' HDi

the subrange.

= _ By

and

Is -C

HDi" _'Hp

i __ B_H s BCH s
.._ Clip

(Tz7)

The constants appearing in Equations (I17) to (127) are defined,

at present, using the data available from HanJalic et. al. [49]. They

are given as
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Cpl -- CHI = 2.2

(Xq- 1)

Cp2= 1.8 - 0.3-(Xq+1)

Csl = 1.08 _q

CSE - CH4 = 1.15

(XH - I)

CH2= 1.8- 0.3.(XH+I)

(128)

where

and

CH3 = l.OB _H

(q,,2)p

Xq- (q'-;_')s

XH_ (7)_

(H,--_,)s

_q=-P-
e s

CHs

(129)

(130)

The Xq and XH are partition coefficients which define the amount

of turbulent kinetic energy and turbulent totai enthalpy present in the

production zone and transition zone. Since we assumed negligible energy

in the dissipation zone (= > K2) we may thus write in terms of _ and
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and (131 )

XH

(H'--_')p = (]---+---_HH) _ "

The coefficients Xq and XH are given inputs to the problem whereas

_q and _H are obtained as a part of the solution.

Here Xq and XH characterizes the shape of energy and total enthalpy

spectrums respectively and _q and _H gives their degrees of spectral

imbalance.

The solution to the above integrals requires appropriate choices

of shape functions. However, once the shape functions are defined,

we can solve the complete interaction problem. Although the dissipa-

tion rates in the dissipation zone, c and cH, are different from the

rates in the production and transition zones, at present, we assume

spectral equilibrium between the transition and dissipation zones and

take

c _ ES

EH _ EHs

With the assumption we can then determine _he eddy diffivities E

and E H defined in equations (104) and (112_.

The solution of equations (I17),(118),(123) and (124) along with

the mean motion equations and turbulent fluctuation equations gives the

(132)
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complete interaction problem. The problem w111 be completely defined

once we can specify the shape functions for the unknown variables. Here

we are guided by available experimental data wherever possible. However,

there is a lack of well defined experiments specifically for reactive

flows and so the choice of shape functions here have to be modified

depending upon the results of numerical experiments.

2.6.6 Shape Functions for Fine-Scale Turbulence

The governing integral equations (67), (76), (87) and (106) for the

turbulent correlations are solved by assuming appropriate shape func-

tions for the correlations. Though it would be more accurate to use

strip-wise shape functions, i.e., to do a strip-wise integration, at

_resent, to keep the problem tractable and consistent with the mean

flow formulation a single shape function is assumed for the whole shear

layer. Furthermore, since we are assuming that all fluctuation corre-

lations vanish as n ÷ _®, we take the following shape functions

and

p,,2 A o (x) e"n2=
-- p
P

2

_ Ay k= Ck (x) e"n

2

= AH N (x) e"n

Ap = 1.0

; AYk = 1.0, k = l ...

(133)

2

q,,2 = Aq E (x) e"n

Thus o(x), Ck(X), N(x) and E(x) are the amplitude functions which are the

basic unknowns of the problem, a(x) is the centerline magnitude of

the density fluctuation Tand similarly Ck(X) are the centerline

magnitude of the species mass fraction Yk-_", N(x) is the total turbulent
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enthalpy density across the shear layer normalized by

N(x) = ) (134)

so that AH = I//_

Similarly, E(x) is defined as the turbulent kinetic energy per unit length

across the shear layer and is normalized as follows

(135)

so that A = 2/JT.
q

We use experimental data to approximate velocity fluctuation correlations

[52] such that

and

-u-_
aI, aI = 0.3

= C, C = 2.0

(136)

The shape functions for the dissipation rates are given by

2

ci = AEi Di(x) e"n (137)

where i = I, 4 denotes p, s, Hp and Hs respectively. Again we use shape

functions similar to the ones used for other unknown quantities. If we

identify ¢i as the dissipation rate per unit length across the shear

layer we can normalize equation (137) to get A = I//_
¢i

The interaction problem then is basically completed by the definition

of the various shape functions and its use in the governing integral

equations. The reactive flow can then be solved by numerically integrating
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the mean motion equations and the turbulent correlation equations simul-

taneously along with the elgenvalue solution. The various constants that

appear In the equations have to be adjusted to get the best fit with exper-

Imental data.

The above closure method requires determination of the cross cor-

relations of turbulent fluctuation. From existing data, for example,

[6, 53] we see that one form of correlating data is to use correlation

coefficients. This if ¢" and _" are two turbulent fluctuations we de-

fine correlation coefficient r@_ as

- r¢_(x,n) ; -I ( r¢_ 1 (138)

"(7 7) Iy2

V

=

= =

l

V

Experiments indicate that r¢_ is well defined in a shear layer and some

guidance is available from available data [6,46]. Furthermore, except

for the near wake area, where the interaction is highly nonlinear, we may

consider nearly self similar profiles for r¢_ across the shear layer.

Therefore, to the first approximation we consider r¢_ = r¢_(n) specified

as a known input to the problem. With the specification of r¢_ we then

can determine all cross correlations of the form _ in terms of known

variables ¢'-_-'and__-_-_'2.Numerical experiments with reacting flows [6]

indicate that as the flow proceeds far downstream the mean flow ap-

proaches self similarity and the correlation coefficients, r¢_ tend

to either +l or -l. For self similar conditions, therefore, r¢_ can

be taken to be a given input to the problem. For turbulent fluctuation

correlations of 0(3) we follow gradient formulation similar to Varma,

et. al. [44] to achieve closure. All higher order terms are at

present neglected for simplicity.
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to show the effect of finite-rate kinetics on multi-component flow.
i

reactions are given by

kf

H2 + 02 1, 20H

N
kf

20H + H2 '2_2H 20

N
where kfi and kbi are the forward and backward rate constants and are

given in reference [54] and will not be repeated here.

The instantaneous volume rate of production of each specie is then

determined from the reaction mode] (139) and are given in their non-

dimensional form as

o p2 [B - A ]
to2 = X02 kb 1 YOH2 kfl YH2 YO2

2.7 Reaction Model

The reaction model used in this analysis is the quasi-global two-re-

action, four-specie model due to Rogers and Chinitz [54]. This model is

simple enough to handle numerically and has been shown to have reasonable

agreement with experimental data. At present, this model is sufficient

The

ro 2 2
H20 XH20 p [C p YOH 2 - D ]= kf2 YH2 kb 2 YH20

Er°-½Fr°02 H20

(139)

(140)

r° = - 2 G r° - H r°
OH 02 H20
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where

and

X02 =

A ==

p=L _02 p®L MH20

and XH20 = 2
U=YO2e U=YH20e

YH2eYO2e YOHe 2

HH2M02 B =..-TT--_" MOH

(141)

C = YH2e2YH2e YH2Oe2
D = --_

MOH2MH2 _H20

E = _H2 YO2e MH2 YH20e
F =

MO 2 YH2e _H20 YH2e

(142)

M M YH20eG = oH__YO2e H = OH

_02 YOH e MH20 O_H e

On time averaging equation (140) we get the mean rate of production

of the i-th species, r_ appearing in equation (17). Following the fil-

tering procedure we can separate out the contribution r_' and r_" cor-

responding to the organized structure motion and fine scale turbulent

motion respectively.

To the first approximation, any fluctuation in and due to
kf i kb i

the coherent structure and turbulence fluctuations can be neglected.

However, when turbulence is included, the rate constants based on mean

temperature k(T--)has been shown to be significantly in error when com-

pared to the actual mean rate constant k--_'T[ 6 ]. The time averaged rate

_fi can be determined by using a probability densityconstants and_bi

distribution approach first suggested by Chinitz [55].
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In essence, a probability distribution function P(B; x, y) ts con-

sidered at any given point (x,y) to define the temperature between e and

e + de so that

L (

! .i

(e) = 1.1 (0) P(B) de (143)
kfl o kfl

T - Tmi n
where e = ; 0 < e < l (144)

Tma x - Tml n - _

To solve (143) P(B) must be prescribed apriori. Chinitz [55] used a

clipped Gaussian distribution for P(e). In free shear flows, such a dis-

tribution seems reasonable [56] and therefore was used here also. Here,

Tma x is the maximum temperature attainable in the reaction model and Tmi n

is the temperature in the shear layer for no reactions. A clipped

Gaussian distribution for P(B) can be written as

1 exp [-_] (145)_PCB) = _I a(O)+_2 _(1) + (H(1)-H(O)) o,r_

where (H(1) - H(O)) is the Heavyside function given as unity in the range

0 < e < I and zero elsewhere. Furthermore,

¢I = } erfc [(2o2)172]

¢2 = } erfc [(21o2ii_2]

Using equation (145) in the definition of _ and e--_-weget [56]

(146)

2 I/2[exp(2 ) _ exp( )]
"B= _2 + _(l - _1 - ¢2 ) + (2-_) 2o

(147)
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and

2 I12 2
7:0 '2+0''_:@2 + ( 2+o2)(i__i__2 )+ (_°) exp(-___E_)

2°:

2 I/2 (l- u)2] _2
- (l + _)(_-) exp[-

2o2

(148)

o-and o_ (= e'-_-2-+o''2) are related to T and (T'2+T ''2)and equations

(147) and (148) can be inverted to obtain _ and o2 which can be used in

equation (145) and hence finally determine m(e) by equation (143).
kfi

Solution of equation (24) gives T(x,n) in the shear layer. T '2

(= 21AI21TI 2) can be obtained from the eigenvalue problem (55) and T''2

can be related to H'----_-'such that

- 2u{Z k (mkDkT + Ekf ) (_ _x _-x

(149)

where gradient closure is employed for turbulent correlations u"Yk" and

u"T" and correlations T"Y " and higher order correlations are neglected
k

at present for simplicity. Since the solution of the mean flow equations

is coupled to the determination of the mean reaction rate constants,

iteration is required for the complete solution. However, for numerical

simplicity, the mean rate constants can be determined at any given point

(xi) in terms of the values of T and (T_+_) from the previous stream-

wise location (xi_l) and the iteration procedure can be avoided at the

expense of some numerical accuracy.
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Ill. METHOD OF SOLUTION

3.1. Reactive Eiqenvalue Problem

The stability equation in terms of pressure perturbation p(n),

equation ( 55 ) must be solved subject to appropriate boundary condi-

tions. Since detailed stability analysis of reactive wakes was not

available, extensive numerical calculations were carried out to de-

termine the eigenvalues of the problem. In essence, for a given M®

and frequency B and with assumed mean flow profiles, equation (49),

the eigenvalue problem can be solved using Runge-Kutta integration

technique. The boundary conditions used are

(i) On the wake axis (n = O)

For Antisymmetrical Oscillations

8(0) = 0

For Symmetrical Oscillations

_(0) = _'(0) = 0

(ii) Far from wake axis (n ÷ ®)

+ 0

The boundary conditions are homogeneous and therefore are not

sufficient to establish any solution of the governing stability equa-

tion (55) other than the trivial solution of zero. The stability

problem must therefore be formulated as an eigenvalue problem, i.e.,

non-zero solutions which satisfy the boundary conditions exist only

for certain combinations of the complex wave number _ and complex

phase velocity, c. Since the frequency B = _c is constraint to be

real, then for fixed B, we need only determine mR and aI (and hence

cR and cI) to obtain the required eigensolutions.

It can be seen that an important analytical feature of

(150)

(151)

(152)
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equation (55) is the existence of a singularity at the point

= c (critical point). Though_ is real, the singularity lies on

the real axis in the complex-plane only for a neutral disturbance.

However, for amplified and dampeddisturbances (c I _ 0), the sin-

gularity lies in the complex n-plane and numerical integration a-

long the real axis is not possible [60].

Essentially, integration begins at large value of n (=n_) and

proceeds along an indented coutour around the critical point in the

complex n-plane. The eigenvalues (_R' _I ) are obtained by a linear

search procedure to satisfy the boundary conditions. The method of

solution is basically the approach of Mack [60, 61]. The equations

are separated into real and imaginary parts and solved simultaneously.

Oncethe eigenvalues are determined all the eigenfunctions u, v,

_, T and Yk can be calculated using the linear equations (see Appen-

dixA). For neutral eigenvalues, i.e.,c I =O,a linear search is car-

ried out in cR and _R because _I =0 for the spatially developing

disturbance studied here.

3.2. Interaction Between Coherent Structure and Mean Motion in

Reactive Flow

When all turbulent correlations are neglected in the govern-

ing mean flow equations, the integral equations show the balance

between the mean motion and coherent structure motion. The inte-

grals appearing in the equations can be calculated in terms of the

eigenfunctions (Section 3.1) by Simpson's Rule. To avoid inte-

gration to large values of n, n_ is taken to be : 5.0, since for

n>5 the mean flow approaches free stream and the integrals in the

range n6 < n < ® can be shown to be a function of the value of
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eigenfunction at n = n6. The governing equations for the mean flow

variables Vc, Tc and Ykc and coherent structure amplitude IAI2 can be

written in a general functional form as

d@i

-B_-= fi(¢i ;Re, M=, B, CD) , i : 1,7 (153)

where ¢i denotes the unknown variables of the flow, i.e., Vc. Tc; Ykc

(k=l,...4) and IAI2. These equations can then be solved in the stream-

wise direction from some initial conditions at, say, x = xo such that

2 Since the

Vc(Xo)=Vc o'Tc(xo)=Tc o'Ykc(xo)=Ykco and IAl2(Xo )= IAIo .

eigenvalue problem is a function of ¢i' at each streamwise location the

eigenfunctions and the integrals are evaluated to proceed with the solu-

tion of equation (153). The various integrals appearing in the equa-

tions are given in Appendix B.

3.3. Fine-Scale Turbulence in Reacting Flow

The integral equations for turbulent-correlations, equations (67),

(76), (87), and (I06), can also be written in a similar form to equa-

tion (153) and solved subject to proper choice of initial conditions for

the shape functions (133). In all, there are II equations that must be

solved along with the mean motion equations described in Section 2.3. How-

ever, at present the turbulence model has not been included in the numeri-

cal calculation of the interaction problem because of lack of comparison

with experimental data, specially for reactive wake. Instead, a numerical

parametric study of the turbulent integral equations was carried out to

determine the effect of the variation of the constants and correlation

coefficients R¢_ appearing in the equations. For simplicitly, the mean

flow was assumed to be self similar in transformed coordinate n and in-

teraction between the coherent structure and turbulence was neglected.
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For self similar conditions, all cross correlation coefficients R@_

tends to either -I or +I and therefore from past studies [6], R¢_ was

given a constant value across the shear layer. Effect of the variation

of R¢_ on the development of the turbulence field is studied parametri-

cally. Effect of adjusting the various constants (i.e.,Ep , SK, CDK, SH)

was not studied in detail due to lack of experimental data for the physi-

cal reaction model employed here. Numerical calculations were carried

out using the Runge-Kutta integration technique.

W

= ,

z
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IV. RESULTS AND DISCUSSION

In this chapter the results of the numerical calculations are pre-

sented and the various facets of the interaction problem are discussed.

Since the basic thrust of this research has been to develop a model to

study the interaction stability of a coherent structure in a supersonic

reactive flow, detailed analysis of the stability of a disturbance in

reactive flow has been carried out. There is a considerable lack of ex-

perimental data on the reactive wake phenomena, specially in the H2- 02

combustion system studied here. Therefore, no direct comparison was pos-

sible for the development of a coherent structure in reactive free shear

layer. However, experimental data [27,28,40] is available for nonreactive

hypersonic wake of a flat plate and a comparison is possible. The reac-

tion model is at present not of great importance to study the growth and

decay of coherent structure except so far as to include finite-rate kine-

tics in the interaction problem. The presence of finite-rate chemistry

results in large species production rates for the reaction model used

[54] and therefore imposes stringent stability restrictions on the expli-

cit numerical calculations carried out here. The step size required for

stability of the numerical calculations of the reactive interaction pro-

blem is so small that detailed computations for reactive cases was compu-

tationally prohibitive and therefore only a representative set of solutions

are presented. It may be possible to solve this problem by an implicit

numerical technique which could result in detailed solutions within rea-

sonable computational time. At present such a numerical solution is be-

yond the scope of this research and must await future study.

The turbulence model developed in this study is at present untested,

and therefore its inclusion into the interaction between coherent structure
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and meanmotion cannot be justified. Instead, the turbulence model is

parametrically studied for a simplified meanflow and with the assumption

that there is no interaction between coherent structure motion and fine-

scale turbulence. This enables the fine-scale turbulent motion to be-

come uncoupled from the development of the instability wave and with pro-

per choice for the mean flow profiles, the turbulent integral equations can

be numerically solved subject to given initial conditions. The various

constants and correlation coefficients R¢_ appearing in the turbulent

equations have been parametrically varied to study their effect on the

spatial development of fine-scale turbulence in reactive wakes. De-

tailed comparison with experimental data for a free shear layers under-

going H2- 02 kinetics is again not possible due to the lack of experimen-

tal data on the turbulence field of this combustion system. The success

of any turbulence model capable of handling finite-rate kinetic effects

will depend upon the availability of reasonable comparison between nu-

merical predictions and experimental data and since this is not possible

at present, the turbulence model developed here is studied only as an in-

dependent problem and was not included in the interaction analysis.

The results presented here therefore falls in three distinct parts.

In the first section the results of the detailed study of the stability

of reactive wakes is presented. In the second section, the interaction

between the coherent structure motion and the mean flow motion is numeri-

cally studied. And, finally, the numerical parametric study of the tur-

bulence model is presented for a self similar mean flow field. Effect

of varying the cross correlation coefficients is studied for both reactive

and non reactive cases.
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4.1. Stability of Reactive Laminar Wakes

The eigenvalue problem developed for reactive flow, equation (55),

is solved subject to the boundary conditions (150), (151) and (152) and

the eigenvalues _(_R' _I ) are numerically calculated. With proper choice

of the the mean flow variables (i.e., Vc, Tc and Yk ) and for a given
c

free stream Mach number M , the stability equations can be integrated

as described in Section 3.1. Solution proceeds in the complex n-plane

(Figure 2) and therefore the equations and the boundary conditions must

be separated in their real and imaginary parts and solved simultaneously.

With a reasonably good choice of initial guess for o R and _I for a given

real frequency B, the nonreactive case converged in 4-6 iterations. How-

ever, the corresponding reactive cases took 6-9 iterations and the compu-

tational time also increased proportionately. A convergence criteria of

10-8 was used for both cases.

It was seen from the computations that the eigenvalues for the re-

active case depended significantly on the finite-rate kinetics used in

this model and therefore it is expected that different rate kinetics me-

chanism would result in different eigensolutions. However, it was seen

that the general trend of solution remains the same and so some generalized

conclusions can be drawn from the study of this reactive stability pro-

blem. Stability calculations such as this gives some insight into the

phenomenon of transition to turbulence in reactive flows which is an

area of research of great interest.

Lees and Lin [43] and Lees and Gold [57] have shown for nonreactive

flows, that neutral subsonic disturbances exist only when a generalized

mean density-vorticity product has an extremum, and then only when the

phase velocity corresponding to this location is subsonic relative to an
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observer fixed in fluid. This condition is also sufficient (but not neces-

sary) for the existence of amplified subsonic disturbances. It has been

shown that the relative velocity I- u(x,O) governs the stability of the

wake and so the proper coordinates for the stability problem is a system

fixed "in the fluid" even though the mean flow is calculated in a coor-

dinate system fixed in the body. A disturbance is classified "subsonic,"

"sonic" or "supersonic" according to whether the relative propagation

velocity is less than, equal to, or greater than the ambient sound speed.

The local relative Mach number of the wave front is given by [57]

M .(w
M : _ " cR) (154)

CT

where Mr : M_Vc is the relative Mach number. A subsonic disturbance must

therefore satisfy the condition

1 (155)
-c R < Mr

It was also shown for nonreactive case that a neutral subsonic distur-

bance exists only for certain mean velocity temperature profiles and -c R

is uniquely determined by these profiles. The stability restriction re-

sults in the criteria that -c R must lie in the interval [0,I] for a

self-excited disturbance to exist. For subsonic disturbance it results

in the requirement that [57,58]

1 (156)
0 < "CR < _rr

It has been possible to establish some criteria for the existence

of neutral subsonic disturbances [57] in compressible nonreactive wakes

but it seems impossible to extend such requirements for the reactive

case. For two-dimensional compressible nonreactive wakes, the condition

that uniquely determines the existence of neutral disturbance is given

by
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T CRc

[] 0 and
CR = cR

C

where prime denotes differentiation with respect to n.

(157)

Using the mean

flow profiles and equation (157) results in

2
-nc 2nc 2 - l .

Tce = ( 2 )
2nc + I

and
2

-n c

-(c R) = e
C

where nc is the critical point where w = cR.

This indicates that for nonreactive case, the neutral solution

(ISB)

(159)

phase velocity CRc is a function of Tc only and is independent of the

relative Mach number. For these values of CRc, the neutral inviscid ei-

genvalues for anti-symmetric disturbance (_c) can be determined as a

function Of Tcand Mr(Figures 3,4). The solution shown in Figure 4

clearly indicates that whereas for no reactions in the flow, the criteria

equation (157) is always satisfied, for finite-rate kinetics however,

the neutral phase velocity, -CRc, is no longer a function of Tc only but

instead depends on both Tc and Mr. This interesting deviation from the

inviscid stability criteria, equation (157), indicates that the require-

ment given by equation (157) is necessary but not sufficient to theore-

tically define stability bounds for reactive wakes. At present, an ex-

tension of the nonreactive stability criteria to handle reactive stability

seem very difficult and has not been attempted.

In Figure 3 results of the neutral eigenvalue solutions for nonre-

active flow is presented. For increasing temperature excess Tc, -cR in-

creases towards zero, i.e., the phase velocity approaches free-stream
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velocity. The critical point nc where w = CRc increases with Tc. Excellent

agreementwith the Lees and Gold [57] solution is also obtained (Figure 3).

The eigenvalue _c decreases and almost becomes constant with increase in

2
Tc for the case of Mr = O. The dependence of the phase velocity on Tc

and Mr is shown in Figure 4 where it can be seen that the reactive case

deviates significantly from the nonreactive case. Clearly, the numerical

solution shows that a minimum value for -CRc for each value of Tc is ob-

tained as a function of Mr (= M®Vc). In all the neutral eigenvalues calcu-

lations a value of Vc =0.4 was maintained at all times. It is also noted

from Figure 4 that the -CRc bottoms out much more sharply for lower Tc-

The actual phase velocity, in the coordinates fixed with the body is

given by CR= I + VcC R and therefore depends implicitly on the velocity de-

fect in the wake axis. In Figure 5 the solutions for the neutral eigen-

values ec as a function of M r and Tc is presented. For fixed value of

Tc the wave number _c decreases with increasing Mr as predicted by Lin

[59] and computed by Lees and Gold [57]. Again excellent agreement with

the solutions of reference [57] is obtained for the nonreactive case.

For reactive case, _c varies with Mr 2 in a similar manner as the nonreac-

tive case. However, the wave numbers are much larger and the range of

relative Mach number over which the neutral (and adjacent amplified) dis-

turbances can exist also increases. This kind of increase is also noted

with the increase in temperature excess T C"

Since we are interested in spatially developing waves, a comparison

of the variation of frequency B with relative Mach number Mr is presented

in Figure 6 . For fixed Tc, B decreases with Mr for both reactive and

nonreactive cases. The frequency at which neutral disturbance can exist
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increases with increase in Tc and _s also greater for the reactive case.

The leveling of frequency _ for Tc= 4.0 during reactions is due to the

variation of -cR observed in Figure 4.

The boundary conditions, equations (150)-(152) allow for both sym-

metrical and antisymmetrical disturbances in the wake and therefore nu-

merical solutions were obtained for both the disturbances. It has been

determined that antisymmetrical disturbances are more unstable in laminar

wake transition [29] and similar trend is also observed during the pre-

sent computation. Figures (7) to (lO) give the eigenvalues computed

for symmetrical disturbances and Figures (ll) to (14) give the corres-

ponding antisymmetrical disturbance solutions. The complex phase velo-

city C(CR,C I) shown in these figures is the velocity with reference to

the coordinate system fixed to the body and is defined as C = I + Vc Re c

where c (cR, cI) is the relative phase velocity defined in the local

coordinate system (equation (55)).

In general, the reference conditions used for the present compu-

tations unless otherwise specified are

T = 1500°K , Yk = 0.05, 0.90, 0.025, 0.025
e

L = O.Im M = 2.0 and B = 0.2

and the centerline values for the mean profile were taken to be

Vc=0.4 , Tc =4.0 , Yk = (-0.25,-0.25,3.0,6.5)
C

In Figures (7) to (9) the reference values for species Yk was
e

taken to be (0.3, 0.65 ,0.025, 0.025) which is a fuel rich mixture for

this present reaction model.

In Figure 7 we see that for nonreactive flow, with B .<0.24 the

solutions are amplified (CI > 0) and with B .>0.24 the solutions are
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damped (C I < 0). At B : 0.24 we have a neutral eigenvalue solution.

However, when the reaction is turned on, all the solutions are amplified

and also the degree of amplification is much higher. The maximum ampli-

fication occurs around B = 0.092 for nonreactive case but is around

B : 0.081 for the corresponding reactive case. This seems to indicate

that the disturbance is more likely to become unstable for the reactive

case. The phase velocity CR monotomically increases with B for both

cases. However, CR is lower when chemical reactions are going on. This

implies that for reactive flow, though the disturbance gets highly ampli-

fied it is travelling slower relative to freestream. This is consistent

with experimental observation by Ganji and Sawyer [21] of organized

structure motion in a propane-air combustion flow.

In Figure 8 we show the variation of the eigenvalues as a function

of freestream Mach number M . A neutral eigenvalue is observed near

M : 2.375 for nonreactive case which disappears when the reaction is

turned on. We notice that for M <2.375 the solutions are amplified

(C I>0) and for M >2.375 the solutions are damped. This is very inter-

esting because in a very early paper concerning stability of jet flows,

Pai [62] had theoretically predicted that there is a critical Mach num-

ber above which jet type flow will be stable with respect to all small

symmetrical disturbances in the inviscid fluid. He further showed that

for the case of no energy transfer the critical Mach number is about 2.5.

Our present numerical results for symmetrical disturbances shows that

the flow is stable for M _2.375. This close agreement between earlier

theory [62] and present analysis indicates the validity of the present

numerical results. Another interesting observation in Figure 8 is that

when the reaction is turned on there is no neutral eigensolution and the
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results are completely amplified. Moreover, the reactive solutions

seems to be weakly dependent on M . A possible explanation of this re-

sult is that since the release of chemical energy due to reactions is

independent of Mach number, the variation of M will probably have limi-

ted effect on the eigenvalues. The phase velocity CR is still smaller

when reactions is turned on.

Figure 9 shows the variation of the eigenvalues as a function of

velocity defect Vc. There is significant differences between the non-

reactive and reactive cases. For nonreactive flow the rate of amplifi-

cation is maximum around Vc=0.505. However for reactive cases calcula-

ted here, the disturbances amplification increases continuously with in-

crease in Vc. The phase velocity CR is again smaller for the reactive

case. The results indicate that very close to the rear edge of the flat

plate where Vc is large, chemical reactions make the disturbance grow

rapidly but on proceeding downstream into the wake where the interaction

weakens and Vc decreases, the amplification rate decreases. The phase

velocity CR however, increases as Vc is decreased and approaches free-

stream velocity far downstream into the wake.

We further note that for Vc<0.45, the amplification rate is lower

for reactive case as compared to reactive case. This indicates that the

instability wave is not amplified for all cases considered here and that

under some initial conditions reactive wave will be less amplified when

compared with the nonreactive case. It was determined during the pre-

sent calculations that the wave amplification is quite dependent on

shape function assumed. The phase velocity, however, is always lower

for reactive cases. In Figure lO we plot the variation of the eigen-

values as a function of temperature increment Tc. Here for small value
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of Tc we see that CI is larger for nonreactive case as comparedwith

the reactive case. The phase velocity CR is still lower for reactive

case. There is a maximumamplification occuring around Tc =2.4 for

nonreactive case but is no longer present for the reactive case. This

figure shows that with the low value ofV cconsidered here, and for reac-

tive case with 5%H2,the waveis amplified less as comparedwith nonreactive

case but the amplification continuously increases with increase in Tc.

With higher value of Vc the amplification again becomeshigher for reac-

tive case as comparedwith nonreactive case. The amplification rates

show similar trends as observed experimentally by Ganji and Sawyers

[21].

In Figure II we present representative calculations of the eigen-

values for the case of antisymmetric boundary conditions, equation (151),

as a function of _. In previous wake studies it was determined that

antisymmetric boundary conditions resulted in more unstable wave motion

and it has also been experimentally confirmed that in wake flows the

wavestructure correspond moreclosely to the antisymmetric solution [27,28

29]. Ascanbeseen in the figure, the amplification (CI>O) is much larger

for reactive case as comparedto nonreactive case. Furthermore, when

comparedwith the symmetric solutions in Figure 7 we see that amplifi-

cation is greater for the antisymmetric solution. All the eigenvalues

are amplified solutions and no neutral solution exist unlike the case

in Figure 7 . For nonreactive case there is a maximumamplification

occuring around B" 0.17 which is greater than B : 0.092 for the corres-

ponding symmetrical case. The wave speed CR is still smaller for reac-

tive case as comparedwith the nonreactive case.

Figure 12 presents the eigenvalues as a function of M®for
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antisymmetrical disturbances. The amplification continuously decreases

with increase in M® for no reactions and shows a maximum for very low

Mach number. For reactions the amplification shows a maximum around

M = 3.0 and is generally much larger than the nonreactive solution.

Compared with the corresponding symmetrical disturbance solutions

(Figure 8), antisymmetrical disturbance is highly dependent on the

freestream Mach number. Figure 8 also shows the stabilizing effect of

increasing M as observed experimentally [27,40].

Figure 13 shows the eigenvalues as a function of velocity defect

Vc. In general the amplification rate is higher for reactive case and

the overall behavior is quite similar to the corresponding symmetrical

case (Figure g ). However, no maximum is directly observed in ampli-

fication case within the range calculated except perhaps the tendency

to level off near Vc=0.8. Figure 14 gives the variation of the eigen-

values as a function of Tc. The trend shown here is quite different

from the symmetric case. The amplification for nonreactive case de-

creases with increase in temperature excess as observed by Lees and

Gold [57] and the wave number also decreases with Tc. For reactive

case however, the amplification rate shows a distinct maximum around

T = 1.8 and the wave number variation also shows a maximum. This in-
c

dicates that the wavelength (= I/_R) first decreases and then increases

with increasing temperature excess. The phase velocity CR is consis-

tently lower for the reactive case as determined by Ganji and Sawyer

[21].

Finally, Figures 15 and 16 show the characteristic variation of

the pressure eigenvalue amplitude IPl and phase Cp across the shear

layer for symmetric and antisymmetric disturbance respectively. In
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general, the amplitude is much larger for the reactive case in both

figures. The phase changes across the shear layer shows significant

difference between reactive and nonreactive flows.

Finally in conclusion the study of the stability of reactive

wakes has shown remarkable differences with the classical nonreactive

stability analysis. Though small disturbance analysis cannot deal with

transition, it however has been shown [39] that linear stability theory

is a useful guide to the understanding of the main parameters and phe-

nomena governing transition. The growth and decay of amplification

rates along the wake axis can be used to give a good indication of non-

linear effects present in the wake. The excellent agreement of lami-

nar stability theory with previous studies for nonreactive cases [57]

indicates the applicability of this theory to study the development of

disturbances in the flow. The present calculation of the eigenvalues

shows good agreement with past theoretical and experimental analysis.

For reactive flows, it has been shown that the neutral phase velocity

is no longer independent of relative Mach number Mr . The condition

for neutral stability equation (157), is no longer sufficient for

reactive flows. Furthermore for the amplified solutions calculated

here, qualitative agreement has been obtained with the experimental ob-

servations of Ganji and Sawyer [21]. In essence, the reacting wakes

are more unstable than nonreactive wakes. The amplification of the

wave is in general higher for reactive wakes but the wave propagation

velocity is consistently lower. The antisymmetric disturbance is more

unstable than the symmetrical disturbance in general for both reactive

and nonreactive cases which again agrees with experimentally observed

data in wake flows. The calculations further show that the choice of
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the mean flow velocity, temperature and mass fraction profiles governs

to a great extent the spatial stability of laminar reactive and nonreac-

tive wakes.

Since the reactive eigenvalue problem formulated in Appendix A is a

very general one it was decided to do some representative calculations of

reacting flow fields other than a wake. Essentially, the mean flow as-

sumption has to be modified to account for different physical geometry.

For example, a heated symmetric jet has a mean velocity flow profile that

can be given in terms of similarity variable n as u = sech2n [ 67]. For

heated jet, the temperature profile can be still taken as near Gaussian,

equation (40). For symmetrical disturbances, the stability problem was

solved for a characteristic frequency B=O.I and presented in Figures 17

and 18. Figure 17 shows the variation of the amplitudes of pressure

eigenfunction IPl and vertical velocity eigenfunction Ivl across the jet

for reactive and non reactive conditions. Comparing with the symmetric

solutions for the wake, Figure 15, we see remarkable differences that do

not necessarily depend upon the differences in reference conditions alone.

The vertical velocity amplitude Ivl shows a maximum for non reactive case

around n _ 5. However, for reactive cases no such maximum is observed

and the amplitude is lower than the non reactive case. The eigenvalues

indicate that amplification is much higher for reactive case and the

wavelength (_ I/o R) is lower. The corresponding phase changes of the

pressure and vertical velocity eigenfunction across the jet is shown in

Figure 18. The pressure phase @p, shows a single phase change at large

value of n for both reactive and non reactive cases. On comparison with

the corresponding wake solution, Figure 15, it can be seen that reactive

wake has two phase changes. The phase changes for the vertical velocity
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eigenfunction @v is also shown in Figure 18. In general, the trends in

phase changes are similar for both non reactive and reactive jets. De-

tailed calculations of reactive jet stability has not been carried out

at present. However, it has been shown that the generalized stability

problem formulated here is quite versatile and is capable of handling

different physical problems. Other reactive models can also be handled

by proper modifications to the finite-rate kinetic terms _* and _ in

equation (55). Reactive flow stability of other shear flows like boun-

dary layers and jets would also be of great interest due to the exis-

tence of large scale structure in these shear flows [25 ]. Such stabili-

ty calculations have, however, not been carried out at present and must

await future study.

The study of wave development and the onset of nonlinearity leading

to transition has been extensively studied and the general results show

both qualitative and quantitative agreement with past experimental and

theoretical data. The present study results in some basic insight into

the instability wave phenomena in reacting shear layers. By modeling

coherent structure as an instability wave the results of such an analysis

can be used to study the effect of finite-rate kinetics on the develop-

ment of organized motion in free shear layers. However, the spatial

development of such instability waves is coupled to the variation of the

mean flow and therefore their spatial development has to be studied

simultaneously. Such an analysis is the topic of study in the next

section.

4.2 Coherent Structure Interaction in Reactive Wakes

The development of the interaction between the mean flow and the

coherent structure can be studied by integrating the governing equations
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for given values of M , Re, CD and Bo" The integration proceeds down-

stream from an initial location x=x o with initial values Vc , Tco, Yk
0 C O

2
and IAIo . Experimental data [27-29, 40] can be utilized to obtain ini-

tial values for the velocity defect and temperature excess for non reac-

tive wakes. However, the initial value for the amplitude of the coherent

structure has not been measured experimentally and so the value used must

be such that it can simulate experimental conditions. There is also a

considerable lack of experimental data on reactive wakes and so the ini-

tial values used are the same as that for non reactive wakes and a com-

parison of the interaction development is studied between the two cases.

For non reactive flow, with uniform concentration gradients, i.e., Ykc° =0,

k= 1,4, the interaction problem is numerically calculated for the experi-

mental data available [27, 40]. Using the initial conditions used by

Liu and Gururaj [39] the solutions are obtained for a hypersonic wake

[27]. The calculations correspond to the transition behind an adiabatic

flat plate. The initial location is chosen such that it is upstream of

the nonlinear region. Thus the interaction develops from the linear re-

gion into the nonlinear region. In experimental studies the transition

from laminar to turbulent arises naturally from body generated noise or

other forms of disturbances. In the present numerical calculations the

disturbance arises due to the initial value given for the amplitude

IAlo2 and its growth and decay downstream occurs due to the interaction

between the mean flow and the coherent structure.

Figures 19 and 20 show, respectively, the variation of the center-

line temperature excess and centerline Mach number along the wake axis.

The present calculations show excellent agreement with the experimental
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data of Batt and Kubota [27] and the theoretical work of Liu and Gururaj

[39]. In the initial growth region the disturbance amplitude is small

and both the temperature defect Tc and Mach number Mc follow essentially

, 2 0 However
the linear growth and is identical to the 'laminar case, IAIo = .

as the interaction proceeds downstream the amplitude rapidly increases

and the solution deviates from the 'laminar' solution and the temperature

and velocity decay is more rapid. The solution follows very closely the

experimental data [27]. The decay is more rapid for higher values of

IA[o2 and it was seen that the higher value of IA[o2 (= 2xl0 -5) shows a

better comparison with the experimental data [27]. Since detailed cal-

culations of the non reactive wake has already been investigated [29, 38,

39, 63], such calculations will not be repeated here in detail. 0nly

some representative solutions for non reactive cases will be presented

here.

It was found during the preliminary calculations of the reactive

wake that the reaction model used here [54] results in large production

rates and therefore imposes stringent stability requirements on the inte-

gration of equation (153). In fact the complete reaction model, equation

(139), results in integration step size of the order of 10-9 _lO -10 that

is computationally prohibitive. In their calculations also, Rogers and

Chinitz [54] also observed large instantaneous production of the hydroxyl

radical thereby requiring very small integration steps. These large pro-

duction rates were identified with the first reaction in equation (139)

and they found typical chemical time for OH production of the order of

10-10 seconds [54]. They further estimated that the first reaction, i.e.,

H2+02_ 20H, may be in chemical equilibrium during much of the time

required for a typical integration step that is computationally reasonable.
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Due to the limitations imposed by the available computing system,

it was decided that in order to alleviate the computational problem

caused by large production rates, a simplified procedure would be adopted

that would allow finite-rate calculations within reasonable computational

time. The present formulation already assumes premixed flow and since

we are only interested in presenting a formulation that can account for

coherent structure motion in reactive flow, to the first approximation,

we assume that the first reaction is in equilibrium and no production of

OH radical occurs. The second reaction which is essentially the produc-

tion of water vapor is a much slower reaction and finite-rate calcula-

tions based on this reaction is computationally possible. Therefore,

all reactive solutions presented here will assume the above mentioned

simplifications. This assumption results in no production of OH radical

and also no consumption of 02 . The premixed model used here did not in-

clude N2 as an inert specie in contrast to the model in reference [54].

By assuming equilibrium for the first reaction, the presence of oxygen

essentially assumes an inert form for the second reaction since no con-

sumption of 02 occurs. The results presented here, therefore, account

for the finite-rate production of water vapor at the expense of the hy-

drogen and hydroxyl radical in the premixed flow. Finite-rate calcula-

tions of the second reaction still results in step sizes of the order of

lO-4 _ lO-5 and therefore only representative calculations are presented

due to computational system limitations.

It must be noted here that the reactive eigenvalue problem depends

significantly on the variation of mean flow profiles and must be solved

at each streamwise location which results in increased computational

costs. For numerical efficiency it is however possible to store an
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eigenvalue map, whereby the eigenvalues (_, c), the eigenfunctions (@i)

and their integrals can be stored as a function of Vc, Tc and Yk (k=l,4).
c

At each streamwise location this map or table can then be referred to

and the interaction integrals (Appendix B) determined by interpolation.

At present such numerical optimizations has not been carried out due to

storage logistics.

It was also observed during the calculations that the mean flow

shape functions assumed may not necessarily be applicable to reactive

flow situations. Even though the mean velocity and temperature profiles

have been experimentally observed to be nearly Gaussian [65] no detailed

measurements are available for the specie concentration profiles in super-

sonic reactive wakes. Concentration profiles in reactive jets [22] indi-

cate that the profiles do deviate significantly from Gaussian distribu-

tion [23]. Since the integral formulation used here requires a priori

assumptions of the mean flow shape functions, proper choice of the pro-

files is necessary for accurate solutions. Here, for numerical simplicity

the mean flow shape functions for all variables were assumed to be Gaus-

sian as defined in equation (49). This simplification allowed the reduc-

tion of all the integro-differential equations to the form in equation

(153). During the course of the numerical calculations, it was deter-

mined that this simplification resulted in reactive solutions that were

highly dependent on the mean flow specie mass fraction shape function

assumptions. Representative mass fraction profiles are shown in Figure

21 (a-d) for a supersonic reactive wake. To see the effect of large

concentration gradients near the wake centerline, the mass fraction values

at n =0 were taken to be Yk (= -0.25, -0.25, 3.0, 6.5). Figures 21a
C

and b show the mean flow mass fraction profiles for hydrogen, YH2 and
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oxygen, Y02 at various axial locations. We see that hydrogen levels are

reduced as the flow progresses downstream. Similar trend is observed in

Figure 21c where the hydroxyl radical mass fraction profiles are presen-

ted. The chemical reaction used here results in the depletion of H2 and

OH as the water vapor is formed. This is evident from 21d where .._H20

profiles increase with axial distance. Comparing with the non reactive

profiles also plotted in Figure 21, we see that all the non reactive

profiles tend to uniform conditions with axial development. However,

for reactive conditions, only _02 profiles still approach uniformity

which is directly due to the fact that the first reaction is assumed to

be in chemical equilibrium and oxygen molecules act as an inert specie

for the second reaction. These figures also indicate that OH radical is

consumed more rapidly than the fuel (H2). This is again consistent with

the fact that OH is a very unstable radical and at high temperatures re-

acts very fast to produce H20 vapor which is more stable. The numerical

computation therefore had to take into account the large rate of deple-

tion of OH as the restricting factor leading to small integration step

sizes. When all OH radical mass fraction was used up at the centerline

Ii.e., YOH c _ -l) the numerical computations were terminated. This was

necessary to avoid negative mass fractions in the flow field. This limi-

tation of the present calculations can be related to the choice of mean

flow specie shape functions and also to the fact that molecular diffusion

was neglected in the original formulation. Another reason for this be-

havior is the basic assumption of premixed conditions which has been

shown to be more complicated than non-premixed flames [68]. Furthermore,

on comparing the production rates in supersonic H2-O 2 combustion systems

with other hydrocarbon combustion systems [21] it was seen that the
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hydrogen-oxygen combustion rates are much higher leading to the point of

view that the combustion system used here is 'kinetically' dominated.

However, all the above mentioned restrictions in this formulation

can be removed by solving with more appropriate shape functions for the

specie and adding diffusion terms, etc. Of course, finite difference

calculations would be more accurate instead of integral considerations

for reactive flow fields, but step size restrictions would be more

stringent in such calculations.

Figures 22 and 23 present respectively the centerline variation of

the mean flow temperature excess and velocity defect for a M = 3 turbu-

lent non reacting wake experimentally studied by Demetriades [40, 64].

To account for turbulence simple eddy viscosity models in Spalding [69]

(Model I) and Schetz [70] (Model II) (see Appendix C) were utilized.

The results indicate that the decay in temperature and velocity is only

slightly larger than the case for no turbulence. Coherent structure

development as discussed above cannot account for turbulence and the

results indicate that the decay observed due to the interaction between

the large structure and the mean flow deviates significantly from the

turbulent data of reference [40, 64]. Better comparison is observed

in the earlier part of the wake where the amplitude IAJ2 is increasing.

Further downstream, the amplitude decays and the coupling between mean

flow and coherent structure motion weakens. This growth and decay be-

havior of the amplitude can be seen in Figure 24 which also shows the

balance between the various terms appearing in the coherent structure

kinetic energy conservation. Here the averaged disturbance kinetic

energy density C(x) is given by

C(x) : V2 JAJ 2 1 _ 2 2= [ (I I ÷ I GI (160)
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which is due to the normalizing condition used in equation (59). We

further note that the development of the amplitude is essentially

governed by the Reynold stress production IRSc due to the interaction

between mean flow and coherent structure. All other terms contributing

to the conservation mechanism in equation (58) are relatively smaller

than IRsc. Very similar results were also obtained by Lin and Gururaj

[39] and Ko et. al. [38]. Inclusion of turbulence into the governing

equations results in lower values for the energy density C(x), stress

production IRSc and coherent structure dissipation I@c. However, the

mean flow dissipation I¢, also shown here, is larger for the turbulent

case as expected. The mean flow dissipation continuously decreases

with axial development since the mean flow velocity gradient (_) de-

creases. The coherent structure dissipation first increases with the

increase in the amplitude IAI2 and reaches a maximum value at an axial

location that closely corresponds to the amplitude maximum. Further

downstream as the amplitude decays the dissipation, I_c, also decreases

as was observed in other calculations [39].

The calculations for non reactive cases show only limited effects

of the inclusion of the eddy viscosity model. The more complete turbu-

lence model formulated in Chapter II was not used due to lack of time

to do extensive numerical experiments. Since the present analysis is

directed towards an investigation of the interaction between mean flow

and coherent structure in turbulent reactive flows, the eddy viscosity

model was included to account for some turbulent effects. Due to the

lack of experimental data on supersonic turbulent reactive wakes, no

detailed analysis was undertaken to investigate the effect of various

turbulence models. However, all further results presented here for
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reactive cases were calculated with inclusion of the algebraic model for

eddy viscosity (Model II).

4.2.1. Effect of Initial Amplitude and Oscillation Frequency

Figures 25-28 present the results for the reactive wake for various

initial values of the amplitude, IAIo2 Figure 25 gives the centerline

temperature increase as a function of axial distance. Since the second

reaction is exothermic, temperature is increased as water vapor is formed.

We see that as the initial amplitude IAIo2 is increased, the temperature

also increases. In contrast, non reactive flow temperature excess de-

creases with increase in initial amplitude. From the calculation it

became evident that the increase in amplitude results in increased con-

tribution from the coherent structure development to the mean flow ther-

mal energy conservation. Essentially, the streamwise gradient of total

dlE

enthalpy diffusion flux integral, - _and dissipation I@c are always

positive and increases with increasing initial amplitude which directly

contributes to the growth of temperature excess. In constrast, the decay

of mean flow velocity defect (Figure 26) increases with increase in ini-

tial amplitude. This is due to the fact that the Reynold stress produc-

tion due to coherent structure, IRSc increases with increase in initial

amplitude and therefore increases the velocity defect decay (equation

(36)). The mean flow dissipation, I@, (equation (46)) is not affected

by changes in initial amplitude. Figures 27a and 27b give the evolution

of the mean flow centerline specie mass fractions under the same condi-

tions. Increase in initial amplitude increases the decay of hydrogen

and hydroxyl centerline values (Figure 27a) and also increases the in-

crease of water vapor (Figure 27b). However, it is clear that in this

75



1

m

w

L

w

w

m

kinetically controlled combustion studied here, the effect of changing

the initial amplitude is only marginal. Essentially, this is due to

the fact that the combustion results in large production rates which are

almost independent of the coherent structure development. Furthermore,

though the growth of the amplitude increases with increasing initial

values (Figure 28), the maximum is significantly lower when compared to

the non reactive case. The maximum occurs around x/L _13.2 as compared

to x/L:30 for the non reactive case (Figure 24). One of the interes-

ting results of such calculations is that the growth rate of coherent

structure is significantly lower in reactive flow and also the maximum

attained is lower. Evidently, this reaction mechanism inhibits the

growth of coherent structure, a result consistent with the observation

of Ganji and Sawyer [21]. Though the growth and decay behavior of the

amplitude is similar in both non reactive and reactive flows, their

magnitudes are quite different. This essentially seems to indicate the

growth rate of coherent structure amplitude depends quite significantly

on the reaction mechanism. In fact, the present calculations show that

due to the large production rates associated with the reaction, the

coupling between mean flow and coherent structure motion is considerably

weakened and the mean flow field variation, especially the thermal and

concentration fields are not significantly affected by the coherent mo-

tion. The coherent structure motion however is modified due to the pre-

sence of finite-rate kinetics. This behavior can again be identified

with the dominance of the finite-rate terms appearing in the governing

conservation equations.

The present calculations were also carried out to determine the

effect of changing the initial peak frequency Bo. Figure 29 shows the
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effect of changing the initial spatial frequency on the growth/decay

characteristics of the coherent structure amplitude. It has been ob-

served in non reactive calculations [35] that there exists a frequency

for which the local amplification (-_i) is a maximum. The eigenvalue

stability problem solved in Section 4.1 indicates the possibility of a

peak amplification for the reactive case also. Here we present the

solutions calculated for various initial frequencies. As the initial

frequency Bo is increased, the amplitude of the coherent structure also

increases. This is again similar to the behavior observed in nonreactive

case. The solutions for Bo =0.4 is not shown completely except so far

as to show the increase in IAI2. It is evident from these solutions that

as far as the interaction is concerned, Bo=0.4 as compared to Bo =0.2

and 0.3 is one for which the initial large-scale structure is most ampli-

fied and is thus expected that the large-scale structure at this frequency

will be the most efficient extractor of energy from the mean flow. De-

tailed calculations for various other Bo are however necessary to deter-

mine which initial frequency results in peak amplification. Such calcu-

lations have not been carried out at present. Due to the dominance of

finite-rate kinetics, it is expected that in general solutions for various

_o will give very similar results as can be seen from the variation of

the mean flow centerline specie mass fraction shown in Figure 31. There-

fore, at present, all other reactive solutions computed here were calcu-

lated for Bo =0"2 and numerical experiments for various Bo has not been

attempted.

The local eigenvalue problem, hence the local amplification rates,

enters the interaction problem only through the integrals of the eigen-

functions. As far as the streamwise development is concerned, because

w
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of the finite amplitude of the disturbance, the local eigenvalue problem

essentially lose their identify. Nevertheless, the local amplification

rate, -o I, and its streamwise development is of interest due to its ef-

fect on the behavior of the local eigenfunctions. Figure 30 shows the

streamwise variation of the local wave number, _R and the local amplifi-

cation rate, "_I for various initial frequency. The wave number, _R

increases with streamwise distance and also increases with increase in

frequency. This indicates that the wavelength of the disturbance

(= I/_ R) decreases with increase in _o and also decreases as the mean

flow develops. A similar trend was observed for the non reactive case,

also shown in Figure 30 for the case _o=0"3" Such decrease in scales

were also observed by Demetriades [40] for non reactive wakes. Though

no experimental data is available for the reactive case, it is however

expected that the trends calculated here will also be observed in future

experiments. The local amplification rate, "_I decreases with streamwise

development. An interesting observation here is that on comparing the

reactive and non reactive cases for _o:0"3' the local amplification

rate starts higher for reactions as was calculated in Section 4.1. How-

ever, as the mean flow developes the reactive amplification rapidly de-

creases to values below the corresponding non reactive case. There are

two reasons for this behavior. As shown before the amplitude of the

large-scale structure is significantly lower for the reactive case and

also the peak value occurs around x/L: 13.2, whereas for the non reactive

case the growth of IAI 2 continues till x/L=30. This results in lower

amplification rates a_ is observed in Figure 30. With increase in _o'

the amplification rates also increase as is expected. However, the rate

of decrease with strean_ise development actually increases with increase
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in initial frequency. An interpretation of these results is that in re-

active flow, the coherent structure development is actually stabilized

more rapidly. A similar trend has been observed experimentally by

Ganji and Sawyer [21]. Combustion therefore seems to affect the develop-

ment of coherent structure in the mean flow in a manner consistent with

past experiment and theoretical studies [21 -24]. Essentially, the large-

structure is initially amplified but as the interaction between the

coherent structure and the mean flow developes, the growth rate

(dJAj2/dx) and the local amplification rate is significantly lower as

compared to non reactive case. Detailed calculations for various other

combustion models are necessary before any generalized conclusion can be

drawn concerning the effect of the finite-rate kinetics on the interac-

tion between the mean flow and large-scale structure. However, it is

expected that resultsvery similar to the present calculations will be

obtained for other combustion systems.

4.2.2 Effect of Intermittency and Molecular Diffusion

Even in premixed turbulent flows, experimental observations indicate

that there are situations in which the instantaneous value of fuel or

oxidizer concentration and, therefore, the instantaneous chemical reac-

tion rate vanish [71]. Physically, this is caused by the random varia-

tion of local flow properties coupled to high local fluctuations of the

specie concentrations, resulting in situations in which the instantaneous

value of either fuel or oxidizer is zero. In such situations there

is no chemical reaction despite the finite values of average concentra-

tions. The longer such a situation prevails, the stronger is the damping

effect. This phenomenon has been called 'unmixedness' or 'intermittency.'

There are several definitions of intermittency [71, 72] but since we are
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interested in theoretical computation of finite-rate chemistry we modify

the model developed by Spiegler et. al. [70]. This model is simple

enough to be incorporated into the interaction problem studied here and

is described in Appendix C. It has been Pointed out that the level of

intermittency of a certain reactant may affect the structure and behavior

of turbulent flames and is therefore a region of great interest. The

model described in Appendix C was incorporated into the general computer

code and some preliminary results are presented. Figure 32 shows the

variation of the terms contributing to the development of coherent struc-

ture for the cases with and without intermittency. For the test condi-

tions presented here, the effect of intermittency is to increase the growth

of the amplitude. The stress production mechanism IRS c is also larger due

to the intermittency effects. The coherent structure induced pressure

Ip c and dissipation I_c are also larger with intermittency. The mean

flow dissipation I_ is not affected by the_inclusion of intermittency.

The dominant production mechanism is still associated with the Reynold

c c and Ip c convertshear stress integral IRS as one expects. Both I

(the latter reversibly) disturbance kinetic energy into mean flow thermal

energy as was observed in non reactive calculations here and elsewhere

[39]. In the initial growth stage, the coherent structure development

is relatively small and I primarily determines the decay rate. However,

as the mean flow spreads and the coherent structure amplitude grows I

C

plays a much less significant role. The shear stress production IRS

then plays a more important role in the amplitude growth rate as the

shear layer develops. The effect of intermittency, however, is very

marginal in the disturbance conservation mechanism essentially due to

the fact that intermittency effects the rate constants kf. and kbi which1
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contribute mainly to the finite-rate terms. As discussed before the

reaction model used here is kinetically dominated and therefore not very

significant changes in the coherent structure development is expected.

Figure 33 shows the effect of intermittency on the other integral terms

appearing in the conservation equations. In the linear region dissipa-

tion I¢ primarily determines the development of dVc/dX. However as the

coherent structure grows the diffusion flux for kinetic energy, dlKE/dX,

increases and is responsible for the later stages of the mean flow

development. Also shown in this figure is the variation of total enthal-

py diffusion flux gradient, dlE/dX. As mentioned before -dlE/dx>O, and

the contribution of coherent structure motion to the thermal field de-

velopment first increases and then decreases. Essentially, all coherent

structure generated terms follow the growth/decay characteristics of

the amplitude IAI 2 Other terms of interest are the specie diffusion

flux integral gradient, dlDK/dX which vanishes for non reactive case

(ie., for Yk =0). However, for reactive conditions the variation of
Co

these terms essentially follow the rate mechanism. Note that this term

appearing in the specie integral equation (13) as -dlDk/dX. We see that

as hydrogen and hydroxyl is consumed, +dl D /dx and +dlDoH/dX first
H2

increase with increase in IAI 2 and then decreases with decay in amplitude.

dl D /dx on the other hand, first decreases and then increases with IAI 2,

H20

Effect of intermittency is to increase the values of all dlDk/dxterms. Essen-

tially, these coherent structure induced diffusion flux gradients terms

show contributions that increase the reduction of H2 and OH mass fraction

while increasing the H20 mass fractions. The magnitude of dlDH2/dx is
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much lower than the values of dIDoH/dX and dlD /dx, again consistent
H20

with the low values of YH "

2c

The intermittency terms used to correct the forward and backward

rates, kf2 and kb2 are shown in Figure 34 at various streamwise loca-

tions. We see that the intermittency factor for forward rate, U2f is

much larger then the backward rate factor, U2b. Furthermore, the magni-

tude of both the factors increases with increase in strean_ise develop-

ment of the reactive wake. The effect of intermittency on the coherent

structure development is marginal as can be seen by comparing the solu-

tions for IAI2 =0 and 4x10 -5. Intermittency is reduced a little when

coherent structure development is included. The variation of the inter-

mittency factor across the shear layer shows that there is peak occuring

around n _6.5 at x =9.2 but the peak moves into the outer edges of the

shear layer and is around _ _8 at x= 14.2._ This is an interesting ob-

servation because it is in the outer edge of the shear layer where flow

is intermittently turbulent and plays a significant role in the phenome-

non of flame extinction. As the mean flow develops the intermittency

factor becomes quite large with a peak U2f:0.9 at x=14.2. This indi-

cates that for the intermittency model used here there is a possibility

of extinction at the outer edges of the shear layer as the flow develops.

However, this does not effect the finite-rate production rate to a large

extent due to the fact that most of the contribution comes from the rate

kinetics near the centerline, n<2, where as can be seen there is no

intermittency. The validity of the model used here (see Appendix C)

cannot be confirmed at present due to lack of detailed measurements of

intermittency behavior in reactive wakes. The model however, shows good
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promise in identifying the physical mechanism involved in intermittence

or unmixedness in turbulent flames with filite-rate chemistry.

Since the contribution of the Reynold shear stress production IRS c

was seen to be the dominant reason for the growth/decay characteristics

of the coherent structure amplitude, the various ter_}s contributing to

IRS c (see Appendix B) are shown in Figure 35. As expected, the produc-

c,associated with the dominant mean flow shear _/]y contributes
tion IRS 1

the most. Similar results were also obtained for non reactive case.

c c c

IRS 2 , IRS 3 IRS 1 IRS 4c c and IRS 5 are much smaller than and The term

IRs2c, which is part of the mean flow convection effect, transfers energy

from the coherent structure to the mean flow (IRs2C<o) in the initial

part of the development (x/L<ll) but reverses the energy transfer in the

c
later part of the coherent structure development. The terms IRS and

3

c also transfers energy to the mean flow at the expense of coherent
IRS5
structure development. However, the net effect is still positive and

therefore is conducive to the growth of coherent structure. It must be

noted that the production terms IRSI c I c and IRs5c, RS3 have their counter-

part in the low speed wakes studied by Sato and Kuriki [29] while IRs2c

and I c are directly due to compressibility effects present in the high
RS4

speed wake studied here.

It was considered during the course of the calculations that perhaps

the absence of molecular diffusion terms in the governing equations may

be the main reason for the kinetic controlled combustion restrictions

observed and discussed above. Therefore, a simplified form of molecular

diffusion term (see Appendix C) was included in equations (8) and (13).

Figures 36 and 37 present the mean flow centerline variation of the
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temperature excess and velocity defect for the various conditions studied

here. The effect of including diffusion is to markedly reduce the tem-

perature increase. However, the velocity decay was not significantly

effected by either diffusion or intermittency. The reduction in tem-

perature excess due to diffusion effects is basically because of the

lowered rate of change of the specie mass fraction which is shown in

Figures 38a and b. The effect of intermittency is still almost insigni-

ficant. The inclusion of molecular diffusion was carried out only in the

later part of this research and due to lack of time no detailed calcula-

tions were carried out. One major conclusion of this theoretical analy-

sis is that the molecular diffusion term must be included for finite-rate

calculations.

Finally, since the results indicate that the growth rate of the co-

herent structure amplitude during reactions is much lower than the non

reactive case, Figure 39 presents the ratio of growth rates for the two

cases. As expected this ratio is less than one and the growth rate ratio

decreases with streamwise development. This is similar to the results

in reference [21]. The increase in frequency reduced the ratio even

further. This is attributed to the much larger growth rate for the non

reactive case as compared to the reactive case.

In conclusion, the interaction between the mean flow and coherent

structure has been theoretically investigated for a supersonic non reac-

tive and reactive wake. The non reactive solutions show excellent

agreement with the past calculations [38, 39, 63]. For the reactive case,

due to lack of experimental data no direct comparison was possible.

However, the general trends of the interaction was quite similar to the

non reactive case, except so far as to the reduced magnitude for the
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coherent structure amplitudes. The effect of different initial ampli-

tude, IAlo 2 and frequency, Bo on reactive solution has been computed.

Turbulence was modeled in a very simple manner and included in all the

reactive analysis. Intermittency and molecular diffusion effects were

also included in some of the calculations. In general, the reactive

solutions show qualitative agreement with experimental observation [21].

4.3 Fine-Scale Turbulence in Self Similar Mean Flow

The turbulence model formulated in Section 4.2 was solved with the

assumed shape functions, equation (133) for a self similar mean flow

to determine the general trends. No detailed calculations are presented

for this model due to lack of data necessary to evaluate the various

constants appearing in the equations. The turbulence model utilizes a

spectral partition of turbulent kinetic energy, _q"2 and turbulent to-

tal enthalpy, H''2 following the approach of Hanjalic et. al. [49] and

is shown in Figure 40. In all there are II equations that must be

solved simultaneously with appropriate initial conditions. The results

presented have not been checked and their validity still remains to be

seen. However, preliminary calculations indicate general trends similar

to the variation observed in far field turbulence decay. This model

was essentially formulated to account for the interaction between the

mean flow, coherent structure and fine-scale turbulence in reactive flows

and as such, an attempt was made to include some physical mechanism that

is not present in classical turbulence modeling. Also, gradient approxi-

mation was avoided except in third order correlations due to the esta-

blished fact that in reactive flows gradient approximation has limited

validity [3, 4]. Of course, all turbulence modeling such this one have

some adjustable constants which have not been determined due to lack of
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detailed experimental data for wakes. This model also incorporates a

clipped Gaussian probability density distribution, P(:_) in terms of

the normalized temperature o [55] to evaluate the effect of temperature

fluctuations on the mean rates of production of the specie.

Figure 41a and b show, respectively, the temperature profiles and

probability distribution used. The shape function for temperature,

equation (49) was used to determine _ and the mean square fluctuations,

6 ''2 was determined by using a simple gradient approximation [55]. Fi-

gure 42 gives the variation with temperature of the ratio of the mean

rate of production of hydrogen, rH2°(T ) to the rate of production of

o(_). The results show that
hydrogen based on mean temperature, rH2

with increase in temperature this ratio becomes very large indicating

that the inclusion of temperature fluctuation increases the production

rates. This result is very similar to the one obtained in reference

[6] and is consistent with past studies. Similar variation was ob-

served for other specie too. The effect of changing the shape of P(:)

(i.e., _, 02 ) is also quite significant.

Finally, Figures 43 and 44 give the streamwise variation of the

centerline values of turbulent kinetic energy, E(x), turbulent total

enthalpy, N(x) and mass density fluctuation, o(x). Only non reactive

cases are presented here. The reference conditions used were:

M =2.0, T== 1500°K, L:2.54cm, CD=O.OI, ReL:2x106 ,

Yk_=0"05' 0.90, 0.025, 0.025, xo=x_/L =I000.

The initial conditions at xo = I000 were taken at present as follows:

O(Xo) = E(Xo)= N(Xo)= Ck(Xo)= 10-4

-2
Dp(X O) =D H (x o) =Ds(Xo): DH (Xo)= I0

p s
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All constants were taken to be equal to unity except for Ep and

SH=SHI=O.I , k3*=0.01 , and k4*= Spl =0

Figure 43 shows the variation of E(x)/E(x o) and N(x)/N(x o) for

different values of correlation coefficient r@_ and Figure 44 shows

the effect of changing _ (equation (71)). All solutions show decay
p

characteristics as expected. The correlation coefficients r¢_ are not

constant across a developing turbulent shear layer except perhaps far

downstream [6] and detailed numerical experiments are necessary to

determine the effect of their variation.

J
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V. CONCLUDING REMARKS

A theoretical analysis of the interaction between the mean flow and

large-scale structure has been presented for a supersonic reactive wake.

For numerical simplicity, von Karman integral considerations were used

for the present solutions. The #ntegral shape assumptions were shown to

be quite accurate in determining the non reactive mean flow development.

For reactive cases, the speci_shape function assumptions were found to

be quite restrictive. However, better choice of shape functions would

depend on the availability of experimental data for the H2-O 2 supersonic

combustion system studied here. Furthermore, due to the single frequency

model and other assumptions, point-by-point analysis of the interaction

may not be very significant. The salient physical mechanism responsible

for the development of the nonlinear transition region in compressible

reactive wake has been studied for various initial conditions and the

results are consistent with some experimental observations in other com-

bustion studies. Improvements in the modeling of large-scale structure

must await more refined experimental studies under well controlled con-

conditions, especially for reactive conditions.

Integral considerations were found to be quite restrictive on the

shape assumptions for species but were used here for numerical simplicity.

Finite difference calculations are, of course, possible except for the

increase in computational costs. Since all flow fields are three dimen-

sional, the interaction of a three dimensional coherent structure must

be included for better understanding of the developing interaction. Fur-

thermore, the effect of the subharmonics must also be included in future

studies due to the observed phenomenon of pairing and breakup of large

structure. Linear stability analysis of the reactive eigenvalue problem
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can be extended to include both three dimensional effects and subharmonics

but must await further guidance of more detailed experimental studies.

The turbulence model developed here can be included into the general

interaction problem without too many complications. However, it must

first undergo detailed numerical testing for _arious combustion flow,

which is again restricted due to lack of available data.

The results presented here is the first theoretical attempt to in-

clude finite-rate kinetic effects in the study of the stability and

interaction of coherent structure in free shear layers. The inclusion
f !

' r
offcohe ent structure motion in reactive flows is very important due to

the established existence of large-scale structures in all kinds of

shear layer and theoretical studies must therefore account for such in-

teraction phenomenon.
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APP[NDIX A

THE EIGENVALUE PROBLEM FOR REACTIVE FLOWS

In this Appendix, the generalized eigenvalue problem for a two-

dimensional reactive flow is formulated. The linearized form of the

dimensionless equations for coherent structure motion is transformed

using local coordinate transformation (equation (52)) and reduced to

the stability equations by the application of the assumed shape function,

equation (53). For constant transport properties the general viscous

stability equations are

i[(w- c)_+7_] + (_)' : o
^ I ^

im(w-c)Y k+p Yk _ v : y_ +d k

^ --2

_(w- c)u+CI* p - i p w' v : Vu

^ _, =V vi_2(w- c)v + CI*

k : l _, • ,_,)

(AI)

where

^

i_-(w - c)[(l + VcW)Vc u + (mkD k T + Ckf)Ykk=l

+ M T] + i(I+VcC)CI*V c_ + p H' v : Ed

p : Z C_[TTYk + C Yk _ + T Yk _']
k:l

-w : _ and -c : _ - c,)
Vc Vc

c* is the complex phase velocity with respect to the observer. The

(A2)

viscous contributions appearing on the right hand side of equations

(AI) are given by the species diffusion,

DN 2^ --, , 2_ +-y-k _'- _ [T Yk"÷2c'P Yk ""_ k p '
dk - Vc

+ (PYk" + _'' Yk' )_'] k : I,._._

(A3)

the viscous dissipations,
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T [i ,_2 ,,v,,. -_ oRTV_T _ ;' * _.2u"- _-2,3]

4-2 C,,,- _3;]

and the energy dissipation

U ;, ,_. 2_" ;) _" _2_ ul lEd = _ [i 2p (_

+ _(2T_'+ _'_)u'+ G2_ ''+ _p' _' - _ _2)u]

+T CT*[_2_,,.2 _]

+ p 3_k ^ _
_mkDk(TYk"+T'Yk

_2 _k

+ _vc __mkDk_k'(_+T_)}'

where Dk , p, _ are the mean molecular diffusivity, molecular viscosity

and thermal conductivity and are assumed known at present. Here

(A4).

(A5)

prime denotes differentiation with respect to n. Furthermore,

Cl

Cl* = _Vc2 and CT* = 1/(y-1)Me2Re LPr

and all other terms are defined in the text.

(A6)

i) Inviscid Solution

The inviscid equations are obtained from equations (Al) by

neglecting all terms containing diffusivity, viscosity and thermal con-

ductivity. The resulting equations can be manipulated to obtain a second

order differential equation in terms of the pressure perturbation P(n)"

p,, w' _, 2S2T2[Vc 2(w-c)2
-w--Z_ + (cll-_-_)-l]p+i R(n)=0 (A7)T

where

R(n} = eVcS2T2(w- c)

v C*

T. [_-- M_(mkDkT+ Ckf)]G k (A8)
k=l

Here Gk corresponds to the kth specie production rate due to instability
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It can be shown that for nonreactive flow equation (A7) reduces to

How-

wave.

the classical pressure perturbation equation of Lees and Lin [43].

ever, for reactive flows the term Gk is determined such that

G1 = _2L_ 1 T11+Y2 T21 +Y3 T31+i4 T4I + _ T51]

G2= _2[Yl T12 +Y2 T22+Y3 T32 +_ T52]

(A9)

G3 = _2[Yl Tl3 +Y2 T23 +Y3 T33 +Y4 T43 + _ T53]

G4 =_2[Yl TI4+Y3 T34+Y4 T44+P T54]

A

where Gi(i=l,4) and Yi (i=l,4) indicate species H2, 02 , OH and H2)

respectively. The matrix Tij(i=l,5 j=l,4) are coefficients which are

described below. On using equation (Ag) in (A8) and on some algebraic

manipulations we get

_ . s_'.-
P" + P'[" 2w' +T' (v*- l) S _]

W-C "F

V-2(w-c)2v* l

T •..i- ,,

(AIO)

where v* and B are complex constants appearing due to finite rate kine-

tics and are defined as

2 Bo -I .

_* = [Go + i ] =v R +i
E(_- c)_T _I*

and - 2
P Bo

_2(_'c)2 [G1 + i ]: _R + i _I

_ = Clp2p ' E(u--c)_T

(All)

(Al2)

where prime denotes differentiation with respect to n and
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- 4

Go,= 1 + _- kZ=l Ck* Nk

- 4

5

= £ aj Nj, N5 = 1
B° j=l ._

4

B1 = y. ak Mk
k=l

(Al3)

(Al4)

4 (Al5)
E = mk Dk Y'k

k=l

= :

z

m

= :

w

The constants CI, Ck* and Dk are defined in the text. The terms in (Al3)

and (Al4) are due to the algebraic Qanipulatiofi involved and are given by

aj = Tjk (mk DkT+ekf ) J • i,5k : 1,4 (AI6)

The matrix Tjk which also appears in equation (A9) is the finite rate pro-

duction of each specie due to the disturbance field and is given as

TI2 = X2 A-kf I Y2

T22"_2A_fl_I

T32--2X28_hY3

T42 - 0

"rs2-2x2.;(AkflV_V2-Bkh _}
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1"24=0

T34-2X4C; _f2_1_

T,4-- 2x4D_b2_3

= - " 2 ?42]T54 X4 [3 C kf2 ?'1 _3 _. D-" kb2

Tll = Xl

T21 = X1T22/X 2

T31 - XI [T34/X4 - T32/X2]

T41 = X1 [T44IX 4]

T51 = X1 [T52/X2 - T54/X4]

T13 = X3 [T12/X 2 - T14/X 4]

T23 - X3 ]_T22/X23

T33 = X3 _T32/X 2 - T34/X4]

T43 = . X3 T44/X 4

T53 = X3 [T52/X 2 - T54/X4] (Al7)
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where

A - Y1eY2e B = Y3e2

k(1 kl2 ' k(32

C = P e

YleY3e 2 Y4e 2

_{1kl23 ' /_2

(AI8)

and

Xz =. M._£2
Ue Y2e

(AI9)

where _i are the i-th species molecular weight and subscript e indicates

reference edge values.

The terms Nk and Mk appearing in (Al3) are further defined as follows.

Nl = NI2 NlI + N22

N2 = N11

N3 = N13 N1 + N23 N21 + N33

N4 = NI4 NI + N24 N2 + N34
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M] ,,MI N12 + M2

M2 =M I

M3 = Nl3MI + NZ3M2 * M3

"4=Nl4Ml+N24M2+M4
(A20)

L

t=,==._

-.,.,...

NiI = ¢1 [T12 N22 ÷ T32 (N13N22 + N33) + T52]/D

. 2 .+N23)]D = [(1 "_'1 T22)'¢1 T12 N12 v_1T32 (N13N1

M2 ,,
M = [$1 T12 +T32 (N]3M2 + M3) " _'2Y2 'p']/D

N]2 = _1 IT21 + T31 N23 + T41 N24]/D2

N22 = ¢I [Ts] + T31 N33 + T41 N34]/D2

Mz=[_,(T31M3+T41M4_-_zr1'_'']/°z

(A21)

Oz = (I - _I T11) " ¢1 {T31 N13 + T41 N14} (A22)

N13 = ¢1 [T13 + T43 N14]/(1 " ¢1 T33]

NZ3= _I[T23* T43N2_/(I" _'IT33}

N33= 'hI;Ts3* T43NZ4]/(I" h "ra3)

(A23)
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NI4 " ._4-4 [(1 -¢1 T33)T14 + ¢1 T34 T13]

¢12

N24 = _ T34 T32

¢1

N34 =_44 [(1 -¢1 T33) T54 + ¢1 T34 T53]

M4 ¢2 P'
• - _ [(1 - ¢1 T33) _'4' + ¢1 T34 Y3 ']

D4 - [(1 " ¢1 T33)(1 " ¢1 T44) . ¢2 T34 T43] (A24)

w

where

P

¢I " i :(w-c)V c

Cl p

¢2 = 2(w. c)2Vc 2

(A25)

ii) Viscous Solution

The full viscous equations for this stability problem equation

(Al) is very complicated and no solution has been obtained so

far. Lees and Lin [43], Dunn-Lin [66] and Lees and Reshotko [58]

have in the past presented solutions for the viscous equations by solv-

ing a set of reduced equations that retain terms up to a certain order,

either near the critical point or near the surface. Dunn-Lin [66]

ordering of the various terms accounts for supersonic flows and for the

propagation wave velocity c to be a substantial portion of the free-

stream velocity. Therefore, at present a similar ordering is applied

here whereby
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¥, T, 4 o(_)

BT_( ) , (w-c)4e(i)

u _(O(1) , v_(O(e , T_u , _u , p _u

A

p ,_e2 u

1
e2 __ _k In _ CT*I_

Using these ordering, equation (Al} can be reduced to a form similar

(A26)

to Dunn-Lin viscous equations

^ Vc ^

u"' - i _ Rev-I -7 (w- c)u' = 0
P

^ ^

v'+i_u=i (w-c)_ + _k]
p p T kl

" - (w-c)---_-kl ,

_,,_i{__--_--)V_ (w-c)M_
i

K CT* p

(A27)

(A28)

(A29)

1 h-k- (__-_--)z -2 _k*
KCT* k=l _ p

+(i _ V_-Ec v(__) (w- c) r.(mR DkT+ hk)Yk
K CT p k=l Ckf"

(ASO)

We see that this is a eighth-order system of ordinary differential

equations dependent basically on one parameter (=R_. For nonreactive

^

case, the equation (A29) and all terms containing Yk drop out and the

resulting equations are then identically Dunn-Lin [66] viscous equa-

tions. Lees-Reshotko [58] ordered terms in two parameters (eRe) and

Me2 and retained additional terms containing temperature and viscosity

fluctuations. Such an ordering would eventually be necessary to deal

with viscous reactive stability but have been presently neglected by
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assuming all transport properties are function of meanvariables only.

Of course, equations {A27) to (A30) can be directly solved simultaneously

with appropriate boundary conditions. However, due to the analytical

nature of these equations, somemodification is possible. Consider the

behavior of these equations in the outer flow where all meanflow varia-

bles have attained their external values. A solution for equation (A27)

in the outer flow can be immediately written as

U'{n):exp[±i{i_Re-IVcc}_n] , n ÷ ±® (A31)

However all other equations are coupled and no direct solution can be

written for the general reactive case. This is in contrast to nonreac-

tive case forYk*=O) when we get a solution for equation (A28) as

Yk _ exp[±i{i_D k-I VcC}½n] , n _ ± ® (A32)

Yk terms are neglected, equation (A30) givesand when

exp[±i{i(_CT*)'lecVcM}½n] , n ÷ ±® (A33)

Solutions (A31) and (A33) are identical to the ones obtained by

Lees-Reshotko [58]. These are all linearly independent solutions and

governing equations must satisfy these solutions in the outer edge. How-

ever, for reactive wakes only equation (A31) is a direct solution since

all other equations are coupled. For n _ ®, the positive exponent cannot

satisfy the outer Inviscid boundary conditions and must be neglected.

Then on applying transformations [58]

....h =v/u , f-u'/u , o--

we get

h' = -hf- i_. i(w-c) o+

p pT k

-l
iaRc v

f,, = .f(f2 + 3f') +
-2
P

and _k =Ykl_ , k=l,..._ (A34)

_r

Ck_k (A35)
S

Vc(W- c)f (A36)
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i_Vc
_k''= -2f _k'' (f2 + f')_k +_--_-2 (w" C)_k Gk , k = l,...v

Dk p

e"= -2fe'- (f'+f2)e+ 1 [i_Vc(W-C){ z (mkDkT

(;_CT*) k=l

+ -h-k)_k+ re}+ _ _kGk]
Ckf " k=l

An approximate set of boundary conditions at

n_® f(n-_®) =-i[i _ Re C l VcC]½

h(n ÷®) = l

[T{i_ Re_Tl VcC)_]

_.k(n -,--) -- 0

e(n-_-) : 0

(A37)

(A38)

n=O

For antisymmetrical disturbance

f(O)=h(O)=O

: '(o):oe'(O) £k
(A39)

For the general solution of viscous reactive flow stability, the

equations (A35) to (A37) must be solved for the given boundary conditions

such that the outer solution satisfies the inviscid conditions. Essen-

tially two characteristic values a and Re must be determined for the gen-

eral viscous case in contrast to only _ for the inviscid part. Neutral

stability characteristics can then be obtained as a function of (_, Re)

for a given Mach number. This generalized stability analysis of viscous

reactive wakes will be an interesting research area for future study.
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APPENDIX B

INTERACTION INTEGRALS FOR COHERENT STRUCTURE MOTION

L

w

The integrals appearing in the governing conservation equations in

Chapter II can be rewritten using the assumed mean flow profiles and

using the coherent structure and fine-scale turbulent representations.

Since at present only the interaction between mean motion and coherent

structure has been studied therefore only the integrals relevant for

this analysis is presented here.

Species diffusion flux:

I c 261AI2[V_ 7{l(_,.l)R¢(pCj.)+Re(_k.)}dn
Dk _.® p

+ jTuRe(i  *)dn],
(BI)

Species producti on:

Rk = 8 f rk° dn , k = 1,...u (B2)

P

o is the total mean production rate for the k-th species and canwhere r k

be rewritten using equation (140) as follows

r02°= Xo2[B_bl{P 2 +21AI2(p--2IYoHI2+4PYoHRe(PYoH *)

+ Y-OH21_I2)}- A_fl {_2¥Hj02+21Ai2(_2Re(YH2Y02*)

-- ^^ +2p Re(PYH2*)+- - I_I2+ 2 p YH2Re(PY02*) -Y02 YH2Y02 )}]

(B3)

r o {_3_OH 2- +21AI2;3(_oHRe(_OH_H2. )H20 = XH20[Ckf2 YH2

- - - - - 2Re(; )
+ YH21YoH 12) +61A12_2(2 YoHYH2Re(PYoH *) + YOH YH2*)

+ 61AI2;?H2TOH21_I2} - DEb2 {_2gH20+21AI2(_21YH2012

+gH2OlPl 2 + 4_gH2ORe(PYH20*)}]

(B4)
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r o r °-½F o
H2 = E 02 rH20 ( B5)

0

rOH° = -2 G ro2o _ H rH20 (B6)

where all the constants are defined in the text (Section 2.7) and * de-

w

notes the complex conjugate, kfi and kbi are the mean rate constants

which for this interaction problem is the function of the mean tempera-

ture. Here Re stands for the real part of the complex product.

where

Mean flow total enthalpy flux:

Ec IE 2 cI = IElC + c + IE 3

E
1

c : 261AI2Vc _ _1 (H-l)ReC_u*)dn
-co p

(B7)

(B8)

CO

c 2Vc ^
IE2 : 261A I -=_" [Vc_lUI2+MRe(uT *)

^ ^

+ _(mkDkT+Ekf)Re(UYk*)]dn

(B9)

c : 261A12 _ _Re(u ^* ^T*)
E3 -CO [Vc p )+MRc(o

^

+ _(m kD kT+_kf)Re(v Yk*)] __ dn
(BI0)

The integral for disturbance generated diffusion flux in the mean flow

kinetic energy conservation is

cik E : aV c IAI2 f_[13 I) Re(;u.)+2Vc_-I_12]dn
-o_ p

The Reynolds stress production IRsC is given by

(Bll)

= I c+ I c+ I C+l C+l c
I RSc RS1 RS2 RS3 RS4 RS5

(Bl2)

where
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I
iOO

= Al2Vc ^ ^ auc .261 I u_-Re(pu*)(T_)
IRS2 _= _ Y

c = -21Al2Vc2 J'_-_Re(u_* v*)_a; dn
RS1

2(a_I dnIRS 3c : _261A12Vc 2 lul "-a--X"y

2Vc ^ ^
IRS4c : -2[A I -® _f_e(pu*) _u dn

Ai2Vc =IRS5c -2i 2 I TI_vi 2 _'C: -= _ dn

dn

where

(a__) = (a__) n d66 B-_ an
y n

The pressure work integrals are

? -d u

Ipl ---c 1 _ 6 (_--1) =dn

[(aX)y P: Cl 6 _ (P-l) _- +IP 2 _ _ aa-_Vn]dn

The mean flow pressure is determined in general, from

- Vc2 [2;IA12 l_v12 ]
p=l -CTl

The organized motion pressure work integral is
co

^ ^ ^

Ip c = -2C 1 <S IAI 2 Vc .r Re{i apu*+avp'*}dn
--O0

The mean flow viscous dissipation integral is

_ 1 ® a; 2

l_p 6Re I -p _ (T_n) dn
bOO

where, for a linear viscosity-temperature relation,-g=CT, C=l,

pu- = 1-21AI2[Rc(_T*)+ _ll vc2 l_v 12]

The organized motion viscous dissipation integral is

(Bl3)

(BI4)

(B15)

(Bl6)

(Bl7)

(BI8)

(Bl9)
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c _,2Vc 2'IA12c = _ 2 l_,v[2), 6Re I [ (4 lul +

4 ^ 12 ^ ^_+ ( lov' + [u'12 ) + 1 {Rc(2i 2vu,. (B20)

4 i la uv'*)} ]dn_- 12 _^
3

The relationship between shear layer thickness and velocity defect is

given by equation (48) which results in

CD/2

= Vc(C I_vcC 2)
(B21)

where Cl = _ and C2 = _ and CD is the drag coefficient of the body.

The disturbance kinetic energy integral is

_ u( 7 + v "--2) 2(IKI )_-- .= dq = 61AL - v c Ik2

where

= $ (lu12+ [c_vl2)dn : 1
IkI .=

= _ )e-n2dn= [(Tul 2+l_vl 2
Ik 2 _=

(B22)

(B23)

The filtering procedure:

On using equation (10) the mean value is given by

On subtracting the mean value from the total value and taking condi-

(B24)

tional average we get

<_._ - ¢_> : _4" + ¢'V'+ Re,q,
(B25)

Fine-scale turbulence contribution is obtained by

_q - <q_, _U,> - 4,_ : ¢,q,"+ ¢"7 + L;e
(B26)

Similar filtering is also applicable to the 0(3) or higher fluctua-

tion correlation.
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APPENDIX C

MODELS FOR TURBULENCE, INTERMITTENCY AND DIFFUSION

Turbulence Models

The algebraic eddy viscosity models used in these calculations were

modified from the formulation of Spalding [69] and Schlichting and Hinze

[70]. They are given in dimensional form as follows.

Model I [69]

_t*= 0.037 6*IUma x - Uminl_* (Cl)

where Uma x and Umi n are the local maximum and minimum values of the stream-

wise velocity and _t* is the dimensional turbulent viscosity.

Model II [70]

_t *= 0.044 A* (C2)

where the characteristic density thickness &* is given in the dimensional

form as

a* :J Ip (u -u*) dy*J (C3)

On nondimensionalizing equation (Cl) we get

(I = 0.0376V c p

where41:_t*/p U L is then idenfitied as the dimensionless turbulent

eddy viscosity. Equation (C2) then becomes

( II = 0.044

where the nondimensional density thickness

03

A = I I T(I-u)dyJ : V_ 6 Vc
--CO

and (II :_t*/P_U- L"

During the calculations it was found that the turbulent eddy

(C4)

(C5)

(c6)
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viscosity Model II gave slightly better results and was used for all the

reactive calculations.

Intermittency Models

The in_ermittency model used here is basically the model proposed

by Spiegler et. al. [71] and is repeated here for completeness. This

model is applied to the reaction

kf 2

H2 + 20H_ 2H20 (C7)

kb 2

and the determination of the intermittency factors for the forward and

backward rates are given by the following steps.

For each specie (k), the mean square fluctuation of mass fraction

Yk-_is determined from the dimensional relations

B_k B_k
..Z--'Zyk_: Cl 6*2 ]_-_-_]T_ ' Cl = 20.25 (C8)

We then compute

]Yk2]

_k - (cg)
Yk 2

and

_k- 0.233

Uk - _k + 1 (CIO)

Then we determine the intermittency factor for reaction (i) as follows:

Ui=max(U k ), if the respective Yk--_'s have the same sign.

Ui : z (Uki) if the respective Yk-k-2-'s have different signs.ki

The finite-rate constants for each reaction (i) and direction

(m: f,b) then becomes

kmi = kmi(|- Ui) (Cll)
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These rate constants are then used in the finite-rate production terms

appearing in the governing equations.

Diffusion Model

The diffusion term due to molecular diffusivity in the integral

form is given in the nondimensional form as

BYk 2 BYk' 2

_k*=-=[ __k[(_)+(-T)]d_

Applying the transformations we get

1 _ 2_k [- ,2Id k : ___P Yk + 21Aj21Yk 12]dn

where prime denotes differentiation with respect to n.

we relate the mean molecular diffusivity to the kinematic viscosity by

the Schmidt Number Sc (: V/Dk) which at present we take to be unity.

This term Idk is then added to the right hand side of equation (13)

which results in an additional term in the thermal energy balance by

virtue of the heat flux term equation (8).

(c12)

(C13)

For simplicity,
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