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ABSTRACT
Title of Dissertation: Stability and Interaction of Coherent
Structure in Supersonic Reactive Wakes
Suresh Menon, Doctor of Philosophy, 1983
Dissertation directed by: Dr. John D. Anderson, Jr.
Professor

Department of Aerospace Engineering

and

Dr. Shih I Pai

Professor Emeritus

Institute of Physical Science

and Technology
A theoretical formu1ation and analysis is presented for a study of

the stability and interaction of coherent structure in reacting free shear
layer. The physical problem under investigation is a premixed hydrogen-
oxygen reacting shear layer in the wake of a tﬁin flat plate. The coher-
ent structure is modeled as a periodic disturbance and its stability is
determined by the application of linearized hydrodynamic stability theory
which results in a generalized eigenvalue problem for reactive flows. De-
tailed stability analysis of the reactive wake for neutral, symmetrical
and antisymmetrical disturbance is presented. Reactive stability criteria
is shown to be quite different from classical non-reactive stability. The
interaction between the mean flow, coherent structure and fine-scale tur-
bulence is theoretically formulated using von-Karman integral technique.
Both time-averaging and conditional phase averaging are necessary to sep-
arate the three types of motion. The resulting integro-differential
equations can then be solved subject to initial conditions with appropri-
ate shape functions. In the laminar flow transition region of interest,

the spatial interaction between the mean motion and coherent structure is
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calculated for both non-reactive and reactive conditions and compared with
experimental data wherever available. The fine-scale turbulent motion is
determined by the application of integral analysis to the fluctuation

equations. Since at present this turbulence model is still untested,

turbulence is modeled in the interaction problem by a simple algebraic
eddy viscosity model. The applicability of the integral turbulence model
formulated here is studied parametrically by integrating these equations
for the simple case of self-similar mean motion with assumed shape func-
tions. The effect of the motion of the coherent structure is studied
and very good agreemenf is obtained with previous experimental and theo-
retical works for non-reactive flow. For the reactive case, lack of
experimental data made direct comparison difficult. It was determined
that the growth rate of the disturbance amp1itude is lower for reactive
case. The results indicate that the reactive flow stability is in quali-

tative agreement with experimental observation.
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I. INTRODUCTION

The study of the interaction between turbulence and chemical reac-
tions is a region of continued interest in fluid dynamics. A better
understanding of the complexity involved will enhance design and predic-
tive capability of advanced and more efficient propulsion systems. Of
particular interest here is thé combustion system of a Supersonic Combus-
tion RAM Jet engine (SCRAMJET) being currently studied at NASA Langley
Research Center [1]. In the combustor of a SCRAMJET, hydrogen fuel is
injected at near sonic condition into a supersonic ajr stream and com-
bustion occurs in the recirculatory zone inside the combustor. The analy-
sis of such a high temperature, turbulent reactive flow is complicated by
the ongoing interaction between fluid mechanical and chemical effects,
whereby, the reactants first mix and then combine to release chemical
energy which in turn significantly alters the flowfield. The analysis
of such an interaction is so complicated that without some simplifica-
tion the problem remains intractable. However, with some reasonable
assumptions an understanding of the complex interaction can be obtained.

The application of the eddy-viscosity models developed for non-
reactive flows in combustion studies has met with only Timited success
[2]. Theuse of gradient diffusion models have been shown to be incorrect
in reactive and recirculatory flows where counter gradient diffusion is
present [3, 4]. It became quite clear that new approaches were necessary
to handle the complexity of reactive flows. This led to the counter gra-
dient model [3] and probability distribution and functional formulations [5-
8]. Though these models have been successful inpredicting some of the phe-
vnomena inherent in reactive flows, there are still many unanswered ques-

tions concerning the interaction between chemical kinetics and flow



turbulence.

Ever since the existence of large scale coherent structures in tur-

bulent shear flows became evident, the effect these coherent structures may

have on combustion processes has been subject to speculations [9 -12]. This

has led tovarious new models, for example, Spalding's ESCIMO model [13,14]
which accentuates a genuine property of turbulent flows that is evidently en-
hanced by large coherent structures: the stretching of Tocal flame elements
due to the straining motion of the flow. Another model by Marble and
Broadwell [15] studies the diffusion flame structures as opposed to the
premixed flame model of Spalding. The influence of fluid dynamics on com-
bustion has been considered by Chorin [16] using a numerical method based
on vortex dynamics which has been also extended by Ghoniem, Chorin and
Oppenheim to non-constant density flows with the aim of modeling combus-
tion in coherent structures [17].

There is now much experimental evidence of the existence of large scale
coherent structures in free shear turbulent flows [9,10,18]. Through flow
visualazation, Moore [19] showed that a turbulent round jet alsohasa defi-
nite coherent structure that starts as an instability wave in the shear
layer. Earlier experiments by Pai [20] had first pointed out the existence
of secondary flow inside rotating cylinders. More recently, Ganji and Sawyer
[21] observed large structures dominating mixing layer that develops behind
a step under non-reacting and reacting conditions. Incomparing reacting
and non-reacting flows, they found that the reacting eddies have a lower
growth rate, and more closely distributed in space and have a slightly
smaller ratio of coalescence than non-reacting eddies. In turbulent
flames Yule et. al [22,23] found that combustion driven instabilities

effect the coherent structure growth and decay. In fact, they found



at—Ieast two combustion driven instabilities, an inner high frequency

and an outer low frequency phenomena. These instabilities are genuine
properties of flames and do not occur in non-reactive flows, leading to
the term 'combustion driven coherent structures'[24]. Suchexperimental evi-
dence supports Roshko's [25] conclusion that coherent structures playacen-
tral role in the development of many turbulent shear flows such as mix-
ing layers, boundary layers, and the early regions of jets and wakes.

It has also been noted that combustion in non-premixed flames seems
to conserve coherent structures in the flow by delaying transition to
turbulence [26]. A1l available data seems to indicate that coherent struc-
tures are potentially more important in combustion systems than any other
flow systems due to the strong influence they have on the turbulent mix-
ing of reactants and to the stabilization of existing structures by com-
bustion.

The transport processes across the mixing layer is considerably
under-predicted by all theoretical models leading to the point of view
that the effect of large scale coherent structures on scaler mixing pro-
cesses cannot be predicted by methods that use scalar flux approximations.
Therefore, it seems clear that a different closure model is necessary to
handle the combustion problem in turbulent flow.

The present investigation considers the theoretical analysis of the
laminar-turbulent transition of compressible reactive wakes. Experimen-
tal measurements in non-reactive wakes behind flat plates and slender
wedges [27,28] have shown remarkable similarity with the low-speed wake
transition analysis by Satoand Kuriki [29]. Due to their inherent dynamic
instability, wakes sustain travelling wave disturbances. The development

of these instability waves and their consequent interaction with the mean



¢

velocity, thermal and concentration fields and the fine-scale turbulent
fields constitutes the interaction problem considered here. The coher-

ent structure discussed above is modelled as an instability wave which

developes from a linear growth region into a nonlinear growth and finally

into three dimensionality. The disturbance amplitude is very small in
the linear region and the mean field is uncoupled from the disturbance
field. However, in the nonlinear region, the amplitude becomes large
and there is a strong interaction between the mean field and disturbance
field causing the mean field to decay more rapidly than in the linear
region. Beyond the nonlinear region, the disturbance becomes three
dimensional and for high enough Reynolds number the flow becomes turbu-
lent. This is the general picture of wake transition although the actual
extent of each region depends upon flow field parameters like the Rey-
nolds number and Mach number.

This analysis considers the motion of the turbulent fluid as a com-
bination of three distinét motions: the mean motion, the large-scale
coherent structure motion and the fine-scale turbulence. Such a splitting
procedure was first used by Reynolds and Hussain [30] and has been used
extensively by Liu et.al [31-34] in their study of coherent structures.
More specifically, LiuandMerkine [33], Liu and Alper [34], Alper and Liu
[35] and Gatski and Liu[36]have studied the interaction between a mono-
chromatic component of the large-scale coherent structure and the fine-
grained turbulence in developing mean flows with inflexional profiles.
There, the nonlinear interactions between the three components of flow are
depicted in terms of the non-equilibrium adjustments between the mean shear
layer growth rate and the integrated energy densities of the large-scale

structure and the fine-grained turbulence. Their analysis was limited to
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incompressible non-reactive flow, however, they found reasonable agree-
ment with experiments for the spatial spreading rate of the shear layer.
The present theoretical study is an analysis of the nonlinear inter-

action between the three motions in a compressible multicomponent reac-

‘tive flow. Two averaging procedures are necessary to consider the inter-

action among the three components of flow: conditional phase averaging
which explicitly filters the coherent structure from the total fluctua-
tions containing both random and coherent components; and the conven-
tional Reynolds averaging which separates the mean flow from the fluc-
tuations. Due to the complexity of the resultant equations, finite-
difference computations of the interaction is very complicated. Stuart
[37] and Ko, Kubota and Lees [38] analysed the development of finite
amplitude disturbances in jncompressible shear flows using von Karman
integral formulation. Integral considerations were also used by Liu

and Gururaj [39] to study compressible wake transition and they obtained
good agreement with experimental data for hypersonic wakes [27, 40]. Ac-
cordingly, the present study incorporates von Karman integral method to
obtain the conservation equations for the mean flow. The mean flow is
then characterized by the wake width, the wake centerline values of the
mean velocity defect, the mean temperature excess and the mean specie
mass fraction defects. The disturbance is characterized by its am-
plitude and its variation across the shear layer is determined by the
application of hydrodynamic stability theory to the disturbance equa-
tions. The integral technique is also applied to the fine-scale turbu-
Jence equations to achieve closure. Though the present formulation is
simplified by various assumptions (to be discussed later), it is expected

that this formulation can be used to obtain a better understanding of the
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interaction between the three components of flow during combustion, an
area of research that has not been studied so far.

The physical problem studied at present is the growth of a multi-
component free shear layer in the wake of a f]atvplate (Figure 1). Forsim-
plicity we consider a supersonic premixed stream of-hydrogen, oxygen,
hydroxyl radical and water vaporiin the shear layer. The interaction
problem for both non-reactive and reactive flow conditions is studied
and the changes in the organized motion due to reaction is discussed.
In Chapter II the governing conservation equations of the interaction
problem is formulated and the various assumptions used are discussed.
Chapter III describes the numerical methods used to solve reactive sta-
bility problem and the integral equations of motion. In Chapter IV the
results of the numerical calculations are presented and compared with

other theoretical studies and experimental data wherever possible.
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I1. FORMULATION OF THE PROBLEM

2.1 The Governing Equation

The general conservation equations for a multicomponent mixture in a

cartesian coordinate system can be written in dimensional form as

a) Mass conservation

ép + Bpui =0
ot §x1

b) Species Conservation

Bka 5 .

R AP U R N
c) Momentum Conservation

d9pu.,

i, 3 .3

W*ﬁ;("“i”j“p“ij) ax; 13
d) Energy Conservation

2 (oH - p) + 2 (ou;H - usT. +9;) =0

at ‘P Bx; i it i T

e) Equation of State

k
Here 45 is the shear stress tensor given as

2 auk ‘au1 Ju,
T o ol T R (Eg“‘axi)
H is the total enthalpy defined as 7
2 * *
H=%—(u2+v)+|2(:(ka+skf)Yk

% /1

*

(1)

(2)

(3)

(4)

(5)

(6)

(7)

*
where m, = (“k ' —5§57T_")Rk gives the translational and rotational de-

k -

grees of freedom (by n:) and e;k gives the i-th vibrational degree of
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freedom for the k-th specie and e: is the heat of formation for k-th
f
specie.

qi i{s the heat flux defined as

Q=-K*3T+20Yh ' (8)
i X kT Tk Tk kg

where hk =e * Rk T is the static enthalpy for the k-th specie; e, and

Rk are the specific internal energy and specific gas constant for the
k-th specie. U is the diffusion flux velocity for the k-th species

i
given by

!
=~

D aYk

5;: s k=T1,...v (9)

where Dk is the molecular diffusivity of the k-th specie and «x* is the

[ =
=
-
—
>

thermal conductivity.

2.2 Filtering Procedure

The above equations (1 - 9) are now reduced to the integral form to
be used in this analysis. Though turbulence is essentially three-dimen-
sional, for numerical simplicity, we consider two-dimensional flow. Ex-
tention to three-dimensional flow will not change the governing equations
appreciably. In wake type flows, it has been shown that the detailed
distribution of the disturbances is not very sensitive to the viscous
terms leading to the 'inviscid' considerations [39,41]. Though mo]ecuIar‘
transport phenomena is important in turbulent reactive flows, it is
smaller in comparison to the transport due to turbulent stresses and may
be neglected in comparison. We include only a simplified form of the
dissipation terms in the governing equations and neglect the fluctuations
in the transport properties.

Any instantaneous flow variable, q(x,y,t) is then decomposed as

follows:
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q(x,y,t) = qlx,y) + q'(x,y,t) + q"(x,y,t) (16)

Here q 1is the mean flow compenent, q' and q" the corresponding

coherent structure and fine-scale turbulent components respectively.

On using (10) in the Navier-Stokes equations and time averaging we get
the equations governing the mean motion. Subtracting the mean motion
equations from the original equations and then taking phase averaging
we extract the equations governing organized motion. When we subtract
the equations for organized motion from the total fluctuation equation we
obtain the equations governing fine-grained turbulence (see Appendix B).
The two averaging processes as discussed above are defined as follows:

Time average is

. T o
— Lim ]
q(x,y) = Tlfff alx,y,t)dt (11)
0
where T s greater than the period 1 of the large-scale structure

at least. The conditional phase average is

: N
L 1
qlx.y,t)> = o0 o I byt v o) (12)

The conditional and time average of a turbulent quantity, ¢'{»,v,t},
are zero by definition. The conditional average of a large scale structure
quantity, q'(x,y,t) reproduces itself and its time average is zero. We
assume that the two components of the fluctuations are not correlated.
Furthermore, the conditional average of two fine-scale turbulent quantities
after subtracting the steady part, <g"g"> - g"q" , is periodic and
oscillates at the same frequency as the large-scale structure [31].

Though the Targe-structure may have many frequency components, at

present we consider the propagation of only the fundamental component.
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This is a reasonable approxima;ion because it has been shown experiment-
ally that throﬁgh proper control it is possible to get a single mode
propagation in the flow [42]. Furthermore, as a first approximation, the
energy this fundamental mode exchanges with other frequency components
can be neglected with respect to the energy it exchanges with the mean

flow or the fine grained turbulence.

2.3 Consgrvation Ecuations for the Mean Flow -

To derive the mean flow equation we nondimensionalize all variables
with respect to the free stream conditions which are assumed to be con-
stant. Thus, velocity and coordinates are nondimensionalized by the free
stream velocity, u_, and reference length, L respectively; the pressure,
temperature and density are made dimensionless by Eheir corresponding
free stream values p_, T_ and o_.

The time averaged equations obtained are complicated and contain
many unknown correlations of the fluctuations. To reduce the complexity,
we make some approximations which have been shown to be reasonable by
past analysis of wake flows. Since we are considering free shear
flows at present, we can apply the boundary layer approximations without
losing significant accuracy. We further use von Karman integral technique
to integrate the governing equations across the shear layer (normal direc-
tion) and obtain a get of integro-differential equations. In deriving
these equations we assume that all fluctuation correlations vanish far
away from the flat plate and shear layer region. The problem then reduces
to determining the shape functions for the mean flow variables associated
with the von Karman integral formulation.

After some manipulation we get the following integral equations:

10



2.3.1 Specie Integral Equation

dl
d - DL * .
X p u(Yk- 1) dy = - e Rk; k=1...v species (13)
Here, p and U are the dimensionless mean density and streamwise
velocity respectively. Vk is the normalized mean mass fraction of the
kth specie defined as Yk = Y'k*/Ykuo , where Tk* is the mean mass

fraction and Y is the freestream value of mass fraction of the kth

koo
specie.
ID is the species diffusion flux integral for the kth specie
k
c
made up of contributions from the organized structure motion, IDk
T
and the fine-scale turbulence, IDk . They are given as
IDC= ru (Y, -1) +pu'Y +u oY ]d (14)
k pouTy p k Py Y
and
IT A2 — Ty 1 T 1] W,y I
Dk = Jw [p"u (Yk- 1) +pu Yk + U p Yk + p'u Yk ]Jdy (15)
so that
B B D

Rk* is the integrated mean rate of production of the kth specie given

as i

ol R o)

Here 7i° is the dimensionless mean rate of production of the kth specie

and is defined in Appendix B.

11
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2.3.2 Streamwise Momentum Integral Equation

dl
é%-fmp u(u-1) dy = - 75? (18)

The momentum diffusion integral, IM is defined as

_y C T
IM = IM + IM + IM (19)
p
where
IMC = J [pTu” (2u-1) + p_ u'2] dy (20)
1, - [ (70" (25-1) + 7 u? + p'url] dy (21)
ty = [ 5 dy | (22)

-

In the free shear layer, pressure is nearly constant and so the term
dI

M
—E;E is negligible in equation (18) and C]= Rb/fm“mz-

2.3.3 Normal Momentum Integral Equation

— —5 £
p = 1 'g_][FV|2+F?) +_§; J {D (U'V""U“V“)
+u (p'vl + ™) + p"u™vT } dy] (23)

It has been shown by Liu and Gururaj [39] that for wake flows the last
term on the right side of equation (23) is negligible relative to the

others and pressure p can be determined from the reduced equation.

12
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2.3.4 Energy Integral Equation

2 dI
a‘—‘;rp‘i(ﬁ-ndyhai (24)

The total enthalpy integral, IE is defined as
I.=1C4+717T (25)
where

e T f Lo wTHT + U BT + (H-1) B7u"] dy (26)

e = [ GTE T (R0 T TR 6y (27)

- 00

and the mean total enthalpy, H is given as

\Y AV

H = 02+z mka (T Vk+T'Yk‘ + T"Yk“)+ e

ke Yk (28)

k=1 “f

2 7 7 V“ 2)

where 02 = %—(ﬁ +Uu' 4y u"2 +

+ is the total mean kinetic

energy. The fluctuation contribution to the total enthalpy are

1

v
L. LA TV! 1
H' =uu' + 5 (Ruu + RW) + k}=:1 mka(TYk + T Vk + RTYk)
AY
+ I g Y (29)
k=1 ke K
7! 1 v Ty i v
H" = uu" + —2--(Luu + va) + k£] mka(TYk + T Yk + LTYk)
v
t I Y (30)
k=1 f

13



The term RW and Lw appearing in equations (29) and (30) are defined

explicitly for any variable ¢ and y as

T R L X

oy
and (31)
L¢w = ¢lwl - <¢Iw|> + ¢llwll - <¢Ilwll>
C., D, and € are constants given as
1’ 7k ke
P RTmYK” Ek; YK°° ()
Cy = s D =7 and €, = ——5—

Nooe gt
m =[N, + —1 (33)
ko Tk Oy /T
i=1 (e "V '-1)

gives the translational, rotational(by Nk) and vibrational degrees of

freedom with ek as the characteristic dimensionless temperature for
: i

the i-th vibrational frequency of k-species.

2.3.5 Equation of State

Y
p= rClo TV (MY +TY") + TV, +5T)
k=1 7 o
+ Y (T + ) + T ]
where
p RT
%W (35)

2.3.6 Mean Kinetic Energy Integral

It is also necessary to derive the integral equation governing the

14
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total mean kinetic energy and can be written as

® — dI
1 d —— 2 _ 9L ]
Z-H'; J p U (U —'I)dy --T RS + Ip I¢ (36)

-0

Here, IkE represents the mean flow kinetic energy diffusion flux integral

and is defined as

c T

Le = L + L (37)

c T
where IkE and IkE are the diffusion flux integrals due to organized

structure motion and fine-scale turbulence respectively. They are given

as
C ®© 2 —_—
1 (ao e e
IkE = J [z-(3u -1) p'u" +puu 2] dy (38)
and
T ® 1 =2 —— 7, o
1 = [ (3u°-1) p'u" + p u u"" +p"u""] dy (39)
kE 2
IRS represents the total turbulent stress production integral contributing

to the mean flow. It is defined as

o T 20)
Igs = Ips * Igs (4
where IRSC is the Reynold stress production due to organized structure
motion
¢ P o —r = Ty W, - 3u
Ing = - f [(Woum +p u®) 55+ (ou'vi+Volul) &u
-l (4]‘)
-7V .
o vt oy ] dy

15



and IRST the corresponding stress production integral due to fine scale

turbulence
T T Ty T _—TZ " n2 a— LY
Ipg = -;i [(up™™ +p u"" + p"u )5§-+ (p u™v
T,C V’ O"U" + p“U"V") % + (;' V”2 + pnvnﬁ) g_;] dy (42)

I denotes the pressure integral given as

p
I =1 +1 (43)
where ©
- ¢ 4 = N T 44
Ip] ¢, ix f (p-1) u dy (44)
and -
- =_ 1y (U , 3V a5)
I, G | B-1 Gt gy) o (45)

Here, Ip is the pressure diffusion integral and Ip gives the work done
1 2
due to expansion. The mean flow viscous dissipation integral is simply

taken to be
-1 = (8uy2 (46)

where u is the dimensionless viscosity coefficient and ReL = p u L/u_

is the Reynolds number based on freestream conditions.

2.4 Shape Assumptions for Mean Flow

Experimental investigation indicates that in a wake the momentum
thickness 8*, is very nearly constant. Equation (18) may then be rewrit-

ten as

16



/ pu (0-1)dy= Constant (47)

-0

by neglecting the integral IM .

On using the definition of momentum thickness

o - - o

o* =/ pu (1 -u)dy-= 7?- = constant (48)

where, CD is the body drag coefficient, along with equation (47) a rela-
tion between the wake width and the centerline velocity defect can be

obtained as shown later.

The solution of the governing integral equations for the mean motion
depends upon the proper choice of the shape functions characterizing the
variation of the mean flowfield in the wake. It is well known that the
Von Karman integral method allows quite accurate calculations of the
gross features while remaining quite insensitive to the finer-details,
provided of course, that the shape function representation is physically
reasonable. The distribution of the mean flow variables across the wake

has been experimentally shown to be nearly Gaussian [27,65]. Therefore, the

the mean flow is represented by

0 (x,n) =1 -V, (x)exp (-n?)

14T, (x) exp (-n?) (49)

} (X,n)

(X) exp (‘ﬂz)' a = ly.eeV

1"

Yk (Xm) 1+ Yk
c
where all variables are non-dimensionalized with respect tc their edge
values. Here, Vc(x), Tc(x) and Yk (x) are the mean horizontal velocity

c
defect, temperature and k-specie mass fraction excesses at the centerline

of the wake. The coordinate n, is defined as the Howarth transformed

variable given by

17



n= fy pdy /8(x) (50)

where 8(x) is the dimensionless shear layer thickness which can be shown
to be related to the centerline velocity defect Vc(x) by equation ( 48)

to give
CD/Z

) = vV (51)

o 2
where Cy =__/ €" dn and, Cp = _m,“e-Zn dn

Therefore, the mean flow can then be characterized by Vc(x), Tc(x),

and Y, (x). The variation of mean density p(x, n) and pressure,
c .
p(x, n) can be represented in terms of Vc(x), Yk (x) and Tc(x) in the
c
governing equations with the help of normal momentum equation (23) and

the equation of state (34). The mean flow field can then be completely

defined in terms of the variable Vc(x), Tc(x) and Yk (x).
c

2.5 Coherent Structure Closure

The equations described in Section 2.3 govern the mean flow. How-
ever, they contain correlations due to the fluctuations of the coherent v
structure variables and also fine-grained turbulence. Here, we discuss
the closure of the coherent structure correlations. As mentioned before,
the equations governing the coherent structure motion are derived using
the hydrodynamic stability theory. The coherent structure is assumed to
have a wave-like periodicity as is defined by its amplitude A(x) and
its frequency of oscillation 8. By choosing appropriate shape functions
for the coherent structure variables we derive the local eigenvalue equa-
tion which is solved using Tocal linear stability analysis.

To facilitate numerical solution we define local coordinates given

as

18



X=X

0
2 5)
od
n= I 8(x) (52)
_ t
T X

where for the eigenvalue problem the dimension]er shear layer thickness
6(x) {s considered locally a constant and X, is a location close to x
such that the mean flow streamwise gradients are negligible.
2.5.1 Shape functions for Organized Structures

The shape functions assumed for the coherent structure in their

dimensionless form can be written in the local coordinates as

U'(E,n,r)/vc a(n)
v'(Em,T) /Y, a¥(n)

p'(g.n,1) 5(n) .

p'(Em51) = Alx) 5(n) e B e+ 0([A%) (53)
T'(£.n,7) T(n)

Ve (Eamst) k=1,v Y (n),k=1,

Here, c-c denotes the complex conjugate and the complex eigenfunctions

of the fundamental component u, v, p, p, T and Yk correspond to the

wave streamwise velocity, normal velocity, density, pressure, temperature

« (X)L

and kth species mass fraction, respectively. Furthermore, g = g™ =

is the real dimensionless frequency, B* the physical freguency; and
« = a* 5(x)L 1is the dimensionless complex wavenumber and ao* its dimen-

sional value. The local stremwise derivatives of the disturbances

19



are evaluated by the Tocal relation [31].

- ieh - (54)

On using (53) and (54) in the linearized inviscid equations for the
organized motion and on some algebraic manipulation (see Appendix A), the

governing equation in terms of the pressure perturbation p(n) can be

written as
r\" I\' 2w| Tl * Sl
P4t [- eyt L (ve1) - EE]
T (55)
2,, 2
~ f(w-c)%V * _
+p [V (g - 11T 0

where w = (G-])/VC and ¢ is the dimensionless complex phase velocity
defined as c=(e/a-1)/Vc. Here, prime denotes differentiation with re-

spect to n, and

= v * - \Y * ' = AV 0.V
S kz] Cx Yk s S ki1 Cx Y& and M ki1 m.D Yy (56)
%* * * —_ —_ - .
Also, v (= vt v I) and B(= Bp * 181) are complex terms appearing
due to the presence of finite rate kinetics and are described in Appendix
A. We note here that'this eigenvalue problem eq. (55) reduces to the

classical Lees and Lin [43] problem when the flow is non-reactive and

single specie. For multi-component non-reactive flow

vp = 1, vy = 0
(57)
BR
The eigenvalue equation (55) is solved for the assumed mean flow

profiles and appropriate boundary conditions for a given frequency B
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and complex wave number a. All other eigenfunctions u, v, p, T and

-

Y are subsequently determined from the local solution for ﬁ(n).

k
Inherent in such a consideration described above is the assumptions of
'Tocal similarity' which implies that the eigenfunction ﬁ(n) adjusts
instantaneously to the mean f]ow. To complete the clbsure of the ‘
coherent structure we need to determine the amplitude A(x) appearing
in equation (53). This is given by the equation governing the time-

-averaged kinetic energy production associated with wavelike motion of

the organized structure.

2.5.2 Coherent Structure Kinetic Energy Integral
1[Eﬁk°dy=lc-1”+1°-1° (58)
where k& = %-(u'2 + ;TE) is the organized structure mean kinetic energy.
The eigenfunctions are normalized such that IAI2 is the dimensionless

kinetic energy per unit length, of the instability wave across a slice

of the shear flow [39]:
Al% = ;Ilz ( kS dn = _17 ( (u? + v'?) dn (5¢)
C -0

and may be considered as the energy density in terms of the transformed
coordinate 7.

1.5 is the Reynolds stress production integral defined in equation

RS
(41). IRSCT is the kinetic energy integral for the exchange between

the organized structure and the fine scale turbulence and is given as
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Igs R ['Ruu 3x  Ruv ( 3y MY ) Rwv 3y 1 dy
- au' FIAR
* ( ul-R oy Bx ™ Rov ox 1 dy (60)
U au’ 3V v

+ [['Spuu'a_i_' SpUV <ay * ax)_' SpVV ay] dy
where

= ", gt _ o 6]

Sppe = <¢"v'8"> - §TVTE (61)

1.° is the pressure gradient work integral of the disturbance and is

given as
c ='_ » 9p° ¢ 3p°
Ip (‘,.| I [u <tV ay] dy (62)

and the viscous dissipation integral for the disturbance is simply

taken to be [41]:

c. 1 [ -4 A2, 3,2 o
I, = I“[3{(ax) +(a_y) '(ax ay)}

(63)

1¢C generates mean flow thermal energy at the expense of disturbance
kinetic energy.

The energy exchange integral IRSCT which describes the interaction

between the coherent structure and fine-scale turbulence is in a form

that requires closure. The terms R¢w are specified in terms of an eddy

viscosity and disturbance strain rate model similar to Liu [31] such that
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R, ® w? - auds = 2630
R, * -\;'7 - i<v"2> = 2€ %\'7'- (64)
Ry, = TV - <ulv's =26 (3~ + 30
and

3"
Ry " 5'“'6";- <p"u"> = p*ép ax ' (65)
R, = VT - <p'v'> = *ép a_y

cT

On neglecting the terms larger than O(]Alz), IRS can be written as

T g | 1
1T = 2 e T+ G+ 5P s P o
(66)

ap' au’ , 3p' av’
Ju € [ % 3% T 3y By ] dy

The eddy viscosit3/€,€‘used in this closure is obtained in terms of

ed in the next secC-

= €,

the turbulent kinetic energy and dissipation determin

tion, and cp* is a constant. To first approximation, eo

2.6 Closure for the Fine-Scale Turbulence

The equations governing the fine-scale turbulent quantities can be

obtained by subtracting the contributions to the mean and organized

structure motion from the instantaneous equations. These equations

are quite complex and will not be shown here. Here we present a closure

model for the turbulent fluctuation correlations. Since the mean motion

and the organized structure motion have been formulated using integral

technique, we follow similar steps to develop the turbulent equations.

Essentially, we manipulate the turbulent fluctuation equations and write

turbulent-specie mass

equations for turbulent-density correlation "%,

’

fraction correlation Yk"2 turbulent - total enthalpy correlation H"
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and turbulent kinetic energy q"z. On integrating the resultant equations
across the shear layer and assuming that all f]Jktuation correlations
vanish far away from the shear layer we get the following integral
equations.

2.6.1 Density FlJ%tuation Integral Equation
; _

of
%—ad;IUp"zdy=-I F1 -1 (67)

- 00

where Ip is the productionofp"® due to mean strain rate and is given

D
by
W2 ¢l 3u, dv
= _—— 4
ID is the diffusion flux integral given as
S
= . — v 8u" sV ) ——r 3p , —wow AL
IDS [ p o (3)( + By) d_y j[p u 3 X + [ Z‘_y] d_y
(6¢)
and Io is thezdiffusion integral for higher order correlation.
3 z
Ip % i an dy - [L ’5";/“ + L .—Jf,‘”] dy (76)
3 dx ¢ 1 oU 565X pVoBy

We observe that there are terms given above that require closure assump-
tions. Hence we make the following assumptions. The turbulent density

strain rate is given as

4 PLL £
P o * Sy = T+ e (7)

where e is a constant and » is the Taylor's microscale characteristic

of this problem to be defined later.
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We further use a simplified gradient formulation to model terms

vike L. . Thus! ¢

170
1 = 7
l'pu (p X
(72)
1 = 2%
va ep oy

and

J

(2n)® - () = s, By (73)

A

The integrals Ip and Ip in equations (53) and (54) then become
S 3

1 = - IW[%‘)—’(—+—)\—-"—]dy
- (74)

T, 0 a— O'E
- [ oV [5‘;-+72]dy

and

o —

—s 2
- . d d 2 "~
I S - ( éé P dyt Sp { ep A2 dy  (75)

-0 -

where So and Sp are constants that have to be adjusted with the help
1
of experimental data and €, is the eddy mass diffusivity.

P
2.6.2 Specie Fluctuation Integral Equation

oo

4 ‘B—UYTZdy=I - 1p -Ik+l +1.,k=1,...v (76)

N —

dx 3 P Dy

-

where I is the convective flux integral given as

[ [—*‘—— + -—"—-] dy (77)

is the diffusion flux integral due to mean concentration gradient.
k

Ie
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= — Ty w -y u m __k_
IFk [ [{p UV, +upW "+ Yy Lpu} T

, (78)
o v,
+ Lo V'Y Y va} W] dy
I s the turbulent diffusion of species and is given by
3 _
= _d__ -~ v T n
Teg = O { Lo Yy Luy, * ¥ Yk vak] dy

) (79)

T 3y ¥y _ T

- [ o thyy, 5 * twy, 3 * U hey, ] W

Ip is the production integral for the k-th species due to chemical
k
reaction

o " [ e o (80)

where rk°" is the turbulent production rate of the k-th specie due to

finite-rate kinetics and is obtained from the total species production

rate. ID is the diffusion flux integral due to species diffusivity.
Kk :
- ——' n 2 n 7
IDk = ‘ ) Dk Yk \ Yk dy (81)

Here, Bk js the mean molecular diffusivity of the k-th specie and
js defined later. We neglect any fluctuations in Bk at present,

To model the unknown correlations we follow similar approximation

steps. For example,
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[} = - [ 1] a = k
Yk LDU (p Yk X ep p A
YL = V.
k pv k “pu
P (82)
Y IIL =- < _Dl_a_ Y Il2
k Yk 2 5x k
D v nl
Y, "L Ky
k va 2 3y 'k
and —
aY, " _ 8y, " y "
L k . .7 (=Ky2=.p kK
qu 99X k ' ax k l2
(83)
aY L aY {1l _ Y IlZ
L k = - D ( k )2 = . D k
va dy k * 3y k >\2

On replacing these approximations in the integrals in Equations (61),

(62), (63) and (64) we get
T — v - Eg_ —Try T avk
p U (U € 50 T
84
aV (84)
+ {v'n_l'l’Yk - _& "Y n}___] dy
14 7 I v
= - - 5 _d_ " k
' 77 [pDkdek dy+sk{‘[pok 2
3 -t -
(85)
— 1/2 = =
||2 ny oY a_U
- AT (e Ay gy
and o 'Y—nz'
- —= 'k
I, =% [ p D —5 dy (86)
k k A

where Sk and CD are constants that are adjusted with available experi-
k
mental data.
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2.6.3 Turbulent Kinetic Energy Integral Equation

o

1 d e 2P| €, ., T T
% dx [puq dy = Ipg - lgs * 15 -1, (87)

where %-a:?'= %-(;:7 + v"2) is the turbulent kinetic energy and IRST
is the Reyncld stress integral associated with the fine-scale turbulence
interaction with mean flow and is given in Equation (33).

I T is the Reynold stress production integral associated with

RS
the interaction of fine scale turbulence with itself and is given as

oo

I R (e T T VA "
Ipgs ™ = [ ol-Lyy o L (ay ¥ ax) - L ay] dy

-0

-]

= au" _ v’ 88
+ ( u [-Lpu X va 5y 1 dy (88)
o S, E
¥ [ [- Mpuu ax Mpuv (ay * ax) Mpvv ay] dy
where
M = ¢”w”6" _ <¢"1P"9"> (89)

$yo

On neglecting fourth order terms at present and following the previous

closure approximation we get

«©

¢, (- au? , (B, 2, (B
¢ =2 (e e BT 50T G ey

- 00

(90)

+ k% ug [(2e- Uy 4 oy QQJ.QX_J d
3 p 3X X 4 3y 3y y

-0

where k3* and k4* are adjustable constants.
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The terms appearing in (90) measure the effect of viscous decay on the
second order correlations. We follow here Varma et. al. [44] approach
which is an anistropic dissipation model and is shown to have correct
expression in the limits of small and large Reynolds number. In general

we write

II2 ll2
g T q__
Ug = Skp "3 (1)

1J = 0 _
¢ (“k,i "z,jj = Sks

)Y A

where A is the Taylors microscale length and is related to the macro-

scale A by the Rotta's form
2
A2 = f_f — (92)

v

where _
A=0.56andv=1yu/p

The study of incompressible boundary layer led to values of constants
a and b as a = 3.25 and b = 0.125. However, for compressible flows
they may have to be readjusted [44].

The dissipation correlations involving scalar fluctuations are

modeled in the following form

.o k° 93
Yk,i P L5 % .2 (93)

G o s

2 A
where
S =1.0.
2
IpT is the pressure work integral due to fine scale turbulence
and can be split into two parts.
1T Tap T (94)

where Ip T is the pressure work due to expansion and is given as
1
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I To.¢ & [ p"u" dy (95)

-0

and Ip T is the pressure-strain rate
2

T. wedu” oavt
I, =¢ [p(ax+ ) dy (96)

To determine these terms we follow Varma et. al [44] approach to model the

pressure diffusion term as follows

" du
2)1/2 +p A E% (97)

- du”
p"u" = p A = [p, (q

where D1 and p2 are constants. We take p2 = 0.1 and p] which is
associated with the mean strain, needs to be adjusted with available
data. The pressure-strain rate is given by the form developed by Launder

et. al. [45] which includes the tendency towards isotropy terms.

E_I_l_ 3U1" BUT * 27‘
= * = n
E(axj+ax) €} 8% v [ryy * 855 39"

(98)

. Y

where the first-term is proportional to the anistropy of the turbulence.
The other terms are due to the interaction between turbulence and mean

flow and is given by production terms
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(1

depends upon the size of eddy we apply the knowledge from simple spectral
analysis to find the variation of dissipation rate in the shear layer.
We shall return to the determination of € later on.

Finally, IT¢ js the turbulent viscous dissipation integral due
to fine scale turbulence. We model this term in a form similar to

the viscous dissipation due to organized structure motion. It is then

given as
T .1 " — 4, 3u"\2, ,3V"\2 _ 3u” 3V .
Iy Re i v [5H5% )"+ (ay ) TR
(105)
3U" L 9V \2
+ (357 + 15;) 1 dy

where » is the mean molecular viscosity and we neglect any fluctuation
in transport properties. IT¢ generates mean flow thermal energy at
the expense of fine-scale turbulent kinetic energy.

Since the energy conservation requires balance of the kinetic ener-
gy fn the three modes of motion, Mankbadi and Liu [48] determined equations
where the stress term IRSCT in equation (58) appeared with an opposite '
sign in equation (87). Since at present, equation (87) does not con-

tain any term defining the interaction between the turbulent and dis-

turbance field, to the first approximation we replace IRSTC = —IRSCT

in equation (87).

2.6.2 Total Enthalpy Fluctuation Integral Equation
1d(———7
5 T puH'  dy=-1, +1 -1, -1 (106)
2 dx Hc HC H3 H¢

-t x

where IH is the convective flux integral due to mean strain rate and

C
is given by
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IHC is the diffusive flux integral due to mean total enthalpy gradients.
N _

I =-[ [F U™ + upAm + L] & ¢
C pu- ax
x -t®
(108)
- 5 VIHT 4+ HY _3_H
[ [p V'H H va] 3y d
and IH is the turbulent ehthalpy diffusion integral
=i T nl:pﬂ_ "T'_au
IH3 dXIpHLquy+ [[uH s+ H pHax]d (109)
IH is the dissipation integral which we neglect at present.
Following the same closure approximations we get the following
integrals
1 — =, €0y =gmy oH
I, == Y[ u"™H" + (u-SH £) p"H™] £ dy
c 1 A 3x
X -® (110)
- I'[o vIR" - £ 5TRM)
and
. _1d unl wiy1/2
T I €y W ¢ "M, ( (%)
(111)
e (4, Bu:
p"H" {5 + 53} dy
where S, and SH are constants.
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Here, H is the turbulent total enthalpy diffusivity and is defined by

the relation
€y = 6 ey = 6 (@) e,

where C, "{s a constant and €4 is the dissipation rate for total
enthalpy fluctuation correlation ;:2: ,

o It should be noted here that the closure form used here in terms of
- ;zf-contains implicitly the combined effect of turbulent kinetic energy,
the turbulent thermal energy and the turbulent chemical energy. There-
fore, the turbulent total enthalpy diffusivity y can be used instead of
—_ DK in the equation for ;;:7 . Since; momentum dissipation ¢ and enthalpy
. dissipation ey are very important in the turbulent field development, we
— determine them by using a simplified spectral analysis using the multiple
e scale approach of Hanjalic et al [49]. The underlying physical mechanism
of energy transfer in turbulent flows is complicated further due to the

presence of finite rate kinetics and therefore a multiple scale process

i of energy transfer seem more appropriate for the present problem.

2.6.5 Basis for Spectral Analysis

w It is well known that turbulent energy transport occurs due to the
motion of turbulent eddies in the flow. Besides kinetic energy of the

= motion, thermal energy and chemical energy due to reactions is also

— being transported when different species mix and react at the molecular
level within these eddies.

%E% The complex interaction of the turbulence and chemical reaction
leads to growth and decay of turbulent eddies in a manner significantly

:;: different from non reactive flows. Previous analysis of energy cascade
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phenomena in turbulent flows assumes that energy is extracted from the
mean flow and transfered in proportion, from the largest eddies to the
smallest eddies where it is dissipated. Recent developments bring to
light the complex nature of energy exchange even in homogeneous flows
and it seems that the concept ofnpne-sided energy cascade has to be
reexamined [50]. Typically, in some experiments extended areas of
'negative' turbulent production has been revealed [51]. This is very
pertinent to reactive flows where due to reactions, energy {s absorbed
and released in a manner that could possibly enhance the reverse cascade
phenomena,

The fine grained turbulence derives energy from the mean and organ-
ized motion and dissipates some of it but returns some of the energy
to support the generation of the larger structures. The turbulent
kinetic energy is contained mainly in the larger eddies and only a small
amount resides in the smaller eddies where viscous dissipation is impor-
tant. On the other hand, for chemical reactions the species must first
mix at the molecular level which is more likely to accur in smaller
eddies. Therefore spectral variation of turbulent total enthalpy
fluctuation, ;:7, may be different from the variation of kinetic energy,
;:7. However, at present we disregard this difference for the sake of
simplicity.

In the determination of the dissipation rates € and Eyr We there-
fore assume that there are two distinct ranges of wave numbers. There
exists a range of smaller wave numbers (large eddies) in which viscous
dissipation is negligible. In the other end of the wave number spectrum
there is a range of large wave number (small eddies) {n which viscous

dissipation is important. Between these two is the tnertial subrange

35



[

which contains most of the turbulent kinetic energy qu and turbulent
total enthalpy ;FZ .

In the past, investigators studied turbulent energy transfer by ap-
proximating Reynold stresses in terms of turbulent kinetic energy,b k

'a'TI'I_

and viscous dissipation ¢ =v(15%:-2 such that the characteristic time
scale for the turbulent field was (k/e). However, it is generally recog-
nized that turbulent interaction time scales vary in different parts of
the energy spectrum and single scale model accounts for only the energy
containing large eddies. Based on physical arguments and simple closure
model Hanjalic et al. [49] developed a multiple-scale model which showed
striking improvement in the level of agreement with experiment over that
obtained with single scale models [49]. Essentially, they partition the
turbulent kinetic energy spectrum E(x) between the production region
(¢ K]) and transfer region (K.l <k < K2) with negligible energy in the

viscous dissipation region (x > Kz) such that the total turbulent kinetic

energy is given by Figure 40.

= 2 @Z 4 vd) = o ) de 4 g7 () dlx) =Ky Yy (13)

where k; is the wave number at which partitioning takes place.

Energy is transported from the production (Tow wave number) region
at a rate Ep and enters the dissipation region (high wave number) at a
rate €. The energy transfer rate in the transition region is &g [49].
In terms of the energy spectrum these dissipation terms may be written

as

e =2v SkPE (x) dk | (114)
o]

and
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€ * g " of"‘u(.<) dk +K{"°D(.<) dk (115)

where D(c) would then represent the partitioned energy spectrum in terms
of kp and kT . Balance equations were modeled for the kinetic energy and
dissipation rates in the production and transition regions and for spec-
tral equilibrium in very small eddies. the rate ¢ becomes identically

equal to ¢ The various improvements possible with such a multiple

s
scale modeling was discussed in reference [49], and specially for reac-
tive flows this model's ability to account for different time scales of
interaction seems promising; Beside characteristic time scales of kinet-
ic energy transfer, in chemically reacting flows, the model must also
allow for the characteristic time scale of chemical production rate. In

the present formulation, this is attempted by considering a turbulent

total enthalpy fluctuation spectrum N(x) such that

HZ = o7 N() dk = f1 N(c) di + 7 Nlk) dk
(116)
- (w)p+ (1)
This spectrum is also partitioned in a manner similar to the kinetic
energy spectrum (Figure 40). The spectral transfer rate of enthalpy is

then ey in the production region, €H in the transition region and Eq
p S
in the dissipation region. Balance equations are then written for these

rates along with the equations for energy dissipation rates. The basic
modeling formulation follows Hanjalic et.al1.[49] and the effect of the
density fluctuation is modeled in a very simple manner. Since the pres-
ent formulation is basically an integral one, the differential balance

equations are integrated across the shear layer which results in the fol-

Towing integral equations.
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a) Dissipatfon in the Production zone:

d -z 1P _ P P p
I Ipuepdy IPp = I + Iy + ¥ (117)
and -
4 (—— p P p p
= pueg, dy=TI°, -1TI°, +1 + 1 (118)
dx ) Hy Hy Hp Hps 6y

where Ipp and IpH are the production integrals for the turbulent kinetic
P

energy and turbulent total enthalpy respectively and are given as:

iy € du,
P = Cp f —2— u]-"uj" + TJT U 4T, UL} — dy
1

P J J J  8X;
= (@) J
p
(119)
© EH —__2 L a—i
Ip =C ___E {p H'  + 2 H ann} . d_Y
H H] 5 X4
P -= (H")
P
1P and 1P are the decay integrals for € and € respectively.
D Hy P Ho
They are given by
P T- 5%
= o d
o™ %, & =z,
- (q )p
120
and - e 2 (120)
HES .
1P, =¢ " 7 —E—dy
H H
D 2 1 (;:7)
p
IpD and IpH are diffusion integrals and are written as
i Di



- p d [ —-(:;:Z)Q _:?'fsz v %

) IDiECEK P ¢ [u ax+”" 8y]dy

— P 4 P

o (121)
o d 1 (F) - a.eH Bey ’

- ST (i Yt SN

—_ Di Hp 2 - Hp

Here, ¢ ,C_.,C, ,C,,»C andC are constants defined later.
H]H € €

Ef; Py p2_ 2 P Hp
IpG and IpG are the generation terms due to mean vorticity.

- H

- “ au, au

S~ P - 2N e 1

- g = %4 I (9"")p 3y %5 €omk SijkP Y

= and 'Z o (122)

- —x Bug aul. .

1P, =x H" — o

= G, °H _! ( )p By X; €omk €ijkP 9y

-— where €, is the alternating third order tensor and xq =X - 0.1.

e This term vanishes for an irrotational flow and was found necessary to
= jnclude for rotational flows [49].

i:i by Dissipation in the Transition zone:

- e T -- .
i . X [puesdy=15p-150+1m (123)
S and -

' d ‘ - 3 s 3

. - puUueg, dy=1, -1 -1 (124)
e dx ] HS Hp HD HDi

here 1°_ and ISH are the production integrals for the dissipation

= T

rates e and €y in the subrange. They are
- S
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and . o, (125)
. .
ry = CH3 P —_Ef'—s dy
P = (W)
IsD and ISHD are the decay integrals and are given as
. * e 2
Ty = G, [ b —=—dy
= (9"%)
(126)
’ H
15, =¢ [ b —— dy
Hy  Hy =z
= (W),
3
And final]y. I Di and ISHD. are the diffusion flux integrals in
1
the subrange.
S = l (q" ll aes W, T aes
Iy d T —E [u 5% tu'v y] dy
and (127)
© nl 3€ ae
_ H"') —5 “H H
S - __d_ - ( ||2 S -, S
I”Di'C‘H I I p——EeH W = + UV 5 Ay
P - P

The constants appearing in Equatfons (117) to (127) are defined,
at present, using the data available from Hanjalic et. al. [49]. They

are given as
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X

> = 2.2
Cp] CH]
(x_-1)
sz « 1.8-0.3 17&?;17-
Cs] = 1.08 wq
(128)
C «C, =1.15
52 H4
Y(XH-l)
CH2 = 1.8 - 0.3-0§I;17-
CH3 = 1,08 Yy
where (—"7)
Xq - _fL__JZ
2
(9"7) (29)
Tl
Hll
XH = E__)_E-
(H'?),
and
€
= P
wq el
ey (130)
v =T
H EH
s

The Xq and XH are partition coefficients which define the amount

of turbulent kinetic energy and turbulent total enthalpy present in the

production zone and transition zone. Since we assumed negligible energy

in the dissipation zone (x > Kz) we may thus write in terms of ;:E and

HII2
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P q
@), = ) 2
and ' (131)
X
(w2), = () W
(), = () #?

The coefficients Xq and XH are given inputs to the problem whereas

¢ and Yy are obtained as a part of the solution.

q
Here xq and XH characterizes the shape of energy and total enth51py

spectrums respectively and wq and Yy give; their degrees of spectral
imbalance. ' !

The solution to the above integrals requires appropriate choices
of shape functions. However, once the shape functions are defined,
we can solve the complete interaction problem. Although the dissipa-
tion rates in the dissipation zone, € and EH’ are different from the
rates in the production and transition zones, at present, we assume

spectral equilibrium between the transition and dissipation zones and

take

€

FT s (132)

€ €
H HS

With the assumption we can then determine the eddy diffivities €

and €, defined in equations (104) and (112).
The solution of equations (117),(118),(123) and (124) along with

the mean motion equations and turbulent fluctuation equations gives the
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complete interaction problem. The problem will be completely defined
once we can specify the shape functions for the unknown variables. Here -
we are guided by available experimental data wherever possible. However,
there 1s a lack of well defined experiments specifically for reactive
flows and so the choice of shape‘functions here have to be modified

depending upon the results of numerical experiments.

2.6.6 Shape Functions for Fine-Scale Turbulence

The governing integral equations (67), (76), (87) and (106) for the
turbulent correlations are solved by assumiﬁg appropriate shape func-
tions for the correlations. Though it would be more accurate to use
strip-wise shape functions, i.e., to do a strip-wisé integration, at
Jresent, to keep the problem tractable and consistent with the mean
flow formulation a single shape function is assumed for the whole shear
layer. Furthermore, since we are assuming that all fluctuation corre-

lations vanish as n + * =, we take the following shape functions

Wl 2
E_=A o(x)e” ;3 A =1.0
p o]

p

Y."2 = A, C. (x) -’ A, =1.0, k=1 v

k Yk k e ] Yk /2 se e

(133)

nl

2
H"E = AH N (X) e‘n

and
g2 = ALE (x) &

Thus o(x), Ck(x), N(x) and E(x) are the amplitude functions which are the
basic unknowns of the problem. o(x) is the centerline magnitude of

the density fluctuation ;:f and similarly Ck(x) are the centerline

magnitude of the species mass fraction Yk“z, N(x) is the total turbulent
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enthalpy density across the shear layer'normalized by
N(x) = I w2 g, (134)

so that A, = 1/V/7

H

Similarly, E(x) is defined as the turbulent kinetic energy per unit length

across the shear layer and is normalized as follows

(135)

so that Aq = 2//r.

We use experimental data to approximate velocity fluctuation correlations

[52] such that

~ The shape functions for the dissipation rates are given by

€ = Aei D;(x) e‘“2 , (137)
where i = 1, 4 denotes p, S, Hp and HS respectively. Again we use shape
functions similar to the ones used for other unknown quantities. If we
identify €5 as the dissipation rate per unit Tength across the shear

layer we can normalize equation (137) to get Ae = 1//n
i

The interaction problem then is basically completed by the definition
of the various shape functions and its use in the governing integral

equations. The reactive flow can then be solved by numerically integrating
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the mean motion equations and the turbulent correlation equations simul-
taneously along with the eigenvalue solution. The various constants that

appear in the equations have to be adjusted to get the best fit with exper-

imental data.

The above closure method requires determination of the Cross cor-
relations of turbulent fluctuation. From existing data, for example,
[6, 53] we see that one form of correlating data is to use correlation

coefficients. This if ¢" and y" are two turbulent fluctuations we de-

fine correlation coefficient rW as

- oV

ou R = r,lon) s S1<r, <1 (138)

Experiments indicate that r¢w is well defined in a shear layer and some
guidance is available from available data [6,46]. Furthermore, except
for the near wake area, where the interaction is highly nonlinear, we may
consider nearly self similar profiles for r¢w across the shear layer.

Therefore, to the first approximation we consider r = r¢w(n) specified

oy
as a known input to the problem. With the specification of r¢w we then

can determine all cross correlations of the form ¢"y" 1in terms of known

variables ;:f and ;:i. Numerical experiments wifh reacting flows [6]
indicate that as the flow proceeds far downstream the mean flow ap-
proaches self similarity and the correlation éoefficients, r¢w tend

to either +1 or -1. For self similar conditions, therefore, Fop 2N

be taken to be a given input to the problem. For turbulent fluctuation
correlations of 0(3) we follow gradient formulation similar to Varma,
et. al. [44] to achieve closure. All higher order terms are at

present neglected for simplicity.
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2.7 Reaction Model

The reaction model used in this analysis is the quasi-global two-re-
action, four-specie model due to Rogers and Chinitz [54]. This model is
simple enough to handle numerically and has been shown io have reasonable
agreement with experimental da;g. At present, this model is sufficient
to show the effectiof finite-rate kinetics on multi-component flow. The

reactions are given by
kfl
H, + 0, — 20H
2 Zer——
b
1
(139)
ke
2
20H + H2 —=22H, 0
b,
where kf and kb are the forward and backward rate constants and are

i i
given in reference [54] and will not be repeated here.

The instantaneous volume rate of production of each specie is then
determined from the reaction model (139) and are given in their non-
dimensional form as

2

o 2
P =Xy oS [B k. Yol -Ake Y, Y. ]

02 = %o, by Yo £, M, 10,

0 2 2 2
re =X, A0 [Cok, Yol Y, =Dk, Y

H,0 = *h.0 £, YOH i, b, 'H,0 ]

(140)
1

r’° =Er2 - %Fr°
rOH =-26G roz - H r§20
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(142)
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On time averaging equation (140) we get the mean rate of production

of the i-th species, r? appearing in equation (17). Following the fil-
tering procedure we can separate out the contribution rf' and rf" cor-
responding to the organized structure motion and fine scale turbulent
motion respectively.

To the first approximation, any fluctuation in kfi and kbi due to
the coherent structure and turbulence fluctuations can be neglected.
However, when turbulence is included, the rate constants based on mean
temperature k(T) has been shown to be significantly in error when com-
pared to the actual mean rate constant k(7Y [6]. The time averaged rate
constants Efi and Fb. can be determined by using a probability density

i
distribution approach first suggested by Chinitz [55].
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In essence, a probability distribution function P(6; x, y) is con-

sidered at any given point (x,y) to define the temperature between & and

8 + do so that

(6) = /' ke (8) P(6) do (143)
i ,

k
fi 0

T-T: :
where 6 = mn_ ; 0<6 <1 (144)

max - 'min

 To solve (143) P(e) must be prescribed apriori. Chinitz [55] used a
clipped Gaussian distribution for P(6). In free shear flows, such a dis-
tribution seems reasonable [56] and therefore was used here also. Here,
Tmax is the maximum temperature attainable in the reaction model and Tmin
is the temperature in the shear layer for no reactions. A clipped

Gaussian distribution for P(8) can be written as

' 2
P(6) = vy 6(0) +4, 5(1) + (H(1) - H(0)) —— exp [-%'—%—L] (185). -
arm ¢} ’

where (H(1) - H(0)) is the Heavyside function given as unity in the range

0 < 6 < 1 and zero elsewhere. Furthermore,

1 u
v, = % erfc [—5773]
1 2 (202)1/2
(146)
1 -
IPZ = 1? erfc ["—'—2 1/2]
(267)
Using équation (145) in the definition of & and ;E-we get [56]
- 21/2 2 _rou)?
=yt u(1- vy -+ (5 Loy - exp(i‘z‘gl)l - (a7
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and

e e e—e 2 1/2 2
Ze0 szt (Fe D) (1w -uy)+ (5) exp(Zp) -
20
(148)
21/2 R
- (1 +)(5)  expl- =541 - B

a

6 and 92 (= g77+- "2) are related to T and (T'2+-T"2) and equations

(147) and (148) can be inverted to obtain u and 02 which can be used in

equation (145) and hence finally determine £ (e) by equation (143).
i

Solution of equation (24) gives T(x,n) in the shear layer. T'2
(= 21A12|T|2) can be obtained from the eigenvalue problem (55) and ™2
can be related to ;:? such that
T2 L w?o52w? s s (mo Tee ) v
M k f
(149)
oY T
- - k a7
- 2u{l§ (m DT + ekf) €5 T ME ]

where gradient closure is employed for turbulent correlations U“V;W and
u"T" and correlations T“V;“'and higher order correlations are neglected

at present for simplicity. Since the solution of the mean flow equations
is coupled to the determination of the mean reaction rate constants, |
jteration is required for the complete solution. However, for numerical
simplicity, the mean rate constants can be determined at any given point
(xi) in terms of the values of T and (;T?'+ ;:7) from the previous stream-

wise Tocation (xi_]) and the iteration procedure can be avoided at the

expense of some numerical accuracy.
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I111. METHOD OF SOLUTION

3.1. Reactive Eigenvalue Problem

The stability equation in terms of pressure perturbation p(n),
equation (55) must be solved subject to appropriate boundary condi-
tions. Since detailed stability ana]ysis of reactive wakes was not
available, extensive numerical calculations were carried out to de-
termine the eigenvalues of the problem. In essence, for a given M_
and frequency B and with assumed mean flow profiles, equation (49 )s
the eigenvalue problem can be solved using Runge-Kutta integration
technique. The boundary conditions used are
(i) On the wake axis (n = 0)
For Antisymmetrical Oscillations
5(0) = 0 : (150)
For Symmetrical Oscillations
¥(0) = p'(0) = 0 (151)
(i) Far from wake axis (n + «)
p(n) + 0 (152)
The boundary conditions are homogeneous and therefore are not
sufficient to establish any solution of the governing stability equa-
tion (55 ) other than the trivial solution of zero. The stability
problem must therefore be formulated as an eigenvalue problem, i.e.,
non-zero solutions which satisfy the‘boundary conditions exist only
for certain combinations of the complex wave number o and complex
phase velocity, c. Since the frequency g = aC is constraint to be
" real, then for fixed g, we need only determine ap and &g (and hence
and cI) to obtain the required eigensolutions.

o
R
It can be seen that an important analytical feature of
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equation (55 ) is the existence of a singularity at the point

7 = ¢ (critical point). Though U is real, the singularity lies on
the real axis in the complex-plane only for a neutral disturbance.
However, for amplified and damped disturbances (cI 2 0), the sin-
gularity lies in the complex n-plane and numefical integration a-
long the real axis is not possible [60].

Essentially, integration begins at large value of n (=n5) and
proceeds along an indented coutour around the critical point in the
complex n-plane. The eigenvalues (aR, aI) are obtained by a linear
search procedure to satisfy the boundary conditions. The method of
solution is basically the approach of Mack [60, 61]. The equations
are separated into real and imaginary parts and solved simultaneously.
Once the eigenvalues are determined all the eigenfunctions U, V,

Ds T and ?k can be calculated using the linear equations (see Appen-
dix A). For neutral eigenvalues, i.e.,cI =0, a linear search is car-
ried out in CR and ap because ap = 0 for the spatially developing
disturbance studied here.

3.2. Interaction Between Coherent Structure and Mean Motion in

Reactive Flow

When all turbulent correlations are neglected in the govern-
ing mean flow equations, the integral equations show the balance
between the mean motion and coherent structure motion. The inte-
grals appearing in the equations can be calculated in terms of the
eigenfunctions (Section 3.1) by Simpson's Rule. To avoid inte-
gration to large values of n, ng is taken to be = 5.0, since for
n>5 the mean flow approaches free stream and the integrals in the

range n, < n < = can be shown to be a function of the value of
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eigenfunction at n = ng - The governing equations for the mean flow
variables V., T, and Y, and coherent structure amplitude |A|2 can be
c

written in a general functional form as

d¢.

1 . -
W=f1(¢isRe !MQOBDCD) ’ 1’1'7 (]53)

where 95 denotes the unknown variables of the flow, i.e., Vc’ TC; Yk
c

(k=1,...4) and IAIZ. These equations can then be solved in the stream-
wise direction from some initial conditions at, say, X=X,y such that

v (x,) Vco,Tc(xo) Tco,ch(xo) ch and [A]%(x,) = |Al °. Since the

0
eigenvalue problem is a function of is at each streamwise location the
eigenfunctions and the 1ntegra15 are evaluated to proceed with the solu-
tion of equation (153). The various integrals appearing in the equa-
tions are given in Appendix B.

3.3. Fine-Scale Turbulence in Reacting Flow

The integral equations for turbulent-correlations, equations (67 ),
(76 ), (87), and (106), can also be written in a similar form to equa-
tion (153) and solved subject to proper choice of initial conditions for
the shape functions (133). In all, there are 11 equations that must be
solved along with the mean motion equations described in Section 2.3. HoQ-
ever, at present the turbulence model has not been included in the numeri-
cal calculation of ;he interaction problem because of lack of comparison
with experimental data, specially for reactive wake. Instead, a numerical
parametric study of the turbulent integré1 equations was carried out to
determine the effect of the variation of the constants and correlation

coefficients R, appearing in the equations. For simplicitly, the mean

oy
flow was assumed to be self similar in transformed coordinate n and in-

teraction between the coherent structure and turbulence was neglected.
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For self similar conditions, all cross correlation coefficients R¢w
tends to either -1 or +1 and therefore from past studies [el, R¢¢ was
given a constant value across the shear layer. Effect of the variation
of R on the development of the turbulence field is studied parametri-

o¥

cally. Effect of adjusting the various constants ('i.e.,sp R SK’ CD s SH)
K

was not studied in detail due to lack of experimental data for the physi-

cal reaction model employed here. Numerical calculations were carried

out using the Runge-Kutta integration technique.
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IV. RESULTS AND DISCUSSION

In this chapter the results of the numerical calculations are pre-
sented and the various facets of the interaction problem are discussed.
Since the basic thrust of this research has been to develop a model to
study the interaction stability of a coherent structure in a supersonic
reactive flow, detailed analysis of the stability of a disturbance in
reactive flow has been carried out. There is a considerable lack of ex-
perimental data on the reactive wake phenomena, specially in the Hz- 02
combustion system studied here. Therefore, no direct comparison was pos-
sible for the development of a coherent structure in reactive free shear
layer. However, experimental data [27,28,40] is available for nonreactive
hypersonic wake of a flat plate and a comparison is possible. The reac-
tion model is at present not of great importance to study the growth and
decay of coherent structure except so far as to include finite-rate kine-
tics in the interaction problem. The presence of finite-rate chemistry
results in large species production rates for the reaction model used
[54] and therefore imposes stringent stability restrictions on the expli-
cit numerical calculations carried out here. The step size required for
stability of the numerical calculations of the reactive interaction pro-
blem is so small that detailed computations for reactive cases was compu-
tationally prohibitive and therefore only a representative set of solutions
are presented. It may be possible to solve this problem by an implicit
numerical technique which could result in detailed solutions within rea-
sonable computational time. At present such a numerical solution is be-
yond the scope of this research and must await future study.

The turbulence model developed in this study is at present untested,

and therefore its inclusion into the interaction between coherent structure
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and mean motion cannot be justified. Instead, the turbulence model is
parametrically studied for a simplified mean flow and with the assumption
that there is no interaction between coherent structure motion and fine-
scale turbulence. This enables the fine-scale turbulent motion to be-
come uncoupled from the development of the instability wave and with pro-
per choice for the mean flow prof%]es,theturbu]ent integral equations can
be numerically solved subject to given initial conditions. The various
constants and correlation coefficients RW appearing in the turbulent
equations have been parametrically varied to study their effect on the
spatial development of fine-scale turbulence in reactive wakes. De-
tailed comparison with experimental data for a free shear layers under-
going Hz- O2 kinetics is again not possible due to the lack of experimen-
tal data on the turbulence field of this combustion system. The success
of any turbulence model capable of handling finite-rate kinetic effects
will depend upon the availability of reasonable comparison between nu-
merical predictions and experimental data and since this is not possible
at present, the turbulence model developed here is studied only as an in-
dependent problem and was not included in the interaction analysis.

The results presented here therefore falls in three distinct parts.
In the first section the results of the detailed study of the stability
of reactive wakes is presented. In the second section, the interaction
between the coherent structure motion and the mean flow motion is numeri-
cally studied. And, finally, the numerical parametric study of the tur-
bulence model is presented for a self similar mean flow field. Effect
of varying the cross correlation coefficients is studied for both reactive

and non reactive cases.
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4.1, Stability of Reactive Laminar Wakes

The eigenvalue problem developed for reactive flow, equation (55),
is solved subject to the boundary conditions (150), {151) and (152) and
the eigenvalues a(aR, aI) are numerically calculated. With proper choice

of the the mean flow variables (i.e., VC, TC and Yk ) and for a given
' c

free stream Mach number M_, the stability equations can be integrated

as described in Section 3.1. Solution proceeds in the camplex n-plane
(Figure 2) and therefore the equations and the boundary conditions must
be separated in their real and imaginary parts and solved simultaneously.
With a reasonably good choice of initial guess for ap and ay for a given
real frequency B, the nonreactive case converged in 4-6 jterations. How-
ever, the corresponding reactive cases took 6-9 iterations and the compu-
tational time also increased proportionately. A convergence criteria of

8 was used for both cases.

107
It was seen from the computations that the eigenvalues for the re-
active case depended significantly on the finite-rate kinetics used in
this model and therefore it is expected that different rate kinetics me-
chanism would result in different eigenso1utiohs. However, it was seen
that the general trend of solution remains the same and so some generalized
conclusions can be drawn from the study of this reactive stability pro-
blem. Stability calculations such as this gives some insight into the
phenomenon of transition to turbulence in reactive flows which is an
area of research of great interest.
Lees and Lin [43] and Lees and Gold [57] have shown for nonreactive
flows, that neutral subsonic disturbances exist only when a generalized

mean density-vorticity product has an extremum, and then only when the

phase velocity corresponding to this location is subsonic relative to an
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observer fixed in fluid. This condition is also sufficient (but not neces-
sary) for the existence of amplified subsonic disturbances. It has been
shown that the relative velocity 1- u(x,0) governs the stability of the
wake and so the proper coordinates for the stability problem is a system
fixed "in the fluid" even though the mean flow is calculated in a coor-
dinate system fixed in the body. A disturbance is classified "subsonic,"
"sonic" or "supersonic" according to whether the relative propagation
velocity is less than, equal to, or greater than the ambient sound speed.
The local relative Mach number of the wave front is given by [57]

v el (154)

vT :

where M = M_V_ is the relative Mach number. A subsonic disturbance must
therefore satisfy the condition

-C (155)

<L
R Mr
It was also shown for nonreactive case that a neutral subsonic distur-
bance exists only for certain mean velocity temperature profiles and ~Cp
is uniquely determined by these profiles. The stability restriction re-
sults in the criteria that -Cr must lie in the interval [0,1] for a
self-excited disturbance to exist. For subsonic disturbance it results
in the requirement that [57,58]

1
0 < -cp <y (156)

r
It has been possible to establish some criteria for the existence

of neutral subsonic disturbances [57] in compressible nonreactive wakes
but it seems impossible to extend such requirements for the reactive
case. For two-dimensional compressible nonreactive wakes, the condition

that uniquely determines the existence of neutral disturbance is given

by
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T—

]
(!ﬁ- =0 and Cp = C (157)
T cp R "R .
c
where prime denotes differentiation with respect to n. Using the mean

flow profiles and equation (157) results in

—n 2n -1 o~
Te ¢ = (—5—) (158)
2n "+ 1
c
and 2
N
-(cR) = e (159)
c
where e is the critical point where w = Cp-

This indicates that for nonreactive case, the neutral solution

phase velocity R is a function of Tc only and is independent of the
c
relative Mach number. For these values of Cp o the neutral inviscid ei-
o

genvalues for anti-symmetric disturbance (uc) can be determined as a
function of T.and M_ (Figures 3,4). The solution shown in Figure 4
clearly indicates that whereas for no reactions in the flow, the criteria
equation (157) is always satisfied, for finite-rate kinetics however,

the neutral phase velocity, -Cp is no longer a function of Tc only but
o

instead depends on both Tc and Mr' This interesting deviation from the
inviscid stability criteria, equation (157), indicates that the require-
ment given by equation (157) is necessary but not sufficient to theore-
tically define stability bounds for reactive wakes. At present, an ex-
tension of the nonreactive stability criteria to handle reactive stability
seem very difficult and has not been attempted.

In Figure 3 results of the neutral eigenvalue solutions for nonre-
active flow is presented. For increasing temperature excess Tc’ -Cp in-

creases towards zero, i.e., the phase velocity approaches free-stream

58



\L

velocity. The critical point . where W= Cp increases with Tc' Excellent
c

agreement with the Lees and Gold [57] solution is also obtained (Figure 3).
The eigenvalue @ decreases and almost becomes constant with increase in
Tc for the case of Mf ~ 0. The dependence of the phase velocity on Tc
and Mr is shown in Figure 4 where it can be seen that the reactive case
deviates significantly from the nonreactive case. Clearly, the numerical

solution shows that a minimum value for -Cp for each value of Tc is ob-
c

tained as a function of Mr (= MQVC). In all the neutral eigenvalues calcu-
lations a value of Vc==0.4 was maintained at all times. It is also noted

from Figure 4 that the -Cp bottoms out much more sharply for lower Tc‘
c

The actual phase velocity, in the coordinates fixed with the body is
given by CR= 1+-VC¢R and therefore depends implicitly on the velocity de-
fect in the wake axis. In Figure 5 the solutions for the neutral eigen-
values a, 35 function of Mr and TC is presented. For fixed value of
TC the wave number a. decreases with increasing Mr as predicted by Lin
[59] and computed by Lees and Gold [57]. Again excellent agreement with

the solutions of reference [57] is obtained for the nonreactive case.

2 in a similar manner as the nonreac-

For reactive case, o, varies with Mr
tive case. However, the wave numbers are much larger and the range of
relative Mach number over which the neutral (and adjacent amplified) dis-
turbances can exist also increases. This kind of increase is also noied
with the increase in temperature excess Tc'

Since we are interested in spatially developing waves, a comparison
of the variation of frequency g8 with relative Mach number Mr is presented

in Figure 6 . For fixed Tc’ g decreases with Mr for both reactive and

nonreactive cases. The frequency at which neutral disturbance can exist
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jncreases with increase in Tc and is also greater for the reactive case.
The leveling of frequency 8 for Tc==4.0 during reactions is due to the
variation of -Cr observed in Figure 4.

The boundary conditions, equations (150)-(152) allow for both sym-
metrical and antisymmetrical disturbances in the wake and therefore nu-
merical solutions were obtained for both the disturbances. It has been
determined that antisymmetrical disturbances are more unstable in laminar
wake transition [29] and similar trend is also observed during the pre-
sent computation. Figures (7) to (10) give the eigenvalues computed
for symmetrical disturbances and Figures (11) to (14) give the corres-
ponding antisymmetrical disturbance solutions. The complex phase velo-
city C(CR’CI) shown in these figures is the velocity with reference to
the coordinate system fixed to the body and is defined as C=1 +Vc Rec
where ¢ (cR, cI) is the relative phase velocity defined in the local
coordinate system (equation (55)).

In general, the reference conditions used for the present compu-

tations unless otherwise specified are

1500°K , Yo = 0.05, 0.90, 0.025, 0.025
e

L =0.Im M =2.0 and g =0.2

[ -] o«

T

and the centerline values for the mean profile were taken to be

Ve=0.4 , Tc=4.0 , ¥y =(-0.25,-0.25, 3.0, 6.5)

In Figures (7 ) to (9) the reference values for species Y, was
e

taken to be (0.3, 0.65,0.025,0.025) which is a fuel rich mixture for

this present reaction model.

In Figure 7 we see that for nonreactive flow, with g < 0.24 the

solutions are amplified (CI > 0) and with 8 > 0.24 the solutions are
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damped (CI < 0). At g = 0.24 we have a neutral eigenvalue solution.
However, when the reaction is turned on, all the solutions are amplified -
and also the degree of amplification is much higher. The maximum ampli-
fication occurs around g = 0.092 for nonreactive case but is around
g = 0.081 for the corresponding reactive case. This seems to indicate
that the disturbance is more 1ike1y to become unstable for the reactive
case. The phase velocity CR monotomically increases with g for both
cases. However, CR is lower when chemical reactions are going on. This
implies that for reactive flow, though the disturbance gets highly ampli-
fied it is travelling slower relative to freestream. This is consistent
with experimental observation by Ganji and Sawyer [21] of organized
structure motion in a propane-air combustion flow.

In Figure 8 we show the variation of the eigenvalues as a function
of freestream Mach number M_. A neutral eigenvalue is observed near
M, =2.375 for nonreactive case which disappears when the reaction is
turned on. We notice that for Mw<:2.375 the solutions are amplified
(CI> 0) and for Mw> 2.375 the solutions are damped. This is very inter-
esting because in a very early paper concerning stability of jet flows,
Pai [62] had theoretically predicted that there is a critical Mach num-
ber above which jet type flow will be stable with respect to all small
symmetrical disturbances in the inviscid fluid. He further showed that
for the case of no energy transfer the critical Mach number is about 2.5.
Qur present numerical results for symmetrical disturbances shows that
the flow is stable for M_>2.375. This close agreement between earlier
theory [62] and present analysis indicates the validity of the present
numerical results. Another interesting observation in Figure 8 1is that

when the reaction is turned on there is no neutral eigensolution and the
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results are completely amplified. Moreover, the reactive solutions
seems to be weakly dependent on M_. A possible explanation of this re-
sult is that since the release of chemical energy due to reactions is
independent of Mach number, the variation of M_ will probably have Timi-
ted effect on the eigenvalues. The phase velocity CR is still smaller
when reactions is turned on. |

Figure 9 shows the variation of the eigenvalues as a function of
velocity defect Vc' There is significant differences between the non-
reactive and reactive cases. For nonreactive flow the rate of amplifi-
cation is maximum around VC==O.505. However for reactive cases calcula-
ted here, the disturbances amplification increases continuously with in-
crease in Vc' The phase velocity CR is again smaller for the reactive
case. The results indicate that very close to the rear edge of the flat
plate where Vc is large, chemical reactions make the disturbance grow
rapidly but on proceeding downstream into the wake where the interaction
weakens and VC decreases, the amplification rate decreases. The phase
velocity CR however, increases as VC is decreased and approaches free-
stream velocity far downstream into the wake.

We further note that for Vc< 0.45, the amplification rate is lower
for reactive case as compared to reactive case. This indicates that the
instability wave is not amplified for all cases considered here and that
under some initial conditions reactive wave will be less amplified when
compared with the nonreactive case. It was determined during the pre-
sent calculations that the wave amplification is quite dependent on
shape function assumed. The phase velocity, however, is always lower
for reactive cases. In Figure 10 we plot the variation of the eigen-

values as a function of temperature increment TC. Here for small value
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of Tc we see that CI is larger for nonreactive case as compared with
the reactive case. The phase velocity CR is stil1l lower for reactive
case. There is a maximum amplification occuring around Tc==2.4 for
nonreactive case but is no longer present for the reactive case. This

figure shows that with the low value ofVc considered here, and for reac-

tive case with 5%H2, the wave is amplified less as compared with nonreactive

case but the amplification continuously increases with increase in Tc'
With higher value of Vc the amplification again becomes higher for reac-
tive case as compared with nonreactive case. The amplification rates
show similar trends as observed experimentally by Ganji and Sawyers
[21].

In Figure 11 we present representative calculations of the eigen-
values for the case of antisymmetric boundary conditions, equation (151),
as a function of 8. In previous wake studies it was determined that
antisymmetric boundary conditions resulted in more unstable wave motion
and it has also been experimentally confirmed that in wake flows the
wave structure correspond more closely to the antisymmetric solution [27,28
29]. As canbe seen in the figure, the amplification (CI>O) is much larger
for reactive case as compared to nonreactive case. Furthermore, when
compared with the symmetric solutions in Figure 7 we see that amplifi-
cation is greater for the antisymmetric solution. All the eigenvalues
are amplified solutions and no neutral solution exist unlike the case
in Figure 7 . For nonreactive case there is a maximum amplification
occuring around B =0.17 which is greater than g =0.092 for the corres-
pbnding symmetrical case. The wave speed CR is still smaller for reac-
tive case as compared with the nonreactive case.

Figure 12 presents the eigenvalues as a function of M_ for
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antisymmetrical disturbances. The amplification continuously decreases
with increase in M_ for no reactions and shows a maximum for very low
Mach number. For reactions the amplification shows a maximum around
M_=3.0 and is generally much larger than the nonreactive solution.
Compared with the corresponding symmetrical disturbance solutions
(Figure 8 ), antisymmetrical disturbance is highly dependent on the
freestream Mach number. Figure 8 also shows fhe stabilizing effect of
increasing M_ as observed experimentally [27,40].

Figure 13 shows the eigenvalues as a function of velocity defect
Vc' In general the amplification rate is higher for reactive case and
the overall behavior is quite similar to the corresponding symmetrical
case (Figure 9 ). However, no maximum is directly observed in ampli-
fication case within the range calculated except perhaps the tendency
to level off near VC==0.8. Figure 14 gives'khe variation of the eigen-
values as a function of Tc' The trend shown here is quite different
from the symmetric case. The amplification for nonreactive case de-
creases with increase in temperature excess as observed by Lees and
Gold [57] and the wave number also decreases with Tc' For reactive
case however, the amplification rate shows a distinct maximum around
Tc= 1.8 and the wave number variation also shows a maximum. This in-
dicates that the wavelength (= 1/aR) first decreases and then increases
with increasing temperature excess. The phase velocity CR is consis-
tently lower for the reactive case as determined by Ganji and Sawyer
[21].

Finally, Figures 15 and 16 show the characteristic variation of

the pressure eigenvalue amplitude lﬁl and phase ¢p across the shear

layer for symmetric and antisymmetric disturbance respectively. In
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general, the amplitude is much larger for the reactive case in both
figures. The phase changes across the shear layer shows significant
difference between reactive and nonreactive flows.

Finally in conclusion the study of the stability of reactive
wakes has shown remarkable differences with’the classical nonreactive
stability analysis. Though séa11 disturbance analysis cannot deal with
transition, it however has been shown [39] that linear stability theory
is a useful guide to the understanding of the main parameters and phe-
nomena governing transition. The growth and decay of amplification
rates along the wake axis can be used to give a good indication of non-
linear effects present in the wake. The excellent agreement of lami-
nar stability theory with previous studies for nonreactive cases [57]
indicates the applicability of this theory to study the development of
disturbances in the flow. The present calculation of the eigenvalues
shows good agreement with past theoretical and experimental analysis.
For reactive flows, it has been shown that the neutral phase velocity
is no longer independent of relative Mach number Mr‘ The condition
for neutral stability equation (157), is no Tonger sufficient for
reactive flows. Furthermore for the amplified solutions calculated
here, qualitative agreement has been obtained with the experimental ob-
servations of Ganji and Sawyer [21]. In essence, the reacting wakes
are more unstable than nonreactive wakes. The amplification of the
wave is in general higher for reactive wakes but the wave propagation
velocity is consistently lower. The antisymmetric disturbance is more
unstable than the symmetrical disturbance in general for both reactive
and nonreactive cases which again agrees with experimentally observed

data in wake flows. The calculations further show that the choice of
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the mean flow velocity, temperature and mass fraction profiles governs
to a great extent the spatial stability of laminar reactive and nonreac- -
tive wakes.

Since the reactive eigenvalue problem formulated in Appendix A is a
very general one it was decided to do some representative calculations of
reacting flow fields other than a wake. Essentially, the mean flow as-
sumption has to be modified to account for different physical geometry.
For example, a heated symmetric jet has a mean velocity flow profile that
can be given in terms of similarity variable n as u = sechzn [67]. For
heated jet, the temperature profile can be still taken as near Gaussian,
equation (40). For symmetrical disturbances, the stability problem was
solved for a characteristic frequency g=0.1 and presented in Figures 17
and 18. Figure 17 shows the variation of the amplitudes of pressure
eigenfunction |p| and vertical velocity eigenfunction |v| across the jet
for reactive and non reactive conditions. Comparing with the symmetric
solutions for the wake, Figure 15, we see remarkable differences that do
not necessarily depend upon the differences in reference conditions alone.
The vertical velocity amplitude |Gf shows a maximum for non reactive case
around n ~ 5. However, for reactive cases no such maximum is observed
and the amplitude is Tower than the non reactive case. The eigenvalues
indicate that amplification is much higher for reactive case and the
wavelength (~ 1/aR) is lower. The corresponding phase changes of the
pressure and vertical velocity eigenfunction across the jet is shown in
Figure 18. The pressure phase ¢p’ shows a single phase change at large
value of n for both reactive and non reactive cases. On comparison with
the corresponding wake solution, Figure 15, it can be seen that reactive

wake has two phase changes. The phase changes for the vertical velocity
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eigenfunction oy is also shown in Figure 18. In general, the trends in
phase changes are similar for both non reactive and reactive jets. De-
tailed calculations of reactive jet stability has not been carried out
at present. However, it has been shown that the generalized stability
problem formulated here is quite versatile and is capable of handling
different physical problems. Other reactive models can also be handled
by proper modifications to the finite-rate kinetic terms v* and 8 in
equation (55). Reactive flow stability of other shear flows like boun-
dary layers and jets would also be of great interest due to the exis-
tence of large scale structure in these shear flows [25 ]. Such stabili-
ty calculations have, however, not been carried out at present and must
await future study.

The study of wave development and the onset of nonlinearity leading
to transition has been extensively studied and the general results show
both qualitative and quantitative agreement with past experimental and
theoretical data. The present study results in some basic insight into
the instability wave phenomena in reacting shear layers. By modeling
coherent structure as an instability wave the results of such an analysis
can be used to study the effect of finite-rate kinetics on the develop-
ment of organized motion in free shear layers. However, the spatial
development of such instability waves is coupled to the variation of the
mean flow and therefore their spatial development has to be studied
simultaneously. Such an analysis is the topic of study in the next

section.

4.2 Coherent Structure Interaction in Reactive Wakes

The development of the interaction between the mean flow and the

coherent structure can be studied by integrating the governing equations
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for given values of M_, Re, CD and By The integration proceeds down-

stream from an initial location x= Xo with initial values VC . TC , Yk
0 0 o

)
and |A|02. Experimental data [27-29, 40] can be utilized to obtain ini-
tial values for the velocity defect and temperature excess for non reac-
tive wakes. However, the initial value for the amplitude of the coherent
structure has not been measured experimenta]]y-and so the value used must
be such that it can simulate experimental conditions. There is also a
considerable lack of experimental data‘on reactive wakes and so the ini-
tial values used are the same as that for non reactive wakes and a com-
parison of the interaction deve]opmént is studied between the two cases.

For non reactive flow, with uniform concentration gradients, i.e., Yy =
C
0

k=1,4, the interaction problem is numerically calculated for the experi-
mental data available [27, 40]. Using the initial conditions used by
Liu and Gururaj [39] the sclutions are obtained for a hypersonic wake
[27]. The calculations correspond to the transition behind an adiabatic
flat plate. The initial Jocation is chosen such that it is upstream of
the nonlinear region. Thus the interaction develops from the linear re-
gion into the nonlinear region. In experimental studies the transition
from laminar to turbulent arises naturally from body generated noise or
other forms of disturbances. In the present numerical calculations the
disturbance arises due to the initial value given for the amplitude
|Aloz and its growth and decay downstream occurs due to the interaction
between the mean flow and the coherent structure.

Figures 19 and 20 show, respectively, the variation of the center-
line temperature excess and centerline Mach number along the wake axis.

The present calculations show excellent agreement with the experimental
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data of Batt and Kubota [27] and the theoretical work of Liu and Gururaj
[39]. In the initial growth region the disturbance amplitude is small
and both the temperature defect TC and Mach number Mc follow essentially
the linear growth and is identical to the'1amjnar'case,1A|02=(). However,
as the interaction proceeds downstream the amplitude rapidly increases
and the solution deviates from the 'laminar' solution and the temperature
and velocity decay is more rapid. The solution follows very closely the
experimental data [27]. The decay is more rapid for higher values of
]Alo2 and it was seen that the higher value of lAlo2 (= 2x 10-5) shows a
better comparison with the experimental data [27]. Since detailed cal-
culations of the non reactive wake has already been investigated [29, 38,
39, 63], such calculations will not be repeated here in detail. Only
some representative solutions for non reactive cases will be presented
here.

It was found during the preliminary calculations of the reactive
wake that the reaction model used here [54] results in large production
rates and therefore imposes stringent stability requirements on the inte-
gration of equation (153). In fact the complete réaction model, equation
9 __.4-10

(139), results in integration step size of the order of 10~ 10 that

is computationally prohibitive. In their calculations also, Rogers and
Chinitz [54] also observed large instantaneous production of the hydroxyl
radical thereby requiring very small integration steps. These large pro-
duction rates were identified with the first reaction in equation (139)
and they found typical chemical time for OH production of the order of
10710 seconds [54]. They further estimated that the first reaction, i.e.,

H +02-:. 20H, may be in chemical equilibrium during much of the time

2
required for a typical integration step that is computationally reasonable.
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Due to the limitations imposed by the available computing system,
it was decided that in order to alleviate the computational problem
caused by large production rates, a simplified procedure would be adopted
that would allow finite-rate calculations within reasonable computational
time. The present formulation already assumeé premixed flow and since
we are only interested in presenting a formulation that can account for
coherent structure motion in reactive flow, to the first approximation,
we assume that the first reaction is in equilibrium and no production of
OH radical occurs. The second reaction which is essentially the produc-
tion of water vapor is a much slower reaction and finite-rate calcula-
tions based on this reaction is computationally possible. Therefore,
all reactive solutions presented here will assume the above mentioned
simplifications. This assumption results in no production of OH radical
and also no consumption of 02. The premixed model used here did not in-
clude N, as an inert specie in contrast to the model in reference [54].
By assuming equilibrium for the first reaction, the presence of oxygen
essentially assumes an inert form for the second reaction since no con-
sumption of 02 occurs. The results presented here, therefore, account
for the finite-rate production of water vapor at the expense of the hy-
drogen and hydroxyl radical in the premixed flow. Finite-rate calcula-
tions of the second reaction still results in step sizes of the order of
10'4 ~10'5 and therefore only representative calculations are presented
due to computational system limitations.

It must be noted here that the reactive eigenvalue problem depends
significantly on the variation of mean flow profiles and must be solved
at each streamwise location which results in increased computational

costs. For numerical efficiency it is however possible to store an
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eigenvalue map, whereby the eigenvalues (a, c), the eigenfunctions (¢i)

and their integrals can be stored as a function of Vc’ TC and Yk (k=1,4).
c

At each streamwise location this map or table can then be referred to
and the interaction integrals (Appendix B) determined by interpolation.
At present such numerical optimizations has not been carried out due to
storage logistics. |

It was also observed during the calculations that the mean flow
shape functions assumed may not necessarily be applicable to reactive
flow situations. Even though the mean velocity and temperature profiles
have been experimentally observed to be nearly Gaussian [65] no detailed
measurements are available for the specie concentration p;ofi1es in super-
sonic reactive wakes. Concentration profiles in reactive jets [22] indi-
cate that the profiles do deviate significantfy from Gaussian distribu-
tion [23]. Since the integral formulation used here requires a priori
assumptions of the mean flow shape functions, proper choice of the pro-
files is necessary for accurate solutions. Here, for numerical simplicity
the mean flow shape functions for all variables were assumed to be Gaus-
sian as defined in equation (49). This simplification allowed the reduc-
tion of all the integro-differential equations to the form in equation
(153). During the course of the numerical calculations, it was deter-
mined that this simplification resulted in reactive solutions that were
highly dependent on the mean flow specie mass fraction shape function
assumptions. Representative mass fraction profiles are shown in Figure
21 (a-d) for a supersonic reactive wake. To see the effect of large
concentration gradients near the wake centerline, the mass fraction values
at n=0 were taken to be Yk (= -0.25, -0.25, 3.0, 6.5). Figures 2la

c

and b show the mean flow mass fraction profiles for hydrogen, VH and
2
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oxygen, 762 at various axial locations. We see that hydrogen levels are
reduced as the flow progresses downstream. Similar trend is observed in
Figure 21c where the hydroxyl radical mass fraction profiles are presen-
ted. The chemical reaction used here resu1ts_1n the depletion of H2 and

OH as the water vapor is formed. This is evident from 21d where Vh 0
‘ 2

profiles increase with axial distance. Comparing with the non reactive
profiles also plotted in Figure 21, we see that all the non reactive
profiles tend to uniform conditions with axial development. However,

for reactive conditions, only Vb profiles still approach uniformity
. 2

which is directly due to the fact that the first reaction is assumed to
be in chemical equilibrium and oxygen molecules act as an inert specie

for the second reaction. These figures also indicate that OH radical is
consumed more rapidly than the fuel (HZ)' Th%s is again consistent with
the fact that OH is a very unstable radical and at high temperatures re-
acts very fast to produce H20 vapor which is more stable. The numerical
computation therefore had to take into account the large rate of deple-
tion of OH as the restricting factor leading to small integration step

sizes. When all OH radical mass fraction was used up at the centerline

(i.e., Y — -1) the numerical computations were terminated. This was

OH
necessary io avoid negative mass fractions in the flow field. This limi-
tation of the present calculations can be related to the choice of mean
flow specie shape functions and also to the fact that molecular diffusion
was neglected in the original formulation. Another reason‘for this be-
havior is the basic assumption of premixed conditions which has been
shown to be more complicated than non-premixed flames [68]. Furthermore,

on comparing the production rates in supersonic HZ-O2 combustion systems

with other hydrocarbon combustion systems [21] it was seen that the
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hydrogen-oxygen combustion rates are much higher leading to the point of
view that the combustion system used here is 'kinetically' dominated.

However, all the above mentioned restrictions in this formulation
can be removed by solving with more appropriate shape functions for the
specie and adding diffusion terms, etc. Of coﬁrse, finite difference
calculations would be more accur;te jnstead of integral considerations
for reactive flow fields, but step size restrictions would be more
stringent in such calculations.

Figures 22 and 23 present respectively the centerline variation of
the mean flow temperature excess and velocity defect for a M_= 3 turbu-
lent non reacting wake experimentally studied by Demetriades [40, 64].
To account for turbulence simple eddy viscosity models 1in Spalding [69]
(Model 1) and Schetz [70] (Model II) (see Appendix C) were utilized.
The results indicate that the decay in temperature and velocity is only
slightly larger than the case for no turbulence. Coherent structure
development as discussed above cannot account for turbulence and the
results indicate that the decay observed due to the jnteraction between
the large structure and the mean flow deviates significantly from the
turbulent data of reference [40, 64]. Better comparison is observed
in the earlier part of the wake where the amplitude lAI2 is increasing.
Further downstream, the amplitude decays and the coupling between mean
flow and coherent structure motion weakens. This growth and decay be-
havior of the amplitude can be seen in Figure 24 which also shows the
balance between the various terms appearing in the coherent structure

kinetic energy conservation. Here the averaged disturbance kinetic

energy density C{x) is given by

cx) = V2 |A]F = % [ 082+ 1aviPran (160)

- 00
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which is due to the normalizing condition used in equation (59). We
further note that the development of the amplitude is essentially
governed by the Reynold stress production IRSC due to the interaction
between mean flow and coherent structure. All other terms contributing
to the conservation mechanism in equation (58 ) are relatively smaller
than IRSC' Very similar results were also obtained by Lin and Gururaj
[39] and Ko et. al. [38]. Inclusion of turbulence into the governing
equations results in lower values for the energy density C(x), stress
production IRSC and coherent structure dissipation I¢c. However, the

mean flow dissipation I , also shown here, is larger for the turbulent

¢
case as expected. The mean flow dissipation continuously decreases
with axial development since the mean flow velocity gradient (%g) de-
creases. The coherent structure dissipation first increases with the
increase in the amplitude |A]2 and reaches a maximum value at an axial
Tocation that closely corresponds to the amplitude maximum. Further
downstream as the amplitude decays the dissipation, I¢c, also decreases
as was observed in other calculations [39].

The calculations for non reactive cases show only limited effects
of the inclusion of the eddy viscosity model. The more complete turbu-
lence model formulated in Chapter II was not used due to lack of time
to do extensive numerical experiments. Since the present analysis is
directed towards an investigation of the interaction between mean flow
and coherent structure in turbu1eﬁt reactive flows, the eddy viscosity
model was included to account for some turbulent effects. Due to the
lack of experimental data on supersonic turbulent reactive wakes, no

detailed analysis was undertaken to investigate the effect of various

turbulence models. However, all further results presented here for
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reactive cases were calculated with inclusion of the algebraic model for

eddy viscosity (Model II).

4.2;1. Effect of Initial Amplitude and Oscillation Frequency

Figures 25-28 present the results for the reactive wake for various
initial values of the amplitude, |A|02. Figure 25 gives the centerline
temperature increase as a function of axial distance. Since the second
reaction is exothermic, temperature is increased as water vapor is formed.
We see that as the initial amplitude |A|o2 is increased, the temperature
also increases. In contrast, non reactive flow temperature excess de-
creases with increase in initial amplitude. From the calculation it
became evident that the increase in amplitude results in increased con-
tribution from the coherent structure development to the mean flow ther-

mal energy conservation. Essentially, the streamwise gradient of total

dI
enthalpy diffusion flux integral, - 75? and dissipation I¢C are always

positive and increases with increasing initial amplitude which directly
contributes to the growth of temperature excess. In constrast, the decay
of mean flow velocity defect (Figure 26) increases with increase in ini-
tial amplitude. This is due to the fact that the Reynold stress produc-

€ jncreases with increase in initial

tion due to coherent structure, IRS
amplitude and therefore increases the velocity defect decay (equation
(36 )). The mean flow dissipation, I¢, (equation (46 )) is not affected
by changes in initial amplitude. Figures 27a and 27b give the evolution
of the mean flow centerline specie mass fractions under the same condi-
tions. Increase in initial amplitude increases the decay of hydrogen

and hydroxyl centerline values (Figure 27a) and also increases the in-

crease of water vapor (Figure 27b). However, it is clear that in this
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kinetical1y controlled combustion studied here, the effect of changing
the initial amplitude is only marginal. Essentially, this is due to
the fact that the combustion results in large production rates which are
almost independent of the coherent structure development. Furthermore,
though the growth of the amplitude increases with increasing initial
values (Figure 28), the maximum is significantly lower when compared to
the non reactive case. The maximum occurs around x/L ==13.2 as compared
to x/L = 30 for the non reactive case (Figure 24). One of the interes-
ting results of such calculations is that the growth rate of coherent
structure is significantly lower in reactive flow and also the maximum
attained is lower. Evidently, this reaction mechanism inhibits the
growth of coherent structure, a result consistent with the observation
of Ganji and Sawyer [21]. Though the growth and decay behavior of the
amplitude is similar in both non reactive and reactive flows, their
magnitudes are quite different. This essentially seems to indicate the
growth rate of coherent structure amplitude depends quite significantly
on the reaction mechanism. In fact, the present calculations show that
due to the large production rates associated with the reaction, the
coupling between mean flow and coherent structure motion is considerably
weakened and the mean flow field variation, especially the thermal and
concentration fields are not significantly affected by the coherent mo-
tion. The coherent structure motion however is modified due to the pre-
sence of finite-rate kinetics. This behavior can again be identified
with the dominance of the finite-rate terms appearing in the governing
conservation equations.

The present calculations were also carried out to determine the

effect of changing the initial peak frequency 8. Figure 29 shows the
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effect of changing the initial spatial frequency on the growth/decay
characteristics of the coherent structure amplitude. It has been ob-
served in non reactive calculations [35] that there exists a frequency
for which the local amplification (-aI) is a maximum. The eigenvalue
stability problem solved in Section 4.1 indicates the possibility of a
peak amplification for the reactive case also. Here we present the
solutions calculated for various initial frequencies. As the initial
frequency Bo is increased, the amplitude of the coherent structure also
increases. This is again similar to the behavior observed in nonreactive
case. The solutions for Bo==0.4 is not shown completely except so far
as to show the increase in IAIZ. It is evident from these solutions that
as far as the interaction is concerned, By = 0.4 as compared to Bo==0.2
and 0.3 is one for which the initial large-scale structure is most ampli-
fied and is thus expected that the large-scale structure at this frequency
will be the most efficient extractor of energy from the mean flow. De-
tailed calculations for various other B, are however necessary to deter-
mine which initial frequency results in peak amplification. Such calcu-
lations have not been carried out at present. Due to the dominance of
finite-rate kinetics, it is expected that in general solutions for various
By will give very similar results as can be seen from the variation of
the mean flow centerline specie mass fraction shown in Figure 31. There-
fore, at present, all other reactive solutions computed here were calcu-
lated for Bo==0.2 and numerical experiments for various By has not been
attempted.

The local eigenvalue problem, hence the local amplification rates,
enters the interaction problem only through the integrals of the eigen-

functions. As far as the streamwise development is concerned, because

77



(.’

il

of the finite amplitude of the disturbance, the local eigenvalue problem
essentially lose their identify. Nevertheless, the Tocal amplification
rate, o and its streamwise development is of interest due to its ef-
fect on the behavior of the local eigenfunctions. Figure 30 shows the
streamwise variation of the local wave number, R and the local amplifi-
cation rate, -y for various initial frequency. The wave number, np
increases with streamwise distance and also increases with increase in
frequency. This indicates that the wavelength of the disturbance

(= I/aR) decreases with increase in BO and also decreases as the mean
flow develops. A similar trend was observed for the non reactive case,
also shown in Figure 30 for the case By = 0.3. Such decrease in scales
were also observed by Demetriades [40] for non reactive wakes. Though
no experimental data is available for the reactive case, it is however
expected that the trends calculated here will also be observed in future
experiments. The local amplification rate, -ay decreases with streamwise
development. An interesting observation here is that on comparing the
reactive and non reactive cases for Bg = 0.3, the local amplification
rate starts higher for reactions as was calculated in Section 4.1. How-
ever, as the mean flow developes the reactive amplification rapidly de-
creases to values below the corresponding non reactive case. There are
two reasons for this behavior. As shown before the amplitude of the
large-scale structure is significantly lower for the reactive case and
also the peak value occurs around x/L=13.2, whereas for the non reactive
case the growth of IA]2 continues till x/L =30. This results in lower
amplification rates a% is observed in Figure 30. With increase in Bgo
the amplification rates also increase és is expected. However, the rate

of decrease with streanwise development actually increases with increase

/8



in initial frequency. An interpretation of these results is that in re-
active flow, the coherent structure development is actually stabilized
more rapidly. A-similar trend has been observed experimentally by

Ganji and Sawyer [21]. Combustion therefore seems to affect the develop-
ment of coherent structure in the mean flow in a mariner consistent with
past experiment and theoretical ;tudies [21-24]. Essentially, the large-
structure is initially amplified but as the interaction between the
coherent structure and the mean flow developes, the growth rate
(d]A|2/dx) and the local amplification rate is significantly lower as
compared to non reactive case. Detailed calculations for various other
combustion models are necessary before any generalized conclusion can be
drawn concerning the effect of the finite-rate kinetics on the interac-
tion between the mean flow and large-scale structure. However, it is
expected that results.very similar to the present calculations will be

obtained for other combustion systems.

4.2.2 Effect of Intermittency and Molecular Diffusion

Even in premixed turbulent flows, experimental observations indicate
that there are situations in which the instantaneous value of fuel or
oxidizer concentration and, therefore, the instantaneous chemical reac-
tion rate vanish [71]. Physically, this is caused by the random varia-
tion of local flow properties coupled to high Tocal fluctuations of the
specie concentrations, resulting in situations in which the instantaneous
value of either fuel or oxidizer is zero. In such situations there
is no chemical reaction despite the finite values of average concentra-
tions. The longer such a situation prevails, the stronger is the damping
effect. This phenomenon has been called 'unmixedness' or "intermittency.'

There are several definitions of intermittency [71, 72] but since we are
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interested in theoretical computation of finite-rate chemistry we modify
the model developed by Spiegler et. al. [70]. This model is simple
enough to be incorporated into the interaction problem studied here and
is described in Appendix C. It has been pointed out that the level of
intermittency of a certain reactant may affect the structure and behavior
of turbulent flames and is therefore a region of great interest. The
model described in Appendix C was incorporated into the general computer
code and some preliminary results are presented. Figure 32 shows the
variation of the terms contributing to the development of coherent struc-
ture for the cases with and without intermittency. For the test condi-
tions presented here, the effect of intermittency is to increase the growth
of the amplitude. The stress production mechanism IRSC is also larger due
to the intermittency effects. The coherent structure induced pressure

Ipc and dissipation I‘Pc are also larger with intermittency. The mean
flow dissipation I¢ js not affected by theyinc]usion of intermittency.

The dominant production mechanism is still associated with the Reynold
shear stress integral IRSC as one expects. Both I¢C and IpC convert

(the latter reversibly) disturbance kinetic energy into mean flow thermal
energy as was observed in non reactive calculations here and elsewhere
[39]. In the initial growth stage, the coherent structure development

is relatively small and I¢ primarily determines the decay rate. However,
as the mean flow spreads and the coherent structure amplitude grows I¢
plays a much less significant role. fhe shear stress production IRSC
then plays a more important role in the amplitude growth rate as the
shear layer develops. The effect of intermittency, however, is very
marginal in the disturbance conservation mechanism essentially due to

the fact that intermittency effects the rate constants kfi and kb which

.i
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— contribute mainly to the finite-rate terms. As discussed before the
reaction model used here is kinetically dominated and therefore not very
significant changes in the coherent structure development is expected.
Figure 33 shows the effect of intermittency on the other integral terms
- appearing in the conservation equations. In the linear region dissipa-
- tion I¢ primarily determines the development of ch/dx. However as the
coherent structure grows the diffusion flux for kinetic energy, dIKE/dx,
increases and is responsible for the later stages of the mean flow
development. Also shown in this figure is the variation of total enthal-
py diffusion flux gradient, dIE/dx. As mentioned before -dIE/dx>O, and
e the contribution of coherent structure motion to the thermal field de-
Lo velopment first increases and then decreases. Essentially, all coherent
structure generated terms follow the growtﬁ/decay characteristics of

the amplitude lA!Z. Other terms of interest are the specie diffusion

flux integral gradient, dID /dx which vani¥hes for non reactive case
K

- (i.e., for Yy =0). However, for reactive conditions the variation of

C
0

— these terms essentially follow the rate mechanism. Note that this term

appearing in the specie integral equation (13) as -dID /dx. e see tnat
k

R as hydrogen and hydroxyl is consumed, +dID /dx and +-dID
H

2
increase with increase in IA!Z and then decreases with decay in amplitude.

/dx first
OH

Jdx on the other hand, first decreases and then increases with {A}Z.

H20

Effect of intermittency is to increase the values of all dID /dx terms. Essen-
— k

c = tially, these coherent structure induced diffusion flux gradients terms

— dID

= show contributions that increase the reduction of H2 and OH mass fraction

frod while increasing the H20 mass fractions. The magnitude of dID /dx 1is

—_ Ha
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much lower than the values of dl.. /dx and dI /dx, again consistent
Do Dh0

with the low values of Yy
c

The intermittency terms used to correct the forward and backward

rates, kf and kb are shown in Figure 34 at various streamwise loca-
2

tions. MWe see that the intermittency factor for forward rate, U2 is
' f

much larger then the backward rate factor, U, . Furthermore, the magni-
b

tude of both the factors increases with increase in streanwise develop-

ment of the reactive wake. The effect of jntermittency on the coherent

structure development js marginal as can be seen by comparing the solu-

tions for \A\2 =0 and 4-x10'5. Intermittency is reduced a little when

coherent structure development s included. The variation of the inter-

mittency factor across the shear layer shows that there is peak occuring

around n=6.5at x= 9.2 but the peak moves into the outer edges of the

shear layer and is around n =8 at x= 14.2.y This is an interesting ob-

servation because 5t is in the outer edge of the shear layer where flow

s intermittently turbulent and plays 2 significant role in the phenome-

non of flame extinction. As the mean flow develops the intermittency

factor becomes quite large with a peak Uy ~(0.9 at x=14.2. This indi-
f

cates that for the jntermittency model used here there 15 a possibility

of extinction at the outer edges of the shear layer as the flow develops.

However, this does not effect the finite-rate production rate to a large

extent due to the fact that most of the contribution comes from the rate

kinetics near the centerline, n<?2, where as can be seen there is no

intermittency. The validity of the model used here (see Appendix C)

cannot be confirmed at present due to lack of detailed measurements of

intermittency behavior in reactive wakes. The model however, shows good
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entifying the physical mechanism involved in intermittence

promise in id
t flames with fi?ite-rate chemistry.

or unmixedness in turbulen

Since the contribution of the Reynold shear Stress production IRSC
was seen to be the dominant reason for the growth/decay characteristics

of the coherent structure amplitude, the variods terms contributing to

C (see Appendix B) are shown in Figure 35. As expected, the produc-

Igs
c, associated with the dominant mean flow shear su/dy contributes

tion IRS1
the most. Similar results were also obtained for non reactive Case€.

c o c o c
Ipg Ing and Ipg are much smaller than Ips and Ipc - The term
2 3 5 1 4
C which is part of the mean f1ow convection effect, transfers energy

Igs,
from the coherent structure to the mean flow (IRS €.0) in the initial

L <11) but reverses the energy transfer in the

part of the development (x/
c
The terms IRS3 and

later part of the coherent structure development.

the expense of coherent

I € 3150 transfers energy to the mean flow at
°5
structure development. However, the net effect is still positive and

conducive to the growth of coherent structure. It must be

c c .
IRS3 and IR55 have their counter-

therefore is

noted that the production tenms IRS <,
1

part in the Tow speed wakes studied by Sato and Kuriki [29] while IRS ¢

2

compressibility effects present in the high

and 1 € are directly due to
RS,

speed wake studied here.
1t was considered during the course of the calculations that perhaps
the absence of molecular diffusion terms in the governing equations may
or the kinetic controlled combustion restrictions

be the main reason f
a simplified form of molecular

observed and discussed above. Therefore,

n equations (8) and (13).
n of the

diffusion term (see Appendix C) was jncluded i

Figures 36 and 37 present the mean flow centerline variatio
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temperature excess and velocity defect for the various conditions studied
here. The effect of including diffusion is to markedly reduce the tem-
perature increase. However, the velocity decay was not significantly
effected by either diffusion or intermittency. The reduction in tem-
perature excess due to diffusion effects is bésica]]y because of the
lowered rate of change of the specie mass fraction which is shown in
Figures 38a and b. The effect of intermittency is still almost insigni-
ficant. The inclusion of molecular diffusion was carried out only in the
later part of this research and due to lack of time no detailed calcula-
tions were carried out. One major conclusion of this theoretical analy-
sis is that the molecular diffusion term must be included for finite-rate
calculations.

Finally, since the results indicate that the growth rate of the co-
herent structure amplitude during reactions is much lower than the non
reactive case, Figure 39 presents the ratio of growth rates for the two
cases. As expected this ratio is less than one and the growth rate ratio
decreases with streamwise development. This is similar to the results
in reference [21]. The increase in frequency reduced the ratio even
further. This is attributed to the much larger growth rate for the non
reactive case as compared to the reactive case.

In conclusion, the interaction between the mean flow and coherent
structure has been theoretically investigated for a supersonic non reac-
tive and reactive wake. The non reactive solutions show excellent
agreement with the past calculations [38, 39, 63]. For the reactive case,
due to lack of experimental data no direct comparison was possible.
However, the general trends of the interaction was quite similar to the

non reactive case, except so far as to the reduced magnitude for the
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coherent structure amplitudes. The effect of different initial ampli-
tude, lAloz and frequency, 8, on reactive solution has been computed.
Turbulence was modeled in a very simple manner and included in all the
reactive analysis. Intermittency and molecular diffusion effects were
also included in some of the calculations. In general, the reactive

solutions show qualitative agreement with experimental observation [21].

4.3 Fine-Scale Turbulence in Self Similar Mean Flow

The turbulence model formulated in Section 4.2 was solved with the
assumed shape functions, equation (133) for a self similar mean flow
to determine the general trends. No detailed calculations are presented
for this model due to lack of data necessary to evaluate the various
constants appearing in the equations. The turbulence model utilizes a

%_qnz

spectral partition of turbulent kinetic energy, and turbulent to-
tal enthalpy, ;:E-f011owing the approach of Hanjalic et. al. [49] and

is shown in Figure 40. In all there are 11 equations that must be

solved simultaneously with appropriate initial conditions. The results
presented have not been checked and their validity still remains to be
seen. However, preliminary calculations indicate general trends similar
to the variation observed in far field turbulence decay. This model

was essentially formulated to account for the interaction between the
mean flow, coherent structure and fine-scale turbulence in reactive flows
and as such, an attempt was made to include some physical mechanism that
is not present in classical turbulence modeling. Also, gradient approxi-
mation was avoided except in third order correlations due to the esta-
blished fact that in reactive flows gradient approximation has limited

validity [3, 4]). Of course, all turbulence modeling such this one have

some adjustable constants which have not been determined due to lack of
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= =y ¥ =
ka 0.05, 0.90, 0.025, 0.025, X4 xO/L 1000.
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v

A1l constants were taken to be equal to unity except for € and

S

H=SH‘=O.'I s k3*é0.01 ,» and k4*= Sp =0

1
Figure 43 shows the variation of E(x)/E(xo) and N(x)/N(xo) for

different values of correlation coefficient r¢w and Figure 44 shows
the effect of changing €, (equation (71)). A1l solutions show decay
characteristics as expected. The correlation coefficients r¢w are not
constant across a developing turbulent shear layer except perhaps far
downstream [6] and detailed numerical experiments are necessary to

determine the effect of their variation.
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V. CONCLUDING REMARKS

A theoretical analysis of the interaction between the mean flow and
large-scale structure has been presented for a supersonic reactive wake.
For numerical simplicity, von Karman integral considerations were used
for the present solutions. The integral shape assumptions were shown to
be quite accurate in determining the non reactive mean flow development.
For reactive cases, the speci;%shape function assumptions were found to
be quite restrictive. However, better choice of shape functions would
depend on the availability of experimental data for the H2-O2 supersonic
combustion system studied here. Furthermore, due to the single frequency
model and other assumptions, point-by-point analysis of the interaction
may not be very significant. The salient physical mechanism responsible
for the development of the nonlinear transition region in compressible
reactive wake has been studied for various initial conditions and the
results are consistent with some experimental observations in other com-
bustion studies. Improvements in the modeling of large-scale structure
must await more refined experimental studies under well controlled con-
conditions, especially for reactive conditions.

Integral considerations were found to be quite restrictive on the
shape assumptions for species but were used here for numerical simplicity.
Finite difference calculations are, of course, possible except for the
increase in computational costs. Since all flow fields are three dimen-
sional, the interaction of a three dimensional coherent structure must
be included for better understanding of the developing interaction. Fur-
thermore, the effect of the subharmonics must also be included in future
studies due to the observed phenomenon of pairing and breakup of large

structure. Linear stability analysis of the reactive eigenvalue problem
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can be extended to include both three dimensional effects and subharmonics
but must await further guidance of more detailed experimental studies.

The turbulence model developed here can be included into the general
interaction problem without too many c0mp1ications. However, it must
first undergo detailed numerica]wtesting for various combustion flow,
which is again restricted due to lack of available data.

The results presented here is the first theoretical attempt to in-
clude finite-rate kinetic effects in the study of the stability and
interaction of coherent structure in free shear layers. The inclusion
of{%oherent structure.motion in reactive flows is very important due to
thé established existence of large-scale structures in all kinds of
shear layer and theoretical studies must therefore account for such in-

teraction phenomenon.
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APPENDIX A
THE EIGENVALUE PROBLEM FOR REACTIVE FLOWS

In this Appendix, the generalized eigenvalue problem for a two-
dimensional reactive flow is formulated. The linearized form of the
dimensionless equations for cohgrent structure motion is transformed
using local coordinate transformation (equation (52 )) and reduced to
the stability equations by the application of the assumed shape function,

equation (53 ). For constant transport properties the general viscous

stability equations are
il(w-cls+iul + (v)' =0

'io.(W-C)Yk"’p—Vk'(lV:y: +dk k=],-c-\’

A ~

'aw-cﬁ+C]*p- i;zw'v= v,
iaf(w=c)v + Cy* p' = v, (A1)
- -~ \) — ~
ip(w- c)[(]+-Vcw)VCl1+ kE](mkaT +-zkf)Yk
z . —2'—| -
+MT] + 1(1-+VCC)C]*VC-n to H v=Ey
R v A —— =,
283 QLT + Y, T+TV, ]
where

..w:jl—v-ﬂ and _c:&.].%.c_*l (AZ)
C C

c* is the complex phase velocity with respect to the observer. The
viscous contributions appearing on the right hand side of equations

(Al ) are given by the species diffusion,

0, 2. . o
dNT[p V't 2ot Y et koY g

FEV TN k= T

( A3)

the viscous dissipations,
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TIRIET}
l

v, = 1°‘R:Vc [ &5V +52um - 38 ]
_ X ) (A4 )
SR TR DA
and the energy dissipation
By = b [1a?p GV e 2 1) + 52T 0"

+ 3(2'561 + B"l U)Gl +(‘52 'Ju + EEI U| - %Uuz)a]

- _ZAII >
+ e Cr*[p"T" - @ T) (A5 )
D
=3 'k =y nmg F1oy !
520D,

where Bk , 7, ¥ are the mean molecular diffusivity, molecular viscosity
and thermal conductivity and are assumed known at present. Here

prime denotes differentiation with respect to'n. Furthermore,

c
C_I* = _lz- and CT* = 1/(y- ])Mez ReL Pr ( A6 )

Ve

and all other terms are defined in the text.

i) Inviscid Solution

The inviscid equations are obtained from equations (A1) by
neglecting all terms containing diffusivity, viscosity and thermal con-
ductivity. The resulting equations can be manipulated to obtain a second

order differential equation in terms of the pressure perturbation ﬁ(n).

2/, 2
R v oa o V_"(w-c) -
P! bt oS T[S (s -9 =10+ 1 Ry =0 (A7)
where
272 D - LT )] (8)
R(n) = oV ST (w-¢c) I [= - —(mD T+e G A8

Here Gk corresponds to the kth specie production rate due to instability
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It can be shown that for nonreactive flow equation (A7) reduces to

wave.
nd Lin [43]. How-

the classical pressure perturbation equation of Lees a

ever, for reactive flows the term Gk is determined such that

_2
Gy = p LY, T+ Y T +Ys Tt ¥ Tt ? Tsd

e - | ; :
6,7 o 0¥ Tip*t¥2 T22* Y3 Ty *h Tool

o : : o (A9)

6, =5 [¥y Ty3* Yy Tog*¥3 Ta3*¥y Tg3t? Tgs)

-2 * ; :
6y = [y Tig*¥s Taa*¥a Tag™® T5a)

and Y (i=1,4) indicate species Hy, 0,5 OH and H2)

where Gi(i= 1,4)
i=1,5 j=1,4) are coefficients which are

The matrix T; J(

respectively.
On using equation (A9) in ( A8) and on s

described below. ome algebraic

manipulations we get

¥ { S| —
p""'p‘[—;‘-:a"'—%-(\)*'])'—s_"s]
]
. ch("“c)zv 1] 2.2+2 o
+pl - ('C'—S'ﬁ)']] s°1°=0
T 1
where v* and B are complex constants appearing due to finite rate kine-
tics and are defined as
_52 Bo '1 *
v¥ = [Go + i ——] =vp + 3 vI* (A11)
E(u-clal
and -2
2= _ )2 p- B _ _
g a(Uog) g+ —————1= Bt 1 F (R12)
E(u-c)a

where prime denotes differentiation with respect to n and
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and

k=1
(A13)
By o
G, =& £ C*M
175 5 kK
: Ne = 1
g.= I a;N., 5=
° = Y : | (A14)
e
By = I @
4
i} v A15
E =1 My Dk Yk ( )

The constants C], * and Dk are defined in the text. The terms in (A13)

and (A14) are due to the a]gebraic manipulation involved and are given by

3 = Ty (M Dk Treg) biia (A16)

The matrix Tjk which also appears in equation (A9) is the finite rate pro-

duction of each specie due to the disturbance field and is given as

T

22 A T‘_f1 Y,

T

3 =" 2%, B Fb] Yé

Te2 ™

T

1 - —
52=2X2%(Akf1Y]Y2-Bkb1Y§)
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Xy Toal %,

Xy [T34/%g = T3p/%;]

= X] [T44/X4]

X] [T52/X2 - T54/X4]
X3 [Ty2/%p = Tyal%e)

%, [T22/X2]

= X3 TT3p/%; = T3a/%g]

X3 [Tga/Xp = T5a/%y]
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where

2
= Y]eyze B = _Y._%;
A= 3
172 M3
Y, Y, 2 v, 2 (18]
le "3e 4e
C= pe 3 » D= 2
My My My
and . °eL M]
17T T
L
x E - fL ..B.g
2 U Tog
A19)
pel M3 (
X, =2 — Yoo
3 Ue T3¢
pel Mﬁ
X, = 2 —
4 Ug Y;;

"~ where Mi are the i-th species molecular weight and subscript e indicates
reference edge values.

The terms Nk and Mk appearing in (A13) are further defined as follows.

M=y "11 + N7

Ny = "11

Ny = NN, 4 N, N21 + Ny
Ny = NN+ Nyt N, + 0
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2 Mgt W | (A20)

1 2 3.2 . .3
Ny o= wg DT N5+ Tgp (NNT + N57) + T, 1/D

- [01- ) 2 3.2, 3
D= [(1-9y Tpp) =9y Tip 7= Tgp (77 + M)

2 32 4 w3 o ’
Moo= [y Typ M +Tg, (N + M) -y, V' p70/D (A21)

2 3 4
N =y [Ty + Ty N7 4 Ty N 7U/D,

2

N,

3 4
= vy [Tgy + Ty N3™ + Tyy N371/D,

2 3 4 oy

3 4

Dy = (V-4 Ty =y Ty M7+ Ty N2 (A22)
NS =gy ITya + Tpa N4/7(1 = vy Ty0)
o= It Tz Ny 1 T33
3 .
N7 = 4y TTp3 *+ Ty3 "24]’(‘ - ¥y Ta,)
N3 ey [Ten # Tyn N30T = 0q Tqo)
3 =¥y LTg3 % Tya Ny 1 T33
M = Te v, Vot B 4wy Tpa MI/(1 = ¥y Tan) (A23)
2 13 1 Ta3 1 733
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s N
Mo, [0 - ¥ T33) Tig * Vg T3g Ty3d

2 " - T34 132
" R
Ny~ = T);[“ - ¥y Ta3) Tsg * ¥q T3g Ts3l

4 *zp' t
W= - [(1 =4y Tag) V3" + 9y T3 V3')

2
Dg = [0 - vy Ty3d (1 = vy Tgg) =97 T3 Tged  (A24)

where

= p
S Taw-cV,
(A25)

C, I
:Z(w- C)ZVc

"’2‘ Z

ji) Viscous Solution

The full viscous equations for this stability problem equation
(A1) is very complicated and no solution has been obtained so
far. Lees and Lin [43], Dunn-Lin [66] and Lees and Reshotko [58]
have in the past presented solutions for the viscous equations by solv-
ing a set of reduced equations that retain terms up to a certain order,
either near the critical point or near the surface. Dunn-Lin [66]
ordering of the various terms accounts for supersonic flows and for the
propagation wave velocity ¢ to be a substantial portion of the free-
stream velocity. Therefore, at present a similar ordering is applied

here whereby
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¢, o'~ 0(1)
&~ 0@ 4 (w-c) v o)

Gmo(l),\?mm(e&),Tm&,{(kwu,pw' (A26)

P~ e 4
92 ’\aa%-g'\aﬁk /a v CT*/a

Using these ordering, equation (A1) can be reduced to a form similar

to Dunn-Lin viscous equations

~ v X
" - fa Rev ! S (W-c)u' = 0 (A27)
p .
~ - ~ \) n
veidag e Ta b ogad ) (A28)
p p k=1
aV *
L _1 Yk i
A -1(D—k—) 5 (W-¢) 5 =3 k=T,...v (A29)
. v, .
T" - (==—) = (w-c)MT
KCT* )
v —
= (_a ) I ]_2 hk Yk* (A30)
KCT* k=1 ap
VC v _ A
+ (i(—2%)—=(w-c) z W%DkT+ek‘hkwk
xCr P k=1 f

We see that this is a eighth-order system of ordinary differential
equations dependent basically on one parameter («Re). For nonreactive
case, the equation (A29) and all terms containing ?k drop out and the
resulting equations are then identically Dunn-Lin [66] viscous equa-
tions. Lees-Reshotko [58] ordered terms in two parameters (oRe) and
Me2 and retained additional terms containing temperature and viscosity
fluctuations. Such an ordering would eventually be necessary to deal

with viscous reactive stability but have been presently neglected by
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assuming all transport properties are function of mean variables only.
of course, equations (A27) to (A30) can be directly solved simultaneously
with appropriate boundary conditions.  However, due to the analytical
nature of these equations, some modification is possible. Consider the
behavior of these equations in the outer flow where all mean flow varia-
bles have attained their external values. A sojution for equation (A27)
in the outer flow can be immediately written as
a'(n)=exp[:i{iaRevJVcc}kn] sy n*tw (A31)
However all other equations are coupled and no direct solution can be
written for the general reactive case. This is in contrast to nonreac-
tive case for Yk*==0) when we get a solution for equation (A28) as

V, v explxitiaB, T Vel n e (A32)
and when ?k terms are neglected, equation (A30) gives

i’mexp[zi{i(?CT*)'1achM}1/2n] y Mo iw (A33)
Solutions (A31) and (A33) are identical to the ones obtained by

Lees-Reshotko [58]. These are all linearly independent solutions and
governing equations must satisfy these solutions in the outer edge. How-
ever, for reactive wakes only equation (A31) is a direct solution since
all other equations are coupled. For n » =, the positive exponent cannot
satisfy the outer inviscid boundary conditions and must be neglected.
Then on applying transformations [58]

he=via , f=u'/u, 6=T/0 and g =Y /u , k=1,...v  (A38)

we get C*
i %
ht = hfedo lWC)gy p KK (A35)
o] [s] T k
2 iaRe \).1
£ = o (F 43 ) b V lw-c)f (A36)
p
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nk" = -2f£kl -(f2+f')2k+5—-cz(w-C)Rk - Gk ,k=],o--\)
kp
" 1 [} 2 1 . v -
" = -2f o' - (f'+f°)o+ —— [i aVc(w-c){ I (mkaT (A37)
5 Ca* k=1
(C’KCT)
+¢ -h)g +fer+ T h G ]
ke k'K L ey Kk

An approximate set of boundary conditions at

n+e  f(nae) = -iliaRe v Vc]®
h(n+®) =— 1_1 %
[ofiaRe v V.CY'] (A38)
Ek(n-*w) =0
g(n+) =0

For antisymmetrical disturbance
f(0)=h(0)=0
0'(0)=2,'(0)=0

(A39)

For the general solution of viscous reactive flow stability, the
equations (A35) to (A37) must be solved for the given boundary conditions
such that the outer solution satisfies the inviscid conditions. Essen-
tially two characteristic values o and Re must be determined for the gen-
- eral viscous case in contrast to only o for the inviscid part. Neutral
stability character%stics can then be obtained as a function of (a, Re)
for a given Mach number. This generalized stability analysis of viscous

reactive wakes will be an interesting research area for future study.
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APPENDIX B
INTERACTION INTEGRALS FOR COHERENT STRUCTURE MOTION

The integrals appearing in the governing conservation equations in
Chapter II can be rewritten using the assumed mean flow profiles and
using the coherent structure and fine-scale turbulent representations.
Since at present only the interaction between mean motion and coherent
structure has been studied therefore only the integrals relevant for
this analysis is presented here.

Species diffusion flux:

Iy, - 26|A |21y, S (T, - DRe(50%) + Re(i¥y*)3dn
w (B1)
+ [ERe(Ye%)dn] . k=T,
Species production:
Rk=6fr°dn ., k=1,...v (B2)

B

where rko is the total mean production rate for the k-th species and can

be rewritten using equation (140) as follows

0 _ - ;=27 2 2,~2.5 12 ~e

"o, ~ ’(Oz[Bkb1{p Yo *2IA17 (7 Yoyl + 80 Vg Re (0 You*)

+ V210191 - AR, (59T, V. +2|A12 (2 Re (Vy, ¥y *) (B3)
OHS 1P f]"Hzo2 peHzo2

—— AAn —— A A - — R 2
+25Y, Re(oYy *)+2pY, Re(pYy *)+Y, Yo [0]|7)}]

2y 2y o n 2307 s
Yy H2+2|A| b (YOHRQ(YOHYHZ*)

%)+ 6A12 72 (2T,

r = X, [Cke {0
H20 H20 f

= “n - 2. o~
* Y, Vol oH) Hy Re((o ¥gu*) + You~ Relo ¥y *))

2 2 2,-215 m2 (B4)
+6|A1%% HZ_OH |5]“}- DK, {E '2 +2|A[4 (% |vH20|

— -~ 2 -
+ YH20|D| +4 QVHZORQ(DYHZO*)}J
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1 0
zF "H0 (85)

-26Gr

®-Hry o ( B6)

0, 2

where all the constants are defined in the text (Section 2.7 ) and * de-

notes the complex conjugate. kf' and Eb are the mean rate constants
i i

which for this interaction problem is the function of the mean tempera-
ture. Here Re stands for the real part of the complex product.

Mean flow total enthalpy flux:
+1p € (B7)
where
(F- 1) Re (0 u*)dn (88)

c 2, ¢ 1
IE = 251A| VC-O{E

1

I = 26[Al2v, f [V T|u|“+MRe (uT )
2 o

| (89)
+ z(m Dk_T'+ e JRe(uY, *)]dn
k f
I © = 25|A1® f [V URe(uo*)+MRe (5T %)
3 -
+ 5(m D, T+e, JRe(p ¥ *)] & dn (B10)
K £ 5

The integral for disturbance generated diffusion flux in the mean flow

kinetic energy conservation 1is

o0 —7 . A .
Lt = v (A% 8= re(3 ey +2v )% Ten (B11)
- 0D O

kE
The Reynolds stress production IR € s given by
S

C c o C
=1 I S+ 1
RS, , | RSy T Rs,

I + 1

RS

C C
RS + IRss (B12)

where
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Lo € = -2[AI%V.2 T DRe(uoa* v¥) —“ dn

-0

Ioo © = -28]A|%V, ¥

Ollcl
*
~—
—
(e P}
|2
~—
(=9
3

o 2, 2 2 AU
Ips = = -26]A|°V, flu[ uydn

c 2 — D
IRS4 = -2|A] vc_f vV Re (o u*) ﬁdn

c 2, 2 — 2 3V
Ing © = -2]AIV. J ©lav] ﬁdn

5 -
where
ds 3
(_é_) = (Jiq . ngsé 9
X y X" s dx 3n

The pressure work integra]s are

=]

- u
- ey AUy 4 p AV
p =66 S (p-U[(ax)y + & Wq,

The mean flow pressure is determined in general, from

V.2 _ ~
AR E A2 av]?]

The organized motion pressure work integral is

1= -2c,6 1A

) [ Relioapu*+avp'*}dn

C-

The mean flow viscous dissipation integral is

@™ -—

Iy = f ) dn

where, for a linear viscosity temperature relation, W=CT, C=1,

o7 o= 1-2|A|%[Re(s )+§]-v 1oV 2]

The organized motion viscous dissipation integral is
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2,.2
2V SJAl°C o 2 . R
c 4 2 2
I¢ 4—C§§Q_ wf [‘I%Jz_(j ju]® + I“VI )
, - o

2

o (G a2 0)?) ¢ L ire(2i ol v i (B20)

i

- 53‘- i o] Gv'*)1 Jdn

The relationship between shear layer thickness and velocity defect is
given by equation (48 ) which results in
CD/Z

8 = - (B21)
Vc(cl VCCZ)

where C] = /1 and C2 = vn/2 and CD is the drag coefficient of the body.

The disturbance kinetic energy integral is

% _?U(F+v'2)dn = 6|A12(IK] -V I ) (B22)
where -~ ‘
L= f 2+ lev)P)en = 1
L - ) (B23)
I, = f (!a12+ la;|2)e-n dn
2 -
The filtering procedure:
On using equation (10) the mean value is given by
P CIE AR ) (IR A N (B24)
On subtracting the mean value from the total value and taking condi-
tional average we get
<y - = ot ele AR, (B25)
Fine-scale turbulence contribution is obtained by
L R AR AR A AT (B26)

Similar filtering is also applicable to the 0(3) or higher fluctua-

tion correlation.
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APPENDIX C
MODELS FOR TURBULENCE, INTERMITTENCY AND DIFFUSION

Turbulence Models

The algebraic eddy viscosity models used in these calculations were
modified from the formulation of Spalding [69] and Schlichting and Hinze
[70]. They are given in dimensional form as follows.

Model 1 [69]

p* (c1)

Um'inIp

*=0.037 6*|U . -

M
where Umax and Umin are the local maximum and minimum values of the stream-

wise velocity and ut* is the dimensional turbulent viscosity.

Model II [70]
ut*=0.044 A* (c2)

where the characteristic density thickness A* is given in the dimensional

form as

A =| fz)'*(uw_ﬁ*) d_y*| (C3)

On nondimensionalizing equation (C1) we get

€, =0.0376V_ o (C4)
where ‘I = ut*/pwUmL is then idenfitied as the dimensionless turbulent
eddy viscosity. Equation (C2) then becomes

€;1° 0.044 A (€5)
where the nondimensional density thickness

a=| f p(1-uldy| = /76 Ve (C6)

and GII =ut*/pwaL.

During the calculations it was found that the turbulent eddy
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viscosity Model II gave slightly better results and was used for all the

reactive calculations.

Intermittency Models

The intermittency model used here is basically the model proposed
by Spiegler et. al. [71] and is repeated here for completeness. This

model is applied to the reaction
kf2
o ¥ 20H t:’ 2H20 (C7)
by
and the determination of the intermittency factors for the forward and

H

backward rates are given by the following steps.

For each specie (k), the mean square fluctuation of mass fraction

;;7.15 determined from the dimensional relations

VEme o Igelge . €= 2028 (ca)
We then compute __
2
N (c9)
Y
k
and
A - 0.233
TR T (¢10)

Then we determine the intermittency factor for reaction (i) as follows:
U =max(Uk ), if the respective ;;?15 have the same sign.

ah E; (Uki)’ if the respective ;;?15 have different signs.
The finite-rate constants for each reaction (i) and direction
(m=f,b) then becomes

kmi = kmi(i- u;) (€11)
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These rate constants are then used in the finite-rate production terms

appearing in the governing equations.

Diffusion Model

The diffusion term due to molecular diffusivity in the integral

form is given in the nondimensional form as

o __ Y 2 aYk' 2
* = - —_—
Applying the transformations we get
1 =25 v .2 2.0 42
Idk = -g_ip Dk[Yk + 2|A{ lYk | Jdn (C13)

where prime denotes differentiation with respect to n. For simplicity,
we relate the mean molecular diffusivity to the kinematic viscosity by
the Schmidt Number Sc (= “/Bk) which at present we take to be unity.

This term Id is then added to the right hand side of equation (13)
k

which results in an additional term in the thermal energy balance by

virtue of the heat flux term equation (8).
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_— NO TURBULENCE

TURBULENCE: ALGEBRAIC
== —o = = EDDY VISCOSITY MODEL II

10 « 6 -
8 1 4 -
c
IRS C
44 2
x/L
-2
I
¢
-4 Fiqure 24 Development of the average coherent
/ structure energy density, C, stress
I¢c IQSC, dissipation ImC and rean flow
dissipation I, in the turbulent
-6 A supersonic non reactive wake. Flat
plate at 4 _=3.0, Re = 70,000/cm,

BO=O.3, CD=O.O31, x0=5.0, Ve = 0.23,

0
I 2 -5
TCO=|.27:>, I~ =4x10 7.
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0
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x/L
Figure 25  Growth of centerline mean flow temperature excess for

various initial amplitudes of disturbance. Turbulent
reactive test conditions: M_=3.0, Re=70,000/cm,

T,=1500°K, L =0.3cm, 8 =0.2, x =5.0, V_ =0.23
T, =1.275, (Y, =0.0, k=1,4), °
0 CO
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Decay of centerline mean flov
various initial amplitudes o
reactive test conditions as
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(a) The centerline mean flow hydrogen and hydroxyl mass fraction
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(b) The centerline mean flow water vapor mass fraction excess.

Figure 27 development of the centerline m
fraction for varicus initial an
Turbulent reactive test conditi

ean flow specie mass
plitudes of disturbance.
ons as in Figure 25.
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Figure 31
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Development of centerline mean flow specie mass frac-
tions for various initial frequency of disturbance.
Turbulent reactive test conditions as in Figure 29.
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------ WITHOUT INTERMITTENCY

0.24
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- Figure 32 Development of the conerent structur

mecnanism w;ith and Without intermittency.

Turbulent
reactive test conditions as in Figure 25,
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WITH INTERMITTENCY

— i — = ——— WITHOUT INTERMITTENCY
0.8 x10°8

- 0.6 4
— 0.4 4
- 0.2
= 1 4
— 4

-0.2 4

_— -0.44
B ¥
g
o -0.6x10784
= Figure 33 Contribution of the mean flow kinetic energy diffusion,

IKE’ the total enthalpy diffusion, IE and the specie dif-
fusion, ID , due to coherent structure motion. Inter-
K

B mittency effects in turbulent reactive wake with condi-
= tions as in Figure 25.
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Figure 35 Contributions to the Reynold stress energy transfer
IRQC for reactive wake. Turbulent test conditions:
M,=3.0, T_=1500°K, Cp=0.031, Re=70,000/cm,
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- 6 AL, S=4x107, 8,=0.2, x,=5.0, V_ =0.25,
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Figure 33 Development of the centerline mean flow specie mass frac-
tions in turbulent reactive wakes. Effects of intermittency

2] =
and diffusion for |A] “=4x10 >, Test conditions as in
Figure 25.
(a) The hydrogen and hydroxyl mass fraction defects.

(b) The water vapor mass fraction excess.
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Figure 42 The effect of temperature fluctuation on the mean

production rate of hydrogen as a function of temperature,
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