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ABSTRACT

During the Hubble Space Telescope (HST) Second Servicing Mission (SM2),

degradation of unsupported Teflon ® FEP (fluorinated ethylene propylene), used

as the outer layer of the multi-layer insulation (MLI) blankets, was evident as

large cracks on the telescope light shield. A sample of the degraded outer layer

was retrieved during the mission and returned to Earth for ground testing and

evaluation. The results of the Teflon ® FEP sample evaluation and additional

testing of pristine Teflon ® FEP led the investigative team to theorize that the HST

damage was caused by thermal cycling with deep-layer damage from electron and

proton radiation which allowed the propagation of cracks along stress

concentrations, and that the damage increased with the combined total dose of

electrons, protons, UV and x-rays along with thermal cycling. This paper

discusses the testing and evaluation of the retrieved Teflon ® FEP.
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1. INTRODUCTION

The Hubble Space Telescope was launched into Low Earth Orbit (LEO) in

April 1990 with a mission to spend 15 years probing the farthest and faintest

reaches of the cosmos. Crucial to fulfilling this promise is a series of servicing

missions to upgrade scientific capabilities. During the First Servicing Mission

(SM1) in December 1993, MLI blankets were retrieved and analyzed in ground-

based facilities. These studies revealed that the

aluminized Teflon ® FEP, was beginning to degrade.

Teflon ® FEP revealed through-thickness cracks in

exposure and stress concentration. Mechanical

decreased ultimate strength and elongation [1].

During the Second Servicing Mission (SM2) in

outer layer of the MLI,

Close inspection of the

areas with the highest solar

tests showed significantly

February 1997, astronauts

observed and documented severe cracking in the outer layer of the MLI blankets

on both solar facing and anti-solar facing surfaces [2]. During the repair process, a

small specimen of the outer layer was retrieved from the Light Shield (LS) region

and was returned for ground-based analysis. In addition, as part of an instrument

installation, a sample of the bonded Teflon ® FEP radiator surface was returned o n

the Cryogen Vent Cover (CVC).

Since the damage to the outer layer was so severe at SM2, a Failure Review

Board was convened to, among other tasks, determine the mechanism of the

damage. There were three phases to that investigation: document the condition

of the MLI on the telescope; analyze the retrieved specimens; perform simulated



environmental

phases and draws overall conclusions about the failure mechanism.

2. HUBBLE SPACE TELESCOPE

2.1 Thermal Control Materials

2.1.1 Description

The Hubble Space Telescope uses

passively control temperatures on-orbit.

and radiator surfaces (Figure 1).

MLI blankets were used on over 80 percent of the external

HST. The top (space-exposed) layer of these blankets was 127 _m

with roughly 100 nm of vapor deposited aluminum (VDA)

(FEP/VDA). Next there were 15 layers of embossed 8.17 lam (0.00033 in) double-

aluminized Kapton ®. The inner-most layer was 24.5 _m (0.001 in) single

aluminized Kapton. The embossing pattern reduced layer-to-layer conduction,

making spacers uixnecessary. The blankets were closed out on all four sides with

a taped cap section, and the layers were tied together intermittently throughout

the blanket using spots of acrylic transfer adhesive film. Where the blankets were

cut to fit around features (handrails, standoffs, etc.) the blanket was closed out

again by taping the cap section. In addition, the blankets were vented with "X"

cuts and the outer layer was reinforced using aluminized Kapton ® scrim tape.

The entire blanket was attached to the spacecraft with Velcro ® stitched to the

inner layer.

exposures. This paper summarizes the results of the first two

several thermal control materials to

The two primary types are MLI blankets

surface area of

(0.005 in) FEP

on the back



The radiator surfaces were simply perforated silver Teflon ® tape bonded

directly to the aluminum vehicle substrate. The space-exposed surface was 127

lum (0.005 in) FEP with roughly 100 nm of vapor deposited silver (VDS) on the

back (FEP/VDS). The silver side was coated with Inconel and finally with an

acrylic adhesive. This material was purchased in rolls (4 in. width) with the

adhesive already applied. The tape was applied in sections, and a Teflon _ wand

was used to minimize air entrapment and ensure a good bond. Damaged tape

was replaced as necessary as the telescope was built.

2.1.2 Retrieved Specimens

Specimens of these thermal control materials were retrieved during the

servicing missions. Table 1 provides the labels and descriptions of the specimens

that will be discussed in this paper. No material was saved when the telescope

was built, therefore no control material existed from the same production lot.

The blanket shop at Lockheed Martin Missiles and Space (LMMS) provided a full-

build MLI blanket in April 1997 to be used as the control sample for these

analyses.

TABLE 1: SPECIMEN NAMES AND DESCRIPTIONS

Specimen Name

Pristine

SM1 MSS

SM2 LS

SM2 CVC

Description

Outer layerMLI (FEP/VDA) from LMMS, received 4/15/97

Outer layer MLI (FEP/VDA) from magnetometer cover, retrieved at SM1, 12/93

Outer layer ML| (FEP/VDA) from light shield region; retrieved at SM2, 2/97

Radiator surface (FEP/VDS) from cryogen vent cover; retrieved at SM2, 2/97

Complete MLI blankets were removed from the two magnetometers from the

HST magnetic sensing system (MSS) during SM1 (Figure 2). The two



magnetometers were roughly cubic, and the covers

various solar exposures. A complete analysis of

performed by Zuby, de Groh, and Smith following

had surfaces that received

the damage at SM1 was

the mission [1]. For the

purpose of comparison with SM2 damage, a specimen of the top layer was cut

from the section that received the middle range of solar exposure. When

possible, SM1 results reported in this paper were taken from the earlier analysis of

this section of the MSS covers. When an analysis had not been completed

following SM1, the analysis was performed on this section along with the analysis

of the SM2 specimen.

During SM2, a specimen from the outer layer of the MLI, shown in Figure 3,

was taken from the upper light shield (LS) region of the telescope. The roughly

triangular specimen was tightly curled, forming several rolled layers (Figure 3).

The astronaut cut the specimen from right to left, with a change in the initial

direction as the astronaut realized he was cutting through the roll of the

specimen. In Figure 4 the specimen is shown flat with the cracks identified. The

specimen was stored in a reclosable polyethylene bag and stowed in a mid-deck

locker for the duration of the mission.

In addition to the

retrieved during SM2.

outer layer MLI specimen, a radiator specimen was

As part of an instrument installation, a cryogen vent

cover (CVC) was removed from the aft bulkhead and returned to Earth at project

request. The outside of the CVC (radiator surface) had been exposed to the orbital

environment and provided good data for the thermal degradation of the radiator

surfaces.
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2.2 Environment

The Hubble Space Telescope was deployed at an altitude of 598 km and an

orbit inclination of 28.5 degrees. The telescope is oriented such that one side

(+V3) faces the sun throughout its orbit, although the telescope does pitch and

roll in order to maintain focus on a target object. This means that one side of

HST (+V3) receives direct sunlight at all times when HST is not in the Earth's

shadow, and the other side (-V3) only receives sunlight reflected from the Earth's

surface (albedo). The other surfaces of the telescope receive varying amounts of

sunlight depending on how much time is spent pointing in a given direction [2].

The exterior surfaces of HST are exposed to the orbital environment which

includes solar radiation, charged particles (trapped particles and plasma), atomic

oxygen, and temperature extremes. Solar exposure, including near ultraviolet

radiation (UV), vacuum ultraviolet radiation, and soft x-rays from solar flares,

may cause surface damage in polymeric materials such as Teflon ® FEP. Higher

energy soft x-rays from solar flares have the potential to penetrate and cause

damage deep in the bulk of a material with sufficient fluence. Trapped electrons

and protons (particle radiation) may cause molecular changes in the bulk of the

material, changing the mechanical properties. Atomic oxygen can erode the

surface through chemical reactions with gaseous oxide products. Temperature

extremes and thermal cycling can enhance the rate of damage from other

environmental factors, and in Teflon ® FEP they can affect the molecular structure

[14].
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Table 2 contains a summary of the environmental exposure of each the

retrieved specimens received in terms of fluence and, when appropriate, absorbed

dose. The dose-versus-depth profile for each type of radiation was calculated, and

the absorbed doses at 25.4 pm (0.001 in) and 127 pm (0.005 in) are included in

Table 2. The total absorbed dose of ionizing radiation, included in the table, is the

dose due to x-rays and trapped charged particles.

TABLE 2: ENVIRONMENTAL EXPOSURESFOR RETRIEVED HST MATERIALS

Duration

Atomic Oxygen (sweeping ram)

Thermal Cycles

l SM2

3.6 years 6.8 years

1.56E20 atoms/c m 2 1.64E20 atoms/c m 2

I
] Number of Cycles

I Temperature LimitsI
I

Equivalent Sun Hours (ESH)

VUV Dose (<180 nm, absorbed) 1 mil

5 mil

19,800

-100 to +50 °C

11,339 (7% albedo)

2.185E6 krads

4.37E5 krads

37,300

-100 to 50 °C nominal

-100 to 200 °C curled

33,638 (0% albedo)

6.480E6 krads

1.296E6 krads

37,300

-80 to -15 °C

19,308 (33% albedo)

2.490E6 krads

4.98E5 krads

X-ray Fluence

] 0.5 to 4

! l to8_

X-ray Dose

8.7 J/m z 16 Jim 2 6.1 J/m 2

132 Jim 2 252 Jim 2 96.9 Jim 2

i 0.5 to4/_.
I

(24 to 3.1 keY)

1 to8A

(12 to 1.55 keY)

Trapped Particle Fluence (> 40 keV)

Electrons

Protons

1 mil

5 mil

0.98 krads

0.59 krads

1.8 krads

1.1 krads

0.69 krads

0.41 krads

1 mil 59.1 krads 113.2 krads 43.4 krads

5 mil 23.2 krads 44.4 krads 17.0 krads

1.39E13 #/cm z 2.13E13 #/cm 27.96E9 #/cm 2 1.83E10 #/cm z

Trapped Particle Dose (> 40 keV)

Electrons 1 mil

5 mil

277 krads

71.6 krads

389 krads

95.9 krads

Protons 1 mil 0.93 krads 2.32 krads

5 mil 0.75 krads 1.87 krads

Plasma Fluence (.1 to a few keV; absorbed dose in 1 mil

Electrons

Protons

Total Absorbed Ionizing Radiation

(trapped particles, x-rays)

I rail

5 mil

< 1 krad)

3.18E19 #/cm 2

1.11E19 #/cm 2

337 krads

96 krads

506 krads

142 krads

4.66E19 #/cm 2

1.63E19 #/cm 2

435 krads

115 krads
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2.3 Observations

2.3.1 First Servicing Mission (SM1)

The first servicing mission took place in December 1993, 3.6 years after the

telescope was deployed. During the mission itself, the only damage noticed was

on the -V3 (anti-sun) side. Some cracks were apparent near the NASA logo, and

they were attributed to the mismatch in the coefficient of thermal expansion of

the materials in the MLI and the logo (Figure 5). However, close examination of

the retrieved magnetometer covers revealed some localized (less than 4 cm),

through-thickness cracks in areas that experienced the highest solar exposure and

stress concentration [2].

The exterior of the telescope was photographed extensively during the

mission, although not all surfaces were documented. At that time, it appeared

that most of the MLI was intact, however, a review of those images following the

second servicing mission showed more damage. A significant fraction of the

largest cracks at SM2 were visible as lines or wrinkles in the older images.

Following SM1 it was impossible to tell that these were crack initiation sites,

however, knowing that a crack had propagated through a region at SM2, the

evidence of damage could be seen in the SM1 images.

2.3.2 Second Servicing Mission (SM2)

During SM2, the first damage was noticed on the +V3 side (sun side) with

several large cracks in the light shield MLI outer layer. The largest crack, more

than one meter long, is shown in Figure 6. Upon further visual inspection of the

vehicle, additional cracks were apparent on all MLI surfaces, on both solar and



anti-solar facing surfaces. Although the most striking damage occurred on the

+V3 side, significant damage was observed all around the telescope. A program

decision was made to reconfigure contingency MLI patches and use them to patch

the worst of the damaged areas.

Prior to patching the corners of the Bay 8 MLI, the astronauts performed two

tests: a Velcro®cycling test and a Teflon®FEPbend test. The Velcro ®attaching the

blanket to the spacecraft was cycled to determine its integrity. The astronauts

reported that the Velcro ®appeared to be securely fastened to the vehicle substrate

and the hook seemed to hold the pile securely. The astronauts also bent a piece of

the Teflon ® FEP over on itself (VDA surface to VDA surface) to determine if

manipulating it during the patching process would cause significant damage. The

astronauts reported that the Teflon®FEP did not crack.

Images of the radiator surfaces revealed a mottled appearance. Figure 7 shows

the aft bulkhead of the telescope during SM2. Significant increases in the solar

absorptance of the silver Teflon ® tape were obvious as dark patches distributed

across the aft region of the telescope. Some tape strips were significantly worse

than others, and the dark patches occasionally occurred in broad streaks along a

section of tape.

The degradation of these thermal control materials was barely measurable as

increased temperatures inside the equipment bays of the telescope. However, the

telescope was designed with a large thermal margin, so at SM2 this small increase

had no effect on telescope performance.
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3. ANALYSIS OF RETRIEVED MATERIALS

The SM2 flight specimens were fully documented using macro photography,

optical microscopy, and scanning electron microscopy (SEM). Then the MLI

specimens from SM1 and SM2 were characterized through exhaustive

mechanical, optical, and chemical testing.

3.1 Scanning Electron Microscopy (SEM) and Optical Microscopy

The first task was to document the SM2 LS specimen and assemble the four

pieces received into the single specimen that was cut in orbit. Both SEM and

optical microscopy were used in this effort. Once the original configuration had

been determined, the edges were identified as either a deliberate cut, a handling

artifact, or an on-orbit fracture (Figure 4). From this information, the fracture

initiation site became apparent.

The fractures that resulted in the SM2 LS specimen initiated at an edge of the

MLI that had been cut to fit around a handrail (Figure 3). From small defects in

this cut edge, two fractures developed and propagated in orbit almost normal to

one another, resulting in a roughly triangular specimen. The VDA was

completely missing from the SM2 LS specimen in regions where the Teflon ® FEP

was bonded to the rest of the blanket, which included the region where the cracks

initiated.

Although the blankets were relatively fiat when deployed, photos of the SM2

LS specimen in orbit showed that it was tightly curled, with the space-exposed

Teflon®FEP surface as the inner surface and the VDA exposed. This curling

indicated a volume shrinkage gradient in the specimen. Based on the diameter of
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the curl (1.5 cm) the estimated strain difference between the outer and inner

surface of the Teflon ® FEP was -1.5% [3].

SEM images of the initiation region showed clear differences between the

scissors cuts that occurred prior to launch and on orbit, the cracks that propagated

while in orbit, and the cracks from subsequent handling. The fracture surface of

the scissors cut surfaces showed shear and tear features (Figure 8). The orbital

fracture surfaces were extremely smooth (Figure 9). Attempts to duplicate this

smooth fracture with the SM2 specimen under bending or tensile stress resulted

in fractures with more fibrous features (Figure 10). These fibrous cracks were

found on the specimen as well, and were identified as handling cracks.

The inability to duplicate the featureless fracture indicated that the orbit

fractures propagated in orbit very slowly, in the presence of relatively low stress

and under the influence of radiation and other environmental factors. This type

of "slow crack growth" is rather unique in polymers, and has not been studied

with methods proven in studies of similar phenomenon in metals and ceramics

[31.

Homogeneous mud-like cracking (mud-tiling) and buckling of the VDA were

also apparent in the SEM and optical images (Figure 11). A mismatch between

the coefficient of thermal expansion (CTE) of the Teflon ®FEP and the VDA was

most likely the cause. Tensile cracks developed in the aluminum from low cycle

fatigue as the material cycled above room temperature, and buckling occurred

when the material cycled below room temperature [3].

12



The mud-tiling of the metal backing was apparent in all of the specimens. In

the SM2 CVC specimen, handling and processing procedures while adhesive

bonding it to the spacecraft surface most likely created the cracks.

SEM images of the surface showed recession and texturing common in

polymers exposed to a sweeping ram fluence of atomic oxygen.

3.2 Mechanical Analyses

The most obvious indication of degradation in the retrieved specimens was

found in the tensile test results. Table 3 is a summary of the strength test results.

In terms of strength, the SM2 LS specimen was obviously most degraded. The

CVC SM2 specimen was less degraded, and the strength of the SM1 MSS

specimen degraded the least. This ranking was most apparent in the elongation

data. Figure 10 shows the SM2 LS tensile specimens after testing.

TABLE 3: SUMMARY OF STRENGTH TEST RESULTS (3)

Material Yield Strength Ultimate Strength Elongation
(MPa) (MPa) (%)

pristine

SM1 MSS

SM2CVC

SM2LS

13.8
14.3
14.3

14.3
14.3

11.0
15.4
N/A

N/A
N/A

24.8
26.5
28.1

15.4
16.6

12.1
16.0
11.0

13.2
2.2

340
360
390

196
116

25
25
15

Bend testing was performed on the retrieved specimens from SM1 and SM2.

Each small specimen was bent manually to 180 degrees around successively

smaller mandrels (diameters from 9.19 to 3.56 mm). Following each bend, the
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specimen was examined with an optical microscope to detect crack length and

features. As expected, the pristine material showed no cracking when bent

around the smallest mandrel, a strain of 15 percent [4].

Each of the two SM2 LS samples formed a full-width crack when bent around

the first or second large mandrel with the space-exposed surface in tension.

Examination showed that this single, full-width crack went most of the way

through the thickness of the sample, although the strain from the mandrel

diameter was only 2 to 2.5 percent. SEM analysis of the fractures showed the

fibrous features of a handling crack. Bending two other SM2 LS samples around

the smallest mandrel with the space-exposed surface in compression did not

produce cracks, even at the resulting 15 percent strain. This implied that the

space-exposed surface was more brittle than the back surface [4].

The SM1 MSS specimens and the SM2 CVC specimens cracked quite

differently from the SM2 LS specimens. Instead of a single, catastrophic crack, the

specimens developed several very short, shallow cracks that eventually joined to

form a long, jagged crack across the surface at much smaller mandrels (higher

strain). Existing flaws from vent cuts or handling reduced the strain at which

cracks first appeared. Unlike the SM2 LS samples, these samples appeared to

retain considerable ductility [4].

The surface micro-hardness of the retrieved specimens were measured by

Nano Instruments using their patented Continuous Stiffness Measurement

technique. All of the space-exposed specimens showed an increased hardness at

the surface that decreased with depth. By 500 nm, the hardness of all the exposed
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specimens was indistinguishable from that of pristine at 500 nm. Although the

SM1 materials seemed to show a trend of increasing hardness with increasing

solar exposure, the SM2 materials, which had the highest solar exposure, did not

follow this trend [4].

3.3 Optical Analyses

Significant effort was spent in determining the appropriate method for

measuring the solar absorptance (0_s) of the flight materials. Because of the mud

tiling and delamination of the metal coatings, traditional methods gave results

that either over- or under-estimated the changes to the solar absorptance [5]. The

reflectance of the specimens was measured using a Cary 5E UV-Vis-NIR

Spectrophotometer with an integrating sphere (ASTM E490, E903). A 99.9 percent

diffuse reflective standard was placed behind the specimens while the

measurements were made to minimize light transmitted through metal

delamination sites and the cracks in the specimens. The solar absorptance was

then calculated by subtracting the solar reflectance from one. The details of the

measurements can be found in [5].

Table 4 contains a summary of the solar absorptance data of the retrieved

specimens. Since there were no control specimens from the HST lot, increases

were reported with respect to pristine for the FEP/VDA specimens (SM1 MSS and

SM2 LS). For the SM2 CVC specimen the post-flight increases were reported with

respect to data found in literature for the solar absorptance of FEP/VDS ((_s < 0.09).
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TABLE 4: SOLAR ABSORPTANCE (0_) OF RETRIEVED SPECIMENS (5)

Sample # of Metallized FEP FEP Alone (metal removed)

Samples o_ Increase o_ Increase

0.12 + 0.002 0.01 ± 0.001Pristine 6

Post Flight:
SM1 MSS 2

SM2 LS 2

SM2 CVC 2

0.22 0.10

0.20 0.08

0.125 -0.04

0.03 0.02

0.07 0.06

The majority of the absorptance increase of SM1 MSS samples are due to the

crazing of the VDA [5]. For the SM2 LS specimen, most of the 0.08 solar

absorptance increase of the material was attributed to increases in the solar

absorptance of the Teflon ®FEP, rather than to cracking in the VDA. With the

VDA removed by dilute sodium hydroxide, the solar absorptance of the SM2 LS

specimen was still 0.06 higher than pristine. Solar absorptance was also measured

on SM1 MSS specimens that experienced varied amounts of solar exposure, and

no clear correlation was found

equivalent solar hours (ESH) [5].

between the solar absorptance increase and

Literature values for solar absorptance of pristine FEP/VDS were found

between 0.06 to less than 0.09 [10]. The increase in the solar absorptance of the

SM2 CVC specimen was attributed to darkening of the acrylic adhesive that was

used to bond the material to the spacecraft. During the bonding process, the

material was repeatedly bent with a high angle of attack, which created the mud

tiling cracks in the silver deposit. The adhesive bled through these cracks in the

silver and was exposed to sunlight. Acrylic adhesives are known to darken when

exposed to UV [2, 6, 10].
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In these measurements, the amount of darkening varied widely as a function

of the crack size and density. In localized regions of the SM2 CVC, the solar

absorptance was as high as 0.14 and as low as 0.115. The average value is reported

in Table 4. The average solar absorptance of the FEP/VDS on the aft region of the

telescope was estimated at 0.14 based on the current on-orbit temperature data.

3.4 Chemical Analyses

The chemical composition was studied using Time-of-Flight Secondary Ion

Mass Spectrometry (TOF-SIMS), Fourier Transform infrared microscopy (_-FTIR),

Attenuated Total Reflectance infrared microscopy (ATR/FTIR), and X-ray

Photoelectron Spectroscopy (XPS).

Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) was used to

determine the ion composition of the first mono-layer (0.3 nm) of the specimens

and to image ion intensities on the cross sections [6]. For pristine Teflon ® FEP, the

most common fragmentation point was at the bond between CF 2 molecules, and

some minor contamination of the surface was found.

The SM2 LS specimen had the most evidence of chemical changes. The

surface was highly oxidized, and there was weak evidence of surface de-

fluorination. The cross-section analysis showed that this damage only penetrated

to a depth of 5-10 _m; from 10-110 _m deep the material appeared similar to the

pristine Teflon ® FEP. Some silicon-containing surface contamination was also

found [6].

The TOF-SIMS analysis of the SM2 CVC specimen revealed strong evidence

of de-fluorination on the surface. Although oxygen was detected in a few of the

17



low-mass fragments, unlike the SM2 LS specimen, most ions did not contain

oxygen. Analysis of the cross section showed a spectrum very similar to pristine

Teflon ®FEP, indicating that the de-fluorinated region was on the very surface of

the specimen. Very few silicon-containing contaminants were found on this

surface.

The SM1 MSS specimen most closely resembled the pristine. There was some

evidence of oxidation and de-fluorination, but not to the extent present in either

of the other two flight specimens. Silicon-containing contaminants were detected

on the surface [6].

Fourier Transform infrared microscopy (_-FTIR) analysis was performed as

described in reference 7, to detect crystallinity changes and oxidation. The testing

conducted for this effort did not confirm that this _-FTIR method can detect

crystallinity changes. So, although this method showed no significant differences

in the crystallinity of the of the pristine, SM1 MSS, SM2 LS or SM2 CVC

specimens, the test was inconclusive. Also, only SM1 MSS showed significant

oxidation in the first 3 to 5 _m of the material [6].

X-ray Photoelectron Spectroscopy (XPS) was performed on the SM2 LS2 and

CVC SM2 specimens and a pristine specimen. The analysis depth of the XPS is

roughly 10 nm; a change in the ratio of carbon to fluorine (C/F) was defined as

damage. The C/F ratio of pristine Teflon ® FEP was 8.05 with an oxygen

concentration of 0.2 atom percent. The SM2 CVC specimen appeared to be the

most damaged with a measured C/F ratio of 6.3, and an oxygen concentration of

1.9atom percent. A typical region of the SM2 LS specimen had a C/F ratio of 6.8
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with an oxygen concentration of 0.8 atom percent. A region of the SM2 LS

specimen that appeared contaminated was the least damaged with a measured

C/F ratio of 7.9, an oxygen concentration of 1.5 atom percent, and a trace

contaminant of either silicone or hydrocarbon [6].

3.5 Molecular Structure Analyses

X-ray Diffraction (XRD) was used to detect changes in the crystallinity of the

returned MLI specimens from SM1 and SM2, and the results are summarized in

Table 5. The pristine specimen had a crystallinity of 28-29 percent. Specimens

with various ESH returned during SM1 showed a crystallinity of 28-32 percent.

These measurements were within the uncertainty of the instrument, so SM1

MSS samples had a crystallinity that was indistinguishable from pristine. The

SM2 LS samples showed a significant increase, with a crystallinity of 46-47 percent

[6].

The density of the specimens was found using a density gradient column.

This data was then converted to crystallinity values using a table provided by

DuPont. These results are also summarized in Table 5. The calculated

crystallinity of the SM1 specimens were indistinguishable from pristine material

at 50 percent. The crystallinity of the SM2 LS2 specimen was higher, at 65 percent

[6].
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TABLE 5: SUMMARY OF CRYSTALLINITY AND DENSITY RESULTS

Specimen Solar
Huence

(ESH)

Pristine FEP 0
Pristine 0

FEP/VDA

SM1 MSS 4,477
6,324 or

9,193
9,193 or

6,324
11,339
16,670

SM2 LS 33,638

XRD

# Crystallinity
Tested (%)

6 28-29

1 30
1 29

1 32

2 29, 30
1 32

2 46, 47

Demity Gradient Column

As Received
Crystallinity Density

(%) 0_/crn_)

50 2.140
50 2.139

49 2.138
50 2.138

50 2.138

50 2.138
50 2.141

65 2.184

Post Healing
Density Change

O_/cm')

0.020

0.022
0.027

0.025

0.032
0.031

0.001

Although there were differences between the absolute value of the

crystallinity determined using XRD and the density method, the change in

crystallinity is identical. Both methods show an increase in crystallinity of 15

percent. The different absolute values of the two methods was not surprising

because the principles involved were so different. Based on literature data

comparing XRD to various methods, a difference in absolute crystallinity of up to

14 percent is not uncommon [6].

Solid-State Nuclear Magnetic Resonance (NMR) was performed at the

University of Akron on pristine Teflon ® FEP and MLI specimens from SM1 and

SM2 to detect changes in chemical species and morphology. NMR performed on

the pristine material showed a CF 3 abundance of 7.5 percent, which remained

consistent in all three specimens. Analysis of the SM1 MSS specimen detected no

significant changes in chemistry or morphology. However, the morphology of

the SM2 LS specimen was changed. Strong evidence was found of decreased

mobility of the bonds in the specimen. Such changes are consistent with
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increases in crystallinity or crystalline-like regions and with crosslinking. NMR

cannot distinguish between these morphological changes.

Because the high temperature limits of the SM1 MSS and SM2 LS specimens

were different once the SM2 LS specimen had curled, a few specimens of the SM1

MSS material and pristine were heated to 200 °C for several days and analyzed

using NMR and density gradient column. The heated pristine material increased

in density, and NMR revealed slightly decreased mobility. The heated SM1 MSS

materials changed more than the heated pristine in terms of density increases and

decreased mobility in NMR. This was the same type of morphological change

found in the SM2 LS specimen, although the degree of change was less than was

found in the SM2 LS specimen.

4. DISCUSSION

The mechanical properties of specimens that were returned from the second

servicing mission were significantly degraded. Curling in the SM2 LS specimen

indicated a volume shrinkage gradient through the thickness, and bend test

results confirmed that the space-exposed surface was more embrittled than the

inside surface. Fractographic examination of the cracks that occurred in orbit

indicated that they propagated very slowly under relatively low stress in the

presence of radiation or other environmental effects. Similar featureless fracture

surfaces were found in the' few localized cracks in the SM1 MSS specimens as

well. Although it was observed on specimens retrieved during SM1, this "slow

crack growth" in Teflon ® has not been studied using methods proven for metals

or ceramics.
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Crack patterns in the vapor

thermal control materials resembled homogeneous

tiling" can be caused by thermal cycling or handling.

deposited metal coatings on the back of the

mud cracks. This "mud

When the material was

bonded, as with the radiator surfaces on HST, the adhesive bled through these

cracks in the metal and darkened in the presence of ultraviolet radiation,

increasing the solar absorptance.

The chemical analysis techniques used did not yield consistent results. TOF-

SIMS data (analysis depth of 0.3 nm) indicated that the SM2 LS specimen was the

most damaged, with oxygen-containing ions dominating the mass spectra. The

XPS data (analysis depth of 10 nm) indicated that the SM2 CVC specimen was

most changed, with the lowest C/F ratio. Infrared microscopy (analysis depth of 3

1am) was inconclusive with respect to crystallinity, although some contamination

was found on the SM1 MSS specimen. The differences may have been simply a

function of the analysis depths and sensitivities of the different techniques.

Limited attempts to determine the chemical composition deeper into the bulk of

the material with these techniques found no changes below 10 1am. Therefore, it

is unlikely that composition changes (e.g. de-fluorination, oxidation) can explain

the changes to the bulk properties observed in the retrieved specimens.

The decreased elongation in the retrieved specimens, as evidenced by the

tensile and bend test results, demonstrated the material's loss of plastic

deformation capability. This, coupled with the decreased ultimate tensile

strength indicated a reduced molecular weight in the returned Teflon ® FEP. This

implied that chain scission, rather than crosslinking, was the dominant damage
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mechanism in the retrieved materials. The density measurements and XRD

analysis of the SM2 LS specimen revealed a 15 percent increase in crystallinity.

The NMR analysis found no change in the bulk molecular structure of the SM1

MSS specimen and confirmed that increased crystallinity occurred in the SM2 LS

specimen.

There are two possible explanations for the differences in the bulk property

measurements of the SM1 and SM2 retrieved materials. The first, and simplest,

is different degrees of damage. NMR and XRD both measure the bulk of a

material. It is possible that, although some damage had obviously occurred, at

SM1 the damage was not sufficient to be detected by these two techniques. The

strength testing did reveal that the SM1 MSS specimen had decreased elongation

and ultimate tensile strength, indicating chain scission. However, the damage

was not as severe as at SM2.

The second explanation comes from the curling of the SM2 LS specimen.

Based on the solar absorptance and emittance

layer was flat it cycled between -100 and +50 °C.

that the aluminum was exposed, the thermal

of the FEP/VDA, when the top

Once the specimen curled such

properties changed significantly.

With the aluminum exposed the specimen cycled between -100 and +200 °C. This

higher temperature limit was only experienced by the SM2 LS specimen, not by

the SM1 MSS specimen. High temperature thermal cycling can affect the

crystallinity, and if the temperature is severe enough it can induce chain scission

[8]. SM1 MSS materials that were heated to +200 °C in ground-based experiments

increased in both density and crystallinity (NMR), although not to the degree that
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the SM2 LS specimen had increased. Pristine specimens heated to +200 °C

increased in density and crystallinity (NMR), but not to the same degree.

Additionally, the astronaut observation following the "bend test" in orbit

revealed that a damaged region that did not curl maintained more ductility in

orbit than the curled SM2 LS specimen exhibited in the ground testing. That

qualitative difference could be from either the different temperatures experienced

by the Bay 8 specimen and the SM2 LS specimen or from changes that occurred

after the SM2 specimen was exposed to atmosphere. Further testing is required to

understand the effects of atmosphere on vacuum irradiated Teflon ® FEP.

Based on these results, it was apparent that exposure to some element of the

space environment induced chain scission in the bulk of the material. This

initial change was detected in the tensile tests, but it was masked in most other

analytical techniques. When the damaged material was subjected to a high

temperature extreme (+200 °C), the increased mobility of the shortened chains

allowed the molecules to re-align into a more dense, crystalline structure. This

change occurred in orbit when the SM2 LS specimen curled and on the ground

when the SM1 MSS specimens were heated in an oven. The fact that the ground-

heated SM1 MSS specimens did not become as dense or crystalline as the SM2 LS

specimen indicated that the chain scission progressed over time, allowing greater

mobility in the molecules of the SM2 LS specimen. With these analyses

complete, the changes to the material were relatively well understood, however,

what had caused these changes was not apparent.
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The documentation of the condition of the blankets in various locations

around HST during the two servicing missions was revealing. At the first

servicing mission, there were very few macroscopic cracks. A few were

discovered near the NASA logo on the anti-solar-facing side of the spacecraft, and

a few were found on close examination of the returned materials from the solar-

facing side. However, in general, the outer layer of the MLI blankets appeared to

be intact [1,2]. During SM2, cracks all around HST were visible to astronauts and

in photographs. The damage appeared to be worse on the solar-facing side of

HST, but the MLI on the anti-solar side was also significantly damaged.

Note that the anti-solar-facing side of HST only received Earth albedo

sunlight, equivalent to roughly 10 percent of the solar-facing equivalent solar

hours (ESH) [1]. This meant that at SM1 the solar-facing surfaces of HST had

received five times more ESH than the anti-solar facing surfaces had received at

SM2. If any component of the ESH was the dominant damaging environmental

factor, the damage to the solar-facing side should have been far worse at SM1 than

the anti-solar facing surfaces.

contradicts this supposition.

Several different simulations

The photographic evidence of HST clearly

were employed individually and in

combination to determine which elements of the space environment were most

likely to cause the damage observed in the returned specimens. Based on the

results from synchrotron radiation exposures, it was clear that neither VUV nor

soft X-ray radiation alone could cause the observed bulk damage to the HST

thermal control materials [6]. Continuum soft x-ray exposures conducted in an
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electron beam facility with higher energy x-rays provided consistent results.

These wavelengths did reduce elongation at extremely high fluences, however,

even at doses several orders of magnitude higher than experienced by HST at

SM2 there were no comparable bulk property changes. These results, coupled

with the damage map of HST, cast strong doubt on the idea that any component

of the solar spectrum could be solely responsible for the damage observed on

HST.

Because the damage to HST did not appear to coincide with ESH, components

of the space environment that are more closely homogeneous were suspect. The

likely candidates were electron and proton fluences and thermal cycling.

Experiments showed that electron and proton radiation alone affected the tensile

properties of the Teflon ® FEP. The reduced ultimate strength and elongation was

apparent at fluences comparable to the HST end-of-life (20 years). Subsequent

thermal cycling between -100 and +60 °C reduced these properties further. These

particle radiation exposures coupled with thermal cycling produced damage that

most closely resembled the HST specimens. However, the study did not duplicate

the degree of damage observed on the returned SM2 specimen with SM2 doses of

radiation and thermal cycling at nominal limits (-100 to +50 °C) [9].

Since the thermal cycling following irradiation did affect the

properties of the materials and the crystallinity was

temperature, it is likely that the more extreme

specimen experienced produced more damage.

thermal

Further

tensile

strongly affected by

cycling the SM2 LS

testing is needed to

determine what effect the high temperature cycling has on irradiated Teflon ® FEP.
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5. CONCLUSIONS

Analysis showed that all of the retrieved specimens, SM1 MSS, SM2 LS and

SM2 CVC, underwent chain scission. Evidence of increased crystallinity was

found only in the SM2 LS specimen, and was generated by heating SM1 MSS

specimens. Solar absorptance increases in the SM2 LS specimen were attributed

to these changes in the Teflon ® FEP and mud tiling in the VDA. Solar

absorptance increases in the SM2 CVC specimen were attributed to mud tiling

from handling and subsequent darkening of the acrylic adhesive.

The conclusions of the HST MLI Failure Review Board were based on the

combined evidence of HST damage and data uncovered in ground-based

experiments. The Failure Review Board concluded the following:

The observations of HST MLI and ground testing of pristine samples

indicate that thermal cycling with deep-layer damage from electron

and proton radiation are necessary to cause the observed Teflon _ FEP

embrittlement and the propagation of cracks along stress

concentrations. Ground testing and analysis of retrieved MLI indicate

that damage increases with the combined total dose of electrons,

protons, UV and x-rays along with thermal cycling.

Tests continue in order to determine the effects of the higher temperature

limit that the SM2 LS2 specimen experienced.
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FIGURE 1: LOCATION OF HUBBLE SPACE TELESCOPE THERMAL CONTROL MATERIALS

In this image, Flexible Optical Solar Reflector (FOSR) is defined as metallized Teflon films used

either as the top layer of MLI blankets or as tapes on radiator surfaces. MLI blankets were used on

the entire Light Shield and most of the Forward Shell and Equipment Bays (Equipment Section).

Tapes were used on the Aperture Door, a few locations on Equipment Bays, the entire Aft Shroud,

and Aft Bulkhead (bottom of the telescope).
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FIGURE 3: SM2 LS SPECIMEN ON-ORBIT 
The top-center of this image shows the roughly triangular S M 2  LS specimen on the Light Shield a t  
S M 2  prior to retrieval. A handrail and standoffs are apparent across the top of the- image. The 
specimen is curled very tightly, so that it is detectable here as a triangular region where the next 
layer of the MLI is visible. The raised feature at the bottom edge of the triangular opening contains 
the entire specimen that covered this triangle prior to the damage. At the bottom of the image, the 
tip of the largest crack on HST is seen propagating vertically towards the top of the telescope. This 
large crack also opened to reveal the next MLI layer. 
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FIGURE 4: S M 2  LS SPECIMEN POST-RETRJEVAL 
The image above was taken during post-retrieval analysis, when the SM2 LS specimen was uncurled 
and placed between glass plates. The edges of the specimen are identified as scissors cut, handling 
crack, or orbit crack. The top-right comer of the specimen contains the crack initiation sites. 
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FIGL‘RE 5 :  S h l  I .WTI-SOLAR FACING SIDE WITH NASA LOGO 
Tliis I I I I ; I ~ C  s l i o ~ s  the only noticcable daruagc to the MLI during SM1. Notc the peeling in the NASA logo and cracks 
cidi.iiing , i t \: i? t’rorii [he logo 4tucIi mow d;iniagc h;id occurrcd on this ride of [tic telescope by SM2. 
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300X 
Figure 8: SM2 LS Specimen Scissors Cut Features 

Edge-on view of shear fracture near the crack initiation point. This region of the blanket was 
cut during installation in order to fit around a handrail. This fracture surface has common 
shear and tear features, indicating the material was cut. Astronaut cuts that occurred on-orbit 
during specimen retrieval had a similar appearance. 

5000X 
Figure 9: SM2 LS Specimen On-Orbit Cmck Propagation Features 

Edge-on view of the crack that occurred in space near the crack initiation point. l'he unique, 
extremely smooth features indicated the crack was a form of environmentally assisted slow 
crack grdwth. These smooth featurescould not be duplicated by handling &e specimen. 
This allowed for easy identification of fractures that occurred on-orbit. 

5000X Figure 10: SM2 LS Specimen Handling Features 
Edge-on view of a crack that occurred due to specimen handling. 'Ihe fibrous features of this 
crack surface showed ductile peaks that formed as the two surfaces of the crack pulled away 
from one another. Cracks that occurred from tensile and bend testing had a similar appearance. 



looX 800X 
Figure 11: S M 2  LS Specimen Mud-Tiling Features 

SEM image of the VDA surface of the retrieved specimen. These cracks in the aluminum 
occurred due to the mismatch in the coefficient of thermal expansion (CTE) of aluminum and 
Teflon FEP. 


