TECHNOLOGICAL RESEARCH AND DEVELOPMENT AUTHORITY (TRDA)

SUMMARY REPORT:
NASA COOPERATIVE AGREEMENT NO. NCC10-0008
"UNIVERSAL SIGNAL CONDITIONING AMPLIFIER"

TECHNOLOGICAL RESEARCH AND DEVELOPMENT AUTHORITY
STATE OF FLORIDA
6750 S. HIGHWAY U. S. 1
TITUSVILLE, FLORIDA 32780
PERFORMANCE REPORT

Under

NASA COOPERATIVE AGREEMENT NO.: NCC10-0008

Entitled

"Universal Signal Conditioning Amplifier"

Principal Investigator: Frank Kinney
Report Period: 3/15/94 – 12/31/96

April 1997
TABLE OF CONTENTS

I. INTRODUCTION

II. PERFORMANCE

III. TRDA PARTNERSHIP TASKS

IV. SUMMARY

V. ATTACHMENTS
I. INTRODUCTION

The Technological Research and Development Authority (TRDA) and NASA-KSC entered into a Cooperative Agreement in March of 1994 to achieve the utilization and commercialization of a technology development for benefiting both the Space Program and U. S. industry on a "dual-use basis". The technology involved in this transfer is a new, unique Universal Signal Conditioning Amplifier (USCA) used in connection with various types of transducers. The project was initiated in partnership with I-Net Corporation, Lockheed Martin Telemetry & Instrumentation (formerly Loral Test and Information Systems), and Brevard Community College.

The project consists of designing, miniaturizing, manufacturing, and testing an existing prototype of USCA that was developed for NASA-KSC by the I-Net Corporation. The USCA is a rugged and field-installable self (or remotely) - programmable amplifier that works in combination with a tag random access memory (RAM) attached to various types of transducers.

In September of 1994, the project was modified and extended to also include the development of the Advanced Data Acquisition System (ADAS). The new products developed as part of ADAS includes a USCA Controller/Input card, an ADAS Output card, and the operation software for the ADAS. The ADAS project completes and complements the USCA commercialization project.

Under this co-funded partnership, Loral/Lockheed Martin provided final design assistance to I-Net to assure compatibility with standard manufacturing processes, manufacture both government and non-government (commercial) versions of USCA and ADAS, provide the government version to TRDA for NASA-KSC testing, and place the commercial versions on the open commercial market.

II. PERFORMANCE

Project performance was tracked by attainment of established Milestones. The Milestones were adjusted several times through agreement of all partners. Changes to the Milestone schedule were necessitated by various design changes incorporated along the way in an effort to enhance the project. The final Milestone Schedules for both the USCA and the ADAS development are included as Attachment "A".

As of October 1996, all USCA and ADAS Milestones have been completed. TRDA had numerous conversations/meetings with Lockheed Martin and I-Net participants to confirm attainment of milestones. TRDA requested a final written project status report from Lockheed Martin, and received this report in March '97. This final report and the other written progress/milestone reports are provided in Attachment "B" of this report.
III. TRDA PARTNERSHIP TASKS

The tasks performed by TRDA under this partnership arrangement are summarized below:

(1) TRDA provided co-funding of the project in an amount equal to the co-funding provided by NASA-KSC.

(2) TRDA provided the services of staff and professional consultants to provide for the proper implementation and business and technical management of the project. Executive Director Frank Kinney and Business Manager Matthew La Vigne provided oversight and direct interface with all project partners. Associated clerical/secretarial support was also provided. Regular contact was maintained with all partners both via telephone and visits/meetings. Additionally, TRDA retained qualified technical support (via contractual relationship with Mr. Tom Davis) to assure the technical components of the project were being sufficiently managed.

(3) In March of 1994, TRDA negotiated and contracted with Brevard Community College (BCC) to provide required assistance. BCC assisted in the administration of subcontracts and in the hiring of qualified college co-op students to support the project. Students from Florida Tech, the University of Central Florida, and Bethune-Cookman College were hired through BCC to assist project engineers in USCA and ADAS development.

(4) TRDA served as the main interface and point of contact for all partners. Periodic site visits to Lockheed Martin's (Loral's) Sarasota facility took place, as well as numerous meetings in the local area. Regular contact is maintained with project engineers, managers, and contract personnel, as well as project management personnel at BCC and lead technical personnel at KSC.

(5) Progress reviews took two forms: formal and informal. Formal reviews were made in conjunction with the submission of established Milestone Reports. On an informal basis, regular contact with project personnel enabled us to keep abreast of the work being performed on a continual basis.

(6) Performance schedules take the form of agreed upon Milestone Schedules. These schedules have been mutually established by all partners. The Milestone Schedules were modified several times to meet expected performance. TRDA oversaw the schedules and confirmed that changes were both reasonable and required.

(7) TRDA acquired reports as per the Milestone Schedules. These amounted to reporting requirements in excess of quarterly reports, however, we felt they were necessary to assure and track performance. These reports, as well as other appropriate documentation, were submitted to NASA in our required Performance and Summary Reports.
IV. SUMMARY

Although the USCA/ADAS dual-use project took longer and was more expensive than originally planned, we should all be extremely pleased with the results. Lockheed Martin Telemetry & Instrumentation (LMTI) believed in the potential of the NASA technology from the outset and therefore invested heavily in the project to ensure its success.

Through the partnership, NASA-KSC and LMTI have successfully completed a transfer of NASA technology to a commercial manufacturing environment. Commercial products are now being produced and delivered to NASA by LMTI, and the products have been introduced to the commercial marketplace. While the product launch is still in its infancy, marketplace reaction is very encouraging.

This project was a true example of partnership. The cooperation between all parties was been exceptional. KSC participants have expressed their pleasure with the cooperation they have received from LMTI concerning all elements of the project, from design, to testing, to manufacturing. Likewise, LMTI has stated that they have never participated in a project with the level of cooperation and teamwork that they experienced with the USCA/ADAS project. All partners should be commended for their efforts and participation in this project.

TRDA wishes to express our appreciation to NASA-KSC for their tremendous cooperation and support in this successful dual-use commercialization.
ATTACHMENT "A"

USCA MILESTONES
ADAS MILESTONES
Activity Complete/Deliverables

- Complete final design package for Local Commercial Version of USCA. This version will be released as a CAD file.
- Release Final Version 3 USC study package. This version will be released as a CAD file.
- Complete manufacturing and deliver to TRDA (10 copies of design version 3). (15%)
- Design package to TRDA released by NASA on April 29; issue the Local CAD system. Provide CAD (20%)
- Complete the incorporation of the final version 2 USC study package. (25%)
- Activity complete and deliver final mechanical component(s) for final product cost.

Milestones for Payment

USCA Commercialization Project (TRDA #405)
% OF BUDGET TO BE PAID

% COMPLETE/DELIVERABLES

MILESTONES FOR PAYMENT

ADAS COMMERCIALIZATION PROJECT (TRTRA #410)
ATTACHMENT “B”

MILESTONE/PROGRESS REPORTS
Fr: Dean R. Becker
Re: USCA milestone 1

LDS has delivered inputs on the electrical, mechanical, and component elements of the NASA USCA design. We have provided information with component descriptions, part numbers, etc. necessary for NASA to complete the version 2 design. We have also assisted with the overall design of the USCA as well as the system with which it operates. See the attachment A. Included is an updated project schedule for the USCA development. See Attachment B.
Tasks to be accomplished with NASA

Discuss and identify actual specifications
 Electrical operational specifications
 Analog I/O
 Digital I/O
 MTBF
 Construction
 Power
 Frequency response
 Isolation
 EMI

Discuss circuit design
 Block diagram hierarchical level
 System I/O definition
 First level internal
 Details of first level blocks
 Identify schematic to these details
 Discuss certain schematic details
 Detailed parts list (with full part numbers)
 Identify questionable part descriptions
 Surface mount versions

Discuss certain component selection
 Mechanical relays
 Potentiometers
 Monostable multivibrators
 Temperature sensors
 Crystal
 Power supplies
 Fuses
 Special hybrid IC
 PALs?
 Gaps?

Discuss firmware program flow
 Tag RAM format definition
 Tag RAM programmer definition
 Micro controller Firmware
 DSP Firmware

Discuss setup sequence and defaults

Discuss mechanical design
 Boards
 Number
 Placement
 Interconnects
 Components
 Ferrite beads
Connectors
Shock and vibration damping
Shielding
Shape
Material

Discuss current and future testing
Written test procedures
EMI/RFI
Environmental

Discuss cost and schedule
Re-draw schematics
Enter parts definitions into Cadence
Possible new parts libraries
Worst case simulation?
Analog
Digital

Plans and expectations for the prototype under development
NASA built

Plans and expectations for final prototype
Loral built

Final unit cost

Discuss the roles of NASA and Loral

NASA
Electrical design
Mechanical design
Test definition
Fabrication of prototypes

Loral
Transfer of all design information
Integration of this information into development system
Integration into manufacturing system
Last prototype fabrication
Production fabrication
Definition of commercialized product
Design and fabrication of commercialized product
I. Version 1

A. Generate true set of specs
 1. (3.3.2) MTBF
 2. (3.5.1) Power 100 mA
 3. (3.5.8) Frequency Response 150 Hz
 4. (3.5.15) Driving 100000 ohm output
 5. (3.5.16) Isolation 100 Megaohms
 6. (3.5.18) Insulation 100 Megaohms for connectors
 7. (3.5.23) Cable Length
 8. (3.5.24) Common Mode Rejection (still valid)
 9. (3.6.3) EMI Spec

B. Address multichip module
C. Walk thru design with I-Net
D. PDR/CDR on version 1 today's version versus specs
E. Testing on today's version
 1. Preliminary Electrical Requirements Testing
 2. Preliminary EMI
 3. Preliminary Vibration analysis
 4. Component Analysis availability - reference multichip module
 5. Temperature Analysis

II. Identify SAMS info

III. Generate USCA working environment for support
 A. Compiler
 B. DSP stuff
 C. Analog Library

IV. Generate buildable set of
 A. Schematics
 1. New Bodies
 B. Board Layout
 C. Block Diagrams
 D. Parts list
 E. Parts Description
 F. Released Software
 1. Upprocessor
 2. DSP
 3. SAMS
 4. Tag Ram Programmer

V. MTBF analysis

VI. System Level Interface and Documentation

VII. Version 2
A. Liaison work on USCA
 1. Mechanical Design (includes form factor)
 2. Electrical Designs
 3. Components

B. Version 2 testing
 1. Electrical Testing
 2. Mechanical Testing
 3. EMI Testing
 4. Vibration Testing

VIII. Version 3 (nasa final version)
A. Liaison work on USCA
 1. Mechanical Design
 2. Electrical Designs
 3. Components
 4. Cost

B. Version 3 testing
 1. Electrical Testing
 2. Mechanical Testing
 3. EMI Testing
 4. Vibration Testing

IX. Loral's Commercial Version
A. generate specifications
 1. Form factor
 2. cost

B. Preliminary Design
C. Design Review
D. Prototype Build
E. Prototype test
F. Design Modifications
G. Critical Design Review
H. Final Version Build
I. Final Version Test
J. Release
USCA PDR TOPICS

Specifications
Electrical specifications
Analog I/O

Input signal level
Voltage: -10V to +10V
Current: Max: Typ:
Bandwidth: DC to 10kHz

Output signal level
Voltage mode: 0 to +5 VDC
Current: Max: Typ:
Bandwidth:
Voltage mode: -5 to +5 VDC
Current: Max: Typ:
Bandwidth:
Voltage mode: 0 to +10 VDC
Current: Max: Typ:
Bandwidth:
Voltage mode: -10 to +10 VDC
Current: Max: Typ:
Bandwidth:
Current mode: 4 to 20 mA
Voltage: Max:
Bandwidth:

Excitation signal level
Voltage mode:
Current: Max:
Current mode:
Voltage: Max:

Digital I/O
Tag RAM Input
Voltage:
Current:
Bit rate:
Tag RAM Output
Voltage:
Current:
Bit rate:
SAMS Input
Voltage:
Current:
Bit rate:
SAMS Output
Voltage:
Current:
Bit rate:
Output signal
Voltage:
Current:
Bit rate:
Other specifications

Detailed parts list

Surface mount
- For temperature sensors
- For gaps
- For ferrite beads

Specific areas of concern
- Potentiometers: change to EE pots
- Monostables to be eliminated
- Mechanical relays: changed to optical
- Smaller power supplies

Parts description book
- Detailed data sheets for each part used

Schematics, latest version

Tag RAM format
- Tag RAM programmer

Hierarchical block diagram for hardware
- System I/O definition
- First level internal
- Details of first level blocks
- Identify schematic to these details
- Discuss certain schematic details

Hierarchical block diagram for software
- Microprocessor flow diagram
 - Top level
 - Detailed level
- Initialization flow and defaults: State diagram

Digital output definition
- Bit rate
- Structure
 - Number of bits per word:
 - Header:
 - Error detection/correction:

Test procedures
- Electrical
- Environmental
- EMI

Discussion
- SAMS
 - Identify assembler/compiler for microprocessor
 - Identify DSP software package
 - Walk through design from block diagram through schematics
- Mechanical considerations
 - PCBs
Enclosure
Mounting
Diagnostics
 Power up
 Continuous
Integration path into Loral manufacturing
 Schematics
 PCB layout
 Parts placement for auto insertion
 Mechanical drawings and fabrication
Universal Signal Conditioning Amplifier System
Universal Signal Conditioning Amplifier - USCA
Self Awareness Measurement System - SAMS
Advanced Data Acquisition System - ADAS
Tag RAM Programmer - TRP
Pro 550 interface

PDR Meeting with NASA, I-NET, TRDA - Feb. 15, '94

For this meeting I brought along the following list of things to be covered:

USCA PDR TOPICS

Specifications
Electrical specifications - Specifications are still in work, some details of the digital and analog I/O are available.
 Analog I/O
 Digital I/O
Other specifications
Detailed parts list
Surface mount
 For temperature sensors - Temperature sensors are to be eliminated inside the USCA.
 For gaps - These do not exist but the thought is to have this part of the circuitry on a separate round PCB at the output end of the USCA and to have the other PCBs plug into it.
 For ferrite beads - These exist and I have given some data sheets to Pedro on this.
Specific areas of concern
 Potentiometers: change to EEpots - These will be eliminated with the new calibration scheme.
 Monostables to be eliminated - They will not be used.
 Mechanical relays: changed to optical - All have been changed or are being changed to optical.
 Smaller power supplies - Pedro is looking into this to see what the actual circuit power requirements are.
Parts description book
 Detailed data sheets for each part used - This is in work for the USCA version 2.
Schematics, latest version - Pedro has given me the latest schematics.
Tag RAM format - This was given to me during the SAMS discussion with Carl.
Tag RAM programmer - Still to be defined, this will probably be a good co-op job to do.

Hierarchical block diagram for hardware - Pedro has given this to me along with the detailed discussion of the USCA hardware.
- System I/O definition
- First level internal
- Details of first level blocks
- Identify schematic to these details
- Discuss certain schematic details

Hierarchical block diagram for software - James has given this to me along with the detailed discussion of the USCA firmware.
- Microprocessor flow diagram
 - Top level
 - Detailed level
- Initialization flow and defaults: State diagram

Digital output definition - Curtis of NASA is assigned to this task, this is still in work.
- Bit rate
- Structure
 - Number of bits per word:
 - Header:
 - Error detection/correction:

Test procedures - Formal procedures are down the road with USCA version 2, however preliminary procedures exist for electrical and for environmental. The procedure for EMI will be done by another group at NASA.
- Electrical
- Environmental
- EMI

Discussion
- SAMS - Discussed details with Carl, System level concepts to be discussed with Bill Larson.
- Identify assembler/compiler for microprocessor - Done
- Identify DSP software package - Done
- Walk through design from block diagram through schematics - Done
- Mechanical considerations - I discussed my findings with LDS manufacturing.

PCBs - Consider three rectangular boards, surface mount on both sides, plugging into each other, and plugging into a common round mother board at one end with lightning protection at that end. (This is of course for version 2.)
- Enclosure - Plan for a stainless steel enclosure slightly larger than the example we had at LDS for the temperature bulb.
Mounting - Consider a direct connect of the mother board to the MS connector at that end and an internal connector for the MS connector at the other end to avoid internal cables.

Diagnostics
Power up - Pedro and I will discuss this.
Continuous - This will be accomplished with the continuous calibration technique to be used.

Integration path into Loral manufacturing
Schematics - These will have to be redrawn into the LDS system. A discussion with Mike Nastanski confirmed that this is the most efficient way based on his previous experiences. We do not intend to do circuit simulation.
PCB layout - PCBs will be laid out by NASA / I-NET for the version 2 USCA. Placement for parts and critical circuits will be entered by hand at LDS and non-critical digital circuits will be auto routed. Net lists will come from the re-done schematics.
Parts placement for auto insertion - Since we are entering the PCBs into the LDS system this will follow normally.
Mechanical drawings and fabrication - NASA will supply LDS with basic mechanical drawings which LDS will have to redraw to LDS standards.

The following are points which came out of the meeting:

The qualifications of the part time students needs to be defined. SAMS and the TRP are an integral part of the program and need to be brought in as an addendum to the contract.
The ADAS and APME (APME is part of the ADAS but its funding is separate)
 ADAS funding is for FY '94
 APME funding is for FY '94 & FY '95
Meetings are needed to discuss the following:
 Mux bus extender / 550 interface
 USCA digital output format
 Discussion of:
 System overview concepts
 Lightning protection actually needed
 Power supply specs - max
SAMS format description needs to be defined.
Tag RAM Programmer schematics and software need definition.
This needs to be coordinated with the Calibration facility
Need to do cable testing at the pad for long cable runs between USCA and the pad collection point. This is to find out how the present cables which are used to monitor the analog voltages
from sensors will work with the digital output signal the USCA will eventually send.

Software used for USCA
- Monarch DSP - 904 371 2567 ($349)
- Dallas semiconductor DS5000TK V3.1 evaluation kit
- 8051 ASM Archimedes V2.02
- C51 Compiler V4.23B
- Xlink V4.43

Following this meeting I discussed the details of the USCA software design with the NASA designer (who I only know at this point as James).

The following day I went with several of their engineers to Pad A to do testing on one of the long cable runs between USCA and the collection point. We focused on a cable from the liquid oxygen pumps to the pad. Since the cable was originally intended for the transmission of low frequency analog signals its characteristics for carrying the digital USCA output were unknown. Definition of the USCA output depended on the cables characteristics as they are not to be replaced. We found that the frequency response exhibited a standard LC roll off starting around 600 kHz. We also rigged up a TDR to look for impedance anomalies in the overall cable run. This testing took up the entire morning.

Following this I discussed the details of the SAMS design with Carl Hallberg of I-NET.

Next I discussed design details of the USCA hardware with Pedro Medelius. We also discussed a new self calibration approach and USCA diagnostics.
Software documentation for USCA, SAMS, etc. - Two different students could document the software for the USCA and possibly expand on the software for the SAMS.

Development of units

SAMS - Once SAMS is a well defined system a student could help with prototyping and documentation.

Tag RAM Programmer - This would be a very good student project for both hardware and software.

Basically co-op students will be needed with the following backgrounds:

- Mechanical design, possibly with Auto CAD
- Electrical design with microprocessor
 - software
 - hardware

The new method of calibrating the USCA automatically using the A / B channel method will be implemented in the version 2 USCA as discussed with Pedro previously.

An expanded list of possible SAMS commands for USCA needs to be established. - James will do this by March 1, '94.

An expanded definition for Tag RAM utilization needs to be developed. - To be done in 2 weeks.

Diagnostics internal to the USCA

Feed output voltage back to input - This presents a special problem in the USCA due to the galvanic isolation required between the input and output. The output voltage cannot be monitored by the input of the USCA, however the excitation voltage can be used to test the input. The excitation voltage will be controlled by the DSP in the version 2 USCA and by this creates an easily controlled situation for testing the input. The output voltage of the USCA will need to be checked in the lab but will not be self correcting while in use. This is not a major concern as the digital output will be replacing the analog output in the future.

Self calibration - A dual input path will be used where one path is switched to a standard voltage while the other is in use. The two will flip flop in time thereby maintaining calibration for any gain or offset adjustments.

Excitation voltage / current to input - This will be used as just described.

SAMS / Tag RAM Interface - This will not have a special test. If the SAMS cannot communicate then this interface has a problem indicating that the particular USCA needs to be repaired.

Multiple frequency sinusoidal waveform for DDF testing - This can now be done using the excitation voltage. These frequencies need to be defined.
Control test - *A power up test can be done to give credibility to the operation of the micro controller.*

Digital output test - *This could be feed back into the DSP using optical isolation and a test pattern. The utility of this is somewhat questionable.*

USCA digital output definition - *This is being worked on by Pedro and Curtis.*

The Tag RAM device is a sole source chip made by Dallas semiconductor. The entire system evolving out of the USCA is revolving around the Tag RAM and its unique format and control. I feel that with the dependence on this part being so critical an alternate approach should be explored should Dallas decide by their whim not to make this part in the future. *- Yoseph will look into this.*

The Tag RAM only uses one fourth of its memory space. The other areas have different access requirements but need to be used as well. The current one forth of the device is already full based on current information definition. *- This will be done.*

What results have been found from the temperature and EMI tests. *- The results from the temperature tests are good. Due to the results of this other DC to DC converters will need to found. No other problems surfaced. EMI testing has not been done. This is controlled by another NASA lab and must be time phased to meet their needs.*

A project plan needs to be developed for: *- This is recognized and is TBD.*

SAMS
TRP
ADAS

Bring the serial interface from the micro controller out of the USCA for diagnostics and setup. *- Pedro and I discussed the possibility of bringing this out on two 'unused' pins on the MS output connector.*

Use of the Dallas 5000 micro controller vs. an 8751

The 5000 requires software to be loaded into its battery backed up RAM after manufacture.
This chip is not available in surface mount and is very tall.
The 5000 costs much more than the 8751
The 8751 will work in this application with no need to rewrite the basic functional software.
Pedro agrees with these points and is looking into using the 8751 or an equivalent.

What is the status of the Tag RAM board layout and component selection? *- This is in work as the mechanical relay needs to be replaced with an optical relay.*
Universal Signal Conditioning Amplifier System
Universal Signal Conditioning Amplifier - USCA
Self Awareness Measurement System - SAMS
Advanced Data Acquisition System - ADAS
Tag RAM Programmer - TRP
Pro 550 interface

Meeting with NASA, I-NET, Grumman - Feb. 23, '94

No major problems were uncovered, however the following points were discussed:

Considering up to 12 Bit Sync / Decoms in the PRO550 at LCC (Launch Control Center). These would have fiber optic links as inputs.

Fiber optic link bandwidth is 2 MHz now but is apparently only limited by the transmitters / receivers now being used. The fiber optic link output will be coming from the individual ADAS units. USCA linearization was only up to 5th order at maximum input sample rate. This has been increased to 7th order.

Grumman expressed concern over the possible effects of the DDF FIR filter coefficients windowing. This is a 512 tap filter and the coefficients are being computed by an algorithm such as Parks - McClellan so the window effects are not likely to be a concern. Pedro is going to run an example to show that the effects of this on the data are below the effective quantization level.

A question was raised on the jitter specification for the excitation pulses from the USCA. This needs to be specified but will likely not be a problem as the excitation voltage or current in version 2 of the USCA will be controlled by the DSP chip instead of the micro controller.

Mike Maxwell of Bionetics was also at this meeting to represent the NASA calibration facility. He was asked to give any input with respect to the Tag RAM Programmer interface and existing calibration facility equipment.

Following this meeting I discussed some other concerns with Bill Larson. Pedro was called in for parts of this. For this meeting I brought along the following list of things to be covered:

Capabilities and requirements for the student co-ops
Mechanical - A student working at NASA could document with drawings the version 2 USCA enclosure.
What are the specifications for the filters being defined for the DDF? - Pedro will supply this.

The LDS proposal has been received by NASA and is in their accounting department.

NASA can have their mechanical drawings done in Auto CAD.

We need to see if we can take this directly into our system.

We need to supply them with example drawings of our standards.

This could be done by a co-op student at NASA.

I explained to Bill Larson the operation of the CMUX and how it could be used for the ADAS. He seemed very interested and requested documentation be sent immediately for Curtis to read.

I will be gathering together the cost of parts as they can best be defined at this point to come up with an estimate of cost for the USCA.

I was given a schedule on the development of the SAMS. The current prototype is being built and considering several facets of the project this is just as well. This will test out the driver circuitry for the follow on which may be a significantly different over all design. The system philosophy needs to be discussed further.

LDS needs to get contractually involved with the entire system surrounding the USCA.

LDS has approval to use the USCA as a paper for conferences.
From: Dean Becker
Telecon with Bill Larson on March 10, '94

Environmental testing is progressing on the version 1 USCA
 Temperature testing -20 to +50 degrees C.
 Unity gain and 10X gives accuracy of 15.5 bits
Tag RAM
 An alternate chip has been found for this critical purpose
 Less cost
 Board layout of equal size
SAMS PCBs have gone out for fabrication
 They will be stuffed next Friday
There will be an in house (@NASA) design review for the SAMS
 on the 21st of March
The USCA contract
 Scheduled for completion on Monday March 14
 Should be released to TRDA the next day
There was an internal design review for the TRP (Tag RAM
 Programmer)
 It is planned to be a black box with a serial interface
 Can be used by any computer system
Tag RAM Partitioning
 There are 4 sections to be used
 The first part will contain Calibration lab information such as
 coefficients and calibration due date
 The next part will contain information such as desired filter
 information
 The rest is still undefined but this leaves plenty of room for
 expansion.
 The Digital output section definition is still in work
 The Specifications are in work and on schedule
From Dean Becker
March 11, '94
USCA Status

First milestone is April 4,'94
LDS is to provide NASA with component selection advice
NASA has been given some information already
Alternative for Tag RAM
System critical single source item
8751 substitute for DS5000
Less expensive, surface mount, low profile
Help with Digital output definition
Cable testing, technical discussions, component selection
Help with diagnostic methodology
Help to identify and eliminate one shots, pots, mechanical relays, etc.

A list of surface mount parts and prices is being generated at LDS based on the version 1 USCA to be given to NASA

We have also helped them with suggestions on physical and mechanical mounting and placement.

We understand all details of the USCA schematics and the flow of the internal control firmware. We have also gone through the preliminary specification in detail.

We need to be involved in all of the system aspects that surround the USCA.

USCA
This is well defined as per the contract and the schedule.

SAMS
We will need a SAMS for our customers for the commercialized version. This is for the NASA version 3 type.
Probably best to guide this design then use as is.

ADAS - Some funding in FY '94 then follow on in FY '95
We have suggested to NASA that this be a CMUX. A new input card would need to be developed. We need to convince NASA that LDS should do this design.

TRP
We will need this for any commercialized version.
Likely that this will be done with the co-op help
Best to use this design as is with our inputs on the way

550
We need to work with NASA and provide help on this as required.

The integration path into LDS manufacture has been identified.
Schematic entry will be redone at LDS
Board layout will copy NASA boards and auto route as possible
We are working up a per unit price for the USCA
The USCA contract should be released to TRDA March 15, '94
From Dean Becker
March 22 and 23 meeting with NASA

USCA Notes:

We will need to create a test facility for the individual boards of the USCA for the time when we go into production.

NASA has done environmental testing.

- Temperature testing: -30 to +50 degrees C.
- Operational analog output with 1X and 10X gains.
- An accuracy of 15.5 bits was obtained.
- EMI testing not done.

To be done on the Version 2 USCA.

There will be no temperature compensation on the USCA.

With the dual calibration path it is not needed.

Sensors are not corrected for temperature by the USCA.

The Burr Brown D/A used for the excitation voltage is running too hot. It is being changed out for one that is smaller and costs less.

Digital output:

- Curtis has breadboarded the design
- It will be asynchronous with:
 - 1 start bit
 - 16 data bits
 - 2 parity bits
 - 1.5 stop bits

- It will be implemented with the Phillips 87CE558 microprocessor or with a PAL by April 10.
- I received a fax from Curtis regarding the design plan and direction.

Multi-chip module (MCM).

- There is currently about a 50% reduction in the size of the circuitry using surface mount technology. Due to this the use of the MCM is questionable. The MCM requires a $10k NRE.

Test procedures are 15% complete.

- Environmental
- Electrical

The Mechanical drawings are to be done later than indicated on the schedule. The schedule indicated completion at CDR.

Releasing them 2 to 3 weeks later will not impact Lorals ability to fabricate version 3.

The replacement for the DS5000 will be the Phillips 87CE558.

- Based on the Intel 8751
- Has 32k of flash EPROM

The second source for the tag RAM is a chip set.

- Cost is less than current tag RAM.

May use this instead of the current tag RAM.
Available from more than one source.
Microchip technology PIC16C56 8 bit RISC microcontroller.
- 1K x 12 program EPROM
- 32 X 8 data RAM
- 12 I/O lines

Microchip technology 93AA56 (256 X 8) CMOS EEPROM.

SAMS notes:
- NASA Discussed block diagrams (2 enclosed) for the SAMS.
- 3 SAMS PCBs are in at NASA as of March 18.
 - NASA will build one.
 - We will receive one.
 - We will procure the parts.
 - We will build for our future use.
 - NASA will test it for us.
 - It is to be put into an enclosure for marketing demos.
 - We are to receive the parts list by fax ASAP.

Grumman gave a detailed description of the NASA sensor data acquisition, collection and distribution system.
- NASA KSC/PMS diagrams (2 enclosed) are the present system.
- Transducer data collection and distribution diagram (1 enclosed) is the future system.

NASA discussed three approaches to the Advanced Data Acquisition System (ADAS).
- A NASA developed VME chassis at the pad
- A 550 approach at the pad
- A CMUX approach at the pad with data to the 550 at LCC

Each approach includes input cards for the USCA digital output signal. These cards would have 40 (TBD) channels of input each.

Considering Loral's recent experience in this area, NASA is inclined to go with a Loral design.
- NASA wants a prototype by this October.
- We will prepare a proposal within the next two weeks.

David Payne and I will visit NASA on April 6th and 7th
- I will be interfacing with NASA for the electrical and mechanical design issues of the USCA.
- We will be presenting NASA with a proposal for the ADAS.
From Dean Becker

April 6 - 8 meetings with NASA/I-NET

USCA

Received latest schematics and parts list

Discussed areas which have changed

Input amplifier chain is now broken into 3 cascaded amplifiers instead of one. This allows calibration without the amplifier offsets becoming a significant part of the reading.

Input multiplexer now has the following inputs:

- Input signal (differential)
- Analog output signal (single ended)
- + Excitation (single ended)
- - Excitation (single ended)
- Temperature (single ended)
- 6.8 V Reference (single ended)
- 0.68 V Reference (single ended)
- 0.0 V Reference (single ended)

Microcontroller

Currently using only EEPROM for program and external storage.

Suggested using separate EPROM for program memory and EEPROM for external storage.

EEPROM could become altered in program space.

USCA would not function

EEPROM would need to be unsoldered to reprogram.

In this case the EEPROM could be a smaller memory size.

The EPROM is not an expensive or large item.

I-NET has tentatively agreed to this.

Combinational logic circuits could be replaced by PALs.

Reduced circuit size.

Flexibility for change and debug.

Mechanical design - Schematics are now organized by potential physical layout.

Four PCBs.

- I/O Protection
- Input Analog
- Output Analog
- Digital / Processor

LDS will look into possible surface mount connectors for interboard connections.

LDS will look into possible 2 bit parity code schemes for the digital output word.

SAMs

NASA has given LDS one set of the latest SAMS PCBs.
We will procure the parts and assemble the boards. NASA/I-NET will modify to the current configuration and debug the boards. We will use them for test and demonstration. We also have 25 Tag RAM boards which may be assembled for test and demonstration.

Advanced Data Acquisition System (ADAS)

Three possible implementations proposed. NASA preferred having a CMUX at the pad with data to a 550 at the LCC. NASA requests a prototype by October '94 and production units by January '94. Data decimation was discussed. Decimation will be performed at the USCA. Data rate is expected to be 2 Megasamples/Second.

MLP requirements (there are 3 MLPs).
- 200 sensors.
- Complete redundancy to the ADAS box level. (i.e. 1 USCA feeds 2 ADAS input channels.)

Pad requirements (there are 2 pads).
- 80 sensors.
- Complete redundancy to the ADAS box level. (i.e. 1 USCA feeds 2 ADAS input channels.)

This is a total of 10 ADAS units:
- 54 input cards (assuming 32 channels each)
- 10 bridge/time code cards
- 10 output cards
- 10 CPU cards
- 10 24 bit decoder cards (for the 550)

Design of the input card will be done by NASA engineering. The design will use the standard CMUX interface for input cards.

- VME interface
- PDB interface
- Simulator and associated circuitry

The rest of the design is to be done by NASA engineering: LDS will assist with design details and documentation for:

- Standard CMUX circuitry
- Xilinx design advice
- Requirements
- Block level design

Design can be done on paper by NASA then input into the LDS Cadence system by LDS.

Simulation would require NASA travel, however this can be minimized by simulation definition and preplanning. PCB layout will be done at LDS.
LDS action items

Preliminary functional block diagram and description for

Overall system

ADAS

- Hardware
- Data flow
- Software

Preliminary schedule and budget

Received USCA video tape.
Fr: Dean R. Becker
Re: USCA milestone 2

LTIS has input all USCA schematics and parts lists and has delivered the current package with questions to NASA. We have also assisted with the overall design of the USCA as well as the system with which it operates (ADAS). See the attachment A. Included is an updated project schedule for the USCA development. See Attachment B.
From Dean Becker
April 25 - 27 meetings with NASA/I-NET

USCA Design review

Distribution
USCA specifications
Updated schedule
Hardware documentation
Software documentation

Due to recent cost estimates for the USCA, numerous tradeoffs are being considered. This affects the specifications. It also affects the USCA schedule.
Possible changes being considered to reduce the price of the USCA.

Use components with commercial temperature range (0 to 70 degrees C).
This needs to be checked with respect to internal heating in the USCA and actual requirements for case temperature range.

Use single input channel as opposed to the A/B channel calibration scheme.
This reduces overall gain and offset calibration over temperature. This could be compatible with a system requiring only 10 or 12 bits of accuracy.

Use DSP chip only and remove the other microprocessor and its support chips.
This only requires new firmware to be written for the DSP chip.
Two EPROMS will need to be added to the DSP circuitry.

Replace 16 bit A/D with 12 bit A/D.
The 12 bit A/D is half the price of the 16 bit. Accuracy is compromised.

Remove the DDF chip.
Filtering up to 2 kHz can be done in the DSP chip. This compromises use with certain vibration sensors. A 60 Hz analog notch filter will need to be added. Extra code needs to be added to the DSP chip.

Replace the analog reconstruction filters on the output circuit with less expensive ones.
Minimal effect.

Replace PGA (programmable gain amplifier) with less expensive one.
Tolerable effect on accuracy.

Due to the redesign effort we are anticipating a one month hold in the schedule to complete version two.

USCA specification review
Enclosure must be weatherproof but does not need to be potted.
A stainless steel enclosure is preferred over aluminum as the aluminum will oxidize in the KSC environment. The MS connectors on the USCA will not have caps attached. The ID plate for the USCA may be a stick on or bolt on type rather than etched into the enclosure. There are some specifications that are changing and evolving due to the above mentioned possible changes that may be applied to the USCA. NASA will update the specifications to reflect changes identified during the meeting.

USCA details discussion

There was a discussion on the digital output circuit and format for the USCA.

Use the UART built into the DSP chip.

- 8 bit data format, parity, one start bit, one stop bit.
- Use alternate even/odd parity scheme for high/low byte identification.
- Limits overall USCA output word rate for 9.6 kHz information output.

NASA/Grumman agrees that this is acceptable. This does not change the input sampling, only the Nyquist rate for the output is affected. The original rate supported 10 kHz information.

ADAS details discussion

Operation using CMUX to a 24 bit decoder in the 550.

Discussed details of the source, label, packet to tag in the 550.

Discussed schedule for October 1 delivery of first ADAS.

Input card design

- NASA design of input circuitry.
- LTIS aids with integration to existing circuitry.
- Input is into LTIS schematic, layout, manufacturing system.

System design aided by LTIS.

Project management by NASA and LTIS.

Created preliminary schedule and statement of work.

Continued with further discussions

- USCA output definition
- ADAS input card definition
- USCA cost and tradeoffs
- USCA filters, DSP, etc.
Details on changes for the USCA

Digital output circuit

Will use the UART in the DSP chip

Eliminates the cost of external circuitry.

8 bit data

One start bit, one stop bit

One bit that can be parity or user defined

The 9th bit will be used for parity and for high byte/low byte ID.

The high byte will have odd parity

The low byte will have even parity

A lookup table will be used in the DSP to do this in real time.

The parity sequence will define high/low byte of the 16 bit output word.

The input card in the ADAS can use integration to continue to synchronize high and low bytes with parity errors.

The serial output will be transferred by current loop

This reduces component count in the output circuitry.

Use optical isolator for galvanic isolation out of the USCA.

Power for the current loop will come from the ADAS input card.

Use a 20 mA (TBD) current loop.

Serial output rate of the USCA

The serial output rate of the DSP is limited to 422 kbits/sec.

The total number of bits as defined above is 22 for each sample to be output.

This gives a maximum 16 bit word rate of 19.18 kwords/sec.

The maximum frequency content of the output data must therefore be less than 9.59 kHz.

NASA and Grumman have agreed that this rate is acceptable.

Note: The input sample rate to the USCA remains at 38.4 kHz.

Preliminary redesign goals for the USCA

Use components with commercial temperature range (0 to 70 degrees C).

This needs to be checked with respect to internal heating in the USCA and actual requirements for case temperature range.

Continue to use the A/B channel calibration scheme.

Grumman has requested that this remain in tact.

Output calibration circuitry will remain in place as well as input voltage standards and excitation calibration.

Use DSP chip only and remove the other microprocessor and its support chips.

This requires new firmware to be written for the DSP chip.

Two EPROMS will need to be added to the DSP circuitry.
The 8k x 8 EEPROM will be moved from the 5000 to the DSP.
The use of the 16 bit A/D is to continue.
This is under investigation, however preliminary findings are that this will be a requested feature and less bits would take away from the ability to commercialize the USCA.

Remove the DDF chip.
Filtering up to 2 kHz can be done in the DSP chip. This compromises use with certain vibration sensors.
A 60 Hz analog notch filter will need to be added.
Extra code needs to be added to the DSP chip.
Decimation can be done in the DSP chip after filtering.
consider dual filter structure to conserve DSPs resources.
IIR then decimate followed by FIR and decimate.

Replace the analog reconstruction filters on the output circuit with less expensive ones.
Minimal effect.

Replace PGA (programmable gain amplifier) with less expensive one.
Tolerable effect on accuracy.

Redesigned digital output circuitry as defined earlier.
This will reduce component count and therefore cost.

With the above restrictions we can expect the following conditions:
- 12 to 15 bits of digital accuracy
- 0.2 dB flatness from DC to 8 kHz for gains of .25 to 800
- 0.2 dB flatness from DC to 1 kHz for gains of 1000 to 2000
- Digital filtering will be available from 0 to 2 kHz
- The excitation accuracy will be 1 mV
- The preliminary components cost for this implementation is $550.00

Action items

NASA

Check out the feasibility of using commercial parts for the USCA.
Internal heating from power dissipation of components.
Effect of direct sunshine on the USCA case.
Establish a final case temperature range specification based on internal heating effects and the commercial (0 to 70 deg. C.) temperature range.

Issue a revised specification for the USCA with changes established from the meeting.
Issue written test procedures for the USCA when available.

Loral

Check on the cost of PCBs
Check board specifications that must be held.
Check multiple vendors including the one used by I-NET.
Check feasibility of using 12 bit converter for commercial USCA.
Continue checking on pricing.

Details on the ADAS design

NASA needs a prototype ADAS operating by October 1, '94
An ADAS would include the following:
- VME type chassis - will need CMUX backplane
- CPU card
- Bridge / time code card
- Output/recorder interface card
- USCA digital input card

The entire system will also need:
- A TAXI to fiber optic cable interface at pad for ADAS output.
 This will need to be up to 100 meters for the MLP.
 Short run in the PTCR.
- Interface for the 550 at LCC
 A fiber optic to TAXI interface.
 A TAXI to byte parallel interface (custom card for the 550).
 A 24 bit decoder card for the 550.
- Setup and control software for the ADAS
- Setup and control software for the 550

SAMS cards will also be resident in the ADAS chassis
The following cards must be designed and built for the complete system:
- The USCA digital input card (goes into the ADAS chassis)
- The SAMS controller card (goes into the ADAS chassis)
- The TAXI to byte parallel interface card (goes into the 550)

Fiber optic interfacing may be handled by a separate unit.
At this time these are the major tasks for the ADAS development.

Design of the USCA digital input card.
 This will be a cooperative effort by NASA and Loral.
Overall design of the entire USCA-SAMS-ADAS-550 system.
 This will be a cooperative effort by NASA and Loral.
The development of the SAMS controller card may be concurrent
but is not subject to the schedule restrictions of the ADAS.
 This will be a cooperative effort by NASA and Loral
Development of the setup and control software for the ADAS.
 This is to be developed by NASA.
Development of the setup and control software for the 550.
 This is to be developed by NASA.

Action items for the ADAS development.

NASA
Check the rate of the fiber optic link.
 Can it provide 125 MHz for the TAXI interface?

Loral
Investigate 24 bit decoder questions further.
 Can tag be based on label information only?
 Can source be changed without a tag change?
 How is setup programming done?
Check on TAXI electrical line lengths possible.
Verify ADAS output rates and 24 bit decoder input rates.
Check on TAXI to 24 bit decoder interface.
Write up ADAS:
 Statement of work
 Operational outline including:
 Data flow
 Diagrams
 Preliminary schedule
From Dean Becker
May 17, '94 Meeting with NASA/I-NET/Grumman

ACTION ITEMS

- Finnish temperature testing - INET/Pedro
- Build and test current loop circuit for USCA output - NASA/Curtis
- Noise testing - NASA/Curtis
- Test SCF analog filter circuit - INET/Pedro
- ADAS proposal write up - Loral/Dean/David
 - Investigation of ADAS output methodology
- USCA specifications - INET/Pedro
 - Input impedance
 - Common mode
 - Output ripple
 - Output load
- USCA input over voltage protection with power off - INET/Pedro
- Issue revised specification for the USCA - NASA/Bill

Temperature testing is in process
- One test run in the lab with 10 Watt load inside large USCA case.
 - External temperature measured 22 degrees C.
 - Case temperature measured 29 degrees C.
 - Inside temperature measured 44 degrees C.
- Testing outside to be done.

USCA output circuit
- The plan is to use a current loop with the current source in the ADAS. Curtis believes that this will cause a problem with frequency response.
- The circuit will be built and tested over a long run.

Noise and error handling
- We do not know what the noise and error results will be at the time of launch.
- Testing will be done with the chosen USCA digital output transmission method using a Bit Error Rate Tester (BERT).
- Test results will show the Error Rate from Noise In the Environment (ERNIE).
 - Test in the lab
 - Test at the pad
 - Test at the pad during launch
- Error handling will be determined by the results of this testing.
 - It is anticipated that data with errors will be sent but will be tagged as such.
Filtering in the USCA

Filters allowed in the DSP.
- From 2 to 10 kHz no filtering
- Below 2 kHz filtering can be done but with less than 511 coefficients.
- At higher decimation rates more coefficients may be used.
- May be able to use IIR type filtering
 - Phase irregularities can be removed with post processing if necessary since the characteristics are predictable.

Anti aliasing analog filter.
- A Switched Capacitor Filter (SCF) is planned.
 - Low cost - $3 or $4 vs. passive filter approx. $35.
 - This implementation may create noise problems and so the circuit needs to be tested first.

Synchronization of sampling in the USCAs.

Asynchronous sampling
- Time tagging as will be done in the ADAS is sufficient resolution for NASA's needs.
 - This is within about a 4 microsecond error window.
- Post processing correlation can be done using ADAS time tags.
 - This would require further processing i.e. interpolation and offset compensation in the correlation.
- NASA does not have a current requirement for this capability.
- Maintaining individual ADAS time tags for data samples is not reasonable for storage.
 - If data is regrouped by time then interpolation in the post processing cannot be done.
- Asynchronous sampling would be sufficient for eyeballing strip charts.

Synchronous sampling
- Data would be available for post processing without special processing to fix timing.
- The process of time tagging in the ADAS would be much easier as would be storage with time information.
- Impact on the USCA design appears to be minimal (TBD).
- The ADAS would be the source of this synchronization.
- The 429s are doing staggered synchronous sampling at this time at the pad.

ADAS output to the 550

The 550 bit sync/decoms are limited to 8 or 10 MBit operation.
- For PCM streams from ADAS this would require 4 lines.
- NASA would like to 'free up' some slots in the 550.
This would require removing the (6) bit sync/decoms and using (possibly) the MNI card. Use of the MNI would maintain the packetized data concept. New software would not be needed for the MNI card (we think).

We need to write up the ADAS proposal in an open way with respect to the output so that we can start contract work on this.

Tag RAM

Implementation

This function will be done using the Microchip RISC controller chip and a serial EEPROM.

- This is less expensive
- Not tied to one vendor for parts

Tag RAM programmer

NASA is looking at students as co-ops to do the programmer development.

Transducer health check

The idea was presented

- NASA is investigating this type of testing
- This is good for a future implementation but not the current design due to time and extra cost.

USCA excitation resolution

The use of 16 bits is somewhat of an emotional issue (like the input A/D).

- The cost of this is minimal

USCA input circuitry

The input attenuator is shunt out when not in use and does not add noise to the amplifier chain.

- The input impedance of the USCA is to be found.
- The input over voltage protection should work with the power supplies off. This is being checked.
 - The input multiplexers are good to 35V.
- The common mode specifications are being checked.

- The gain step size is an implementation choice.
 - Any gain can be chosen by using the DSP.

USCA analog output

The output ripple specification needs to be looked at.

- The high impedance of the sink is desirable.
- Check on the output loading specification.
Repeatability specification
Under same conditions
Each test is individually evaluated not averaged.

Accuracy measurements
These are done as a percentage of full scale because this is a common way to do it. It is recognized that percent of reading is better.

Meetings
Bill Larson has indicated that he would like to have a regular (weekly) interchange, in person, to pull together the details of the overall USCA/ADAS/SAMS/550 system and individual details. We need to work out the details that will allow my presents at KSC for several days weekly as required.
Bill Larson will be in San Diego the week of July 24,'94. He has suggested that we use this opportunity to meet with Sarasota and San Diego personnel concerned with the USCA system.
From Dean Becker
May 25 and 26 Meeting with NASA / I-NET / Grumman

Action items

- Order 5 Motorola DSP chips in surface mount. (LTIS/Dean)
 - Get full part number from Pedro.
- Finnish temperature testing (I-NET/Pedro)
- Look into parts for the USCA output circuit. (LTIS/Dean)
 - High speed opto-isolators for current loop.
 - Inexpensive, small DC-DC converter for RS-485 method.
- Finnish USCA output circuit. (NASA/Curtis)
- Noise testing (NASA/Curtis and LTIS/Dean)
 - Develop BER test for use at the pad with new output circuit.
- ADAS proposal write up (LTIS/Dean/David)
 - To be delivered to TRDA in two weeks.
- USCA specifications (NASA/Bill)
 - Complete specifications to date.
- Check data on the MNI card interface. (LTIS/Dean)
 - Speed, drive, number per 550.
- CMUX software (LTIS/Dean)
 - Source code, support tools needed.

USCA items

- The Motorola DSP chip used in the USCA now has a 24 week lead time.
 - NASA has 5 pieces that they will use for the version 2 design.
 - LTIS needs to order 5 pieces for the version 3 design right away.
- USCA temperature testing
 - A version 1 USCA was checked in sunlight with the power off.
 - Outside air temperature was 27 degrees C.
 - The case temperature was measured to be 42 degrees C.
 - This test will need to be performed at a higher ambient temperature with power and load applied.
- USCA output circuit
 - Current loop test circuit
 - Just began testing.
 - Using opto-isolator with built in amplifier for speed.
 - Need to check on high speed opto-isolators with out the amplifier.
 - Considerable roll off in the waveform.
 - Using 60 mA in the loop - too much.
- Differential transceivers (75ALS176)
 - Need to check on DC to DC converters
 - Price, size, availability
 - This would be a better transmission scheme if the cost works.
Noise testing

LTIS will help with BER testing and setup

The galvanic isolation is only required at the output of the USCA not at the input to the ADAS.

SCF antialiasing filter

Tested at 10 kHz, switching noise was found to be 1 mV with a 50 nS period.

This can be reduced with layout and filtering.

The filter will follow the sample rate change since both are based on the same clock and divider.

Overvoltage protection

This will be tested before version 2.

USCA synchronization

Circuit design is complete.

Synchronization clock will be feed to the USCA by the SAMS line.

This will be the same frequency for all USCAs regardless of the decimation rate of an individual USCA.

The rate will be the maximum A/D sample rate divided by 128 which is 40 kHz/128 = 312 Hz.

This will allow synchronous sampling with decimation rates up to 128 using binary increments.

This clock will be created by the output card in the ADAS and will be available to all other cards via a dedicated line in the PDB that was formerly the Nth sample line.

Error handling

When parity errors are detected from USCA to the ADAS input they will set a bit in the output word from the ADAS.

This could be a bit in the tag or the data field.

USCA progress

PCBs will be ready for version 2 USCA by June 17-24.

ADAS items

ADAS output to 550 input

NASA wants the MNI cards to be used in the 550s

To free up slots now used for bit sync / decons.

How many MNI inputs can be used per 550 chassis?

Each ADAS output will be one MNI input

See system diagram for over all MNI utilization.

The TAXI output of the MNI format needs to electrically drive from the MLP to the PAD.

It expected that three MNI cards will be needed for each 550.

PCM output

NASA does not need this format

They are willing to include it in the output card design

It will be a design done by LTIS.
This could be used for initial debug of the ADAS.

LTIS would like to include this format to have a universal output compatible with much existing equipment.

The fiber optic transceivers can operate up to 175 MBit rates.

NASA needs the ability to modify the firmware in the ADAS after delivery.

They will want source code for the card drivers
They will also put into place whatever software tools are needed to support code modification.

What tools are needed?

A specification for the software that will be needed for the 550 system is needed.

Synchronization of USCA sampling.

The output card will be able to be a master or slave to other chassis with the synchronization signal mentioned earlier in this report.

SAMS

The SAMS interface will only be required to communicate with USCAs.

It will not be used to communicate with tag RAMs directly. This will significantly reduce the complexity and cost of the SAMS interface that will reside in the ADAS.

Test

Board testing to be done by LTIS.

Initial testing

System testing of the ADAS prototype to be done by NASA.

Documentation

Will follow LTIS CMUX guidelines for board development.
Will follow NASA guidelines at the system level.

Deliverables

See modified preliminary statement of work for LTIS deliverables.

NASA will be responsible for chassis and power supply selection.

Schedule

See attached preliminary schedule.
From Dean Becker
June 13th and 14th meeting with NASA / I-NET

Action Items

Order 5 Motorola DSP chips in surface mount. (LTIS/Dean)
Part number DSP560001FC27 has been ordered (6 pieces, $32.84 each, and 36 week lead time). The reason for the long lead time is high demand and time phase of the manufacturing cycle. The distributor can help us to deal with this.

Finnish temperature testing (I-NET/Pedro)
This will be continuing when the new canister is available and will be done using an internal load.

Look into parts for the USCA output circuit. (LTIS/Dean)
An inexpensive, small DC-DC converter for RS-485 method has been found and a sample is to be included in the output circuitry for testing. (NASA/Curtis)

Finnish USCA output circuit. (NASA/Curtis)
This is designed using the RS-485 circuitry.

Noise testing (NASA/Curtis and LTIS/Dean)
Develop BER test for use at the pad with new output circuit.
This has been tested in the lab using a 721 BERT.
This is to be tested at the pad.

ADAS proposal write up (LTIS/Dean/David)
The first cut has been delivered to TRDA.

USCA specifications (NASA/Bill)
Specifications are complete to date.

Check data on the MNI card interface. (LTIS/Dean)
Speed, drive, number per 550.
The TAXI interface to the MNI card is at a 125 MHz rate.
This line should drive only a single MNI input.
If the signal is to go to multiple MNI inputs it should be electrically split using active drive circuitry.
Any number of MNI cards may be used in the 550 to the limit of its bandwidth.

CMUX software (LTIS/Dean)
Source code, support tools needed.
Support tools (PSOS, PROBE) and software required have been identified by LTIS and have been communicated to NASA.

ATP document for the USCA (NASA)
In work.
The schematics and parts list for the version 2 USCA are to be complete on June 27.

USCA items
Tag RAM

Is being implemented using the 16C54 Microchip controller and a serial EEPROM.

This gives a cost savings and does not tie the Tag RAM into one manufacturer.

Coding for the 16C54 is being done by Bill, one of the new co-ops. A current loop interface is being implemented that will power the Tag RAM circuitry as well as allow communications with the USCA. This is being worked on by Rich, who is also one of the new co-ops. The Tag RAM programmer will also be done by the co-ops.

Output circuit error testing.

BERT done on RS-485 circuitry using a 2000 foot cable in lab. Burst errors were found when the fluorescent lights were turned on.

A 422 kHz square wave signal through a RS-485 driver into the cable with termination at the other end produced a 3 Volt signal on another pair of unterminated lines. Wires in the cable are not twisted pairs. Consider filtering on the analog signal from the USCA. Consider turning off the digital output when using the analog output in the system.

Testing will be done at the pad with the 721 BERT on the 16th.

USCA to SAMS interface circuit

The SAMS control circuitry has changed significantly and is now called the ADAS USCA Interface (AUI). This circuit will use RS-485 interface and termination like the output circuit of the USCA but will be half duplex bi-directional. This circuit must provide the following functions:

Send commands and upload data from the AUI to the USCA.
Send Tag data and status from the USCA to the AUI.
Send the sync signal from the AUI to the USCA.
Send a USCA interrupt from the USCA to the AUI.

This will be accomplished with the following:

Transmission on the system will be at 9600 baud, asynchronous. This allows communication from a computer terminal for test purposes.

AUI will always send a word at a 312 Hz rate. This provides the sync function.

USCA will use the start bit from AUI as sync. This leaves a gap of slightly more than two words for USCA to send a word back.

AUI will hold the line in the mark state for two bits before and two bits after its transmission. From two bits after to two bits before, AUI will tri-state its control of the line.

During this turn around time USCA will take control of the line with a mark state.
If USCA has something to send to AUI it will do it
during this time. If not then USCA will hold the line in
the mark state.
This scheme allows for enough inaccuracy in timing
between the USCA and the AUI so that the units will not
walk on each other. It also forces the line to be driven so
that noise will not get into the system.
The value in the word being sent will determine its function.
The interrupt from the USCA will have a particular value
and will be sent when tag data or status are not expected.
The sync only word from the AUI will be uniquely
different from commands.
The USCA circuitry for this function will be:
A RS-485 driver receiver pair using the same DC-DC converter
as the output RS-485 driver.
A 16C54 microcontroller (like the one in the tag RAM).
Provides the function of a UART to the DSP and screens the
sync words so that the DSP does not need to process them.
Registers and latches to provide an interface between the DSP
and the 16C54.
The AUI circuitry is still TBD
Could use off the shelf UARTS
Could use the Xilinx for the UART functions.
The USCA - AUI protocol has been outlined as of June 16 and is
available in a separate document.
The schematics and parts list for the version 2 USCA are to be
complete on June 27.
At this time NASA will begin the fabrication of the version 2 units.
At this time LTIS will begin entry into its systems.
USCA testing will be as follows:
EMI
Environmental
Functional
ATP
Go-no go testing

ADAS items
Xilinx schematic input.
If possible should be done with an entry system that can be
converted to Concept by Cadence.
From Dean Becker
June 26th and 27th meetings with NASA/I-NET

Action items
USCA temperature testing to continue with new canister this week. (I-NET/Pedro)
ADAS proposal with budget to TRDA ASAP. (LTIS/David)
USCA software needs (I-NET/James)
 Memory and I/O map
 Task list, complete, to do
ATP document for the USCA (NASA)
ADAS AUI control interface (NASA/Joey)
 Define UART functions, list of tasks, control by sun station.
ADAS input interface (NASA/Curtis)
 Define UART functions, registers, Xilinx functions, priorities.
ADAS VME, PDB, simulator interface and definition. (LTIS/Dean)

USCA items
Noise testing for USCA output circuit
 Implemented at the pad with a loop using the 721 BERT.
 Test is showing no errors.
 This test will be running during the next launch on July 8.
USCA case design
 Consider using end plugs milled out so that the O-ring is captive.
 Looking at thermal considerations of the stainless case.
Schematics and parts list are ready for entry into the LTIS system.
Completed a review of the USCA schematics with only minor changes.
 Also reviewed the schematics for the tag RAM and the tag RAM programmer.
Tag RAM design is complete in hardware and firmware and is being testing.
The USCA software that will reside in the DSP needs
 A memory and I/O map
 A list of the tasks and functions
 That need to be done.
 That have been completed.
 A completion date.
Temperature testing using a distributed 10 Watt load will be done using a stainless prototype case in the sun this week.

ADAS items
Focus was on the AUI control interface and the USCA digital output interface.
This will be one card serving 16 USCAs.

Considering UARTS for both circuits

AUI

- Discussed sync pulse interface
 - Use of CTS to sync UARTs
- AUI automatic functions
 - Considering implementation using 8051 like controller with dual port RAM interface to the VME.
 - Register definition and other documentation.

Diagnostics

Input

- Need pull up and down on 485 input for positive detection of absent USCA in analog output mode.
- Implementation of multiplex packet control will likely be done in a dedicated Xilinx.
- Time stamp packets have priority over data packets inside input card.
 - Time will be within 3.2 microseconds of data arrival.

Diagnostics

Register definition and other documentation.

Data output tagging

- Sun station collects ID from USCA via AUI control interface in ADAS.
- Using data base Sun station assigns labels for USCA data
 - This label becomes a tag to the 550
 - Tag includes PDB type info
- The sun station sets up tags in the 550

Next Visit

- Discuss CMUX card interfaces for
 - PDB
 - VME
 - Simulator
- Discuss overall system aspects
 - Output card function
 - 550 tag association
 - Sun station function
From Dean Becker
July 12th through 14th meetings with NASA/I-NET

Action items
Curtis needs a hard copy of Xilinx library for 4000 series. (LTIS/Dean).
Coordinate PDR for ADAS packet - tag protocol. (LTIS/Dean).
Create basic framework schematics from ARINC-429 board for ADAS input card. (LTIS/Dean).
ADAS ATP document for USCA. (NASA/Tony).
Vibration, environmental, EMI, electrical.
ADAS input card needs to begin documentation outline for design. (NASA/Curtis/Joey).

USCA items
Noise testing for USCA output circuit
80 errors were found during the last launch.
Will set up a monitoring function for the August launch to determine the characteristics of the errors.
USCA case design
Will continue now that temperature testing is complete.
Considering internal rail like assembly to thermally conduct heat to the end plates.

Nick is entering the USCA parts list into the LTIS system.
Reviewed specific part choices with Pedro.
Temperature testing using a distributed 10 Watt load has been completed.

With an air temperature of 35 degrees C, in direct sunlight, and in a plastic box to shield the wind:
Circuit board temperatures rose to 80 to 100 degrees C.
Inside air rose to about 70 degrees C.
Case temperature rose to 55 degrees C.

Options available to reduce circuit board temperatures are:
Populate the long edges of the circuit board with copper traces on all layers to conduct heat from the planes to the edges of the board.
Aluminum or copper rails attached to the long edge of the circuit boards to conduct the heat to the end plugs of the USCA.
Consider an aluminum extrusion on the end plates to radiate heat as well as to protect the end connectors.
Mount the USCA with a gasket to a metal structure.
Mount the USCA out of direct sunlight.

This completes temperature testing until the version 2 USCA is available.
A revised schedule for the USCA development has been generated.

ADAS items

The method of interconnection from the input cards to the outside of the ADAS box needs to be determined. Discussed details of the common CMUX functions for input cards.

- VME interface, PDB interface, and the internal simulator circuitry.
- Covered details of the schematics of the ARINC-429 card as well as details of the VME Xilinx, and miscellaneous Xilinx.

Discussed details of the packet protocol in the CMUX.

- In reference to the USCA input function.
- In reference to the 550.

We will have a design review for this at LTIS Sarasota at the end of the week of July 18.
From Dean Becker
September 14th and 15th meetings with NASA/I-NET

Action items

Co-ordinate the mechanical design with Terry Greenfield of NASA and the LTIS shop for aluminum extrusions. (Dean/LTIS)
Co-ordinate the utilization of the use of the NASA Cadance system with Mike Nastanski of LTIS. (Dean/LTIS)
Co-ordinate update of the USCA schedule with Hank Taylor of INET. (Dean/LTIS)

USCA items

USCA case design
Reviewed the new case design with Bud Steinhoff, Bob Wallace, and Mike Moninger. Numerous problem areas were identified, many being cost drivers.
Relayed these items to the mechanical designers at NASA. All items were addressed and the consensus was the same.
We have a go ahead to move toward the use of an aluminum extrusion for the case instead of stainless steel.
 This will reduce the cost dramatically by comparison to the previous design.
 It will also drastically improve the thermal transfer qualities of the USCA.

The USCA parts list has been entered into the LTIS system.
 I have resolved all known problems with the parts list with Pedro.
 Nick has the information to correct the list we have.
 Nick has one board schematic of the three entered and is working on the second.
Temperature testing will be done on the new case when the prototype is complete.
A revised schedule for the USCA development will be generated.
 USCA testing is expected to complete by mid November.
 ADAS training as well as other items has affected this.

ADAS items
Curtis is well on his way with the ADAS input design of the Xilinx.
AUI serial I/O circuitry
 Consider individual UARTs for each USCA.
 Consider design in Xilinx for flexibility.
Training for the 550 hardware and ADAS issues is scheduled to commence October 3rd at KSC.
From Dean Becker
May 9, '94

USCA COMMERCIALIZATION DISCUSSIONS
WITH DICK TALMADGE - CONSULTANT

Input analog filtering

60 Hz filtering

The use of a 60 Hz notch filter will also eliminate any desired
signals that might exist in its stop band.
The use of a switched capacitor filter will create noise and is
undesirable for this application.
Is 60 Hz the only frequency that might cause this type of
interference?

Does 400 Hz exist?
Are there multi-phase power signals that might cause other
frequencies to show up?

Consider the use of interference tracking and elimination.
This is done by locking on to the periodic interference with a
tracking oscillator and also tracking the RMS amplitude. The
created signal is inverted and then added to the input signal to
cancel the interference.
This can be implemented in the DSP chip.
This would not eliminate wanted signal information.
This technique has been used before with good results in the
bio-medical field.

Anti aliasing filter

What is the expected signal level above Fs/2?
Based on this, what filter stop band attenuation will be required
for a 16 bit A/D?

Consider 6 pole Butterworth filter

Phase characteristics are predictable
Can reconstruct exact signal as required with computer
processing in non real time.

USCA signal sampling does not support data correlation.
Each USCA has its own free running sample clock.
Samples from one USCA to another are not correlated due to the
non synchronous sampling.
A random variable of jitter is being introduced.
Sample to sample correlation between different USCA data is not
possible with the introduction of this random variable.
Consider the use of a master clock from the ADAS that the USCAs
could use to lock up to.
Line length to the USCA would create a delay of the synchronizing clock, but this would be a constant that could be removed in real or non-real time. The time tagging of the digital sample to the ADAS does not have an effect on the above problem. The current system of 420s and 429s can do synchronous sampling. Are they set up this way?

Transducer health check

Consider circuitry to realistically check the transducer.
- 'Shunt cal' does not check the transducer.
- A transformer can be inserted in series with the sensor return.
 - This would be shorted out during normal operation.
- Inject a pulse to get the impulse response of transducer.
 - This can be processed in the DSP.
 - It can be used to form the cross correlation of the DFT with that stored in the tag RAM.
 - The impulse response could be saved in operation using SAMS control.
 - It could also be reported to the system via the SAMS controller for a health check of the transducer.

Inject a sinusoid of a given frequency to test the response of the transducer.

USCA excitation resolution

What resolution is actually required?
What is the function of the fine resolution of the excitation?
 - This does not provide added sensor resolution or calibration.
What is the cost of the circuitry required to support 16 bit resolution?

Input circuitry

Input attenuator
- Resistor noise effects at high gain settings if attenuator is first.
Is +/- 28 volt maximum input required?
What is the input impedance of the USCA
 - What is the effect of the input multiplexers on this and the accuracy?
Will the input over voltage protection still function when the USCA power supplies are not operating?
Common mode specifications
 - At what gain?
 - At 150 Hz not to 60 Hz?
Gain step size
Consider binary step gain increments
More efficient for processing computations afterward?

Analog output
Output impedance is not matched to the line and sink.
Noise pickup, reflections, etc?
Output ripple specification is too high.
Output loading could be specified by C+R.
Table should not be needed.

Repeatability specification
What are the conditions?
What statistics are to be used?

Accuracy measurements
Allow accuracy measurements to be a percentage of reading
instead of a percentage of full scale.
1. **Unavailability of the DSP chip used in the USCA.** This chip, Motorola 56001, is not available as Motorola is using all of these chips for their cellular phones. NASA and Loral had addressed acquiring the next chip in the family (56002). Loral got a quote from AVNET saying 100's were available next year, with 1000's the year after. We decided to continue with the Motorola family at this time. To test the availability of the chips, Loral will order 25 units.

 Dean Becker: Order 25 DSP chips for our USCA builds.

2. **Upgrade of the 4 I-Net systems to the latest release (6.1).** Current operational status of the 4 units is shown in Figure 1. The basic plan is to upgrade the LCC and DE Units and start the conversion process. The Wave Lab units will be modified after the next launch. In discussions with Doug Gibbs, Doug will provide an estimate of the costs and schedule to install the 6.1 upgrade to the units.

 Doug Gibbs: Provide cost estimates and schedule for installation

3. **General training course.** Bill Larson has offered to supply the updated DE unit for the training course. This would provide additional seats for training for operations (Grumman) people. Doug Gibbs will provide a cost for these additional trainees.

 Doug Gibbs: Provide a quote to train 2-4 additional people at the Training Course scheduled for Sarasota Nov. 7.

4. **550 development environment at KSC.** The intent is to allow Steve Romine to apply the software training by starting to perform the MNT module driver modifications.

 David Payne: Check with Vince Unger about bringing this to the Software Training course scheduled Nov. 14.

5. **MNI Cable Lengths.** Next, NASA is willing to test whether the MNI will drive the cable lengths (as shown in Figure 2). To support this, Dean Becker and Jeff Kuhn are trying to get two loaner...
boards. This would allow this vital link in using the MNI to be tested. I will check to see if the MNI is still part of the ADAS deliverables in the contract.

David Payne: Check deliverables on the ADAS schedule
Dean Becker: Co-ordinate getting the necessary equipment for NASA to perform these tests.

6. SCSI VLDS Tape for a 550. Jeff Kuhn or Rick Powell had mentioned to Bill Larson about a SCSI VLDS tape drive that we could interface into the 550's. This would allow the data to be written to the RAID discs at full rate (i.e. 8-10 MBytes per second) then use SCSI Disc Copy to transfer data to the tape unit at 4 MBytes per second. There may be a possibility that NASA may only need 4 MBytes per second? This tape could then be pulled out and taken to the Wavelab for reduction. Joel Weber talked to Paul Friedman about this. Paul saw no problem to transfer the data from the RAID to the tape at 4 MByte. Bill wants to see this demoed, and volunteered his DE 550, if we can arrange the tape Player from Metrum. There is a question if the Ciprico unit in the 550's has 1 or 2 SCSI ports. Joel is addressing getting a VLDS unit. If this approach works, NASA plans to:

- upgrade his Raids from 8 to 16 GBytes
- Buy two more 32 GByte drives
- purchase 3 VLDS units.

Paul Friedman: Does the Ciprico have two ports and do we need a special driver?
If the Ciprico only has one port, can we get another controller to test this.
Would the data be transferred totally on the SCSI bus, or would the VME bus get involved?

Joel Weber: Address getting a SCSI VLDS loaner

7. USCA Schedule. There are several items that involved the USCA schedule. The final result is NASA will turn over the final USCA design by Dec. 18th. LTIS will have a 3 month process to finish inputting, build and test the rugged version. If minor problems arise in the testing, Changes will be done by NASA and LTIS will incorporate these changes. If there are major problems (i.e. boards bang together, temperature failures, etc. NASA will do another revision level with a corresponding 3 month slip. The determination of Major and Minor, will be done by the USCA design team.

Mechanical: The prototype mechanical package was evaluated by LTIS engineers and several suggestions made. The main suggestion was to look at extruded aluminum as a casing. Bill Larson had checked and this should be a suitable casing for the launch environment. The aluminum will need to be anodized, and NASA will have to look at the tie down methods and locations. Dave M. the co-op, is re-addressing this design with light support from Terry Greenfield. NASA will send the newest version drawings to LTIS next week. This is probably “the long pole in the tent.”

NASA will run Temperature and Vibration tests on the current rev. of boards and enclosure. The next rev. will include changing from PGA to Flat Pack chips and also look at moving the digital board away from center.

Pedro Medelius: Send Mechanical Drawings of the USCA to LTIS. Address sending Autocad files via Internet to David Payne (Payne@world.lds.loral.com)

Electrical: Testing of the electrical circuits should be finished by next week. We discussed transfer of the layout information and how to minimize the current risk and future maintenance costs. To minimize risks now, we are planning to copy the current layout, by manual input, as much as possible. We discussed trying to read in the Gerber plots to minimize errors and to reduce development time. We will run a test case with the current board revision levels.

Pedro Medelius: Pedro will give Dean the current boards outputs, to test starting work.

Dean Becker: Dean will setup the DSP development environment at LTIS, Sarasota. He will also identify who the responsible person on LTIS side will be.
Programming: Current DSP programming is 80% done. This should be largely finished by Nov. 20, with refinements to be done until Feb. 2.

Test Procedures: Component test procedures will be done by next week. This is a debug level writeup for the components of the USCA. The System Level test will be finished by Nov. 11. This is board level test and debug.

8. ADAS Schedule. We addressed the ADAS Schedule, and current plans are to have the ADAS turned over to LTIS by July, 95. We recognized that the ADAS had to be concurrent with the PMS Replacement project, and a revised schedule, showing the PMS Replacement and ADAS development schedule is being drawn by Hank Taylor. The ADAS specs will be modified and addressed at the next PMS meeting.

 Hank Taylor: Provide revised ADAS schedule to all members of the team.
 Dean Becker: Dean Becker will rewrite the ADAS preliminary specifications based on the 550 implementation.

9. TOA system (Lightning Detection) LTIS is trying to setup a meeting with the FAA to discuss the use of the NASA developed TOA system. We are trying to co-ordinate this with the Tech 2004 conference. Steve Borowski has been trying to meet with the appropriate Program office. They had cancelled the Thursday meeting, but have rescheduled for Monday. NASA has to know on Monday if this meeting will happen, to get the travel orders done.

10. Titan/Centaur: Joel Weber and I borrowed the USCA demo unit and met with Steve Smith of the Titan/Centaur launch people. He is very interested in the USCA/ADAS units. He is building a new payload facility in the next two years and wants to address designing the USCA/ADAS up front. He is also going to set up a meeting with the other instrumentation people on the Air Force side. This will happen within a month. We are also going to ask him to refer us to the San Diego plant.
Figure 1 Current 550 systems

Figure 2 Test Configuration for MNI Drives
Figure 3 RAID to VLDS to Wave Lab dataflow

Best Regards,
Loral Test and Information Systems

David Payne
July 7, 1995

Brevard Community College
Center of Technology Innovation
250 Grassland Road S.E.
Palm Bay, FL 32909

Attention: Mr. Jared Whitcomb

Subject: BCC PO #433, TRDA #405; USCA

Enclosure: Milestone 3 Invoice

Reference: Telcon with J. Whitcomb, BCC & S. Carroll, LTIS of 7/5/95

Dear Mr. Whitcomb,

Milestone #3 to the subject contract which states: "Complete manufacturing & deliver to TRDA five copies of design Version 3 USCA's. These Version 3 USCA's will be manufactured according to the final approved Version 3 design contained within the Loral CAD System" has been completed. The units were delivered in early June to Mr. Bill Larson at NASA.

Should you have any questions regarding this matter, please do not hesitate to call me at 941/377-5538

Very truly yours,

LORAL TEST & INFORMATION SYSTEMS

[Signature]
Stephen G. Carroll
Manager, Contracts Department

SGC/sgc

cc. Matt LaVigne, TRDA
July 12, 1995

TO: Matt
FROM: Tom
SUBJECT: Loral Milestone #3

I have talked to Bill Larson about the LORAL delivery of the five version 3 USCA's. Bill noted that they delivered 12 units, much more than required by contract!!

Bill said the testing is still going on as LORAL had made some mistakes in the delivered units and that had to be corrected first. However, he feels everything is going OK now and testing should be finished soon.

Therefore, I would recommend the Milestone #3 payment be made to LORAL.

Tom Davis
September 28, 1995

Brevard Community College
Center of Community Innovation
250 Grassland Rd S.E.
Palm Bay, FL 32909

Attention: Mr. Jarad Whitcomb

Subject: BCC PO #433, TRDA #405; USCA Milestone #4

Enclosure: (1) Design Package for USCA Version 3

Dear Mr. Whitcomb:

Milestone #4 to the subject contract which states "Release final Version 3 USCA design package. This version will be released as a Loral Standard Component, and will be available as a catalog item" has been completed. NASA testing is complete and the design package is enclosed. Our invoice for this milestone will be submitted under separate cover.

If you have any other questions regarding this matter, please do not hesitate to contact me at 813-377-5538, or by fax at 813-378-6905

Very truly yours,

LORAL TEST & INFORMATION SYSTEMS

Stephen G. Caroll
Manager, Contracts

cc: Matt LaVigne, TRDA
September 28, 1995

Brevard Community College
Center of Community Innovation
250 Grassland Rd S.E.
Palm Bay, FL 32909

Attention: Mr. Jarad Whitcomb

Subject: BCC PO #433, TRDA #405; USCA Milestone #5

Enclosure: (1) LTIS Product Sheet
 (2) LTIS Customer Newsletter
 (3) LTIS Condensed Catalog

Dear Mr. Whitcomb:

Milestone #5 to the subject contract which states "Complete final design package for Loral Commercial Version of USCA. This Loral Commercial Version of USCA will be a Loral Standard Component and will be available as a procured item" has been completed. The following activities have been completed in support of Milestone #5:

- LTIS has prepared and is distributing a USCA product sheet (enclosed) to customers.
- LTIS featured the cooperative development of the USCA with TRDA and NASA in a quarterly newsletter (enclosed) distributed to customers.
- LTIS has added USCA equipment to the Condensed Product Catalog (enclosed).
- LTIS has delivered 1650 Tag Ram assemblies to NASA to be used as part of USCA systems.
- LTIS is proposing the USCA products and enhancements to non-NASA customers in competitive procurements.

Our invoice for this milestone will be submitted under separate cover.

If you have any other questions regarding this matter, please do not hesitate to contact me at 813-377-5538, or by fax at 813-378-6905

Very truly yours,

LORAL TEST & INFORMATION SYSTEMS

Stephen G. Carroll
Manager, Contracts

cc: Matt LaVigne, TRDA
Universal Signal Conditioning Amplifier Model 4200

Typical System Configuration

```
<table>
<thead>
<tr>
<th>Transducer</th>
<th>TAG RAM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>USCA</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Transducer</td>
<td>TAG RAM</td>
</tr>
<tr>
<td></td>
<td>USCA</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Specifications

INPUTS
- Voltage: -40V to +40V
- Current: -25mA to +25mA
- Frequency: 0-10 KHz

OUTPUTS
- Analog Ranges: 0.1% accuracy
 - 0 to +5 VDC
 - 0 to 10 VDC
 - -5 to 5 VDC
 - -10 to 10 VDC
- Digital: 0.02% accuracy
- Serial Link: 16-bit Words
- Programmable Output

SIGNAL CONDITIONING
- Accuracy: 0.02% of full scale (digital output)
- Gain Range: 0.25 to 2000
- Sample Rate: 20 KHz
- Digital Filter Range: 8 programmable filters (127 tap FIR)
- Bridge Completion: 1 arm
- Excitation Voltage: 0 to 27 VDC
- Excitation Current (internal): 0 to 30mA
- Excitation Current (external): 0 to 250mA

PROGRAMMABLE FUNCTIONS
- Read Tag ID/Data
- Calibration Mode
- Change Parameter
- Gain
- Filter
- Excitation Configuration
- Excitation Levels
- Output Range
- Read Parameter
- Perform Self-Test
- Reset
- Download Custom Filter Coefficients
- Download Linearization Coefficients

POWER REQUIREMENTS
- Voltage: 24 to 32 VDC
- Current: 500mA Max (450 mA typical)
- Overvoltage: 32 VDC

ENVIRONMENTAL CONDITIONS (Rugged Version)
- Temperature: Full accuracy
 - Operating: -25 to 80°C
 - Storage: -40 to 80°C
- EMI: MIL-STD-561B, Class 1D
- Vibration
 - Sine: 10g, 50 to 5000 Hz
 - Random: 20g RMS, 0 to 2000 Hz
- Shock: MIL-STD-810, Procedure IV
- Humidity: 1 to 99% non-condensing
- Resistant to fungus, salt fog, sand, and dust

USCA COMPATIBILITY
- Compatible with many transducers, including:
 - Platinum Resistance Temperature
 - Flow Measurement
 - Discrete Valve Position Indication
 - Pressure
 - Thermocouples with Reference Junction
 - Low-Level Thermocouples
 - Discrete Liquid Sensors
 - Displacement (linear and accelerometer)
 - Pressure, Current Output
 - Precision Temperature Bulb
 - Load Cell
 - Vapor Detector... and many more!

LORAL Test & Information Systems

15378 Avenue of Science
San Diego, CA 92128-3407
(619) 674-5100 (800) 351-8483
Fax (619) 674-5145

P.O. Box 3041
Sarasota, FL 34230
(813) 371-0811
Fax (813) 378-1893

71 Buckingham Avenue
Slough, Berkshire SL1 4PN, UK
(44) 753-696488
Fax (44) 753-696218

Specifications subject to change without notice. Call Loral Test & Information Systems for latest revision.
All trade names referenced are the service mark, trademark, or registered trademark of the respective manufacturer or licensor.
Series 4000
Universal Signal Conditioning Amplifier Model 4200

The Universal Signal Conditioning Amplifier (USCA) functions as a self or remotely programmable Signal Conditioning Amplifier that automatically operates with most types of transducers. The USCA provides transducer excitation, performs filtering using an internal DSP, and provides both analog and digital outputs with better than .024% accuracy. The unit significantly lowers maintenance and operations costs with its Self-Startup, Self-Calibration, and Self-Test capabilities.

FEATURES/BENEFITS

- **Self-Configuring**
 - Provides automatic Offset, Gain, and Excitation values based on transducer information on Tag RAM

- **Digital Filtering**
 - Comes with seven standard filters and one custom downloadable filter

- **Digital Linearization**
 - Up to 8th order

- **Analog or Digital Output**
 - Supports analog or digital multiplexing

- **Channel to Channel Electrical Isolation**
 - Galvanically isolates digital and analog outputs from the input circuitry

- **Remotely Programmable**
 - Can check and modify configuration, and order self-test

- **High Resolution and Accuracy**
 - 16-bit A/D with 12-bit or better accuracy

- **Controlled sampling**
 - Synchronous or asynchronous sampling

- **Self-Calibration**
 - Provides constant gain measurements and correction factors during operation

- **Automatic Drift Compensation**
 - Provides Low Drift and High Accuracy operations

- **Self-Test**
 - Provides a complete unit test upon command

- **Reduced Operations and Maintenance**
 - Minimizes setup and test times with Self-Configuration, Self-Test, and Digital Control capabilities

USCA Block Diagram
September 28, 1995

Brevard Community College
Center of Community Innovation
250 Grassland Rd. S.E.
Palm Bay, FL 32909

Attention: Mr. Jarad Whitcomb

Subject: BCC PO #610, TRDA #410; ADAS Milestone #2

Enclosure: (1) Schematic of Input Card Design
(2) Parts List

Dear Mr. Whitcomb:

Milestone #2 to the subject contract which states "Complete the CAD Schematic Design of the Input Card" has been completed. The Input Card Design Schematics and Parts List are enclosed. Our invoice for this milestone will be submitted under separate cover.

If you have any other questions regarding this matter, please do not hesitate to contact me at 813-377-553, or by fax at 813-378-6905

Very truly yours,

LORAL TEST & INFORMATION SYSTEMS

[Signature]
Stephen G. Carroll
Manager, Contracts

cc: Matt LaVigne, TRDA
September 28, 1995

Brevard Community College
Center of Community Innovation
250 Grassland Rd S.E.
Palm Bay, FL 32909

Attention: Mr. Jarad Whitcomb

Subject: BCC PO #610, TRDA #410; ADAS Milestone #4

Enclosure: (1) Schematics of Output Card Design

Dear Mr. Whitcomb:

Milestone #4 to the subject contract which states "Complete the CAD Schematic Design of the Output Card" has been completed. The Output Card Schematics (Receive and Transmit) are enclosed. Our invoice for this milestone will be submitted under separate cover.

If you have any other questions regarding this matter, please do not hesitate to contact me at 813-377-5538, or by fax at 813-378-6905

Very truly yours,

LORAL TEST & INFORMATION SYSTEMS

Stephen G. Carroll
Manager, Contracts

cc: Matt LaVigne, TRDA
ADAS MILESTONES (TRDA 410 / LMTI SO 22049)

1. 03/30/96 - Complete Complete the ordering of the materials for the Input Card manufacturing and testing based on 90% P.L. Input design package to LMTI.

 STATUS 10/30/96: All parts for the Input Card have been purchased and received by LMTI.

2. 09/29/95 - Complete Complete the CAD Schematic Design of the Input Card.

 STATUS 10/30/96: Schematics have been completed.

3. 04/30/96 - Complete Complete the Input Card PC Board Fabrication.

 STATUS 10/30/96: The fabrication of the Input Cards has been completed, and 2 units have been delivered.

 STATUS 10/30/96: The Schematics have been completed.

5. 10/29/96 - Complete Complete the Output Card PC Board Fabrication.

 STATUS 10/30/96: The fabrication of the Output Card has been completed, and the card has been delivered.

6. 10/30/96 - Complete ADAS System Test. In conjunction with NASA-KSC, Complete the final design, testing and acceptance of the total ADAS.

 STATUS 10/30/96: System integration and test has been completed.
TRDA/Brevard Contracts Status

• All items on both contracts have been completed

 Pilot Production USCA is delivered to NASA

 Engineering development completed and released to

 Tag Ram

 Universal Input Module

 PIO with Hot Link Fiber Optic Interface

 ADAS 5000 System with IRIC

 ACA Software Control Package
Test Facility

Qualification Testing in progress at Launch Equipment

- NASA - Option for additional 800 USCA's
- LMTI received orders for 250 USCA 5200R from
 In test at the Launch Equipment Test Facility

- 50 USCA 5200R units delivered to NASA
- Shipped to San Diego for Final Integration and test

- Assembled and Tested in Florida
- Manufactured in Florida
- USCA's

TRDA / Brevard Contract Status
- Fund:ing - October '97
- Possible 7000 units over 5 years
- Test Cell Upgrade Program
- AEDC - Sverdru[p Purchased 1 unit for evaluation

Commercial Product Status
- Acoustic Test Cells
- Engine Test
- Environmental Test
- Launch Operations
- Vibrations
- Wind Tunnels

• Applications - Aerospace Focus

• Conjoint Analysis - In Process

 • Real Time Data Acquisition
 • Large number of channels
 • Reduce maintenance costs
 • Reduce Life Cycle Costs
 • Marketing Survey

Commercial Product Status
Introduced at Sensors and ITC Shows -- October '96
Price List Established
Brochures / Literature Released

ADAS 5000 Product Line

6U VME Version
Multiple Inputs
Lower Cost Per Channel
Rack Mount System
End to End Data Acquisition

Integrated Product Solution

Commercial Product Status
Transducer Electronic DataSheet TEDS
New GUI

Sigma Delta A/D

Local Control and Setup through Front Panel

Filters, A/D Sample Rate Selections

Other Improvements

Sensors Show Boston, May 1997

ISA Orlando, May 1997

Demo System - May '97

Mode Card for Bridge Completion

Rack Mount System

Board Level USCA USCA 5200B

Commercialization
• NASA MSFC Engine Test Facility

• EELV Program

• Systems Integration Lab ≈ 300 measurements

≈ Launch Pad ≈ Vertical Integration Building

• Titan Centaur Launch Pad Upgrade

Marketing - Opportunities
Presentation with Brevard and NASA

1998 - $5M
1997 - $2M

Commercial Product Forecast

Excellent potential for the commercial version

Now in Full Production

Design problems and some manufacturing startup

Program has taken longer than expected

SUMMARY
Commercialization of NASA Technology — Universal Signal Conditioning Amplifier (USCA)

Final Report

Lockheed Martin Telemetry & Instrumentation

for

Technological Research and Development Authority of Florida

and

Brevard Community College

Reference
BCC PO # 610, TRDA Grant 410
BCC PO # 433, TRDA Grant 405
General

Lockheed Martin Telemetry & Instrumentation (LMTI) is pleased to report the successful conclusion of the referenced contracts to commercialize a new technology developed by NASA Kennedy Space Center (KSC) that was coupled with existing LMTI products. All contract items have been satisfied.

Background

LMTI entered a partnership with KSC to transfer NASA technology for the Universal Signal Conditioning Amplifier (USCA) to the commercial sector. Funding for the project was provided jointly by the Technological Research and Development Authority (TRDA) of Florida, Brevard Community College (BCC), NASA, and LMTI. Under the contract with BCC and the TRDA, LMTI was to:

- Provide the resources and perform the commercialization of the USCA prototype developed by NASA KSC
- Provide the resources to adapt the government prototype to a commercially manufactured product
- Produce the government version and incorporate the resulting product into our standard product catalog
- Determine the extent of the USCA market, adapt the prototype design to targeted markets, and develop marketing and manufacturing plans
- Perform a design-to-cost analysis to develop a commercial product manufacturable within the budget constraints of the target market
- Develop and market the resulting commercial product worldwide

An additional underlying goal was to successfully transfer NASA technology to the commercial sector and generate additional business for the people of the state of Florida.
Status

Hardware Deliverables

BCC PO # 433, TRDA Grant 405
Develop and deliver USCA prototype per proposal
Completed 9-28-95

BCC PO # 610, TRDA Grant 410
Develop and deliver Automated Data Acquisition System (ADAS) per proposal including:
USCA Pilot Production
Tag RAM Programmer
USCA Interface Module
PIO Module
Hot Link Transmitter and Receiver Modules
ADAS Integration and Test
Completed October 30, 1996

Commercialization
The commercial government version of the rugged USCA (LMTI model USCA 5200R) is complete and in production.

Twenty pilot production units have been delivered to NASA KSC, and integration and test is currently being conducted by NASA engineers. LMTI has received orders from NASA for 250 USCA 5200R units with an option for an additional 800 units over the next five years. The first 100 USCA 5200Rs are being manufactured and delivered.

As part of the production release process, LMTI surveyed several Florida manufacturers and selected three vendors for the commercial USCA. These are:

V.A.W. of America
P.O. Box 3887
St. Augustine, FL 32085
(904) 794-1500

Advanced Quick Circuits
245 East Drive
Melbourne, FL 32904
(407) 752-8854

Spatron Technologies (STI)
285A North Drive
Melbourne, FL 32934
(407) 242-1249

Fabrication of the aluminum chassis
Manufacture of the printed wiring boards
SMT board assembly and test
LMTI has contracted with its Florida division for on-site inspection and acceptance at each of the vendor's facilities. In addition, all follow-on maintenance and support will come from our Sarasota and Melbourne offices.

LMTI also has contracted other work unrelated to USCA with the above companies. As a result, and due to their favorable rates, LMTI has placed additional orders with them.

Marketing

LMTI is in the process of marketing and introducing the USCA and ADAS to the commercial marketplace. Market studies and surveys have resulted in the segmentation of the market as shown in Figure 1. As can be seen, there are significant business opportunities for data acquisition.

![Figure 1. Market Segments](image)

A conjoint analysis currently underway will further test our market assumptions and identify areas of particular importance to our customers.
Product Development
Our marketing surveys indicate that USCA / ADAS technology is best applied to applications and customers that require:

- Lower life cycle costs
- Reduced maintenance costs
- 100 or more channels
- High accuracy (12 bits or 0.01%)
- Real-time data analysis
- Frequent reconfiguration
- Frequent calibration

Based on our current areas of expertise and the above requirements, we have identified the following applications for our initial marketing efforts.

- Launch operations
- Wind tunnels
- Vibration analysis
- Environmental test cells
- Engine test cells
- Acoustic test chambers

These application areas are best served by an integrated product solution, which is why we decided to market the USCA as part of a complete turnkey system called the Automated Data Acquisition System (ADAS) 5000.

The ADAS 5000 consists of all the hardware and software needed for complete end-to-end data acquisition. Since the ADAS 5000 is an entirely new product line, we designed a new product logo, assigned model numbers for the various product components, established prices, and published a commercial ADAS price list. We also created a literature package that includes a high-level ADAS brochure and supporting data sheets for each system component (see enclosure).

Market Introduction
The ADAS 5000 was introduced at two trade shows in October 1995: the Sensors show in Philadelphia, PA, and the International Telemetry Conference in San Diego, CA.

LMTI presented working demonstration equipment at both shows. In addition, technical papers were written and presented in technical meetings at each show explaining our new approach to data acquisition.
Overall, the response from these shows was excellent. At the Sensors show, we attended a press conference and generated a great deal of media interest. We also generated a number of sales leads (at least three opportunities resulted directly from our presence at the shows).

To build on last year's momentum, we will attend four additional trade shows in 1997 which will each require technical paper presentations, press conferences, and demonstration equipment.

Current Status

We recently redesigned the government version of the USCA to adapt it to a laboratory environment suitable for the commercial marketplace. This new USCA 5200B board-level configuration is shown in Figure 2. A rack-mount chassis is being designed to accept the new USCA model.

![Figure 2. USCA 5200B](image)

Upgrades to the USCA 5200B are underway as we add a Sigma Delta A/D converter to increase its sample rate and improve the filtering process. We are also adding more selections for filters and sample rates, new software to improve performance and make the product marketable to a wider set of customers, and an option for a "Mode" card that will provide bridge completion and other functions as required.
Pending Sales

LMTI has been working with a major prime contractor over the past year. The company purchased a single USCA for evaluation, which was delivered in December 1996. If their evaluation is successful, they may purchase up to 7,000 USCAs over a 5-year period.

Program Results

LMTI and NASA KSC, in partnership and under a grant from the Florida Technological Research and Development Authority and Brevard Community College, have successfully completed a transfer of NASA technology to a commercial manufacturing environment.

Commercial products are currently being produced and delivered to NASA by LMTI. Additional business has been created for several Florida companies. And LMTI has adapted the technology to a new commercially viable product for general industry.

LMTI has introduced the product to the commercial marketplace through trade shows, direct mail, and other means of advertising. While the product launch is still in its infancy, marketplace reaction is very encouraging.

Summary

Although the USCA dual-use program was more expensive and took longer than originally planned, LMTI is very pleased with the results. Design problems and initial manufacturing startup problems caused delays in the program. However, from the outset, LMTI firmly believed in the business potential of the NASA technology and therefore invested heavily in the program to guarantee its success.

Market feedback on the technology is overwhelmingly positive. LMTI has every reason to believe our new ADAS 5000 product line will become a significant part of our business in the near future.
REPORT OF NEW TECHNOLOGY/INVENTIONS
(Required by New Technology or Patent Rights Clause)

1. Name and Address of Contractor:

Technological Research & Development Authority
6770 South Highway U.S. 1
Titusville, FL 32780

2. Contract/Grant Number: NCC10-0028

3. List each New Technology/Invention by Title and Inventor's Name.

NOTE: A separate detailed description (including drawings) must also be provided for each New Technology/Invention listed.

4. List each New Technology/Invention on which Contractor elects to retain title.

5. List subcontracts containing New Technology or Patent Rights Clause (if 'None', so state). Provide name, address and subcontract number.

6. Certification is hereby made to the following (check 'a' or 'b')

 a. New Technology/Inventions listed above are all of the items required to be reported

 b. No New Technology/Inventions were made under the contract/grant identified above

X a. No New Technology/Inventions were made under the contract/grant identified above

X A. Diputo
Director of Contracts
Name & Title of Authorized Contractor Official

Date: March 31, 1997

F/N: 1002

TOTAL 5.8
REPORT OF NEW TECHNOLOGY/INVENTIONS
(Required by New Technology or Patent Rights Clause)

1. Name and Address of Contractor -

Technological Research & Development Authority
6770 South Highway U.S. 1
Titusville, FL 32780

2. Contract/Grant Number - NCC10-0008

3. List each New Technology/Invention by Title and Innovator's Name.

NOTE: A separate detailed description (including drawings) must also be provided for each New Technology/Invention listed.

4. List each New Technology/Invention on which Contractor elects to retain title.

5. List subcontracts containing New Technology or Patent Rights Clause (if "None", so state). Provide name, address and subcontract number.

6. Certification is hereby made to the following: (check "a" or "b")

 _____a. New Technology/Inventions listed above are all of the items required to be reported.

 X b. No New Technology/Inventions were made under the contract/grant identified above.

Matthew D. LaVigne
Business Manager
Name & Title of Authorized Contractor Official
Date: April 4, 1997

File 1002