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1.0 INTRODUCTION

The natural and induced long term effects of the space environment on spacecraft

surfaces are critically important to many of NASA's future spacecraft including the International

Space Station. The damaging constituents of this environment, as illustrated in Figure 1, include

thermal vacuum, solar ultraviolet (UV) radiation, atomic oxygen (AO), ionizing particulate

radiation, and the spacecraft induced (contamination) environment. The inability to exactly

simulate this complex combination of constituents results in a major difference in the stability of

materials between laboratory testing and flight testing. To study these environmental effects on

surfaces, particularly on thermal control surfaces, the Thermal Control Surfaces Experiment

(TCSE) was proposed for the National Aeronautics and Space Administration (NASA) Long

Duration Exposure Facility (LDEF) mission. The TCSE was selected as one of the first six

experiments for the LDEF.

== l ne Spacecraft Environment

(e-,p+, ,p, 8 )

::)SPHERE

[O,OzN,NzH .... )

DIRECT SOLAR \
(including UV radiation}

SPACECRAFT INDUCED ENVIRONMENT

[molecular, particles]

SPACECRAFT ( \

EARTH
EMITFED

ENERGY

EARTH

ALBEDO

SPACE DEBRIS

[micrometeoroid, spacecraft}

Figure 1. The Spacecraft Environment.

On April 7, 1984, the LDEF, with the TCSE as one of its complement of 57 experiments,

was deployed in low earth orbit (LEO) by the Space Shuttle. The LDEF was to have been

retrieved after 9 to 12 months in orbit. However, due to the solid rocket motor redesign effort
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resulting from the Challenger accident and launch schedule priorities, the LDEF retrieval was

delayed approximately 60 months (until January 12, 1990). After retrieval by the Shuttle, the

TCSE was deintegrated from the LDEF at the Kennedy Space Center (KSC) and returned to the

George C. Marshall Space Flight Center (MSFC) for analysis on March 7, 1990.

The TCSE was a comprehensive experiment that combined in-space measurements with

extensive post-flight analyses of thermal control surfaces to determine the effects of exposure to

the LEO space environment. The TCSE was the first space experiment to measure the optical

properties of thermal control surfaces the way they are routinely measured in the laboratory.

While the TCSE marks a milestone in understanding the performance of materials in space, other

experiments similar to the TCSE will be required to fully understand the diverse effects of the

space environment. These experiments will provide additional optical and environmental

monitoring.

This report is the final experiment report for the TCSE and summarizes many years of

hardware development and analyses. This final report serves as the contract final report for

NASA contract NAS8-38939, but encompasses work also performed under other contracts

including NASA contract NAS8-36289, m and Boeing contracts HJ-3234, t-'l and HK-7879. E31

Also included are analyses

at scientific conferences

bibliography of the TCSE

widely cited in this report.

presented in a number of TCSE papers that were prepared and given

including the three LDEF Post-Retrieval Symposiums. The

papers, presentations, and reports are listed in Appendix A and are

Section 2 describes the TCSE objectives, experimental method, and the flight hardware.

Section 3 summarizes the LDEF and TCSE mission. Section 4 presents the performance and

anomalies of the TCSE hardware system. Section 5 discusses the results of the materials

experiment. Section 6 is a summary of this effort.

I.I TCSE Program Participants

The success of the TCSE is due to the work of many NASA and contractor personnel.

The TCSE was originally proposed in 1975 by the Principal Investigator (PI), Mr. Donald R.

Wilkes, and Co-Investigator, Mr. Harry M. King. At that time, both investigators were with

NASA/MSFC. In 1977, a competitive procurement was issued for the development of the TCSE

flight hardware. Aerojet ElectroSystems of Azusa, California was selected as the prime

contractor. They designed, fabricated, and assembled the TCSE protoflight unit and performed

the initiai functional testing. Due to a two year delay in the LDEF program and associated

funding problems, the TCSE development contract with Aerojet was terminated and the partially

operating TCSE instrument delivered to MSFC. The TCSE protoflight unit was then completed

and tested in-house at MSFC with the assistance of Radiometrics, Inc. in Huntsville, Alabama.

The TCSE post-flight analysis was performed as a joint effort by the MSFC Materials

and Processes (M&P) Laboratory and the PI and his staff now at AZ Technology, Inc. in

Huntsville, Alabama.
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Therearefar too manyparticipantsin theTCSEprogramto list in this publication. Table
1 is a list of the participantswho had formal responsibility for the successof the TCSE.
Significantcredit for the TCSEsuccessshouldalsogo to theLDEF Chief Scientist,Dr. William
Kinard, andtheentireLDEF staff alongwith the Shuttleastronautswho deployedand retrieved
theLDEF.

Table 1. TCSE Program Participants.

PRE-FLIGHT

NASA/MSFC:

Principal Investigator

Co-Investigator

Chief Engineers

Program Manager
NASA/LaRC:

Guest Investigator

Aerqiet ElectroSvstems:

Project Manager

Chief Engineer

Radiometrics:

Lead Engineer

POST-FLIGHT

NASA/MSFC:

Co-Investigator

AZ Technology, Inc.:

Principal Investigator

Lead Engineer

D.R. Wilkes, Space Sciences Laboratory

H.M. King, M&P Laboratory

L.W. Russell, Space Sciences Laboratory

G.M. Arnett, Science & Engineering

B.J. Schrick, Special Projects Office

W. Slemp

M.J. Brown

R. Emerling

R. Schansman

J.M. Zwiener, M&P Laboratory

D.R. Wilkes

L.L. Hummer

2.0 EXPERIMENT DESCRIPTION

The TCSE was designed to be a comprehensive experiment to study the effects of the

space environment on thermal control surfaces. This section describes the basic objectives of the

TCSE, the experimental method, the materials tested, and the TCSE flight hardware.

2.1 TCSE Obiectives and Experimental Method

The basic objective of the TCSE on the LDEF was to determine the effects of the near-

Earth orbital environment and the LDEF induced environment on spacecraft thermal control

surfaces. In summary, the specific mission objectives of TCSE were to:

• determine the effects of the natural and induced space environment on thermal control

surfaces,
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• provide in-space performance data on thermal control surfaces,

• provide in-space comparison to ground-based environmental testing of materials, and

• develop and prove instrumentation to perform in-space optical testing of materials.

To accomplish these objectives, the TCSE exposed selected material samples to the space

environment and used in-flight and post-flight measurements of their thermo-optical properties to

determine the effects of this exposure.

The TCSE hardware was designed to expose 25 "active" and 24 "passive" test samples to

the LDEF orbital environment. The active and passive test samples differed in that the space

effects on the passive test samples were determined only by pre- and post-flight evaluation. The

optical properties of the 25 "active" samples were measured in-space as well as in pre- and post-

flight analysis.

The "passive" samples were duplicates of critical "active" samples as well as specially

prepared samples for surface analysis techniques, such as Internal Reflection Spectroscopy (IRS).

The post-flight analysis of these passive samples, as well as the active samples, is used to

determine the effects of the LDEF mission in more detail than is feasible with "in-situ"

measurements. Of special importance are the detailed surface effects of the AO fluence and the

identification of any molecular contaminant film on the sample surfaces.

2.2 In-Space Measurements

The primary TCSE in-space measurement was hemispherical reflectance as a function of

wavelength (100 wavelength steps from 250 to 2500 nm) using a scanning integrating sphere

reflectometer. The measurements were repeated at preprogrammed intervals over the mission

duration.

The secondary measurement used calorimetric methods to calculate solar absorptance and

thermal emittance from temperature-versus-time measurements. The "active" sample surfaces

were applied to thermally isolated (calorimeter) sample holders. To aid in the calorimetric

calculations, three radiometers were used to measure the radiant energy (direct solar, Earth

albedo, and Earth infrared (IR) emitted) incident upon the samples. The radiometers were to also

determine the total exposure of the samples to direct solar irradiance. The TCSE measurements

are more fully described in section 2.4.

2.3 Flight Samples

The materials chosen for the TCSE mission comprised the thermal control surfaces of the

greatest current interest (in I983) to NASA, MSFC and the thermo-physical community. The

samples flown on the TCSE mission were:

• A276 White Paint

• A276/OI650 Clear Overcoat

• Silver/FEP Teflon (5 mil)

• Silver/FEP Teflon (5 mil Diffuse)
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• A276/RTV670ClearOvercoat
• S13G/LOWhitePaint
• Z93 WhitePaint
• YB71 WhitePaint
• YB71overZ93
• ChromicAcid Anodize
• Silver/FEPTeflon (2 rail)

• White Tedlar
• DIll BlackPaint
• Z302Black Paint
• Z302/OI650ClearOvercoat
• Z302/RTV670 Clear Overcoat

• KRS-5 IR Crystal

• Silver

Many of these materials were selected because they are good reflectors of solar energy

while also being good emitters of thermal energy to the cold sink of space, i.e. they have a low

solar absorptance (as) and a high room temperature emittance (_v). The range of low as/ev

thermal control surfaces include materials that were expected to be very stable for the planned 9-

12 month LDEF mission while others were chosen because they were expected to degrade

significantly.

A second class of materials flown on the TCSE was black paints. These are important as

solar energy absorbers and light absorbers for science instruments.

Some of the materials were expected to react with the residual AO at the LDEF orbital

altitude. Transparent coatings were applied over a few of these samples to protect the sample

from AO.

The remainder of this section discusses each of the materials flown on the TCSE.

2.3.1 A276 White Paint

Chemglaze A276 white paint is a Titanium Dioxide (TiO__) pigment in a polyurethane

binder. It has been used on many space vehicles including Space[ab.

In early Shuttle experiments t41and ground testing, A276 had been shown to be susceptible

to erosion by AO. It had been suggested that clear overcoatings would protect AO susceptible

coatings. The effectiveness of two protective coatings over the A276 were evaluated on the

TCSE. These overcoatings were Owens Illinois OI650 glass resin and RTV670.

A276 is manufactured by the Lord Corporation Chemical Division. The samples for the

TCSE were prepared by personnel in the M&P Laboratory, NASA/MSFC.

2.3.2 SI3G/LO White Paint

SI3G/LO white paint has been the most widely used white thermal control coating for

space vehicle thermal control. S13G/LO consists of zinc oxide (ZnO) pigment in a General

Electric RTV602 methyl silicone binder. The pigment particles were treated with potassium

silicate before processing into paint to inhibit the photodesorption of oxygen from the ZnO

pigment when subjected to solar UV exposure, iSI
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The S 13G/-LO formulation used for the TCSE samples is no longer available because the

RTV602 binder is not currently manufactured. A new methyl silicone binder is used in

S13G/LO-I white paint which is a replacement for S13G/LO. S13G/LO and S13G/LO-1 are

manufactured by the Illinois Institute of Technology Research Institute (IITRI). IITRI prepared

the S 13G/LO samples for the TCSE. Table 2 summarizes the TCSE samples prepared by IITRI.

Table 2. IITRI Prepared TCSE Flight Samples.

Coating Sample Coating Batch

Material Number Thickness (mils) Number

S 13G/LO C92 12.0 1-097

P7 9.5 1-097

Z93 C95 4.5 1-100

P5 5.0 1-100

P6 6.5 1-100

YB71 C96

C97

P1

P2

6.5

9.5-10.5

9.5

9.0

1-061

1-061

1-099

1-099

YB71 over Z93 C93

C94

P3

P4

9.0-9.5

8.5-9.5

11.0-12.0

10.0

1-061 (YB71)

1-100 (Z93)

Dl 11 C99 2.5 1-101

P10 4.0 1-101

2.3.3 Z93 White Paint

Z93 is another widely used white thermal control coating that is manufactured by IITRI.

Z93 is the same zinc oxide pigment as S13G/LO, but in a potassium silicate binder. IITRI also

prepared the Z93 samples for the TCSE.

2.3.4 YB71 White Paint

YB71 white paint is a zinc orthotitanate (Zn2TiO4) pigment in a potassium silicate binder.

When the TCSE samples were prepared, YB71 was just completing development. YB71 offered

the potential for solar absorptance values less than 0.10 while maintaining an emittance of 0.90.

This coating also offered improved stability in the space environment, especially for ionizing

particulate radiation exposure.

Because the manufacturing and application process was not finalized when the TCSE

samples were prepared, the as values for the YB71 were somewhat higher than desired as = 0.11

to . 15). Somewhat lower (zs values for the TCSE samples were achieved by applying a primer

coat of Z93 white paint before the YB71 was applied. Current versions of the YB71 have
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resolved this problem and % values around 0.08 are being achieved. YB71 is manufactured by

IITRI, who also prepared the TCSE samples.

2.3.5 Chromic Acid Anodize

Two chromic acid anodized aluminum samples were tested on the TCSE. These samples

were provided by Mr. Wayne Slemp of Langley Research Center (LaRC) who is a TCSE guest

investigator. Anodized coatings have long offered the potential for stable coatings for large

surfaces and are being considered for use on the International Space Station.

2.3.6 Silver Teflon Surfaces

Silverized FEP Teflon" is another widely used thermal control surface. Two different

thicknesses of silver Teflon were flown on the TCSE: 2 mil and 5 mil. The 2 mil material was

used on the TCSE front cover as part of the passive thermal control system. A sample of the 2

mil silver Teflon was also flown on the active sample array. The 2 mil material was attached to

the substrate with 3M Y-966 acrylic pressure sensitive adhesive tape. A Teflon squeegee was

used to remove air bubbles followed by a wipedown with isopropyl alcohol.

Two configurations of the 5 mil silver Teflon material were flown on the TCSE sample

array: the normal specular type and an embossed or diffuse type. The normal silver Teflon

material has a mirror-like finish which is undesirable for some applications. The diffuse material

has a dimpled pattern embossed into its surface to minimize specular surface reflections. The 5

mil material was attached to the sample substrates with P223 adhesive.

The silver Teflon used on the TCSE was manufactured by Sheldahl. The 2 mil

calorimeter sample was prepared by Aerojet ElectroSystems. The TCSE cover material was

applied by personnel in the M&P Laboratory, MSFC. The 5 mil samples were provided by

Wayne Slemp of LaRC.

2.3.7 White Tedlar Film

White Tedlar ® is a pigmented plastic film manufactured by Dupont. White Tedlar was a

candidate for the external covering of insulating blankets used on spacecraft. This material was

flowaa on the TCSE because its solar absorptance was expected to degrade a measurable amount

in the planned 9-12 month LDEF mission. The TCSE Tedlar samples were prepared by the

M&P Laboratory at MSFC.

2.3.8 Dlll Black Paint

The performance of many spacecraft and instruments depends on light absorbing

coatings. D111 black paint was developed by IITRI as a stable diffuse coating for this

' Teflon is a registered trademark of Dupont.

® Tedlar is a registered trademark of Dupont,
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application. The D111 formulation is a bone black carbonaceous pigment in an inorganic

potassium silicate binder. D111 coatings provide high absorptance over the solar region (250-

2500 nm) with a near zero Vacuum Condensable Material (VCM). The TCSE Dill samples

were prepared by IITRI.

2.3.9 Z302 Black Paint

Chemglaze Z302 is a gloss black paint from Lord Chemical. Z302 is an aromatic

polyurethane coating with a carbon black pigment. It was used on the aperture door of the

Hubble Space Telescope (HST) as a light absorber coating. The specularity of Z302 was

required to reflect any light, not absorbed, away from the telescope aperture and prevent

scattering into the field-of-view.

Laboratory and flight testing of Z302 determined that this material was very susceptible

to AO erosion, m Clear overcoatings might be used to protect the Z302 from AO. The

effectiveness of two transparent protective coatings were evaluated on the TCSE: Owens Illinois

OI650 glass resin and RTV670. The Z302 samples for the TCSE were prepared by the M&P

Laboratory, MSFC.

2.3.10 Other Samples

Two other types of samples were flown on the TCSE passive sample array: two KRS-5

crystals and three silver samples. The KRS-5 crystals were flown to evaluate any molecular

contamination deposited on the TCSE sample surfaces. KRS-5 crystals are typically measured in

an internal reflection IR spectrometer. This measurement can provide IR absorption spectra from

very small amounts of material deposited on the surface of the crystal. This spectra can aid in

determining the species of any deposited contaminant.

The silver samples were flown on the TCSE to evaluate the fluence and behavior of AO.

These samples consisted of three stacked silver coated disks. The top two disks had a pinhole in

the center of each disk to act as a pinhole camera and evaluate the directionality and

accommodation of the incident AO molecular beam. The silver samples were designed and built

by Dr. Palmer Peters of the MSFC Space Science Laboratory and Dr. John Gregory of the

University of Alabama in Huntsville (UAH).

These special samples were so degraded by the extended space exposure that analysis

could not be done.

2.4 TCSE Flight Hardware

The TCSE is a completely self-contained experiment package providing its own power,

data system, and pre-programmed controller for automatically exposing, monitoring, and

measuring the sample materials. The TCSE was developed as a protoflight instrument where

one instrument was built, made to work within required specifications, tested, and flown.
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Environmental qualification testing was performed at MSFC that included vibration, thermal

vacuum, and electromagnetic interference (EMI) tests.

The TCSE was built in a 305mm (12 in.) deep LDEF tray (see Figure 2). The active and

passive samples were mounted in a semicircular pattern on a circular carousel with three

radiometers. The carousel is tilted at 11 ° from the outer tray surface to allow a I 15ram (4.5 inch)

diameter integrating sphere to fit between the deep end of the carousel and the outer shroud.

This design satisfied the LDEF requirements to remain within the outer edges of the tray and also

provided a field-of-view of space greater than 150 ° for the samples. This design maintained

mechanical simplicity and inherent reliability.

RADIOMETERS _ F CAROUSE L

ACTIVE _ _

SAMPLES _ _-= ........ - .... _ _-- PROCESSOR

/llt__ _ _ "_ '_, "_'_ Nil[ PLATE

INTEGRATING MONOCHROMATOR
SPHERE

Figure 2. TCSE Assembly.

The TCSE flight system is the most complex mechanism (other than the LDEF) ever

retrieved from space after nearly six years of exposure. It represents a microcosm of the large

electro-optical payloads in development by NASA, Department of Defense (DOD), and industry.

The performance of the TCSE provides a better understanding of the performance of complex

systems, subsystems, and components in the space environment. Table 3 shows the basic

specifications for the TCSE flight hardware.

2.4.1 Sample Carousel

The TCSE sample carousel design enabled the test samples to be either protected from or

exposed to the space environment as well as to be positioned for optical measurement. Figure 3

illustrates the sample positions on the carousel during various exposure or measurement times

during the LDEF mission. The radiometers are also shown, referenced to the flight sample

positions. In the exposed condition, the samples experienced space exposure for approximately

23.5 hours each earth day. During the protected period of time (approximately 1/2 hour),

calorimetric measurements of emittance were made. The protected environment also prevented

exposure of the experiment test samples to ground processing and launch contamination.
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Table 3. TCSE Flight Hardware Specifications.

Size 1.24m x .84m x .30m

(48.75 in x 33 in x 12 in)

Weight 80.5kg (177 pounds)

System Controller 1802 Microprocessor

Battery Capacity 72 Amp Hours at 28 VDC
Data Recorder Lockheed 4200

• Capacity 54 x l06 Bits

Reflectometer

• Wavelength Range

• Wavelength Resolution (A_./_.)

• Reflectance Accuracy

• Reflectance Repeatability

250 to 2500 nm
< 5%

2%

1%

Calorimetric Measurements

• Solar Absorptance Accuracy - 5%

• Total Emittance Accuracy - 5%

Exposure

Rad_omete_

Closed (Protected) Position Open (Exposed) Position

Sample 1 Measurement Position Sample 25 Measurement Position

Figure 3. Carousel Positions.
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The carousel subsystem was comprised of the carousel assembly, a stepper motor

controlled by the Data Acquisition and Control System (DACS) to effect movement of the

carousel assembly, a geneva drive assembly consisting of the drive gear and cam, and an

emissivity plate. The geneva drive enabled precise repeatable angular rotation such that the same

spot on the flight sample was measured. A magnetic sensor on the geneva drive gear sensed a

home position to provide the positive indication of a complete movement of one sample position

and the locked position of the cam. Pre-flight testing proved the inherent reliability of the

geneva drive assembly and the positioning accuracy of each sample. The emissivity plate,

combined with calorimeters, was used for the emittance measurements.

2.4.1.1 Radiometers

Three radiometers were used to monitor the irradiance from the sun (direct solar), earth

albedo (reflected solar), and earth IR (emitted) incident on the TCSE. Radiometer data enables

calculation of solar absorptance and total emittance when combined with calorimeter temperature

data. The radiometers were mounted on the carousel and were rotated with the flight samples.

The three radiometers used thermopile detectors painted flat black and domed collection optics to

measure the energy flux on the TCSE. The direct solar radiometer was installed with a field-of-

view equal to the flight samples. A quartz lens was used for the spectral region of 200-3000 nm.

This region contains over 98% of the sun's electromagnetic energy. Like the direct solar

radiometer, the earth albedo radiometer used a quartz lens. However, the earth IR radiometer

used a germanium lens for the IR spectrum from 2000-20,000 nm. Making use of the stable

attitude of the LDEF, the earth albedo and earth IR radiometers were installed with covers such

that they had a clear view of only the earth. Data from the radiometers were recorded at one

minute intervals over a two hour period each day of the active mission during the daily

measurementsequence.

2.4.1.2 Calorimeters

Calorimeter sample holders provided a simple method to determine the solar absorptance

(as) and total emittance (e r) of the active flight samples. This calorimetric technique measured

the inputs to the heat balance equation and calculated solar absorptance and total emittance for

the flight samples. The in-space measurements required for this calculation were the temperature

of the test sample and the external heat inputs as measured by the irradiance monitors. The

calorimeters were designed to isolate the flight sample material thermally from the TCSE to

minimize errors caused by radiative and conductive losses. The TCSE calorimeter design was

developed originally by the Goddard Space Flight Center (GSFC) and flown on the ATS-1, ATS-

2, and OAO-C satellites, t61

The calorimetric measurement procedure used on the TCSE is an improvement over past

experiments for determining total emittance. Previous experiments determined total emittance

when the calorimeter viewed deep space only (i.e., no view of the sun or earth). This orientation

was difficult to ensure and the time spent in this orientation was, at times, too short to provide

accurate measurements. The TCSE procedure, however, rotated the samples inside the
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instrument where they viewed only a heavy black "emissivity" plate. This geometry greatly

simplifies the heat balance equation and removes any sun or earth effects.

The calorimeter consisted of three major parts: the sample disk, the inner cup, and the

outer cup. Figure 4 illustrates the construction of the calorimeter.

F
1

F_,.ATIN_M RE_r_£TAJ_CE TRANSOUCJ[_q $E(_U/_EO

WITH C_0#'¢C)_CTIVE Ir_0XY RE._IN £,AJ_(._ OI.e_C

f INNEF_ C_e

;C:URF.O W'iTH ClIA EPOXY

/_( LECT_ P'S.E.OTH_

r
41,,,,',

i-•

Figure 4. Calorimeter Sample Holder.

The concept for the three-part calorimeter was for the inner cup to act as a thermal guard

for the sample disk. This design featured virtually zero conduction back through the sample

holder, low measurable radiative heat transfer to the carousel, and no radiative heat transfer to the

sides. The inner cup, or "guard," had the same area and coating as the sample disk to maintain

the inner cup temperature close to the temperature of the sample. The thermal capacitance of the

inner cup was also as close as possible to that of the sample disk to ensure the guard is effective

even during transient sample temperatures. Kapton film, formed into cylinders, was used to

fasten the sample disk to the inner cup and to fasten the inner cup to the outer cup (as illustrated

in Figure 4). Crimped double'faced aluminized Mylar sheets were placed inside each cylinder to

reduce the radiative heat losses. Vent holes were put in the cylinders and bases of the inner and

outer cups, enabling the interior of these cups to vent to the vacuum environment. A solar
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absorber material was applied to the inner sides of both the inner cup and the outer cup to

minimize errors caused by light leaks through the gaps between the sample, inner cup, and outer

cup. A Platinum Resistance Thermometer (PRT) was attached to the underside of each sample

disk with thermally conducting silver epoxy to assure good thermal contact with the sample

substrate. The DACS monitored the PRT to measure the temperature of the sample disk.

The calorimeter was clamped onto the carousel by the carousel mounting cover. The top

of the calorimeter was flush with the top of the carousel.

2.4.2 Rcflectomcter Subsystem

Techniques to evaluate the optical properties of thermal control surfaces have been

standardized for the past 25 years and consist of spectral reflectance measurements from 250-

2500 nm to determine solar absorptance (as) and total hemispherical emittance (er). Solar

absorptance is calculated from the spectral reflectance data. The ct s and _r values determine how

the thermal energy is exchanged between a spacecraft and its environment and the resultant

temperature values for the spacecraft. The spectral reflectance provides details of the physics of

the material and is the best method to calculate solar absorptance.

The TCSE reflectometer optical design, illustrated in Figure 5, is one that is used

routinely in the laboratory to measure spectral reflectance. Two light sources, tungsten and

deuterium lamps, are used with a scanning prism monochromator with selectable slit widths to

provide the monochromatic energy for the spectral measurement. A l l5mm (4.5 inch) diameter

integrating sphere collects both the specularly- and diffusely-reflected light from a wall mounted

sample to provide the hemispherically integrated measurement capability. Figure 6 illustrates the

integrating sphere geometry. Kodak Barium Sulfate (BaSO4) was selected for the sphere coating

because it was easy to apply, durable enough to withstand the launch environment, and had good

optical properties. A UV enhanced silicon photodiode detector and a lead sulfide detector were

used with the integrating sphere for the required 250-2500 nm spectral range.

2.4.3 Data Acquisition and Control System (DACS)

The TCSE DACS is shown in Figure 7 and controls all aspects of the TCSE operation.

The heart of the DACS is an RCA 1802 CMOS microprocessor with associated memory and

input/control ports. A 12-bit A-D converter and analog multiplexer are used to read to
measurement data.

A low-power, 25-bit real-time clock was used to keep mission elapsed time. The real-

time clock was the only TCSE subsystem that ran continuously from the LDEF "start" signal

through battery depletion. The clock subsystem turned on the DACS once each 24 hour day of

the active TCSE mission. The DACS, in turn, looked at its internal schedule to determine what

functions were to be done that day. At the completion of the day's measurements, the DACS

turned itself off leaving only the real-time clock operating.
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Figure 5. Reflectometer Optical Schematic.

Sample Beam
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Figure 6. Integrating Sphere Geometry.
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/
Figure 7. Data Acquisition and Control System.
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There were two measurement cycles that the data system controlled: the "daily"

measurements and the "refectance" measurements. The daily measurements were performed

once each day after the initial turn-on delay period (refer to Section 3.0). The reflectance

measurements were done at intervals varying from once a week at the beginning of the mission

to once a month after three months as defined by the stored program in the data system. The test

samples were mounted on a carousel which rotated to the protective position for launch and re-

entry, to the exposed position where it resided for most of the mission, and positioned each

active sample in turn to the reflectance measuring position (see Figure 3, Section 2.4.1).

In the daily measurement sequence (with the carousel in the exposed position), each of 64

analog channels were sampled once each 64 seconds for 90 minutes. The carousel was then

rotated to the protected position and the measurements continued for another 30 minutes. At the

end of this cycle, the carousel rotated the samples to the exposed position. The analog channels
monitored by the DACS are summarized in Table 4.

Table 4. Analog Channels Monitored.

Component

Radiometers

Battery Voltage

PRTs (Calorimeters)

PRTs (Other)

References

Thermistors

Quantity of Sensors

25

2

4

27

Total 64

In the reflectance measurement sequence, each sample was positioned in-turn under the

integrating Sphere twice for reflectance measurements. Each sample, beginning with sample one

and continuing through sample 25, was positioned under the integrating sphere and the UV

portion of the measurements taken. This sequence was then repeated, only in reverse order

(sample 25 through sample 1) for the visible and IR measurements. At the completion of this

sequence, the carousel rotated the samples to the exposed position.

The reflectometer subsystem is shown in Figure 8. The DACS controls the

monochromator wavelength and slit width, selects the appropriate detector and lamp, and
measures the reflectance values.

The analog signal processing for the reflectometer is shown in Figure 9. The output from

the detector is an AC signal modulated by the 160 Hz chopper and 16 Hz beam director. Figure

10 illustrates the chopped analog signal input to the system multiplexer. This signal is amplified

and the 160 Hz modulation is removed using a Phase Sensitive Detector (PSD). The sample and

reference portions of the Signal selected by the 16 Hz beam director are then separated into two

separate channels. Each channel is further processed through active analog integrators providing

Multiple Time Averaging (MTA). The output of the integrators is digitized by the system A-D

converter and stored in the DACS where further digital MTA can be used as
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Figure 8. Integrating Sphere Reflectometer Subsystem.
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needed to obtain the desired precision. The amplifier gain and the analog integrators are

controlled by the DACS. The use of phase sensitive detection techniques, combined with analog

and digital MTA, provides an efficient method to minimize the effects of stray light, drift, offset,
1/f noise and white noise. [7]

HUV-4000BSUiconDetector

12SM
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Figure 9. Reflectometer Analog Signal Processor.
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Figure 10. Reflectometer Analog Signal.
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2.4.4 Ground Support Equipment (GSE)

For checkout and test, a set of Ground Support Equipment (GSE) was developed to

operate the TCSE, read data from the TCSE and/or recorder, decode the data, and present the

data for analysis. The GSE, as shown in Figure 1 I, consists ofa GSE control box, an RCA 1802

MicroMonitor, a tape recorder ground reproduce unit (GRU), and a GSE computer including

Cathode Ray Tube (CRT) terminal, disk drive, printer, and plotter. The GSE control box

simulates the LDEF interface, provides power and power monitoring for ground testing, and

provides provisions to input an external clock to speed up ground testing.

f " c - _ --

Figure 11. TCSE Ground Support Equipment.

The MicroMonitor is an interface to the 1802 Central Processing Unit (CPU) in the flight

data system and provides control of the CPU, sets break-points in software, changes and

examines memory data, and runs external test software. The GRU provides ground test control

of the flight tape recorder for tape motion, tape erasing, and data playback.

The GSE computer system acts as a smart terminal to the MicroMonitor and as a test data

storage, decoding, and analysis system. As a smart terminal, the GSE computer can control the

MicroMonitor functions and load TCSE test software into the MicroMonitor. The GSE

computer can control and test the TCSE tape recorder through the GRU and store TCSE test data
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on the GSE disks for analysis. In addition, the GSE computer can test the flight recorder by

storing data on tape, replaying it and comparing the data. The GSE computer can also directly

record TCSE data by "eavesdropping" on data being sent to the flight recorder by TCSE. The

GSE computer can decode the packed TCSE data format, analyze the data, print the daily data,

and print (or plot) the reflectometer data.

3.0 TCSE MISSION SUMMARY

The LDEF was placed in LEO by the Shuttle Challenger on April 7, 1984 (see Figure

12). LDEF was retrieved by the Shuttle on January 12, 1990 after 5 years 10 months in space

(see Figure 13). The orbit had a 28.5 ° inclination and an initial altitude of 463 km (250 N mi).

The orbit degraded over the 5 year 10 month mission to an altitude of 330 km (178 N mi).

The LDEF was gravity-gradient stabilized and mass loaded so that one end of LDEF

always pointed at the earth and one side pointed into the velocity vector or RAM direction (see

Figure 14). The LDEF was deployed with the TCSE located on the leading edge (row 9) of

LDEF and at the earth end of this row (position A9). In this configuration, the TCSE was facing

the RAM direction. The actual LDEF orientation was slightly offset from this planned

orientation. The LDEF was rotated about the long axis where row 9 was offset from the RAM

direction by about 8 °E8] (see Figure 15). This LDEF/TCSE orientation and mission duration

provided the following exposure environment for the TCSE:

Total space exposure

Atomic oxygen fluence

Solar UV exposure

Thermal cycles

Radiation (at surface)

5 years 10 months
8.0 x 10 2_atoms/cm 2 i91

1.0 x 10 4 ESH t_°_

3.3 x 10 4 cycles

3.0 x 10 5 rads I_l

When the LDEF was placed in orbit by the Shuttle, a "start" signal was sent to the TCSE

to engage a relay and turn on the TCSE power. The TCSE was preprogrammed to wait for ten

days before exposing the samples to allow the initial outgassing load to diminish.

The TCSE was launched aboard the LDEF with the carousel rotated to the "closed"

position to protect the samples from ground processing and the launch environment (see Figure

3).

On mission day 10, the initial daily and reflectance measurements were performed. The

carousel was rotated to the open position to expose all test samples. The daily measurements

were repeated every day until the TCSE batteries were depleted which occurred on mission day

582 (19.5 months). The reflectance measurements on the test samples were repeated once a

week for four weeks, then once every two weeks for eight weeks, and then once a month until

battery power was depleted. The TCSE batteries were sized to provide a 50% margin of

additional energy for the nominal 9-12 month LDEF mission. The TCSE mission timeline is

summarized in Table 5.
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Figure 12. LDEF Deployment.
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Figure 13. LDEF Retrieval.

97t3.doc-09/I 2/97 22 AZ Report No. 90- I - 108-054

I_ t:i



• Gravity Gradient
Stabilized Attitude

North

C3

EaCh Fadng
End

30"

LmDirection

Space Facing
End Leading

Edge

Orbital Velocity

I

Figure 14. LDEF Flight Orientation.

LDEF Bay Designation

D

F

A

Earth

TCSE Location

_" A09

Actual Ram Direction

Figure 15. LDEF RAM Orientation.
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Table 5. TCSE Mission Timeline Summary.

Mission Time (Days)

0 LDEF deployment, TCSE start signal

10 Perform initial in-space reflectance and calorimetric

measurements

11 Repeat calorimetric and housekeeping measurements

(and each day of mission)

17* Repeat reflectance measurements
*Reflectance measurements were made once every week for the first

four weeks, once every two weeks for the next eight weeks, and once a

month thereafter.

582 Batteries were depleted and the TCSE systems shut

down

As discussed previously, the TCSE operated for 582 days before battery depletion. The

battery power was finally expended while the sample carousel was being rotated. This left the

carousel in a partially closed position. Figure 16 is a photograph taken during the LDEF retrieval

operations showing where the carousel rotation stopped. This carousel position caused 35 of the

samples to be exposed for the complete LDEF mission (69.2 months) and 14 exposed for only

582 days (19.5 months) and therefore protected from the space environment for the subsequent

four years.

3.1 LDEFfrCSE Deintegration Activities

On February l, 1990, the LDEF was removed from the Shuttle Columbia at KSC and

transferred to a payload processing room for the initial close-up inspection. Special Investigative

Groups (SIGs), established by NASA to ensure all LDEF relevant data were collectively

archived for future analyses, began their investigations.

The Micrometeoroid and (orbital) Debris Special Investigation Group (M&D SIG)

conducted an initial inspection of the entire LDEF structure on February 20-23, 1990 while all 57

experiments were mounted to the structure. From February 23 through April 19, 1990, detailed

examination and photo documentation of all experiments was conducted by the M&D SIG team

as each experiment was removed from the LDEF structure. The TCSE deintegration occurred in

early March. This team documented all craters greater than 0.Smm in diameter and all

penetration holes greater than 0.3mm in diameter. The size, type, location and feature

characteristics of all documented impacts were recorded. _2j Stereo-microscope imaging systems

were fitted with color Charge Coupled Device (CCD) cameras, 35mm cameras, and fiber optic

cold-light illuminators for viewing. Data were recorded on optical-disk cartridges and archived

in the Johnson Space Center (JSC) Curatorial Facility Data Vault. A summary of these results is

presented in Table 6.
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Figure 16. TCSE Condition at LDEF Retrieval.
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Table 6. M&D SIG TCSE Feature Summary.

Impact Mounting Clamps, Bolts Tray Experiment

Dimensions Sh__ims Flan_,es Surfaces Surfaces

<0.5ram* 6 0 0 543

>0.5mm 5 3 3 39
Totals 11 3 3 582

*Impacts less than 0.5mm were counted, not photo documented. Impacts less than 0. lmm were not counted.

One penetration occurred on the TCSE front cover. The M&D published report states,

"The largest documented feature was a 2.5mm diameter impact in the silver Teflon cover. This

impact delaminated a considerable amount of the Teflon blanket and exposed the silver backing

to oxygen erosion." Figure 17A provides a close-up view of the impact showing the crater and

silver Teflon layer "blown" back from the crater rim. At location "1" of Figure 17A, the Teflon

layer has radial cracks emanating from the crater impact center. Some of the silver/inconel layer

is still attached to the Teflon. For the silver Teflon closest to the impact area, the silver/inconel

and adhesive layers are missing. The exit of the impact event is shown in Figure 17B, with the

small region indicated at area "1".

Following the M&D SIG investigation, the TCSE was shipped back to MSFC for data

analysis. At MSFC, the TCSE covers were removed and the interior of the instrument visually

and photographically inspected.

Data from the LDEF, and the TCSE, soon became the focus of other space programs. In

March 1990, during the early phase of data analysis, the HST program office requested

information from the MSFC and TCSE investigators regarding the space environmental effects

on silver Teflon. This material is installed on the HST 2.7 m (9 feet) aft shroud external surfaces

and questions had arisen about its durability for extended space missions, especially with the

visual appearance of the LDEF silver Teflon surfaces. To support this inquiry and respond in a

timely fashion for the planned April 1990 launch of the HST, portable instruments were used to

measure the optical properties of the silver Teflon surfaces on TCSE and other MSFC

experiments. The TCSE and other MSFC experiments were deintegrated earlier than planned in

the L-DEF post-mission processing so additional analyses could be performed.

The results of these studies determined that the HST thermal system had sufficient

margins to function with the degradation observed on the LDEF mission. This cooperative effort

exemplifies the significance of the TCSE and LDEF data for future long duration space missions.

4.0 TCSE SYSTEM PERFORMANCE

The TCSE flight hardware system performed very well during the LDEF mission. A few

anomalies have been detected in post-flight data analysis, inspection, and functional tests.

Performance of the TCSE system and operational anomalies are described in this section.
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Figure 17. Impact Penetration of Front Panel.

(Panel: 606 IAL; 0.063 MIL Thickness)
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4.1 Recorder

The TCSE data system utilized a Lockheed Electronics Company (LEC) model MTM

four-track tape recorder to store the flight data. The flight recorder was removed and hand-

carried to the LEC for transcription of the flight data and an analysis of the condition of the

recorder.[Z31

Upon opening the recorder it was determined that a relay in the track switching circuit

had failed with the wiper on one set of contacts stuck in an in-between state. This condition

prevented the relay from receiving additional track switching commands and resulted in the

overwriting of one of the three tracks of data collected by the TCSE. The LEC engineers

manually energized the relay coil and the relay contact latched properly. This relay and the

complete recorder system performed within specification for the check-out tests and flight data

playback.

The MTM tape recorder is a four-track unit that records tracks 1 and 3 in the forward

direction and tracks 2 and 4 in the reversedirectionl A(the_c0mpletion of the TCSE mission, the

recorder stopped with the tape positioned near the end of track 1. However, it was determined
that track 3 data was written over track 1 data. Because the MTM recorder uses a saturation

recording method, track 3 data was recovered. Track 2 data was recovered with no problems.

Some track 1 data was apparent in gaps between track 3 data blocks. The LEC and NASA/LaRC

personnel provided a very valuable service in this analysis and in the recovery of the TCSE flight

data.

The recovered TCSE flight data was decoded and separated into data sets. By analyzing

the clock data in each data set, it was determined that the TCSE operated for 582 days (19.5

months) after LDEF deployment. Data were recovered for the last 421 days of this operational

period. The overwriting of track 1 data by the recorder resulted in the loss of data for the first

161 days of the TCSE mission. The recovered data included eleven reflectometry data sets and

421 daily data sets.

4.2 Reflectometer

Data reduced from the fight recorder indicate the reflectometer performed very well. In

Figure 18, the measurement repeatability over several months is observed to be generally within

1-2%. This excellent performance indicates that measured changes by the TCSE reflectometer
were accurate and did occur.

The post-flight analyses of the TCSE reflectometer consisted of visual inspections and

functional tests. Visual and black light inspections of the reflectometer components revealed no

unusual surface features (i.e., discoloration, deformation, aging, etc.). The integrating sphere

coating was intact. There was no evidence of mechanical misalignment after the extended

mission. Functional tests were conducted on the reflectometer subsystem components, including

the tungsten and deuterium lamps and the monochromator wavelength and slit stepper motors, to

determine their status after the prolonged space exposure. A functional test was also conducted
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on the complete reflectometer subsystem. Functional tests on components were performed first

to verify function and check for start-up power transients. System level tests followed to verify

system performance, m
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Figure 18. Z93 Flight Reflectometer Performance.

The component functional test results of the two lamps and power supplies were nominal.

The lamps and power supplies responded to computer control as designed. There were no

measured atypical power transients. The tungsten lamp irradiated normally at power on, and a

visual check in the integrating sphere verified the visible spectrum between 500 and 700 nm.

The deuterium lamp irradiance appeared slightly unstable due to flickering of the lamp arc. No

visual inspection was possible of the UV energy from the monochromator.

Functional tests of the two stepper motors on the monochromator were nominal. No

adverse power transients were recorded at power on and the stepper motors responded to

computer control.

A functional test of the reflectometer subsystem followed the component level functional

tests to determine overall system health. The functional test measured reflectance of ground

control samples. The reflectometer subsystem operated normally.
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The reflectance data from this functional test was decoded and analyzed to determine the

condition of the reflectometer subsystem. The near IR data from 2500 nm to about 600 nm looks

reasonable with signal levels on the same order as pre-flight values (even a little higher above

1500 nm); however, a little more noise is evident in the data. From 600 nm to 400 nm, signal

levels are significantly lower and noisier but some data is usable. Below 380 nm, where the

deuterium lamp is used, the data is suspect. Signal levels appear to be high enough to provide

good measurements but the data do not agree with ground measurements. For example, the

white paint test samples should have low reflectances (<10%) below 380 nm, but very few points

are in that range. The data in the lower visible and UV suggest a wavelength shift in the

measurements. Figures 19-21 are examples of the post-flight measurements made with the

TCSE reflectometer. Several data points in the UV were well over 100% and were omitted from
these curves.

4.3 Batteries

Four standard lithium range safety batteries were used to power the TCSE. These

batteries were developed for the Shuttle Solid Rocket Booster (SRB) range safety system. The

batteries were selected based on their high energy density and ready availability at MSFC. These

batteries had a predicted life of greater than 15 months from calculated power requirements

which was more than adequate for the planned 9-12 month LDEF mission. Each battery was

rated at 28 Volts Direct Current (VDC) and self-contained in a two-part Nylafil case. An

ethylene propylene o-ring was used to seal the case. Due to the characteristics of the lithium

electrolyte, each cell was designed to vent into the cavity when overpressurization occurred.

During an overpressurization condition, a small diaphragm on each cell balloons out and is

pricked by a metal pin to relieve pressure. The escaping gas is then contained within the Nylafil

case by the ethylene propylene o-ring.

During the initial post-flight analysis, a noticeable odor was evident during TCSE

deintegration at the MSFC. The source of odor from inside the TCSE was identified as the

electrolyte from the lithium batteries. The batteries were removed from the TCSE and bagged.

Each of the four batteries in the TCSE had this odor. One battery was cut open to check the cell

diaphragms and the battery o-ring. All cells had vented, noted by punctured diaphragms. In

addition, the battery o-ring was checked for compression sets and was measured to be 100% (see

Figure 22). Since the compression set on the o-ring was 100%, electrolyte gas was able to

escape from the batteries. The o-ring did not operate as designed.

Post-flight data reduction revealed the battery temperature ranged from 13 to 27°C (refer

to Section 4.6). This temperature range permitted most of the battery energy to be utilized and

enabled a long-life mission. Battery voltage ranged from a nominal 36 VDC near mission

initiation down to 25 VDC at battery depletion. Figures 23 and 24 illustrate measured battery

voltages during the TCSE mission. The battery voltage was measured at very low current draw

which represented a nearly open circuit condition.
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Figure 19. Z93 Post-Flight Functional Test Data.
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Battery life extended through 582 mission days (19.5 months), well beyond the intended

mission time of 12 months, and beyond the anticipated battery lifetime of 15-18 months.

4.4 Sample Carousel

The carousel subsystem provided protection for the samples during launch and positioned

the active flight samples under the reflectometer integrating sphere for measurement.

Post-flight analyses of the recorded TCSE data showed that the carousel subsystem

operated as designed most of the time, but indicated an intermittent rotational problem. From the

recorded flight data, the carousel drive mechanism experienced some difficulty in rotating

reliably from sample position 25 to sample 24 during the reflectance measurement. This

difficulty appeared to be more prominent towards the end of the useful battery life. This problem

was investigated during the post-flight functional check-out test) 2] Attempts were made to

simulate the problem by adjusting the battery supply voltage (and energy levels) from 28 to 21

volts as well as energizing the lamps and other components of the reflectometer subsystem to

simulate increased energy requirements on the power system. Unfortunately, the carousel

rotation anomaly could not be reproduced in these ground tests. Other conditions of the space

environment (i.e., thermal, vacuum, etc.) were not simulated which may have synergistic effects

on the carousel drive motor operation. All other post-fliglat carousel functional tests were
normal.
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4.5 Data Acquisition and Control System (DACS)

The analysis of the TCSE flight data shows that the DACS performed very well during

the active TCSE mission. Post-flight functional tests show that the DACS remains functional

after the extended dormant period in space. I_u

The clock data on each recorded data buffer showed that the DACS started a

measurement sequence precisely on 24 hour increments as measured by the TCSE clock. The

daily sequence was repeated for 582 days until the batteries were depleted. Because of the

recorder mal function, only the last 421 days of data were recovered.

The data from the post-flight functional tests were analyzed to check the condition of the

analog measurement system. There were five reference channels among the 64 analog channels.

These provided a calibration for thermistors and platinum thermometers on the calorimeters. The

values of these readings depend on the current sources in the measurement circuits, the precision

reference resistors, the scaling amplifiers, and the A-D converter. For four of these reference

channels, the range of values measured over the two hour test exactly matched the in-flight

values. The fifth measurement was off one count in 900 or just over 0.1%. This test verified that

the analog measurement system remains within design specifications.

Only one anomaly has been observed in the DACS operation. The 25th clock bit

appeared to be set to a logical "1" too early and remained in that condition throughout the

mission. This bit was also set to "1" during the post-flight testing, indicating a failure. This

condition was not a problem in the data analysis because the sequential nature of the data

allowed recovery of the full clock data.

4.6 Thermal

The thermal design requirements for the TCSE mission, defined at the TCSE Critical

Design Review, are given in Table 7. Scenarios for zero solar input (cold case or minimum

temperatures) and predicted solar input (hot case or maximum temperatures) were used as

specified in the LDEF Users Handbook IH1 to determine the thermal environment that the TCSE

could expect during its mission. Some yaw (x-axis) instability was expected for this gravity-

gradient stabilized satellite and was considered in the thermal analysis. However, little yaw

occurred, and the satellite proved to be very stable, resulting in very moderate temperatures.

Table 7. Allowable and Predicted Thermal Data.

Component

Allowable Temp. Limit

Min (°C) Max (°C)

Predicted Temp. Limit

Min (°C) Max (°C)

Integrating Sphere -50 60 -25 41

Batteries -30 60 -23 43

Electronics (DACS) -40 70 -27 41

Emissivity Plate -25 40
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The TCSE used 2 mil silver Teflon as the outside (exposed) surface coating and black

painted aluminum for inside and back surfaces. The top cover (shroud) was thermally isolated

from the TCSE structure. The TCSE was thermally coupled to the massive LDEF structure for

passive thermal control, and was dependent upon this environment for thermal stability.

Thermistors were used to sense temperature extremes throughout the TCSE. Fifty three

temperature sensors (thermistors) and PRTs were installed on the TCSE. The components

measured and quantity of sensors used are given in Table 8. Only the thermistor data is

presented in this report. Figure 25 illustrates the general placement of the thermistors. The

DACS recorded the temperature data at predetermined intervals during the TCSE mission until

the power source (4 batteries) was expended. Data recovered from the flight recorder were

reduced and calibrations applied to determine temperature data on selected TCSE components.

Table 9 compares predicted data to measured data for some components, and presents other data

for reference. The measured data temperature ranges represent the lowest and highest

temperatures recorded by any of the applicable sensors. Figures 26-32 represent typical daily

thermal excursions experienced by selected TCSE components.

Table 8. Thermal Monitored Components.

Component/Quantity

Type of Sensor

Thermistor

X

PRT

Quantity of

Sensors

Integrating Sphere/1 1

Batteries/4 X 3

Electronics (DACS)/1 X 2

Emissivity Plate/l X 4

Radiometers/3 X 3

Passive Sample Holders/5 X 5

Shroud (Top Cover)/1 X 5

Calorimeters/25 X 25

Reference Sensors/4 X X 4

Flight Recorder/l X 1

53
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Figure 25. Thermistor Temperature Sensor Placement.

Table 9. Predicted vs. Measured Thermal Data.

Component

Integrating Sphere

Predicted Temp. Limit

Min (°C) Max (°C) Min (°C) Max (°C)

-25 6 19

Measured Temp. Limit*

41

43

41

40

Batteries -23 13 27

Electronics (DACS) -27 17 29

Emissivity Plate -25 -2 17

Radiometers 14 39

Passive Sample Holders 15 43

Shroud (Front Cover) -43 5
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5.0 MATERIALS ANALYSIS

The primary objective of the TCSE mission was to determine the effects of the space
environment on thermal control surfaces. The effects and the mechanisms of these changes are

very complex because of the synergism of the constituents of the space environment. This

section describes the results of the analyses performed on the flight samples and other materials

on the TCSE.

Many different changes were observed in the TCSE samples due to their prolonged space

exposure. These changes ranged from the obvious cracking and peeling of the overcoated

samples to the subtle inducement of UV fluorescence in some samples. Some samples changed

more than expected while others changed less than expected. The measured effects of the

atmospheric AO are probably the most significant because of the large total AO fluence (8 x 102_

atoms/cm2) E91on the TCSE surfaces due to the LDEF orbital attitude. Figures 33 and 34 are pre-

flight and post-flight photographs of the TCSE samples showing changes to many of the

samples. Figure 35 shows the position and material of each of the 49 TCSE flight samples.

Many analysis tools were used to determine the effects of the LDEF LEO exposure

environment on the TCSE flight materials. Section 5.1 discusses the primary optical properties

measurements and the condition of the flight sample materials. Section 5.2 discusses the trend

analysis of the data to develop a long term degradation model for selected materials. A number

of other analyses were used to further define the material changes due to the LDEF LEO
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Figure 33_ Pre-flight Photograph Of d_e TCSE Flight Samples.
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Figure 34. Post-flight Photograph of the TCSE Flight Samples.
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Figure 35. TCSE Sample Identification.
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environment. These other investigations are discussed in Sections 5.3 through 5.5. Section 5.3

discusses several investigations including Scanning Electron Microscope (SEM), IR

spectroscopy, Bi-Directional Reflectance Function (BDRF), X-ray Photoelectron Spectroscopy

(XPS), and Differential Scanning Calorimetry (DSC) analyses. Post-flight inspections of the

TCSE using black light showed significant fluorescence changes in the test samples. The

investigation of these changes are discussed in Section 5.4. Section 5.5 discusses a strange

material deposit observed during routine SEM investigations of the TCSE front cover. This

strange deposit draws much interest as to the origin of this material.

5.1 Optical Properties Analysis

The primary measurements used for this analysis were total hemispherical reflectance

from 250-2500 nm. Both in-space and laboratory reflectance measurements were performed on

the test samples. Section 2.4.2 described the flight reflectometer which is very similar to the

laboratory instrument used for this effort.

Laboratory measurements of spectral reflectance were obtained using a computer

controlled Beckman model DK-2A Spectrophotometer equipped with a Gier-Dunkle 203mm (8

inch) integrating sphere. The integrating sphere was coated internally with magnesium oxide

(MgO smoke, electrostatically deposited) to provide a near-perfect standard of reflectance.

Reflectance data were integrated with respect to the solar spectrum to calculate solar

absorptance.1151

The spectral measurements made with the TCSE reflectometer show differences from the

laboratory DK-2A instrument. This is caused by a combination of differing sphere geometries,

detector types, and sphere coatings. To enhance the comparison analysis of flight and ground

data, a method was developed to correlate the flight data to the laboratory data. The pre-flight

DK-2A measurements were compared to the pre-flight measurements made on the TCSE

reflectometer and a correlation curve developed for each sample, t31 This correlation curve was

applied to each flight measurement to complete the correction. This data correction process is

shown in Figure 36.

The correlation curve for each sample was developed by a point-by-point division of the

DK-2A pre-flight data curve by the pre-flight reflectance measurements made on the TCSE flight

instrument. Figure 36, Step 2, is a typical correlation curve for a high reflectance surface (i.e.,

white paint). The larger correction values around 350 nm may be due to small wavelength errors

in the TCSE monochromator. A small shift at these wavelengths would cause a larger correction

because of the fundamental absorption edge of the white paint samples. Once these corrections

are applied, the flight measurements compare well to the laboratory measurements.

Post-flight spectral IR reflectance measurements were made on selected control and flight

samples. A new instrument was developed to perform these measurements. The AZ Technology

SpectraFire measures the spectral total hemispherical reflectance of test samples over the

wavelength range of 2.5 gm to 34 lam. SpectraFire is a Nicolet Model 550 Fourier Transform
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Figure 36. Flight Data Correlation Process. (Continued)
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Infrared (FTIR) spectrometer combined with a special total hemispherical reflectance attachment.

This attachment uses the patented AZ Technology ellipsoidal collector system to perform the

desired hemispherical measurements.

In addition to the reflectance measurements, the total emittance of the TCSE samples was

also measured by a Gier-Dunkle model DB 100 IR reflectometer. Tables 10-13 summarize the

optical measurements of as and eT on the TCSE flight samples.

The following sections first discuss the different sample materials followed by a

discussion of the measurement results.

5.1.1 A276 White Paint

Chemglaze A276 polyurethane white paint has been used on many short term space

missions including Spacelab. It was known to degrade moderately under long term UV exposure

and to be susceptible to AO erosion. I4'_61To evaluate the effectiveness of AO protective coatings,

A276 samples were flown with and without overcoatings. Two materials were used as protective

coatings over A276:RTV670 and Owens Illinois 01650.

The post-flight condition of the A276 samples were somewhat surprising in that the

unprotected TCSE A276 samples are very white. Previous flight and laboratory tests indicate

that almost six years of solar UV exposure should have rendered the A276 a medium brown

color. The overcoated TCSE samples, however, do exhibit the characteristic UV darkening as

anticipated. Visual inspection at KSC of unprotected A276 samples on the trailing edge of

LDEF (almost no AO exposure) showed that they also degraded as expected.

Apparently as the unprotected A276 samples on the RAM side of LDEF degraded, their

surfaces were eroded away leaving a freshl undamaged surface. Pippin riTl reported that the A276

binder eroded away leaving the white pigment exposed. Some degradation of this TiO2 pigment

should have also been observed due to UV exposure (in the absence of AO). It is possible that

there was sufficient oxygen on leading edge surfaces to inhibit oxygen based pigment damage, t_81

Figure 37 shows pre-flight, in-space, and post-flight measurement of solar absorptance

(ms) for the unprotected A276 and 0vercoated A-276 samples. Figures 38-40 are the detailed

reflectance curves for selected A276 samples. These data show that both protective coatings

protected the A276 from AO erosion but allowed the A276 coating to degrade from solar UV

exposure. Some degradation may be due to darkening of the thin overcoating.

The data for the unprotected A276 shows only a small amount of degradation early in the

almost 6 year exposure. While most of the AO fluence occurred late in the LDEF mission, the

TCSE in-space measurements show there was sufficient AO present early in the mission to erode

the damaged A276 or otherwise inhibit UV degradation.
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Table 11. Passive Sample c_s Summary.

SOLAR ABSORPTANCE (ets)

SPACE

EXPOSURE PRE- POST-

MATERIAL SAMPLE # (MONTHS_ FLIGHT FLIGHT A_x_s

D111 P10 19.5 .992 .992 0

Z302 PI7 69.2 .970 .570 *

Z302 P 18 19.5 .969 .994 .025

Z302/01650 P20 69.2 .983 .985 .002

Z302/OI650 P22 69.2 .982 .978 -.004

Z302/RTV670 P21 69.2 .980 .979 -.001

Z93 P5 19.5 .142 .151 .009

Z93 P6 69.2 .133 .134 .001

YB71 P 1 19.5 .143 .150 .007

YB71/Z93 P3 69.2 .084 .089 .005

YB71/Z93 P4 19.5 .089 .085 -.005

YB71 P2 69.2 ,152 .181 .029

A276 P 11 69.2 .262 .268 .006

A276 P 12 69.2 .257 .230 -.027

A276/OI650 P13 69.2 .256 .583 .327

A276/RTV670 P16 69.2 .282 .524 .242

S 13G/LO P7 69.2 .200 .418 .218

Tedlar P23 69.2 .253 .214 -.039

Tedlar P24 69.2 .241 .213 -.028

*Coating eroded away leaving primer.
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Table 12. Active Sample _T Summary.

EMITTANCE

MEASUREMENTS

SAMPLE POST-

SAMPLE # MATERIAL ID# CONTROL. FLIGHT

1 Z302 Black Paint C102 .912 .920

2 Z302/RTV670 C 108 .907 *

3 A276/RTV670 C 100 .907 *

4 A276 White Paint C83 .987 *

5 Anodize C63 .840 .839

6 Diffuse Silver Teflon C73 .821 .817

7 YB71 White Paint C97 .901 .880

8 Silver Teflon C75 .812 .802

9 YB71 over Z93 C94 .849 .878

10 Anodize C61 .840 .834

11 Diffuse Silver Teflon (5 mil) C74 .917 .788

12 Silver Teflon (5 rail) C76 .812 .782

13 Silver Teflon (2 mil) C90 .812 .458

14 YB71 over Z93 C93 .849 .880

15 S13G/LO White Paint C92 .900 .883

16 YB71 White Paint C96 .901 .880

17 Z93 White Paint C95 .915 .918

18 IITRI D111 Black Paint C99 .929 .903

19 Yedlar White Film C110 .899 .936

20 Z302/RTV670 C105 .907 .899

21 Z302/OI650 C104 .905 .896

22 Z302 Black Paint C101 .912 *

23 A276/RTV670 C88 .907 *

24 A276/OI650 C87 .896 *

25 A276 White Paint C82 .897 .931

-.008

,ic

.001

.004

.021

.010

-.029

.006

.129

.030

.354

-.031

.017

.021

-.003

.026

-.037

.008

.009

:#

-.034

*Unable to measure due to sample condition.
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Table 13. Passive Sample e_ Summary.

SAMPLE #

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

EMITTANCE

MEASUREMENTS

SAMPLE POST-

MATERIAL ID# CONTROL FLIGHT A_;T

Auger Silver Sample ........ .461

KRS-5 IR Crystal ............

Z302 Black Paint P18 .912 .928 -.016

Z93 White Paint P5 .915 .930 -0.15

YB71 over Z93 P4 .849 .857 -.008

IITRI D111 Black Paint P10 .929 .921 .008

YB71 P 1 .849 .901 -.052

A276 White Paint P 12 .897 .931 -.034

Z93 White Paint P6 .915 .921 -.006

No Sample ................

YB71 over Z93 P3 .849 .863 -.014

S 13G/LO White Paint P7 .900 .887 .013

YB71 White Paint P2 .901 .905 -.004

Tedlar White Film P23 .899 .939 -.040

A276/OI650 P 13 .896 .893 .003

A276White Paint P 11 .897 .920 -.023

Tedlar White Film P24 .... .925 ....

A276/RTV670 P 16 .907 .877 .030

Z302_TV670 P21 .907 .889 .008

Z302/OI650 P20 .905 .894 :009

Z302 Black Paint PI7 .912 .901 .011

Auger Silver Sample ........ .307 ....

Z302/OI650 P22 .905 .892 .013

KRS-5 IR Crystal ................

Auger Silver Sample ........ .532 ....

.... Not Applicable
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Figure 37. Flight Performance ofA276.
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Figures 41 and 42 show the extensive physical damage on the overcoated A276

calorimeter samples. The unprotected A276 samples (see Figure 43) did not crack or peel. The

passive samples with these same protective coatings also crazed and cracked, but did not peel.

The calorimeter samples were thermally isolated from the TCSE structure and therefore saw

wider temperature excursions, possibly causing the peeling of the overcoated samples.

Figure 41. Post-flight Photograph of RTV670 over A276 Flight Sample C88.

Figure 42. Post-flight Photograph ofOI650 over Z276 Flight Sample C87.
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Figure 43. Post-flight Photograph ofA276 Flight Sample C82.

Figures 44-46 show the IR reflectance changes of the exposed samples versus controls for

A276 and the two overcoated A276 samples. No dramatic changes were seen in the IR

reflectance, but some chemical changes are evident in the overcoated samples with the relative

changes in the spectral peaks. The minimum reflectance changes correspond well with the

minimal changes in the measured ¢T (Tables 12 and 13.)

The extended space exposure also changed the UV fluorescence of both the A276 and

overcoated A276 coatings. This fluorescence is easily seen using a short wavelength inspection

black light. The RTV670 and OI650 coatings glow a bright yellow under this UV illumination.

Prelimina/'y measurements show both a change in the peak wavelength and an increase in the

magnitude of the fluorescence. See Section 5.4 for results of fluorescence studies.

5.1.2 Z93 White Paint

The Z93 white thermal control coatings on the TCSE samples were almost impervious to

the 69 month LDEF mission (see Figures 47 and 48). The Z93 samples showed an initial

improvement in the solar absorptance-which is typical of silicate coatings f_91in a thermal vacuum

environment. The initial improvement is due to an increased reflectance above 1300 nm. This is

offset by a very slow degradation below 1000 nm and results in only a 0.01 overall degradation

in solar absorptance for the extended space exposure.
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Figure 44. Infrared Reflectance of A276 White Paint.
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Figure 48. Reflectance of Z93 Flight Sample.

The environmental stability of Z93 is also confirmed in the IR reflectance data as shown

in Figure 49. Because of the excellent performance of the Z93 on TCSE and other LDEF

experiments, it is being widely used on the International Space Station.
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Figure 49. Infrared Reflectance of Z93 White Paint.

97f6.doc-09/l 2/97 59 AZ Report No. 90-1 -I 08-054



One concern for Z93 and the other silicate coatings is the effects of Micrometeoroid &

Debris (M&D) impacts. Figure 50 shows the result of an impact on a Z93 sample. This small

impact is about 0.4mm in diameter and occurred near the edge of the guard ring of the

calorimeter. The impact caused a larger area of the coating to break away. The affected area did

not propagate throughout the coating and was limited to the immediate area around the impact.

/

t_

Figure 50. Post-flight Photograph of Z93.

As with the A276 samples, the LDEF space exposure also changed the UV fluorescence

in the Z93 samples. The unexposed Z93 coatings fluoresce naturally, but much of this

fluorescence was quenched by the LDEF exposure. Fluorescence of the ZnO pigment in Z93 and

its decrease under UV exposure has been previously reported] 2°1 This quenched fluorescence in

Z93 samples is not confined to the leading edge samples, but is found on LDEF trailing edge

samples as well. Figures 51 through 54 are white light and black light photographs of samples

from the LDEF experiment AO114. AO114 had Z93 samples on both the leading edge (location

C9) and on the trailing edge (location C3). The samples were mounted with a cover that had a

semicircular exposure window. Under white light, it is difficult to determine what area of the

sample was exposed. However, the exposed area becomes very obvious under the black light.

These photographs are used by permission of Dr. J. Gregory (UAH). See Section 5.4 for results

of fluorescence studies.
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Figure 51. White Light Post-flight Photograph of Z93 Flight Sample - Leading Edge.

Figure 52. Black Light Post-flight Photograph of Z93 Flight Sample - Leading Edge.
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Figure 53. White Light Post-flight Photograph of Z93 Flight Sample - Trailing Edge.

Figure 54. Black Light Post-flight Photograph of Z93 Flight Sample - Trailing Edge.
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5.1.3 YB71 White Paint

The YB71 coatings on the TCSE behaved similarly to the Z93 samples. A small increase

in the IR reflectance early in the mission caused a decrease in solar absorptance (see Figures 55

and 56). This was offset by a slow long term degradation resulting in a small overall increase in

solar absorptance. The TCSE YB71 samples were made before the preparation and application

parameters for this new coating were finalized. This resulted in a wide spread in the initial solar

absorptance for the different samples. The samples with YB71 applied over a primer coat of Z93

had a somewhat lower c_s than the other YB71 samples.

While minimal changes are also observed in the overall IR reflectance (Figures 57 and

58), some changes are seen for the YB71 (without Z93 undercoat) in the 3 to 8 lam spectral

range.

5.1.4 S13G/LO White Paint

The S13G/LO samples on the TCSE degraded significantly in the solar spectral range on

the LDEF mission. Figure 59 shows the change in solar absorptance for the LDEF mission of

the TCSE S13G/LO calorimeter sample. Figure 60 shows the solar spectral reflectance

measurements of the S13G/LO sample. Contrary to the changes observed in the solar spectral

region, the IR reflectance (Figure 61) shows very little change. The IR data is consistent with the

measured changes in eT.

Figure 62 is a post-flight photograph of an S13G/LO coated calorimeter sample holder.

Notice the color grading of the degraded (darker) surface with lighter colors near the edges. As

with Z93, the UV fluorescence of the S13G/LO coatings decreased markedly in the flight

samples. See Section 5.4 for results of the fluorescence studies.

Degradation of the S13GFLO samples for the almost 6 year space exposure was expected.

However, the magnitude of this degradation is significantly greater than ground testing

predictions. Figure 63 compares the performance of the S 13G/LO and Z93 on the LDEF/TCSE

mission to a ground simulated space exposure test previously performed at MSFC.

These data show the flight degradation of S13G/LO to be significantly more than

predicted while it is just the opposite for Z93. This is difficult to explain since the two coatings

are similar in formulation. Both use ZnO pigment but the S13G/LO has a methyl silicone binder

while Z93 has a potassium silicate binder. The S13G/LO pigment particles are encapsulated in

potassium silicate.

The S13G/LO flown on the TCSE is not the currently available formulation. A new

silicone binder is used in the current S 13G/LO-1 coating.
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Figure 62. Post-flight Photograph of S13G/LO Sample.
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Figure 63. Comparison of Space Flight vs. Ground Simulation Testing.

5.1.5 Chromic Acid Anodize

There were two chromic anodize samples on the TCSE sample carousel provided by

Wayne Slemp (LaRC). These two samples degraded significantly during the first 18 months of

the LDEF/TCSE mission as shown by the TCSE in-space measurements (see Figure 64). When

the TCSE batteries were depleted (19.5 months mission time) the carousel stopped where one of

the two anodize samples was exposed for the remainder of the LDEF mission while the other was

protected. Photographs of the two samples (Figures 65 and 66) show significantly different

appearance. The sample with 19.5 months exposure has an evenly colored appearance except for

several small impact craters. The sample that was exposed for the entire 69.2 month mission has

a mottled, washed out appearance. Figures 67 and 68 are the detailed pre- and post-flight

reflectance curves for the two anodize samples.

5.1.6 Silver Teflon Solar Reflector

There were three different silver Teflon materials on the TCSE. The front cover of the

TCSE and one calorimeter sample had 0.05 mm (two mil) thick silver FEP Teflon bonded to the

substrate with Y966 acrylic adhesive. The other samples had 0.125 mm (five mil) thick silver

FEP Teflon (specular and diffuse) that were bonded to the substrate with P223 adhesive.
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Figure 64. Flight Performance of Chromic Acid Anodize.

The silver Teflon surfaces on the TCSE underwent significant appearance changes. The

most striking change observed on all the silver Teflon exposed in the LDEF RAM direction was

that the surface color was changed to a diffuse, whitish appearance. AO erosion of the exposed

silver Teflon surface is typical of that observed on previous flight experiments. Erosion of the

exposed Teflon surface creates a non-uniform etching pattern as shown in the Scanning Electron

Microscope (SEM) photograph in Figure 69. This results in a roughened surface with peaks -1.5

microns apart which scatters incident light in a manner similar to a sand-blasted piece of glass.

Figure 70 shows a schematic cross section of the silver Teflon as applied to the aluminum

surface. The silver Teflon is composed of an outer Teflon layer, a silver layer deposited on the

Teflon, an inconel protective layer deposited on the silver, and Y966 acrylic pressure sensitive

adhesive. The silver layer provides the high reflectance (low absorptance) and the Teflon

provides the high emittance for thermal control. As seen in the schematic for undamaged Teflon,

the incident light (solar flux) transmits through the smooth clear Teflon and specularly reflects

off the silver layer. AO damage to the Teflon creates a roughened surface which causes

scattering of the incident light.

While the AO roughened silver Teflon surfaces underwent striking appearance changes,

the reflectance and solar_absorptance did not degrade significantly due to this effect. For the 5

mil coatings with P223 adhesive, only small changes in reflectance (see Figure 71) and solar

absorptance were measured. In addition there was very little change in emittance (see Tables 10-

13 in Section 5.2).

w
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Figure 65. Anodize Sample with 19.5 Month Exposure.

Figure 66. Anodize Sample with 69.2 Month Exposure.

J

97fT.doc-09/l 2/97 7O AZ Report No. 90-1-108-054

IllI_



LDEF Thermal Control Surfaces Experiment
Chromic Acid Anodize - Sample C63

19.5 Months ExposureReflectance

: ! i ] |
0.9 i ] I ...... F-

0.8 = .................................... _ ..... _--_.- :::=:-_-'_":_--:"_'_,.__:: : -- -

0.7 : _-- j i :

°"i +.........i 2
0 r-----? .......=..........._......-_ --e ....................... _,

0 250 500 750 1000 1250 1500 1750 2000 2250 2500

Wavelength (nm)

- Preflight In-Flight -- Postflight

c_,:.402 _,=.S03 (x,:.540
14 Months

Figure 67. Reflectance of Anodize Sample (19.5 Months Exposure).

LDEF Thermal Control Surfaces Experiment
Chromic Acid Anodize - Sample C61

69.2 Months Exposure

= ! [

! i
/ , ---- i L __+ .

i '" ....... '......... t .......i.................

, ,_, J- .... -- ...... L ....... lr-, i 1

_' i i 1 1 I
T------T" t I - -q

500 750 1000 1250 1500 1750 2000 2250 2500

Wavelength (nm)

-- Preflight In-Flight --Postflight
_,=.409 oL,=.504 (xs=.466

15 Months

Figure 68. Reflectance of Anodize Sample (69.2 Months Exposure).

97fT.doc-09/12197 71 AZ Report No. 90- l - 108-054



Figure 69. SEM of Exposed Teflon Surface Sample #S-1.
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Figure 70. Silver Teflon Thermal Control Coating Atomic Oxygen Effect.
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Figure 71. 5-Mil Silver Teflon Reflectance Curve.

The 0.05 mm (two mil) silver Teflon surfaces, however, did degrade significantly. The

coatings had a brown discoloration. An overall view of the front thermal cover is shown in

Figure 72 after removal from the TCSE main structure during post-flight disassembly. The front

thermal cover has a Sheldahl 0.05 mm (2 mil) thick silver Teflon thermal control material

applied with ¥966 acrylic adhesive. Covered areas have no apparent damage and are still highly

specular. Areas exposed to the space environment axe clearly delineated and have a diffuse,

whitish appearance with brown discoloration. This brownish discoloration varies from light

brown to dark brown. Figure 73 is a photograph of a section of the TCSE front cover showing a

demarcation line where part of the surface was exposed and part was protected by a small

secondary cover. The protected area has the characteristic mirror-like finish while the exposed

area (foreground) is whitish with brown streaking. The brown streaking is apparent only where it

was exposed to the space environment. Changes in silver Teflon visual appearance are the result

of two damage mechanisms: AO erosion and internal damage associated with cracking of the

silver/inconel layer.

Samples were cut from the TCSE front cover for optical property measurements. Total

hemispherical reflectance measurements were made on samples from different locations on the

front cover having varying degrees of damage. Figure 74A is a plot of this data showing the

magnitude of reflectance loss in the brownish discolored regions. For those regions having a low

degree of the brownish discoloration, it can be seen that the total reflectance values are basically
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unchanged with a solar absorptance (Us) of 0.10 as compared to the ground reference sample

(unexposed) with an % of-0.08. The worse case brownish area had a solar absorptance as high

as 0.49.

The emittance (eT) was also measured at several locations on the front panel and is plotted

in Figure 74B. The protected areas were unchanged, but exposed regions degraded from an

emittance Of 0.68 to 0.48. Comparison with measurements of ground control samples shows that

approximately 0.025 mm (0.001 inch) to .033 mm (0.0013 inch) of Teflon was removed by AO.

Eddy current thickness measurements confirm these numbers.

Laboratory evaluation of these coatings with Nomarski microscopes revealed the

discoloration was under the Teflon surface. Further investigation determined that the brown

discoloration is associated with cracks in the silver-inconel metalized layer. Laboratory tests

show that the application of the pre-adhesive type silver Teflon can crack the metalized layers.

Removal of the paper backing on the adhesive and removal of air bubbles from beneath the silver

Teflon can over-stress the metal layers causing significant cracking. It appears that a component

of the adhesive migrated through the cracks into the interface with the Teflon over the long

exposure to thermal vacuum. Subsequently, this internal contaminant was degraded by solar UV

exposure causing the brown appearance. As a result, the reflectance decreased (see Figure 75)

and more than doubled the solar absorptance.
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A. VARIATION IN REFLECTANCE PROPERTIES OF SILVER TEFLON
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Figure 74. Optical Properties of TCSE Front Cover.
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Figure 75. 2 mil Silver Teflon Reflectance Curve.

Optical measurements taken at position "1" in Figure 74A, show that AO roughening

alone produces less than a 0.03 increase in solar absorptance. Larger increases in solar

absorptance were measured at positions "2" and "3" where the brownish discoloration occurs.

Details of the brownish discoloration will be described in the following sections.

5.1.6.1 Silver Inconel Layer Cracking

A close up of the silver Teflon covered area is shown in Figure 76, showing that the

silver/inconel layer is cracked. Location "1" is typical of most of the covered region having a

regular, straight cracking pattern. Location "2" is where the two silver Teflon layers meet and

slightly overlap and is typical of areas that received excessive stress during application. When

the silver Teflon material is stressed, the silver/inconel layer cracks, even to the point of

shattering as it is bent around protrusions.

Figure 77 shows a cross section of silver Teflon during application. The silver/inconel

layer undergoes severe stress during application as the Teflon layer is bent. The silver/inconel

layer is on the outside of the bending radius and is stretched beyond its elastic limit and cracks.

Ground tests were performed where new silver Teflon was applied to aluminum plates identical

to the TCSE front thermal cover. Results show that when silver Teflon is applied to an

aluminum substrate by the method shown in Figure 77, the silver/inconel layer cracks.

Photomicrographs of silver Teflon before and after application to the aluminum plates are

presented in Figure 78. The induced cracking pattern is in the silver/inconel layer. Note that
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SEM inspection of new silver Teflon applied to aluminum failed to find any cracks in the Teflon

surface. Results for silver Teflon with thicknesses from 0.25 mil to 5.0 mil show that cracking

density decreases for increasing thicknesses of Teflon.

Figure 76. Cracking of Silver/Inconel Layer- Overlap Region.
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_,/Paper Release Layer

Film Application /_'11_

Angle _ _IL_O_,
Ag/Inconel Layer [ _k
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Figure 77. Schematic of Silver Teflon Application.
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Figure 78. Silver Inconel Layer Cracking During Application of 2 mil Silver Teflon.

5.1.6.2 Silver Teflon Material Internal Damage

Silver Teflon on the TCSE that was exposed to AO and solar UV radiation has an overall

whitish diffuse color. At specific locations (Figure 79C), a brownish streaking appearance is
observed. Covered areas of silver Teflon had neither the whitish diffuse color nor the brownish

discoloration.

Figure 79A provides a close-up view of a sample (S-I) cut from the TCSE front thermal

cover showing the typical brownish discoloration. The SEM image of this sample (Figure 69)

shows that the silver Teflon surface is not cracked nor is there any indication of a significant

contaminant layer on the silver Teflon that could cause the brownish appearance. The TCSE

silver Teflon was bonded to an aluminum substrate which prevented flexing of the material that

might have caused cracks to show up in the top Teflon layer as has been observed on other

experiments.

Visible microscopic examination also failed to find surface contamination in the

brownish discolored areas. Internal damage to the silver Teflon material in the form of a

brownish streaking effect was observed along the silver/inconel cracks. This brownish color
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appears to have spread from silver/inconel cracks to the interface region between the Teflon and

silver/inconel layer.

Figure 79. Silver Teflon "Brownish" Discoloration and Silver/Inconel Layer "Crack"
Association.
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Referring to the view of sample S-1 in Figure 79A, area "1" has the typical AO damage,

but lacks the brownish discoloration, whereas area "2" has the typical brownish color. At area

"3", in comparison, the surface diffuse layer of the Teflon was removed during the cutting

operation returning the silver Teflon to its original specular appearance. In general, any contact,

including touching or wiping of the Teflon surface which has the whitish diffuse color, returns it

to its original specular appearance.

An enlargement of location "B" in Figure 79A is shown in Figure 79B. Note the

brownish streaks/cracks going from area "'1" to "2" were not disturbed by the removal of the

surface diffuse layer on the Teflon.

Figure 79C is an enlargement of area "C" of Figure 79B. The intensity of the brownish

darkening can be seen to be a function of the closeness and degree of silver/inconel layer

cracking. Areas "1" and "2" of Figure 79C have the diffuse Teflon surface which blurs the

image of the cracks. When the diffuse layer is removed, as in areas "3" and "4", a clearer image

is seen of the silver/inconel cracks. These images demonstrate that the brownish streaking is not

on the Teflon surface and, since the silver/inconel layer is opaque, the streaking must be located

at the Teflon/silver interface. In addition, it appears that the discoloration, which is probably a

component of the adhesive, spreads outward from the cracks between the Teflon/silver interface.

Based on the post-flight analysis, the brownish streaking was the result of a series of

events starting with the initial cracking of the silver/inconel layer during application to the TCSE

front thermal cover. Subsequent long-term exposure to thermal cycling and solar UV caused the

brownish discoloration. The intensity of the brownish discoloration is a direct function of the

crack density which appears to be caused by excessive handling or stretching.

The rate of change in reflectance in the silver Teflon active samples, and its resulting

solar absorptance, did not change rapidly early in the TCSE mission. Figure 80 shows only a

small increase in solar absorptance through the first 16 months of exposure. This indicates that

this internal contamination and subsequent optical degradation occurs slowly over long space

exposure.

5.1.7 White Tedlar Film

White Tedlar is another material that was expected to degrade over the 5.8 year LDEF

mission due to solar UV exposure. Instead, the reflectance properties of this material improved

slightly, as shown in Figures 81 and 82. The surface remained diffuse and white, similar to pre-

flight observations. As with A276, Tedlar has been shown to be susceptible to AO erosion. I_°1

The erosion effect of AO is the apparent reason for the lack of surface degradation of these flight

samples.

The TCSE in-flight data shows that only a small degradation in solar absorptance was

seen early in the LDEF mission. This indicates that, as with the A276 samples, there was

sufficient AO early in the mission to erode away damaged material or otherwise inhibit

significant degradation. The subsequent high AO fluence then eroded away all the damaged
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surface materials and even provided a slight improvement in solar absorptance. The Tedlar

control samples show a small UV fluorescence which was not apparent in preliminary

measurements of the flight samples.

LDEF Thermal Control Surfaces Experiment
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Figure 80. Flight Performance of Silver Teflon.

5.1.8 Black Paints

Two different black paints were flown on the TCSE - IITRI D111 and Chemglaze Z302.

D111 is a diffuse black paint that performed very well with little change in either optical

properties or appearance as a result of the TCSE mission. Figure 83 shows the reflectance of the

D111 Black Paint and Figure 84 is a post-flight photograph of the sample. The D111 samples

had some small imperfections in the coating that were seen in the pre-flight inspections. The IR

reflectance shown in Figure 85 also demonstrates the stability of D111 for the LDEF exposure.

Z302 gloss black is the other black coating flown on the TCSE. Z302 has been shown to

be susceptible to AO exposure. H In anticipation of these erosion effects, protective OI650 and

RTV670 overcoatings were applied over some of the Z302 samples to evaluate their

effectiveness. As expected, unprotected Z302 was heavily eroded by the AO exposure. Two of

the TCSE Z302 coatings were exposed to the environment for the total 5.8 year LDEF mission.

These unprotected Z302 sample surfaces eroded down to the primer coat. Two other samples

were exposed for only 19.5 months and, while they did erode, still had good reflectance

properties (see Figure 86).
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Figure 83. Reflectance of D111 Flight Sample.

Figure 84. Post-flight Photograph of D111 Black Paint.
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The overcoatings for the Z302 behaved similarly to the overcoatings on the A276

samples (see Figures 87 and 88). The Z302 appears to have been protected by the overcoatings,

but the overcoats cracked and crazed (see Figures 89 and 90). The coatings that were applied to

the calorimeter sample holders are believed to have peeled away from the substrate because of

the wider temperature excursions of these thermally isolated samples. The IR reflectance

(Figures 91 and 92) of the overcoated samples shows llittle change for the exposed samples.

In addition, the fluorescence of the Z302 samples changed due to the LDEF exposure.

Using a short wavelength UV black light, the unprotected Z302 exhibited a pale green

fluorescence while the overcoated samples fluoresced bright yellow. Initial spectral analysis of

the Z302 samples show that the control samples naturally fluoresce; however, the LDEF

exposure caused a wavelength shift and an increase in the magnitude of the fluorescence. See

Section 5.4 for results of fluorescence studies.

5.2 Optical Properties Trend Analysis

The increasing duration of space missions requires significant extrapolation of flight and

ground simulation data to provide predictions of end-of-life properties for thermal control

surfaces. This is particularly true for NASA programs such as the International Space Station,

AXAF and the HST. The in-space optical measurements performed by the TCSE offer the

unique opportunity to perform a trend analysis on the performance of materials in the space

environment. Trend analysis of flight data provides the potential to develop an empirical

prediction model for some of the thermal control surfaces. For material research, trend analysis

of the TCSE flight data can provide insight into the damage mechanisms of space exposure.

The trend analysis for the TCSE samples has been limited to those materials that were not

significantly eroded by the AO environment. The performance of several materials on the LDEF

mission was dominated by AO effects. This is particularly true for unprotected A276 and Tedlar

where the AO eroded away the surface layers faster than they were degraded by Solar UV. This

resulted in a fresh surface with unchanged or slightly improved optical properties. Trend

analyses have been performed on five materials:

• Z93 White Paint

• YB71 White Paint

• SI3G/LO White Paint

• A276 White Paint and Protective Overcoats

• Silver Teflon
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Figure 89. Post-flight Photograph of OI650 Overcoated Z302.

Figure 90. Post-flight Photograph of RTV670 Overcoated Z302.
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These analyses were performed on both detailed spectral reflectance data and derived

integrated solar absorptance (c%). This data includes both in-space and ground based pre-flight

and post-flight measurements. The solar absorptance data was analyzed using regression

analysis to develop an empirical lifetime model for these materials. Empirical prediction models

must be used with caution, however, because they can be misleading and have no scientific basis.

The TCSE data provides the only in-situ optical data providing time history of the optical

changes to materials exposed to the space environment. The analysis of this data provides the

first insight into these time dependent material changes and enables the development of a

prediction model. Other in-situ optical measurement experiments should be performed to verify

this data and to provide data on new and improved materials. Several standard regression

analyses were evaluated including polynomial, exponential, logarithmic and power. For

integrated 0% the power regression analysis proved a better fit of the experimental data. The

power regression line takes the form: c_s = e (a+b°tn0)).

While the analysis of solar absorptance data is of great benefit to spacecraft designers, it

is the analysis of the spectral data that provides the best insight into the different damage

mechanisms of the space environment on materials. For most materials, there are more than one

and potentially many competing mechanisms of damage due to the combined space environment.

In many cases different damage mechanisms exhibit effects in different spectral ranges. The

trend analysis of reflectance changes at different wavelengths will aid in separating different
mechanistic effects.

In the following discussions, the results of the trend analyses are presented for the five

selected materials. Data is shown for both integrated solar absorptance and spectral reflectance.

The format of the data presentation is described in the first section for Z93 White Paint.

5.2.1 Z93 White Paint

Figure 93 shows the performance of Z93 for the LDEF mission. Solar absorptance is

plotted versus exposure time. There appears to be at least two mechanisms that affected the Z93

solar absorptance during the LDEF mission. The first is a short term improvement (decrease) in

% typical of silicate coatings in thermal vacuum. This improvement is normally associated with

loss of water from the ceramic matrix. In ground simulation tests this process takes a much

shorter time than the TCSE flight data suggests. This slower loss of water may be due to the

cold temperature of the TCSE Z93 sample mounted on a thermally isolated calorimeter. The

temperature of the Z93 sample ranged from approximately -55°C to +6°C but remained well

below 0°C most of the time.

The short term improvement is dominant for the first year of exposure after which a long

term degradation mechanism becomes dominant. The results of the power regression analysis

for the short and long term effects are also shown on Figure 93. Figure 94 plots the long term

regression model for Z93 on a log scale allowing extrapolation out to 30 years. The regression

analysis projects a 30 year end-of-life value for Z93 of as = 0.185. This predicted value is

statistically a most likely value and not a worse case value.
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Figures 95 and 96 show the spectral reflectance data for Z-93. All spectral reflectance

data presented in this paper are plotted as normalized change in reflectance.

where:
Delta R/R = (p - Po)/Po

Po = initial reflectance (time=0)

p = reflectance at time t

Reflectance Changes at Selected Wavelengths
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Delta R/R

0.15 .

J ..... ..................... .......i.........
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Figure 95. Z93 Reflectance Changes at Selected Wavelengths.

Figure 95 plots normalized reflectance change versus exposure time for five selected

wavelengths while Figure 96 plots normalized reflectance change versus wavelength at four

different exposure times. These data show that the short term improvement in reflectance of Z93

(attributed to loss of water) is broad banded with the major changes occurring in the IR as

expected. It is somewhat surprising to also see this improvement at the shorter wavelengths.

The longer term degradation mechanism occurs mainly below 1000 nm. Even though the

changes are small, they are significant because the solar energy curve peaks in this spectral

range.
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5.2.2 YB71 White Paint

YB71 exhibited very similar changes as Z93 during the LDEF mission as shown in

Figure 97. The spectral reflectance changes for the first fifteen months are nearly identical for

both materials (see Figures 96 and 97). This is not surprising as both white coatings use the

same potassium silicate binder. What is surprising, however, is the greater degradation of

spectral reflectance (and solar absorptance) of the YB71 over Z93 for the remaining 54 months.

In ground simulation testing before the LDEF mission, YB71 was more stable than Z93.

5.2.3 S13G/LO White Paint

Figure 98 shows the solar absorptance changes for S13G/LO over the LDEF mission. As

with most of the TCSE active samples, there is an initial period in which the rate of change is

different than the subsequent changes. This indicates a different dominant damage mechanism

than later in the mission. The regression analysis provides a good fit if the initial data point is

ignored. The degradation model for S13G/LO is shown in Figure 99. Significant changes in

S13G/LO were expected, but actual changes were somewhat larger than expected. Figures 100

and 101 show the spectral reflectance changes for S13G/LO. The only significant changes

occurred below 1000 nm which resulted in the large changes in integrated solar absorptance.

5.2.4 A276 White Paint and Protective Overcoats

Chemglaze A276 is a widely used white coating that was known to erode in AO even

before the LDEF mission. To evaluate their effectiveness, RTV670 and OI650 clear protective

overcoats were applied to A276. Figures 102-104 show the performance of the three coating

systems during the LDEF exposure. Figure 104 shows that without a protective overcoating,

A276 had relatively small changes for the first sixteen months. Exposure to the very large AO

fluence during the subsequent four years eroded the damaged surface layer exposing a surface

with even better reflectance than the pre-flight surface. The A276 with the protective

overcoatings degraded significantly. Figure 105 compares post-flight reflectance changes for the

three A276 surfaces and an LDEF trailing edge A276 sample from Dr. Palmer Peters and Dr.

John Gregory's AO114 experiment. The AO114 trailing edge sample saw only a small amount

of AO and was significantly damaged by solar UV exposure. Some of the damage to the TCSE

overcoated samples may be in the overcoat itself. However, as shown in Figure 105, the damage

spectra of the UV degraded AO114 A276 samples is very similar to the TCSE overcoated

samples in both magnitude and spectral range.

5.2.5 Silver Teflon

Samples of both 5 mil and 2 mil thick silver Teflon were flown on the TCSE active

sample array. The 5 mil material was optically very stable for the LDEF mission. AO exposure

resulted in the loss of approximately 1 mil of Teflon and a textured diffuse surface. Figure 106

shows the variation of solar absorptance versus exposure time for 5 mil silver Teflon. As with

several other materials, an improvement (decrease) in solar absorptance was measured early in
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the mission. This was followed by a small degradation for the remainder of the mission. Power

regression analysis provides a fair fit to this long term degradation. Figure 107 extends this

degradation model and predicts an excellent 30 year solar absorptance of 0.1.

Figure 108 shows the spectral reflectance changes over the mission duration. A slight

increase in the 1700 to 2500 nm IR range early in the mission is offset by the long term

degradation below 1400 nm.

The 2 mil silver Teflon active sample was the same material that was applied to the

TCSE front cover. This material suffered from an internal contamination and optical degradation

that has been previously discussed in Section 5.2.6. Figure 109 shows the spectral reflectance

changes of the 2 mil silver Teflon. The data up to 15 months is nearly identical to the 5 mil

material. The degradation during the subsequent four years indicates that the internal

contamination required several years to become significant.

5.2.6 Trend Analysis Summary

The TCSE in-space spectral reflectance measurements and analysis of this data

demonstrate the benefit of active type materials space experiments. This time dependent data

provides insight into how thermal control surfaces behave in the space environment and enables

the development of lifetime prediction models.

The results of this effort are based on one space mission, a limited measurement data set,

and, in most cases, only one sample of a material. While the quality of the data is excellent, the

lifetime prediction models should be used with extreme caution. The extrapolated data is

statistically a most likely value and not a worst case value.

The study of the trends in the TCSE spectral reflectance data provides a unique view of

how materials degrade in the space environment. This data and the post-flight surface analysis

demonstrate the very complex nature of the behavior of materials operating in this environment.

Many issues remain in understanding the effects of the space environment on materials.

Additional flight opportunities are needed for active optical experiments measuring these effects.

To address this need, the In-Space Technical Experiments Program (IN-STEP) Optical Properties

Monitor (OPM) has been developed and its initial mission is on the Russian Mir Space Station.

The OPM is an in-space optical laboratory for the in-situ study of materials, lzq

5.3 In-Depth Material Analyses

An in-depth analysis of six of the TCSE test materials was performed. The coatings used

for this study are Z93, S13G/LO, A276, A276/OI650, and A276/RTV560. The three basic

materials (Z93, S13G/LO, and A276) were chosen because of their wide use in the spacecraft

materials community with the exception of the silicone overcoated A276 samples. The two

A276 with silicone overcoats were included in this effort because, at the time of their selection,

they were the best candidates for studying the protective coating effects of silicone polymers on

AO susceptible materials such as polyurethane (A276 binder).
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A variety of techniques were used to evaluate the effects of the LDEF LEO exposure on

these samples including SEM, BDRF, XPS, DSC, and IR attenuated total reflectance (ATR)

spectroscopy techniques. Utilization of these techniques are unique for thick film coatings and

even more so for material samples that have spent almost six years in space exposed to the LEO

environment.

5.3.1 Scanning Electron Microscopy (SEM)

SEM micrographs were taken of selected passive exposure samples and the control

samples. Care was taken to minimize microscope energies to no more than two kilovolts. This

was done to minimize any potential damage that the electron beam could cause to polymer based

coatings.

5.3.1.1 Z93 White Paint

Evaluation of exposed and control samples of this coating demonstrate little change of the

surface. The primary change, although minor, is the increased frequency of fractures throughout

the surface (see Figures 110 [controlled sample] and 111 [exposed sample]) at magnification of

300X. Study of the photographs or the displayed images does not provide sufficient detail to

determine if these cracks propagate to the substrate. However, this is not likely from the

observations and experience with this coating. A far more subtle effect is a shrinkage or

increased surface texture of the potassium silicate binder on individual particles and

agglomerates as shown in Figures 112 and 113 at magnification of 6000X. One must study the

photographs closely to detect this difference.

5.3.1.2 S13G/LO White Paint

The primary difference of this coating is the formation of numerous fractures on the

exposed samples surface, none of which were found on the control sample (see Figures 114 and

115). This coating is an elastomer and will typically flex, bend, expand or contract as needed. It

is thought that the surface layer of this coating has been converted into a glass resulting in

shrinkage, induces stress and crack formation. Further evidence is presented in the XPS section

which supports this hypothesis. Higher SEM magnification (3000X) of this coating showed no

further significant changes (Figures 116 and 117).

5.3.1.3 A276 White Paint

This coating changed significantly from exposure to the LEO environment. The control

sample has a very smooth flat appearance as shown in Figure 118. Figure 119 shows the LEO

exposed surface has become very textured with individual particles or agglomerates detectable

indicating removal of the polyurethane binder. This is in sharp contrast to the silicone

overcoated A276 which remained generally smooth with some cracking.
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Figure 110. SEM Photograph (300X) of Z93 Control Sample.

Figure 111. SEM Photograph (300X) of TCSE Z93 Sample Exposed for 5.8 Years.
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Figure 112. SEM Photograph (6000X) of Z93 Control Sample.

Figure 113. SEM Photograph (6000X) of the TCSE Z93 Sample Exposed for 5.8 Years.
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Figure 114. SEM Photograph (300X) of S13G/LO Control Sample.

Figure 115. SEM Photograph (300X) ofTCSE S13G/LO Sample Exposed for 5.8 Years.

97 fl 0.doc-09/12/97 105 AZ Report No. 90-1 - 108-054



Figure 116. SEM Photograph (3000X) of S 13G/LO Control Sample.

Figure 117. SEM Photograph (3000X) of TCSE S13G/LO Sample Exposed for 5.8 Years.
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Figure 118. SEM Photograph (300X) of A276 Control Sample.

Figure 119. SEM Photograph (300X) of TCSE A276 Sample Exposed for 5.8 Years.

97f10a.doc-09/12197 107 AZ Report No. 90-1-108-054



5.3.1.4 OI650/A276 Overcoated White Paint

Evaluation of this coating system by SEM for the control and exposed sample showed

only minor surface changes as a result of exposure to the LEO environment. These minor

changes are exhibited by increased frequency of surface cracking shown in Figures 120

(controlled sample) and 121 (exposed sample). However, surface color for this coating did

change from white to brown as a result of LEO exposure.

5.3.2 IR Spectroscopy

IR reflectance (4000-600 cm-1) evaluation was done on Z93, S13GFLO, and A276 TSCE

coatings. Measurements were done using a Nicolet 750 spectrometer with a IR microscope fitted

with an attenuated total reflectance system. Z93 changed very little as shown in Figure 122.

There are only minor changes in the magnitude of the various absorption bands and a slight

shifting of these bands towards shorter wavelengths. S13G/LO and A276 (Figures 123 and 124,

respectively) indicate a loss or conversion of organic binder material. This is indicated by the

general reduction in absorption bands throughout the spectrum. A276 also shows a broadening

and magnitude increase of the band located at about 3350 cm-1. This is likely water absorption
from the increased surface morphology caused by AO interaction with A276 binder.

5.3.3 Bi-Directional Reflectance Function (BDRF)

Bi-directional reflectance evaluation was performed on Z93, S13G/LO, A276, and

A276/OI650 white thermal control coatings. Measurements were done using a TMA

scatterometer with five detectors set at the following angles: 5, 30, 60, 75, and 90 degrees. Z93

changed a small amount as shown in Figure 125. There is a slight decrease in surface roughness

shown in Figure 125 by the greater slope of the curve for the exposed sample compared to the

control sample. This interpretation is supported by SEM images. Of the four tested coatings,

S13G/LO was affected the least from LEO exposure according to BDRF measurements shown in

Figure 126. Again, this is corroborated through SEM photographs showing only very minor

changes of the surface of S13G/LO. A276 BDRF data (Figure 127) indicate a substantial change

in surface morphology. This is likely from AO erosion of organic binder material leaving a layer

of pigment particles behind. This is demonstrated by the severe change in BDRF slope from

high to near zero indicating conversion from a fairly specular surface to diffuse. OI650/A276

also shows a significant-clii_ge in slope simii_ir-to/k276 (Figure i28). However, SEM

photographs do not show the highly diffuse surface of A276,but only the formation of numerous

cracks in the silicone overcoat that have resulted in the detected BDRF changes.

5.3.4 X-Ray Photoelectron Spectroscopy (XPS)

Samples being analyzed with XPS were exp0sed to Me instrument' s vacuum chamber for

a period of 48 hours prior to actual measurements for conditioning purposes. Table 14

summarizes the results of the XPS measurements. Of interest is the detection of fluorine on the

exposed samples of Z93, A276, and 01650/A276 white thermal control coatings. Fluorine is

thought to be from the metallized Teflon used as TCSE's thermal control and radiator surface.
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Figure 120. SEM Photograph (300X') of OI650/A276 Control Sample.

Figure 121. SEM Photograph (300X) of TCSE OI650/A276 SampIe Exposed for 5.8 Years.
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Figure 122. ATR IR Reflectance Change of Z93 after 5.8 Years in LEO.
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Figure 123. ATR IR Reflectance Change of S13G/LO after 5.8 Years in LEO.
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Figure 124. ATR IR Reflectance Change ofA276 after 5.8 Years in LEO.
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Figure 125. Bi-directional Reflectance of TCSE Material Z93.
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Figure 126. Bi-directional Reflectance of TCSE Material S 13G/LO.
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Figure 128. Bi-directional Reflectance of TCSE Material OI650/A276.
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Table 14. XPS Elemental Atom Concentration of TCSE Samples.

MATERIAL

S 13G/LO Control

S 13G/LO Exposed

Z93 Control

Z93 Exposed
,,,,,,

OI650/A276

Control

OI650/A276

Exposed

A276 Control

A276 Exposed

ELEMENT

C I O I Si I K IZnITilAIISnl NIP [Nal CI I
ATOMIC CONCENTRATION

50.57 28.30 19.98 0.53 1.14 0.06

27.92 44.90 26.20 0.53 0.06 0.27 0.13

33.96 39.55 12.65 8.15 3.22 2.48

30.02 37.78 4.89 15.63 1.76 0.45

38.48 40.48 21.04

F

9.46

23.69 52.12 20.85 0.54 0.54 1.17 0.67 0.43

77.41 17.91 0.71 0.02 0.26 3.67 0.02

30.01 46.31 10.88 1.13 5.49 0.84 !.32 2.27 1.76

The general high abundance of carbon for all samples is expected for surfaces exposed to

normal room air. Using Z93 as an inorganic reference material, it can be determined from

studying this table that an atom concentration of about 30 is nominal for surfaces exposed to

room air. Hence, the atomic concentration of 27.92, 23.69, and 30.01 for S13G/LO,

OI650/A276, and A276, respectively, indicates the lack of carbon containing polymers remaining

in the surface layers of these coatings. Values for Z93 may be slightly high because of this

coating's propensity to react with air to form potassium carbonate as depicted in the following
reaction.

K20:SiO2 + CO2 --> K2CO3 + SiO2

This reaction explains the slightly higher atomic concentration of carbon for Z93 than the

exposed S 13G/LO and OI650 coatings which produce a glass surface layer upon exposure to AO.

Polymers based on or containing carbon readily react with AO resulting in consumption of most,

if not all, available carbon depending on duration of exposure.

All of the coatings, except Z93, had measurable increases in oxygen atomic

concentration. For S 13G/LO and OI650/A276 this is caused by the LEO environment, primarily

AO, reacting with carbon containing groups attached to the [O-Si-O Si-O], polymer backbone.

In both cases, this oxidation reaction causes the increased detection of oxygen. On the exposed

sample of A276, oxidation of the polyurethane binder also takes place resulting in the increased

detection of oxygen. From SEM work, it is known that the exposed A276 surface is littered with

TiO2 pigment particles. In addition, it is likely that SiO2 is also present on the surface since this

material is widely used by the paint industry as an extender for a primary pigment or is used for

viscosity control of the fluid paint. If this is an accurate assertion, it helps to explain the

increased concentration of detected silicon and oxygen for the exposed sample of this coating.

S13G/LO, whose surfaces were originally composed of a dimethyl silicone polymer, changed to

a glass through removal of the dimethyl groups. Removal of these groups caused the detected

higher atomic concentration for silicon. Exposed OI650/A276 differed from the S13G/LO even
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though it also has a silicone surface (OI650). This is caused by the glass-like OI650 resin.

OI650 has fewer methyl groups available for reaction with AO and, therefore, little change in

silicon atomic concentration is measured.

Of all the samples, Z93 is the most intriguing from the standpoint of changes in

concentration of silicon and oxygen. Of all the coatings flown on TCSE, Z93 was one of the

most stable optically. However, through XPS, a noteworthy change in silicon and oxygen atom

concentration has taken place. Study of higher magnification SEM images does provide some

possible insight into this change. These images show a very subtle change in the coating that

appears as shrinkage or loss of material. From XPS changes in silicon, oxygen, potassium, and

SEM data, Z93 seems to be losing silicon and oxygen atoms. The mechanism for this occurrence

is not understood. Other changes in atomic concentration for these coatings is likely due to

handling or contamination of some form.

5.3.5 Differential Scanning Calorimeter (DSC) Measurements

Calorimetric measurements were performed on the TCSE control and passive flight

samples using a dual sample DSC. These measurements were conducted to detect changes in the

thermal behavior of selected TCSE flight exposed and ground control samples. Calorimetric

samples were prepared via removal of a thin layer (_ 1 mil) of each flight and control sample

surface. Figure 129 illustrates the fashion in which this process was conducted. Samples were

removed from the edge of the flight and control specimens to leave the center portion untouched

for further analysis. Masses were recorded before and after the sample was sealed in the DSC

test pan. Each sample run was then conducted using the dual sample capability of the

instrument. Figure 130 shows the layout of the three sample compartments and the placement of

the test samples. The top compartment contained an empty reference pan. This provided the

reference for the differential measurements. The lower left compartment housed the flight

sample while the lower right housed the laboratory control (unexposed) sample. All test runs

were conducted using the same method. The equilibration temperature of-150°C was selected

due to the low Tg (glass transition temperature) of most of the samples. This was achieved using

a cooling column with LN 2 as the cooling medium.

Coating

Detail

Substrate _ TCSE Sample

Figure 129. DSC Sample Removal.
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(Empty)

©
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Sample A Sample B

(Flight Sample) (Control Sample)

Figure 130. Calorimeter Sample Configuration.

Results from the investigations shown in Figures 131-134 indicate that changes in the

sample were detectable with the DSC system and could be quantitatively recorded. This was

performed by utilizing the data analysis software supplied with the instrument. Individual peaks

are located by their onset and maximum values and then integrated with respect to a baseline

curve. This is done to arrive at the total energy content of a particular transition or

thermodynamic change. The actual changes in the materials are still not fully understood and,

therefore, cannot be directly correlated to the changes observed with the DSC system. Further

research and analysis into these phenomenon is necessary to determine these relationships. This

investigation did, however, accomplish its goal to determine if these changes could be detected

with a DSC system. Also proven is that this method of evaluating changes induced by space

environmental exposure can be a valuable tool towards investigating these effects on thick film

thermal control coatings.

5.4 Fluorescence Measurements

When the TCSE experiment was inspected upon its return to the laboratory, one

technique employed was the use of an UV source ("black light") to look for fluorescing

contaminants such as cloth fibers and oils or greases. It was obvious, when compared with

similar unexposed materials and with sample controls, that changes had occurred in the visible

fluorescent brightness of the thermal control samples and of the TCSE experiment hardware

itself (Figure 135). The fluorescence was so striking in some cases, such as the black urethane

based coating Z302, that it was decided to try to obtain quantitative measurements of the

changes. The goals were to try to characterize the various types of coatings in terms of their

fluorescent properties and to possibly learn if the observed changes could further elucidate

effects of exposure to the space environment.
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White Light

Figure 1351 Post-Flight Fluorescence of Thermal Control Coatings Comparison of Samples

Under White and Ultraviolet Light.
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5.4.1 Fluorescence Measurement Description

Absolute fluorescence measurements were made using the following experiment set up

and calibration procedure. A Beckman DK-2 Spectrophotometer using its 1P28 photomultiplier

tube mounted in the spectroradiometric position was used to detect any fluorescent behavior

from the samples. Fluorescence was induced by irradiating the sample, mounted at 45 ° to the

optical beam, in line with the sample entrance port of the spectrophotometer (Figure 136). For

these measurements, a one kw mercury-xenon lamp with a Schoeffel monochromator was used.

It was found that use of the strong peak of 280 nm was convenient. Overall, the illuminating

band was from 265 to 290 nm with the monochromator slits set at 1.5 mm. Measurements of

output with this set up using a Molectron radiometer indicated an irradiance level of 0.5 mw/cm 2

at the sample (equivalent to about 1 sun in this band).

SOURCE MONOCHROMATER

WAVELENGTH BAND Ski"
FOR 265 thru 290 nm

DK-2A
SPECTRORADIOMETER

MODE

INCIDENT FLUX 0.5 mW/cm2

TEST SAMPLE

Figure 136. Schematic of Fluorescence Measurement.

To provide a calibration of the DK-2 spectrophotometer, a one kw quartz-halogen

tungsten Standard of Total and Spectral Irradiance (Model 200H) supplied by Optronics

Laboratories (traceable to NIST), was used in place of the Hg-Xe source (Figure 137). A 99%

diffuse reflectance standard (from Labsphere, Inc. SRS-99-010-6561A) was placed at the sample

location. Since this non-fluorescing standard provided essentially Lambertian reflectance of a

known irradiance level, a calibration of the DK-2 as a system was made over its sensitive

wavelengths (-300-650 nm). For ZnO pigmented coatings, it was also determined that the

fluorescent energy is proportional to irradiance, over a factor of 5.5, and that there was no

detectable change in fluorescent wavelength peaks for irradiance bands of 265-290 nm, 295-320

nm, and 310-340 nm.
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MODE

CALIBRATED INPUT IRRADIANCE

1KW NBS SPECTRAL

IRRADIANCE STANDARD

INCIDENT FLUX

CALIBRATIONSAMPLE

99% DIFFUSEREFLECTANCE

STANDARD(NON-FLUORESCENCE)

Figure 137. Schematic of Calibration Setup for Fluorescence Measurements.

5.4.2 Fluorescence Analysis

Three types of thermal control coating samples were found to exhibit rather strong

fluorescence. These were: 1) coatings that used ZnO as a pigment, 2) coatings that used

urethane as a binder, and 3) coatings that used urethane as a binder and had a thin silicone

overcoat.

Other TCSE thermal control coatings samples that were measured and found not to have

significant fluorescence were Z306 (a urethane based black paint), YB71 (silicate), and Dlll

(silicate). A white Tedlar flight sample did not fluoresce, while a laboratory specimen exhibited

very weak fluorescence pe_s at about 420-440 nm. _Also measured were silver Teflon samples

cut from the front cover of TCSE. Similar materials that were not exposed to the space

environment were used for comparison.

Figures 138 and 139 allows comparison of the flight and control fluorescent spectra of

Z302 and A276 urethane based coatingsl respectively. The similarity in the control spectra from

400-575_nm is likely attributable to the fluores_cence characteristics of the polyurethane binder.

However, the spectra for the flight Z302 sample exposed for 19.2 months is somewhat unique in

that the magnitude and band width of _e-fluoreseence is less than most of the other polyurethane

samples. This may bedue to the erosion of the sample by AO and/or as a natural frequency shift

of the material caused by exposure to the LEO environment. Fluorescence data is not available

for Z302 exposed in the RAM direction for 5.8 years since it was completely eroded.
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Figure 139. Fluorescence Spectra of A276.

97fl 0¢.doc-09/12/97 123 AZ Report No. 90- I -108-054



The similarities shown in the spectra of Z302 and A276 with a 01650 silicone overcoat is

even more striking (Figures 140 and 141). These figures tend to illustrate that the polyurethane

samples, both Z302 and A276, overcoated with 01650 and then exposed to the flight

environment fluoresce very similar to one another. In addition, the similarities between the

overcoated and neat A276 polyurethane coatings fluorescence spectra are shown in Figures 139

and 141. The 01650 overcoated control samples have enhanced UV fluorescence attributable to

the overcoat itself. This effect is not present in the flight exposed samples and, in fact, there is

no fluorescence evidence that the overcoat is still present. The similarity in exposed A276 (neat

and overcoated) spectra may be due to extensive crosslinking of the silane polymer on the

surface. The crosslinking of the polymer modified the electronic and molecular structure and

may have more effectively bonded the available electrons. The result is the electrons could no

longer be excited to a higher, unstable energy level when exposed to UV irradiation and therefore

the overcoat no longer fluoresced, but the fluorescence of the A276 was transmitted through the

overcoat. Further evidence that crosslinking of the silane overcoat is a likely explanation for this

phenomenon is that visual inspection of the surface of the overcoated samples shows significant

cracking. This can be the result of the hardening and embrittlement of the polymer from

increasing crosslinking based on optical properties measurements, t221The overcoat has served its

purpose to protect the Z302 from eroding.

The ZnO pigmented Z93 and S13G/LO coatings show remarkably similar fluorescence

spectra for the control samples as well as those that were protected by an aluminum cover during

flight (Figures 142-147). The spectra from the exposed samples generally appear similar, with

unexplained weaker fluorescence on the TCSE P7, 5.8 years exposure S13G/LO sample (Figure

143) and on AOl14 Wake mounted S13GLO sample (Figure 147). Especially, the Wake

mounted sample shows a weak fluorescence and the absence of the 380 mm peak.

From Figure 142, Z93 spectra for 1.6 and 5.8 years exposure are shown, providing

evidence that the change occurring is not linear with time and that the 380 and 520 nm

fluorescence change rates may be different.

The slight fluorescent glow noticed on the TCSE front cover was measured and is shown

in Figure 148. Measurements on non-flight Teflon failed to produce any detectable fluorescence.

However, measurements of the 3M 966 high temperature acrylic adhesive used to apply the

silver Teflon produced fluorescence that, like the silicone overcoat, extended into the UV (Figure

149). Upon exposure to strong UV for various periods of time, the spectra shifted toward the

visible region during the first short exposure and did not continue to shift significantly, but

fluorescence intensity continued to grow in this band.

5.4.3 Fluorescence Summary

It is clear that the fluorescence of the urethane based paints is produced by the urethane

binder itself and not the various pigments. Hill I23Jhas correlated laser-induced fluorescence (LIF)

with tensile strength of several polyurethane based materials. He also found LIF changes in

LDEF Tray Clamps samples of A276 and Z306 supplied to him by Boeing. t241 It is not apparent

if the specific LIF changes detected in the thermal control coatings is the same as
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polyurethane/tensile strength LIF changes. Hill attributes the latter to "complex molecular and

intermolecular relationships (such as cross-linking, scission, oxidation) that are altered during

degradation": 231 Silicone overcoated urethane paints, although severely cracked and sometimes

peeling seem to provide protection from AO erosion. From the measurements, not only does the

initial enhanced UV fluorescence disappear after space exposure, but the resulting spectra closely

matches that of the urethane paints without the silicone. If polyurethanes are to continue to be

used in the space environment, it is necessary to better understand the degradation mechanisms

involved. Fluorescence may prove to be a useful tool in this understanding as well as in the

evaluation of the condition of polyurethane based materials.

The coatings containing ZnO (S13G/LO and Z93) exhibited fluorescent spectra

apparently dominated by ZnO. Nicoll t251showed that the UV (-380 nm) band wavelength peak

shifts with wavelength toward the visible at about 0.12 nm/°C (Figure 150). This shift seems to

correlate with the fundamental absorption edge shift. There is no shift in the visible band, but its

intensity decreases with temperature. Kroeger I26jattributes this visible fluorescence (-520 nm) in

ZnO to the presence of oxygen vacancies, that is, a non-stoichiometric zinc rich condition. It is

tempting to attribute the reduction seen in this band for the LDEF S13G/LO and Z93 to the

reaction of ZnO with AO. Streed t:7J shows, in ground chamber tests, that fluorescence reduction

in this band may be caused by UV and/or proton irradiation. Perhaps, in space, the reaction is

indeed proceeding toward a stoichiometric mixture aided by the presence of zinc and oxygen in

the lattice reacting as a result of exposure to the various high-energy environments.

Fluorescence of silver Teflon (TCSE front cover) is attributed to the micro-cracking that

occurred during installation. The matching spectra of the UV irradiated adhesive used to apply

the silver Teflon leaves little doubt of the source of the flight material fluorescence and also is an

example of fluorescence as an additional analytical tool available to materials researchers and

technologists.

5.5 Whisker/Cone Growth

During SEM investigations of the front thermal control cover, an interesting "growth"

was discovered on its exposed Teflon surface. A field emission SEM was being used to

investigate the AO damage to the silver Teflon coating as a function of AO incident angle. This

"growth" has lead to a great deal of interest within the LDEF material investigator community

and by various news media sources [28'29'30"31] of which some publications were of a rather dubious

accuracy and intent. I3z33'34]

Figures 151 and 152 show the location on the front thermal control cover where the

whisker/cone growth was found. The arrow in Figure 151 points at a gap between two of the

front thermal control covers. Within this gap, a dark contamination deposit is apparent on the

Teflon surface in Figure 152 on which the growth was located. This dark deposit, in contrast to

the brownish streaks, was found to be a surface contamination deposit.
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Figure 150. Fluorescence ZnO.

All regions on the front cover having overlaps had a very narrow contamination deposit

within their gaps. This deposit was -3 mm in width by -50 mm in length• Other growth areas

may have existed on the front panel, but this was the only one found. In fact, a front cover

sample section immediately below the growth region was provided to Dr. Stuckey/The

Aerospace Corp. for analysis, but no growth was found on the contamination deposit on this

sample.
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Figure 151. Front Surface of S0069 TCSE Instrument in the Laboratory after Retrieval Showing

the Brown Streaks and the Gap (Vent) Between the Front Covers.

Figure 152. Front Thermal Control Cover Removed from the S0069 Instrument Showing

Covered Regions, Exposed Regions, and location of Whisker/Cone "Grov,_h".
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The growth region is oriented parallel to the front thermal panel gap shown in Figure 151.

SEM images in Figure 153 show that the growth is well ordered, oriented, directional, localized

and varies in whisker concentration across the growth region. The growth surface shows no

indication of surface facets. There are several stages of growth apparent in the SEM pictures.

The base of the growth is a thin brittle dark layer on the Teflon which can be easily removed. In

places, the base layer has separated from the Teflon substrate. Individual whisker/cones are

translucent when viewed with a visible wavelength optical microscope.

There are two major growth orientations. One is normal to the surface aligned with the

LDEF major axis; the other is parallel to the surface facing inward on one side and outward on

the other side. The overall growth pattern appears to have some of the characteristics of a

dendritic type gr0vvth with-nucleation occurring along defect sites. The growth dimensions are

on the order of 7 microns height and a fraction of a micron in diameter. A few growth units are

larger, many are smaller. Individual growth units have a hollow tube down their center and have

an inverted cone morphology. The growth surface does not appear eroded by the space

environment, including AO exposure.

5.5.1 Biological Viability Testing Results

Analysis performed to date has indicated that the growth is not a standard fungus or mold

type growth or contamination that could have occurred on the ground after flight.

Biological testing results were negative in that the unknown growth material did not

respond to culturing on a nutrient agar. In addition, the acridine orange direct count epi

fluorescence tests, which stain DNA to determine if the growth material is biological, were also

negative. These tests were repeated for two different samples, one of which had not been

exposed to the SEM vacuum and electron beam irradiation. Results were negative in both cases.

5.5.2 Electron Microprobe Elemental Analysis

Elemental analysis was performed on three areas of sample T-51 using Electron

Dispersive X-ray Analysis (EDAX). The "interior area" was shielded from the exterior LDEF

environment. The "growth area" was located in a gap between the front panel covers (Figure

151) which formed a vent path from the experiment interior and was partly shielded from AO

and solar UV. The so called "no growth" area was exposed to the full space environment during

the LDEF mission. Results of these analyses are shown in Figures 154, 155, and 156.

EDAX data for the interior location defined as the "unexposed/covered no growth region"

on Figure 154a shows the presence of carbon (C), oxygen (O), fluorine (F), and silicon (Si).

Although sulfur (S) is identified on the scan, it is very weak and may be questionable.
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Figure 153. SEM Images of the Whisker/Cone Growth.
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Figure 154. EDAX Data for the Silver Teflon Surface of Sample T51.
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Figure 155. EDAX Data for the Whisker/Cone Growth on Sample T51.
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In comparison, the EDAX data for the "no growth" exposed region on Figure 154b shows

strong peaks for fluorine (F) and very weak peaks for silicon (Si) and no sulfur (S). A small hint

of carbon (C) can be seen on scan, although it is not labeled. The small silicon peak may be from

residual growth or contamination not obvious during the initial viewing of the SEM images.

This data is consistent with a Teflon surface eroded by AO.

EDAX data for the growth region was based on focusing the SEM beam on a grouping of

the inverted cone whiskers. EDAX scans for this region are shown in Figures 155a and 155b

from two different instruments. A very strong silicon (Si) peak is detected, along with sulfur (S),

oxygen (O), fluorine (F), and magnesium (Mg), when using the Hitachi S-4000. Notice that the

fluorine (F) is greatly reduced from the "no growth" regions and is probably background from

the Teflon substrate. This same sample was run in the Cambridge 250 Mark II, having a higher

energy analysis capability, in order to confirm the magnesium and sulfur peaks. Surprisingly, the

magnesium peak turned out to be arsenic (As). Both peaks for arsenic are present as shown in

Figure 120b. Therefore, the peak in Figure 155a identified as Mg is most likely As.

In order to determine if the fluorine peak in Figure 155a was from the growth or was

background scatter from the Teflon substrate, another series of EDAX scans were made,

carefully focusing on the thickest growth area. Results of these scans are shown in Figure 156a.

The fluorine (F) peak is now totally eliminated, proving that fluorine is not a typical component

of the growth and the previous fluorine peak was from background scatter. Silicon (Si) is still

the main peak and assumed to be the main component. Sulfur (S) shows as a clean peak,

indicating its presence. Oxygen (O) still shows, but is weak. Interestingly, carbon (C) now

shows up, but is also very weak. The arsenic (As) peak is also present, but is very weak.

Another set of scans were taken of the underside of the base material layer on which the

growth is located. This layer is the darker material located at the base of the inverted cones as

can be seen in Figure 153. On sample T51, some of the growth was disturbed while taking

samples for the biological tests, thereby exposing the underside of some of the base material.

Figure 156b is the result of a series of EDAX scans of this material. Most of the previously

identified elements remain at the same ratio, except that the sulfur (S) peak is greatly reduced and

the fluorine (F) peak now returns. This data indicates that some fluorine (F) is incorporated in

the base material, but is not incorporated in the whisker/cones. Also, it appears that sulfur was

principally incorporated into the whisker/cone growt h during the growth process and not from
the base material.

5.5.3 FTIR; Total Attenuated Microprobe Analysis

IR analysis of this phenomenon has been very complicated because of the complex

chemistry across the sample surface and the very small size of the dendritic growth. The

problem of size has been alleviated through the use of an IR microprobe system, but the complex

chemistry across the sample still remains. For the purposes of this analysis, the scope will be

limited to the Teflon substrate and the whisker/cone growth material.
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Molecular microanalysis utilizing a scanning IR microprobe microscope was performed

by Nicolet Instrument Corporation in Stamford, Connecticut. Figure 157 shows the IR spectra

for Teflon flight control, Teflon flight sample exposed with no growth, and the whisker/cone

growth (labeled dendritic growth). Teflon's characteristic absorption bands can be seen for both

flight and control samples. The IR spectra for the whisker/cone growth show almost no

structure. The large absorption band at 1057 cm-1 indicates a strong presence of Si-O-Si. The

small absorption bands at 3601, 3628, 3705, and 3732 cm-1 indicate a weak presence of Si-OH.

This data indicates that the whisker/cone growth is primarily a SiO x glass type material.
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Figure 157. FTIR, Total Attenuated Microprobe Analysis Data for Sample T51.

In addition to the IR spectra, contact with the probe crystal during surface probing

indicates that the whisker/cones are hard and brittle in comparison to the surrounding fluoro-

carbon polymer. Again, this is consistent with a glassy or silicate type material.

5.5.4 Contamination Source: Sulfur

During post-flight investigation when the S0069 cover was removed, very odiferous

fumes were detected. Gas samples were taken using organic (activate charcoal) vapor monitors
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located inside the S0069 TCSE instrument with the shipping cover in place. Three monitors

were located inside the instrument and one control was placed outside. Analysis identified the

gas as dimethyldisulfide. Batteries were then removed and double bagged. Gas samples were

taken from the bag using a vacuum bottle technique and analyzed at MSFC. As before, the gas

was identified as dimethyldisulfide.

Figure 158 is a mosaic of photographs showing the returned flight batteries in the S0069

experiment tray (four batteries were used; one is hidden under the carousel). One of the batteries

is shown with and without its lid in place. Individual cells are potted in the battery case, as can

be seen in Figure 158. For these batteries it was found through investigations at MSFC "° that

after approximately three years (even in cold storage) the individual nickel cell safety pressure

release would rupture. Figure 158 shows an individual cell with the pressure release ruptured.

Dimethyldisulflde gas is vented by these cells when they rupture. In conjunction with the cell

rupture, the battery case seal leaked when the o-rings (ethylene propylene) failed from

compression set. Figure 158 clearly shows the magnitude of the compression set. A cross

section of the flight o-ring compared to an unused o-ring shows that the flight o-ring has taken

the shape of its groove indicating 100% compression set. The dimethyldisulfide gas vented from

the batteries is the most likely source of the sulfur detected in the growth.

5.5.5 Contamination Source: Silicon/Silicone/Silicate

Silicone contamination has been identified at several locations on the LDEF. [35'36'371

Although no principal source of silicone has been identified internal to the S0069 instrument, it

does appear from the data that a silicone source existed. Silicone under exposure to AO converts

to a silicate. I381

The possibility that the silicone source was external to the S0069 experiment has to be

considered. Sources have been identified both internal to the LDEF and from the Shuttle. [39! The

S0069 experiment did not have a direct line-of-sight to these sources and at orbital pressures the

mean free path for molecular collisions is several kilometers, which would make it unlikely that

the localized thick (several microns) silicone deposits found could have formed from returned

flux. In addition, there appears to have been a flow of contamination from the interior of the

S0069 experiment to the exterior, if the internal contamination deposits were from external

sources, then the molecules would have to enter through vents and gaps in the front thermal

panels normal to the RAM direction.

Rantanen I4°_ has performed calculations using the Integrated Spacecraft Environments

Model (ISEM) which indicates potentially significant backscatter of outgassing contamination

from the LDEF, back onto its RAM facing side. Further analysis is required to resolve this issue,

but it may be that the silicone contamination layers originated from sources both internal and

external to the S0069 experiment.

'" Private communication with M. Martin/EBl 1 and M. Mendrek/EH24 MSFC.
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Figure 158. S0069 Lithium Monofluorographite Batteries and Leakage of Dimethyldisulfide
Gas.

5.5.6 Contamination Source: Oxygen/Carbon/Fluorine/Arsenic

The principal source of oxygen is presumed to be from orbital AO. Fluorine identified in

the growth base material could originate from the Teflon eroded by AO. Carbon is reasonably

plentiful, located both in the Teflon and from practically all non-metallic materials used in the
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TCSE instrument. Thermal vacuum bakeout of the S0069 instrument prior to flight should have

reduced hydrocarbon sources to very low levels, consistent with ASTM E595. f411 The potential

source of Arsenic has not been identified.

5.5.7 Discussion

Dr. R. Warner, _ University of Minnesota, suggested that the growth may be similar to

that reported by his colleague, Dr. G.K. Wehner. In Wehner's 1985 survey paper, E421he discusses

the conditions for cone formation during whisker growth by ion bombardment of metal surfaces.

One of the earliest reported observations of cone formations is by Fuenterschulze and

Tollmien t431in their 1942 paper where they reported formation of cone forests on cathodes.

There are several growth characteristics reported by Wehner that are necessary for

whisker and cone formations to occur. Most of the experiments reported were performed in a

low energy ion sputtering high vacuum environment. Ion energies less than 500 ev were capable

of achieving whisker growth with dissimilar metals. When the ion energies neared the sputtering

threshold, whisker growth was observed. Whisker growth occurs when dissimilar metals are

physically close (seed and substrate). Redeposition of sputtered materials results in unique

formations of long thin and short thick cones. Inverted cones can also be formed. Whisker/cone

orientation is not related to ion impact direction at low ion energies.

For the LDEF growth, the sputtering source was the orbital AO which, being neutral, is

capable of "sputtering" or erosion of materials at much less energy than the sputtering threshold,

although the rates are very slow. I44'45J AO impacts the RAM face of the LDEF (Figure 15) at -8

Km/sec or with a kinetic energy of-5 ev. Wehner found that for metals, whisker growth

occurred at low energies only when surface temperatures were elevated. Surface temperatures on

the front cover were measured to be below ambient during the first 18 months and thermal model

predictions indicated low temperatures throughout the mission.

The major difference between these ground experiments and the flight growth is that

metals were used in the studies reported by Wehner, while the growth found on the TCSE

experiment is non-metallic and initially polymeric which tends to undergo conversion at low

temperatures. As a consequence, cones reported by Wehner were mostly faceted as one would

expect, while the TCSE cones were not faceted. Interestingly, both hollow and inverted cone

formations were reported, but no inverted hollow cones were reported by Wehner.

Taking into account all the growth conditions between flight and ground experiments

makes the growth mechanism less likely to be the true "ion sputtering" related phenomena as

reported by Wehner, but a very similar low energy neutral AO related erosion phenomena.

anPrivate communication with Dr. R. Warner in October 1992.
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5.5.8 Conclusions: Proposed Growth Scenario

After LDEF orbital insertion, exposure to AO initiates surface erosion of the Teflon

surface on the front thermal control cover. Since the LDEF was inserted in a high orbit and the

solar cycle was in a low period, the AO flux was also low. Therefore, the erosion rate was low.

At the vent/gap interface where growth occurred, the Teflon surface erosion was in the form of

roughly parallel ridges versus the normal peak and valley hill type surface texture found in the

exposed areas. In time, outgassed molecules of silicone and other contaminants reached this

narrow gap between the front thermal covers, which provided a vent, resulting in deposition of

thin layers of contamination. Solar UV photons incident on the Teflon interacted with the thin

silicone contamination layer to form longer chain, lower vapor pressure, silicone materials. This

photodeposition process continued, resulting in a thick, brown varnish type layer. Away from

the gap, the silicone contamination flux was dispersed to such low levels that the AO erosion of

Teflon dominated and no silicone buildup could be sustained.

As the AO level increased, resulting from the LDEF orbital decay and solar cycle heading

towards a high period, the silicone was transformed to a silicate, t36'381 At about 3 years into the

mission, the battery cells ruptured, venting a continuous source of dimethyldisulfide gas. At this

period in time, all growth elements existed. Figure 159 is a schematic of the growth
environmental conditions and associated hardware orientation.

ALUMINUM COVER WffH

CONTAMINATION

,DIMETHYLDISULFIDE

,SILICONES

,HYDROCARBONS
f

ALUMINUM FRONT COVER GROWTH LAYER

Figure 159. Schematic of Space Environmental Growth Conditions for the Whisker/Cone
Growth.

Initially, hollow whiskers are formed which slowly form inverted cones as growth

progresses. Growth is driven by redeposition of silicate contamination by AO erosion or

"sputtering". Simultaneously, dimethyldisulfide outgassing molecules react with AO freeing
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sulfur, possibly in the form of a sulfate (SO3) which is then incorporated into the whisker/cone

growth. Sulfate has a solubility in silica of <0.6%; I461 therefore, the sulfur concentration should

be low, as was found from the EDAX data.

The proposed scenario fits the existing data and knowledge of events. As other

observations of similar growth are reported and analyzed# 71a better understanding of the growth

process can be developed. With a better understanding of this intriguing whisker/cone growth

phenomena, intentional growth can be performed, thereby providing a means to process material

on a microscale with unique surface morphologies and physical characteristics.

6.0 DATA AND FLIGHT HARDWARE ARCHIVAL

To preserve the TCSE data and flight hardware, archival and storage procedures have

been carried out. This is in addition to the many papers that were published and presented (see

Appendix A, TCSE Bibliography) to distribute the TCSE data to the aerospace community.

All TCSE flight hardware, except for the batteries, flight samples, and the front cover,

were wrapped in protective film and placed in the TCSE flight tray. Selected documentation was

also placed into the tray. The ground tray cover was fastened to the tray to secure the items in

the tray.

The following hardware and documentation were reinstalled or wrapped in protective

film and place in the tray:

• Flight data recorder
• Loose calorimeter hardware

• Flight data on 5.25" floppy disks
• Front cover #1

• Front cover #2

• Middle cover

• Lexan thermal standoff

• Originals of the notebooks and logs

• Flight battery seals
• Carousel cover

• 5 bags of sample brackets

• 6 bags of assorted fasteners and hardware

• 2 display boxes with flight recorder o-rings

• Flight data pack drawings

• Various loose thermocouples, sensors, etc.

The sealed-up TCSE tray and the GSE racks were placed in bonded storage at MSFC.

The flight batteries were disposed of since they present a chemical hazard. The remaining items

will be retained by the PI and the Co-I, Mr. James M. Zwiener.

Three sets of TCSE documentation were prepared for archival. One set is being sent to

the LDEF archives at LaRC. The second set is being delivered to the Co-I, Mr. James M.

Zwiener, at MSFC. The third set is retained by the PI at AZ Technology. Each set of

documentation includes a complete set of available TCSE hardware drawings and a complete set

of TCSE and related photographs.
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7.0 SUMMARY

The TCSE was the most comprehensive materials exposure experiment flown at that

time. The TCSE is also the most complex system, other than the LDEF with experiments,

recovered from space after extended exposure. The serendipitous extended exposure of the

prolonged LDEF mission only added to the significance of the data gathered by the TCSE.

The performance of the materials tested on the TCSE ranges from very small changes to

very large changes in optical and mechanical properties. The stability of some of the materials

such as Z93, YB71, and silver Teflon (with P223 adhesive) shows there are some stabile thermal

control surfaces that are candidates for long term space missions. The materials that significantly

degraded provided the opportunity to study the space environment/material interactions.

The TCSE has provided excellent data on the behavior of materials and systems in the

space environment. Many expected effects did happen, but in some" cases the magnitude of these

effects were more or less than expected or were offset by competing processes. A number of

unexpected changes were also observed, such as the changes in the UV fluorescence of many

materials. However, the TCSE did incur a few system anomalies that made some of the post-

flight analyses more difficult. For instance, the loss'of the first six months of flight data due to

the recorder malfunction is probably the most significant. These few anomalies did not prevent

the TCSE from meeting its design and experimental goals. In all, the TCSE was an unqualified

Success.
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