Validation Results for LEWICE 2.0

William B. Wright
Dynacs Engineering Company, Inc., Brookpark, Ohio

Adam Rutkowski
Case Western Reserve University, Cleveland, Ohio

January 1999
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the Lead Center for NASA’s scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA’s institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA’s counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA’s mission.

Specialized services that complement the STI Program Office’s diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results . . . even providing videos.

For more information about the NASA STI Program Office, see the following:

- E-mail your question via the Internet to help@sti.nasa.gov

- Fax your question to the NASA Access Help Desk at (301) 621-0134

- Telephone the NASA Access Help Desk at (301) 621-0390

- Write to:
 NASA Access Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076
Validation Results for LEWICE 2.0

William B. Wright
Dynacs Engineering Company, Inc., Brookpark, Ohio

Adam Rutkowski
Case Western Reserve University, Cleveland, Ohio

Prepared under Contract NAS3-98022

National Aeronautics and
Space Administration

Lewis Research Center

January 1999
Acknowledgments

The authors would like to thank the NASA Lewis Icing Branch for their continued support of this research, both financially and for their help with this report. Special recognition goes to the researchers who generated the experimental data included in this report, to Dr. Mark Potapczuk for his insights into this work and especially to Tammy Langhals for digitizing all of the experimental ice tracings in this report.
Valiation Results for LEWICE 2.0

William B. Wright
Dynacs Engineering Co., Inc.
Brook Park, OH

Adam Rutkowski
Case Western Reserve University
Cleveland, OH

I. Abstract

A research project is underway at NASA Lewis to produce a computer code which can accurately predict ice growth under any meteorological conditions for any aircraft surface. This report will present results from version 2.0 of this code, which is called LEWICE. This version differs from previous releases due to its robustness and its ability to reproduce results accurately for different spacing and time step criteria across computing platform. It also differs in the extensive amount of effort undertaken to compare the results in a quantified manner against the database of ice shapes which have been generated in the NASA Lewis Icing Research Tunnel (IRT). The results of the shape comparisons are analyzed to determine the range of meteorological conditions under which LEWICE 2.0 is within the experimental repeatability. This comparison shows that the average variation of LEWICE 2.0 from the experimental data is 7.2% while the overall variability of the experimental data is 2.5%.

II. Introduction

The Icing Branch at NASA Lewis has undertaken a research project to produce a computer code capable of accurately predicting ice growth under a wide range of meteorological conditions for any aircraft surface. The most recent release of this code is LEWICE 2.0, which is well documented in the new user manual. This report will not go into the details of the capabilities of this code, as those features are well-described by the user manual.

The purpose of this report is to present the complete set of data used for validation of this code as well as identify and assess criteria which are used to validate the NASA icing codes. The measurement techniques used in this report are not necessarily the only criteria which can be used for validation but they represent one possible path.

The process for validation of an icing code is quite challenging and consists of many steps, one of which is the comparison of code results to some known solution whether experimental or analytical. This testing activity is complicated by the fact that no predefined acceptance criteria have been identified. To date, previous evaluation of the performance of ice prediction codes has been based on subjective judgments of the visual appearance of comparisons between ice shapes generated by the code and ice shapes measured in an experimental facility.

In order to accurately determine the capabilities of a prediction code it is necessary to develop quantitative measures for assessing the similarity between two ice shapes. The measurement used to make the comparison should be based on the characteristics considered most important for the purposes of the simulation process. For example, design of a thermal ice protection system may dictate that icing limits, accumulation rates, and total collection efficiency are the most important parameters to be simulated while certification of a wing for flight with an ice accretion may require that the performance characteristics of the ice shape be modeled accurately. Due to the large number of shapes, an aerodynamic performance analysis was not performed at this time.

In past reports, LEWICE has been compared to shapes created in the NASA Lewis Icing Research Tunnel (IRT). While these qualitative comparisons have been favorable, they do not demonstrate a validation process that quantitatively determines the accuracy of an ice prediction code. Comparisons are made in this report using a large subset of the data which has been generated in the IRT. The test entries which were not used for comparison represent ice shapes from proprietary tests or those tests for which the ice shapes were not digitized. The results are examined from a more quantitative approach than has been undertaken in previous efforts. Measured quantities are horn length, horn
angle, stagnation point thickness, ice shape cross section area and icing limits. This report will define the differences between experimental ice shapes and LEWICE 2.0 ice shapes as well as the differences between two experimental ice shapes, where applicable. A spreadsheet of all of the quantifiable measurements is presented along with summary tables and charts to illustrate overall comparisons.

The report is divided into seven sections. The first section will provide a brief description of LEWICE and the LEWICE 2.0 model. The second section will provide a description of the experimental data presented in this report. The third section will describe the quantitative parameters chosen and how they were measured. The fourth section presents results of the quantitative comparison. Comparison of LEWICE 2.0 with the experimental average is presented as well as the comparison of individual experimental ice shapes against the average. Spanwise variability and repeat condition variability are presented as well as the variability due to the technique used by the researcher to trace the ice shape. The fifth section presents LEWICE runs made to assess the sensitivity of the code to various inputs. The sixth section provides a description of the data on the accompanying CD-ROMs which contain the experimental data and LEWICE 2.0 predictions for this effort. The last section, given in an appendix, provides printed copies of ice shape and ice thickness plots comparing LEWICE 2.0 with the experimental data to provide the reader with the standard qualitative comparisons of the predictions.

III. LEWICE 2.0

The computer code LEWICE embodies an analytical ice accretion model that evaluates the thermodynamics of the freezing process that occurs when supercooled droplets impinge on a body. The atmospheric parameters of temperature, pressure, and velocity, and the meteorological parameters of liquid water content (LWC), droplet diameter, and relative humidity are specified and used to determine the shape of the ice accretion. The surface of the clean (un-iced) geometry is defined by segments joining a set of discrete body coordinates. The code consists of four major modules. They are 1) the flow field calculation, 2) the particle trajectory and impingement calculation, 3) the thermodynamic and ice growth calculation, and 4) the modification of the current geometry by addition of the ice growth.

LEWICE applies a time-stepping procedure to "grow" the ice accretion. Initially, the flow field and droplet impingement characteristics are determined for the clean geometry. The ice growth rate on each segment defining the surface is then determined by applying the thermodynamic model. When a time increment is specified, this growth rate can be interpreted as an ice thickness and the body coordinates are adjusted to account for the accreted ice. This procedure is repeated, beginning with the calculation of the flow field about the iced geometry, then continued until the desired icing time has been reached.

LEWICE 2.0 is different from its predecessors not through wholesale changes in the physical models but rather through an extensive effort to adjust, test and document the code to ensure: that the code runs correctly for all of the cases shown; that the quality of output is maintained across platforms and compilers; that the effects of time step and spacing have been minimized and demonstrated; that the code inputs and outputs are consistent and easy to understand; that the structure and documentation within the code makes it readily modifiable to those outside the standard LEWICE development team; and that the code has been validated in a quantified manner against the largest possible amount of experimental data. This last statement forms the basis of the comparisons in this report.

IV. Description of the Experimental Data

The experimental data described in this report and provided on the CD-ROMs are the result of a wide variety of tests performed in the NASA Lewis Icing Research Tunnel (IRT) in recent years.16-23 Seven airfoils were selected for this comparison. These airfoils and the accompanying ice shapes represent the complete set of publicly available data which has been generated in the IRT and digitized for single element airfoils. There is some data available on multi-element airfoils, but it was considered to be an insufficient amount for validation purposes. There are a total of 400 IRT runs analyzed for this validation report, of which 169 are repeats of previous runs in the IRT. There are 442 digitized tracings at off-center-
line locations for a total of 842 experimental ice shapes.

The seven airfoils analyzed are listed as follows, in the order in which they are given in the matrix of results. The first airfoil is a modified NACA230XX series airfoil with a slight spanwise taper and sweep. At the mid-span of the test section, the thickness is 14.5% chord and increases in thickness from the floor to the ceiling of the test section. In this report, it is listed as a modified NACA23014 airfoil, as the thickness is closer to 14% at the lower end of the model. This data was originally presented in references 17-20. The cross-section at the mid-span of the test section is given in Figure 1. The database for this airfoil is comprised of 62 IRT runs, of which 22 are repeats of previous conditions. Due to the spanwise variation of the model, only 8 tracings have been digitized at off-centerline locations for a total of 70 ice shapes.

The second airfoil listed is shown in Figure 2. It is representative of a Large Transport Horizontal Stabilizer and is listed in the matrix with the abbreviation LTHS. This data was originally reported in reference 17. There are 28 IRT cases, of which only one is a repeat of a previous run. There are 52 tracings digitized at off-centerline locations for a total of 80 ice shapes.

The third airfoil in the database is representative of a business jet airfoil and given the designation GLC305. It is shown in Figure 3. This data was originally reported in reference 17. There are 94 IRT cases, of which only eight are repeats of a previous run. There are 36 tracings digitized at off-centerline locations for a total of 120 ice shapes.

The fourth airfoil in the database is the NACA0012. This airfoil has been used in several test entries over the years 16, 24, 25 in order to document the uniformity and repeatability of the IRT, especially after the tunnel has undergone modifications which could potentially alter the tunnel calibration. This airfoil is shown in Figure 4. The data from this airfoil encompasses the highest number of ice shapes which have been created in the IRT. There are 183 IRT cases, of which 126 are repeats of a previous run. There are 307 tracings digitized at off-centerline locations for a total of 490 ice shapes.

The fifth airfoil in the database is a modified NACA4415 airfoil and is shown in Figure 5. This airfoil is representative of an airfoil used in past regional aircraft design. The data was originally presented in reference 19. There are 29 IRT cases, of which 11 are repeats of a previous run. There are 39 tracings digitized at off-centerline locations for a total of 68 ice shapes.

The sixth airfoil presented is an NLF-0414 airfoil and is representative of a laminar flow design for general aviation. It is shown in Figure 6. This data comes from a very recent test in the IRT 21. Due to time constraints, only eight cases from this test entry have been digitized and analyzed for this comparison. It was included in this report in order to add more variety to the database. Additional test points from this airfoil will be included for future validation efforts.

The last airfoil entry in the database is for a NACA0015 airfoil used for scaling studies. This airfoil is shown in Figure 7. This data is from a very recent test entry in the IRT and will be presented in an upcoming report 23. Due to time constraints only six cases were processed for this report, one of which is a repeat case.

The data is taken in the IRT by cutting out a small section of the ice growth and tracing the contour of the ice shape onto a cardboard template with a pencil. The pencil tracing is then transformed into digital coordinates with a hand-held digitizer. Recently, a flat-bed scanner with digitizing software has been available to accelerate the data acquisition process. For any given IRT test run, up to five spanwise sections of the ice shape are traced and digitized in this manner. There are several steps within this process which can potentially cause experimental error. Those which can be quantified by the current technique are the spanwise variability, the repeatability error, and errors involved in the tracing technique.

Spanwise Variability

Except for the NACA23014(mod) model, all of the models used for this comparison are two-dimensional models. This means that they have a constant cross-section in the spanwise direction and are mounted in the test section without any sweep angle. Even with a two-dimensional model, the ice shape produced in the tunnel will have some spanwise variability due to the random nature of the ice accretion process. One means which has been used in the IRT to assess this variability is to take ice tracings at sev-
eral spanwise sections. In the reports mentioned previously, the variability was assessed in the same qualitative manner as comparisons of predicted ice shapes. One technique often used was to visually inspect the ice shape and the cardboard tracings for similarity in the spanwise direction. The shapes may also be digitized at each tracing location and plotted to assess the variability. This report applies the quantitative scale described in section V for assessing both LEWICE predictions and the spanwise variability of the test condition. In both cases, the reported difference will be the difference between a measurement on a given ice shape and the average of the experimental measurements for that condition.

Repeatability

Several tests in the IRT have also assessed experimental error by running the same flow and spray conditions for the same airfoil multiple times. Cases analyzed for this report have been repeated by immediately running the same condition again, by running the same condition on a different night than the original test and by running the same condition in a different test entry with the same model. In the past for each of these cases, the researcher would apply the same qualitative assessment as described earlier to assess the repeatability of the condition. This report will apply the quantitative scale described in section V for assessing LEWICE predictions for assessing the repeatability of the ice shape in the IRT.

Tracing Technique

There are several potential errors involved in the ice tracing and digitization process which were often difficult to quantify. Some of these errors are the quality of the template, the technique used by the researcher to trace the ice shape, and the digitization process.

The template is a rectangular piece of cardboard which has the contour of the airfoil cut into it. This is illustrated in Figure 8. As can be seen from this figure, if the ice shape extends beyond the dimensions of the template, it cannot be traced. Additionally, in the past the contour of the airfoil was not always cut precisely into the template so the template may not have fit squarely onto the airfoil. More recent tracing techniques use registration marks to ensure a precise fit.

The technique used by the researcher also may have an effect on the final digitized ice shape. The template may not be placed squarely on the airfoil, the researcher may only trace the tops of ice feathers or not trace feathers at all, as the ice feather may break off due to the pressure applied by the pencil. The researcher may not always trace a single continuous line for the ice shape, making the digitalization process more difficult. In order to assess these potential errors, researchers may trace the ice shape more than once or have more than one person trace the same ice shape. In the past, these tracings were then compared in the same qualitative manner as used for spanwise variability and repeatability.

Multiple tracings of the same ice shape are rarely performed in the IRT and even more rarely are both tracings digitized. Those which have been digitized are included in this report to provide a more quantitative assessment of the errors involved in the data acquisition process. It will be shown that despite the problems listed here, the quantitative errors due to tracing issues are minor in comparison to other sources of error.

V. Description of Comparison Method

This section describes the methodology used to make the quantitative measurements on experimental and predicted ice shapes. This methodology has been incorporated into a computer code called THICK which calculates and outputs the parameters described. This code was created in order to process the large number of ice shapes presented in this report. This program reads two geometry files: one for the clean airfoil and one containing an ice shape. The following sections describe the calculations made by this program.

Calculation of Ice Thickness

The ice thickness distribution for both experimental ice shapes and LEWICE ice shapes is determined by using a combination of two measurement techniques. The thickness is first measured by calculating the minimum distance from each point on the ice shape to a point on the clean surface. If the distribution of points on the clean surface is sufficiently con-
centrated, this procedure will provide a good approximation to the actual ice thickness. For this effort, each clean airfoil geometry contained over 5000 points to ensure the quality of the calculation.

An approach using the unit normal from the ice shape or from the surface will fail to determine ice thickness at every location on complex ice shapes. This is illustrated in Figure 9. As seen in this figure, the unit normal from the surface diverges outward. Even for a geometry with over 5000 surface points, a unit normal approach could not accurately capture thickness on the large and complex ice shapes presented in this report. This is especially true of experimental ice shapes which have a large amount of detail.

The minimum distance approach will very accurately determine large ice thicknesses. For very small ice thicknesses, however, the accuracy is lessened as the thickness nears the resolution of the surface geometry. This is illustrated in Figure 10.

The procedure used is to first calculate the thickness using the minimum distance approach. When this thickness becomes less than the segment length of either the iced or clean surface, it is then recalculated using the unit normal approach. Using the approach described, a unique ice thickness is determined for each point on the ice shape. At each point on the clean surface, however, it is possible to have regions where there is no recorded thickness or for a point to have more than one thickness value. This is illustrated in Figure 11.

In the first case where there is no thickness recorded, a thickness value at the clean surface can be interpolated from the values which have been obtained. In the second case where more than one value exists, the max. ice thickness value is recorded.

Determination of Icing Limits

The upper and lower limits of ice accretion for both experimental shapes and LEWICE shapes are easily found from the ice thickness distribution. They are located at the points on the clean airfoil where the ice thickness first changes from zero as measured from the trailing edge. Experimental ice shapes may have sections where parts of the ice (ice feathers) are isolated from the main ice shape. This definition extends the icing limit to include this section of the ice shape. It should also be noted that the definition used in this report for icing limit is distinct from the impingement limit, which only refers to the extent of water collection on the airfoil. Both the wrap distance from the leading edge and the x-distance are recorded for each icing limit. The icing limits are illustrated in Figure 12 on a sample ice shape. Figure 13 shows the icing limits on the ice thickness plot for this ice shape.

Determination of Maximum and Minimum Thicknesses

Three ice thicknesses were selected for the quantitative analysis, the upper surface max. thickness, the lower surface max. thickness and the min. thickness between these two maxima. These thicknesses are illustrated in Figure 14. In this illustration, the upper surface and lower surface maxima clearly correspond to the classic definition of a glaze ice horn. For other conditions this may not be the case, hence the use of the term “max. thickness” rather than “horn thickness”. This differentiation is usually found on smaller ice shape for which the max. thickness is not easily seen. This is illustrated in Figure 15.

For the upper surface and lower surface max. thickness, the x,y locations at the maxima are also saved for calculation of a max. thickness angle. The min. thickness between the two maxima is also recorded. This thickness is often termed the “stagnation point thickness”, but the aerodynamic stagnation point is not necessarily at this location. In this report, the term “min. leading edge thickness” is used instead.

For a rime ice shape, the term “horn” does not apply, nor are there two distinct maxima to record. For this case, only the max. ice thickness and the x,y location at this maxima are recorded.

Determination of Max. Thickness Angle

The max. thickness alone does not adequately capture all of the necessary quantitative attributes desired. Some indication of where that max. thickness occurred is also desirable. In this report, the x,y locations at the max. thickness were recorded for each ice shape, both experimental and for LEWICE. An angle at the max. thickness is then calculated. The reference location for all cases is the center of
the inscribed circular cylinder at the leading edge for each airfoil. This is illustrated in Figure 16.

Again note the terminology of “max. thickness angle”. As discussed earlier, not all ice shapes have a classic glaze ice “horn” but every ice shape has a max. thickness. Where a glaze ice horn does exist, however, this measurement does define the “horn angle”.

Determination of Ice Area

The iced area calculated for this report is not a true area. A more simplified calculation was performed by integrating the ice thickness calculated with respect to the wrap distance, as given by Equation 1. The approach used is valuable for quantitatively assessing ice shape features such as horn width which are not included in the other parameters.

\[A = \int t ds \]

(1)

For the large number of points used on the clean surface of each airfoil, the calculation given is a reasonable approximation of area. Three areas are recorded: the total iced area, the lower surface area and the upper surface area. The lower surface area is defined as the ice area below the leading edge and the upper surface ice area is calculated by subtracting the lower surface value from the total. For complex ice shapes where the ice thickness is multiply defined as is shown in Figure 11, this method for calculating ice area will result in an overstatement of the actual ice area. However the methodology is consistent for both experimental ice shapes and for LEWICE ice shapes.

VI. Procedure for the LEWICE Runs

There are 231 cases which were run with LEWICE for this validation report. This is the complete set of unique conditions, as 169 of the 400 test entries are repeat conditions. All of the cases run for this validation test were performed using the same procedure on a Silicon Graphics Indigo2 to ensure the consistency of the LEWICE predictions. It is well known that a user of an ice accretion code may alter the ice shape prediction by varying the time step and/ or the panel spacing until a desired prediction is achieved. This procedure was not followed for these validation runs. For every run, the point spacing was fixed at a value of 4×10^{-4} (dimensionless). This was the smallest value which could be used for the array sizes in the program. The time step for all runs was 1 minute for cases where the accretion time was 15 minutes or less. For longer runs, an automated procedure was implemented based on accumulation parameter. When the accumulation parameter exceeded 0.01 for that time step, a new time step was started. The number of time steps is calculated internally in the program by Equation 2.

\[N = \frac{(LWC)(V)(Time)}{(chord)(\rho_{ice})(0.01)} \]

(2)

where

- LWC = liquid water content (g/m³)
- V = velocity (m/s)
- Time = accretion time (s)
- chord = airfoil chord (m)
- \(\rho_{ice} \) = ice density = 9.17×10^5 g/m³

The variability of LEWICE results for various time steps and point spacings is discussed in the section on Numerical Variability in this report. The LEWICE cases had an additional correction due to the use of a potential flow code for the flow solution. As illustrated in Figure 17, a potential flow code will overpredict lift coefficient especially at high angles of attack. To compensate for this, all LEWICE cases are run using a corrected angle of attack. This correction is determined by equating the lift coefficient predicted by LEWICE on the clean airfoil for a given case with the lift coefficient on the airfoil at the angle of attack run in the tunnel.

VII. Quantitative Results

For each of the 842 experimental ice shapes and 231 predicted ice shapes, the quantitative measurements described in a previous section were taken and then entered into a Microsoft Excel® spreadsheet. A description of the exact contents of this spreadsheet is given in the description of the contents of the CD-ROMs which accompany this report. Each of the 231 ice shapes is plotted against the tunnel centerline ice shape for that condition. The ice thickness distribution is also plotted. These figures are listed in the appendix and a brief description of the plots is presented there. This section will describe the quantitative comparison between the LEWICE
predicted shape and the experimental average as well as the comparison of individual experimental ice shapes to this average. In each case, the experimental average for a given quantity is the average of all experimental ice shapes at that condition. Measurements for repeat runs and off-centerline measurements are averaged with the centerline measurement to arrive at this value.

Icing Limits

The icing limits are the chordwise locations on the ice shape on the upper and lower surface where the ice shape merges with the airfoil. Both the wrap distance from the leading edge and the x-distance are recorded for each icing limit. The results presented here are for the wrap distance values. Results for the x-distance values can be easily calculated in the spreadsheet if the user prefers that reference.

Figure 18 shows the results of these measurements for both the experimental ice shapes and for LEWICE. These results are presented as a percentage of chord in order to normalize the results for different cases. This figure shows that the experimental variation in the lower icing limit is 2% of chord while the LEWICE result lies within 6% of chord from the experimental average value. This result uses the absolute error for each case in order to compute the average. Contrary to popular belief, in the majority of cases LEWICE underpredicts rather than overpredicts the icing limit as compared to the experimental data. This result can likely be attributed to the use of a monodispersed drop size when obtaining the predicted result.

Max. Ice Thickness (Horns)

The details of the ice thickness calculation were presented in the section on Description of Comparison Method. As discussed in this section, the measurement of a max. thickness is not necessarily the thickness of a glaze ice horn. Where the ice shape does have a glaze ice horn, the max. thickness does give the horn thickness. In order to compare different conditions with different chord lengths and accretion conditions, the individual ice thicknesses were nondimensionalized by the maximum accumulation thickness as given in Equation 3.

\[
t_{\text{max}} = \frac{(LWC)(V)(\text{Time})}{\rho_{\text{ice}}}
\]

Figure 19 shows the dimensionless difference in ice thickness for the three ice thickness measurements made in this report. Results are presented for the variation of tunnel repeatability, spanwise variability, tracing error as well as for the overall experimental error and for LEWICE. This figure shows that the max. thicknesses can be measured to within 5% and that the average difference between LEWICE and the experimental average value is 11% for max. thickness.

Ice Area

The comparison of ice area for the different cases also poses a problem. A fair comparison across the varied conditions and airfoil sizes is difficult. In this report, the area difference has been nondimensionalized by the maximum accumulation thickness given earlier and by the airfoil thickness. It should be noted that the absolute values for ice area are maintained in the Excel® spreadsheet so that the users of this data can make their own comparisons.

Figure 20 shows the results for the ice area comparison. Values for the upper surface ice area, lower surface ice area and overall ice area are shown for each of the categories described earlier. This figure shows that the experimental difference in ice area is less than 4% on the scale given while for the LEWICE results the variation from the experimental average is approximately 10%.

Angle at Max. Thickness (Horn Angle)

As described earlier, the horn angle was measured with respect to a horizontal line which goes through the center of the inscribed cylinder at the leading edge. This angle was measured for all ice shapes whether or not they fit the classical definition of having a glaze ice horn. Many experimental ice shapes were in the form of distributed roughness with several peaks which can cause a large amount of scatter in the experimental results shown.

Figure 21 shows the variation between the max. thickness angle for LEWICE and for the experimental average value as well as the variation for individual experimental ice shapes to the same average using the categories described earlier. Results are pre-
sented in degrees. This figure shows that the variation in the experimental data is 6 degrees for the upper angle, 10 degrees for the lower angle and 13 degrees for the difference between these angles. The LEWICE difference from the experimental average are 16 degrees for the upper angle, 30 degrees for the lower angle and 33 degrees for the angle difference.

Overall Assessment

Once the individual measurements are taken for each ice shape, it becomes useful to create an overall assessment of the ice shape prediction. Since each measurement is different, several methods could be used to assess the overall difference between two ice shapes. Eight of the 11 measured values presented in this report have been nondimensionalized. Angles do not have a characteristic measure to use for nondimensionalization, so the three angle criteria are reported in degrees. Since not all of the measured quantities can be nondimensionalized, two overall assessment factors have been calculated. The first overall assessment was determined by an average of the eight individual dimensionless values and the three angle criteria in degrees. The second overall assessment was calculated by using only the eight dimensionless measurements.

Figure 22 shows the comparison of the first overall assessment for each of the experimental errors and for LEWICE. This calculation shows an average overall difference of approximately 4.4 for the experimental data base and 12.5 for LEWICE. Since the angle criteria are not dimensionless, these numbers cannot be considered a percent difference. Figure 23 shows the comparison using the second overall assessment. This second calculation shows an average overall difference of 2.5% for the experimental data and 7.2% for LEWICE. In order to determine if this simple average is a good assessment of the variation, plots were made of the average variation for the experimental shapes and for the LEWICE shapes.

Figure 24 shows an example of two ice shapes which are near the overall experimental average. This plot shows the spanwise variability from a data point in the NACA4415(mod) database. The qualitative comparison of these two ice shapes suggests that the overall assessment parameter is a reasonable approximation. Similarly, Figure 25 shows an example which is at the average variation for the LEWICE cases. The qualitative assessment of this comparison also agrees with the overall assessment parameter used.

Improvements to methodology

The technique used in this report for quantitative comparison of ice shapes represents only one possible path for quantitative validation of code results. Ruff26 proposed an alternate methodology for creating an overall assessment of ice shape prediction. Other methods can also be tested for creating an overall assessment of ice shape prediction. Due to the number of cases in this database, an important consideration is the efficiency at which quantitative measurements can be taken and entered into a spreadsheet for analysis. The current technique used a stand alone utility program to generate the ice thickness distributions. This code was very useful in generating the data needed for this comparison, but the process of transferring the information to the spreadsheet was time consuming. More efficient methods for acquiring the quantitative parameters will be developed in the future.

The definition of max. thickness angle used in this report is not the only possible definition. Other possible definitions could use the chord line of the airfoil instead of a horizontal line. The reference point could be selected as the leading edge of the airfoil or the point on the clean surface where the ice thickness was defined. Due to time constraints, the definition presented in this report was the only one calculated from the ice shapes.

It was stated in the introduction of this report that a quantitative analysis is only one facet of the code validation process. Once the comparison of ice shape has been made, it would be useful to quantify the difference in aeroperformance based on the quantitative difference in geometry. This process would be very time consuming to perform on the entire database even at the fast processor speeds available now. A comparison of a selected number of these cases is being planned at this time. This comparison would calculate the difference in predicted aeroperformance for a given difference in ice shape, using both experimental ice shapes and predicted ice shapes from LEWICE. For example, this comparison would try to determine if the difference in aeroperformance for two ice shapes which are 10% different is
consistently greater than the difference in aeropere-
formance for two ice shapes which are only 5% differ-
ent.

VIII. Numerical Variability

This section of the report will describe the addi-
tional LEWICE cases which were performed to deter-
mine robustness of the code and variability to various
parameters. The parameters shown are not neces-
sarily input variables to LEWICE 2.0 but represent
advanced features which could be utilized by sophis-
ticated users who wish to recompile the source code.

Variability of Code to User Inputs

This section will illustrate the differences in out-
put generated by LEWICE 2.0 due to user inputs.
The inputs selected were the point spacing (parame-
ter DSMN), the time step, and the droplet distribution.
Due to time constrains, only qualitative comparisons
of the variability can be made in this report.

Point Spacing

All of the cases performed for the quantitative
comparison used a spacing of 4×10^{-4}. This is listed in
the input file as variable DSMN. Twelve additional
cases were ran to assess the variability of LEWICE
to this parameter. The cases were selected by choos-
ing the largest ice accretions for each airfoil as these
cases were considered to be the most susceptible to
variation. Some smaller ice accretions were chosen
to test this hypothesis. The ice shapes and ice thick-
ness plots are shown in Figures 26-41. Most of the
cases show only a slight variation in ice shape due to
point spacing in the range studied. A range of 2×10^{-4}
to 8×10^{-4} was chosen for this comparison. The larg-
est variation in ice shape due to point spacing was
seen in Run 103 from the LTHS database.

Time Step

All of the cases ran for the quantitative compar-
ison used a automated time step procedure for those
cases. An additional 18 runs were made to illustrate
the variation when different time steps are used.
Most of the cases were longer ice accretions as
these cases were again considered more susceptible
to variation. These cases are shown in Figures 42-
59. These cases show a large variation in ice shape
prediction due to time step, although the variation
decreases as the number of time steps increase.
This illustrates the need to use a sufficient number of
time steps in order to reduce the variation due to this
effect. In LEWICE 2.0, the automated time step pro-
cedure has been adopted as the default case. If the
user does not wish to use this feature, it can be
turned off with an input flag. A warning message will
be issued at the start of the run advising the user as
to the proper number of time steps recommended for
this run.

Droplet Distribution

All of the cases used for the quantitative compar-
ison used a monodispersed drop size distribution.
There were 21 cases out of the 231 conditions which
were then repeated using a Langmuir “D” dropsize
distribution. The Langmuir “D” distribution for a 20
micron MVD is given in Table 1. The conditions
selected were chosen to provide an example of the
range of drop sized ran for that airfoil.

Table 1: Langmuir “D” Drop Size Distribution

<table>
<thead>
<tr>
<th>%LWC</th>
<th>Ratio</th>
<th>Drop size</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.31</td>
<td>6.2</td>
</tr>
<tr>
<td>0.10</td>
<td>0.52</td>
<td>10.4</td>
</tr>
<tr>
<td>0.20</td>
<td>0.71</td>
<td>14.2</td>
</tr>
<tr>
<td>0.30</td>
<td>1.00</td>
<td>20.0</td>
</tr>
<tr>
<td>0.20</td>
<td>1.37</td>
<td>27.4</td>
</tr>
<tr>
<td>0.10</td>
<td>1.74</td>
<td>34.8</td>
</tr>
<tr>
<td>0.05</td>
<td>2.22</td>
<td>44.4</td>
</tr>
</tbody>
</table>

The ice shape and ice thickness for these runs
are compared to the baseline monodispersed case
and are shown in Figures 60-101. Qualitatively, there
is very little difference in the shape of the ice due to
the droplet distribution. The ice thickness plots illus-
trate the quantitative difference which occurs mostly
in the icing limits, which is to be expected. The maxi-
mum increase in icing limit for these cases was 4.5”
for Run 120r5 in the NACA23014(mod) database.

Variability of Code for Advanced
Features

This section describes the variability of LEWICE
for advanced features which can only be selected by
modifying the code itself. These inputs were removed

NASA/CR—1999-208690 9
from the input due to their effect on the ice shape as
will be illustrated in this section. This data is being
shown for users who may wish to modify the code.
The features selected are smoothing, case study,
maximum point spacing and angle criteria.

Modification of the LEWICE code is undertaken
by the user at their own discretion. NASA cannot
assume responsibility for any such modification of
the code or for support of user modified versions of
LEWICE.

Maximum Point Spacing and Angle Criteria

In LEWICE version 1.6, the user had control of
three variables which determined point spacing on
the body. Those were the minimum point spacing
(DSMN), the maximum point spacing (DSMAX) and
a panel angle criteria (DDANG). The current scheme
used in LEWICE 2.0 for point distribution uses only
the minimum criteria DSMN. To illustrate this, eight
additional cases were ran to show the effects of the
other variables. The ice shapes for these cases are
plotted in Figures 102-109. As seen in these plots,
the ice shape is completely unaffected by these
parameters. The inputs for these variables have been
removed for the release of version 2.0.

Smoothing

The ability of an ice accretion code to automati-
cally add ice in a consistent manner for multiple time
steps may be enhanced by smoothing the iced sur-
face prior to the next time step. A smoother ice shape
can also be used to create molds for experimental
entries investigating performance effects and can be
more easily gridded for use in Navier-Stokes flow
solvers. For these reasons, techniques are being
developed to smooth the ice shape.

One such method has been named “blanket”
smoothing because it overlays a smooth layer on top
of the existing rough ice shape. The details of this
method will not be presented here. The routines for
this method have been made inactive in the official
release of version 2.0 but can easily be reactivated
by users who understand the effects these methods
can have on the ice shape.

Six additional cases have been run with the blan-
et smoothing activated to show its effect on ice
shape prediction. The ice shapes and ice thickness
distributions are plotted versus the LEWICE predic-
tions without smoothing in Figures 110-121. Three of
these cases show little effect of the ice shape due to
smoothing, but the other three show that this smooth-
ing technique can significantly alter the ice shape
prediction and artificially add a significant amount of
ice to the surface. It is for this reason that this meth-
odology was inactive for all of the validation runs in
this report and has been inactivated in the LEWICE
2.0 release. Further research is under way to develop
improved methods for smoothing the ice shape.

Case Study

A feature existed in LEWICE version 1.6 to run a
parameter study on a given variable. For example, all
variables could be held constant except temperature
to study temperature variations on a particular ice
shape. However, it was discovered that the ice
shapes generated using this case study did not
always match the prediction when that case was ran
alone.

A case study was run using time step as the
varying parameter. This means that LEWICE ran four
cases consecutively with each case using a different
time step. These results were compared to previous
cases where the four cases were each ran sepa-
ately. This is shown in Figures 122-129. These fig-
ures show that the predicted ice shape ran using the
case study is different from the ice shape predicted
when a case study was not used. For this reason,
this feature has been made inactive in version 2.0.

Compiler and Platform Uniformity

This section demonstrates the differences in out-
put generated by LEWICE 2.0 when it is run on differ-
ent machines and compilers. The three computers
used for this purpose were an SGI Indigo2 running
IRIX 6.2 and MIPSPro Fortran 7.2, a Gateway2000
Pentium II running Windows 95, and a Compaq Pre-
sario Pentium running Windows 95. The PC compil-
ers used were Absoft Pro Fortran 1.0.2, Digital
Virtual Fortran 5.0.A, and Lahey Fortran 90 v4.5. The
Microsoft PowerStation compiler was not used as
that product had been sold to Digital and that com-
pany offers Virtual Fortran 5.0 as an upgrade to Pow-
erStation owners. It is believed that results for those
two compilers should be comparable.

The use of specific computers or compilers is not
meant as an endorsement of any particular product,
but are mentioned for demonstration purposes. It
was desired to ensure that LEWICE could run accu-
rately on various computers and compilers due to the likelihood that users would have hardware that was different from that used to develop the program.

Sixteen cases were run for each possible combination of compiler and platform. Fifteen of these cases represent cases which can be compared to the experimental data on the CD-ROM. The other case was generated using a cylinder as some users reported a platform variability for cylinder cases with previous versions of the code. The results of this comparison are shown in Figures 130-161. All of the cases ran successfully on each computer. In general, the results are satisfactory, with only slight differences in the ice shapes generated. The largest variation was seen in Figure 141.

IX. Contents of the CD-ROM

This report includes two CD-ROMs of data which were used for the code validation process. The data includes ice shapes for both experiment and for LEWICE, all of the input and output files for the LEWICE cases, JPG files of all plots generated, an electronic copy of this report, and a Microsoft Excel® spreadsheet containing all of the quantitative measurements taken. The first part of this section describes the file structure on the CD-ROMs. The second section describes the contents of the information in the files, including an explanation of the contents of the Excel® spreadsheet and formulas used.

Description of files and folders

The top level directories are named Lewlnput, LewOutput, ExpData and jpgfiles. The top level directory also contains an electronic copy of this report and a copy of the Excel® database with the quantitative measurements. Lewlnput contains all of the LEWICE 2.0 input files used to generate the data in this report. LewOutput contains all of the LEWICE 2.0 output files generated for this report and the analysis output files of the final LEWICE ice shape prediction. The analysis output files were generated to create the quantitative comparison with the experimental data. ExpData contains the digitized ice shape from the IRT and output analysis files used for the quantitative comparison. The directory jpgfiles contains all of the JPG format files of the printed ice shape and ice thickness comparison plots.

Within each of these directories are subdirectories named for each of the seven airfoils included in this report. The seven airfoils are: GLC305, LTHS, NACA0012, NACA0015, NACA23014(mod), NACA4415(mod) and NLF414.

The directory Lewlnput also contains a subdirectory named Geometry containing the input geometries for LEWICE 2.0 and the input geometries for the program used for creating the ice thickness profiles (program THICK). These two sets of inputs are in subdirectories Lewice and thick inside the directory Geometry (Lewlnput\Geometry\thick and Lewlnput\Geometry\Lewice). The airfoil subdirectories within Lewlnput contain the main LEWICE 2.0 input file for each of the LEWICE 2.0 cases ran. The information in the input file is described in the LEWICE 2.0 User Manual. The names of each file correspond to the IRT run number for that condition.

The directory LewOutput also contains a subdirectory named numerics containing LEWICE 2.0 cases ran for determining the robustness of the program and the variability of the output to various factors. These cases are described in the section on numerical variability. The airfoil subdirectories within LewOutput contain a directory for each LEWICE 2.0 run. The name of the directory corresponds to the IRT run number for that condition.

Each LEWICE 2.0 run produces the following 10 files: beta.dat, final.dat, flow.dat, htc.dat, ice1.dat, imp.dat, junk.dat, misc.dat, pres.dat, and xkinit.dat. In addition, each of these directories also contain output from the program THICK. These files are named clean.dat, echo.dat and iced.dat. A JPG format screen shot of the interactive graphics used on an SGI machine is also included in this directory and is named snap.jpg. The output from the program THICK is generated using the input files in the directory Lewlnput\Geometry\thick and the file final.dat containing the final ice shape predicted by LEWICE 2.0.

The airfoil subdirectories contained within the directory ExpData contain a directory for each digitized ice shape. The subdirectory names correspond to the IRT Run number for that condition followed by the spanwise location of the tracing as measured from the tunnel floor. Each of these subdirectories contains the original digitized ice shape for that run and location. The digitized ice shape file will be ASCII format (.txt). A single number at the top of this file
denotes the number of data points in the file and the remaining lines contain the x,y coordinates of the ice shape in inches. The digitized ice shape is also present in spreadsheet format (.xls,.wk1,.wk3) for most cases. The subdirectories will also contain output files from the ice thickness analysis program THICK. These three output files (clean.dat, iced.dat, and echo.dat) are the output generated when running THICK with the input file in directory Geometry\Lewlnput\thick and the text format of the digitized ice shape file.

The directory jpgfiles contains the seven airfoil subdirectories and subdirectory numerics. The airfoil subdirectories contain plots comparing LEWICE 2.0 with the experimental data. Both ice shape and ice thickness comparison plots are present. The name of the files correspond to the IRT Run number for that case plus “ice” to denote an ice shape plot or “thick” to denote an ice thickness plot. The subdirectory numerics contains plots of the LEWICE 2.0 runs made to determine robustness and variability of the program to selected inputs. The inputs selected will be described in the section on numerical variability.

File Contents

This section will give a brief description of the data within a given file name.

LEWICE Output Files

This list contains a description of the LEWICE output files included in this report. There are other output files which the user can activate such as a printout of the individual trajectories which are not included in this list. Refer to the upcoming LEWICE 2.0 User Manual for a complete listing of input and output files. The value in parenthesis is the title used for that column of data in the output file.

beta.dat - collection efficiency output for each time step. Columns are dimensionless wrap distance from the stagnation point (labeled S/C) and collection efficiency (labeled BETA). The actual tests in this report were ran on an alpha version of LEWICE 2.0. The output data for the official version will be very similar, but the format has been changed. Additional columns for the official release include dimensionless wrap distance as measured from the airfoil hilite, and the dimensionless x,y coordinates of the airfoil.

flow.dat - contains the output from the potential flow solution at each time step. Columns contain the panel index (I), dimensionless x,y coordinates (X, Y) at the panel center (not at the endpoints as with other files), wrap distance as measured from the lower surface trailing edge (S), dimensionless tangent velocity (VT), pressure coefficient (CP), a separate panel index for each body (J), the panel source/sink value (SIGMA), and the dimensionless normal velocity (VN). For each time step, two flow solutions are generated and an additional flow solution is generated on the final ice shape before the program exits. This will be discussed in more detail in the upcoming Users Manual.

htc.dat - contains the convective heat transfer coefficient at each time step. Columns are segment number (SEG), dimensionless wrap distance from stagnation (S), heat transfer coefficient (HTC) in W/m²K, and Frössling Number.

ice1.dat - contains the ice shape for the first body at each time step. Columns contain the coordinates of the ice shape (X,Y) in inches, ice thickness (THICK) in inches and wrap distance from the stagnation point (S) in inches. Data is output in inches as all of the experimental data is taken in inches. As of this writing, it has not been decided if the official 2.0 release will contain inches in the output or dimensionless units.

imp.dat - contains information related to the impingement limit for each time step. Columns are droplet size (microns), dimensionless x-coordinate of the lower impingement limit (XLOW), dimensionless y-coordinate of the lower impingement limit (YLOW), dimensionless wrap distance from stagnation of the lower impingement limit (LOW), dimensionless wrap distance from the leading edge of the lower impingement limit (LOWLE), dimensionless x-coordinate of the upper impingement limit (XHI), dimensionless y-coordinate of the upper impingement limit (YHI), dimensionless wrap distance from stagnation of the upper impingement limit (SHI), dimensionless wrap distance from the leading edge of the upper impingement limit (SHILE).

junk.dat - contains information useful for debugging the code and any screen outputs including
warning or error messages. By default in version 2.0, much of this printout is turned OFF.

misc.dat - contains miscellaneous information about the run including lift coefficient and the starting and ending locations of individual drops.

pres.dat - contains the compressible flow solution at the edge of the boundary layer. Columns are segment number (SEG), dimensionless wrap distance from stagnation (S), dimensionless velocity at the edge of the boundary layer (VE), dimensionless temperature at the edge of the boundary layer (TE), dimensionless pressure at the edge of the boundary layer (PRESS) and dimensionless density at the edge of the boundary layer (RA). Reference variables which were used to non-dimensionalize these quantities are chord length, ambient velocity, freestream total temperature, freestream total pressure and freestream total density, calculated from the equation

\[\rho_o = \frac{P_o}{RT_o} \quad (4) \]

xkinit.dat - contains the predicted sand-grain roughness at each time step. Columns are time in seconds (TIME), and two predictions for sand-grain roughness which are calculated by different sets of equations (XKINIT). LEWICE 2.0 uses the last value listed on each line as the sand-grain roughness, which is also dimensionless.

iced.dat - contains the ice shape and ice thickness output. Columns are the x-coordinate of the ice shape (XICE) in inches, the y-coordinate of the ice shape (YICE) in inches, and the ice thickness from that point to the clean surface (YPTOT) in inches.

echo.dat - contains a copy of information printed to the screen. Data includes the icing limits in inches, the total ice area and the maximum ice thickness. Data was printed to this smaller file to expedite transfer of the quantitative measurements to the spreadsheet.

THICK Utility Output Files

This list contains a description of the output files from the utility program THICK. The value in parenthesis is the title used for that column of data in the output file.

clean.dat - contains the ice thickness output relative to the clean airfoil coordinates. Columns are the x-coordinate of the clean airfoil (XSAV) in inches, the y-coordinate of the clean airfoil (YSAV) in inches, the ice thickness from the clean surface (DITOT) in inches, the cumulative ice area (AREA) in square inches, and the wrap distance as measured from the leading edge (S) in inches.

iced.dat - contains the ice shape and ice thickness output. Columns are the x-coordinate of the ice shape (XICE) in inches, the y-coordinate of the ice shape (YICE) in inches, and the ice thickness from that point to the clean surface (YPTOT) in inches.

Description of Excel Matrix and Formulas

This section will describe the data input into a Microsoft Excel spreadsheet for the quantitative comparison presented earlier. A complete printout of this matrix has not been included as it is over 200 pages in size. Each spreadsheet row contains one data point for the comparison or values for the experimental average. Blank lines were included to separate different test entries and the data was organized by airfoil.

The spreadsheet columns contain conditions for the run, measured and calculated parameters for the experimental data point, measured and calculated parameters for the associated LEWICE run, percent differences for LEWICE compared to the experimental data and experimental averages, percent differences for the experimental data compared to the experimental average, the absolute differences for LEWICE compared to the experiment and experimental averages and the absolute differences for the experimental data compared to the experimental average. Each category will be discussed in detail.
Spreadsheet Columns

Column 1: Contains the last name of the icing researcher who took the data. This is provided for informational purposes.

Column 2: Contains the name of the airfoil. Data for each airfoil are grouped together in this matrix.

Column 3: Contains the test date (month and year only).

Column 4: Contains the airfoil chord length in inches.

Column 5: Contains the NASA Run number used by the researcher. Each researcher has their own unique number scheme which will not be elaborated on here. Future tests are expected to have a more uniform convention for numbering runs.

Column 6: Contains the spanwise location (measured from the tunnel floor) for the experimental data. In addition, some rows contain averages of the other columns. Rows where this column is labeled 'Average' contain the spanwise average for that run. For every case which has more than one spanwise location where an ice shape was traced and digitized, a spanwise average was calculated.

Where this column contains '36” Avg.', that row will contain the repeatability average at the 36” span location for that run. Other labels such as '24” Avg.' or '48” Avg.' will contain the experimental repeatability average at that spanwise location for that condition. If the column is labeled 'Repeat Avg.', there is only one spanwise location available for which to calculate a repeatability average.

Every case which contains a repeat condition will have a repeatability average at every spanwise location where data is available. The repeat conditions will contain a spanwise average for that run as described earlier, but the repeatability information is listed only under the first run for that condition. The repeatability averages weight each ice shape the same rather than weighting each spanwise location the same. For example, consider a condition with five repeat runs in which the first two cases had three spanwise ice shapes traced while in the other three cases only the mid-span location was traced. There are a total of nine ice shapes for the overall average which are equally weighted.

Certain cases contain two sets of data where two different researchers both traced the same ice shape. These are identified in this matrix by listing each researcher individually under Column 1. An average value for that run is labeled "Tracer Avg." in this column. This average is distinct from both spanwise average and the repeatability average. In any condition where there are two or more types of averages (for example both a spanwise average and a repeatability average exist), then an overall average is calculated for that condition and labeled "Overall Avg." in this column. The bottom row for each airfoil also contains the average differences and percent differences for that airfoil. This column is then labeled "Airfoil Avg". The last row of the matrix contains the average differences and percent differences for the entire spreadsheet. This row is labeled "Total Avg.".

Column 7: If the condition listed is a repeat of a run listed earlier in the matrix, this column will contain the NASA Run number of the first entry for that set of conditions. If the condition is not a repeat condition, this column is blank. Each repeat case is referenced to the first entry in the matrix for that condition.

Column 8: Contains the tunnel velocity in knots. The velocity was recorded by some researchers in knots and by others in miles per hour. In the second case, values were converted to knots for listing in this table.

Column 9: Contains the tunnel velocity in meters per second. LEWICE uses meters per second as input units for velocity, so both set of units were listed.

Column 10: Contains the tunnel total temperature in degrees Fahrenheit. Most of the data for total temperature was recorded in degrees Fahrenheit. Some researchers recorded total temperature in degrees Celsius which was converted for listing in this table.

Column 11: Contains static temperature in degrees Kelvin. LEWICE uses Kelvin as its input unit for static temperature, hence the inclusion of this column in the matrix.

Column 12: Contains the angle of the airfoil with respect to the tunnel air flow.

Column 13: Contains the corrected angle of attack for input into LEWICE. Since the flow in LEWICE is calculated by a potential flow code, the lift predicted on the clean airfoil will be higher than the actual value (and by inference on the iced airfoil as well). Therefore it is necessary, especially for high angle of attack conditions, to use a corrected value for the LEWICE predictions. This correction is determined by selecting the angle of attack in LEWICE which will match the experimental lift coefficient for
the clean airfoil at that actual angle of attack. No additional corrections are made if the iced airfoil predicts a lift coefficient higher than expected since not enough data is available to make that determination.

Column 14: Contains the Liquid Water Content of the water sprayed at the model in the IRT. All data is reported in grams per cubic meter.

Column 15: Contains the Median Volume Diameter of the water sprayed at the model in the IRT. For all of the baseline conditions in this matrix ran with LEWICE, a mono-dispersed drop distribution using this MVD value was chosen. Cases using a droplet distribution are shown in the section on numerical variability earlier in this report.

Column 16: Contains the duration of the water spray for the tunnel condition in minutes. It should be noted that LEWICE uses time in seconds as input to the code. A separate column listing time in seconds was considered unnecessary.

Columns 17-30: Contains the measured data for the experimental ice shape. The parameters measured are explained in the section titled "Description of Comparison Method" earlier in this report. That explanation will not be repeated here. The columns as listed in this matrix are:

- Lower Icing Limit (x-value)
- Upper Icing Limit (x-value)
- Lower Icing Limit (wrap distance)
- Upper Icing Limit (wrap distance)
- Lower Surface Max. Thickness
- Leading Edge Min. Thickness
- Upper Surface Max. Thickness
- Lower Surface Ice Area
- Upper Surface Ice Area
- Total Ice Area
- x-value at lower max. thickness
- y-value at lower max. thickness
- x-value at upper max. thickness
- y-value at upper max. thickness

For rime ice shapes and other ice shapes with only a single maxima, the Lower Surface Max. Thickness, x-value at lower max. thickness and y-value at upper max. thickness are listed as "N/A". The wrap distance is reported as an absolute value as measured from the leading edge. Some sign conventions would indicate that the lower wrap distance should be listed with a negative distance. This convention was not followed in this matrix.

Columns 31-32: Contains the x,y coordinate at the center of the inscribed circle at the leading edge of the clean airfoil. For a small percentage of the data, the digitized ice shape was found to be offset from other data points. Because of this, the reference point may be different for the same airfoil.

Column 33: Contains the angle at the lower max. thickness. This angle is calculated from the x,y point at the lower max. thickness and the x,y point at the center of the inscribed circle at the leading edge and is referenced to the horizontal axis. The angle is reported as a positive angle between 0° and 360°. Since it is the lower angle, most values lay between 180° and 360°. Because of the reference point chosen, for negative angles of attack it is possible for the angle at the lower max. thickness to be less than 180°.

For rime ice shapes and other conditions with only a single maxima in the ice shape curve, the angle at the lower max. thickness is listed as "#VALUE!" as the columns this value is calculated from is labeled "N/A". One exception was made for a case which had no upper surface ice whatsoever. In this case, the angle at the upper max. thickness was listed as "#VALUE!" and the angle at the lower max. thickness contained the angle at the max. ice thickness.

Note: for rows containing average values for the experimental data, the angle is calculated from the average x,y values at the max. thickness. It is not an average of the calculated angles. This calculation is best expressed by the equations below.

\[
\theta_{av} = \text{atan}\left(\frac{y_{av} - y_c}{x_{av} - x_c}\right)
\]

where

\[
y_{av} = \frac{\sum_{i=1}^{n} y_i}{n}
\quad \text{and} \quad
x_{av} = \frac{\sum_{i=1}^{n} x_i}{n}
\]
\(x_c \) and \(y_c \) are the x,y values at the center of the inscribed circle and \(n \) is the number of points in the average.

Column 34: Contains the angle at the upper max. thickness. This angle is calculated from the x,y point at the upper max. thickness and the x,y point at the center of the inscribed circle at the leading edge and is referenced to the horizontal axis. The angle is reported as a positive angle between 0° and 360°. Since it is the upper angle, most values lay between 0° and 180°. Because of the reference point chosen, for positive angles of attack it is possible for the angle at the upper max. thickness to be greater than 180°. As stated in the previous paragraph, certain cells in this column lists "#VALUE!" since the value it is calculated from is listed as "N/A".

Column 35: Contains the difference between the angle at the upper max. thickness and the angle at the lower max. thickness. If one of these two columns contains a value of "#VALUE!", then this column will be listed as "#VALUE!" as well.

Columns 36 and 37: Contains the lift coefficient predicted by LEWICE for the clean airfoil and for the iced airfoil for the condition listed. The iced airfoil value used is the lift predicted by LEWICE for that condition on the final ice shape. It is interesting to note that for most cases, LEWICE predicts an increase in lift due to ice. This is an artifact of the potential flow code and is not considered to be indicative of the actual effect of the ice shape on lift.

Columns 38-54: Contains the measured data for the final ice shape predicted by LEWICE for that condition. The parameters measured are explained in the section titled "Description of Comparison Method" earlier in this report. That explanation will not be repeated here. The columns as listed in this matrix are:

- Lower Icing Limit (x-value)
- Upper Icing Limit (x-value)
- Lower Icing Limit (wrap distance)
- Upper Icing Limit (wrap distance)
- Lower Surface Max. Thickness
- Leading Edge Min. Thickness
- Upper Surface Max. Thickness
- Lower Surface Ice Area
- Upper Surface Ice Area
- Total Ice Area
- x-value at lower max. thickness
- y-value at lower max. thickness
- x-value at upper max. thickness
- y-value at upper max. thickness
- Angle at Lower Max. Thickness
- Angle at Upper Max. Thickness
- Angle Difference

Each column title also includes the word “Lewice” to differentiate these columns from those containing measured quantities from the experimental data. For rime ice shapes and other ice shapes with only a single maxima, the Lower Surface Max. Thickness, Leading Edge Min. Thickness, x-value at lower max. thickness and y-value at the lower max. thickness are listed as “N/A” for “not applicable”. The single maxima was listed under Upper Surface Max. Thickness regardless of where the max. thickness occurred. One exception was made for a case where there was zero upper surface ice. In this case, the Upper Surface Max. Thickness, Leading Edge Min. Thickness, x-value at upper max. thickness and y-value at upper max. thickness are listed as “N/A”. The angles for these cases will list a value of “#VALUE!” as explained earlier. The wrap distance is reported as an absolute value as measured from the leading edge. Some sign conventions would indicate that the lower wrap distance should be listed with a negative distance. This convention was not followed in this matrix.

Columns 55-65: Contains the percent difference of the LEWICE result from the experimental data in that row. Where that row contains averages of the experimental data, these columns will show the percent difference of the LEWICE result to the average value. The values for which a percent difference is calculated are:

- Lower Icing Limit (wrap distance)
- Upper Icing Limit (wrap distance)
- Lower Surface Max. Thickness
- Leading Edge Min. Thickness
- Upper Surface Max. Thickness
- Lower Surface Ice Area
- Upper Surface Ice Area
- Total Ice Area
- Angle at Lower Max. Thickness
- Angle at Upper Max. Thickness
- Angle Difference

Certain cells will contain a value of "#VALUE!" as the column it is calculated from is listed as "N/A" or "#VALUE!" as explained earlier. For cases where the
leading edge min. thickness is zero for the experimental data, the percent difference will yield a result of "#DIV/0!".

Columns 66-76: Contains the percent difference between the measured value for the experimental data and the experimental average. For the rows with experimental measurements, the percent difference shown uses the spanwise average for that run when calculating the percent difference. For the rows containing the experimental averages, a percent difference is calculated by comparing the average value to the overall average for that run. For example, the percent difference columns for a row containing a spanwise average will contain the percent difference of the spanwise average value with respect to the overall average value for that condition. The values for which a percent difference is calculated are:

- Lower Icing Limit (wrap distance)
- Upper Icing Limit (wrap distance)
- Lower Surface Max. Thickness
- Leading Edge Min. Thickness
- Upper Surface Max. Thickness
- Lower Surface Ice Area
- Upper Surface Ice Area
- Total Ice Area
- Angle at Lower Max. Thickness
- Angle at Upper Max. Thickness
- Angle Difference

Certain cells will contain a value of "#VALUE!" as the column it is calculated from is listed as "N/A" or "#VALUE!" as explained earlier. For cases where the leading edge min. thickness is zero for the experimental data, the percent difference will yield a result of "#DIV/0!".

Column 77: Contains a value for the theoretical max. ice thickness for the condition listed. This is calculated from the following equation:

\[t_{\text{max}} = \frac{(LWC)(V)(\text{Time})}{\rho_{\text{ice}}} \] \hspace{1cm} (7)

where \(\rho_{\text{ice}} \) is the ice density which is set equal to 917 kg/m\(^3\). This max. thickness value is used by later columns to nondimensionalize ice thickness and ice area values so that differences from different test entries and airfoils may be compared against each other.

Columns 78-88: Contains the absolute dimensionless difference of the LEWICE result from the experimental data in that row. Where that row contains averages of the experimental data, these columns will show the difference of the LEWICE result to the average value. The values for which an absolute difference is calculated are:

- Lower Icing Limit (wrap distance)
- Upper Icing Limit (wrap distance)
- Lower Surface Max. Thickness
- Leading Edge Min. Thickness
- Upper Surface Max. Thickness
- Lower Surface Ice Area
- Upper Surface Ice Area
- Total Ice Area
- Angle at Lower Max. Thickness
- Angle at Upper Max. Thickness
- Angle Difference

In order to compare differences for various icing conditions and various airfoils, the differences are nondimensionalized. The two icing limits are nondimensionalized by the chord length and then multiplied by 100 to give a percentage difference. The ice thickness values are nondimensionalized by the theoretical max. thickness for that condition which is listed in column 77 and then multiplied by 100 to give a percentage difference. Ice area values are nondimensionalized by the theoretical max. ice thickness in column 77 and the thickness of the airfoil and then multiplied by 100 to give a percentage difference. The airfoil thickness was believed to provide a more accurate assessment of percent difference than chord length as the entire length of an airfoil is not covered with ice. The angle values are absolute values and are given in degrees.

Columns 89-99: Contains the absolute dimensionless difference of the experimental result from the experimental average. For the rows with experimental measurements, the difference shown uses the spanwise average for that run when calculating the difference. For the rows containing the experimental averages, a difference is calculated by comparing the average value to the overall average for that run. For example, the difference columns for a row containing a spanwise average will contain the difference of the spanwise average value with respect to the overall average value for that term. The values for which an absolute difference is calculated are:
<table>
<thead>
<tr>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Icing Limit (wrap distance)</td>
</tr>
<tr>
<td>Upper Icing Limit (wrap distance)</td>
</tr>
<tr>
<td>Lower Surface Max. Thickness</td>
</tr>
<tr>
<td>Leading Edge Min. Thickness</td>
</tr>
<tr>
<td>Upper Surface Max. Thickness</td>
</tr>
<tr>
<td>Lower Surface Ice Area</td>
</tr>
<tr>
<td>Upper Surface Ice Area</td>
</tr>
<tr>
<td>Total Ice Area</td>
</tr>
<tr>
<td>Angle at Lower Max. Thickness</td>
</tr>
<tr>
<td>Angle at Upper Max. Thickness</td>
</tr>
<tr>
<td>Angle Difference</td>
</tr>
</tbody>
</table>

In order to compare differences for various icing conditions and various airfoils, the differences are nondimensionalized. The two icing limits are nondimensionalized by the chord length and then multiplied by 100 to give a percentage difference. The ice thickness values are nondimensionalized by the theoretical max. thickness for that condition which is listed in column 77 and then multiplied by 100 to give a percentage difference. Ice area values are nondimensionalized by the theoretical max. ice thickness in column 77 and the thickness of the airfoil and then multiplied by 100 to give a percentage difference. The airfoil thickness was believed to provide a more accurate assessment of percent difference than chord length as the entire length of an airfoil is not covered with ice. The angle values are absolute values and are given in degrees.

Column 100: contains the average of the 11 percentage difference calculations in Columns 55-65 between LEWICE and the experimental data for each run. For the rows with experimental measurements, the percent difference shown uses the spanwise average for that run when calculating the percent difference. For the rows containing the experimental averages, a percent difference is calculated by comparing the average value to the overall average for that run.

For example, the percent difference columns for a row containing a spanwise average will contain the percent difference of the spanwise average value with respect to the overall average value for that condition. For conditions where one or more of the individual percentage differences is labeled "#VALUE!" or "#DIV/0!" then the average is calculated from the remaining columns which have numbers.

Column 101: contains the average of the 11 absolute difference calculations in Columns 66-76 between the experimental data for each run and the experimental average. For the rows with experimental measurements, the percent difference shown uses the spanwise average for that run when calculating the percent difference. For the rows containing the experimental averages, a percent difference is calculated by comparing the average value to the overall average for that run.

For example, the absolute difference columns for a row containing a spanwise average will contain the absolute difference of the spanwise average value with respect to the overall average value for that condition. For conditions where one or more of the individual absolute differences is labeled "#VALUE!" or "#DIV/0!" then the average is calculated from the remaining columns which have numbers.

Column 102: contains the average of the 11 absolute difference calculations in Columns 78-88 between LEWICE and the experimental data for each run. For the rows with experimental measurements, the difference shown uses the spanwise average for that run when calculating the absolute difference. For the rows containing the experimental averages, an absolute difference is calculated by comparing the average value to the overall average for that run.

For example, the absolute difference columns for a row containing a spanwise average will contain the absolute difference of the spanwise average value with respect to the overall average value for that condition. For conditions where one or more of the individual absolute differences is labeled "#VALUE!" or "#DIV/0!" then the average is calculated from the remaining columns which have numbers.

Column 103: contains the average of the 11 absolute difference calculations in Columns 89-99 between the experimental data for each run and the experimental average. For the rows with experimental measurements, the absolute difference shown uses the spanwise average for that run when calculating the absolute difference. For the rows containing the experimental averages, an absolute difference is calculated by comparing the average value to the overall average for that run.

For example, the absolute difference columns for a row containing a spanwise average will contain the absolute difference of the spanwise average value with respect to the overall average value for that condition. For conditions where one or more of the individual percentage differences is labeled "#VALUE!" or "#DIV/0!" then the average is calculated from the remaining columns which have numbers.
Column 104: contains the average of the 8 absolute difference calculations in Columns 78-85 between LEWICE and the experimental data for each run. For the rows with experimental measurements, the difference shown uses the spanwise average for that run when calculating the absolute difference. For the rows containing the experimental averages, an absolute difference is calculated by comparing the average value to the overall average for that run.

For example, the absolute difference columns for a row containing a spanwise average will contain the absolute difference of the spanwise average value with respect to the overall average value for that condition. For conditions where one or more of the individual absolute differences is labeled "#VALUE!" or "#DIV/0!" then the average is calculated from the remaining columns which have numbers.

Column 105: contains the average of the 8 absolute difference calculations in Columns 89-96 between the experimental data for each run and the experimental average. For the rows with experimental measurements, the absolute difference shown uses the spanwise average for that run when calculating the absolute difference. For the rows containing the experimental averages, an absolute difference is calculated by comparing the average value to the overall average for that run.

For example, the absolute difference columns for a row containing a spanwise average will contain the absolute difference of the spanwise average value with respect to the overall average value for that condition. For conditions where one or more of the individual percentage differences is labeled "#VALUE!" or "#DIV/0!" then the average is calculated from the remaining columns which have numbers.

X. Conclusions

This report has presented the quantitative comparisons of several geometric characteristics for a database of over 1000 ice shapes. Measurements of icing limit, ice thickness, ice area and horn angle were made for each ice shape. Comparisons were made for the difference in experimental variations such as tunnel repeatability, spanwise variability and tracing errors. Comparisons were also made for the difference between the predicted ice shape from LEWICE and the average experimental value. Comparisons were made for each individual quantitative criteria. An overall assessment was made for the quantitative comparison as well.

This comparison shows that based on the overall assessment criteria presented in this report, the variation in the experimental data was 4.4% and the LEWICE predicted ice shape differs from the experimental average by 12.5%. The ice shape data and output files from LEWICE which were generated for this report are included on CD-ROMs along with all of the quantitative comparison numbers.

XI. Acknowledgments

The authors would like to thank the NASA Lewis Icing Branch for their continued support of this research, both financially and for their help with this report. Special recognition goes to the researchers who generated the experimental data included in this report, to Dr. Mark Potapczuk for his insights into this work and especially to Tammy Langhals for digitizing all of the experimental ice tracings in this report.

XII. References

6 Tran, P., Brahimi, M. T., Tezok, F. and Paraschivoiu, I., “Numerical Simulation of Ice Accretion

22 Anderson, D. IRT Test Entry, June 1996.

XIII. Appendix: Ice Shape and Ice Thickness Comparison Plots

This section contains plots comparing ice shapes measured in the IRT with LEWICE. A plot is made for each unique condition in the matrix. This means that only the first case of a condition is plotted and repeat conditions are not plotted. The spanwise location of the tracing is given on the plot. Only one spanwise location was plotted. The centerline (36” span) location is shown if available. If it is not available, the closest location to the centerline is plotted. In addition to the ice shape, a comparison plot of the ice thickness distribution generated by the utility program THICK is also given. There are 462 plots in this appendix, Figures 162-623.

There are seven sections to this appendix which correspond to the seven airfoils used for this comparison. Each section is preceded by a table which summarizes the experimental conditions for that airfoil. Individual test entries are separated by blank lines in the table. Definitions of the columns in the table are presented in the section describing the Excel spreadsheet, however there is only one entry for each test condition in this table whereas the spreadsheet data contained an entry for each tracing location. There are seven tables in all, labeled as Tables 2-8.

Each ice shape plot contains as its title the NASA run number of the experimental data and the tracing location. The airfoil is plotted as a solid line, the experimental data as short dashes and the LEWICE prediction as longer dashes. All ice shapes are plotted proportionately, which means that the y-axis and x-axis are the same scale. In addition, the ice shape is plotted to scale if it was small enough to fit on the plot axis, which was 7” horizontally by 5” vertically. Larger ice shapes are plotted 1/2 scale (14” x 10” of ice is plotted on the 7” x 5” plot) or 1/3 scale (21” x 15” of ice is plotted on the 7” x 5” plot).

Each ice thickness plot contains as its title the NASA run number of the experimental data and the tracing location. The experimental data is again plotted as short dashes and the LEWICE prediction as longer dashes. Important note: the ice thickness plots are not plotted proportionately. This was done so that the details of the ice thickness curves could be seen. Much of this detail is lost on a proportional plot. The horizontal axis is wrap distance from the hiile of the clean airfoil and plotted in inches. The vertical axis is ice thickness in inches from the clean surface. The plot label ‘ditot’ on the vertical axis is the name of the variable for ice thickness internal to the program THICK.
FIGURE 1. NACA 23014 (mod) Airfoil

FIGURE 2. LTHS Airfoil

FIGURE 3. GLC305 Airfoil

FIGURE 4. NACA0012 Airfoil
FIGURE 8. Example of a Cardboard Template for Tracing Ice Shapes

FIGURE 9. Limitations of Unit Normal Approach for Ice Thickness

Surface unit normal can miss large regions of ice.

Ice unit normal does not intersect surface.
FIGURE 10. Limitations of Minimum Distance Approach

Some surface locations may not have ice thickness value due to sparsity of points on ice shape.

FIGURE 11. Corrections to Ice Thickness Distribution

Multiple ice shape locations can point to the same surface location.
FIGURE 12. Icing Limits on Sample Ice Shape

FIGURE 13. Icing Limits Using Ice Thickness Plot
FIGURE 14. Ice Thickness Values on Sample Ice Shape

FIGURE 15. Ice Shape with Peak Thickness but No Discernible “Horn”
FIGURE 16. Max. Thickness Angle on Sample Ice Shape

FIGURE 17. Example of Lift Overprediction by Potential Flow
Variation of Icing Limit Compared to Average Experimental Value

Variation of Ice Thickness Compared to Average Experimental Value

FIGURE 18. Variation of Icing Limit Compared to Average Experimental Value

FIGURE 19. Variation of Ice Thickness Compared to Average Experimental Value
FIGURE 20. Variation of Ice Area Compared to Average Experimental Value

FIGURE 21. Variation of Angle at Max. Thickness Compared to Average Experimental Value
FIGURE 22. Overall Ice Shape Variation Compared to Average Experimental Value

FIGURE 23. Nondimensional Ice Shape Variation Compared to Average Experimental Value
FIGURE 24. Example of Ice Shape Variation at Average %Difference in Experimental Data

FIGURE 25. Example of Ice Shape Prediction at Average %Difference in Experimental Data
Spacing Cases - DSMN
FIGURE 29

Run 251

\[s \text{(in)} \]

\[d_{\text{tot}}(\text{in}) \]

- DSMN = 4×10^{-4}
- DSMN = 8×10^{-4}
FIGURE 30

Run DC-1

\((u_1)\lambda\)

\(-5\)

\(-10\)

\(-15\)

\(10\)

\(5\)

\(0\)

\(5\)

\(10\)

\(15\)

Airfoil
DSMN = 4 \times 10^{-4}
DSMN = 8 \times 10^{-4}
FIGURE 35

Run 103

\[\text{DSMN} = 4 \times 10^{-4} \]

\[\text{DSMN} = 8 \times 10^{-4} \]
Run 072501

- Airfoil
- DSMN = 2 \times 10^{-4}
- DSMN = 4 \times 10^{-4}
- DSMN = 6 \times 10^{-4}
- DSMN = 8 \times 10^{-4}
Time Step Cases
Run 072501

d(ditot)(in)
FIGURE 46

Run 072503

Airfoil

IFLO = 4

IFLO = 5

IFLO = 10

IFLO = 15

u_y
FIGURE 51

Run 072504

IFLO = 4

IFLO = 5

IFLO = 10

IFLO = 15

s(in)

d(tot)(ln)
FIGURE 53

Run 072704

- - - - DSMN = 4x10^{-4}, IFLO = 15
- - - - DSMN = 4x10^{-4}, IFLO = 30
- - - - DSMN = 8x10^{-4}, IFLO = 15
- - - - DSMN = 8x10^{-4}, IFLO = 30

s(in)
dist(lin)
FIGURE 54
Langmuir ‘D’ Cases
FIGURE 63

--- Single Drop Size
--- --- Distributed Drop Size

Run 106

s (in)

0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0

(droplet (in))
FIGURE 64

Run 141

- - - - - Single Drop Size

- - - - - - - Distributed Drop Size
FIGURE 67

Run 072501

- - Single Drop Size

-. -- Distributed Drop Size

(u1)^1

x(in)
FIGURE 73

Run 080107

- - - Single Drop Size
- - - Distributed Drop Size

$\text{dist}(\text{in})$

$\text{s}(\text{in})$
FIGURE 76

Run 214

- Airfoil
- - - Single Drop Size
- - - - Distributed Drop Size

(u1)\lambda

x(ln)
FIGURE 91

Run DC-3

--- Single Drop Size
----- Distributed Drop Size

s (in)

0.5 0.4 0.3 0.2 0.1 0

0 5 10 15
FIGURE 96

Run 120r3

Airfoil

- - Single Drop Size

- - Distributed Drop Size

(u1)\lambda

x(\text{in})

NASA/CR-1999-208690 109
FIGURE 97

Run 12or3

- - - Single Drop Size

- - - Distributed Drop Size

- - - Distributed Drop Size
FIGURE 99

[Diagram showing the relationship between Run 120r5 and s(ln)].
FIGURE 100

- Airfoil
- Single Drop Size
- Distributed Drop Size

Run 219

$\frac{(u_1)\lambda}{\lambda}$

$x(\text{in})$

-4 -2 0 2 4 6 8 10

-4 -2 0 2 4

NASA/CR-1999-208690 113
Spacing Cases - Other
Run 072501

DDANG = 2.5 × 10^{-4}
DDANG = 5 × 10^{-4}
DDANG = 1 × 10^{-3}
Run 072501

- Airfoil
- DMAX = 5 \times 10^{-4}
- DMAX = 1 \times 10^{-3}
- DMAX = 1.5 \times 10^{-3}
FIGURE 106

Run 072504

Airfoil

DDANG = 2.5*10^-4
DDANG = 5*10^-4
DDANG = 1*10^-3
Blanket Smoothing
FIGURE 112

- - - - - original prediction

Airfoil with blanket smoothing
FIGURE 120

Run 072808

Airfoil

--- original prediction

--- with blanket smoothing

X(in)

(u1)(\lambda)

NASA/CR-1999-208690 137
Run 072808

- --- original prediction
- - - - with blanket smoothing

FIGURE 121
Case Study
FIGURE 124

Run 072501-2

Airfoil
-
- Single Case Run
----- Ran Using "Case Study"

NASA/CR-1999-208690 143
Compiler Effects
Run 072702

![Graph showing various software performance comparisons for Run 072702]
FIGURE 146

Run 072802

(1)
FIGURE 152

Run 073102

(u1)λ

X(in)

1.5 -1 -1 0 0.5 1 1.5

Airfoil
MIPS Pro 7.2 (SGI)
Absott 1.0.2 (PC)
Digital 5.0.1 (PC)
Lahey 4.5 (PC)
FIGURE 159

Run 080302

MIPS Pro 7.2 (SGI)
Absoft 1.0.2 (PC)
Digital 5.0.3 (PC)
Lahey 4.5 (PC)

s (in)

0.6 0.5 0.4 0.3 0.2 0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
FIGURE 161

Cylinder Test Case

- MIPS Pro 7.2 (SGI)
- Absoft 1.0.2 (PC)
- Digital 5.0.4 (PC)
- Digital optimized (PC)
- Lahey 4.5 (PC)

s(\text{in})

\text{dilatation (in)}
NACA 23014 (mod)
Figures 162 – 241
NACA23014(mod) Test Conditions

<table>
<thead>
<tr>
<th>Principal Investigator</th>
<th>Airfoil</th>
<th>Test Date</th>
<th>Chord (in)</th>
<th>Run Number</th>
<th>Previous Identical Run</th>
<th>Velocity (kts)</th>
<th>Velocity (m/s)</th>
<th>Tt (°F)</th>
<th>Static Temperature (K)</th>
<th>A.O.A.</th>
<th>Corrected A.O.A.</th>
<th>LWC (g/m²)</th>
<th>MVD (microns)</th>
<th>Spray Time (min)</th>
<th>Digitized Tracing Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reehorst</td>
<td>NACA23014(mod)</td>
<td>Jan. 1998</td>
<td>68.7</td>
<td>-29-runR</td>
<td>1-21-run3</td>
<td>172.1</td>
<td>88.5</td>
<td>28</td>
<td>266.74</td>
<td>5</td>
<td>4.5</td>
<td>0.58</td>
<td>70</td>
<td>3.36*</td>
<td></td>
</tr>
<tr>
<td>Reehorst</td>
<td>NACA23014(mod)</td>
<td>Jan. 1998</td>
<td>68.7</td>
<td>-29-runR</td>
<td>1-21-run3</td>
<td>172.1</td>
<td>88.5</td>
<td>28</td>
<td>266.74</td>
<td>5</td>
<td>4.5</td>
<td>0.58</td>
<td>70</td>
<td>3.36*</td>
<td></td>
</tr>
<tr>
<td>Reehorst</td>
<td>NACA23014(mod)</td>
<td>Jan. 1998</td>
<td>68.7</td>
<td>-29-runR</td>
<td>1-21-run3</td>
<td>172.1</td>
<td>88.5</td>
<td>28</td>
<td>266.74</td>
<td>5</td>
<td>4.5</td>
<td>0.58</td>
<td>70</td>
<td>3.36*</td>
<td></td>
</tr>
<tr>
<td>Reehorst</td>
<td>NACA23014(mod)</td>
<td>Jan. 1998</td>
<td>68.7</td>
<td>-29-runR</td>
<td>1-21-run3</td>
<td>172.1</td>
<td>88.5</td>
<td>28</td>
<td>266.74</td>
<td>5</td>
<td>4.5</td>
<td>0.58</td>
<td>70</td>
<td>3.36*</td>
<td></td>
</tr>
<tr>
<td>Reehorst</td>
<td>NACA23014(mod)</td>
<td>Jan. 1998</td>
<td>68.7</td>
<td>-29-runR</td>
<td>1-21-run3</td>
<td>172.1</td>
<td>88.5</td>
<td>28</td>
<td>266.74</td>
<td>5</td>
<td>4.5</td>
<td>0.58</td>
<td>70</td>
<td>3.36*</td>
<td></td>
</tr>
<tr>
<td>Reehorst</td>
<td>NACA23014(mod)</td>
<td>Jan. 1998</td>
<td>68.7</td>
<td>-29-runR</td>
<td>1-21-run3</td>
<td>172.1</td>
<td>88.5</td>
<td>28</td>
<td>266.74</td>
<td>5</td>
<td>4.5</td>
<td>0.58</td>
<td>70</td>
<td>3.36*</td>
<td></td>
</tr>
<tr>
<td>Reehorst</td>
<td>NACA23014(mod)</td>
<td>Jan. 1998</td>
<td>68.7</td>
<td>-29-runR</td>
<td>1-21-run3</td>
<td>172.1</td>
<td>88.5</td>
<td>28</td>
<td>266.74</td>
<td>5</td>
<td>4.5</td>
<td>0.58</td>
<td>70</td>
<td>3.36*</td>
<td></td>
</tr>
<tr>
<td>Reehorst</td>
<td>NACA23014(mod)</td>
<td>Jan. 1998</td>
<td>68.7</td>
<td>-29-runR</td>
<td>1-21-run3</td>
<td>172.1</td>
<td>88.5</td>
<td>28</td>
<td>266.74</td>
<td>5</td>
<td>4.5</td>
<td>0.58</td>
<td>70</td>
<td>3.36*</td>
<td></td>
</tr>
<tr>
<td>Reehorst</td>
<td>NACA23014(mod)</td>
<td>Jan. 1998</td>
<td>68.7</td>
<td>-29-runR</td>
<td>1-21-run3</td>
<td>172.1</td>
<td>88.5</td>
<td>28</td>
<td>266.74</td>
<td>5</td>
<td>4.5</td>
<td>0.58</td>
<td>70</td>
<td>3.36*</td>
<td></td>
</tr>
<tr>
<td>Reehorst</td>
<td>NACA23014(mod)</td>
<td>Jan. 1998</td>
<td>68.7</td>
<td>-29-runR</td>
<td>1-21-run3</td>
<td>172.1</td>
<td>88.5</td>
<td>28</td>
<td>266.74</td>
<td>5</td>
<td>4.5</td>
<td>0.58</td>
<td>70</td>
<td>3.36*</td>
<td></td>
</tr>
<tr>
<td>Reehorst</td>
<td>NACA23014(mod)</td>
<td>Jan. 1998</td>
<td>68.7</td>
<td>-29-runR</td>
<td>1-21-run3</td>
<td>172.1</td>
<td>88.5</td>
<td>28</td>
<td>266.74</td>
<td>5</td>
<td>4.5</td>
<td>0.58</td>
<td>70</td>
<td>3.36*</td>
<td></td>
</tr>
</tbody>
</table>
Run 219 Location 36"
Run 120r4 Location 36"

- - - - Experiment
- - - - Lewice

\[\text{ditot (in)} \]

\[\text{s (in)} \]
Run 121r7 Location 36"
Run 122r4 Location 36''

- --- Experiment
- ---- Lewice

\(d \approx \text{dot} \text{(in)} \)

\(-5 \rightarrow 0 \rightarrow 5 \)

\(s \text{(in)} \)
Run 122r8 Location 36"

Airfoil

Experiment

Lewice

$(\eta \lambda)$

x(in)
Run 123r3 Location 36°

--- Experiment
--- - Lewice

s (in)

(dirt)(in)
Run 123r4 Location 36"

Airfoil

Experiment

Lewice

x(in)

\((u|v)\Lambda\)
Run 128r6 Location 36"

- Airfoil
- Experiment
- Lewince

(x in)
Run 12817 Location 36°
LTHS
Figures 242 – 295
Run 112 Location 36"

- Experiment
- Lewice
Run 127 Location 30"

--- Experiment

--- Lewice

\[s'(in) \]

\[dftot(in) \]
Run 128 Location 36"

\[\text{ditot (in)} \]

\[s \text{(in)} \]
Run 141 Location 36"

- Airfoil
- Experiment
- Lewice
Run 143 Location 36"

Airfoil

Experiment

Lewicki

(μl)λ

x(in)
Run 144 Location 36"

Plot showing the comparison of airfoil and experimental data for Run 144 at a location of 36 inches. The plot includes three curves:
- Solid line: Airfoil
- Dotted line: Experiment
- Dashed line: Lewice

The x-axis represents the x-coordinate in inches, ranging from -3 to 4, while the y-axis represents the y-coordinate in inches, ranging from -2 to 2.
GLC 305 Test Conditions

<table>
<thead>
<tr>
<th>Principal Investigator</th>
<th>Airfoil</th>
<th>Test Date</th>
<th>Chord (in)</th>
<th>Run Number</th>
<th>Velocity (kts)</th>
<th>Velocity (m/s)</th>
<th>Static Temperature (K)</th>
<th>AOA</th>
<th>Corrected AOA</th>
<th>LWC (g/m²)</th>
<th>MVD (micron)</th>
<th>Spray Time (min)</th>
<th>Digested Trailing Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adity</td>
<td>GLC 305</td>
<td>Jul 1995</td>
<td>36°</td>
<td>072595.01</td>
<td>175</td>
<td>90</td>
<td>30.56</td>
<td>268.30</td>
<td>6</td>
<td>4.5</td>
<td>0.54</td>
<td>20</td>
<td>6.36</td>
</tr>
<tr>
<td>Adity</td>
<td>GLC 305</td>
<td>Jul 1995</td>
<td>36°</td>
<td>072595.03</td>
<td>175</td>
<td>90</td>
<td>30.56</td>
<td>268.30</td>
<td>6</td>
<td>4.5</td>
<td>0.54</td>
<td>20</td>
<td>6.36</td>
</tr>
<tr>
<td>Adity</td>
<td>GLC 305</td>
<td>Jul 1995</td>
<td>36°</td>
<td>072595.04</td>
<td>175</td>
<td>90</td>
<td>30.56</td>
<td>268.30</td>
<td>6</td>
<td>4.5</td>
<td>0.54</td>
<td>20</td>
<td>6.36</td>
</tr>
<tr>
<td>Adity</td>
<td>GLC 305</td>
<td>Jul 1995</td>
<td>36°</td>
<td>072595.05</td>
<td>175</td>
<td>90</td>
<td>30.56</td>
<td>268.30</td>
<td>6</td>
<td>4.5</td>
<td>0.54</td>
<td>20</td>
<td>6.36</td>
</tr>
<tr>
<td>Adity</td>
<td>GLC 305</td>
<td>Jul 1995</td>
<td>36°</td>
<td>072595.07</td>
<td>175</td>
<td>90</td>
<td>30.56</td>
<td>268.30</td>
<td>6</td>
<td>4.5</td>
<td>0.54</td>
<td>20</td>
<td>6.36</td>
</tr>
<tr>
<td>Adity</td>
<td>GLC 305</td>
<td>Jul 1995</td>
<td>36°</td>
<td>072595.08</td>
<td>175</td>
<td>90</td>
<td>30.56</td>
<td>268.30</td>
<td>6</td>
<td>4.5</td>
<td>0.54</td>
<td>20</td>
<td>6.36</td>
</tr>
<tr>
<td>Adity</td>
<td>GLC 305</td>
<td>Jul 1995</td>
<td>36°</td>
<td>072595.09</td>
<td>175</td>
<td>90</td>
<td>30.56</td>
<td>268.30</td>
<td>6</td>
<td>4.5</td>
<td>0.54</td>
<td>20</td>
<td>6.36</td>
</tr>
</tbody>
</table>

Notes:
- Chords are measured in inches (in).
- Velocity values are in knots (kts) and meters per second (m/s).
- Static temperature is in Kelvin (K).
- AOA is the angle of attack.
- Corrected AOA is adjusted for various factors.
- LWC indicates the low water content in g/m².
- MVD refers to the mean velocity diameter in microns (micron).
- Spray time is measured in minutes.
- Digested trailing locations are noted for observation.

Additional Details:
- NASA CR-1999-208690 327 indicates a reference or catalog number.
<table>
<thead>
<tr>
<th>GLC 305 Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

NASA/CR-1999-208690

328
Run 072604 Location 36"

Airfoil

Experiment

Lewice

(u1/4)

x(in)
Run 072702 Location 36°
Run 080404 Location 36°

--- Experiment
--- - Lewice
Run 208 Location 36"

Airfoil
Experiment
Lewice

(x(in))

(μi)(σ)
Run 209 Location 36"

- Dotted line: Experiment
- Dashed line: Lewice
CO
CO=m

Run 210 Location 36"

Airfoil

Experiment

- - Lewice

NASA/CR-1999-208690 441
Run 223 Location 36"
Run 232 Location 36"

- Experiment
- - Lewice

\(d_{tot}(\text{in})\) vs. \(s(\text{in})\)

NASA/CR-1999-208690
Run 72403 Location 36"
Run 82402 Location 36"

Airfoil

Experiment

Lewice

x(in)

(yin)

NASA/CR-1999-208690 477
Run 82403 Location 36°
NACA 4415 (mod)
Figures 448 – 483
NACA 4415 (mod) Test Conditions

<table>
<thead>
<tr>
<th>Principal Investigator</th>
<th>Airfoil</th>
<th>Test Date</th>
<th>Chord (in)</th>
<th>Run Number</th>
<th>Previous Idential Run</th>
<th>Velocity (kts)</th>
<th>Velocity (m/s)</th>
<th>Ti (°F)</th>
<th>Static Temperature (°K)</th>
<th>A.O.A.</th>
<th>Corrected A.O.A.</th>
<th>LWC (g/m²)</th>
<th>MVD (microns)</th>
<th>Spray Time (min)</th>
<th>Digitized Tracing Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miller</td>
<td>NACA4415 (mod)</td>
<td>1995</td>
<td>78"</td>
<td>DC-7</td>
<td>169.5</td>
<td>87.2</td>
<td>28</td>
<td>668.85</td>
<td>0</td>
<td>0</td>
<td>0.83</td>
<td>160</td>
<td>15</td>
<td>40°</td>
<td></td>
</tr>
<tr>
<td>Miller</td>
<td>NACA4415 (mod)</td>
<td>1995</td>
<td>78"</td>
<td>DC-2</td>
<td>169.5</td>
<td>87.2</td>
<td>28</td>
<td>266.85</td>
<td>0</td>
<td>0</td>
<td>0.82</td>
<td>160</td>
<td>7</td>
<td>31°, 36° & 40°</td>
<td></td>
</tr>
<tr>
<td>Miller</td>
<td>NACA4415 (mod)</td>
<td>1995</td>
<td>78"</td>
<td>DC-3</td>
<td>169.5</td>
<td>87.2</td>
<td>28</td>
<td>266.85</td>
<td>0</td>
<td>0</td>
<td>0.82</td>
<td>160</td>
<td>9</td>
<td>31°, 36° & 40°</td>
<td></td>
</tr>
<tr>
<td>Miller</td>
<td>NACA4415 (mod)</td>
<td>1995</td>
<td>78"</td>
<td>DC-4R</td>
<td>169.5</td>
<td>87.2</td>
<td>28</td>
<td>266.85</td>
<td>0</td>
<td>0</td>
<td>0.82</td>
<td>160</td>
<td>9</td>
<td>31°, 36° & 40°</td>
<td></td>
</tr>
<tr>
<td>Miller</td>
<td>NACA4415 (mod)</td>
<td>1995</td>
<td>78"</td>
<td>DC-5R</td>
<td>169.5</td>
<td>87.2</td>
<td>28</td>
<td>266.85</td>
<td>0</td>
<td>0</td>
<td>0.82</td>
<td>160</td>
<td>9</td>
<td>31°, 36° & 40°</td>
<td></td>
</tr>
<tr>
<td>Miller</td>
<td>NACA4415 (mod)</td>
<td>1995</td>
<td>78"</td>
<td>DC-6R</td>
<td>169.5</td>
<td>87.2</td>
<td>28</td>
<td>266.85</td>
<td>0</td>
<td>0</td>
<td>0.82</td>
<td>160</td>
<td>9</td>
<td>31°, 36° & 40°</td>
<td></td>
</tr>
<tr>
<td>Miller</td>
<td>NACA4415 (mod)</td>
<td>1995</td>
<td>78"</td>
<td>DC-7R</td>
<td>169.5</td>
<td>87.2</td>
<td>28</td>
<td>266.85</td>
<td>0</td>
<td>0</td>
<td>0.82</td>
<td>160</td>
<td>9</td>
<td>31°, 36° & 40°</td>
<td></td>
</tr>
<tr>
<td>Miller</td>
<td>NACA4415 (mod)</td>
<td>1995</td>
<td>78"</td>
<td>DC-8R</td>
<td>169.5</td>
<td>87.2</td>
<td>28</td>
<td>266.85</td>
<td>0</td>
<td>0</td>
<td>0.82</td>
<td>160</td>
<td>9</td>
<td>31°, 36° & 40°</td>
<td></td>
</tr>
<tr>
<td>Miller</td>
<td>NACA4415 (mod)</td>
<td>1995</td>
<td>78"</td>
<td>DC-9R</td>
<td>169.5</td>
<td>87.2</td>
<td>28</td>
<td>266.85</td>
<td>0</td>
<td>0</td>
<td>0.82</td>
<td>160</td>
<td>9</td>
<td>31°, 36° & 40°</td>
<td></td>
</tr>
<tr>
<td>Miller</td>
<td>NACA4415 (mod)</td>
<td>1995</td>
<td>78"</td>
<td>DC-10</td>
<td>169.5</td>
<td>87.2</td>
<td>28</td>
<td>266.85</td>
<td>0</td>
<td>0</td>
<td>0.82</td>
<td>160</td>
<td>9</td>
<td>31°, 36° & 40°</td>
<td></td>
</tr>
<tr>
<td>Miller</td>
<td>NACA4415 (mod)</td>
<td>1995</td>
<td>78"</td>
<td>DC-11</td>
<td>169.5</td>
<td>87.2</td>
<td>28</td>
<td>266.85</td>
<td>0</td>
<td>0</td>
<td>0.82</td>
<td>160</td>
<td>9</td>
<td>31°, 36° & 40°</td>
<td></td>
</tr>
<tr>
<td>Miller</td>
<td>NACA4415 (mod)</td>
<td>1995</td>
<td>78"</td>
<td>DC-12R</td>
<td>169.5</td>
<td>87.2</td>
<td>28</td>
<td>266.85</td>
<td>0</td>
<td>0</td>
<td>0.82</td>
<td>160</td>
<td>9</td>
<td>31°, 36° & 40°</td>
<td></td>
</tr>
<tr>
<td>Miller</td>
<td>NACA4415 (mod)</td>
<td>1995</td>
<td>78"</td>
<td>DC-13R</td>
<td>169.5</td>
<td>87.2</td>
<td>28</td>
<td>266.85</td>
<td>0</td>
<td>0</td>
<td>0.82</td>
<td>160</td>
<td>9</td>
<td>31°, 36° & 40°</td>
<td></td>
</tr>
<tr>
<td>Miller</td>
<td>NACA4415 (mod)</td>
<td>1995</td>
<td>78"</td>
<td>DC-14R</td>
<td>169.5</td>
<td>87.2</td>
<td>28</td>
<td>266.85</td>
<td>0</td>
<td>0</td>
<td>0.82</td>
<td>160</td>
<td>9</td>
<td>31°, 36° & 40°</td>
<td></td>
</tr>
<tr>
<td>Miller</td>
<td>NACA4415 (mod)</td>
<td>1995</td>
<td>78"</td>
<td>DC-15R</td>
<td>169.5</td>
<td>87.2</td>
<td>28</td>
<td>266.85</td>
<td>0</td>
<td>0</td>
<td>0.82</td>
<td>160</td>
<td>9</td>
<td>31°, 36° & 40°</td>
<td></td>
</tr>
<tr>
<td>Miller</td>
<td>NACA4415 (mod)</td>
<td>1995</td>
<td>78"</td>
<td>DC-16R</td>
<td>169.5</td>
<td>87.2</td>
<td>28</td>
<td>266.85</td>
<td>0</td>
<td>0</td>
<td>0.82</td>
<td>160</td>
<td>9</td>
<td>31°, 36° & 40°</td>
<td></td>
</tr>
<tr>
<td>Miller</td>
<td>NACA4415 (mod)</td>
<td>1995</td>
<td>78"</td>
<td>DC-17</td>
<td>169.5</td>
<td>87.2</td>
<td>28</td>
<td>266.85</td>
<td>0</td>
<td>0</td>
<td>0.82</td>
<td>160</td>
<td>9</td>
<td>31°, 36° & 40°</td>
<td></td>
</tr>
<tr>
<td>Miller</td>
<td>NACA4415 (mod)</td>
<td>1995</td>
<td>78"</td>
<td>DC-18</td>
<td>169.5</td>
<td>87.2</td>
<td>28</td>
<td>266.85</td>
<td>0</td>
<td>0</td>
<td>0.82</td>
<td>160</td>
<td>9</td>
<td>31°, 36° & 40°</td>
<td></td>
</tr>
<tr>
<td>Miller</td>
<td>NACA4415 (mod)</td>
<td>1995</td>
<td>78"</td>
<td>DC-19R</td>
<td>169.5</td>
<td>87.2</td>
<td>28</td>
<td>266.85</td>
<td>0</td>
<td>0</td>
<td>0.82</td>
<td>160</td>
<td>9</td>
<td>31°, 36° & 40°</td>
<td></td>
</tr>
<tr>
<td>Miller</td>
<td>NACA4415 (mod)</td>
<td>1995</td>
<td>78"</td>
<td>DC-20</td>
<td>169.5</td>
<td>87.2</td>
<td>28</td>
<td>266.85</td>
<td>0</td>
<td>0</td>
<td>0.82</td>
<td>160</td>
<td>9</td>
<td>31°, 36° & 40°</td>
<td></td>
</tr>
<tr>
<td>Miller</td>
<td>NACA4415 (mod)</td>
<td>1995</td>
<td>78"</td>
<td>DC-21</td>
<td>169.5</td>
<td>87.2</td>
<td>28</td>
<td>266.85</td>
<td>0</td>
<td>0</td>
<td>0.82</td>
<td>160</td>
<td>9</td>
<td>31°, 36° & 40°</td>
<td></td>
</tr>
<tr>
<td>Miller</td>
<td>NACA4415 (mod)</td>
<td>1995</td>
<td>78"</td>
<td>DC-22</td>
<td>169.5</td>
<td>87.2</td>
<td>28</td>
<td>266.85</td>
<td>0</td>
<td>0</td>
<td>0.82</td>
<td>160</td>
<td>9</td>
<td>31°, 36° & 40°</td>
<td></td>
</tr>
<tr>
<td>Miller</td>
<td>NACA4415 (mod)</td>
<td>1995</td>
<td>78"</td>
<td>DC-23</td>
<td>169.5</td>
<td>87.2</td>
<td>28</td>
<td>266.85</td>
<td>0</td>
<td>0</td>
<td>0.82</td>
<td>160</td>
<td>9</td>
<td>31°, 36° & 40°</td>
<td></td>
</tr>
<tr>
<td>Miller</td>
<td>NACA4415 (mod)</td>
<td>1995</td>
<td>78"</td>
<td>DC-24</td>
<td>169.5</td>
<td>87.2</td>
<td>28</td>
<td>266.85</td>
<td>0</td>
<td>0</td>
<td>0.82</td>
<td>160</td>
<td>9</td>
<td>31°, 36° & 40°</td>
<td></td>
</tr>
<tr>
<td>Miller</td>
<td>NACA4415 (mod)</td>
<td>1995</td>
<td>78"</td>
<td>DC-25</td>
<td>169.5</td>
<td>87.2</td>
<td>28</td>
<td>266.85</td>
<td>0</td>
<td>0</td>
<td>0.82</td>
<td>160</td>
<td>9</td>
<td>31°, 36° & 40°</td>
<td></td>
</tr>
</tbody>
</table>
Run DC-1 Location 40°
Run DC-3 Location 36"
Run 84 Location 36"
NLF 414
Figures 484 – 499
NLF 414 Test Conditions

<table>
<thead>
<tr>
<th>Principal Investigator</th>
<th>Airfoil</th>
<th>Test Date</th>
<th>Chord (in)</th>
<th>Run Number</th>
<th>Previous Identical Run</th>
<th>Velocity (fps)</th>
<th>Velocity (m/s)</th>
<th>T1 (°F)</th>
<th>Temperature (K)</th>
<th>A.O.A</th>
<th>Corrected A.O.A</th>
<th>LWC (g/m²)</th>
<th>MVD (microns)</th>
<th>Spray Time (min)</th>
<th>Digitized Tracing Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addy</td>
<td>NLF 414</td>
<td>1998</td>
<td>36"</td>
<td>601</td>
<td>180</td>
<td>92.6</td>
<td>30</td>
<td>267.48</td>
<td>0</td>
<td>0</td>
<td>0.54</td>
<td>20</td>
<td>6.36"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Addy</td>
<td>NLF 414</td>
<td>1998</td>
<td>36"</td>
<td>607</td>
<td>180</td>
<td>92.6</td>
<td>21</td>
<td>267.48</td>
<td>0</td>
<td>0</td>
<td>0.43</td>
<td>20</td>
<td>6.36"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Addy</td>
<td>NLF 414</td>
<td>1998</td>
<td>36"</td>
<td>621</td>
<td>130</td>
<td>66.9</td>
<td>26</td>
<td>267.30</td>
<td>2</td>
<td>2</td>
<td>0.54</td>
<td>20</td>
<td>6.36"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Addy</td>
<td>NLF 414</td>
<td>1998</td>
<td>36"</td>
<td>622</td>
<td>130</td>
<td>66.9</td>
<td>26</td>
<td>267.30</td>
<td>2</td>
<td>2</td>
<td>0.54</td>
<td>20</td>
<td>6.36"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Addy</td>
<td>NLF 414</td>
<td>1998</td>
<td>36"</td>
<td>623</td>
<td>130</td>
<td>66.9</td>
<td>26</td>
<td>267.30</td>
<td>2</td>
<td>2</td>
<td>0.54</td>
<td>20</td>
<td>22.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Addy</td>
<td>NLF 414</td>
<td>1998</td>
<td>36"</td>
<td>627</td>
<td>130</td>
<td>66.9</td>
<td>17</td>
<td>262.30</td>
<td>2</td>
<td>2</td>
<td>0.44</td>
<td>20</td>
<td>5.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Addy</td>
<td>NLF 414</td>
<td>1998</td>
<td>36"</td>
<td>633</td>
<td>130</td>
<td>66.9</td>
<td>17</td>
<td>262.30</td>
<td>2</td>
<td>2</td>
<td>0.60</td>
<td>15</td>
<td>6.36"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Addy</td>
<td>NLF 414</td>
<td>1998</td>
<td>36"</td>
<td>645</td>
<td>130</td>
<td>66.9</td>
<td>17</td>
<td>262.30</td>
<td>4</td>
<td>2.5</td>
<td>0.44</td>
<td>20</td>
<td>5.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principal Investigator</td>
<td>Airfoil</td>
<td>Test Date</td>
<td>Chord (in)</td>
<td>Run Number</td>
<td>Previous Identical Run</td>
<td>Velocity (kts)</td>
<td>Velocity (m/s)</td>
<td>Tt (°F)</td>
<td>Static Temperature (°R)</td>
<td>A.O.A</td>
<td>Corrected A.O.A</td>
<td>LWC (g/m³)</td>
<td>MVD (microns)</td>
<td>Spray Time (min)</td>
<td>Degraded Tracing Locations</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------</td>
<td>-----------</td>
<td>------------</td>
<td>------------</td>
<td>------------------------</td>
<td>----------------</td>
<td>---------------</td>
<td>---------</td>
<td>------------------------</td>
<td>-------</td>
<td>---------------</td>
<td>-------------</td>
<td>--------------</td>
<td>----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Anderson NACA0015</td>
<td>June 1996</td>
<td>13.9"</td>
<td>0624964</td>
<td>0624963</td>
<td>0624963</td>
<td>185.1</td>
<td>95.21544</td>
<td>31.1</td>
<td>267.83</td>
<td>0</td>
<td>0</td>
<td>0.75</td>
<td>23.4</td>
<td>10</td>
<td>30°</td>
</tr>
<tr>
<td>Anderson NACA0015</td>
<td>June 1996</td>
<td>13.9"</td>
<td>0624963</td>
<td>0624964</td>
<td>0624963</td>
<td>185.1</td>
<td>95.21544</td>
<td>22.1</td>
<td>262.85</td>
<td>0</td>
<td>0</td>
<td>0.75</td>
<td>23.4</td>
<td>10</td>
<td>30°</td>
</tr>
<tr>
<td>Anderson NACA0015</td>
<td>June 1996</td>
<td>13.9"</td>
<td>0624963</td>
<td>0624964</td>
<td>0624963</td>
<td>185.1</td>
<td>95.21544</td>
<td>22.1</td>
<td>262.85</td>
<td>0</td>
<td>0</td>
<td>0.75</td>
<td>23.4</td>
<td>10</td>
<td>30°</td>
</tr>
<tr>
<td>Anderson NACA0015</td>
<td>June 1996</td>
<td>13.9"</td>
<td>0624966</td>
<td>0624966</td>
<td>0624963</td>
<td>166</td>
<td>87.3904</td>
<td>20.9</td>
<td>263.07</td>
<td>0</td>
<td>0</td>
<td>0.77</td>
<td>23.4</td>
<td>10</td>
<td>30°</td>
</tr>
<tr>
<td>Principal Investigator</td>
<td>Airfoil</td>
<td>Test Date</td>
<td>Chord (in)</td>
<td>Run Number</td>
<td>Previous Identical Run</td>
<td>Velocity (kts)</td>
<td>Velocity (m/s)</td>
<td>Ti (°F)</td>
<td>Static Temperature (K)</td>
<td>A.O.A.</td>
<td>Corrected A.O.A.</td>
<td>LWC (g/m²)</td>
<td>MVD (microns)</td>
<td>Spray Time (min)</td>
<td>Digitzed Tracing Locations</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------</td>
<td>-----------</td>
<td>------------</td>
<td>------------</td>
<td>------------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>--------</td>
<td>------------------------</td>
<td>--------</td>
<td>----------------------</td>
<td>------------</td>
<td>--------------</td>
<td>----------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Bidwell/VaZani</td>
<td>NACA0012</td>
<td>Jan. 1998</td>
<td>21"</td>
<td>401</td>
<td>401</td>
<td>200</td>
<td>102.8</td>
<td>28</td>
<td>265.37</td>
<td>4</td>
<td>3.5</td>
<td>0.55</td>
<td>20</td>
<td>72.54, 36° & 48°</td>
<td></td>
</tr>
<tr>
<td>Bidwell/VaZani</td>
<td>NACA0012</td>
<td>Jan. 1998</td>
<td>21"</td>
<td>401A</td>
<td>401</td>
<td>200</td>
<td>102.8</td>
<td>28</td>
<td>265.37</td>
<td>4</td>
<td>3.5</td>
<td>0.55</td>
<td>20</td>
<td>72.54</td>
<td></td>
</tr>
<tr>
<td>Bidwell/VaZani</td>
<td>NACA0012</td>
<td>Jan. 1998</td>
<td>21"</td>
<td>401B</td>
<td>401</td>
<td>200</td>
<td>102.8</td>
<td>28</td>
<td>265.37</td>
<td>4</td>
<td>3.5</td>
<td>0.55</td>
<td>20</td>
<td>72.54</td>
<td></td>
</tr>
<tr>
<td>Bidwell/VaZani</td>
<td>NACA0012</td>
<td>Jan. 1998</td>
<td>21"</td>
<td>401C</td>
<td>401</td>
<td>200</td>
<td>102.8</td>
<td>28</td>
<td>265.37</td>
<td>4</td>
<td>3.5</td>
<td>0.55</td>
<td>20</td>
<td>72.54</td>
<td></td>
</tr>
<tr>
<td>Bidwell/VaZani</td>
<td>NACA0012</td>
<td>Jan. 1998</td>
<td>21"</td>
<td>402</td>
<td>402</td>
<td>200</td>
<td>102.8</td>
<td>25</td>
<td>265.71</td>
<td>4</td>
<td>3.5</td>
<td>0.55</td>
<td>20</td>
<td>72.54</td>
<td></td>
</tr>
<tr>
<td>Bidwell/VaZani</td>
<td>NACA0012</td>
<td>Jan. 1998</td>
<td>21"</td>
<td>402A</td>
<td>402</td>
<td>200</td>
<td>102.8</td>
<td>25</td>
<td>265.71</td>
<td>4</td>
<td>3.5</td>
<td>0.55</td>
<td>20</td>
<td>72.54</td>
<td></td>
</tr>
<tr>
<td>VaZani</td>
<td>NACA0012</td>
<td>Jan. 1998</td>
<td>21"</td>
<td>403</td>
<td>403</td>
<td>200</td>
<td>102.8</td>
<td>25</td>
<td>264.71</td>
<td>4</td>
<td>3.5</td>
<td>0.55</td>
<td>20</td>
<td>72.54</td>
<td></td>
</tr>
<tr>
<td>Bidwell/VaZani</td>
<td>NACA0012</td>
<td>Jan. 1998</td>
<td>21"</td>
<td>403A</td>
<td>403</td>
<td>200</td>
<td>102.8</td>
<td>25</td>
<td>264.71</td>
<td>4</td>
<td>3.5</td>
<td>0.55</td>
<td>20</td>
<td>72.54</td>
<td></td>
</tr>
<tr>
<td>Bidwell/VaZani</td>
<td>NACA0012</td>
<td>Jan. 1998</td>
<td>21"</td>
<td>403B</td>
<td>403</td>
<td>200</td>
<td>102.8</td>
<td>25</td>
<td>264.71</td>
<td>4</td>
<td>3.5</td>
<td>0.55</td>
<td>20</td>
<td>72.54</td>
<td></td>
</tr>
<tr>
<td>Bidwell/VaZani</td>
<td>NACA0012</td>
<td>Jan. 1998</td>
<td>21"</td>
<td>403C</td>
<td>403</td>
<td>200</td>
<td>102.8</td>
<td>25</td>
<td>264.71</td>
<td>4</td>
<td>3.5</td>
<td>0.55</td>
<td>20</td>
<td>72.54</td>
<td></td>
</tr>
</tbody>
</table>

NACA 0012 Test Conditions
<table>
<thead>
<tr>
<th>Principal Investigator</th>
<th>Airfoil</th>
<th>Test Date</th>
<th>Chord (in)</th>
<th>Run Number</th>
<th>Previous Identical Run</th>
<th>Velocity (kts)</th>
<th>Velocity (m/s)</th>
<th>Tf (°F)</th>
<th>Static Temperature (°K)</th>
<th>A.O.A</th>
<th>Corrected A.O.A (°)</th>
<th>LWC (g/m²)</th>
<th>MVD (microns)</th>
<th>Spray Time (min)</th>
<th>Digitalized Tracing Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addy</td>
<td>NACA0012</td>
<td>Apr. 1977</td>
<td>21"</td>
<td>3098</td>
<td>409 130 3 102 8</td>
<td>200</td>
<td>102.8</td>
<td>22</td>
<td>262.04</td>
<td>4</td>
<td>3.5 1000 20</td>
<td>3.85°36</td>
<td>6.36°</td>
<td>6.18"36°54"</td>
<td></td>
</tr>
<tr>
<td>Addy</td>
<td>NACA0012</td>
<td>Apr. 1997</td>
<td>21"</td>
<td>3098</td>
<td>409 130 3 102 8</td>
<td>200</td>
<td>102.8</td>
<td>22</td>
<td>262.04</td>
<td>4</td>
<td>3.5 1000 20</td>
<td>3.85°36</td>
<td>6.36°</td>
<td>6.18"36°54"</td>
<td></td>
</tr>
<tr>
<td>Addy</td>
<td>NACA0012</td>
<td>Apr. 1997</td>
<td>21"</td>
<td>3098</td>
<td>409 130 3 102 8</td>
<td>200</td>
<td>102.8</td>
<td>22</td>
<td>262.04</td>
<td>4</td>
<td>3.5 1000 20</td>
<td>3.85°36</td>
<td>6.36°</td>
<td>6.18"36°54"</td>
<td></td>
</tr>
<tr>
<td>Addy</td>
<td>NACA0012</td>
<td>Apr. 1977</td>
<td>21"</td>
<td>311lR</td>
<td>311 130 3 102 8</td>
<td>200</td>
<td>102.8</td>
<td>22</td>
<td>262.04</td>
<td>4</td>
<td>3.5 1000 20</td>
<td>3.85°36</td>
<td>6.36°</td>
<td>6.18"36°54"</td>
<td></td>
</tr>
<tr>
<td>Addy</td>
<td>NACA0012</td>
<td>Apr. 1977</td>
<td>21"</td>
<td>311lR</td>
<td>311 130 3 102 8</td>
<td>200</td>
<td>102.8</td>
<td>22</td>
<td>262.04</td>
<td>4</td>
<td>3.5 1000 20</td>
<td>3.85°36</td>
<td>6.36°</td>
<td>6.18"36°54"</td>
<td></td>
</tr>
<tr>
<td>Addy</td>
<td>NACA0012</td>
<td>Apr. 1977</td>
<td>21"</td>
<td>311lR</td>
<td>311 130 3 102 8</td>
<td>200</td>
<td>102.8</td>
<td>22</td>
<td>262.04</td>
<td>4</td>
<td>3.5 1000 20</td>
<td>3.85°36</td>
<td>6.36°</td>
<td>6.18"36°54"</td>
<td></td>
</tr>
<tr>
<td>Addy</td>
<td>NACA0012</td>
<td>Apr. 1977</td>
<td>21"</td>
<td>311lR</td>
<td>311 130 3 102 8</td>
<td>200</td>
<td>102.8</td>
<td>22</td>
<td>262.04</td>
<td>4</td>
<td>3.5 1000 20</td>
<td>3.85°36</td>
<td>6.36°</td>
<td>6.18"36°54"</td>
<td></td>
</tr>
<tr>
<td>Addy</td>
<td>NACA0012</td>
<td>Apr. 1977</td>
<td>21"</td>
<td>311lR</td>
<td>311 130 3 102 8</td>
<td>200</td>
<td>102.8</td>
<td>22</td>
<td>262.04</td>
<td>4</td>
<td>3.5 1000 20</td>
<td>3.85°36</td>
<td>6.36°</td>
<td>6.18"36°54"</td>
<td></td>
</tr>
<tr>
<td>Addy</td>
<td>NACA0012</td>
<td>Apr. 1977</td>
<td>21"</td>
<td>311lR</td>
<td>311 130 3 102 8</td>
<td>200</td>
<td>102.8</td>
<td>22</td>
<td>262.04</td>
<td>4</td>
<td>3.5 1000 20</td>
<td>3.85°36</td>
<td>6.36°</td>
<td>6.18"36°54"</td>
<td></td>
</tr>
<tr>
<td>Addy</td>
<td>NACA0012</td>
<td>Apr. 1977</td>
<td>21"</td>
<td>311lR</td>
<td>311 130 3 102 8</td>
<td>200</td>
<td>102.8</td>
<td>22</td>
<td>262.04</td>
<td>4</td>
<td>3.5 1000 20</td>
<td>3.85°36</td>
<td>6.36°</td>
<td>6.18"36°54"</td>
<td></td>
</tr>
<tr>
<td>Addy</td>
<td>NACA0012</td>
<td>Apr. 1977</td>
<td>21"</td>
<td>311lR</td>
<td>311 130 3 102 8</td>
<td>200</td>
<td>102.8</td>
<td>22</td>
<td>262.04</td>
<td>4</td>
<td>3.5 1000 20</td>
<td>3.85°36</td>
<td>6.36°</td>
<td>6.18"36°54"</td>
<td></td>
</tr>
<tr>
<td>Addy</td>
<td>NACA0012</td>
<td>Apr. 1977</td>
<td>21"</td>
<td>311lR</td>
<td>311 130 3 102 8</td>
<td>200</td>
<td>102.8</td>
<td>22</td>
<td>262.04</td>
<td>4</td>
<td>3.5 1000 20</td>
<td>3.85°36</td>
<td>6.36°</td>
<td>6.18"36°54"</td>
<td></td>
</tr>
<tr>
<td>Addy</td>
<td>NACA0012</td>
<td>Apr. 1977</td>
<td>21"</td>
<td>311lR</td>
<td>311 130 3 102 8</td>
<td>200</td>
<td>102.8</td>
<td>22</td>
<td>262.04</td>
<td>4</td>
<td>3.5 1000 20</td>
<td>3.85°36</td>
<td>6.36°</td>
<td>6.18"36°54"</td>
<td></td>
</tr>
</tbody>
</table>
tO
"O
tO

O
t,.O
O

I-O4
TO

O

<
O
<
Z

NASA/CR-

1999-208690

559


Run 402 Location 36"
Run 427 Location 36"
Run 206 Location 36"
Run 207 Location 36"
Run 062591.005 Location 36"
Run 062791.003 Location 36"
Run 080291.009 Location 36"
Validation Results for LEWICE 2.0

William B. Wright and Adam Rutkowski

Dynacs Engineering Company, Inc.
2001 Aerospace Parkway
Brookpark, Ohio 44142

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135–3191

A research project is underway at NASA Lewis to produce a computer code which can accurately predict ice growth under any meteorological conditions for any aircraft surface. This report will present results from version 2.0 of this code, which is called LEWICE. This version differs from previous releases due to its robustness and its ability to reproduce results accurately for different spacing and time step criteria across computing platform. It also differs in the extensive amount of effort undertaken to compare the results in a quantified manner against the database of ice shapes which have been generated in the NASA Lewis Icing Research Tunnel (IRT). The results of the shape comparisons are analyzed to determine the range of meteorological conditions under which LEWICE 2.0 is within the experimental repeatability. This comparison shows that the average variation of LEWICE 2.0 from the experimental data is 7.2% while the overall variability of the experimental data is 2.5%.