
5 - (9 4 8 - ~ g b l b

S O W A R E ENGINEERING LABORATORY SERIES SEL-95-004

PROCEEDINGS
OF THE

TWENTIETH ANNUAL
SOFTWARE ENGINEERING

WORKSHOP

DECEMBER 1995

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

Proceedings of the Twentieth Annual
Software Engineering Workshop

November 29-30,1995

GODDARD SPACE FLIGHT CENTER
Greenbelt, Maryland

The Software Engineering Laboratory (SEL) is an organization sponsored by the National
Aeronautics and Space AdministratiodGoddard Space Flight Center (NASAIGSFC) and
created to investigate the effectiveness of software engineering technologies when applied
to the development of applications software. The SEL was created in 1976 and has three
primary organizational members:

NASAIGSFC, Software Engineering Branch

The University of Maryland, Department of Computer Science
.I

Computer Sciences Corporation, Software Engineering Operation

The goals of the SEL are (1) to understand the software development process in the
GSFC environment; (2) to measure the effects of various methodologies, tools, and
models on this process; and (3) to identifjr and then to apply successful development
practices. The activities, findings, and recommendations of the SEL are recorded in the
Software Engineering Laboratory Series, a continuing series of reports that includes this
document.

Documents from the Software Engineering Laboratory Series can be obtained via the SEL
homepage at:

or by writing to:

Software Engineering Branch
Code 552
Goddard Space Flight Center
Greenbelt, Maryland 2077 1

SEW Proceedings iii

SEW Proceedings

The views and findings expressed
herein are those of, the authors and
presenters and do not necessarily
represent the views, estimates, or
policies of the SEL. All material
herein is reprinted as submitted by
authors and presenters, who are
solely responsible for compliance
with any relevant copyright, patent,
or other proprietary restrictions.

CONTENTS

Materials for each session include the viewgraphs
presented at the workshop and a supporting paper
submitted for inclusion in these Proceedings.

Page

1 Session 1: The Software Engineering Laboratory

1 - 3 What's Happening in the SoJtware Engineering Laboratory?
R. Pajerski, S. Green, and D. Smith, NASNGoddard

- 2 2 1 The Empirical Investigation of Perspective-Based Reading
V . Basili, University of Maryland, S. Green, NASNGoddard, 0. Laitenberger,
University of Kaiserslautern, F. Shull, University of Maryland, S. Sorurngaard,
University of Trondheim, and M. Zelkowitz, University of Maryland

x4 7 1 Porting Experience Factory Concepts to ~ e w Environments
4

F. McGarry, Computer Sciences Corporation

n..-.93 Session 2: Reliability - Discussant: J. Liu, Computer Sciences Corporation

;A 95 Empirical Study of SofTware Testing and Reliability in an Industrial Setting
J. Slonim, J. Ye, and M. Bauer, IBM Canada

' 1 29 Software-Reliability-Engineered Testing
r ' .

J. Musa, AT&T Bell Laboratories

6 145 Reusing Software Reliability Engineering AnalysisJFom Legacy to Emerging
Client/Sewer Systems
J. Cusick, AT&T Bell Laboratories

$+ 161 Special Presentation: Software Engineering Survey - Presenter: J. Valett,
NASAIGoddard

c'p , 167 Session 3: Product Evaluation - Discussant: J. Valett, NASNGoddard

' i -- 169 A Family of User Interface Consistency Checking Tools: Design and Development
b

of SHERLOCK
B. Shneiderman and R. Mahajan, University of Maryland

- 189 A COTS Selection Method and Experiences of Its Use
J. Kontio, R. Tesoriero, G. Caldiera, University of Maryland, S-F. Chen, K.
Limperos, and M. Deutsch, Hughes Information Technology Corporation

p" 0 - 21 5 Process Enactment within an Environment
M. Zelkowitz and R. Tesoriero, University of Maryland

SEW Proceedings v

CONTENTS (casaslt9d)

Page

Session 4: Models - Discussant: D. Smith, NAShYGoddard

Reliability and Risk Analysis of the NASA Space Shuttle Flight Somare
N. Schneidewind, Naval Postgraduate School

Modeling and Simulation of Somare Projects
A. Drappa, M. Deininger, J. Ludewig, and R. Melchisedech, University of
Stuttgart

Evaluating Empirical Models for the Detection of High-Risk Components: Some
Lessons Learned
F. Lanubile and 6. Visaggio, University of Bari

Session 5: Method &aluation - Discussant: S. Green, WASNGoddard

Object-Oriented SoJtware Metrics for Predicting Reusability and Estimating Size
D. Sanderson, Southwest Missouri State University, T-L. Tran, J. Sherif, and S.
Lee, Jet Propulsion Laboratory

Improving the Software Testing Process in NASA S SoJtware Engineering
Laboratory
S. Waligora and R. Coon, Computer Sciences Corporation

How Do Formal Methods Aflect Code Quality?
S. Lawrence Pfleeger, SystemsISoftware, Inc., and L. Hatton, Programming
Research ktd.

Panel Discussion: Has the Investment in Process Demonstrated an Impact
on Software? - Moderator: V. Basili, University of
Maryland

T. DeMarco, The Atlantic Systems Guild, Inc.

J. Herbsleb, Software Engineering Institute

D. Rombach, University of Kaiserslautern

T. Wasserman, IDE, Inc.

Appendix A-Worbhop Arttendees

Appendix B-Standard Bibliography of $EL Literature

SEW Proceedings

-2 - i
I . - , < !, ,y'/ c;

Session 1: The Software Engineering Laboratory

What's Happening in the Software Engineering Laboratory?
Rose Pajerski, NASAGoddard

The Empirical Investigation of Perspective-Based Reading
Vic Basili, University of Maryland

Porting Experience Factory Concepts to New Environments
Frank McGarry, Computer Sciences Corporation

SEW Proceedings

SEW Proceedings

What's Happening in the Software Engineering
Laboratory ? J r f J , ." . . %

' ? '

Rose Pajerski, Scott Green, and Donald Smith /&, P
Code 552, Software Engineering Branch

NASA/Goddard Space Flight Center
ti 6\ 5 cr ' @; '\ {<< ::

Greenbelt, Maryland 2077 1

Background
Since 1976, the Software Engineering Laboratory (SFL) has been dedicated to understanding
and improving the way in which one NASA organization, the Flight Dynamics Division
PDD) at Goddard Space Flight Center, develops, maintains, and manages complex flight
dynamics systems. The SFL consists of three member organizations: NASNGoddard, the
University of Maryland, and Computer Sciences Corporation. Throughout the SEL's
history, its overall goal has remained the same: to improve the Division's software products
and processes in a quantifiable manner.

Achieving this goal requires that each development and maintenance effort be viewed, in
part, as a SEL experiment that examines a specific technology or builds a model of interest
for use on subsequent efforts. The SEL has undertaken many technology studies while
developing operational support systems for numerous NASA spacecraft missions. Data
from over 120 software development projects in the organization have been collected and
archived. From these data, the SEL has derived models of the development process and
product and has conducted studies on the impact of new technologies.

This paper presents an overview of recent activities and studies in the SEL, using as a
framework the SEL's organizational goals and experience-based software improvement
approach. It focuses on two SEL experience areas: the evolution of the measurement
program and an analysis of three generations of Cleanroom experiments.

Software Improvement Approach
The SEL's basic approach toward software process improvement is to first understand and
characterize the process and product as they *exist to establish a local baseline (Figure 1).
Only then can new technologies be introduced and assessed (phase two) with regard to both
process changes and product impacts. Typically, several studies and assessments are in
progress at any one time, each with a duration of 1 to 3 years. The third phase of the SEL
approach (pac-ng) synthesizes the results of the first two phases and feeds them back
into the cycle for use by software engineers on subsequent projects. Experience packages

SEW Proceedings

include prmess-~lohing guidelines, eiaiing courses, toolis, and Mdebmks. The S1Elt's
process improvement approach has proven very effective in the Hi&t Q n m i c s DiGsion.
The Division's s o h a e product has shorn shsmtia l improvements in error rates, cost,
and development time. In 1994, the §EL r m i v d the Computer Society Awmd for
S o h w e Process Achievemet and a Fedad T e c h o l m Ladership Awzard for its
application of these concepts in b e FDD environment.

r t of Your Business

Detemajne Effective Inqprovemnt.
Wit Joint Team Approaches Help?

e WiM F o m l Methods Improve Reliability?
* What Reuse Approach Will Best Cut Cost?

Know Your Software Business
s What Are PAy Software Characteristics?
0 What Processes Do I Use?

What Measures Are keQd?

Fi~rcz 1. SEL Sgsfware Improvement Approach

SEL Goals
From its inception, the SEL has focused on both increasing reliability and reduGing life cycle
costs. Over ths: past 8 yeas, h e SEL has acGeved measured gains in both areas: reliability of
delivered systems has increased threefold, and current mission support costs axe half that of
older systems. However, ~ t h increasing pressure to reduce "time to deploy," SEX, gods
now emphasize redudng devdopment time as well as cost. Enabling process techn01ogies
have been selected, and analyses are underway to measure and assess their impact on both
cost and schedde. In addition, a viable process improvement infrasmcme must be
miainlained to realize these organiza~ond goals. The four improvement g d s (based on the
1994 SEL baseline) and the study areaslprocess technologies being investigated with each are
as follows:

e By 1998, ddiver systems 30% faster4ommercid-off-be-shdf (COTS) and reuse
processes, testing approaches

s By 1998, redwe devdopment cost per mission by 500/4OTS and reuse processes,
testing approaches

CP Mainfain development error rate of 1 error per thousand lines of code--Cleanrmm and
reading techniques

SEW Proceedings

e Mainkn experience base--Testing ch~actefi,mtion, maintenance baseline, measuement

'grogrm

The remdnder of this paper focuses on two of these activities: the evolution of the
measurement program and rhe §EL'S Clemoom expenmeflts.

Evolsmtion of the Measurement Progparm
By collecting software metkcs, the Software Engineering Laboratory has been abIe to
provide a substantial level of support to projects within the Flight Dynamics Division.
These services include bdding reliable software cost and schedule models, assisting in
managing md predidng project perfomance, and understding the impact that new
technologies have on our process and products. Recently, however, changes in the FDD
environment and the limitaaions ofthe existing data collection process md database structure
have made it more difficult for the SEL to provide expected Ievds of support.

Recent changes to the development and operational environmenas include:

Mgration from mainframe to client-server architecture

Compressed life cycles with overlapping phases and multiple builds

' Use of COTS and obj ect-oriented technologies (OOT)

Another driver for change was the realization that the SEL's use of measurement had evolved
and maared over the past 6 to 8 years. Different process measures were needed, especially
in the areas of inspection and testing, to assess new approaches to these acti~ties.
hcremeritd development had become the norm, and managers wanted flexibililgt in grouping
activity data into diflerent phases rather than follow a strict waerfall life cycle. In addition . .
to e x m i ~ n g the measurement data, the SEL spent a substantid amount of effort
the data cdlection process itself. hprovements were iden-lifid to ad&ess the following
IimitaGons:

The data collection system did not collect effort by subsystem, thus creating problems in
providing estimation planning support for single-subsystem devdopment projects.

Many incremental changes had been made to the data collection process over the years to
support focused studies, and consequently the data collation system was
increasingly more difficult to maintain.

The database structure required "tribal',' howledge to understand the relationships
between projects, which created problems for researchers.

s The majority of entries were performed manually.

e The data collection system performed only a few ongoing checks, which resulted in large
amounts of effort at project closeout.

SEW Proceedings

In response, the SEL embarked upon an effort to reexamine the entire measurement program.
The goals of this effort were to: .

Identi6 the measures that accurately reflect development, maintenance, and testing in
the FDD.

Develop a data collection system that captures those measures in the most efficient yet
accurate way possible.

Design a database structure that will house both new and old data in a format that is
more intuitive for new users and is more flexible to accommodate h r e data collection
needs.

The approach taken was to get input from all SEL member groups and then design, develop,
and implement the new data collection system. Initially, a diverse group of FDD managers,
University of Maryland researchers, and SEL staff gathered for a series of meetings to lay
the groundwork for the effort. This group identified what was good andlor bad about the
current data collection system and database; what changes they would like to see occur, and
what additional data should be collected. The result of these meetings was an initial draft of
the requirements for the new SEL data collection system.

Two groups were formed for the next phase. The first group was a smaller one that worked
out the requirement details and finished the requirements document. The second group was
the working group responsible for designing and implementing the data collection forms, data
collection procedures, and database.

One of the more interesting items that was called out in the requirements and database design
was a project-system-subsystem hierarchy, which provides the flexibility to view the data
from many perspectives. This hierarchy solved several problems. First, it allows related
projects to be grouped into a single system or project, making it easier for new database
users who do not possess "tribal" knowledge of the data. Second, it stores data in the
granularity needed for the creation of subsystem models and comparisons.

The collection and entry processes were examined in detail for potential improvements in
processing time, work flow, and paper reduction. Some of the more interesting changes in
these areas are to allow data form entry by project personnel using Word templates; to
automate quality assurance (QA) checks with automatic data form entry into the database;
and to set up repository tables for forms that fail QA checks until the discrepancies are
resolved.

To summarize, this effort among all the SEL 'partners examined the entire measurement
program and has led to:

Defined measures that better represent the process and product-Deleted 50% of the
original set of measures, added inspection data, and changed test measures for an overall
30% increase in measures collected.

SEW Proceedings

Improved the efficiency of collecting and quality assuring the damecreased the effort
required to collect and enter data by 30%.

Improved data retriev-sed COTS tools extensively to diagram the database
organization and improve access.

SEL Cleanroom Case Studies

Project Descriptions

Since the start of the SEL's investigation into the applicability of the methodology in 1988,
four Cleanroom projects have been completed:

Upper Atmosphere Research Satellite combined coarsdfine attitude determination and
star identification systems, also known as the Attitude Cleanroom Methodology
Experiment (ACME)

Solar, Anomalous, and Magnetospheric Particle Explorer telemetry processor
(SAMPEXTP)

WIND/POLAR attitude ground support system (WINDPOLR)

Solar and Heliospheric Observatory attitude ground support system (SOHOAGSS)

The SAMPEXTP and WINDPOLR efforts were conducted simultaneously and are
considered as two data points under the SEL's second-generation Cleanroom process model.
The SOHOAGSS, the latest project to be completed using the Cleanroom methodology, is
the SEL's third-generation Cleanroom process model. A detailed analysis of the first- and
second-generation systems was published in 1994 (Reference I); this paper summarizes
those results and provides a comparison with the most recent project (Reference 2).

During each project, an experiment team consisting of NASNGoddard managers, SEL
representatives, and a technology advocate was formed to monitor the overall process.
Modifications were made to the process in real time as necessary. Also, specific data was
collected at various points in the project life cycle for monitoring by the experimenter team,
although this was done with as little impact as possible to the project team.

Experiment Goals

As its primary goal, the Cleanroom methodology emphasizes defect prevention rather than
defect removal, It focuses on incrementally producing an error-free software product through
processes that promote statistical quality control. The goal is to produce software with a
high probability of zero defects and an operational measure of reliability.

The key elements of the methodology include an emphasis on human discipline in the
development process, a mathematically based design approach, and a statistical testing
approach based on anticipated operational usage. Development and testing teams are
independent, and all development team activities are performed without on-line testing. Use

SEW Proceedings
7 SEL-95-004

of box sthuctures, state macknes, r d n g by stepwise abstraction, f o m d conemess
demons~tpations, and peer review are applied as necessary.

System development is perfomed through a pipeline of small inaemenb to &an=
concend;ration md permit pardld testing and development to occur. The mzbthematically
based design approach and stepwise abstraction technique, in conjunction with emphasis on
peer review, serve to ensure program corredness. The statistically oiented testing allows foe
reliability models to be used for quality assessment.

On the initial Cleanroom project (ACME), the S W s pimary god was to aaempt to
increase w h a r e quality suad reliability vvithout i ve cost impact. The Sl!L
was also inatereged in contrasaing characteristics of Cl efforts with those of wpicd
nonXlemoom development efforts. A well-dibrakd baseline for comparison e ~ s t e d that
described a variety of process characteristics, including effort distribution, change rates, e m
rates, and productivity. This baseline represented a historical summary of a large number of
previous SIX studies at the start ofthe SEL's examination of Cleanroom.

The god of the second SEL Cleanrmm case study was threefold. First, the SEZ, was
interested in verifling the measures from the initial Cleanroom project by applying the
methodoloy to another project of similar size and scope (S EXTP). The initial effort
indicated potential benefits for the Flight Dynamics Divisioh, ditional supporting data
would help pinpoint particular strengths and weaknesses. Second, the SEL wanted to verify
the applicability of Cleanr 'ect substantially larger but more representative of
the development environmen LIR). Third, the SEL was interested in impacts due
to hrther process tailoring based on the initial study results and experiences.

The recently completed fourth project (SOHOAGSS) focused primarily on eamining the
scaling ability of the methodology. Analysis of the previous S E Cleanrooin studies had
indicated greater success in applying the methodology to smaller (less than 50K developed
lines of &e PILOC)) in-house development projects. However, typical ground system
development efforts include the development of multiple utilities and subsystems and
generally contain lOOK to 200K DLOC. These projects are also usually staffed with
contractor OH joint Government/contracfor teams, and earlier Cleanroom analysis of this type
of project had yielded less promising results. As in the earlier studies, the SOHOAGSS
project would be compared to previous SEL Cleanroom efforts and to the SEX baseline
projects with respect to process, cost, and reliability.

Product and process measures were continually examined to determine the impact of the
tailored Cleanroom methodology. The SOHOAGSS project followed the Gleanrosm
approach that had evolved through the previous SEL Cleanrmm projects, with two key
changes: removal of the compilation restriction on developers, and scheduled meeting points
between the Cleanroom experiment team and the project team.

SEW Proceedings

In all previous Cleanroom projects, developers were responsible for generating and reviewing
all d e , but the compilation and configuration steps were conducted by the test teams.
However, project s had cited two significant issues relative to this process: First, much
of the review and inspection time was f'ocused on uncovering syntactical errors that wodd
otherwise have been highlighted during component compilation. This reduced the mount of
effort twgeted toward uncovering logic and interface errors. Smnc4, all compilation emors
uncovered by the test team were reported back to the developers, who in turn would make
corrections and redeliver. This consumed testing effort that otherwise could be spent
executing and evduating test cases.

The expeiment ltm decided to mmodi@ the process on this project and allow developers to
compile code before it was inspected and delivered to the testers. The earlier project teams
had J s o stressed the need for more interaction with the expriment team to facilitate
discussions involving unclear process steps and to obtain early feedback of experiment
results. As a result, periodic meetings were scheduled with the SOHOAGSS project team
during the design and early coding stages. The meetings resulted in valuable communications
between the experiment team and project personnel; later in the project, however, meetings
were held less frequently due to difficulties in scheduling and the lack of topics requiring
discussion.

Figure 2 compares one key process element, activity effort distribution, across the thee
generations of Cleanroom projects. The figure indicates that the SOHOAGSS project
continued the trend of increased design effort and reduced codling effort found in the earlier
Cleanroom SEL studies. This highlights the project's reliance on well-understood component
design and the criticality of successfUI design and code peer review. Tshe comparison also
verifies that, by adopting aspects of the Cleanroom methodology, developers were
hndamentally changing their way of doing business.

Figure 2. Effort Distribution by Activity percent of Totd Eflort)

SEW Proceedings
9

SEL-95-004

Once a software component is placed under configuration control, SEL data is collected on
every change and error correction made to the software. For non-Cleanroom projects,
configuration control occurs following unit testing by the developer. On Cleanroom projects,
software is controlled following the component peer inspections. Each error and change is
classified in a variety of ways for analysis and comparison with other SEL projects. The
errors recorded are primarily the result of independent system-level testing, although a small
percentage of errors is uncovered by developers after the code has been controlled. Errors
documented between the configuration control of the software and the operational release of
the target system are classified as development errors; errors tracked after the operational
release are classified as operational errors.

Figures 3a and 3b examine the error profiles exhibited by the SE;L Cleanroom projects in
development (errors per KDLOC) and during the first 2 years of mission operational
support (errors per 100 KSLOC per year). The SEL baselines reflect different periods to
provide a more representative comparison for each of the error types. The development
rates on the Cleanroom projects are all below the 1989 baseline (when the SEL's Cleanroom
research began), with the recent SOHOAGSS project measurably lower than all previous
Cleanroom efforts. Since one chief goal of the project was to examine the scaling ability of
the methodology in the environment, this result is of particular significance. Before the
SOHOAGSS project, the benefits of the methodology for reducing development error rates
had been seen only on the smaller SEL projects. Operationally, the successive generations of
Cleanroom projects have resulted in a downward trend in measured error rates.

Baseline Gene ntion Generation Generation
Cleanm om Cleanm om O earn m

Figure 3a. Development Error Rates
(Errors per KDLOC)

Baseline Gemration Gemration Generation
Cleanmom Cleanroom Cleanroom

Figure 3b. Operational Error Rates
(Errors per 100 KSLOC)

SEW Proceedings

One of the original §EL Cleanroom goals was to improve the reliability of systems without
negatively affecting cost. The cost of developing the initial §EL Cleanroom project, captured
as team productivity in DLOC per day (Figure 4), actually showed measured improvement
over the baseline. However, the second-generation projects dipped slightly below the
baseline for non-Cleanroom projects. The SOHOAGSS project rebounded with a 33%
increase over the baseline and actually showed a 60% increase over the similar second-
generation WINDPOLR project.

Baseline Generation Generation 6eneratlon
Oeanro om Cleaaoom Clea soom

Figure 4. Productivity (SLOC per Day)

It is unclear to what extent various factors contributed to these favorable results. Candidate
factors may include removal of the compilation restriction, previous Cleanroom experience
by some development and test team members, high reuse percentages, and the application of
lessons learned from previous SEL Cleanroom projects. Virtually all team members indicated
a willingness to reapply the methodology on future SEL projects, as was true on all but one
of the Cleanroom efforts. Project members also agreed that the reliance on a thorough and
structured peer review process may ultimately make unit testing in the environment
obsolete, even on non-Cleanroom projects.

Environment Impacts

The SEL's understanding of the impact of Cleanroom in the environment has matured such
that significant elements of the tailored methodology are being incorporated as part of the
general recommended approach to software development. These elements include:

The formation of independent development and test teams

An increased reliance on peer review and inspections as part of the verification process

A decreased reliance on developer unit testing

e The inclusion of operational scenarios in acceptance testing

SEW Proceedings

Report Summary

With these two e f f o r t d e reengineering of the measurement program and the Cleanroom
experimenmearing completion, the SEL is well positioned to achieve its 1998 cost,
schedule, and reliability goals. In the rapidly changing workstation environment, we are
leveraging our experience in evolutionary process change, assessment, and improvement to
achieve our goals. We have selected additional enabling process technologies in COTS usage,
OOT, and testing approaches, and analyses are underway to measure and assess their impact
on both cost and schedule. By following the SEL7s experience-based improvement approach,
other organizations can achieve similar results.

References
1. V. Basili and S. Green, "Software Process Evolution at the SEL," IEEE Sofhuare, July

1994.

2. R. Coon, J. Golder, S. Green, and J. 07Neill, "Solar and Heliospheric Observatory
(SOHO) Mission Attirude Ground Support System (AGSS) Sofhume Development
History," GSFC 552-FDD-951026, November 1995.

SEW Proceedings

NASAIGoddard Space Flight Center

WHAT'S HAPPENING IN THE
SOFTWARE ENGINEERING LABORATORY

Twentieth Annual
Software Engineering Workshop

Rose Pajerski
Scott Green
Don Smith

SEL ORGANIZATIONAL STRUCTURE
Software Project Personnel Software Engineering Analsts

(Develop/Maintain Flight Dynamics S/W) (Analyze Process and Product)
I I

5 - 10 Researchers Staff Size:
Set Goals/Questions/Metrics I
- Design Studies/Experiments ;

Under Maintenance: 20 System Analysk/Research
Refine S/W Process Being Hosted: 50 Systems
- Produce Reports/Findings

to
320 Repotts/Documents 1976 - 1995:

process ; .-.-.-.-.-.-.-.-.-.-.-.
Measurement Support

(Maintain SEL Experience)

n . ! Staff: 2-5 SEL Database
i Function: Process Forms/Data :

QA
Record/Archive Data : Forms Library @ 240.000 /
Maintain SEL Database :
Operate SEL Library j Reports Library @ 5.000-10.0000 j -

Experience Fxtoly Canparents

SEW Proceedings

SEb GOALS

i DELIVER SYSTEMS FASTER
; 1 994 cycle time is 30% less than i
i 1990 baseline - lower by 50% in 3 i
; years

i * COTS and reuse processes i
i * Testing approaches*

i MAINTAIN (GOOD) RELIABILITY i
i 1 994 development error rate is i
1 75% lower than 1985 - maintain/ i
1 lower slightly
I * Cleanroom*
i * Reading Techniques*

'20th SEW Topics

i REDUCE COST
1 1 994 cost (effort per mission) is i

: 55% less than 1990 baseline -
i lower by 50% in 3 years
1 0 COTS and reuse processes

* Testing approaches*

i EVOLVE EXPERIENCE BASE
i Product baseline computed in 1986, i

1990, 1994 - continue to identify i
i areas for improvement
: 0 Testing Characterization*
I * Maintenance Baseline
i * Measurement Program*

ACTIVITIES OVERVIEW

COTS Process*

Measurement Progra

/ GOA
Impact of New Technologies I a aeanrOOm Reading Techniques*
and Approaches on Process - Technology Transfer { I and Product I Mechanisms I

UNDERSTANDING I I * Testing Approaches* I

L I I

Experience-based Concept Accommodates Change

-

% w

SEW Proceedings

- Product Characteristics - Process Chamteristics

* Maintenance Baseline
NASA Software Profile
Tools Usage'

* Software Reuse
Characterization*

ADAPTING TO CHANGE

CURRENT ACllVlT'lES
I I

/ ASSESSING I
/ "TI ::; Guidebooks a Fgment

UNDERSTANDING

{ '71 0 .-too and Approaches Technologies on Process

Baselining and Goal Setting
Crucial to Software Improvement

@ Cleanroom -
3 "Generationsn

I
Time +

ADAPTING TO CHANGE -
EXAMPLES IN THE SEL

Infrastructure: Evolution of Measurement Program
- Drivers for change
- Approach
- Observations
-

Multiple Case Study: Cleanroom Process Evolution
- Study goals
- Results on latest (3rd). generation project

SEW Proceedings

O MEASUREMENT PROGRAM EVOLUTION

Operational systems are changing
- Client-server architecture/multiple platforms

- Generalized software/COTS usage
- Data collected no longer matched process

> Overlapping phases/many small builds
> Independent testing

o Use of measurement maturing

- Re-evaluate measures

- Flexibility to link data in many ways

Environmental Changes and Need for Flexibility Were Key Drivers

APPROACH

e Identify measurement data requirements
- Start from scratch
- Base on user (Managers and Researchers) needs

Identify data collection process improvements
- Transition from paper to on-line
- Maintain QA steps
- Base on user (Developers and Data Support Staff) needs

Designhevise forms, database, process, and reports
- New forms in use
- New database created - being populated with old data
- New processes being prototyped

SEW Proceedings

MEASUREMENT PROGRAM CHANGES

To Data Content

* Project hierarchies

e Product/release information
(Partial context data)

. Schedule information (By phase
and/or build)

To Data Processinq

* On-line forms templates

0 Automated tools tied to CM
process

0 Streamlined forms tracking
and discrepancy notification

0 Plan to automate data
transfer t o database

Includes inspection and testing
data - Integrates development and
maintenance data

OBSERVATIONS

a Overall 30% increase in measures collected
- Deleted 50% of original set, added inspection/test measures
- Collection and entry process support reduced by 30%
-

e Issue of "Contextn data still open
- Product-related elements now in database
- Meaningful process analysis still requires subjective data/

personal interview
-

a Database and related COTS took are very powerful
- No need for custom-built systems
- Flexibility now linked with tools

SEW Proceedings

O SEL CLEANROOM CASE STUDIES

I s t Generation
(-1 990) (1 Project)

Software Size 40K DLOC

Team Size 3/2
(DevelopersTTesters)

Process Changes Variation of Mills'
Methodology
Higher Design Effort
Combined State
Machines with
Structured Design - Separate
Development and
Test Teams
Developers Did Not
Compile

2nd Generation (-1 992)
(2 Projects)

4/2 14/4
Similar t o I st

More Training

Used Box Structure
Design Technique

3rd Generation (-1 995)
(1 Project)

140K DLOC

Developers Compiled
Code Before Transfer
to Testers

Understanding
of Cleanroom Process
Greater (Culture)

Results Better Reliability Mixed - Smaller Project
Better Productivity Showed Similar ___)

Improvement t o 1 st;
Laraer Protect Did Not

PROCESS IMPACT -
40 r

EFFORT BY ACTIVITY

Oeslgn Code Test Other

m SEL BaseYne O 1st 6eneratlon Cleanmom
111 2nd 6anentlon Cleanroom 113m Generation Cleanmom

Relative Effort Tradeoff Between Design and Code for Cleanroom Projects

SEW Proceedings

PRODUCT IMPACT -
ERROR PROFILES

Development Errors
(per KSLOC)

Operational Errors
(per 100 KSLOC per Year)

7 I6

6 14

I2
5

18

4 8

3 6

2
4

2
t

8

SEL 1989 1st 2nd 3rd BaseUne Generatio Seneratio Generatio
Baseline Generation Generation Generation

Ueanroom Weanroan WeanrO~m
n n n

Cleanroo tieanroo Cleanroo

PRODUCTIVITY
(Source Lines of Code per Day)

40

48

3s Cleanroom Process
38

Elements:

25 Compiler Restriction
Removed

28

1s
Inspection Replaces Unit
Test

18
More Interaction With

5 Process Analysts
n
" SEL 1994 1st 2nd 3rd

Baseline Generation Generation GeMration
Ueanroom Cleanroom Cleanroom

Cleanroom Process Elements Are Now Mature and Being
Packaged as SEL Standard

SEW Proceedings

SEW Proceedings

The Empirical Investigation of Perspective-Based Reading

Victor R. ~ a s i l i l , Scott ~ r e e n 2 , Oliver I,aitenberger3,

Forrest ~ h u l l l , Sivert ~ @ r u r n ~ & r d ~ , Marvin V. 2elkowitz1

Computer Science Department1 & 1
Institute for Advanced Computer Studies

University of Maryland, College Park, MD, 20742 /' ;-
, ; ; /-I > %

{basili, fshull, mvz) @cs.umd.edu dl 3 ,+*

2 NASA Goddard Space Flight Center 8. i f (

Code 552.1 4 I:

Greenbelt, MD, 2077 1
scott-green @ gsfc.nasa.gov "3

3 AG Software Engineering
Fachbereich Informatik

Universitat Kaiserslautern
Postfach 3049

67653 Kaiserslautern
Germany

laitenbe @infonnatik.uni-M.de

4 The Norwegian Institute of Technology
The University of Trondheim

UNrr/NTH-IDT
O.S. Bragstads plass 2E

Trondheim, N-7034
Norway

sivert@idt.unit.no

This work was supported in part by NASA grant NSG-5123 and UMIACS.

Abstract

We consider reading techniques a fundamental means of achieving high quality software.

Due to the lack of research in this area, we are experimenting with the application and

comparison of various reading techniques. This paper deals with our experiences with

Perspective-Based Reading (PBR), a particular reading technique for requirements

documents. The goal of PBR is to provide operational scenarios where members of a

review team read a document from a particular perspective (e-g., tester, developer, user).

Our assumption is that the combination of different perspectives provides better coverage of

the document than the same number of readers using their usual technique.

SEW Proceedings

To test the efficacy of PBR, we conducted two runs of a controlled experiment in the

environment of the National Aeronautics and Space Administration / Goddard Space Flight

Center (NASNGSFC) Software Engineering Laboratory (SEL), using developers from the

environment. The subjects read two types of documents, one generic in nature and the

other from the NASA domain, using two reading techniques, PBR and their usual

technique. The results from these experiments, as well as the experimental design, are

presented and analyzed. When there is a statistically significant distinction, PBR performs

better than the subjects' usual technique. However, PBR appears to be more effective on

the generic documents than on the NASA documents.

1 . Introduction

The primary goal of software development is to generate systems that satisfy the user's

needs. However, the various documents associated with software development (e-g.,

requirements documents, code and test plans) often require continual review and

modification throughout the development lifecycle. In order to analyze these documents,

reading is a key, if not the key technical activity for verifying and validating software work

products. Methods such as inspections (Fagan, 1976) are considered most effective in

removing defects during development. Inspections rely on effective reading techniques for
success.

Reading can be performed on all documents associated with the software process, and can

be applied as soon as the documents are written. However, except for reading by step-

wise abstraction (Linger, 1979) as developed by Harlan Mills, there has been very little

research focused on the development of reading techniques. Most efforts have been

associated with the methods (e.g., inspections, walk-throughs, reviews) surrounding the

reading technique. In general, techniques for reading particular documents, such as

requirements documents or test plans, do not exist. In cases where techniques do exist, the

required skills are neither taught nor practiced. In the area of programming languages, for

example, almost all effort is spent learning how to write code rather than how to read code.

Thus, when it comes to reading, little exists in .the way of research or practice.

In the Software Engineering Laboratory (SEL) environment, we have learned much about

the efficacy of reading and reading-based approaches through the application and evaluation

of methodologies such as Cleanroom. We are now part of a group (ISERN') that has

SEW Proceedings

undertaken a research program to define and evaluate software reading techniques to

support the various review methods for software development.

In this paper, we use the following convention to differentiate a "technique" from a

"method": A technique is a series of steps, producing some desired effect, and requiring

skilled application. We define a method as a management procedure for applying

techniques.

1 . 1 Experimental Context: Scenario-Based Reading

In our attempt to define reading techniques, we established several goals:

* The technique should be associated with the particular document (e.g.,

"requirements) and the notation in which the document is written (e-g., English

text). That is, it should fit the appropriate development phase and notation.
* The technique should be tailorable, based upon the project and environment

characteristics. If the problem domain changes, so should the reading technique.
* The technique should be detailed, in that it provides the reader with a well-

defined process. We are interested in usable techniques that can be repeated by

others.

The technique should be specific in that each reader has a particular purpose or

goal for reading the document and the procedures support that goal. This can

vary from project to project.
* The technique should be focused in that a particular technique provides a

particular coverage of the document, and a combination of techniques provides

coverage of the entire document.

The technique should be studied empirically to determine if and when it is most

effective.

To this end, we have defined a set of techniques, which we call proactive process-driven

scenarios, in the form of algorithms that readers can apply to traverse the document with a

particular emphasis. Because the scenarios are focused, detailed, and specific to a particular

emphasis or viewpoint, several scenarios must be combined to provide coverage of the

document.

SEW Proceedings

We have defined an approach to generating a family of reading techniques based upon

operational scenarios, illustrated in Figure 1. An operational scenario requires the reader to

first create an abstraction of the product, and then answer questions based on the

abstraction. The choice of abstraction and the types of questions asked may depend on the

document being read, the problem history of the organization or the goals of the

organization.

I
~~llphasis

Analysis
generates questions

Procedure for building and
analyzing models with respect
to a set of goals

Figure 1. Building focused, tailored reading techniques.

So far, two different scenario-based reading techniques have been defined for requirements

documents: perspective-based reading and defect-based reading.

Defect-based reading was the subject of an earlier set of experiments in this series. Defect-

based reading was defined for reading SCR (Software Cost Reduction) style documents

(Heninger, 1980), and focuses on different defect classes, e-g., missing functionality and

data type inconsistencies. These create three different scenarios: data type consistency,

safety properties, and ambiguitylmissing infoi-mation. An experimental study (Porter,

1995) was undertaken to analyze defect-based reading, ad hoc reading and checklist-based

reading to evaluate and compare them with respect to their effect on defect detection rates.

Major results were that (1) scenario readers performed better than ad hoc and checklist

readers with an improvement of about 35%, (2) scenarios helped reviewers focus on

SEW Proceedings

specific defect classes but were no less effective at detecting other defects, and that (3)

checklist reading was no more effective than ad hoc reading.

However, the experiment discussed in this paper is concerned with an experimental

validation of perspective-based reading, and so we treat it in more detail in the next section.

1.2 Perspective-Based Reading

Perspective-based reading (PBR) focuses on the point of view or needs of the customers or

consumers of a document. In this type of scenario-based reading, one reader may read

from the point of view of the tester, another from the point of view of the developer, and

yet another from the point of view of the user of the system. To provide a proactive

scenario, each of these readers produces some physical model which can be analyzed to

answer questions based upon the perspective. The team member reading from the

perspective of the tester would design a set of tests for a potential test plan and answer

questions arising from the activities being performed. Similarly, the team member reading

from the perspective of the developer would generate a high level design, and the team

member representing the user would create a user's manual. Each scenario is focused on

one perspective. The assumption is that the union of the perspectives provides sufficient

coverage of the document but does not cause any particular reader to be responsible for

everything.

This work on PBR was conducted within the confines of the NASAIGSFC Software

Engineering Laboratory. The SEL, started in 1976, has been developing technology aimed

at improving the process of developing flight dynamics software within NASNGSFC.

This class of software is typically written in any of several programming languages,

including FORTRAN, C, C++, and Ada. Systems can range from 20K to 1M lines of

source code, with development teams of up to 15 persons working over a one to two year

period.

Assume we embed these requirements reading scenarios in a particular method. It then

becomes the role of the method to determine which scenarios to apply to the document,

how many readers will play each role, etc. This could be done by assuming, as entry

criteria, that the method has available to it the anticipated defect class distribution, together

with knowledge of the organization's ability to apply certain techniques effectively. Note

that embedding focused reading techniques in a method such as inspections provides more

SEW Proceedings 2 5
SEL-95-004

meaning to the "team" concept. That is, it gives the readers different views of the

document, allowing each of the readers to be responsible for their own view, with the

union of the readers providing greater coverage than any of the individual readers.

Consider, as an example, the procedure for a reader applying the test-based perspective:

Reading Procedure: For each requirement, make up a test or set of tests that will

allow you to ensure that the implementation satisfies the requirement. Use your

standard test approach and test criteria to make up the test suite. While making up

your test suite for each requirement, ask yourself the following questions:

1. Do you have all the information necessary to identify the item being tested

and to identify your test criteria? Can you make up reasonable test cases for

each item, based upon the criteria?

2. Is there another requirement for which you would generate a similar test

case but would get a contradictory result?

3. Can you be sure the test you generated will yield the correct value in the

correct units?

4. Are there other interpretations of this requirement that the implementor

might make based upon the way the requirement is defined? Will this effect

the test you made up?

5. Does the requirement make sense from what you know about the application

and from what is specified in the general description?

These five questions form the basis for the approach theltest-based reader will use to

review the document.

We developed two different series of experiments for evaluating scenario-based techniques.

The first series of experiments are aimed at discovering if scenario-based reading is more

effective than current practices. This paper's goal is to analyze perspective-based reading

and the current NASA SEL reading technique to evaluate and compare them with respect to

their effect on fault detection effectiveness. It is expected that other studies will be run in

SEW Proceedings

different environments using the same artifacts where appropriate. A second series, to be

undertaken later, will be used to discover under which circumstances each of the various

scenario-based reading techniques is most effective.

1 .3 Experimental Plan

Our method for evaluating PBR was to see if the approach was more effective than the

approach people were already using for reading and reviewing requirements specifications.

Thus, it assumes some experience in reading requirements documents on the part of the

subjects. More specifically, the current NASA SEL reading technique (SEL, 1992) had

evolved over time and was based upon recognizing certain types of concerns which were

identified and accumulated as a set of issues requiring clafication by the document

authors, typically the analysts and users of the system.

To test our hypotheses concerning PBR, a series of partial factorial experiments were

designed, where subjects would be given one document and told to discover defects using

their current method. They would then be trained in PBR and given another document in

order to see if their performance improved. We were initially interested in several

outcomes:

1. Would individual performances improve if each individual used one of the PBR

(designer, tester, user) scenarios in order to find defects?

2. If groups of individuals (such as during an inspection meeting) were given

unique PBR roles, would the collection of defects be different than if each read

the document in a similar way?

3. Are there characteristic differences in the class of defects each scenario

uncovered?

While we were interested in the effectiveness of PBR within our SEL environment, we

were also interested in the general applicability of the technique in environments different

from the flight dynamics software that the SEL generally builds. Thus two classes of

documents were developed: a domain-specific set that would have limited usefulness

outside of NASA, and a generic set that could be reused in other domains.

SEW Proceedings

For the NASA flight dynamics application domain, two small specifications derived from

an existing set of requirements documentation were used. These specification documents,

seeded with classes of errors common to the environment, were labeled NASA-A and

NASA-B. For the generic application domain, two requirements documents were

developed and seeded with known classes of errors. These applications included an

automated parking garage control system, labeled PG, and an automated bank teller

machine, labeled ATM.

1.4. Structure of this Paper

In section 2, we discuss how we developed a design for the experiment outlined above.

Major issues concerning constraints and threats to validity are described in order to

highlight some of the tradeoffs made. We also include a short overview of how the

experiment was actually carried out.

Section 3 presents the statistical analysis of the data we obtained in the experiment. The

section examines individual results and team results. In each of these parts, we look at the

results from both experiment runs, within documents and within domains.

Section 4 is an interpretation of the results of the experiment, but without the rigor of a
formal statistical approach. The presentation is again divided into individual results and

team results, with concentration on what effect the differences between the two runs of the

experiment had in terms of results.

Section 5 summarizes our experiences regarding designing and carrying out the

experiment.

2. Design of the Experiment

In this section, we discuss various ways of organizing the individual subjects and the

instrumentation of the experiment to test various hypotheses. Two runs of the experiment

were conducted. Due to the experiences gained in the initial run, some modifications were

introduced in its replication. Differences between the two runs of the experiment will be

pointed out where appropriate.

SEW Proceedings

For both experiments, the population was software developers from the NASA SEL

environment. The selection of subjects from this sample was not random, since everyone

in the population could not be expected to be willing or have opportunity to participate.

Thus, all subjects were volunteers, and we accepted everyone who volunteered. Nobody

participated in both runs of the experiment.

2.1 Hypotheses

We formulated our main question in the form of the following two hypotheses, where HO
is the null-hypothesis and Ha is the alternative hypothesis:

Hg There is no significant difference in the defect detection rates of teams applying PBR

as compared to teams using the usual NASA technique.

Ha The defect detection rates of teams applying PBR are signi$cantly higher as compared

to teams using the usual NASA technique.

Our hypotheses are focused on the performance of teams, but we will also analyze the

results for the individual performance of the subjects. We make no assumptions at this level

regarding the validity of the hypotheses when changing important factors such as subjects,

and documents. The constraints relevant for this particular experiment will be explicitly

discussed throughout this section, as will the generalizability of the results of the

experiment.

2.2 Factors in the Design

In designing the experiment, we had to consider what factors were likely to have an impact

on the results. Each of these factors will cause a rival hypothesis to exist in addition to the

hypotheses we mentioned previously. The design of the experiment has to take these

factors, called independent variables, into account and allow each of them to be separable

from the others in order to allow for testing a causal relationship to the defect detection rate,

the dependent variable under study.

Below we list the independent variables, which we identify according to how they can be

manipulated. Some of them can be controlled during the course of the experiment, while

some are strictly functions of time, and still others are not even measurable.

SEW Proceedings
29

SEL-95-004

* Controllable variables:

- Reading technique: W e have two alternatives: One is the technique

we have developed, PBR, and the other is the technique currently used

for requirements document review in the NASA SEL environment,

which we refer to as the "usual" technique.
- Requirements documents: For each task to be camed out by the

subjects, a requirements specification is handed out to be read and

reviewed. The document will presumably have an impact on the results

due to differences in size, domain and complexity.
- Perspective: For PBR, a subject can take one of three perspectives as

previously described: Designer, Tester or User.

* Measurable variables:

Replication: This nominal variable is not one we can manipulate, but

we need to be aware of its presence because there may be differences in

the data from the two experiment runs that may be the result of changes

to documents, training sessions or experimental conditions.

Round within the replication: For each experiment, every subject

is involved in a series of treatments and tasks or observations. The

results from similar tasks may differ depending on when they take

place.

* Other factors identified:

- Experience: The experience of each subject is likely to have an impact

on the defect detection rate.
- Task sequence: Reading the documents in a sequence may have an

influence on the results. This may be a learning effect due to the

repetitive reading of multiple documents.
- Environment: The particular environment in which the experiment

takes place may have an impact on how well the subjects perform. In

this experiment, this effect cannot be separable from effects due to

replication.

SEW Proceedings

There will also be other factors present that may have an impact on the outcome of the

experiment, but that are hard to measure and control. These will be discussed in Section

2.5. This section will also cover the last two factors mentioned above: Task Sequence (in
the literature referred to as "effects due to testing") and Environment.

2.3 Constraints and Limitations.

In designing the experiment we took into account various constraints that restrict the way

we could manipulate the independent variables. There are basically two factors that

constrain the design of this experiment:

* Time: Since the subjects in this experiment are borrowed from a development

organization, we could not expect to have them available for an indefmite amount of

time. This required us to make the experiment as time-efficient as possible without

compromising the integrity of the design.

Subjects: For the same reasons as stated above, we could not expect to get as many

subjects as we would have liked. This required us to be cautious in the design and

instrumentation in order to generate as many useful data points as possible.

Specifically, we knew that we could expect to get between 12 and 18 subjects for two days

on any run of the experiment.

Another factor that we had to deal with is that we had to provide some potential benefit to

the subjects since their organization was supporting their participation. Training in a new

approach provided some benefit for their time. This had an impact on our experimental

design because we had to treat people equally as far as the training they received.

2.4 Choosing a Design

Due to the constraints, we found that constructing real teams of (three) reviewers to work

together in the experiment would take too much time for the resulting amount of data

points. This decision was supported by similar experiments (Parnas, 1985) (Porter, 1995)
(Votta, 1993), where the team meetings were reported to have little effect; the meeting gain

was outweighed by the meeting loss. However, the team is an important unit in the review

process, and PBR is team-oriented in that each reviewer has a responsibility that is not

SEW Proceedings 3 1

shared by other reviewers on the team. Thus our reviewers did not work together in teams

during the course of the experiment. Instead we conducted the experiment based on

individual tests, and then used these individual results to construct hypothetical teams after

the experiment was completed.

The tasks performed by the subjects consisted of reading and reviewing a requirements

specification document, and recording the identified defects on a form. The treatments,

which had the purpose of manipulating one or more of the independent variables, were

aimed at teaching the subjects how to use PBR. There were four possible ways of

arranging the order of tasks and treatments for a group of subjects:

1. Do all tasks using the usual technique.

2. Do pre-task(s) with the usual technique, then teach PBR, followed by post-

task(s) using PBR.

3. Start by teaching PBR, then do some tasks with the PBR technique, followed

by tasks using the usual technique.

4. Start by teaching PBR, then do all tasks using PBR.

Option 3, where the subjects first use PBR and then switch to their usual technique, was

not considered an alternative because their recent knowledge in PBR may have undesirable

influences on the way they apply their usual technique. The opposite may also be true, that

their usual technique has an influence on the way they apply PBR, but that is a situation we

cannot control because the subjects already know their usual technique. Thus, this becomes

more a problem in terms of external validity.

All documents reviewed by a subject must be different. If a document was reviewed more

than once by the same subject, the results would be disturbed by the subject's non-erasable

knowledge about defects found in previous readings. This meant that we had to separate

the subjects into two groups - one reading the first document and one reading the second in

order to be able to compare a PBR and a usual reading of a document.

Based on the constraints of the experiment, each subject would have time to read and

review no more than four documents: two from the generic domain, and two from the

NASA domain. In addition, we needed one sample document from each domain for

training purposes. We ended up providing the following documents:

SEW Proceedings

Generic:
- Automatic teller machine (A m) - 17 pages, 29 seeded defects.
- Parking garage control system (PG) - 16 pages, 27 seeded defects.

NASA:
- Flight dynamics support (A) - 27 pages, 15 seeded defects
- Flight dynamics support (B) - 27 pages, 15 seeded defects

Training:
- Video rental system - 14 pages, 16 seeded defects
- NASA sample - 9 pages, 6 seeded defects

Since we have sets of different documents and techniques to compare, it became clear that a

variant of factorial design would be convenient for this experiment. Such a design would

allow us to test the effects of applying both of the techniques on both of the relevant

documents. We found that a full factorial design would be inappropriate for two reasons.

First, a full factorial design would require some subjects to apply the ordering of

techniques that we previously argued against. Secondly, such a design seemed hard to

conduct because it would require each subject to use all three perspectives at some point.

This would require an excessive amount of training, and perhaps even more important, the

perspectives would likely interfere with each other, causing an undesirable learning effect.

The use of control groups to assess differences in documents and learning effect appeared

to bear an unreasonable cost, since the use of such groups would decrease the remaining

number of data points available for analyzing the difference between the techniques. The

low number of data points might result in data that would be heavily biased due to

individual differences in performance. Based on the cost and the fact that previous related

experiments (Porter, 1995) showed that effects of learning were not significant, we chose

not to use control groups. This decision also made the experiment more attractive in terms

of getting subjects, since they would all receive the same amount and kind of training.

SEW Proceedings

Figure 2. Design of the experiment.

PBR technique

We blocked the design on technique, perspective, document and reading sequence in order

to get an equal distribution of the values of the different independent variables. Thus we

ended up with two groups of subjects, where each group contains three subgroups, one for

each perspective (see Figure 2). The number of subjects was about the same for the two

experiments (1 2- 14 subjects).

2.5 Threats to Validity

Threats to validity are factors beyond our control that can affect the dependent variables.

Such threats can be considered unknown independent variables causing uncontrolled rival

hypotheses to exist in addition to our research hypotheses. One crucial step in the

experimental design is to minimize the impact of these threats.

" Secondday
'Tralnmg Trmmg

We have two different classes of threats to validity: threats to internal validity and threats to

external validity. Threats to internal validity constitute potential problems in the

interpretation of the data from the experiment. If the experiment does not have a minimum

internal validity, we can make no valid inference regarding the correlation between

variables. On the other hand, the level of extemal validity tells us nothing about whether the

data is interpretable, but is an indicator of the generalizability of the results. Depending on

the external validity of the experiment, the data can be assumed to be valid in other

populations and settings.

PG

SEW Proceedings

ATM

The following five threats to internal validity (Campbell, 1963) are discussed in order to

reveal their potential interference with our experimental design:

History: We need to consider what the subjects did between the pretests and posttests.

In addition to receiving a treatment where they were taught a new reading technique,

there may have been other events outside of our control that had an impact on the

results. The subjects were instructed not to discuss the experiment or otherwise do

anything between the tests that could cause an unwanted effect on the results.

Maturation: This is the effect of processes taking place within the subjects as a

function of time, such as becoming tired or bored. But it may also be intellectual

maturation, regardless of the experimental events. For our experiment, the likely effect

would be that tests towards the end of the day tend to get worse results than they would

normally. We provided generous breaks between sessions to suppress this effect.
Testing: Getting familiar with the tests may have effects on subsequent results. This

threat has several components, including becoming familiar with the specifications, the

technique, or the testing procedures. We tried to overcome unwanted effects by

providing training sessions before each test where the subjects could familiarize

themselves with the particular kind of document and technique. Also, the subjects

received no feedback regarding their actual defect detection success during the

experiment, as this would presumably increase the learning effect. Related experiments

have reported that effects due to repeated testing are not significant (Porter, 1995).
Instrumentation: These effects are basically due to differences in the way of

measuring scores. Our scores were measured by two people independently, and then

discussed in order to resolve any disagreement consistently. Thus this effect is not

relevant to us.

Selection: Subjects may be assigned to their treatment groups in various ways. In our

case there was a difference between the two experiment runs. In the first one, the

subjects were assigned roles for PBR based on their normal work in the NASA

environment in order to match roles as closely as possible. This was only minimally

successful since the sample was not an even mix of people representing the various

roles. However, for the replication, the subjects were randomized. Thus effects due to

selection may be somewhat relevant for the first experiment, but not for, the replication.

Since PBR assumes the reviewers in a team use their usual perspectives, the random

assignment used in the experiment would presumably lead to an underestimation of the

improvement caused by PBR.

SEW Proceedings

Another threat to validity is the possibility that the subjects ignore PBR when they are

supposed to use it. In particular, there is a danger that the subjects continue to use their

usual technique. This need not be the result of a deliberate choice from the subject, but may

simply reflect the fact that people unconsciously prefer to apply existing skills with which

they are familiar. The only way of coping with this threat is to provide enhanced training

sessions and some sort of control or measure of conformance to the assigned technique.

Threats to external validity imply limitations to generalizing the results. The experiment was

conducted with professional developers and with documents from an industrial context, so

these factors should pose little threat to external validity. However, the limited number of

data points is a potential problem which may only be overcome by further replications of

the experiment. Other threats to external validity pertinent to the experimental design

include (Campbell, 1963):

Interaction of testing and treatment: A pretest may affect the subject's sensitivity

of the experimental variable. Both of our groups receive similar pretests and treatments,

so this effect may be of concern to us.

Interaction of selection and treatment: Selection biases may have different

effects due to interaction with the treatment. One factor we need to be aware of is that

all our subjects were volunteers. This may imply that they are more prone to

improvement-oriented efforts than the average developer - or it may indicate that they

consider the experiment an opportunity to get away from normal work activities for a

couple of days. Thus, the effects can strike in either direction. Also, all subjects had

received training in their usual technique, a property that developers from other

organizations may not possess.

Reactive effects: These effects are due to the experimental environment. Here we

have a difference between the two runs of the experiment. In the initial run, the testing

was done in the subjects' usual work environment. The subjects received their training

in groups, and then returned to their own workspace for the test. For the replication,

the experiment was conducted in an artificial setting away from the work environment,

similar to a classroom exercise. This may influence the external validity of the

experiment, since a non-experimental environment may cause different results.

There are also a number of other possible but minor threats.'One of these is the fact that the

subjects knew they were part of an experiment. They knew that the purpose of the

experiment was to compare reading techniques, and they probably were able to surmise our

SEW Proceedings

expectations with respect to the results even if not stated explicitly. However, these aspects

are difficult to eliminate in experiments where subjects are trained in one technique while

the comparison technique is assumed to be known in advance. A design where they receive

equal training in two techniques would be more likely to hide these effects.

2.6 Preparation and Conduction

We wanted the two experiment runs to be as similar as possible in order to avoid

difficulties in combining the resulting data, but some changes between the runs were still

necessary. We began preparing for the second run by reviewing all documents and forms

in order to improve them from an experimental viewpoint. We had some comments from

the first experiment run that were helpful in this process. The changes were minor, and

most were directed towards language improvement. We changed the seeded defects in three

places in one of the generic documents due to a refrned and deeper insight into what we

would consider a defect. There were some changes to the forms, scenarios and defect

classification as well, but again the changes were made to make the documents easier to use

and understand.

For the NASA documents, the changes were more fundamental. For the first experiment

run, comments from the participants indicated that the documents were too large and

complex. We decided to make them shorter and simpler for the second experiment run. As

a side effect of this change, the total number of defects in the NASA documents was

reduced. However, the types and distribution of seeded defects remained similar.

The basic schedule for conducting the experiment remained unchanged. Each experiment

run lasted for two whole work days, with one day off in-between. The number and order

of document reviews were also the same for both experiments, but the time allowed for

each review was modified. For the first experiment run, the maximum time for one

document.was three hours. However, for the generic documents, only one person used

more than two hours (140 minutes), so under the more controlled environment of the

second experiment run, we felt safe lowering the maximum time to two hours.

Another important change resulted from the comments we received from the first

experiment run, regarding the training sessions. The initial run included training sessions

only for the generic documents, but the subjects felt training for the NASA documents was

warranted as well. Therefore in the second experiment run, we had training sessions

SEW Proceedings

before each document review. For this purpose we generated two sample documents that

were representative of the NASA and generic domains.

After the second run of the experiment, we marked all reviews with respect to their defect

detection rate. This was measured as the percentage of the seeded defects that was found by

each reviewer. We did not consider any other measures such as false positives. Based on

the defects found by the reviewers, we also refined our understanding of the defects

present in the set of documents. After several iterations of discussion and re-marking, we

arrived at a set of defect lists that were considered representative of the documents. Since

these lists were slightly different from the lists that were used in the first experiment, we re-

marked all the reviews from the first experiment in order to make all results consistent.

3 . Statistical Analysis

We ran the experiment twice, in November 1994 (hereafter referred to as the " 1994

experiment") and in June 1995 (hereafter referred to as the "1995 experiment"). In the

1994 experiment, we had twelve subjects read each document, six using the usual

technique and six using PBR. The six using PBR were distributed equally among the three

perspectives. In the 1995 experiment, we had thirteen subjects who read each document,

although a fourteenth volunteer unfamiliar with the NASA domain also read the generic

documents only.

After the two experiment runs, we have a substantial base of observations from which to

draw conclusions about PBR. This task is complicated, however, by the various sources

of extraneous variability in the data. Specifically, we identify four other variables (besides

the reading technique) which may have an impact on the detection rate of a reviewer: the

experiment run within which the reviewer participated, the problem domain, the document

itself, and the reviewer's experience.

We attempted to measure reviewer experience via questionnaires used during the course of

the experiment: a subjective question asked each reviewer to rate on an ordinal scale his or

her level of comfort using such documents, and objective questions asked how many years

the reviewer had spent in each of several roles (analyst, tester, designer, manager).

However, for any realistic measurement scale, most reviewers tended to clump together

toward the middle of the range, with relatively few outliers in either direction. Thus we

seem to have a relatively homogeneous sample with respect to this variable. While good

SEW Proceedings

from an experimental viewpoint, this unfortunately means that our data set does not allow

for a meaningful test of the effect of reviewer experience, and we are forced to defer an
investigation of the interaction between reading technique and experience until such time as
we can get more data points. For this reason, reviewer experience will not appear as a

potential effect in any of our analysis models.

Technique, experiment run, and document are represented by nominal-scale variables used

in our models, where appropriate. The domain is taken into account by performing a

separate analysis for each of the generic and NASA problem domains. However, we are

also careful to note that there are variables that our statistical analysis cannot measure.

Perhaps most importantly, an influence due to a learning effect would be hidden within the

effect of the reading technique. The full list of these threats to validity is found in Section

2.5, and any interpretation of results must take them into account.

Section 3.1 presents the details of the effect on individual scores. Section 3.2 present. the

analysis strategy for team data. Finally, Section 3.3 takes an initial look at the analysis

with respect to the reviewer perspectives. In each section, we present the general analysis

strategy and some details on the statistical tests, followed by the statistical results and some

interpretation of their meaning. We address the significance of our results taken as a whole

in Section 4.

3.1 Analysis for Individuals

Although it was not part of our main hypothesis, which focuses on team coverage, we

wanted to see if the difference in focus between the usual technique and PBR would have

some effect on individual detection rates. We therefore went through an analysis of

individual scores.

We were also careful, however, to test for effects from sources of variation other than the

reading technique. For this reason, our analysis proceeds in a "bottom-up" manner. That

is, we begin with several small data sets that we know to be homogeneous. Each session

of the experiment was run under controlled conditions to eliminate differences within the

sessions that might have an effect on reviewers' detection rates; the scores of reviewers

reading the same document within the same replication are therefore comparable. Thus we

begin our analysis with homogeneous data sets (4 documents - 2 NASA and 2 generic -
over 2 runs, so 8 in total) which we will use as the primary building blocks of our analysis.

SEW Proceedings
39

SEL-95-004

Starting from these data sets, we looked for features in common between the data sets. We

identified subsets of the data which were expected to be more homogeneous than the data

as a whole; the aim was to exploit this homogeneity to achieve stronger statistical results.

For example, we took into account the fact that all of the detection rates for each reviewer

are highly correlated, but we also identified other such blocks (e.g., the data for each

problem domain within the experiment). As we looked at larger data sets in order to draw

more general conclusions, we also took pains to make sure that the data within each set

were still comparable. Figure 3 illustrates the direction of our analysis, and includes the

sizes of the data sets.

I Generic
Domain I

Figure 3. Breakdown of the statistical analysis, with number of data points.

3.1.1 Analysis Strategy Within Documents

Our initial analysis examined each document used in the experiment for significant

differences in performance based on the use of reading technique. We used the ANOVA
test since we were testing a model of the effects containing multiple potential sources of

variation. To begin with, our model of the effects contained a nominal variable to signify

the reading technique used (usual or PBR).

The data for each document is composed of the independent data sets from the two

experiment runs, and so it was necessary to be alert to the possibility that changes from one

run to the next could have an impact on the reviewers' detection rates. For both of the pairs

of documents, we combined the data for the document and introduced a nominal variable

SEW Proceedings

(with two levels: 1994 and 1995) into our model to describe the experiment run in which

the reviewer read the document.

We measured the lack of fit error (an estimate of the error variance) for the model on each

document. In no case was there a significant lack of fit error, so it did not seem likely that

we could gain any better fit to the data by introducing variations on the variables, such as

testing for interaction effects (SAS, 1989).

We also tested whether each of the variables independently was significant (i-e., whether

the effect of each variable, apart from the other variables in the model, had a significant

effect on reviewer detection rate).

The ANOVA test makes a number of assumptions, which we were careful to fulfill: The

dependent variable is measured on a ratio scale, and the independent variables are nominal.

Observations are independent. The values tested for each level of the independent variables

are normally distributed (we confirmed this with the Shapiro-Wilk W Test). Also, the test

assumes that variance between samples for each level of the independent variables is

homogeneous. However, we note that the test is robust against violations of this last

assumption for data sets such as ours in which the number of subjects in the largest

treatment group is no more than 1.5 times greater than the number of subjects in the

smallest (Hatcher, 1994). The test also assumes that the sample must be obtained through

random sampling; this is a threat to the validity of our experiment, as we must rely on

volunteers for our subjects (see Section 2.5, "Selection" and "Interaction of selection and

treatment").

3.1.2 Results Within Documents

In our case the hypotheses of the ANOVA test take the following form:

Ho: The specified model (which contains variables to signify the experiment run

and reading technique) has no significant power in predicting the value of the

dependent variable (detection rate).

Ha: The model as a whole is a significant predictor of detection rate.

Level of significance: a = 0.05

The ANOVA test also allows testing the effect of each individual variable.

SEW Proceedings
41

The Least Squares Means (LSM) of the detection rates for reviewers using each of the

techniques are given in Table 1, followed by the results of the tests for significance. The

LSM values in effect allow an examination of the means for the groups using each of the

reading techniques while holding the difference due to experiment run constant. This is

followed by the p-values resulting from the statistical tests for significance; a p-value of

less than 0.05 provides evidence that either the whole model or the individual variable is a

significant predictor of detection rate and are indicated in boldface. The ~2 value for the

model is also included as a measure of the amount of variation in the data that is accounted

for by the model.

For all documents except NASA-B, the LSM detection rate for PBR reviewers is slightly

higher than for reviewers using their usual technique. However, only for the ATM

document was the difference statistically significant. For all other documents, reviewers

using the two techniques did roughly the same, and any differences between their average

scores can be attributed to random effects alone. Both NASA documents had a very

significant effect due to experiment run, which was not surprising, given the large changes

made to improve the documents between runs; however, there was also a significant and

unexpected effect due to experiment run for the PG document as well. The significance of

such differences due to experiment run is addressed in Section 4.

Table 1. Effects on individual scores for each document.

3.1.3 Analysis Strategy Within Domains

The second level of detail which we analyzed was the level of problem domains. That is,

we examined what trends could be observed within the generic documents or within the

NASA documents, while realizing that such trends may not necessarily apply across such

different domains. For each domain, we tested whether each reviewer scored about the

SEW Proceedings

same when reviewing documents with PBR as when using the usual technique, or if there

was in fact a significant effect due to reading technique.

To accomplish this, we made use of the MANOVA (Multivariate ANOVA) test with

repeated measures, an extension of the ANOVA which measures effects across multiple

dependent variables (here, the scores on each of the two documents) with longitudinal data

sets (i.e. data sets in which each subject is represented by multiple data points).

The domain data sets contain two scores for each subject, one for each document within the

domain. Although repeated measures tests usually refer to multiple treatments over time,

here we treat the scores on each document as the scores from repeated treatments, which

we distinguish with the nominal variable "Document". We divide the reviewers into two

groups, and use another nominal variable in order to distinguish to which group each

reviewer belonged: Group I applied PBR to Document A and the usual technique to

Document B, and Group I1 read the documents in the opposite fashion. If the interaction

between these two variables is significant, we can conclude that the reading technique a

reviewer applied to each document had a significant effect on the reviewer's detection rate.

If the interaction is not significant, then reviewers tended to perform about the same on the

two documents, regardless of the technique applied to each. Aside from reading technique

and document, we again want to account for any significant effects due to the experiment

run, and also test for interaction effects between this variable and the others.

The MANOVA test with Repeated Measures makes certain assumptions about the data set.

As with the ANOVA test, we again fulfill requirements about the measurement scales of the

dependent and independent variables, the independence of observations, and the underlying

distribution of the sample. We have the same threat to validity resulting from the

assumption of random samples as was discussed for the ANOVA test. However, it is also

assumed that the dependent-variable covariance matrix for a given treatment group should

be equal to the covariance matrix for each of the remaining groups. Fortunately, the type I
error rate is relatively robust against typical violations of this assumption; however, the

power of the test is somewhat attenuated (Hatcher, 1994).

3.1.4 Results Within Domains

Using the data from each of the documents within a domain, we use the MANOVA test to

detect how reviewer rates change from one document to the next, and attribute these

SEW Proceedings
43 SEL-95-004

changes to factors in our model. As we did with the ANOVA test, we test whether each of

the variables in our model (the documents themselves, the reading technique used on each

document, the experiment run, and all appropriate interactions) are significant predictors of

the change in detection rates.

Ho: The specified variable has no significant effect in predicting scores across the

two documents.

Ha: The variable is a significant predictor of scores across the documents.

Level of significance: a = 0.05

The results are summarized in Table 2, where each column gives the p-value for each of the

effects. A p-value of less than 0.05 provides an indication that the variable is a significant

predictor of the change in reviewer detection rates across documents, and appears in bold.

The effect due to the reading technique is measured indirectly by the "Group" variable:

Group I read Document A with the PBR technique and Document B with the usual

technique; Group 11 read the documents in the reverse fashion. As can be seen from the

ttD~cument'' column, there was no significant difference between the mean detection rates

for the two documents within a domain. Crossed terms represent tests for interaction

effects; for example, the column labeled "Document * Replication" tests if the mean

difference in reviewers' scores on each of the documents was significantly effected by the

experiment run in which they took part. Thus, even though the NASA documents were

changed drastically between runs, because the two documents were roughly comparable in

difficulty within both experiment runs, there is no significant effect here for the NASA

domain. Within the generic domain, reviewers in the 1994 experiment did slightly better

on the PG document than the ATM, while reviewers in the 1995 experiment did slightly

worse on the PG document relative to the ATM; while the differences average out when

the two runs are combined, the effect still shows up as a significant interaction in the

MANOVA test.

Table 2. Effects on individual scores within domains.

SEW Proceedings

Graphs of Least Squares Means are presented in figures 4a and 4b as a convenient way of

visualizing the effects of the interaction between document and reading technique. For the

generic domain, it can be seen that reviewers in each group on average scored higher with

PBR than with the usual technique, taking into account the other effects in the model. In

the NASA domain, reviewers in each group scored about the same on both documents,

regardless of the technique used. Note that the interaction for the generic domain is

significant, providing evidence that reading technique does in fact have an impact on

detection rates.

PBR :-z ~ r o u ~ ll

USUAL USUAE~OUP I
I

I 1
ATM rate PG rate

Y Responses

Group ATM rate PG rate
I 30.8333333 24.5
II 21.4791 667 26.75

Figure 4a. Interaction between group and technique for the generic domain.

PBR + USUAO + roupl " Group II
USUAL PBR

0 I I
NASA-A rate NASA-B rate

Y Responses

Group NASA-A rate NASA-B rate
I 36.75 34.5
I I 26.678571 4 28.21 42857

SEW Proceedings

Figure 4b. Interaction between group and technique for the NASA domain.

3.2 Analysis for Teams

3.2.1. Analysis Strategy for Teams

In this section, we return to investigating our primary hypothesis concerning the effect of

PBR on inspection teams. The analysis was complicated by the fact that the teams were

composed after the experiment's conclusion, and so any grouping of individual reviewers

into a team is somewhat arbitrary, and does not signify that the team members actually

worked together in any way. The only real constraint on the makeup of a team which

applied PBR is that it contain one reviewer using each of the three perspectives; the non-

PBR teams can have any three reviewers who applied their usual technique. At the same

time, the way in which the teams are composed has a very strong effect on the team scores,

so an arbitrary choice can have a significant effect on the test results.

For these reasons, we used a permutation test to test for differences in team scores between

the techniques. An informal description of the test follows.

First, since there are differences between the experiment runs, we will compose teams only

with reviewers from within the same run; we therefore treat the two experiment runs

separately. Results from the individual scores showed that the domains are very different,

but the documents within a domain are of comparable difficulty; thus, we compare

reviewer scores on documents within the same domain only. We again categorize

reviewers into one of two groups, as we did for the analysis within domains for individual

scores, depending on which technique they applied to which document. Let us say the

reviewers in Group I applied PBR to Document A and their usual technique to Document

B, where Document A and Document B represent the two documents within either of the

domains. We can then generate all possible PBR teams for Document A and all possible

non-PBR teams for Document B, and take the average detection rate of each set. This

ensures that our results are independent of any arbitrary choice of team members, but

because the data points for all possible teams are not independent (i-e., each reviewer

appears multiple times in this list of all possible teams), we cannot run simple statistical

tests on these average values. For now, let us call these averages A1 and BI. We can then

perform the same calculations for Group 11, in which reviewers applied their usual

SEW Proceedings

technique to Document A and PBR to Document B, in order to obtain averages A11 and

Bn. The test statistic

(A1 - BI) - (AD - Bn)

then gives us some measure of how all possible PBR teams would have performed relative

to all possible usual technique teams.

Now suppose we switch a reviewer in Group I with someone from Group II. The new

reviewer in Group I will be part of a PBR team for document A even though he used the

usual technique on this document, and will be part of a usual technique team for Document

B even though he applied PBR. A similar but reversed situation awaits the reviewer who

suddenly finds himself in Group 11. If the use of PBR does in fact improve team detection

scores, one would intuitively expect that as the PBR teams are diluted with usual technique

reviewers, the average score will decrease, even as the average score of usual technique

teams with more and more PBR members is being raised. Thus, the test statistic computed

above will decrease. On the other hand, if PBR does in fact have no effect, then as
reviewers are switched between groups the only effect will be due to random effects, and

team scores may improve or decrease with no correlation with the reading technique of the

reviewers from which they are formed. So, let us now compute the test statistic for all

possible permutations of reviewers between Group I and Group 11, and rank each of these

scenarios in decreasing order by the statistic. If the scenario in which no dilution has

occurred appears toward the top of the list (in the top 5%) we will conclude PBR does have

a beneficial effect on team scores, since every time the PBR teams were diluted with non-

PBR reviewers they tended to perform somewhat worse relative to the usual technique

teams. However, should the non-diluted scenario appear toward the middle of the list, then

this is clear evidence that every successive dilution had only random effects on team scores,

and thus that reading technique is not correlated with team performance.

Note that this is meant to be only a very rough and informal description of the intuition

behind the test; the interested reader is referred to Edington's Randomization Tests

(Edington, 1987).

3.2.2 Results for Teams

The use of the permutation test allows us to formulate and test the following hypotheses:

SEW Proceedings

Ho: The difference between average scores for PBR and usual technique teams is

the same for any random assignment of reviewers to groups.
Ha: The difference between average scores for PBR and usual technique teams is

significantly higher when the PBR teams are composed of only PBR

reviewers and the usual technique teams are composed of only usual

technique reviewers.
Level of significance: a = 0.05 (that is, we reject HO if the undiluted teams

appear in the top 5% of all possible permutations between groups)

The results are summarized in Table 3. P-values which are significant at the 0.05-level

appear in boldface. For example, twelve reviewers read the generic documents in the 1994

experiment; there are 924 distinct ways they can be assigned into groups of 6. The group

in which there was no dilution had the 61st highest test statistic, corresponding to a p-value

of 0.0660.

Table 3. Results of permutation tests for team scores.

Domain1
Replica tion

Generics11995
Generics11994

r

NASA11995
NASA11994

3 . 3 Analysis for Perspectives

3 .3 .1 Analysis Strategy for Perspectives

We were also concerned with the question of whether the perspectives used in the

experiment are useful (i.e., reviewers using each perspective contributed a significant share

of the total defects detected) and orthogonal (i-e., perspectives did not overlap in terms of

the set of defects they helped detect). A full study of correlation between the different

perspectives and the types and numbers of errors they uncovered will be the subject of

future work, but for now we take a qualitative look at the results for each perspective by

examining each perspective's coverage of defects and how perspectives overlap.

P-value

0.0007
0.0660
0.0390
0.4340

Number of
Group
Permutations
Generated
3003
924
1716
924

SEW Proceedings

Rank of
Undiluted
Group

2
6 1
67
40 1

3.3.2 Results for Perspectives

We formulate no explicit statistical tests concerning the detection rates of reviewers using

each of the perspectives, but present Figures 5a and 5b as an illustration of the defect

coverage of each perspective. Results within domains are rather similar; therefore we

present the ATM coverage charts as an example from the generic domain and the NASA-A

charts as an example from the NASA domain. However, due to the differences between

experiment runs for the NASA documents, we do not present a coverage diagram for both

runs combined. The numbers within each of the circle slices represent the number of

defects found by each of the perspectives intersecting there. So, for example, ATM
reviewers using the design perspective in the 1995 experiment found 11 defects in total:

two were defects that no other perspective caught, three defects were also found by testers,

one defect was also found by users, and five defects were found by at least one person

from each of the three perspectives.

ATM Results:

1994: 1995: COMBINED:
Designer (@Tes::@TestF gn@ester

Use-based Use-based Use-based

Figure 5a. Defect coverage for the ATM document.

SEW Proceedings

NASAA Results:

gner

(@ealT(@ester 2

1

Figure 5b. Defect coverage for the NASA-A document.

4. PBR Effectiveness

In the previous section we presented the analysis of the data from a strictly statistical point

of view. However, it is necessary to assess the meaning and implications of the analysis to

see if we can identify trends in the results that are similar for both runs of the experiment.

Such interpretations may also point out areas of weakness in the experiment or in the PBR

technique - weaknesses which upon recognition become potential areas for improvement.

4.1. Individual Effectiveness

4.1.1. The 1994 Experiment

The individual defect detection rates were better for the generic documents than for the

NASA documents in the 1994 replication, regardless of reading technique, because the

generic documents were simpler to read and less complex than the NASA documents.

Most subjects pointed to the size and complexity of the NASA documents as potential

problem areas. However, there is a difference not only in absolute score, but also in the

impact the technique has on detection rate. The improvement of PBR over the usual

technique was greater for the generic docurnen& than for the NASA documents. We can

think of various reasons for this:

The perspectives and the questions provided were not aimed specifically at the

NASA documents, but based on the general nature of the generic documents.

SEW Proceedings

Thus the technique itself may not be exploited to its full potential for documents

within the NASA domain.

It is possible that the reviewers are more likely to fall back on their usual

technique rather than apply the PBR technique when reading documents that

they are familiar with. We received anecdotal evidence of this during follow-up

interviews. This may be of particular importance in situations where the

subjects are under pressure due to time constraints and the complexity of the

document.

The 1994 experiment was carried out in the reviewers' own work environment.

This may increase the temptation to fall back to the usual technique when the

familiar situation of reading NASA documents arose. The generic documents,

on the other hand, would not be likely to stimulate such interaction effects.
* Insufficient training may have been provided since the training sessions only

explained how to use the technique on a sample generic document and not on a

sample NASA document.

Within each of the two domains, we found that the documents were at the same level of

complexity with only minor differences between them. This indicated that our effort of

keeping the documents within each domain comparable was successful.

4.1.2. The 1995 Experiment

In the 1995 replication we made some changes to account for some of the problems

mentioned above. The NASA documents were modified substantially according to the

comments we received from the subjects. We also provided additional training by adding

two more sessions aimed at applying the techniques to the NASA documents. The

experiment itself was carried out in a classroom environment instead of the work

environment. However, even though we saw a substantial rise in the absolute defect

detection rates for the NASA documents, the improvement of PBR over the usual technique

remained insignificant. Thus our most viable explanation at the moment is that PBR needs

to be more carefully tailored to the specific characteristics of the NASA documents and

environment to show an improvement similar to what we see in the generic domain. We

also got feedback from the subjects that supported this view; several found it tempting to

fall back to their usual technique when reading the NASA documents.

SEW Proceedings

For the generic domain, we made only minor changes to the documents and the seeded

defects. Thus, we expected the change in defect detection rate to be negligible. However,

this appeared not to be the case.

The mean detection rate for the ATM document turned out to remain unchanged, but

dropped significantly for the PG document. We have analyzed this carefully, but have not

been able to find a plausible explanation as to why this should happen. Changes to the

experiment should be expected to have a similar impact on the two documents, so perhaps

the changes to the two documents were not as insignificant as we thought.

4.1.3. Combined

Although the changes to the NASA documents were a definite improvement, any effect due

to technique is hidden by the much larger difference between the two runs of the

experiment. This problem illustrates one of the tradeoffs we had to make when planning

the second run. Should we have kept the documents unchanged, thus getting data that may

not be completely valid, or should we change the documents but get data that would be

hard to combine with the data from the initial run? We chose to change the documents, and

in retrospect we feel the right decision was made.

We did not have the same problems with the generic documents because they were changed

only slightly between the two runs of the experiment. Thus the results indicate a significant

improvement of the defect detection rate in the generic domain due to the application of

PBR.

4.2. Teams

4.2.1. The 1994 Experiment

The defect detection rates of teams in the 1994 experiment reflected the same trends as the

individual rates. For the NASA documents, the defect detection rates were much lower

than they were for the generic documents, regardless of reading technique. But even more

importantly, the results from the permutation test indicate that there are only random

differences between the two techniques in this case. This, together with the defect

coverage discussed in section 3.2, counts as evidence that the current perspectives do not

work as well with the NASA documents as they do with the generic documents.

SEW Proceedings
52 SEL-95-004

4.2.2. The 1995 Experiment

In the 1995 experiment, the team results for the generic documents showed that using PBR
resulted in a significant improvement over the usual technique. The reasons for this

observed improvement, as compared to the 1994 experiment, may include better training

sessions and a less intrusive environment, which in the 1995 experiment was a classroom

setting. This environment may have made it easier to concentrate on the experiment and

thus to keep the two techniques independent from each other.

For the NASA documents, the results were also better than in 1994. In addition to the

possible explanations mentioned for the generic documents, there is the fact that there were

substantial changes to the documents. Thus, the results provide more evidence for the

1994 indication that the subjects tend to use their usual technique when reading familiar

documents in a familiar work environment, and in particular when under pressure.

4.3. Threats to Validity

The threats to internal validity discussed in section 2 may have an impact on the results of

the experiment. Thus, at this point it may be interesting to see whether the potential impact

and the results agree. Below we discuss the threats that we find most important:

History: One problem with our experiment is that it does not allow history effects to

be separated from the change in technique. Since there was one day between the two

days of the experiment, some of the improvement that appears due to technique may be

attributed to other events that took place between the tests. We do not consider this

effect to be very significant, but we cannot completely ignore it.

Maturation: We may assume the results obtained in the afternoon to be worse than

the results from the morning session because the subjects may get tired and bored.

Since the ordering of documents and domains was different for the two days, the

differences between the two days may be disturbed by maturation effects. Looking at

the design of the experiment, we see that an improvement from the first to the second

day would be amplified for the generic documents, while it would be lessened for the

NASA documents. Based on the results from the experiment, we see that this effect

seems plausible.

SEW Proceedings

Testing: This may result in an improvement in defect detection rate due to learning the

techniques, becoming familiar with the documents, becoming used to the experimental

environment and the tests. This effect may amplify the effects of the historical events

and thus be part of the reason for improvement that has previously been considered a

result of change in technique. Testing effects may counteract maturation effects within

each day.

Reactive effects: The change of experimental environment between the experiment

runs may have made it easier to concentrate on the techniques and tests to be done, thus

separating the techniques better for the second run of the experiment.

We cannot say anything conclusive about the impact of threats to validity. However, we

feel that we have taken them into account as carefully as possible, given the nature of the

problem and our experimental design.

Since the two runs of this experiment have been done in close cooperation with the NASA

SEL environment, it seems natural to conclude this section with a discussion of the extent

to which the results can be generalized to a NASA SEL context. This kind of

generalization involves less of a change in context than is the case for an arbitrary

organization; in particular the differences in populations can be ignored since the population

for the experiments is in fact all of the NASA SEL developers.

Clearly, the results for the generic documents cannot be generalized to the NASA

documents due to the difference in nature between the two sets of documents. The results

for the NASA documents, on the other hand, may be valid since we used parts of real

NASA documents. Finally, there is a potential threat to validity in the choice of

experimental environment. In 1994, the experiment was carried out in the subjects' own

environment, and thus would be valid also in a real setting. We cannot assume the same

for the 1995 results since this run was done in a classroom situation.

5. Observations on Experimental Design

We have encountered problems in the two runs of the experiment which we have

previously discussed. However, some of these problems are of a general nature and may

be relevant in other experimental situations.

* What is a good design for the experiment under investigation, given the constraints?

SEW Proceedings

There appears to be no easy answer to this question. Each design will be a result of a
number of tradeoffs, and it is not always possible to know how the decisions will

influence the data. A good design can have various interpretations based on what are
considered the goals for the experiment. One option is to use different designs

involving different threats to validity and study the results as a whole.

What is the optimal sample size? Small samples lead to problems in the statistical

analysis while large samples represent major expenses for the organization providing

the subjects.

Organizations generally have limits for the amount of subjects they are willing to part

with for an experiment, so the cost concerns are handled by the organizations

themselves. A small sample size requires us to be careful in the design in order to get as

many useful data points as possible. For this experiment, an example of such a tradeoff

is that we chose to neglect learning effects in order to avoid spending subjects on

control groups. This gave us more data points to be used in analyzing the difference

between the two techniques, but at the same time we remained uncertain as far as the

threat to internal validity caused by learning effects is concerned.

We need to adjust to various constraints - how far can we go before the value of the

enperiment decreases to a level where it is not worthwhile ?

Our problem as experimenters is to maintain a certain level of validity while still

generating sufficient interest for an organization to allow us to conduct the experiment.

From an organization's point of view, an experiment should be closely tied to their own

environment to see if the suggested improvement works with minimal effort in terms of

environmental changes. From an experimental point of view, however, we are

interested in a controlled environment where disturbing interaction effects are

negligible.

* To what extent can experimental aspects such as design, instrumentation and

environment be changed when the e~er iment still is to be considered a replication ?

One requirement for being considered a replication is that the main hypotheses are the

same. Changes in design and instrumentation, in particular to overcome threats to

SEW Proceedings
5 5

SEL-95-004

validity, should also be considered "legal". However, one situation we should avoid is

making substantial changes to the design based on the results from a previous

experiment. This will introduce dependencies between the experiments that are highly

undesirable from a statistical point of view.

For this experiment in particular, there are various problems that we need to study more

carefully. The threats to validity should be carefully examined; in particular we feel the

testing effects to be crucial. An experiment with a control group could be one way of

estimating what the importance of these effects really are. We may also consider a more

careful analysis of the NASA documents and environment in order to refine PBR to these

particular needs. The results indicate that the choice of perspectives and associated

scenarios do not match the needs of the NASA domain.

A more fundamental problem that should be considered is to what extent the proposed

technique actually is followed. This problem with process conformance is relevant in

experiments, but also in software development where deviations from the process to be

followed may lead to wrong interpretation of measures obtained. For experiments, one

problem is that the mere action of controlling or measuring conformance may have an

impact on how well the techniques work, thus decreasing the external validity.

Conformance is relevant in this experiment because there seems to be a difference that

corresponds to experience level. Subjects with less experience seem to follow PBR more

closely ("It really helps to have a perspective because it focuses my questions. I get

confused trying to wear all the hats!"), while people with more experience were more likely

to fall back to their usual technique ("I reverted to what I normally do.").

There are numerous alternative directions for the continuation of this research. For further

experimentation within NASA's SEL it seems to be necessary to tailor PBR to more closely

match the particular needs of that domain. A possible way of further experimentation

would be to do a case-study of a NASA SEL project to obtain more qualitative data.

We may also consider replication of the generic part of the experiment in other

environments, perhaps even in other countries where differences in language and culture

may cause effects that can be interesting targets for further investigation. These replications

can take the form of controlled experiments with students, controlled experiments with

SEW Proceedings

subjects from the industry using their usual technique for comparison, or case studies in

industrial projects.

One challenging goal of a continued series of experiments will be to assess the impact that

the &rats to validity have. Since it is often hard to design the experiment in a way that

controls for most of the threats, a possibility would be to concentrate on certain threats in

each replication to assess their impact on the results. For example, one replication may use

control groups to measure the effect of repeated tests, while another replication may test

explicitly for maturation effects. However, we need to keep the replications under control

as far as threats to external validity are concerned, since we need to assume that the effects

we observe in one replication will also occur in the others.

Acknowledgements

This research was sponsored in part by grant NSG-5123 from NASA Goddard Space

Flight Center to the University of Maryland. We would also like to thank the members of

the Experimental Software Engineering Group at the University of Maryland for their

valuable comments to this paper.

References

(Campbell, 1963) Campbell, Donald T. and Stanley, Julian C. 1963. Experimental and

Quasi-Experimental Designs for Research . Boston, MA: Houghton

Mifflin Company.

(Edington 1987) Edington, Eugene S. 1987. Randomization Tests. New York,

NY: Marcel Dekker Inc.

(Fagan, 1976) Fagan, M. E. 1976. Design and code inspections to reduce errors

in program development. IBM Systems Journal, 15(3): 182-2 1 1.

(Hatcher, 1994) Hatcher, Larry and Stepanski, Edward J. 1994. A Step-by-step

Approach to Using the SAS@ System for Univariate and

Multivariate Statistics. Cary, NC: SAS Institute Inc.2

SEW Proceedings

(Heninger, 1980) Heninger, Kathryn L. 1985 Specifying Sofhyare Requirements for

Complex Systems: New Techniques and Their Application. IEEE

Transaction on Software Engineering, SE-6(1):2-13

(Linger, 4979) Linger, R. C., Mills H. D. and Witt, B. I. 1979. Structured

Programming: Theory and Practice. In The Systems Programming

Series. Addison Wesley.

(Parnas, 1985) Parnas, Dave L. and Weiss, David M. 1985. Active design

reviews: principles and practices. In Proceedings of the 8th

International Conference on Software Engineering, p.2 15-222.

(Porter, 1995) Porter, Adam A., Votta, Lawrence G. Jr. and Basili, Victor R.

Comparing Detection Methods For Software Requirements

Inspections: A Replicated Experiment. IEEE Transactions on

Software Engineering, June 1995.

(§A§, 1989) SAS Institute Inc. 1989. JMPO User's Guide. Cary, NC: SAS

Institute Inc3

(SEL, 1992) Software Engineering Laboratory Series. 1992. Recommended

Approach to Sofhyare Development, Revision 3, SEL-81-305, p.

41-62.

(Votta, 1993) Votta, Lawrence G. Jr. 1993 Does every inspection need a

meeting? In Proceedings of ACM SIGSOFT '93 Symposium on

Foundations of Software Engineering. Association of Computing

Machinery, December 1993.

A. Sample Requirements

Below is a sample requirement from the ATM document which tells what is expected when

the bank computer gets a request from the ATM to verify an account:

Functional requirement 1

SEW Proceedings

Description: The bank computer checks if the bank code is valid. A bank code

is valid if the cash card was issued by the bank.
Input: Request from the ATM to verify card (Serial number and

password)

Processing: Check if the cash card was issued by the bank.
Output: Valid or invalid bank code.

We also include a sample requirement from one of the NASA documents in order to give a

picture of the difference in nature between the two domains. Below is the process step for

calculating adjusted measurement times:

Calculate Adjusted Measurement Times: Process

1. Compute the adjusted Sun angle time from the new packet by

2. Compute the adjusted MTA measurement time from the new packet by

3. Compute the adjusted nadir angle time from the new packet.

a. Select the most recent Earth-in crossing time that occurs before the Earth-in

crossing time of the new packet. Note that the Earth-in crossing time may be from

a previous packet. Check that the times are part of the same spin period by

te-in - te-our < EmaxTspin.user

b. If the Earth-in and Earth-out crossing times are part of the same spin period,

compute the adjusted nadir angle time by

- te-in + 6 -ou t
te-adj - 2 + te.bias

SEW Proceedings

4. Add the new packet adjusted times, measurements, and quality flags into the first buffer

position, shifting the remainder of the buffer appropriately.

5. The Nth buffer position indicates the current measurements, observation times, and

quality flags, to be used in the remaining Adjust Processed Data section. If the Nth buffer
does not contain all of the adjusted times (ts,,j, tb,,,j ,tTVdj, and t,,,,.), set the corresponding

time quality flags to indicate invalid data.

SEW Proceedings

Footnotes

1 ISERN is the International Software Engineering Research Network whose goal is to

support experimental research and the replication of experiments.

2 SASB is the registered trademark of SAS Institute Inc.

JMP@ is a trademark of SAS Institute Inc.

SEW Proceedings

I I The Empirical Investigation of 1 I
I I Perspective-Based Reading (/

Victor R. Basilil, Scott Green2,
Oliver Laitenberger3, Forrest Shulll,

Sivert SsrumgArd4, Marvin V. Zelkowitzl

1 University of Maryland
2 NASNGSFC

3 University of Kaisersiautem
University of Trondheim

Topic and Outline

Reading is a key technical activity for analyzing
software documents

* Little research has been carried out in this area

* We needed to:
- Propose new and improved technique
- Concentrate on reading requirements specifications
- Design and carry out empirical studies to validate the new

technique
- Analyze data, draw conclusisns

Reading is a key technical activity
7

SEL Workshop 1995 2

SEW Proceedings

Reading Requirements Documents

Purpose: Read software requirements specifications
to find defects
Characteristics: The technique should be:
- Document and notation specific
- Tailorable to the project and environment
- Procedurally defined
- Goal driven
- Focused to provide a particular coverage of the document
- Empirically verified to be effective for its use

Defect-based reading: Focus on defect classes
Perspective-based reading (PBR): Focus on
consumer perspectives (designer, tester, end-user)

\ SEL Workshop 1995 ---(

Pe rspective-Based Reading

Defect class 7='
analysis model

generates questions generates scenarios

t
Perspective-Based reading

Design-based
Test-based 1 5 PBR team
Use-based

L SEL Workshop 1995 -
SEW Proceedings

f PBR Example
Test-based reading (excerpt):
For each requirementlfunctional specification, generate a test or set of tests
that allow you to ensure that an implementation of the system satisfies the
requirementlfunctional specification. Use your standard test approach and
technique, and incorporate test criteria in the test suite. In doing so, ask
yourself the following questions for each test:

1. Do you have all the information necessary to identify the item being tested and
the test criteria? Can you generate a reasonable test case for each item based
upon the criteria? Can you be sure that the tests generated will yield the
correct values in the correct units?

2. Can you be sure that the tests generated will yield the correct values in the
correct units?

... etc.

Questions for each perspective

SEL Workshop 1995 --/

PBR Experiment

Goal:
Analyze pers~ective-based readinq in order to evaluate it with

respect to the individual and team effect on defect detection
effectiveness of NASA's current readina techniaue from the

viewpoint of auality assurance I
- - - - - --

Environment: NASAICSC SEL
- Two structured text generic documents (ATM, PG), two NASA

functional spec. (ground support sub-systems)
- All documents seeded with known sets of defects
- Metric: Defect detection rate as % of defects

- Two hour time limit, actual time measured but not used in analysis
- Carried out twice: November 1994 and June 1995

- 25 subjects in total

SEL Wwkshop 1995 -

SEW Proceedings

Design of the Experiment

Generic part

3 First day

,Teaching

3 ~ ~ ~ o n d day

Perspectives randomly and evenly assigned
Training in front of every test

1

SEL Workshop 1995

f Individuals, Generic Domain I
Group 1

Defect detection fl Group 2
rate (%)

ATM PG

I ATM: PBR
significantly better I

* Improvement
when switching
from usual to PBR I

SEW Proceedings

Individuals, NASA Domain

Defect detection Ijl Group 1
rate (%) a Group 2

a PBR not
significantly
better for any
document

No significant
change when
switching from
usual to PBR

A B

SEL Workshop 1995 J

(Perspective Coverage (1 995)]
ATM: NASA-A:

Designer

Use-based Use-based

PG: NASA-B:
Designer @ Design@

Use-based Use-based

\ h
\ SEL Workshop 1995 --/

SEW Proceedings
66 SEL-95-004

f Perspective Coverage (cont .)

Were perspectives
- useful (did they catch a significant number of defects)?
- orthogonal (did they catch different defects)?

SEL Workshop 1995 -

Teams, Generic Domain

SEL Workshop 1995 2

SEW Proceedings

Teams, NASA Domain

No effect
%

-30 -20 -10 10 20 30

0.43

Significant

%

SEL Workshop 1995 -.J

PBR Conclusions

Observations:
- PBR is most successful in the generic domain
- PBR is not sufficiently tailored to the NASA environment in

terms of document contents, notation and perspectives
- Relative benefit of PBR seems to be higher for teams

Possible explanation:
- Subjects seem to fall back to their familiar technique when

reading a familiar document

Basic idea behind PBR seems to work
Tailor PBR to domain to achievefull potential

SEL Workshop 1995 -l

SEW Proceedings

Future of this experiment:
- Replicate generic part in many different environments?
- Case study at NASA?
- How do we improve the experiment?
- Continue to develop operational scenario reading techniques

and test their effectiveness in experiments
- Consider tool support for the technologies developed

Further replications needed to confirm indications
Need real developers for valid results

SEW Proceedings

SEW Proceedings

Porting Experience Factory Concepts to New
Environments

Frank McGarry
Computer Sciences Corporation J % / / c > ,

7700 Hubble Drive
Lanharn-Seabrook, MD 20706

(301) 794-2450 9 r ,
.'. L :.; 4 </

fincgarry@csc.com

.c 6

(- - c: k.

As our approach to software process improvement has matured, so have
the defined paradigms for characterizing the improvement steps. The
Experience Factory (EF) is a concept comprising both structure and
activities that was first formally defmed by Basili (Reference 1) in
1989. The model evolved from specific experiences at
NASNGoddard's Software Engineering Laboratory, which was
established in 1976 and has continued to be an operational Experience
Factory for nearly 20 years (Reference 2). Other environments have
also attempted to incorporate the key elements of the EF concept for the
purpose of implementing a goal-driven software improvement program.

This paper captures the experiences of a sample set of organizations
that have attempted to apply the EF concepts. The paper addresses cost,
timelines, impediments to success, and lessons learned, as reported by
those organizations that volunteered such information on their
experiences. Approximately eight organizations had some level of
information available on at least one or two key elements of their EF
implementation efforts. The organizations ranged in size fiom those
with 40 or 50 software engineers to those with over 5000 employees.
This paper is a synthesis of the information provided by these groups.

Introduction
For over 20 years, the Software Engineering, Laboratory (SEL) at NASNGoddard has

'

been carrying out studies in software process improvement toward the goal of generating
improved software within this one NASA domain. The concepts used in this
improvement program were formalized by Basili (Reference 1) in 1989 and are called the
"Experience Factory" (EF). The EF comprises both an organizational structure and a set
of activities focused on continual improvement within an organization as measured
against the goals of that organization. The concepts have been replicated in other software

SEW Proceedings

organizations besides NASA/Goddard, and this paper reports on the experiences resulting
fiom attempts to apply the EF approach in these broader and varying software domains.

The EF differs fiom models such as the Capability Maturity Model (CMM) (Reference
3). One significant difference is that the EF presents a paradigm for continuous change as
opposed to a model for rating a process against some benchmark. It entails a set of
activities and a structure that focus on process change and improvement as opposed to
focusing on process itself. Although most software development organizations have some
type of improvement program in place, the concept of EF is different fiom many of the
common improvement concepts and is not as widely applied as the CMM-driven
approach. In this paper, only organizations that are specifically and explicitly attempting
to apply these concepts were used as a source.

The information captured in this paper represents experiences of the author and
colleagues in initiating improvement programs at different sites. Each of the efforts had
the goal of applying the EF approach to the new program. Most of the reported
experiences are based on subjective data as opposed to specific quantified information
relating to the efforts. This summary may provide some guidance for organizations
setting out to adopt an overall software process improvement program using concepts
captured in the EF.

Terminology
Since one of the distinguishing characteristics of the EF approach is the concern for
change in both product and process as opposed to process only, it is necessary to clarify
some of the relevant terms.

Process pertains to how the software product is generated. It includes the steps, methods,
techniques, and organizational structure used to carry out the task of software
development and maintenauce. Essentially, it consists of all the attributes that would be
reviewed by CMM baselining activity. SampIes include review activities, testing
approach, design approach, inspections used, quality assurance (QA) techniques, and life
cycle applied.

Product refers to the end items generated as part of the development or maintenance
activity. It includes software and the associated documentation.

Process and product measures refer to the attributes that can be determined fiom the
steps used (process) and the end items generated (product). Process measures include
such items as percentage of time spent in design, number of inspections performed, and
number of tests executed. Product measures include such items as code size, number of
pages of documentation, number of delivered defects, cost of the product, productivity, or
number of defects per unit of size.

Some measures, such as language used, may be considered both a process measure and a
product measure. The fact that some measures can be either process or product measures
does not have any impact on our application.

SEW Proceedings

Characteristics of the EF
The EF organization implies two separate elements. The first is the software production
organization, which develops and maintains software and is the source of experience. The
second is the Experience Factory, a separate organizational unit that supports reuse of
experience and collective learning. The EF element is responsible for developing,
updating, and delivering experience packages to the software organization. References 1,
2, and 4 present a full discussion of the many attributes of the Experience Factory. The
four most prominent attributes that distinguish the EF fiom other concepts are discussed
below.

Concept of experimental software engineering
In the EF, each set of experiences within an organization is leveraged to add knowledge
and refinement to the core competencies of the environment. Each software experience
(development project, maintenance effort, etc.) is captured as part of the conGnuaI1y
increasing depth of capabilities. Some of these experiences are captured fiom pilot
projects and some fiom controlled experiments, but most are derived fiom routine
software activities. Every software project is considered an experiment whereby new
knowledge is acquired during and at the completion of the effort.

Goal-driven change
As with any improvement concept, the goal of the EF is to provide guidance toward
better software, with "better7' defined by the organization. Improvement is not measured
by the adoption of more mature processes but is measured against the products of the
organization, whose goals are established a priori. For a typical goal such as decreasing
defects by 50%, the measure of success would be based only on that goal, not on whether
or not appropriate defect-prevention processes were adopted. Obviously, some change
would have to be made to process or technology to target the product improvement goal.

Separation of concerns
The EF concept emphasizes that the software production organization cannot be burdened
with responsibility for the overall execution of the improvement program; resources must
be allocated to the EF element itself. The production staff focuses on producing software
on time and within budget and is kept separate fi-om the EF element, which handles the
analysis and information repository. This separation of concerns allows each of the
elements to focus on the tasks they are most competent to cany out and does not divert
resources fiom the project staff itself. One of the oldest existing Experience Factories is
the Software Engineering Laboratory, which is described in Reference 2 and whose
structure is depicted in Figure 1.

Measurement
Software measurement is critical to the EF concept to verify the need for change, identify
the effects of the changed process, and continually build the engineering concepts of the
environment. The Experience Factory cannot exist without adopting, using, and relying

SEW Proceedings

on software measurement. It is a necessity fiom the very first step in establishing the
overall EF concept.

0 -- m B X E w K R f

Figure 1. The Software Engineering Laboratory Experience Factory

Information Sources
To generalize the impacts and effects of the EF concepts for this paper, information fiom
several sources was reviewed. The information fiom the SEL is the most complete and
extensive and provides the baseline of the observations made. Additional sources include
the following:

e Additional NASA activities
Center-wide activities at Goddard and at Jet Propulsion Laboratory
Agency wide efforts (through Code Q)
Several local programs such as the SEAL at NASALangley

Computer Sciences Corporation
Flight Dynamics Technology Group (of the SEAS program)
SEAS-wide activities

National Security Agency (NSA)

SEW Proceedings

e Hughes Information Sciences Division
EOS Program

s European companies working with the University of Kaiserslautern,
including Robert Bosch, Daimler Benz, Nokia, and Ericsson

Each of these organizations provided some experience data and information about
establishing improvement programs based on the EF concepts. None of the organizations
had complete information relating to this study, so partial data was applied. There was no
attempt to apply rigorous qualitative analysis of the information since this study was
merely attempting to report experiences in a general fashion.

The basic information sought fiom each organization included

o Cost of establishing the structure
e Key initial products generated

Timelines for generating major products
Key lessons learned

0 Identified payoff
Most disappointing and most successful program elements after initial year of activity

Key Lessons From the Broadened Experiences
From reviewing and comparing the information provided by the organizations, eight
prominent points emerged that seemed to summarize the experiences of these groups.
Some had to do with cost, others with timelines, and most were associated with the
subjective experience of applying the concept to production organizations. The eight
points are addressed below.

Lesson I. There are four specificf initial products that are valuable in
establishing an EF.
Only three of the organizations (besides the SEL) had completed all four of the key
products listed below. However, all of the organizations indicated either that they
intended to complete the product or that they felt it should have been completed during
the first year of operation. The four products are as follows:

e Improvement Plan-- Major elements of this plan include the organizational goals,
concepts of improvement (EF), approach, and target schedules for implementing the
program and making it operational.

Organization Baseline-This product was identified as one of the most important
and distinguishing products of the EF implementation. The baseline captures both
process and product information and provides the benchmark for identifying change
and improvement. Each contributing organization indicated that capturing the starting
point of the ongoing process (e.g., by completing a Software Process Assessment)
should be complemented with the initial product data and information. Critical
elements of the baseline are shown in Table 1. The baseline must not judge the

SEW Proceedings

validity or adequacy of the organization's process and products, but it should capture
the key process activities being used. Otherwise, it cannot be determined if change is
being applied.

Table 1. Critical Elements of the Organization Baseline

Software Process--Most organizations typically have a set of software policies and
standards that describe the expected process for software efforts. To identify change
and track evolution, it is important to ensure that the identified policies and standards
adequately describe the software process being applied within the organization. If
significant differences exist between the written process and that which is being
applied, it is vital to capture the key attributes of the process that is inherent in the
organization.

Process Elements

Key elements of written process
Major components of process in use
Role of management
- Quality assurance (QA)
- Configuration management (CM)
- Project structure
Improvement activities
Perceptions of developers

Measurement Program--Inherent in all the concepts of the EF is that of
measurement. It is a major element of baselining, setting goals, determining change
and experimenting. Therefore, it must be part of any effort to establish an EF. The
required measures are defrned by the goals of the organization as well as by specific
projects, but the overall operation of the measurement program must be established
right from the start.

Product Elements
Size characteristics
Cycle time
Cost
- Total development
- Maintenance rate
- By function (QNCMltesting)
Defects (number and type)
Defects by test phase

Lesson 2. Staeup costs are insensitive to domain size.
The size and scope of the programs planned by the participating organizations varied
tremendously. However, the resources expended in the basic activity during the first 1 to
2 years was relatively consistent; at least, it did not seem directly related to organization
size. It may be tied directly to available budgets or to similar limitations, but the reported
expenditure on the four key startup products was relatively consistent. The organizations
ranged in size fiom approximately 50 software personnel to well over several thousand.
For the four organizations that provided data, the effort ranged fiom 4% to 7%. Figure 2
shows these typical costs.

For the four organizations that provided data, the improvement plan cost ranged fiom 3 to
6 staff-months of effort; the baseline cost ranged fiom 8 staff-months to 14 staff-months;
the effort required to capture the ongoing process typically ran about 15 staff-months; and
the effort to establish the measurement program was approximately 1 staff year. To

SEW Proceedings

establish the measurement program, the organizations had to define the measures,
produce the collection mechanism, and establish the archiving and analysis process.

Figure 3 shows the associated timelines for the key products produced during the first
two years. It also shows a timeline for initiating experiments or studies; two of the
surveyed organization reported that they had initiated a few studies, but indicated that it
takes a long time to get them started.

improvement Organization Software Measurement
Plan Baseline Process Program

Figure 2. Experience Factory Startup Costs

Studies 1
Measurement

Program J I l l
Software
Process I I I

Organization
Baseline J

lmprovement
Plan

0 5 10 15 20 25 30
Months

Figure 3. Experience Factory Startup Tirneiine

SEW Proceedings

Lesson 3. Successful operation is enhanced by the organizational
structure.
The organizations reviewed indicated that one of the driving elements determining
success is the overall structure within the software organization. The following points
derived fiom their experiences in initiating successful programs are consistent with the
original concepts of the EF itself.

Separation of concerns--When the software organization structures the
improvement program to focus on two completely separate, yet equally important
functions, there is a higher probability of success. The software development staff can
focus on producing and maintaining good software. The EF staff: can focus on
analyzing needs and processes to produce continually improving methods and
techniques for the development organization's use.

Partnership with research elements-several of the more successful EF
organizations have relied on research partnerships with universities. The advantage of
such a partnership is the continual access to researchers who are interested in probing
into methods and technologies as applied to production problems. The university has
access to resources such as enthusiastic (and inexpensive) graduate students, and to a
network of related research institutions such as other universities. The local
organization is then better able to focus on the development, packaging, and overall
analysis.

e Rotational assignments to broaden experiencewith the development and EF
elements separated, there is concern that individuals no longer have the opportunity to
carry out both functions. Most EF organizations are now targeting to .rotate
individuals through both elements to provide broader experience and to provide
opportunity for career growth.

Lesson 4. The cost of operating an EF ranges from 4% to 10% of the
software budget.
Figure 4 shows the costs of operating an EF based on the data provided by organizations
who had implemented the EF as the driving concept of an improvement program. For
organizations of up to approximately 400 people, the reported cost of the program was
approximately 4% to 6% (the SEL was approximately 8%), divided into three categories:

Overhead to projects-Providing measurement data, attending meetings and training,
participating in briefings, etc. Less than 2% (in fact, most places could not measure
this overhead because of the insignificant size).

e Measurement data processing-Collecthg measures, doing QA, archiving the data,
establishing the information repository, and generating basic reports. This function
averages about 2% of the software cost.

Analysis-Designing studies; producing reports; carrying out the analysis;
developing new processes, standards, and policies; providing training. This is the

SEW Proceedings

largest cost and averages approximately 4% to 7% (the SEL has the largest cost here,
averaging about 7%).

For organizations of a much larger size, the total effort expended is larger, but the
percentages of size are much smaller. The values estimated for large organizations (over
500 to 3000 staff) were as follows:

Overhead to projecteless than 2% (difficult to measure)
a Measurement data processing-Approximately 1 % (or less)

Analysis-Averages 3%

-
small m ed ium large

(Organization size)

0 Project Overhead small = up to 50 slw
i!E@&l Information Processing medium= up to 400 = Analysis large = 500-3000

Figure 4. Experience Factory Operating Costs

Lesson 5. Process assessment models are useful as a tool but can be
distracting as the goal.
Process assessment models exist and must be used for various business reasons.
However, organizations can run into difficulties attempting to apply the EF, while
attempting to use models such as the CMM or ISO-9001 as improvement goals. These
models can provide tremendous benefits to software organizations who want to institute
improvement programs when they are used as tools. Such tools can help identify specific
characteristics of software processes in use and can help in producing needed profiles.
These tools are detrimental when they are used to completely define the improvement
program goals. If the product characteristics are not used as the primary driving force for
change, there is no way to determine on a continual basis whether goals are being reached
(unless the complete goal is to adopt some standard process).

There is the danger that when change is adopted and a high process model rating is
achieved, a false sense of achievement may be acquired. The goal must be to ensure that
the specified goals of the organization are being met, that these parameters are
continually tracked, and that associated processes are prioritized.

SEW Proceedings

Lesson 6. The ability to measure 'process' has been disappointing.
One of the assumptions of any improvement program is that an improved set of processes
will produce an improved product. The goal is to identify and infuse the most beneficial
set of process activities so that the end goals of product improvement can be attained.

Information from the organizations reporting on the EF improvement efforts and from
other sources indicates only limited success in their attempts to quantify and qualify
software processes. Such parameters as quality of tools, maturity of process, quality of
inspections, level of structured techniques, and formalisms of reviews are all attempts at
measuring process activities, and many of these are required in common cost models.
Successes have been reported in counting attributes of processes, such as number of
inspections held and the length of time spent on inspections, or in testing. However, only
limited success has been reported at measuring the numerous process activities described
in many of the models in use today (e.g., CMM, ISO-9001, even basic cost models).

Lesson 7. Value of product-driven process improvement (AKA Experience
Factoryl has not been widely accepted by the software community.
In gathering information for this paper, it became apparent that the overall concept of
letting process change be driven by organizational goals and by specific product measures
was not broadly applied. In addition to the information provided by the eight
organizations participating in this study, relevant literature and other improvement
programs were reviewed to determine how common the basic approaches of the EF may
be. The number of readily available examples of environments applying these
concepts-even of conducting experimental software engineering-was very limited.

In reviewing some of the relevant articles addressing this point (e.g., Reference 5), it
seems there are multiple reasons why the concept of experimental software engineering
has not matured or at least has not been commonly adopted. Some of the more obvious
reasons include cost, difficulty, and lack of specific guidance on approach.

Improvement programs are on extremely limited budgets, and it requires a very
committed management team to invest in such a relatively new endeavor. Since there is
limited evidence of results fkom conducting such experiments, it is difficult to justify the
investment in such a pioneering endeavor.

Because of the overwhelming difficulty of reliably measuring process itself, it is even
more difficult to attempt to measure the impacts that process change may have on
products. Single studies are of very limited value. Pilot projects may be overly biased
because of a unique environment (classroom versus production room). Classes of studies
may show that a particular process is of no value, and while this may be an interesting
result in its own right, it does not produce the result needed by the production
organization.

Reviewing work related to the experimental software engineering concept also seems to
show that the necessary approach of multiple, repeated, replicated studies is not
commonly used. Although there are cases of controlled experiments, and pilot studies
looking at some concept of software technology, the willingness to repeat such studies to

SEW Proceedings

confirm, or challenge, or further understand a single point is limited. The nature of the
experimental software engineering approach is that it requires multiple studies and
replicated experiments, but that may not be as attractive to the software engineer as
studies that are new and unique.

Each of these points is arguably weak from the point of view of building the knowledge
base, but they do pose impediments to production organizations' accepting the value of
experimental software engineering. For whatever reasons, the value of these improvement
concepts is only very slowly being accepted by the software engineering community.

Lesson 8. Benefit. of the EF have been demonstrated early in improvement
programs.
It is true that the number of examples of improvement programs applying the concepts of
experimentation and product-driven change is quite limited. On the other hand, the
examples of successful application of the concepts verify that the value of the program is
demonstrated early.

The required elements of the Experience Factory paradigm require that the organization
immediately attempt to identify needs and goals as well as to identify current strengths
and weaknesses. The organizations providing their experience data for this study
indicated that this discipline itself added a tone of improvement to the software
discipline.

By requiring the focus on baseline characteristics, models (e-g., cost, defects, activity,
test) are available that provide very useful tools to the local organization. This in itself is
beneficial near the start of the program.

Common Issues Across Domains
In addition to the eight points summarized above, several common issues were expressed
by the organizations providing this experience information. Although the issues were
expressed in varying levels of detail and in different forms, all the organizations seemed
to agree on the following four major points.

Issue 7. Our ability to characterize 'process' is less mature than
anticipated.
Most of the participating groups indicated a weakness in trying to represent the specific
processes that were used within a series of projects to provide domain information and to
help classify levels of process applied. They noted it was exceptionally difficult to
distinguish between projects as to which processes were truly in use and to be able to
represent the process elements as distinguishing features. For that reason, there was
frustration in attempting to determine which experiences could be shared across domains
and which were unique because of specific process characteristics having been applied.

SEW Proceedings

lssue 2. Domain engineering insight has not facilitated sharing of
processes.
In the past, a significant effort was made to define and study domains of applications so
that efforts to share software code could be accelerated. It was noted that a fair amount of
progress has been made in this area and that the ability to share and reuse code has been
enhanced through much of this work. The difficulty in establishing the EF or general
improvement program points to the need for further domain understanding to identify
which experiences, processes, measurement, and lessons can be shared between
organizations. The effort to expand the concept of EF has shown the need for a better
understanding of domain characteristics, or at least for a means to define these domains
for purposes beyond code sharing.

lssue 3. Size or extent of an EF is ill-defined.
As with other improvement programs or rating programs such as the CMM, there is no
clear understanding as to the relevance, limitations, and interdependencies of various
sizes of particular organizations. Professionals who have attempted to identifi larger and
larger domains as a single entity for the purpose of having a common process as well as a
common improvement program have run into significant difficulties. At present, we do
not have insight into the limiting boundaries of size or expanse so that these common
processes and improvement programs can be established.

lssue 4. Significant 'uncontrolled' variables impact change and
improvement.
Considerations such as people's ability, maturing technology, organizational
reengineering, and changing environments have a significant impact on the analysis of
improved processes and on our ability to measure them. The validity of observations of
process impacts on software products is, therefore, often uncertain. In attempting to
measure the impacts that controllable parameters have on the software product, it is
difficult to eliminate the consideration of these uncontrolled variables.

It is a common and persistent question that is posed about why software may be
improving. Does the change in our controlled use of process have any impact, or is any
improvement completely due to uncontrollable That question does not
appear to have an easy answer, although expanding the types of analysis designed within
the EF concept can help address that topic to some degree.

Acknowledgment
The following people provided detailed information relevant to the experiences captured
in this paper: Rose Pajerski of NASNGoddard, Sharon Waligora and Jerry Doland of
CSC, Charlene VanMeter of NSA, Michael Deutsch of Hughes Information Technology,
Dieter Rombach of the University of Kaiserslautern, and Gianluigi Caldiera and Vic
Basili of the University of Maryland.

SEW Proceedings

References
1. Basili, V.R., "Software Development: A Paradigm for the Future (Keynote Address),"

Proceedings COWSAC '89, Orlando, Florida, September 1989
2. McGany, F.E., R. Pajerski, G. Page, S. Waligora, V. Basili, M. Zelkowitz, An

Overview of the Software Engineering Laboratory, Software Engineering Laboratory,
SEL-94-005, December 1994

3. PauIk, M., B. Curtis, M. Chrissis, and C. Weber, CapabiZily Maturiw Model for
Software Version 1. I, Software Engineering Institute, Carnegie Mellon University,
CMUISEI-93-TR-24, February 1993

4. McGarry, F.E. and M. Thomas, "Top-Down vs. Bottom-Up Process Improvement,"
IEEE Software, July 1994

5. Fenton, N., S. Pfleeger, R. Glass, "Science and Substance: A Challenge to Software
Engineers," IEEE Sofiare, July 1994

SEW Proceedings

Porting
Experience Factory Concepts

to New Environments

Frank McGany

Computer Sciences Corporation

Definitions For This Briefing

*PROCESS
Methods, steps, and management practices used to produce
the software end item. (e.g. Inspections, QA steps)

*PROCESS MEASURES
* Quantifiable attributes of the process
(e.g. % effort spent on inspections, time to develop,
quality of tools, quality of standards)

*PRODUCT
The end item software elements

(e-g. code, documents)

*PRODUCT MEASURES
Quantifiable attributes of the end items

(e.g. cost, lines of code, % reused code, total defects)

*Experimental Software Engineering (ESE)
* Study of SE technologies in a structured laboratory

environment utilizing a formal assessment process

SEW Proceedings

Characterizing 'Experience Factory'
*Experimental Software Engineering

Software projects treated as learning instruments
* Process activities and technologies treated as study variables

(not as a priori known solutions)
Formal Process Used for change (QIP)

*Goal driven change
Typically product oriented

C

Product and Process 'baseline' required

*Separation of Concerns (Specific structure)
EF organization analyzeslsynthesiizes- produces m o d e l d p ~ ~ e s

* Development organization sets goals, c b r i z e s , provides data

*Measurement
Measurement fundamental at start
Rimarily used to characterize and guide change

EF Comprises Structure and Pi&Z&&ks
a

The SEL is an Experience Factory

Structure Activities

SEW Proceedings

Basis for the Observations*
(In Addition to the SEL)

-NASA

* Center-wide Activities (Goddard, JPL)
Agency-wide efforts

* Several other related efforts (e.g. SEAL at Langley)

*CSC
* FDTG(in addition to SEL efforts)

SEAS-wide activities
Several Centers initiating efforts (ASD in UK)

-NSA

*Hughes Information Sciences Division

*Associates of University of Kaiserslautern
(Robert Bosch, Daimler Benz, Nokia, Ericsson)

*Only Panial experience data available from each of the above
5

1 Specific initial products distinguish EF
(4 Major products addressed in first year)

*Plan (Document)
Define Organizational Goals

* Improvement Concepts (learning organization)

Approach - Target Schedule

*Baseline (Document)
Must capture Product as well as Process

CMM useful for Process
Not Judgmental (but will always be interpreted that way)

*Process (Document)
Update, Generate s./w process within organization
Establish key practices used within the organization

*Program for Measurement (Operation in place)

SEW Proceedings

Critical elements of slw baseline

Process
* Key elements of written process

Major components of Process in use
Role of managemenu support - QNCM

Project structure

* Improvement Activities Ongoing

Perceptions of developers/managers

Products
* Size characteristics

Cycle time
Cost

Total development
Maintenance rate

By function (QNCiWTestingl)

Defects (number and type) '

Defects by test phaselactivity

Start-Up costs insensitive to domain size

SEW Proceedings

Plan Baseline Process Mas Prog

Timeline for implementation

Studies

measurement

process

profile

plan

0 5 10 15 20 25 30

Months
Startup timeline also similar for all size organizations

9
SEE0

3
Successful operation enhanced by

organizational structure

-Separation of concerns exhibited by allocated resources

-Partnership with University - a proven benefit
* Social phenomenon inherent in process ('outside experts')

* Focus of concerns
* Analytical capabilities
* SIW is a laboratory science

-Improvement staff must take on role of 'support' not process
developers

*Rotation of Proiect personnel through Analvsis organization
necessary

Goals and needs must be driven by s/w experience

SEW Proceedings

4
Operation of improvement program ranges

from 4% to 10% of SIW budget

7

2:
3 :
6 2
8 1

0
small medium large

(Organization size)

p r o j e c t ~ e ~ 0
emvide data
-Meetings
*Training

Infomati011 -W @
*QA data
-Archive data
-Basic reporting

AnaMs a -
*Design studii
-AnalyZelsynthexk% p m
*Produce new proQss
*Provide training

s d l = uptoMdw
medium= up to 400
large = 500-3000

5 Process Assessment Models are
superb as a tool;

They are misleading as a goal

*Apply process assessment models to define your process
characteristics, not to determine success

CMM or ISO-9001 are sample tools to support process baselining
CMM authors (Humphrey, Curtis, Radice) intended them as a guidehot a
goal

*Misuse of process assessment models has propagated misdirected
efforts

Can create a false sense of achievement or failure - Can cause delays in product improvement program
*Operate as Level 5 organization from the start

EF concept is to improve product by appropriate selection and
manipulation of process
Learn from each project (treat each project as an experiment)
Plan for process and technology change at start

SEW Proceedings

6 Our ability to measure process has been
disappointing

.Outside of specific controlled experiments our attempts at
characterizing process have had extremely limited success

(e.g. MPB, quality of process, design approach, tool usage..)

eNumerous successes with quantifiable attributes(e.g. time in
inspections), but limited success with qualitative attributes (e.g.
quality of testing, level of MPP, design techniques)

*Often counter-intuitive analysis results are met with skepticism

('You didn't apply it correctly')

*Detailed, rigorous attempts at establishing consistent definitions
has demonstrated the difficulty (e.g. CMM)

.Significant reason for diiculty in determining process impacts on
product.

7 Value of ESE has not been accepted by
software community

eESE requires repeated, multiple studies in multiple domains
There is the perception that replicated experiments represent inferior
work

*We (the Software Engineering Community) are too anxious to
generate and to accept results of small pilot studies.

* Classroom studies are good place to START, but there is more
* ESE requires persistence, time, and commitment

There is more to ESE than studying 'inspections'

*Amount of completedlongoing activities (experiments) extremely
small

*Some reluctance on reporting failed, or inconclusive work

can result in slower progress

SEW Proceedings

8 Benefits of EF approach can be demonstrated
early in improvement program

*Concept inherently enhances capability of demonstrating process
impact on product

EF focuses on baseline, process, product, and measurement from start

*Development models, technology management and domain insight
natural products of the EF

* Baseline is first significant step in capturing relevant models (cost, effort,
defects,..)

*Separation of concerns facilities optimization of available resources

EF concepts helps focus change on solving local domain problems
Domain engineering concepts needed to facilitate sharing of experience

Experience Factory Structure and Activities Enable
Demonstration of direct and indirect improvements

S t L L U
15

Implementation is very hard

*Overwhelming inertia still exists toward an easy, one-time solution
Pre-defined process attributes seen as complete solution (ISO, CMM,
SPICE..)

*Emphasis on 'Understanding' perceived as unnecessary delay
Organizations want action and change- not establishing baseline

*Concept of 'experimentation' and 'scientific method' foreign to
software environments

Need for experiments, analysis, evolution deemed inappropriate

*Changing technology viewed as eliminating need for slw engineering
COTS, Reuse, 4g1, etc. seen as replacements for 'software'

SEW Proceedings

Issues common across domains

*Characterizing (measuring) process
Current ability to characterize process seems immature

Insight required to facilitate sharing/comparing

*Domain engineering
* Unclear as to what successes or processes apply to 'other' domains

* What lessons, experiences, models can be shared

How we characterize domains historically has focused on 'code reuse'

*Organizational size
* How big can an 'improvement organization' be (optimal size)

What are the discriminators for organizational boundaries

-Uncontrolled variabies
Maturing environments. people, improved technologies will have impact

I EF to address each of these issues I
17

SU20

SEW Proceedings

, , .'..:./
Session 2: Reliability

Empirical Study of Sof iare Testing and Reliability in an Industrial Setting
Jacob Slonim, IBM Canada

Sofmare-Reliability-Engineered Testing
John Musa, AT&T Bell Laboratories

Reusing Sof iare Reliability Engineering Analysis @om Legacy
to Emerging Client/Sewer Systems

James Cusick, AT&T Bell Laboratories

SEW Proceedings

SEW Proceedings

;? . t Z

An Empirical Study of Software Testing and Reliability
in an Industrial Setting

, v 7; i B j
C

Jacob Slonim Michael Bauer Jillian Ye
IBM SWS Dept . Computer Science IBM SWS

Toronto Laboratory The Univ. of Toronto Laboratory
North York Western Ontario North York

Ontario L4W 4P4 London, Ontario Ontario M3C 1H7
Canada Canada, N6A 5B7 Canada

Abstract

Today's competitive software environment requires the development of high-quality software in
shorter development times. This requirement places increasing demands on software developers,
their tools and processes. In particular, since much of software quality assurance still relies on
testing, improved testing processes and tools to aid i n eficient, cost-eflective testing are required.
Yet, there is still a great deal that we do not understand of the testing process and the means to
assess its eflectiveness. In this paper, we report on a study ezamining the utilitp of code coverage
to support and improve the testing process. The study is conducted during the development of a
new release of a large-scale commercial product, but the data collected and analyzed to date are
focused on a single line-item (product functionality) of the subjected software. W e report on the
information collected on the testing of this line-item during the unit and function test phases, what
it reveals about testing in this environment, and the tool that was used. W e conclude with some
lessons learned and directions for a,dditional data collection and analyses to better understand the
utility of code coverage in improving software testing in indu.stria1 settings.

I Introduction

In today's competitive climate, a successful software product must be priced competitively and
be of high quality (including both functionality and reliability) in order to be successful. Com-
petitive demands in the futare will likely require software to be of even higher quality. Current
industry practices rely extensively on testing (unit, function/integration and system/acceptance
testing)[l7] to ensure a software product's or release's quality. Yet testing remains one of the
most challenging aspects of software development and often the most costly. The costs asso-
ciated with testing are very high, relative to the overall cost of product development. Studies
report that these costs range from 40% to 50% [I, 201 of the entire product development life-cycle
expense (in both capital and time); and, even then are often considered insufficient.

SEW Proceedings
9 5 SEL-95-004

Moreover, competitive pressures often require a software company to quickly release its product
to the marketplace in order to protect its investment or market share. Any delay beyond what the
competitive pressures of the market might tolerate could jeopardize the product's marketplace
acceptance; and in some cases the entire investment could be lost. In the IBM Software Solutions
(SWS) Toronto Laboratory, for example, competitive pressures have forced the development cycle
to gradually shorten from 18 months to 9 months. This aggressive cycle time requires increased
productivity while sustaining quality in all phases of the development life cycle. Such situation
is not unique to the Toronto Lab.

The pressure to increase test efficiency is especially high because of the high proportion of total
test time during the development cycle[3]. To those charged with function integration and/or
product acceptance testing, this pressure increases the challenge of completing their tasks on
time as well as ensuring extensive and in-depth testing of the product.

Given the degree to which product reliability can affect the software products and services,
it is paramount that our industry conduct testing and reliability estimation in an efficient and
cost-effective manner. It is a common observatiori of many studieslll, 241 and our own experience
that the cost of fixing errors grows quickly during the development cycle and more after product
release. Hence, it is critical, more than ever in today's environment, to detect errors efficiently
and as early as possible in the development cycle. Yet, there seems to be no industry-accepted
metrics or test tools of adequate industrial strength to effectively aid testers in determining how
their limited time should be allocated in the testing process to improve problem detection and
ensure higher software reliability. Based on our experiences, both academic research models and
prototypes and commercial tools still fall short of this goal.

Any meaningful estimation using the current software reliability growth models requires, in
general, "that the system be well into test before the data required can be collected and the
model appliedV[5]. In addition, the fact that none of these estimation results provide feedback
on how to improve the reliability measurements during the development cycle makes it even
harder to justify the'often high cost of utilizing these models in a industrial setting[l9].

On the tool side, we have not yet found one that has sufficient strength to handle the complex
environment and large-scale software often present in industry. Most tools also fail to meet the
performance and resource requirements that industry requires. We think the following explana-
tions account for these tools' lack of industrial strength:

e Most tools available have originated from academic studies and, though they may represent
interesting "proof-of-concept" prototypes, they are not capable of coping with the level of
dynamic use and environment settings, nor the level of complexity in the process model
and modules that are often found in industrial software.

They have been validated and used only on software of much smaller size than many
industry products[l5]. Many of the tools are designed and used to handle software of tens
of thousands of lines of source code; industrial products are often one or two orders of
magnitude beyond this (hundreds of thousand or millions of lines of code).

They are neither reliable nor suit,able for use on a daily basis; they break down frequently,
and/or do not handle abnormal conditions well. They do not cope with a range of source

SEW Proceedings

code formats and language variations, nor operate over a range of development phases,
from the unit-test to function test, integration, and system-acceptance test.

0 They often require significant resources and not perform efficiently enough to be accepted
as part of standard practice during development phases.

As a result, there are no software reliability growth models or tools in widespread use within
the Toronto Laboratory. Some work had been done[21, 221 in trying to use execution-time based
software reliability growth models at the sery end of product development cycle-the system test
phase; however, in general, especially during the early phases of the development cycle, software
product reliability is "estimated" by the number of defects found during system tests and, very
importantly, the "sense" of developers and testers towards the product. This is not necessarily
bad, but it just highlights the fact that there are inadequate tools to provide quantitative evidence
to support their feelings, nor are there systematic methods to provide evidence that sufficient
tests have been done[4, 231.

It is our observation that developers and testers are genuinely interested in producing highly
reliable software products, even though they are, in general, also striving to meet deadlines.
They constantly search for feedback in perfecting their work and are willing to use any tool that
would help them do high-quality work morc :?fficiently. Software professionals have suggested
that the following information, if availizblc early in the development cycle, could provide them
with useful feedback[l6]:

o the quality of the manually and automatically generated unit, function and integration test
cases;

the code covered by tests performed, especially on the newly added or changed parts of the
code;

0 the quality of the regression test cases and system-acceptance test cases, especially of the
most critical components or functionalities.

It is not feasible to collect this information manually. Tools to collect this information must be
integrated into the development environ msnt and work seamlessly ; otherwise, they will probably
be ignored because of the time constraints.

Many assumptions (implicit and explicit) in the development process and current practices
involving testing and software reliability measurements and criteria have not been validated.
The subject of software reliability growth estimation and reliability assurance while the software
is under development, especially in an industrial setting, has not been very well studied. From
our initial observations, code coverage is a promising measurement technique for assessing the
quality of testing, which may lead to more reliable estimation, particularly in cases of the absence
of an accurate operational profile. Compared to measurements that are commonly used in other
software reliability estimation approaches (such as number of test cases run and time of testing),
source code coverage approach has the potential to add a new dimension to the development
life-cycle by providing an "inside out" view of the tests, otherwise unknown to developers, in a
timely manner. We hope such feedback provided in the early stages of the development cycle
can be used to improve product quality efficiently, reduce the time and cost required to get the

SEW Proceedings

product into the market, and provide valuable information for software project management.
It is the objective of our study to begin to systematically explore these issues in an industrial
setting, hoping this research will lead to a new generation of software reliability assurance models,
measurements, tools, and processes.

Most of the serious industrial studies in the software reliability area to date, are conducted by
telecommunication organizations[l2]. It is our intention to follow their lead and take advantage
of their approaches, findings, and experiences to further explore practical software reliability
issues in industries outside telecon~munications.

This study is part of an ongoing project of the IBM SWS Toronto Centre for Advanced
Studies[l8] in conjunction with Bellcore, The State University of North Carolana, Purdue Uni-
versity, and the University of Texas. As a first step, we wanted to gain more accurate measure-
ments about the tests performed during product testing by using a coverage monitoring tool
called ATAC (Automatic Test Analysis for C), developed by Bellcore. The tool records which
lines of source code were executed when tests are run (whether through manual or automatic
execution of test cases/scenarios) and reports the total code coverage accumulated. We collected
defect information along with the actual testing and defect removal practices during the devel-
opment of a major new release of a large-scale commercial product. The development and test
team followed the Lab's usual software development process and were unaware of this study.
This data will be analyzed to measure current development and testing practices and to gain a
first-hand understanding of them. We will try to answer questions such as : What is realistic
code coverage to expect from a typical industry software development practice in various phases?
Subsequent work will involve more experiments to identify what improvements could be made if
such tools were available during the development phase, and how much that would affect results.
As the first phase of this study, the actual coding-and-unit-testing and function-verification-and-
integration-testing data for one product f!rnr.tionality in this new release have been collected and
analyzed.

The rest of the paper is organized as follows. Section 2 outlines the development environment
in which this study is carried out. Section 3 describes the coverage tool used. The experiment
and analysis of data collected are presented in Section 4. Some things we learned about testing
and the development processes during our experiment to date are described in Section 5. The
paper concludes with a summary of the work and some future directions.

2 Environment

The Toronto Laboratory's development process is based on the the spiral model and waterfall
model of software development[9,13]. An external function specification is first constructed based
on customer requirement and product planning. The development team develops a design based
on the external function specification, writes highllow level design documents and has them
reviewed and approved (revised and re-reviewed, if necessary). Then this design is implemented
and unit tested. After unit testing, code review (again, making changes and re-reviewing, if
necessary), and some basic common (product-wide) integration tests, the function is integrated

SEW Proceedings

into the base system. Meanwhile, a fi~nction-specific integration test plan and test cases are
written and reviewed. Once the function is integrated into the code base, the integration test
phase starts; test cases are executed and Lugs fixed. At the integration test exit point, the
test cases are added to the regression bucket and constantly rerun on the product. Once all the
functions for a release have passed their integration test, the system-acceptance test phase starts.
Test cases are run according to the system-acceptance test plan lrntil the exit-criterias are met.

Note the above is only a sequential description of what is actually an ongoing, cyclical process.
Even though it is a well-documented and well-practiced procedure, there are little systematic or
scientific measurements on the quantity and quality of the tests performed, because of the lack
of feasible tools. The assurance of the test quality is mostly based on the review of the test plan
and test cases, and the tester's "gut feel" about the sufficiency of tests performed to date.

As noted, our experiment took place du; ing the development of a major new release of a large-
scale commercial software product. We chose to conduct our study on a major new release for
two reasons. First, the modifications and changes are more significant than those of a (minor)
refresh of the software; hence, a major release provides extensive enough code changes to make an
interesting case for our study. Second, it is also much more representative of industrial software
development, in our opinion, than the creation of a brand new product, since most of industry
software practice involves reusing old code[2].

The release of the software under consideration involved adding new functionality and moving
into parallel systems and operations. There was a common code base with a variety of versions
and platforms that had to be maintained. This obviously complicated the changes and testing.
The base software (that is, the old prod~ic?) contained approximately 420 KLOC (thousands of
lines of code), and this new release added or changed approximately 150 KLOC (all code counts
in this paper do not include comments; one source program statement is counted as one line).
Code in this product is subdivided into about 40 components according to their functionalities
and interrelationships. Product developers are divided into small development teams (usually
two to five people), each responsible for a certain line-item. ("Line-item" is a term for a set
of related tasks that evolved in the development of, typically, a product functionality). Each
development team's tasks include designing, coding, unit-testing, and conducting reviews and

, function-integration testing of the line-item. At the end of product development, all line-items
are integrated together for intensive system-level acceptance testing conducted by a separate test
group. The implementation of a line-item t:-pically involves changing multiple old source modules
(each often containing multiple functionsj ar,d adding new modules in multiple components.

A collection of all the source code needed by the product is often called the "code base".
When the project is started, the old product is the code base; the base changes and grows as
development progresses. A collection of all the existing (automated) function-verification-and-
integration test cases of the product is referred to as the "regression bucket"; it grows when
new functionalities are added to the product.

Because the regression bucket of this product was too big to be completely executed within a
day, a small set of test cases were careftilly developed and selected from the regression bucket to
be used as a basic product-wide common test suite, referred to as the "basic integration test" or
';fastpat h" . Whenever the code base mTac changed (usually every day), it was compiled, linked,

SEW Proceedings

and verified by the "fastpath" test, then regression tested.
A verified runnable base is often referred to as a "build". A common build is the base that

is accessible by everyone in the project. A private build is a snapshot of the common build plus
one's own modifications not yet made public to others. Code changes (for defect-fixing or for
line-item implementation) are required to be made on a private build first, then unit tested.
They must pass the "fastpath" before being added (checked-in) to the common code base. This
"fastpath" testing and checking-in activity is also referred to as the integration of a defect fix
or a line-item. Once integrated and verified, the change becomes part of the new build.

In this environment, source files in the base a x shared and updated by all developers as needed;
there are always multiple line-items and/or defect-fixing activities that take place in parallel and
often several developers need to make modifications on the same source modules. Exclusively
locking a source file for too long (more than a day) often means delay in other people's work.
Developers working on related components or line-items are often involved in joint discussions
or are asked to review each other's work in order to avoid design or implementation conflicts and
to maintain the global coding consistency of the product.

Work on a line-item often lasts more than several weeks, which means it is quite impossible to
reserve exclusive use on all the needed files during the whole period; hence, sources in the private
build may be inconsistent with what is in the common build. Therefore during the coding-and-
unit-testing phase of a line-item, the private build is periodically updated with the latest common
build to make sure that the implementation in progress keeps up with the latest changes in the
code base; this activity is also referred to as a merge. A line-item typically involves more than
one merge from the start of the implementation work to its integration. Coding, review, unit
testing, and changes are ongoing activities on all these periodically merged private builds.

The line-item's source files are exclusively locked only during the integration of the code. The
integration of a line-item locks all the needed files, makes the final merge, reruns all unit tests,
passes "fastpath" test (and other verification tests when applicable), then checks-in the code and
releases the locks. In general, all review, unit-test, and "fastpath" defects have to be fixed before
the code integration, which marks the end of the coding-and-unit-testing (often simply called
"unit test" or "UT") phase of the line-item.

Fkom then on, the funct ion-verification-and-integration-testing (often simply called "function
(verification) test" or "FVT") phase of the line-item starts. The line-item's specific test cases, as
well as test cases developed for all other lineitems and the regression test buckets, are run daily
on the public builds. Once all these function-specific test cases pass without errors, the function-
verification-and-integration-test of the line-item exit; the test cases are added to the regression
bucket. Then the system-verification-and-acceptance-testing (often simply called "system (veri-
fication) test" or "SVT") phase starts; system test cases, as well as all the regression test cases
are executed daily until the product GA (general availability).

For this study, we chose to focus on a lineitem that was developed by a five-person group.
About 5 KLOC were changed or added to approximately 50 modules (source files) in five com-
ponents. These 50 modules entail about 35 KLOC and the five components contain about 150
KLOC in total. The team followed the standard in-house process for development. They were, in

SEW Proceedings
100 SEL-95-004

general, unaware of this study although they were asked to keep records for all defects found in
all development phases. This procedure was necessary because defects found during the coding-
and-unit-testing phase are not usually tracked, but were important for our study of the early
development cycle.

To give a sense of the code complexity of the subject software, Figure 1 summarizes the
cyclomatic complexity of the more than 250 functions that existed in the modules involved
in the subject line-item. The cyclomatic complexity is McCabe's metric[lO] on control flow
complexity. Note that it only reflects the complexity of individual functions, not inter-modular
or inter-functional complexity.

\ Complexity: 11-50

Figure 1: Percentage of Functions with Various McCabe Complexities

The average cyclomatic complexity per function in this particular line-item was 23.18. In
general, a function with a cyclomatic complexity of greater than 10 is often considered "too
complex". There were a few functions having a complexity over 100. In most instances these
functions had evolved over several generations of the product, and the original developer(s) have
moved on to other projects. There is a reluctance to spend the time or risk introducing new
coding errors to rewrite these modules because of their complexity and the fact that their defect
rate is not higher than normal.

3 The Coverage Tool
The source code test coverage tool used in the experiment is called ATAC, a tool originally
developed a t Bellcore, then augmented at Purdue University to be used in our environment.

ATAC stands for "Automatic Test Analysis for C" [7,8]. It measures how thoroughly a program
is tested by a set of tests using data flow coverage techniques. Structural coverage testing

SEW Proceedings
I01 SEL-95-004

identifies program constructs (attributes) that may be exercised during program execution and
determines which of these constructs are in fact exercised by a set of tests. These constructs may
be blocks of consecutive statements, branch decisions, or various combinations of assignments
and uses of variables (e.g., the all-uses). The report generation function of ATAC provides a
summary of the percentage of testable attributes being executed, or shows the details of exactly
which lines of the code are exercised by a set of tests. It can be used to identify overlap among
test cases, and areas of source code that are not well tested.

Although the original version of ATAC had to be modified in order to handle the complex
environment - one involving multiple processes, parallel systems, concurrent users, and various
applications, it is by far the most relial.>le, and usable tool that we have tried. Its architecture
also makes it the most suitable for easy customization to our environment.

At this point, ATAC still has limits on scalability, functionality, and performance that restrict
the scope of our experiment. However, we do see its potential in becoming a reliable industrial-
strength software testing and reliability assessment tool. IBM SWS Toronto Centre for Advanced
Studies is conducting a joint project with Bellcore in achieving this goal.

Experiment

This experiment involved revisiting the line-item, the test cases, the recorded defects, and their
detection and removal history. Subsequent to the release of the product, an experiment of the
utility of the ATAC tool had begun. The objective of the experiment, which continues, is to
understand the potential role that such a test code coverage tool can play in the early detection
of defects, and how it may provide quantitative information on the testing process to developers
and testers.

In this section we describe a case study on a single line-item's unit-test and function-test data.
Subsection 1 briefly describes the development cycle of this line-item. Subsection 2 outlines what
type of data was collected, how they were collected and analyzed. Subsection 3 and 4 show the
data collected from the unit-testing and function-testing, respectively. Then in subsection 5, we
report our observations on the combine the data from the two testing phases and make some
analysis.

-1 em 4.1 The development cycle of the line 't

The overall development cycle of this line-item (Figure 2) lasted approximately 13 months. Of
these, the design took about 3 months, and the coding-and-unit-testing took about 3.5 months.
The function/integration and acceptance testing 'took the remaining 6 or more months. The
formal entry of the system test is also the time for product code freeze; after that date, only
defect fixes can be integrated into the code base, not additional line-items. In this particular
case, this test lasted approximately 2.5 months.

Note although included as part of the line-item's development cycle, system/acceptance test is
a product-wide activity, which does not focus on any particular line-item as unit-test or function-

SEW Proceedings

Design
I

Code Integration Test

I
0 3 6.5 10.5 13

(months)

Figure 2: Development Cycle

test normally does.

4.2 How the data are collected and organized
We collected all the defects on the subject line-item that were detected and fixed before the
system-test started. These defects were then analyzed according to their error-characteristic and
detection information.

A "defect" in this paper is a logical concept (not interchangeable with software "fault"). That
is, a defect may involve a fix to one statement or to many blocks in many source modules, as
long as these changes are logically closely related to one idea or problem. For example, a design
error that counted as one defect may involve changes in many parameters, functions, and files.
An initialization defect may appear in one or multiple functions and files, and, as long as they
are all the same, is counted as one defect. A failure may be caused by multiple defects, and the
same defect may cause various different failure symptoms.

We consider "severity", "risk", and "error-type" all part of a defect's error-characteristics.
Seven error-types were used to categorize the defects: (1) logic/control errors, (2) interface
errors, (3) data errors, (4) computation errors, (5) initialization errors, and (6) design
errors/problems, .or (7) code omission errors. The first 5 categories are based on a study
by NASA[l]; we added the last two types because the coding-and-unit-testing phase stage
was not part of that NASA study.

a In addition we have classified the defects by severity and by risk based on our experience
and insight into the particular product. Risk is an assessment of how likely a user would
be to encounter the particular defect; it can be low, medium, or high. Severity is estimated
on a scale from 1 (very severe, meaning the program dies or does not function as specified)
to 3 (low severity, for instance an imperfect message).

We will use summary tables to report error-characteristics of these defects in the next few
subsections. If multiple levels of severity or risk were presented in the defects of the same
type, they are listed according to their frequency; that is, the severity or risk level with the
most number of defects is listed first.

Defect detection information includes details on how was the defect reported and the cost of
locating and fixing it.

0 In this experiment, defects were reported from: (1) formally conducted code reviews, (2)
casual reviews, while implementing the line-item, or investiga-liiag and k i n g other defects,

SEW Proceedings
103 SEL-95-004

(3) generic testing, such as "fastpath", (4) regression test cases, (5) test cases specifically
generated for this line-item, and (6) test cases generated for other line-items (those line-
items were developed in parallel with, and typically related to, the one under our study;
their test cases were not in the regression bucket because they had not completed their
function test at the time).

Most of this information was available from the defect database (for FVT), some was
obtained from the line-item's developer (for UT).

e The cost of finding a defect includes time to set up the test environment, run the test,
collect debugging information, recreate the problem, etc. work continues until the problem
is located in the code, or clearly identified. The cost of fixing a defect includes time
to design, code and review the fix, unit-test it, and verify it with the original failure
situation(s).

This information came from a combination of defect records, reconstructed test situations
and estimations from developers directly involved in fixing the defect.

Hardware or software required to run the test were not counted in the cost. For most cases
(especially in the FVT phase), time to generate test cases was also not counted as part
of the cost to find a defect, because a set of test cases were usually designed and created
together. Also, the error detection rates of all test cases in the set typically vary greatly;
hence it is hard to get a fair estimation of test-case-creation-costs per defect or per test
case.

4.3 Report &om the Unit-Testing

4.3.1 Source of defect-detection

AS described earlier (Section 2), the coding-and-unit-testing of a line-item is performed on private
builds. The implementation starts with a snapshot of the common build as the base; code is
constantly added, internally reviewed, tested and changed. The internal reviews were done by the
team members who work directly on the Iine-item; they were casual ongoing activities throughout
the entire coding-and-unit-testing phase. When the coding was completed, external reviews were
formally conducted at code-review meetings. They involved developers both from the team and
others who had knowledge of related components but were not members of the team for the
subject lineitem.

In this particular case, out of all defects found in this phase, 25% of those defects were found
through internal reviews, with an average cost of 3.1. hours per defect; 42% were found by external
reviews, averaged at 3.9 hours per defect; and a total of 33% defects were identified through the
use of test cases, with an average cost of 5.9 hours to find and fix.

This study shows, in agreement with the findings of others[6,1,14], that code review is a highly
effective approach for the quality assurance of software. More importantly, its value derives not
only from the fact that it finds a higher number of defects with smaller effort than usual test
methods do, but even more from its discovery of many defects that would be (from our analysis)
very difficult to detect using test cases.

SEW Proceedings

4.3.2 Testing and source code coverage growth

We realized that it was a mistake not to collect information about test cases that run successfully
during the unit test phase. Since only test cases that experienced failures were recorded; hence,
the coverage measurement shown here does not reflect an exact picture of the actual testing
(that is, compare to the actual situation, the total coverage shown is smaller and the cumulative-
defect-verses-coverage shown is sharper). However, we think the defect and coverage growth
pattern provided by ATAC based on the currently available information still yielded some valid
and refreshing results.

Figure 3 shows the cl~mlilative percentage of defects detected and removed plotted against the
cumulative percentage of source code coverage by the unit-testing for three different coverage
attributes: blocks, decisions and all-u.se.s.

Figure 3: Code Coverage in the Unit Testing Phase: Three Attributes

Note that, first, the Percentage of Defects Detected and Fixed in Figure 3 refers to defects
actually detected (by test cases) and removed during the UT phase of the subject line-item.
Hence 100 percent defect removal here does not mean there were no more defects found later
during the FVT phase of this line-item. Second, these defects were recorded during the actual UT
phase by developers following the standard in-house procedure without the aid of the ATAC tool;
all the coverage measurements were later obtained based on the recorded testldefect information
on a code base that had all these defects removed.

With these facts in mind, there are several interesting observations that can be made about
the data:

e The same test cases provided a much smaller percentage of coverage when presented by the
all-use attribute than by the decisions attribute, because the different coverage attributes
represent different granularities of measurement and, therefore, result in different numbers
of potential variations. To be exact, there were about 19,000 blocks, 13,000 decisions
and 53,000 all-uses variations in the 50 or so modules we studied. This demonstrates the

SEW Proceedings
105 SEL-95-004

meaninglessness of describing the code coverage achieved by a set of test cases without
identifying the coverage a t tributes used.

When the first defect was detected, the test cases run up to that point had accumulated
a coverage of 50% by function (131 out of total 260), 26% by blocks (4944 out of 18897),
19% by decisions (2445 out of 12601) and 16% by the all-use attribute (8389 out of 52906).

This high first-defect coverage value, and the flat-slow-sharp defect-versus-coverage growth
pattern (common to curves of all three attributes) can be explained by the effect of code
reuse. It suggests that code reuse is a reliability-wise method for software development, as
seen by many researchers[2].

On the other hand, it also suggests insufficient testing (including long hours of test case
execution that do not increase code coverage) may lead to incorrect conclusions on software
reliability, since there may be no, or few defects found until some threshold of code coverage
is reached; although we believe that absolute value of this threshold may vary, among
different line-items, releases or products.

The curve for each of the attributes is rising sharply at the end of the execution of the
available test cases. This indicates, we think, a need for more testing.

Although we have explained that the actual curve would not be as sharp as shown due
to the successful test cases that were rnisrecorded, we believe the growth pattern should
remain similar for this unit-test phase, which means additional test cases would likely be
beneficial.

This finding is a very encouraging one. Normal measurements (for example, the defect
detection rate versus the number of test cases run or the test execution time) had given
an opposite impression to this at the end of the unit-test phase (based on the fact that,
all recorded test cases, 'Lfastpath" and a lot more generic integration tests were rerun after
the last merge before the integration of this Iine-item, no failures occurred). This result
suggests that the use of a code coverage tool may provide a new perspective to aid in
pushing more efficient tests to an earlier point in the development cycle, where it should
be much more cost-effective to remove software defects.

4.4 Report from the Function Testing

4.4.1 Source of defect-detection

Once a decision is made that the coding and unit-testing is completed, the development process
moves into the function-verification-and-integration-testing phase (see figure 2). The objective
of this phase is to bring together the newly develdped and changed code for this line-item with
changed made by. other line-items and the existing unchanged code base. Although tests are still
line-item oriented, the test environment is shifted to the public build, where regression tests and
all pre-FVT-exit line-items are run in parallel, and the code base is updated constantly with new
functionalities and defect-fixing changes.

In this particular case, out of all the defects detected (and fixed) for this line-item during the
function-verification-and-integration-testing period, 30% were found by test cases specifically

SEW Proceedings
106 SEL-95-004

generated for this line-item, with an average cost per defect of 23.2 hours (not including time
spent planning and generating the test cases); 30% were found as side-effects while running test
cases generated for other related line-items, at an average cost per defect of 20.4 hours; 12%
were detected while running regression buckets and other generic tests with an average cost per
defect of 14 hours; and, most striking of all, the remaining 28% of the defects were found while
working on (that is, code-inspections ir~troduced by investigating and fixing) other defects at an
average cost of 3.9 hours per defect!

Three points can be learned from this result:
1. Even in the function test phase, it is still extremely beneficial and cost-effective t o do as

many code reviews as possible.

2. The sources of defect detection and the cost distribution suggest that it is more cost-
effective to reuse existing applicable test cases than to create new ones. For instance, test
cases created for other line-items and those in the regression bucket can be considered
existing ones, from this line-item's point of view. ATAC can be used to limit the creation
of new test cases that do not provide additional coverage beyond those test cases already
in existence.

3. Except for the defects found by code inspections (whose costs stay about the same level as
during the unit-test phase), the cost to fix defects found by all other means are much more
expensive in FVT phase than in the UT phase.

4.4.2 Testing and source code coverage growth

Ideally, since function tests are carried out in an integrated environment, and all line-items and
regressions are run on a shared public build, defects on all related line-items (whose work overlap
of the set of source files each modified) should be collected and analyzed together, then plotted
against the total coverage collectiveIy achieved by all test cases from these related line-items
and applicable regression test cases, to completely reflect the actual situation. However, limited
resources have not allowed this approach as an option for our study to date.

As the first step of the study, we decided to continue to focus only on the single line-item
we did the UT experiment on, and follow it through its development cycle. That is, we would
analyze defects on this line-item and would only collect coverage information for the complete
set of test cases that were specifically generated for this line-item. Test cases generated for the
testing of other line-items were each only included in our data if it revealed a defect on the
line-item under study.

We understood such strategy would cause the defect-versus-coverage curve to be artificially
sharp, but hope this limited experiment would still give us enough insight on how the utility
of code coverage can assist in the assessment of the function test process, and help build a
interesting case for continuing this study in bigger scope in the future.

Figure 4 illustrates the cumulative percentage of defects detected and removed plotted against
the cumulative percentage of source code coverage by the FVT test cases for three coverage
attrjbutes: blocks, decisions and 12-us.es.

S~rn~ la r to the unlt-test figure, geep in mind that the Percentage of Defects Detected and Fized
in Figure 4 refers to defects actually detected (by test cases) and removed for this line-item

SEW Proceedings
107

% of Dcfeas Detected and Fixul

Figure 4: Code Coverage in the Function Testing Phase: Three Attributes

during the function-verification-and-integration test phase. All the test cases were rerun after
the product release on a build with all these defects fixed. 100 percent defect-removal in the
figure does not mean there were no more defects found in a later test (SVT) phase of the product.
We then have the following observations:

In contrast with similar data for unit testing (see Figure 3), note that function testing has
a higher "first defect coverage" percentage value. This is because some defects have already
been found during unit testing.

e Again contrast this with the unit test data (Figure 3), note the FVT curves for all coverage
attributes start their sharp growth at the value where the unit test curves stopped. For
instance, by all-use, 'the unit test was terminated at 29%, which is exactly where the
function test curve starts shooting up. the same is true with the other two attributes. This
confirms our thoughts when we finished analyzing the unit-test data, that the unit-test
curve of this line-item suggested that additional tests would be beneficial.

e It is interesting to notice the different impression we get from looking at the detailed
defect-and-test-case report against the curves generated from the same report. In the
detailed report, we see many test cases (specifically created for this lineitem) increased
code coverage without encountering defects. From this, one might expect to see some flat
lines on the figures; however, there are hardly any horizontal lines at all. On the contrary,
most lines are vertical, as if defects can be fdlind a t that point with almost no effort at all.

This reveals a fact that along the testing progress, it becomes harder and harder t o increase
a percentage in code coverage, because the part of code not yet covered are left in deeper
and deeper branches. Each additional test case is typically able to reach fewer and fewer
additional branches of code, and therefore more and more unique test cases are needed in
order to increase a certain coverage attribute by 1 percent.

SEW Proceedings
1 08 SEL-95-004

This does not mean that the growth of defect is no longer correlated with the growth of
code coverage. In the detailed report where the actual col~nts of coverage attributes (not
just the percentage values) are presented, we still see that all tests that detected new defects
increased code coverage.

4.5 Observation and Analysis on the Combined UT and FVT Data
In this section, we first present the combined defect and coverage information from the code-and-
unit-testing and the function-verificatioc-md-integration-testing phases of the subject line-item.
Comparisons on the error characteristics for defects found and fixed in these two phases are
made, based on type, risk, severity and cost. We then analyze these data, the data collection
methodology, and the underlying development and test process for answers t o the following
questions: (1) Why do we seem to hit a wall around the 50% point in block coverage? (2) Why
were defects found in FVT after UT was done? (3) Why were FVT defects cost more to find
and fix?

4.5.1 The combined UT and FVT defect-versus-coverage data

0/0 of Defects Detected and Fir6d

Figure 5: Code Coverage: Combined Unit and Function Testing Phases

Figure 5 illustrates the cumulative defects found in U T and FVT phase versus and cumulative
percentage code coverage on the 50 or so source files changed or added by the line-item, when
test cases from both unit testing and fi~nction testing were combined.

Despite the fact that our data colleclion strategy (as described in the previous subsection)
may have artificially sharpened the groxvti~ cwve in some degree, We see from Figure 5 that
from UT to FVT of the subject line-item, the additional percentage of code covered is relatively
small, still, about the same number of new defects were detected through the FVT test cases as
the UT test cases.

SEW Proceedings

This observation suggests that there was substantial overlap among tile UT and FVT test
cases from this line-item's code coverage point of view. Further, the amount of new defects
detected by these FVT test cases suggest two more possibilities: first, the same test cases run
in a changed or more complicated environment (integrated verses private) may reveal additional
defects; second, a more complicated test case that covers a combination of several previously
tested simpler test cases may reveal new defects.

4.5.2 The UT and FVT defect characteristic comparison

Table 1 summarizes all defects (including defects found by review or fixing code) on this line-
item found during the coding-and-unit-testing phase and the function-verification-and-integration-
testing phase according to their error characteristics (that is, error type, risk, severity, time to
find and fix, and how they were detected).

In both testing phases, about 30% of the defects were found by test cases specifically designed
for the line-item, and about 30% were found while coding the line-item or investigating and
fixing other problems. The remaining 40% of the defects in unit testing phase were found
through formally conducted reviews, and the remaining 40% of the defects in function testing
phase were found through regression testing or from test cases created for other line-items.

Figures 6 , 7, and 8 graphically compare defects' distribution and cost (in terms of time)
between the two phases, categorized by error types. One can readily see from these figures and
tables that defects detected and fixed in the FVT phase are much more costly (approximately 3
to 4 times so, on average) than those found and corrected in the UT phase. This observation is
not new; what interested us was what could be learned from these data to answer the following
question: What could be done to reduce this cost, and at the same time ensure software quality
and accelerate the development process?

Table 2 looks at the problem from a different perspective. While summarizing the defects
detected in the two phases according to their severity and risk, it reveals that those found during
the U T were, in general, more critical (higher severity and risk) than those detected during the
FVT phase. This suggests that defects from these two phases should not be treated as equal;
that is, while it is wise to have a clean cut on unit-test defects before integrating the code, it
may be a smart move not to wait until all function-test defects (non-critical ones) are cleaned
up before starting the system test, so that the overall process can be sped up.

4.5.3 Why do we seem to hit a wall around the 50% mask in block coverage

''Walls" seem to exist at a low coverage value (50% for block, 45% for decision and 35% for all-use)
on all the defect-coverage curves in our experiment. These walls confused us until we realized
the problem was caused by the mismatching between the focus of the set of test cases and the
set of source files we chose to measure the defects and coverage upon. A collection of all source
files that changed or added by this lineitem was the base for the study. Within these files, there
existed many functions that were not changed or even used by the new product-functionality
implemented by this line-item. The new functionality was the interest of the unit-test and
fiinction test of this lineitem, therefore the UT and FVT test cases generated for this line-item

SEW Proceedings
110 SEL-95-004

Legend: How Defects Were Detected
RW: Review (formal code-inspect ion meetings)
CF: Coding and defect-investigation or fixing activities
ST: Test cases specifically generated for this line-item
OT: Test cases generated for other (related) line-items
RT: Regression tests
GT: General (integration) tests

'

Table 1: Comparison of Errors Detected during UT and FVT

6.7
15.6
1.1
13.3
14.5
23.3
25.5

Computation
Data
Design
Initial.
Interface
Logic/Contr.
Code Omission

'

.

SEW Proceedings

'

'

i

Defect Type

Computation
Data
Design
Initial.
Interface
Logic/Contr.
Code Omission

Defects Detected in the F'V1' phase

1 , 2
1, 2, 3
2
2, 1, 3
1, 2, 3
1, 2, 3
1, 2

2.0
1.8

24.0
0.9
1.7
1.3
2.8

H, L, M
H, M, L
H
M, H, L
H, M, L
H, M, L
H, M, L

Avg. time
to Fix(hrs.)

7.0
5 .O
15.0
5 .O
1.5
4.4
14.0

Avg. time
to Find(hrs.)

11.0
10.5
7.0
6.3
1 .O
7.8
21.0

RW, ST,CF
ST, RW, CF
RW
RW, ST, CF
CF, ST, RW
ST, RW, CF
RW, CF, ST

1.6
2.8
4.0
1.5
1.7
2.8
2.4

Detected
by
RT, CF
OT, CF, ST
ST
ST, OT, CF - - -
CF
CF,OT,RT,ST,GT
OT, ST

Risk

M
L, M, H
M
L, M
L
L, M, H
L, M

Count%

4.6
14.0
4.6
23.2
4.6
35.0
14.0

-

Severity

1, 3
3, 1
1, 2
3, 2, 1
3
3, 2, 1
1, 2

i Comp. Design lmerf. Code Omi.
Data Init Log.lContr.

Defect Types

Figure 6: Distribution of Defect Counts by Type in the UT and FVT Phases

(Defect Cost Distribution by Type!

-
Comp. Design Imerf. Ccde Omi.

Data Ink ~og./Contr.
Defect Types

Figure 7: Distribution of Defect Cost (time) by Q p e in the UT and FVT Phases

SEW Proceedings

-

Figure 8: Comparison of Average Cost (time) per Defect in the UT and FVT Phases

-
Unit Test Function 'l'est

Severity I II Severitv I

Table 2: Comparison of Defect Distribution b y Severity and Risk in the UT and FVT Phases

SEW Proceedings

were focused only on the newly changed or added and directly affected part of the code. However
we were not able to filter out the un-changed and not-used functions, in the 50 or so files studied,
from being included in the bases for our coverage calculation, because our version of the tool
could not yet use granularity lower than source file in selecting monitoring objects. Meanwhile,
coverage from test cases generated for related line-items or from applicable ones existed in the
regression bucket were not collected (unless they revealed a defect on this line-item), therefore
not all coverage from tests performed was reflected in the figures shown, due to the limited
resources in doing the study.

This mismatch in data collection and measurement, we believe, is the main reason for the
"vertical" growth at the end of FVT phase and the walls on low coverage values shown in the
curves presented in this paper.

4.5.4 Why were defects found in FVT after UT was completed

In additional to the quick and easy answer of "unit test did not do a good job", we believe there
are more valid points to understand this issue:

UT and FVT are different in their environments and focuses. Unit testing, by itself, is
clearly not adequate. Unit testing is a local (that is, source routine or function level)
examination on a small portion of the overall product code and, therefore, is not meant to
be complete. The unit test environment itself is much more focused, detailed, and limited;
defects arising from interference from other line-items, components or the product's external
functions are often not the focus of unit-test. In contrast, it is exactly defects of the latter
type that function and integratior, tests target. The test cases used for integration testing
aim a t the overall functionality rather than at individual source routines or modules.

UT and FVT each takes place in a different environment, one on a private build with
only changes from its own line-item, the other on the public build where changes made
by everyone in the product may affect the test case's execution. Also, as we pointed out
earlier, the same test cases, run in a more complicated (integrated) environment may detect
new defects that were previously invisible to the private build.

e People who plan and run the test case for the UT and FVT phases are different. The team
members that work on the line-item are the only ones to run the UT cases. The FVT
cases are usually planned and executed by a separate group. The focus of the FVT group
is on testing the external functionalities for the line-item, the integration of the line-items
and their co-functionalities. Teams on related line-items and regression testing may also be
involved or may have an influence on the FVT of a line-item. The increased perspectives of
thinking, the additional involvements, and the combined testing activities of all the above
are clearly advantageous in helping identify more defects and contributing to the quality
assurance of a line-item.

SEW Proceedings

4.5.5 Why FVT defects are much more expensive to find and fix

We think the cost difference among UT and FVT defects is mainly the results of their differences
in three closely related aspects: test environment, test process and test cases.

UT is done on each line-item's private build by the line-item's developers. No test plan or test
cases need to be maintained. The test focus is on the correct behavior of each individual routine
or module. Test case settings are often simple and manually entered. Frequently the tests are
accomplished through the use of a debugger in order to test specific sections or to ensure that
certain functions are tested. The developer has full control on the code and the build. Files
are often readily compiled with debug options. The developer also has the full control of the
test environment. When a problem occnrres, the source of the problem is easier to locate, since
he is familiar with the code and debugging information is readily available. Changes made for
UT defects only affect the private build; so multiple fixes can often be built, tested and verified
together.

For FVT, the situation is completely different: test plan and test cases need to be designed,
coded and reviewed. The focus of the test is on the overall functionality of the line-item and, on
ensuring its correct behavior while it is executed with other functions and in various abnormal
conditions. The test cases need to be maintained and automated as much as possible, in order
to be merge into the regression bucket a t the exit of the FVT of the lineitem. For these two
reasons, the settings and test scenarios of the test cases are often much more complicated and
take much longer to run than the UT cases and frequently, the settings of the whole test suite
follow the most complicated test case in the set, for ease of maintenance and automation of
the suite. Moreover, FVT is done on a public build, often by a different group. The files in
the formal build do not usually contain debugging code, and the public builds are not usually
compiled with debugging options. FVT problems are often first looked at by people less familiar
with the code than the UT tester was. There are often less debug information available about the
problem and, the test environment is often more dynamic and complicated, hence, it is harder to
identify the source of the problem than in the UT phase. Often, the problem has to be recreated
several times before it can be found; each time, more debugging code are added to the files in
order to collect the needed information. Note that even just to add debugging code for problem
recreation, since the change needs to be made to the public build, files have to be locked and
fastpath tested before add to the build. The cost introduced by these additional file changes and
builds, and repeated settings and testings can added up to a significant portion of the overall
defect-detection-and-removal cost (time). Further, since the change to fix the defect affects the
public build, it has to be handled with more caution. Defect fixes are typically coded, reviewed,
unit and fastpath tested, and integrated one by one. Defect information needs to be tracked, and
the fix needs to be verified with the original problem scenario before the defect can be closed.

In short, the differences between the UT and 'FVT testing environments, processes and test
cases make every aspect of their defect removal activity, from software building, test setup, test
execution, problem recreation, and investigation to coding the fix and verifying the fix, more
expensive.

SEW Proceedings

5 What We Learned
This study focused on the early (unit and function) testing phases of our development cycle and
on what code coverage could reveal about these phases as well as what light might be shed on
the overall testing process. Here are what we have learned from this experience:

e From an industry perspective

There are a few key issues that need to be addressed by the software community:

- O n value t o t h e industry.
For a new technique, tool, or process to be accepted by the industry, it is not sufficient
to demonstrate that it is just theoretically sound or has potential benefit. It has t o
be shown that it can add value to the business, that is, increase productivity and /or
reduce costs o r t ime.

- O n integration of testing tools.
A tool must be built in such a way that it will seamlessly integrate into the applica-
tion development environment and be easily incorporated into common development
processes. There have been various tools to help software development, understand-
ing, and analysis, but few in the testing area. Testing tools that do exist are often
"stand-alone" - they do not interface with other tools, most are not suitable for work
in a range of different development tasks, languages, and environments or platforms.

- O n shifting perspective and attitudes.
Test technology and tools have not been receiving the attention and positive attitude
they deserve, both from academia and industry. It is an area that, like a gold mine,
although challenging to understand and explore, can yield valuable results. As we
described in the previous sections, a small improvement in the test process could
bring very significant benefit to software product development.

0 On the ATAC tool

Out study has shown promising directions on how careful use of code-coverage measure-
ments could aid in unit and function testing (such as showing the insufficiency of test cases
and where to add more). It has also identified scalability, robustness, and the user interface
as key qualities of software reliability assurance tools (such as ATAC), if they are to be
integrated into standard software development processes.

We found ATAC to be a very promising tool, yet it still is important t o have realistic
expectations about it. Its current resource .consumption and limited scalability greatly
restricted the schedule and scope of experiment we would have liked to do with it. Its
report granularity has also limited more detailed or accurate analysis of the data in our
study; in particular, the way in which code is included (on a per-file basis instead of a use
basis) affects the way code coverage is measured. Some initially interested developers were
later reluctant to explore the use of the tool more because of its lack of a user friendly
interface (this has been addressed in the tool's latest version).

SEW Proceedings

0 On code coverage and test quality

The scope and size of our study to date is very limited. There is still much more work to
be done to better understand code coverage and its implication for testing. Nevertheless,
we found our experiment encouraging in the following ways:

- There are clear correlations between the growth of defect numbers and the growth
of code coverage. We have seen some test cases that increase code coverage without
more detecting defects, but all test cases that detected new defect(s) also increased
code coverage.

- Since ATAC can be used to show the code path covered by the current test case and
the summary of all previous executed test cases, it is reasonable to expect it to be
helpful to developers in

* indicating areas for additional testing. The ATAC reports have revealed sections
of code, that developers thought had been covered, had not been tested a t all.

* generating additional test cases in a manner that provides effective coverage. The
coverage information provide by ATAC can help test case developers to direct
their focus on the part of the code that had not be tested.

* identifying the location of defects. This could be very beneficial, even if it was
only helpful in some cases, because finding the defects was the most costly portion
of work in the test-and-defect-removal process that we studied.

* eliminating duplicated test cases, as well as the cost to maintain and run them.
Such benefit is especially important and significant to the regression test, whose
size and execution-cost normally grow continuously with added line-item and from
release to release.

- We have not yet concluded that there is a practical (not 100%) high-end coverage
threshold at which to stop testing, although it would not be unreasonable for one to
expect that such thresholds exist for the defectlcoverage growth curves seen in our
previous figures. That is, we expect the existence of a code coverage point beyond
which additional test cases would detect no more or limited numbers of defects, but
that remains to be proven by future work.

We believe that such a threshold, if it exists, will vary from one line-item to an-
other and also across testing phases, development environments and software prod-
ucts. However, code-coverage tools can be used to build a test-exit strategy according
to these thresholds to dynamically determine the optimized stop point for each line-
item, based on its individual situation revealed by its actual testing data, instead of
some predetermined arbitrary values.

- This test-exit problem can be looked at from a different perspective.
We found that in the FVT phase, although much more costly in detecting and renlov-
ing each defect in comparing to the UT phase, much less percentage defects detected
were critical (high severity or risk). This provides an opportunity t o weight defects
in a different manner in building an text-exit strategy. That is, instead of using all

SEW Proceedings
117 SEL-95-004

defect counts when plotting the dafect versus coverage curves, we might use the crit-
ical defect counts. Similarly, code coverage tools can be used to find the optimized
test-exit point based on this strategy, for each individual line-item in each testing
phase, according to its unique situation as revealed by the dynamic testing data.

e O n potentially beneficial changes t o the current testing process.

These recommendations remain to be verified by future experiments, but data so far col-
lected and analyzed in our study suggest thati

- At least half of the defects detected in the FVT phase of the subject line-item could
have been found in the UT phasc:. Among them, there are defects detected by regres-
sion tests, related line-items, gi-lncric tests, and test cases created specifically for this
line-item that did not have dependency on others.
This indicates there may be advantages in running all available and applicable test
cases from all sources during the unit testing phase, and ensure all these test cases are
successful prior to the integration of the line-item. Such practice should reveal defects
much earlier in the development cycle and thereby reduce the cost (time) spent in
subsequent phases.

- It is also noticed in our study that, the cost-per-defect detected by existing test cases
is less than that detected by new test cases specifically generated for the line-item.
Therefore, it may be another cost 2ffective practice to first measure, during unit-
testing, the coverage of all av'2itable and applicable test cases from all sources, then
create new test cases only for those sections of code that are not already covered.

- UT and FVT each have a different focus and tend to detect different types of errors.
It is important to realize that even with the improved practices, not all defects can be
removed during unit testing. The same test case may reveal additional defects in a
changed and/or more complicated (integrated) environment. Therefore it is important
to continue running all available test cases from the time a line-item's implementation
is completed (in the UT phase, through FVT and SVT) until the product GA.
Meanwhile, the crztzcaLdefect-count-versus-code-coverage growth in FVT phase should
be used in determining the optin2ized FVT-exit-point. This can be expected to move
the start point for SVT earlier and help ensure better quality software and/or shorten
the development cycle.

- It was not surprising to see, as reported by many other studies[6, 1, 141, that code
inspection is the most cost effective defect-removal activity. We recognized however,
that code inspect ion cannot replace testing, because they are activities with different
characteristics and each tend to find defects that would be hard for the other to detect.

What was a little surprising was the fact that even late in the FVT phase, code
inspection was still almost as cost-effective as it was in the UT phase. This suggests
that it may be a worthwhile quality iniproving activity to perform additional code
inspections in later developnlent cycle (such as FVT and SVT phases), especially if
there were not enough time to do a thorough review when the code was implemented.

SEW Proceedings 118
SEL-95-004

To maximize the benefit, such review should make use of the information collected in
the testing phase (for example test coverage and defect rate) and involve key testers,
designer and developers of the line-item, as well as the architecture of the product.

Summary and Future Work
This paper has reported on initial work done to evaluate the role of code coverage in providing
feedback to developers and testers during the unit-testing and function-testing phases. Based on
this study, we can draw several conclusictr:~:

e Many high-risklhigh-severity defects were found in unit testing, while most defects detected
in the function test phase were lower-risk/lower-severity ones. In contrast, the cost of
defect-removal in function-testing phase was significantly higher, in fact, three to four
times the average cost per defect removed in the unit-test phase.

e Even though function testing increased the code coverage only slightly, the relative number
of defects found was significant. This is not to suggest that every 1% or 2% increase in
code coverage yields significant numbers of defects. Rather, we suspect that the defects
found during the function-test phase were significant. Moreover, we believe that the way
in which the metrics are generated may not adequately reflect the true code covered, which
we suspect is much higher. Thi.~: ' ! T ~ ~ o ~ : ~ I c s ~ s needs to be verified and is one objective of
future work.

e Our results lead us to conclude that the strategy we used in determining when to move to
function and system testing may not be the best. It may be better to move many activities
currently performed only in the function-testing phase to the unit-testing phase, and move
to system test when there are only low-risk/low-severity function-test defects left. That
would better utilize the overall time available.

Although the results were preliminary, it is encouraging to note the additional insight that code
coverage tools can provide to the testing process, when compared to traditional measurements,
such as the number of test cases run or the amount of test execution time. Using the the
traditional measurements, we observe the crr'crnal attributes and parameters of the test process.
With the code-coverage method, we evaluate internal attributes, This new perspective can be
used, we believe, to increase the efficiency and effectiveness of early software testing to assure
software reliability.

We also believe that, just as code inspection, unit test and function test is complementary to
each other in the software defect removal process, the code coverage approach should only be
considered a complement, not a replacement, of the traditional approaches in measuring the test
quality and reliability growth of a software.

This work is a part of an ongoing project carried out in the IBM SWS Toronto Lab, led by
the Lab's Centre for Advanced Studies arid i!, conjunction with Bellcore and several universities.
The project will continue to explore the utility of such code'coverage techniques in the remainder
of the software development cycle - the system-verification-and-acceptance-testing phase, and to
analyze the function-and-integration-testing phase based on data from the entire product.

SEW Proceedings SEL-95-004

Acknowledgment
Thanks go to Soul London and Bob Horgan from Bellcore, Aditya Mathur, Praerit Garg and
Saileshwar Krishnamurthy from P u r d u e University, Pei Hsia and Frederick Sheldon from
University of Texas, Mladen A. Vouk, Kuo Chang Tai and Amit M. Paradkar from State
University of N o r t h Carolana, Phil Ford and Karen Bennet from I B M SWS Toronto
CAS, and people in the I B M SWS Toronto L a b development and test groups, especially
Colin L. Mackenzze, Doug Nybida, Du.:~P Godwin, Kaarel Truuvert, Joe Palma, Aleem Rajpar,
Roger Zheng, Eric Labatdie, Hebert Pereyra Patrick MacDonald, Brett Macintyre, Harry Chow
and Farzad Amin.

Participants of all these partners have contributed in one form or another to the project,
the vision, the approach and the technics. Reported in this paper are the work of all those
participants.

Special thanks go to Dennis Bockus for his contribution to the preparation of the paper
within a very brief period of time.

Thanks also go to many others who contributed to the project. It is, unfortunately, not possible
. to list all the names here. We hope they understand.

References

[I] M. J. Bassman, F. McGarry, and R. Pajerski. Software Measurement Guidebook. Technical
Report SEL-94002, NASA, July 1994.

[2] Y. Biggerstaff and C. Richter. Reusability Framework, Assessment and Directions. IEEE
Software, SE-2(4):41-49, 1987.

[3] M. Cheek. Cost-conscious Developers Looking to Computer-aided Testing. IEEE Softzoare,
11 (4):108-109, 1994.

[4] W. Cornelissen. How to Make Intuitive Testing More Systematic. IEEE Software, 12(5):87-
89, 1995.

[5] J. Dobbins. Handbook of Software Quality Assurance, chapter "Measurement for Software
Reliability". Van Nostrand Reinhold, 1986.

[6] M. E. Fagin. Design and Code Inspections to Reduce Errors. IBM Systems Journal,
15(3):216-245, 1976.

[7] J. R. Horgan and S. London. A Data Flow Coverage Testing Tool for C. In Proceedings of
the Second Symposium on Assessmetzt of Quality Software Development Tools, pages 2-10,
1992.

[8] J. R. Horgan, S. London, and M. R. Lyn. Software Quality with Testing Coverage Measures.
IEEE Computer, 27(9):60-70, 1994.

SEW Proceedings

[9] W. S. Humphrey. Managing the Software Process, chapter "Defining the Software Process",
page 251. Addison-Wesley Publishing Company, 1989.

[lo] T. J. McCabe. A Complexity Measure. IEEE Transactions on Software Engineering, SE-
2(4), 1976.

[Ill K. Moller. Software Quality and Reliability, chapter "Increasing Software Quality by Ob-
jectives and Residual Fault Prognosis". Chapman and Hall, 1991.

[12] J. Musa, A. Iannino, and K. Okumoto. Software Reliability. McGraw-Hill Publishing, 1990.

[13] A. K. Onoma and T . Yamaura. Practical Steps toward Quality Development. IEEE Software,
12 (5) : 68-77, 1995.

[14] A. Porter, H. Siy, C. Toman, and L. Votta. An Experiment to Assess the Cost-benefit of
Code Inspections in Large Scale Software Development. In Proceedings of the Third ACM
SIGSOFT Symposium on the Foundations of Software Engineering, pages 92-103, 1995.

[15] R. Poston. Testing Tools Combine Best of New and Old. IEEE Software, 12(2):122-127,
1995.

[16] S. T . Redwine. Two Industrial Testing Cultures Meet a t STAR794. IEEE Software,
11 (4):108-109, 1994.

[17] T . C. Royer. Software Testing Management: Life on the Critical Path. Prentice-Hall Pub-
lishing, 1994.

[18] J. Slonim, M. Bauer, P. Larson, J . Schwarz, C. Butler, E. Buss, and D. Sabbah. The Centre
for Advanced Studies: A Model for Applied Research and Development. IBM Systems
Journal, 33(3), 1994.

[19] W. Smith. Making War on Defects. IEEE Spectrum, 30(9):43-50, 1993.

[20] R. Tausworthe. Experience More Reliable than Theory at 5th ISSRE. IEEE Software,
12(2):110-112, 1995.

[21] J. Tian, P. Lu, and J. Palma. Test-execution-based Reliability Measlirement and Modelling
for Large Commercial Software. IEEE Transa,ctions on Software Engineering, 21(5):405-414,
1995.

[22] J. Tian and M. Zelkowitz. Complexity Measure Evaluation and Selection. IEEE Transac-
tions on Software Engineering, 21 (8):641-650, 1995.

[23] E. Weyuker. Using the Consequence of Failures for Testing and Reliability Assessment.
In Proceedings of the Third ACM SIGSOFT Symposium on the Foundations of Software
Engineering, pages 81-91, 1995.

[24] C. Wohlin and U. Kormer. Software Faults: Spreading, Detection and Costs. Soflware
Engineering Journal, January:33-42, 1990.

SEW Proceedings
121

Am Empirical Study of Sofaware Testing and
Reliability in an lmdustrial Setting

Jacob Slonim Michael Bauer
Jillian Ye

< 1.-
Dept. Computer Science &==&

IBM SWS,
-

The University of
Toronto Laboratory Western Ontario
North York London, Ontario
Ontarlo L4W 4P4 Canada, N6A 5B7

Products Shipped (9)

S O W A R E SOLVIIONS TORONTO LABOUTURY WE CREATE THE FlJlUIW 2810.19

Is95 w

SEW Proceedings

- - - - - ---
E: 5 Improving Sottwsre Testing and Rdiablllty

CHALLENGES

Lack of quantitative measurement of testing effort

Lack of feedback to direct effort for improvement of

software reliability 1 defect detection

Cost of Regression test grow continuously with the

volume of test buckets .

SEW Proceedings

-- - - ---- - ---- - - - - - --- - - - --- == = r = Improving Solhwre Testing and Reliability

ALL DEFECTS

$$$<id< 39 "-'--
,.:g .:?..:A

,? -,,~-.,"&
.xa-.w-.+ .+*.;4% "- % . .< _.-. -- ALL DEFECTS

" . , , . . w&"L . -. .-- . . , .,*:L:;; .." --,A. .:.-.,',;>-;;.$::':

~ ~ " ~ ~ ~ A ~ S -----.--:
mfsmE-n:g

c e GA

F U N C T H) N ~ S 5 C ~ -----5 i
- (m E f ? L ~ s) /, - + .

REGRESSlOH TEST CASES

PROFILE TESllNG

STRESS TESTING

ABNORMAL CONDITION TESTING

.dz.'s CO-EXISTENCE TESTING

SOFTWARE SOLUTIONS TORONTO L*BORATORY WE CREATE THE F W R E
199J

w 3 5

R7

-- - - ---- - - - -- - - - - - --- - - - --- == = r = Improving Sotlwan T W n g and Reliability

SOFTWARE ENVIRONMENT
.- . . - . - . - -- . .

The Product

Base: 420 KLOC, 40 Components, 1200 files

I 150 KLOC added / changed

New Release: 500 KLOC, 50 Components, 1,400 files

The Line-item

Newfy added / changed: 5 KLOC

Directly affected: 50 files, 35 KLOC
in

5 Components, 500 files, 150 KLOC

- * . _ I .." ". - - - _ ^ .

SOrnARE SOmoNS mRONm LmORArnBY
-d?&

WECREATETHEFVIZIRE
1965

a a u 7

=Gw

SEW Proceedings

-- - - ---- - - - -- - - - - - --- - - - --- == = : = Improving Software Tasting and Reliability

NOTES ON DATA COLLECT/ON

Focused on one line-item

All UT and FVT defects are counted

+ Coverage measurements are done on all modules (files)

changed and added by the line-item

(Many of these files contain functions not needed by the line-item)

UT: only test cases that detected defects are counted

- FVT: - all test cases specifically generated for this line-item are counted

- Regression test cases and other line-items' test cases each is counted

only if it found a defect for this line item

/nrm
SOF3WARE SOLVnONS TORONTO WBORATOFX WE CREATE THE NRIRE mJ2-9

19% Qw

-- - - ---- - - - -- - - - - - ---
T z h p v i n g sdhnn Testlng and Reliability

UT + FVT COMBINED:
% 100- CUMULATIVE DEFECT

REMOVAL VERSUS

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56

m CODE COVERAGE (%)

SEW Proceedings

-- - - ---- - - - -- - - - - - --- - - - --- ---.- , ,, , . , Improving Soltware Testing and Reliability

DEFECT COUNT DlSTRlBUTION BY ERROR fYPE

COUNT
(%I

COMPU. DATA DESIGN INIT. IMERF. LOGIC OMISSION

, ERRORTYPE

JOFIWME SOLLTIONS mom uBoumw
a

WE CREATE THE FWURE
1895

2843.10

w-

==== - - - - - --- - - - --- == = : = Improving S o W m Testing and RellrWlty

COST PER DEFECT BY ERROR WPE

COST/
DEFECT
(TIME IN
HOURS)

ERROR TYPE

SEW Proceedings 126

-- - - --== - - - - - ---
& e- 3 rf Improving Sothnve Testing and ReliaMlity

DEFECT DISTRIBUTION BY SOURCE OF DETECTION
50 -- -- -- -- _ _ ---- _--- - - " _-llll--X_-__l̂ .lI

OUT
0 F v r -

40

DEFECT
COUNT

(%)

REVIEW CODING & SPECIFIC OTHER REGRESSION I
(FORMAL RXlNG TEST UNE-ITEMS' GENERIC TEST
REVIEW) (INFORMAL , TEST

REVIEW - , .,,? I,,,

SOTWARE SOLVIIONS TORONTO LABOBATURY WE CREATE THE FWI'URE 2W-I8

I S 5 \IT/-

-- - - -,-== - - - - - ---
& 3 T G fmproving Sdtware Tesling and Reliability

COST PER DEFECT BY SOURCE OF DETECTION
-.,.. ,...-.... *'j i"---"" " . .. -.. " -. " - ' . .. " - - - , ..-

. ,

a m
, .,,*.. ,, ~ . -

, . , A .. - . .

DEFECT -

u

REVIEW CODING & SPECIFIC OTHER REGRESSION I
(FORMAL FIXING TEST UNE-ITEM GENERIC TEST
REVIEW) (INFORMAL TEST

REVIEW) &
SOmUE WLVIIONS TUROKID LABOBAlURI ' WE CREATETHE FWURE IB(3.19

m =a27

SEW Proceedings

-- - - --== - - - - - --- - - - --- =;.a = r = improving Sottware lesling and Rdibility

LEARNED.. ON CODE COVERAGE TOOLS

Challenges Benefits
Scaleable Measure quality of test suite

* Robust (multi-process / Measure / understand test process
threads, interruption) for potential improvement
User interface determining optimized test exit point
Portable * help develop efficient test strategy

* Functionality Help locating defects
for UTIFVT: function /block * Remove 1 limit duplicate test cases

level selectiveness
SVT / Regression:
- large size software
- snapshot without hindering

test execution
- automated analysis (minimization)

-.. --- - "- ----- - ---- - - - - - - A -
A\ - , r 9 ,,

S O W A R E SOLUTIONS T U R 0 . O LABORATORY WE CREATE THE FUTURE
1995 <-.-- - \\P

-- - - ---- - - - -- - - - - - --- - - - --- - - - r = Improving Sollware Testing and Reliability

DESIGN? ALLDEFECTS TESTING METffoDOf bG Y -- - - - - - - - . - - - - - - -

OVED SUGGESTED THROUGH STUDY

CODEREVeW ALL CRITICAL DEFECfS

uN6TSEST REMOVED -

ESS ~ T I N G

CONMON TESTING

SEW Proceedings 128 SEL-95-004

Software-Reliability-Engineered Testing */I r l P .>-@ j
m , w+, d

John D. Musa

AT&T Bell Laboratories
Murray Hill, NJ 07974

Abstract

Software-reliability-engineered testing (SRET) is testing
that is designed and guided by reliability objectives and
expectedjeld usage and criticality. It generally includes
feature, load, and regression testing.

SRET is unique in helping testers insure the necessary
reliability of a system in minimum delivery time and cost.
It increases tester efficiency and reduces the risk of angry
customers, as compared to nonengineered testing. It is a
standard, proven practice.

We can cost-efectively apply SRET to every software-
based product and to the frequently used members of
component libraries. It involves activities that extend
over all releases of a system and all life-cycle phases, but
there is special focus on system test.

We define reliability for software [I] as the probability
of execution without failure for some specified interval,
generally called the mission time. Thus we use a
dejnition that is compatible with that used for hardware
reliability, though the mechanisms of failure may be
diferent. This is because we want to be able to work
with software-based systems that are composed of both
software and hardware components - note that in
practice there are no pure software systems.

This paper presents the benejts of SRET as contrasted
with nonengineered testiqg and it describes the practice
of SRET in some detail, based on extensive experience,
particularly in AT&T.

A Valuable Standard Practice

Software-reliability-engineered testing is currently being
practiced in a substantial number of projects in AT&T. It
is based on and included in the AT&T "Best Current
Practice" of Software Reliability Engineering (SRE) that
was approved in May 1991. Qualification as a best
current practice requires use on several projects (typically

8 to 10) with documented strong benefitlcost ratios' and
probing review by two boards of high-level managers; 1
of 6 proposals was approved in 199 1.

In one large AT&T software development organization
(Operations Technology Center of Network Services
Division) with over 1500 developers and some 70
projects, 30% used SRE as of April 1995 and it has
continued to increase since then. In this organization, it
is part of the standard software development process and
is currently undergoing IS0 certification. It is interesting
to note that this organization, which has the highest
percentage use of SRE in AT&T, is the primary
development organization for the AT&T business unit
that won the Malcolm Baldrige National Quality Award
in 1994. In addition, 4 of the first 5 software winners of
the AT&T Bell Laboratories President's Quality Award
applied SRE.

The International DefinityB project represents one
application of SRE. They applied it along with some
related technologies. In comparison with a previous
release that did not use these technologies, they increased
customer satisfaction significantly (sales increased by a
factor of 1 O), with reliability increasing by a factor of 10.
There were reductions of a factor of 2 in system test
interval and system test costs, 30% in total project
development interval, and a factor of 10 in program
maintenance costs.

Although AT&T has perhaps been a leader in the use of
SRET, many other organizations have applied it or the
somewhat more inclusive software reliability engineering
practice. An AIAA standard was approved in 1993 and
IEEE standards are under development. McGraw-Hill

. and the IEEE Computer Society Press are publishing a
handbook [2].

What Should We Test?

We will, of course, want to test the actual product
software-based system we are developing. However, we

SEW Proceedings

will also want to identify as systems to be tested those
major components of unknown reliability whose
operational profiles (to be defined) are known or easily
determined and whose execution time (the actual time
expended by the processor in executing the software in
question) or an approximation thereof is readily
measurable. If components (not necessarily major) have
the foregoing characteristics and we expect to reuse them
extensively, they can profitably be tested by themselves.
If the software-based product interacts strongly with other
software-based systems, we may want to test a
supersystem that represents these systems functioning
together.

There are two types of software-reliability-engineered
testing, development testing and certification testing. The
main objective of development testing is to find and
remove faults. During development testing, you use
SRET to estimate and track failure intensity (failures per
unit execution time). Testers apply the failure intensity
information to determine any corrective actions that
might need to be taken and to guide release. The release
decisions include release from system test to beta test and
release from beta test to general availability. You
typically use development testing for software you
"developed" in your own organization.

Certification does not involve debugging. There is no
attempt to "resolve" failures you identify by determining
the faults that are causing them and removing the faults.
With certification testing you make a binary decision:
accept the software, or reject the software and return it to
its supplier for rework. You typically use certification for
software you acquire. Acquired software includes "off
the shelf' or packaged software, software that is reused,
and software that is developed by an organization other
than the product development organization. There
appears to be great potential in the application of software
reliability engineering to certify object libraries needed
for object-oriented development. In fact, the further
growth and use of object-oriented development may
depend on this marriage of technologies: object-oriented
concepts have made better modularization possible, but
the promise and benefits of reuse are not being fully
realized because developers (probably rightly!) have
enormous resistance to using objects whose reliability
they cannot vouch for.

FONE FOLLOWER

Let's consider an illustration that we will apply
throughout this paper to help make the process of
software-reliability-engineered testing more concrete.
We draw the illustration from an actual project, with the
details somewhat modified for the purposes of simplicity

and protecting any proprietary information.

FONE FOLLOWER is a system that enables you to
make your telephone calls "follow" you anywhere in the
world according to a program that you enter. You as user
dial into a voice response system and enter the telephone
numbers (they can be for cellular phones) at which you
plan to be as a function of time. Most of these phone
number entries are made between 7 and 9 AM each day.

Calls that would normally be routed to your telephone
are sent to FONE FOLLOWER. It forwards them in
accordance with the program you entered. If there is no
response, you are paged if you have pager service. If
there is still no response or if you don't have pager
service, the calls are forwarded to your voice mail.

System engineering has decided that FONE
FOLLOWER will use a vendor-supplied operating
system. The reliability of the operating system is not
known, but we can easily specify an operational profile
for it, because we know how FONE FOLLOWER will
use it. FONE FOLLOWER does not interact
substantially with other systems in the
telecommunication network.

We can conclude from the foregoing information that
we will identify two systems for software-reliability-
engineered testing. We will development test the FONE
FOLLOWER product and certify the operating system.

SRET Process

The SRET process consists of five principal activities.
These are shown in Figure 1, along with the project
phases in which you customarily perform them. Note the
"execute tests" and "interpret failure data" occur
simultaneously and are closely linked, with the relative
emphasis on interpretation increasing with time.

Define "Necessary" I , Reliability I
I Develop Operational Profiles

I

Prepare Test Cases I
Interpret
Failure

Figure 1. SRET Process Diagram

and
Requirements

SEW Proceedings

Architecture
and Design Implementation Component and System

Testmg and Field Trial

Testers conduct the first two activities, "define necessary
reliability" and "develop operational profiles," in
partnership with system engineers. We originally thought
that these activities should be assigned solely to system
engineers and system architects. However, this did not
work well in practice. Testers depend on these activities
and are hence more strongly motivated than system
engineers and system architects to insure their successful
completion. We found that the problem was resolved
when we made testers part of the system engineering and
system architecture team. This approach also had
unexpected side benefits. Testers had much more contact
with product users, which was very valuable in knowing
what system behavior would be unacceptable and how
unacceptable it would be, and in understanding how users
would employ the product. System engineers and system
architects obtained a greater appreciation of testing and of
where requirements and design needed to be made less
ambiguous and more precise, so that test planning and
test case and test procedure design could proceed.
System testers made valuable contributions to
architecture reviews, often pointing out important
capabilities that were missing.

Define "~ecessar y " Reliability

In order to define the necessary reliability for each
system we are analyzing for our product development, we
must:

1. determine which operational modes need reliability
verification,

2. define "failure" with severity classes, and

3. set failure intensity objectives (per severity class).

Failure intensity, incidentally, is an alternative way of
expressing software reliability. It is defined as failures
per unit execution time. For example, failure intensity
might be 6 failures/1000 CPU hr.

An operational mode is a distinct pattern of system
usage that is likely to stimulate different failures or
rarely-occumng failures with critical impact. Thus, an
operational mode needs separate testing. Some of the
factors that may yield different operational modes are day
of week or time of day (prime hours vs off hours), system
maturity (new system vs mature system), special
conditions such as system being partially operational or
in overload, and rare critical events. Division into
operational modes is based on engineering judgment:
more operational modes can increase the realism of test
but they also increase the effort and cost of selecting test
cases and performing system test.

SEW Proceedings

We will select 4 operational modes for FONE
FOLLOWER, based on 2 traffic level variables, phone
number entries traffic and calls traffic. The 4 modes are
then:

ENTRIES CALLS
MODE TRAFFICLEVEL TlWFFICLEVEL

1 Average Average
2 Average Peak
3 Peak Average
4 Peak Peak

Let's now consider how we define "failure" and the
different severity classes. A failure is a departure of
program behavior in execution from user requirements; it
is a user-oriented concept. A fault is the defect in the
program that causes the failure when executed, a
developer-oriented concept. We point this out to
emphasize the fact that defining failures implies
establishing negative requirements on program behavior,
as desired by users. The definition process consists of
outlining these requirements in a project-specific fashion
for each severity class.

A severity c h s is a set of failures which share the same
degree of impact on users. Common classification
criteria include human life impact, cost impact, and -

service impact. In general, classes are widely separated
in impact because it isn't possible to estimate impact with
high accuracy.

For FONE FOLLOWER, we will use service impact as
the severity class classification criterion. Defining
"failure" specifically for this product in terms of different
severities, we have:

SEVERITY
CLASS FAILURE DE-ON

1 Failure that prevents calls from being
forwarded

2 Failure that prevents phone number entry

3 Failure that makes system administration
more difficult although possible through
alternate means: for example, can't add or
delete users from graphical user interface

4 Failure of function that is deferrable, such
as preventive maintenance

In applying SRET, we set system failure intensity
objectives (FIOs) based on analysis of specific user
needs, the existing system reliability and the level of user

satisfaction with it, and the capabilities of competing
systems. The objectives may be different for different
operational modes and different severity classes. Also,
there may be different objectives for the end of system
test and the end of beta test.

We determine the failure intensities in clock hours of
the hardware and the acquired software components in
the system (these will be certified at acceptance of
delivery). Then we subtract these from the system failure
intensity objectives in clock hours to find the failure
intensity objectives required for the developed software.
The results are converted into failure intensity objectives
per CPU hour.

Developing the Operational Profile

An operation is an externally- and independently-
initiated complete task performed by a system. It is a
logical rather than a physical concept, in that an operation
can be executed over several machines and it can be
executed in noncontiguous time segments. An operation
can be initiated by a user, another system, or the system's
own controller. Some examples of operations are a
command activated by a user, a transaction sent for
processing from another system, a response to an event
occurring in an external system, and a routine
housekeeping task activated by your own system
controller.

The operational projile is simply the set of operations
and their probabilities of occurrence.

For FONE FOLLOWER, in the operational mode
defined by average phone entries traffic level, average
calls forwarded traffic level, we have 5000
operationslclock hr. Note the following segment of the
operational profile, and how we can obtain it from the
occurrence rates of individual operations:

OPERI
OPERATION CLOCK HR PROBABILITY

Connect call 2000 0.40

Connect to voice mail 1600 0.32

To develop an operational profile, you:

1. Identify the initiators of operations,

SEW Proceedings

2. Enumerate the operations that are produced by each
initiator,

3. Determine the occurrence rates (per CPU hour) of
the operations, and

4. Determine the occurrence probabilities by dividing
the occurrence rates by total operation occurrence
rates.

The initiators of operations are most commonly users of
the systems, but they can also include external systems
and the system's own controller. To identify the users,
you first determine the expected customer types for the
system, based on such information as the system business
case and marketing data for related systems. You then
analyze the customer types for the expected user types or
sets of users who will tend to use the system in the same
way. User types are often highly correlated with job
roles.

In order to list the operations for each initiator, you
should primarily consult the system requirements.
However, other useful sources include work process flow
diagrams for various job roles, draft user manuals,
prototypes, and previous versions of the system. Direct
discussions with "typical" expected users are usually
highly enlightening.

Many first-time users of SRET expect that determining
occurrence rates for operations will be very difficult; our
experience generally indicates much less difficulty than
expected. Frequently, field data already exists for the
same or similar systems, perhaps previous versions. If
not, you can often collect it. If the operations are event
driven, you can often simulate the environment that
determines event frequency. Finally, even if there is no
direct data, there is usually some related information that
lets you make reasonable estimates.

An important task associated with developing the
operational profile is the identification of critical
operations, based on the safety or value they add when
satisfactorily executed, or the risk to human life, cost, or
reduction in capability resulting from failure.

Prepare Test Cases

Testing consists principally of feature testing, regression
testing, and load testing. In feature testing, test runs are
executed independently of each other, with the data base
reinitialized each time, such that they do not interact. In
regression testing, feature test runs are repeated after
changes have been made to the system to see if any
failures occur that are the result of faults spawned in the
process of change. In load testing, large members of test
runs are executed in the context of a test procedure that

realistically models load and hence includes the
interactions that can occur among test runs, both directly
and through the slowly corrupting data base.

When we specify the test cases we plan to prepare, we
should follow the general principle that we never
duplicate the same test run (instance of an operation, with
all conditions specified), because this wastes testing
resources without yielding any new information about the
system. By "duplicate," we mean "execute with exactly
the same values for all input variables." An input
variable is any variable that exists external to a system
and affects its operation. You can make exceptions to
this rule when you need to gather more data from a run,
verify that a failing run now operates successfully, or
conduct a regression test.

When we specify a test case, we also specify the test run
except for the test procedure in which it executes. Each
test procedure will have somewhat different conditions.
Hence the same test case can run in different test
procedures, yielding different test runs. Consequently,
before we specify the test cases we will use for our
system, we will identify the test procedures and use them
to reduce the number of test cases we need. Note that if
we run a test case without a test procedure, we are in
effect doing feature testing, so specification of test cases
takes care of all three types of testing: feature, regression,
and load.

The relationships among operational modes, test
procedures, operations, runs and test cases are shown in
Figure 2.

\IFF OF,, /C Procedure Test \+. Mode wstem 2

possible runs
for program Both runs use same test case

Figure 2. Test Cases, Test Procedures, and Test Runs

The procedure for preparing test cases involves:

1. estimating the number of test cases needed,

2. specifying the test cases, and

3. preparing the test case and test procedure scripts.

Test case specification generally proceeds in two steps,
selection of the operation and selection of the run. The
operation is selected with selection probability equal to
its occurrence probability in the operational profile. The
run is selected with equal probability of selection from
among all the possible runs of the operation.

It is not necessary that selection be random, although it
is desirable because it helps avoid unconscious bias.
Because of the large number of test cases expected, it is
recommended that the selection be automated wherever
possible.

Once the test cases are selected, the test scripts for them
must be prepared. There are many software support tools
that can help with this task. In addition, you should
provide for recording operations executed, so that you
collect use data for comparing the operational profile
used in test with that expected in the field. In reality,
recording of operations should not be a feature of just the
test platform but an integral part of the system itself, so
that extensive field data can be collected, both to evaluate
the current system and to provide a base for engineering
future systems.

Execute Tests

Each operational mode, and in fact each test procedure
is executed separately. Execution of tests will be
facilitated if you use a test management system to help
you set up, execute, and clean up sets of tests, with
capture of input and output.

We identify failures, determine when they occurred, and
establish the severity of their impact. Initially, you look
for deviations from behavior, which can be intermediate
or user-affecting (only the latter represent actual failures).
There are many standard types of deviations that can be
detected with generic tools: interprocess communication
failures, illegal memory references, deviant return code
values, memory or other resource leaks, deadlocks,
resource threshold overruns, process crashes, etc. In
addition, assertions can be manually inserted in the code
to set flags that permit programmer-defined deviations to
be detected by generic tools. However, some degree of
manual inspection of test results will probably be
necessary to identify failures not amenable to automatic
detection and to sort out those deviations that are true
failures, unless you can demonstrate that the ratio of
failures to deviations is essentially constant. In the latter
case, you can use deviation data in place of failure data,
adjusting by the known ratio.

SEW Proceedings

Interpret Failure Data

You will interpret failure data differently for
development testing and certification testing.

During system test of developed software, we make
periodic estimates of failure intensity based on failure
data.

Failure intensity estimates are typically made from
failure times or failures per time period, using reliability
estimation programs such as CASRE [2] that are based
on software reliability models and statistical inference.

We look at the trend of failure intensity in time (see
Figure 3). The center plot represents the most likely
(maximum likelihood) estimate and the other two plots
the upper and lower 75% confidence bounds. Upward
discontinuities in failure intensity commonly indicate
either system evolution or a change in the operational
profile that represents the runs currently being made.
System evolution can be an indication of poor change
control. An operational profile change may indicate
nonstationary test selection or an inaccurate operational
profile. In either case, corrective actions are necessary if
you are to have a quality test effort that you can rely on.

Failure looo
intensity
(failures1 500
1000 hr)

Upper C.L.
Most Likely
Lower C.L.

10 0
Aug Sept Oct Nov

Figure 3. Example Failure Intensity Trend

We compare failure intensities with their corresponding
failure intensity objectives (remember that these can be
multiple; for example, involving different severity
classes) to identify "at r i sk schedules or reliabilities.
Appropriate corrective actions are then taken. The
comparison is also used to guide release from component
test to system test, system test to beta test, or beta test to
general availability.

Certification testing uses a reliability demonstration
chart [3], illustrated in Figure 4. Failure times are

SEW Proceedings

normalized by multiplying by the appropriate failure
intensity objective. Each failure is plotted on the chart.
Depending on the region in which it falls, you may accept
or reject the software being tested or continue testing.
Note that Figure 4 shows a test in which the first two
failures indicate you should continue testing, and the
third failure recommends that you accept the software.

Failure
number

Normalized failure time

Figure 4. Reliability Demonstration Chart

Rehearse Customer Acceptance Test

In many cases, your customer will require an acceptance
test of the system you are delivering. In this case, you
may want to conduct a rehearsal, using the certification
techniques just described.

Conclusion

Practitioners have generally found software-reliability-
engineered testing unique in providing a standard proven
way to engineer and manage testing so you can be
confident in the reliability of the software-based system
you deliver as you deliver it in minimum time with
maximum efficiency.

References

[I] Musa, J. D., Iannino, A., and Okumoto, K., Sojiware
Reliability: Measurement, Prediction, Application,
McGraw Hill, New York, 1987.

[2] Lyu, Michael (Editor), Handbook of Sofrware Reliability
Engineering, Mc-Graw Hill and IEEE Computer
Society Press, scheduled for publication December
1995.

[3] Musa, J. D., op. cit., pp. 201-203.

Software-Reliability-Engineered
Testing (SRET)

John- D. Musa
AT&T Bell Laboratories

Murray Hill, NJ
jmd.musa@attmcom

Software-Reliability-Engineered
Testing (SRET)

1. What is SRET?

0 Testing that is designed and guided by reliability
objectives

2. Why SRET?

SRET is unique in helping testers insure
necessary reliability in minimum delivery time and
cost

SRET increases tester efficiency and reduces risk
of angry customers

Standard, proven practice

SEW-:!

SEW Proceedings

Software-Reliability-Engineered
Testing (SRET)

3. Where SRET?

All software-based systems and their major
components

Component libraries

4. When SRET?

Entire system life cycle, all releases, with focus
on system test

5. How SRET?

This talk provides overview

SRET - A Valuable Standard,
Proven Practice Based on

Software Reliability Engineering

SRE and hence SRET is:

1. AT&T Best Current Practice since 5/91 (based on
widespread practice, documented strong benefitkost
ratio, probing review)

2. Part of standard software development process
(undergoing IS0 certification) since 4/92 in
Operations Technology Center of Network Services
Division

3. McGraw-Hill handbook to be published 1995

SEW-4

SEW Proceedings

SRET - A Valuable Standard,
Proven Practice Based on

Software Reliability Engineering

4. AlAA standard published 1993

5. IEEE standards in process

6. AT&T Bell Laboratories President's Quality Award:
4 of 5 software winners used SRE

7. Malcolm Baldrige National Quality Award - 1994 won
by AT&T business unit with most SRE use
(Consumer Communications Services - Network
Services Division)

SRET Process

Define "Necessary"

Develop Operatioi~al Profile

L-.+ ~rep im ~ e s t Cases I

SEW Proceedings

Component and System
Testing and Field :I'ri'rial Lmplementation

Feasibility
and

Recluirements

Architecture
and Design

Define Necessary Reliability

1. Decide which systems need reliability verification besides
product

A. Components of unknown reliability

B. Supersystems with high interactivity

2. What type of testing does each system need (can be both)?

A. Development testing: tries ,to remove faults; tracks
failure intensity, taking corrective action and guiding
release, typically used for software developed by your
organization

B. Certification testing: no debugging, measures reliability
to accept or reject software

Define Necessary Reliability

3. Determine which system modes (distinct patterns of
system usage) need reliability verification

4. Define failure with severity classes

5. Set failure intensity objectives (per severity class)

SEW Proceedings

Define Failure with Severity Classes

1. failure: departure of program operation from user
requirements

2. fault: defect in program that causes a failure when
executed

3. severity class: impact of a failure on human life,
cost, or service

Set Failure Intensity Objectives
(Per Severity Class)

1. failure intensity: failures per unit execution time

2. execution time: actual time used by processor

3. Set failure intensity objectives based on analysis of
specific user needs, existing system reliability and
user satisfaction, competitor capabilities

SEW Proceedings

Develop Operational Profile

1. operation: externally and independently initiated complete
task performed by a system

Illustrations: command, transaction, processing of external
event, administrative housekeeping task

2. operational profile: set of operations and associated
probabilities of occurrence

Prepare Test Cases

Illustration: Airline reservation system

For each system mode:

OPERATION
Reservation: single leg flight
Reservation: flight with single

connection

1. Select test cases

A. Operation

B. Run

ILLUSTRATION: Reservation for specific
single leg flight, class, person

PROBABILITY-.
0.6
0.3

2. Write test case scripts .

3. Provide for recording operations executed

SEW Proceedings

Execute Tests

1. Test each system mode separately

2. Identify failures

3. Record execution times and failure severity classes

Interpret Failure Data -
Development Testing

For system and each system mode:

1. Estimate total and per severity class failure
intensities periodically by executing a reliability
estimation program

A. Input failure times or failures in period since
last failure

B. Read present failure intensity output

C. Plot present failure intensity vs calendar time

2. Analyze trend behavior of failure intensities

SEW Proceedings

Read Present Failure
Intensity Output

75% CONF. 75% CONF.
LIMIT - MOST LIMIT -
LOWER LIKELY UPPER

PRESENT FAIL. INT. 542.7 743.5 1008

Analyze Failure Intensity
Trend Behavior

Failure
intensity
(failures/
1000 hr)

SEW-16

SEW Proceedings

Upper C.L.
Most Likely
Lower C.L.

10 I I I

Aug Sepr Oct Nov

Interpret Failure Data -
Certification Testing

After each failure, generate reliability demonstration chart
for each severity class of each system mode

Reliability Demonstration Chart

FAIL. FAIL.
NO. TIME DECISION

1 15 Continue
2 25 Continue
3 100 Accept

Failure time (CPU hr)

SEW Proceedings

Conclusions

1. SRET is unique in providing you with a standard
proven way to engineer and manage your testing so
you can be confident in the reliability of the
software-based system you deliver as you deliver it
in minimum time with maximum efficiency.

2. SRET is a vital skill for being competitive

To Explore Further

1. Musa, iannino, Okumoto; Software Reliability:
Measurement, Prediction, Application,
McGraw-Hill, 1987.

2. Musa, J. D., "Software Reliability
Engineering," Duke Distinguished Lecture
Series Video, University Video
Communications, 41 5-81 3-0506

3. Musa, J. D., "Operational Profiles in Software
Reliability Engineering",, IEEE Software,
March, 1993.

4. Lyu, M. (Editor), Software Reliability
Engineering Handbook, McGraw-Hill , to be
published 1995.

SEW-20

SEW Proceedings

AT&T Bell Laboratories
&, '1

v. .</&5 - 69 /

Reusing Software Reliability Engineering Analysis from
Legacy to Emerging ClientlServer Systems

James Cusick
AT&T Bell Laboratories

Middletown, NJ

and

Max Fine
AT&T Business Communication Services

Somerset, NJ

November 29,1995

SEW Proceedings

Reusing Software Reliability Engineering Analysis from
Legacy to Emerging ClientlServer Systems

1. OVERVIEW

Using SRE (Software Reliability
Engineering), AT&T Teleconference
Services Development controlled reliability
rates, decreased testing costs by 89%, and
realized a 40% increase in development
productivity, over a three year period. These
improvements resulted from simultaneously
improving development processes and
deploying new tools and technologies while
reengineering a legacy distributed platform
to a new clientlserver system that employed
Object-Oriented technology. Software
metrics were applied to measure and track
reliability and productivity. This paper
presents the techniques used to accomplish
these results and expands on earlier findings
(Cusick, 1993).

2. CHANGES AND RESULTS
SUMMARIZED

During 1992 we experienced a "quality
under-runn during deployment of a
distributed system used in support of audio
teleconferencing. In reaction we investigated
current development practices. Reliability
struck us as the most important customer-
visible characteristic of our product. SRE
provided a means to quantify our product
reliability and monitor changes over time
including over system releases.

Like many multi-project study reports
(Kitchenham, et. al., 1995) the impact of
SRE is hard to accurately assess given that
several process and technology changes
were also introduced. Nevertheless, we
found SRE provided a constant means of
monitoring our development effectiveness

SEW Proceedings

quantifiably. Table 1 presents three distinct
stages of process evolution the team
experienced; the changes implemented in
each stage, and the results measured.

3. THE BASELINE

Prior to 1990, the development organization
had produced several generations of
successful systems. Staff turnover lowered
average experience levels leading up to
1992. The development environment was
characterized by older technologies and
poorly defined processes. The result in 1992
was deployment of a new system with a high
occurrence of customer perceived software
failures.

4. THE LEGACY IMPROVEMENTS

Management reacted to this stage of
problematic development practices by
increasing the staff levels of dedicated test
personnel and exploring better development
methods. Detailed test phases and
associated entrance and exit criteria were
reestablished.

4.1 Initial SRE Deployment

A study on applying software metrics
recommended deploying SRE based on a
key attribute of concern to AT&T, namely
reliability. The concept of proactively
monitoring software failure rates (which at
the time were being reported by irate
customers after-the-fact) was more
attractive than measuring productivity (which
customers perceive indirectly through the
cost of a conference call).

Table I : Changes and Results Summarized

SRE calls for the development of an
Operational Profile, up-front failure
classification, calibration of an execution
time metric, and the collection and analysis
of failure occurrences (Musa, 1987). These
steps result in a reliability metric which can
be expressed as:

where

R(7) = reliability for time z
exp = eX
A. = failure intensity
7 = execution time

In order to derive a reliability measure for a
system each of these variables must be
supplied. We now discuss how we
generated these data elements and how we

governed our development process using
this standard reliability metric and an
Operational Profile.

4.2 Execution Time Metric

An attempt was initially made to use CPU
usage for the execution time metric.
Collection of these data would have required
supporting software to be developed.
Further, the meaning of reliability statistics

. based on CPU usage was not intuitive to the
team. Instead, we used an approximation of
execution time, the number of conferences
processed each day by our system
(Ackerman, 1 993). The use of conferences-
run as the execution time metric was the
most important choice in our SRE process.

SEW Proceedings 147

Our systems have a built in pulse. Failures
per conferences run is a concept we could
grasp immediately and derive easily. During
laboratory tests simple database queries
collect this data point. Production reports
already conveniently grouped both
conferences-run and the next required
metric; observed failures.

4.3 Failure Tracking

Our earliest efforts to track failures counted
only failures reported by the application
programs. While these failures are important
the team decided that they are not as
important as the failures observed by users.
Furthermore, accurate counting would
require software development resources
beyond our budget. Production environment
failures had always been carefully tracked
and reported by the support team. These
failure reports now arrive weekly via
electronic mail to the development team for
analysis. This required virtually no additional
cost to implement.

Significantly, we skipped the up-front step
recommended by standard SRE practice of
conducting a thorough severity classification
of failures. Instead we define failures as any
behavior of the software which deviates from
its planned or expected behavior. The
working assumption in collecting failure
reports from the field is that the users best
determine what is and what is not a
meaningful failure. We did not find this
approach to negatively impact the
usefulness of the SRE techniques.'

4.3.1 Code Counting, Defect Prediction, and
Function Point Backfiring

In parallel with the deployment of SRE
several other metrics were introduced. In
order to estimate potential defects we
conducted Lines of Code (LOC) analysis
(Musa, 1987). This also served the purpose
of feeding a Function Point "Backfire" which
estimates Function Points from LOC and
other data (Jones, 1991, 1992). As it turned
out the fault prediction formulas provided by
Musa gave a closer approximation of
defects than those of Jones. However,

1 We did eventually classify failures as customer
affecting or non-customer affecting.

Backfiring proved valuable in estimating
productivity. These up-front defect
predictions complemented the reliability
calculations in gauging the readiness of the
software for release when compared to our
observed defects.

4.4 Defining the Operational Profile

Using an Operational Profile to guide system
testing generates software usage in
accordance with the probabilities that similar
functional usage patterns will be followed in
production. Basing your testing on an
operational profile assures that the most
heavily used functions have been adequately
tested (Musa, 1993).

Data collected from our legacy production
system provided historical usage patterns for
nearly all system functions. The granularity
of the functional breakdown provided
adequate direction to build test runs in
accordance with system modes and user
usage patterns (Table 2 & 3). Probabilities
of a particular function being used is
calculated in relationship to conferences run.
For example, if 10 conferences are run per
hour, a relationship to new reservations
created in that hour can be determined
(e.g., at least 10 conferences must have
been reserved). Testing based on these
observations was conducted during the
system test phase.

Table 2: Legacy Operational Profile, System
Modes

SYSTEM MODES
1: Busy Full
2: Busy Degraded
3: Slack Full
4: Slack Degraded
TOTAL

Utilization
0.35
0.01
0.63
0.01
1.00

Table 3: Legacy Operational Profile,
Utilization by User Types

USERS TYPES
1 i Participants
2: Hosts
3: Attendants
4: Administrators
TOTAL

SEW Proceedings
148

SEL-95-004

Utilization
0.70
0.08
0.20
0.02
1 .W

Significantly, the breakdown of usage across
system modes, users, and functions,
resulted in a dramatic shift of test emphasis.
In the past we had neglected off-peak
scenario testing. However, the system
modes indicated that the system was
normally in a slack state. As a result of
testing in slack mode commensurate with
our usage profile we found additional defects
which only appeared when the system was
lightly loaded. Also, the analysis indicated
that lor this particular system our end-
customers (participants and hosts)
generated far more use of the system than
did our attendants (operators). This ran
contrary to the team's past test focus.

Our Legacy environment refit included the
development of a semi-automated test case
management tool. We also deployed a PC
equipped with the AT&T SRE TOOLKIT@ for
data storage and to conduct SRE
calculations. Failure and execution time data
are converted and typed into the PC. Using
simple UNIXTM shell scripts accomplished
much of the code counting for defect

predictions and Function Point Backfiring.
Thus the investment in tools in the Legacy
stage was minimal.

Our "quality under-run" could now be
quantified. Armed with our new techniques
we were able to view the reliability of our
production version, maintain or better that
level in the test lab, and observe the
production reliability of the new release.
Figure 1 below charts the failure intensity of
several production releases of the legacy
system during 1992 and 1993. Several major
releases have followed, each resulting in
incremental increases in reliability.

Note the fact that our field trial tests incur
high labor costs. SRE allowed us to use a
shortened beta cycle thereby yielding an
89% monetary cost savings in testing.
Furthermore, we decreased overall failure
rates by 54% while simultaneously
increasing customer traffic load on the
system 34% during 1993.

Figure I: Failure Irstensiw over Multiple Production Releases: The Y-axis shows failure intensity on an exponential
scale. The X~axis shows calendar time. The dashed lines indicate a confidence factor. The eariiest release reflects pre-
SRE versions. Variance in the latest release results from differences between test lab predictions and actual production
environment conditions.

SEW Proceedings

The costs of deploying SRE within this
Legacy system environment included:

e 1.5 month staff effort for start-up
including: process research; 3 weeks
training; data collection & analysis.
1 staff day per week ongoing effort.

5. THE CIS CHANGES

Concurrent with these legacy changes,
business needs required us to abandon our
newly improved system and deploy yet
another distributed conferencing system.
This time we would build the system with the
latest ClienWServer (C/S) architectures. We
would also be in a position to leverage our
system development improvements,
reliability metrics, and new Object-Oriented
methods and techniques.

5.1 Old Dogs, New Tricks

Staff experience plays a key role in
successful software development (Arthur,
1985; Pressman, 1992). As Table 4
indicates, the new C/S team possessed
roughly double the years of experience of
the Legacy team and had on average built at
least one such distributed conference
system. Thus, we can only agree with the
many previous findings on the link of staff
experience to successful software
development. Nevertheless, we would like to
propose that teaching old dogs new tricks
may result in higher reliability than if they had
used the same old techniques.

5.2 New Tricks Identified

Infrastructure changes were required in
order to develop this new CIS system. New
workstations, PCs, servers, and Operating
Systems were deployed. Object-Oriented
methods were reviewed and OMT
(Rumbaugh, 1991) was se~ected.~ CASE
tools, development environments, and new

Going against the grain our goal in using Object
Technologies was not reuse but instead flexibility of
future feature introduction.

languages were chosen. An on-line and up-
to-date documentation repository was
established and administered. Detailed
project plans including metrics-based
estimates were developed. These plans
included extensions to our existing design
review process. All this work set the stage
for several significant extensions to our
previous work with SRE.

Years of Number of
Development Similar
Experience Systems Built

Avera

CIS 13.1 1.2

Table 4: Staff experience differences from
Legacy to C/S

5.3 The Operational Profile as
Development Guide

With new feature requirements in hand and
a vision of the architecture drawn, one sub-
team set out to forecast future usage trends.
This Operational Profile would be built from
the existing one but would need some
expansion. Our capacity planning engineer
worked closely with us to construct over-all
demand predictions for various services
needed by the new system.

The significant finding in this re-analysis was
a swing away from end-user interactions
back to attendant interactions. This was a
key finding dictating where we should shift
our development and testing efforts (see
Table 5). We also used our new functional
profile to guide the prioritization of feature
development.

I USER TYPE I LEGACY I CIS 1

4. Administrator I 0.02 1 0.02
5. Rejected Callers (Not Previously 1 0.02

,

. . -- I Understood I
TOTAL 1 1.00 I 1.00

Table 5: Operational Profiles Compared

1. Attendant
2. Participants
3. Hosts

SEW Proceedings
150

0.20
0.70
0.08

0.60
0.30
0.06

5.9 Get lt Working and Keep Work ing

Knowing which features to build first can act
as a beacon when spiraling through
development. The concept of incremental
development has been well understood and
documented starting at least with Brooks
(1975) and Boehm (1982). Recently
Microsoft reports frenetic rates of integration
and automated regression testing (Booch,
1995). We found such incremental
development, with early integration testing,
can be even more beneficial when coupled
with Operational Profile driven testing (also
termed "operational development", Musa
1993). Our approach on the C/S version of
this system was to develop the overall
architecture of the system using Object-
Oriented Analysis and Design. We then built
up functionality recursively across the entire
system using Object-Oriented Programming.

Figure 2: Incremental Development Driven
by Operational Profile

Key components are given structural
integrity and minimal functionality prior to the
initial integration. Load levels selected from
the Operational Profile are then used to drive
early testing. Successive iterations introduce
additional features and functionality in
priority as derived from the Functional
Profile. As seen in Figure 2, each
component's overall scope is understood
prior to the initial cycle (C1). As transitions
are made to successive cycles (C2,C3,C4),
the system soon becomes robust in lab
conditions which closely mimic field
operations. A side benefit is that the system
quickly forms into something deliverable

from a product standpoint. With relatively
short lead time a working system can be
delivered to system tesL3

5.5 Want Fewer Bugs? Write Less Code!

Throughout the development process one of
our lead analysts often chided us that "code
we do not write will never break". More
formally stated this is the concept of
Reduced Operation Software (ROS) (Musa,
1995). Thus, the design bias was towards
infusing the objects with nearly automatic
behavior based on context and relationships
and not by adding procedural machinations.
The combination of clear modeling and
succinct coding translated into a feature-rich
system with fewer crevices in which defects
could lodge. Amusingly, the system provided
too much functionality! In fact one parallel
team requested that we turn-off certain
features because they had yet to implement
the required cooperative process needed for
deployment.

Several technology choices supported our
mission to develop less code but deliver
more functionality. From the beginning we
sought out commercially available class
libraries. Doing so, in effect, saved months
of development effort. In previous efforts we
had created custom interface kits to support
our computing platform. Moving onto new
platforms allowed us to leverage the broad
range of tools on the market. This eliminated
much development effort (but not all). PC
development tools place emphasis on
particular computing metaphors (e.g., off ice
document processing). These tools penalize
developers who work outside the favored
model (in our case telecommunications).
Nevertheless, we saved time and gained
functionality. Finally, our existing code base
provided us with many libraries, functions,
code fragments, and utilities for the new
system. These components were already
proven in production.

Recently, project members reported that the
incremental approach taken has been modified.
Instead of grouping several features for development in
a fixed time interval, schedules now allow feature at a
time development across all system components. This
has been reported to be much more workable than our .
earlier attempts at wide scale parallel feature
development.

SEW Proceedings

By observing conferences-run as the
execution time metric and plotting failures
observed during integration test runs, our
preliminary reliability calculations for the CIS
system place it on par with our existing
production Legacy system - prior to system
test. Figorre 3 shows failure intensity for the
new CIS system during a recent one week
integration test phase.

These results must be understood in the
context of an emerging system. At the time
of this writing the new system was being
prepared for a December 1995 release to
system test. We believe that results from the
more rigorous system test phase and the
eventual production environment findings will
follow this positive trend.

5.6.4 CIS Productivi%y Comparison

Previously, our systems required 700 to
1200 Function Points to implement.
Productivity figures in Function Points per
Staff Month for the entire life-cycle of the
Legacy system are presented in Tabk 7
along with the data on the CIS system
though early 1995. The benefits associated

with this nearly 40% increase in productivity
are partly offset by training costs, ramp up
time of 3-6 months for most staff members,
and hardware costs. This productivity gain
may seem modest but in conjunction with
our predicted reliability improvements the
total investment has an appreciable return.
This leaves out of the equation the business
implications of delivering new services.

Pabk 7: Productivity Comparison

We recognize that some limitations and
engineering approximations in our SRE
program remain. Relying only on the
accuracy of the trouble incidence reports
results in under-reporting of failures.
However, we tend to view this low but
consistent method of reporting failures by
the users as an adequate barometer of
reliability.

Figure 3: Failure Intensity for Emerging CY§ System: The Y-axis shows failure intensity on an emnential scale. The
X-axis shows calendar time during a one week integration test phase. The dashed lines indicate confidence factors.

SEW Proceedings 152 SEb-95-004

Furthermore, we encountered problems
extending our analysis to test time
prediction. While the projections of the
number of defects remaining and reliability
levels were useful, the staff time estimates
produced by SRE were unusable. The staff
time and calendar time estimates put
delivery of the system many years in the
future. As the lab results neared the failure
objective, the time estimates suddenly
dropped to zero.

Also, one goal we failed to meet was a
reduction in cycle time. We intended to
deliver the first phase within 18 months of
concept formulation. lnstead a scaled back
initial phase was deployed after 24 months.
The follow on phase, including complex
service reengineering, proprietary hardware
development, and the software development
described here, are nearly on schedule but
have required some feature trimming to stay
on track. Interestingly, these cycle times are
consistent with our past delivery intervals.

7. CONCLUSIONS

Neufelder (1993) among others proposed a
set of factors influencing software reliability.
These factors include methodologies, tools,
complexity, testing, languages, schedule,
staff experience, and organization. We have
found several of these factors to be at work
during our system development efforts. SRE
provided a set of guiding principles for
development prioritization and effort
allocation within the two technologically
different development environments
discussed above. Our gains were not
produced by SRE alone. lnstead as we
made changes in many development
activities we were able to measure the
impact as a net positive due to our
application of SRE and other metrics.
Without SRE we would have no yardstick for
measuring success or a technique for
steadying our transition from one
development approach to another.

8. ACKNOWLEDGMENTS

Many AT&T Teleconference Service Development
team members assisted our SRE initiative including

Dave Cole, Jerry Pascher, Jeny Manese, Joe Chacon,
Bob Stokey, Grant Davis, Rao Karanam, Andy
Johnson, Bill Masson, Jay Dobin, Jack Samley, and
Dottie Bradley. Frank Ackerman now of Octel provided
jump-start support. Jim Widmaier of NSA, along with
Willa Ehrlich, Ray Sandfoss, and John Musa of AT&T
Bell Laboratories provided many useful comments on
this paper. Alberto Avritzer of AT&T Bell Laboratories
was instrumental in the origination of this document.

9. REFERENCES

[I] Ackerrnan, F., 'Software Reliability Engineering
Applications", AT&T Technical Education, February,
1993.

[2] Arthur, L., Measurina Proarammer Productivity
and Software Quality, Wiley-lnterscience, 1985.

[3] Boehm, B., Software Enaineerina Economics,
Prentice-Hall, Engelwood Cliffs, NJ, 1981.

[4] Booch., G., "The Microsoft Effecr, Object
Magazine, SlGS Publications, Inc., October, 1995.

[5] Brooks, F., The Mvthical Man-Month: Essavs on
Software Enaineerinq, Addison-Wesley, Reading,
MA, 1975.

[6] Cusick, J., "Reliability Engineering for System
Testing and Production Supporf", Proceedinas of the
4'" International Conference on AD~lications of
Software Measurement, Orlando, FL, November,
1993.

[7] Jones, C., h ~ l i e d Software Measurement:
Assurina Productivitv and Quality, McGraw Hill, Inc.,
New York, 1991.

[8] Jones, C., "Applied Software Measurement:AT&T
Technical Education. November, 1992.

[9] Kitchenham, B., Pickard, L., Pfleeger, S., "Case
Studies for Method and Tool Evaluation", lEEE
Software, July 1995.

[lo] Musa, J. D., lannino, A., and Okumoto, K.,
Software Reliabilitv: Measurement. Prediction,
A~plication, McGraw-Hill, 1987.

[l l] Musa, J. D., "Operational Profiles in Software-
Reliability Engineering", IEEE Software, March 1993.

[12] Musa, J. D., The Operational Profile",
Proceedinas of the NATO Advanced Science
Institute, Antalya, Turkey, June 1995, (to be published
by Springer-Verlog, Berlin).

[13] Neufelder, A. M., Ensurina Software Reliability,
Marcel Dekker, NY. 1993.

[14] Pressman, R., Software Enaineerina: A
Practitioner's Guide, 3ra ed., McGraw-Hill, NY, 1992.

[15] Rumbuagh, J., et. at., Obiect-Oriented Modelinq
and Desian, Prentice-Hall, Engelwood Cliffs, NJ, 1991.

SEW Proceedings

A TALE OF TWO SYSTEMS:
eusing Software Reliability Analysis from
egacy to Emerging Client/Server Systems

Twentieth Annual NASA SEL Software
Engineering Workshop, Greenbelt, MD

Ngvember 29-30, 1995

- James Cusick
Ei5zsb

8 k BATslT AT& T Bell Laboratories
*'<$ = James. CusickQatt.com

Small teams, date driven, resource
limited, uneven quality

im SRE's Promise:
Quantitative measure of current quality

0 Control release of future software

0 Demonstrate quality improvement
gi-*

SEW Proceedings

ACQUIRING THE PROCESS
Try, try, and try again (getting started)
Training, tools, process definition
Conferences-run rate as execution metric

ANIMATING THE PROCESS
Data collection, baselines, objectives

rh W

Operational Profile driven testing
Release and production monitoring

Operational Profile

) USER MODES

pqT:
-

Slack 64%

USER TYPES - -

Participants 0.70 , A ~ \ I I J ~ ~

Hosts 0.08 3 . Insiaht

Attendants 0.20 0

> t -
h *

0 Admin istrators 0.02
>%

SEW Proceedings

SEW Proceedings

rovements: The Bill

1.5 Staff months for startup (research, training,
analysis, data collection), I staff day per week
ongoing, $3K training costs

m' BENEFITS
89% Cost Savings in Beta Test
New version with predictable reliability
Decreased failure rate 54%; while increasing
traffic 34%
New paradigm for decision making

SEW Proceedings

nges for C/S Environment

One More Time

New hardware, new tools
More experienced, re-trained staff
Incremental development driven
by Operational Profile
On-line documen ta tion
Object-Oriented Technologies

rational Profile

JSER ' TYPES Legacy
Participants 0.70 0.30

A= Hosts 0.08 0.06
Attendants 0.20 0.60
Administrators 0.02 0.02
Rejected Callers ------ 0.02

lnsiaht

SEW Proceedings

PRIORITIZE WITH OPERATIONAL PROFILE
* a

LESS CODE GENERATES FEWER DEFECTS

Data validation at each step

Defects = (LOC)*(Defect Density)
Defects = (100KLOC)(l/K)
Defects = 100

Data validation at needed step

Defects = (LOC) *(Defect Density)
Defects = (1 OKLOC)(I/K)

SEW Proceedings

redesign
Integration Fail~lre Intensity vs. Calendar Time

- -

This case depends upon SRE and new
tools, technologies, and staff
SRE compatible with Object-Oriented

return on investment in technology
SRE requires management commitment
and local champion to succeed

SEW Proceedings

Special Presentation: Software Engineering Survey

SEW Proceedings

Software Engineering Survey
Jon Valett, NASAIGoddard

SEW Proceedings

Survey Results and Award Presentations

Jon D. Valett
NASNGoddard Space Flight Center

As part of the 1995 workshop program, significant "behind-the-scenes" contributors were
given special award presentations, and the results of a survey were presented. The awards
were given to Laura Moleski, John Cook, and Barbara Holmes for their many years of
continuous service to the Software Engineering Workshop. All three of these individuals
contributed tremendously to the success of many workshops.

To mark the twentieth anniversary of the Software Engineering Workshop, the program
committee distributed a questionnaire to everyone on the workshop mailing list
(approximately 3500 people with 125 respondents). This questionnaire was similar to one
that was distributed at the tenth workshop. The purpose was to obtain information from
the respondents concerning many aspects of software engineering. (The questionnaire
follows as the first page after this summary). The first slide shows a number of facts about
the workshop (many of which were not obtained from the questionnaire).

The second slide compares the attendance profile from 1995 with that of 1996. It also
summarizes the answers to many other questions. The attendance profile has not changed
drastically, except that the 1996 survey added a function of process improvement. Most of
the people in that category probably came from the manager and researcher category of
1985. One other interesting note was the increase in the number of organizations that are
collecting metrics data. Finally, in the 1995 survey, a question on whether the organization
has a process improvement program in place. 72% of the respondents stated that there was
a process improvement program in place in their organization.

The third slide shows people's opinions of how the quality of software has changed within
their organizations over the past 5-10 years. The majority of people thought that their
quality was improving both in 1995 and in 1985, but people were slightly less optimistic in
1995. Perhaps, quality is improving slightly less noticeably then it was 10 years ago.

The final slide shows the results of the question on the greatest improvement and biggest
disappointment in the state of the practice over the past number of years. The answers over
the two surveys were not significantly different. In 1995,43% of the respondents felt that
methods, practices, and tools were the greatest improvement in the state-of-the-practice.
Perhaps this indicates the major emphasis on process and methods over this ten year
period. Certainly, the software engineering community has had a significant focus on
process during th s time period.

Overall, the survey was quite successful in collecting a variety of opinions about various
software engineering issues.

I would like to thank John Cook for collecting the data and summarizing the results from
the questionnaire.

SEW Proceedings

20th Software Engineering Workshop
Survey Results and Award Presentations

Jon D. Valett

NASAtGoddard Space Flight Center

Workshop Facts and Stats
Facts

Started August 1976 - 28 People

Largest (1992) - over 600 People

This Year - 350 People

Sessions
28 Different Discussants

Leadine Discussants (number1
McGarry = 20
Page = 12
Zelkowitz = 10
Basili = 9
Valett = 6
Pajerski = 5
3 tied = 3
8 tied = 2

How Many Worksho~s?

20 = 0
19 = 3
18=0
17= 1
16=0
15=4

Pa~ers

Leadine Presenters (number)
Basili = 19
McGarry = 12
Zelkowitz = 7
Knight = 6
Agresti = 5
Goel = 5
4 tied = 4
15 tied = 3
13 tied = 2

SEW Proceedings

Attendance Profile
1995 1985

Other O t k r
0 -m

Manager
44%

Developer

Use SEL Results? Process Irn~rove. Program?

1995 = 85%
1985 = 69% Yes = 79% Yes = 68%

Yes = 72% CMM = 63%
No= 6% No= 8% QIPISEL = 26%
NIA = 15% NIG = 24% Other = I 1%

Quality of Software
(Last 5-10 years)

Declined

Quality is improving LESS noticeably than 10 years ago

SEW Proceedings

Greatest Improvement/Disappointrnent

* Improvement in State-of-the-Practice
- 1995

* Methods, Practices, Processes = 43%

Software Tools = 22%

- 1985
Tools=31%

* Methods, Practices = 30%

* Disappointment in S tate-of-the-Practice
- 1995

Management = 33%
Metrics = 23%

* Tools= 15%

- 1985
Management = 28%
Metrics = 24%
Methods. Practices = 12%

SEW Proceedings

, d

Session 3: Product Evaluation /3.?)<,1 c.

A Family of User Interface Consistency Checking Tools: Design and
Development of SHERL OCK

Ben Shneiderman and Rohit Mahajan, University of Maryland

A COTS Selection Method and Experiences of Its Use
Jyrki Kontio, University of Maryland

Process Enactment within an Environment
Marv Zelkowitz, University of Maryland

SEW Proceedings

SEW Proceedings

November 25, 1995

A Family of User Interface Consistency Checking Tools:
Design and Development of SHERLOCK

, ' I

Rohit Mahajan and Ben shneidermanl ,) %(2i

.. ,"
l~eparrrnent of Computer Scrence, C' / 5"-.7a) , , '

< , ,"> ~ - 9 ~ ~

Human-Computer Interaction Laboratory & </'

Institute for Systems Research

University of M a ~ ~ l a n d , College Park, MD 20742 USA %'\ /'; <; <'; '! +

email: mahaian @cs.umd.edu. ben @cs. urnd.edu

ABSTRACT
Incorporating evaluation meuics with GUI development tools will help designers create consistent

interfaces in the future. Complexity in design of interfaces makes efficient evaluation infeasihle by a single

consistency checking evaluation tool. Our focus is on developing a family of consistency checking tools to

evaluate spatial layout and terminology in user interfaces and make the evaluation process less

cumbersome. We have created a dialog box summary table to provide a compact overview of spatial and

visual properties of dozens or hundreds of dialog hoxes of the interface. Interface concordance tool has

been developed to spot variant capitalization and abbreviations in interface terminology. As buttons are

most frequent used widgets, a button concordance tool and a button layout table has been constructed.

Button concordance identifies variant capitalization, distinct typefaces, distinct background colors and

variant sizes in buttons. Button layout table spots any inconsistencies in height, width and relative position

between a given group of buttons. A spell checking tools which detects spelling errors in interface terms

has also been included in the tool set. Finally, a terminology basket tool has been created to identify

unwanted synonyms of computer related terms used in .the interface. These tools are integrated together as

SHERLOCK, a family of six consistency checking tools to expedite the evaluation process and provide

feedback to the designers plus aid Usability Testing.

KEYWORDS: Automated meuics, consistency checking tools, concordance tools, spatial and textual

evaluation tools, user interface

SEW Proceedings

1. INTRODUCTION AND PREVIOUS RELATED RESEARCH

Creating user interfaces is a composite procedure involving iterative design, usability testing and
evaluation processes (Shneiderman, 1992). Iterative refinement methods like Formative Evaluations can
be used to designiredesign the interface from early development stages through completion stage (Hix &
Hartson, 1993). Interactive tools like IDEAL (Interface Design Environment Analysis Lattice) support
procedures like Formative Evaluations (Ashlund & Hix, 1992). Recent advances in powerful user interface
development tools have expedited the interface development process helping both novice and experienced
developers. However these expeditiously created designs may be clogged with spatial and textual
inconsistencies which cannot be verified by current development tools. These inconsistencies may have a
subtle and negative impact on interface usability.

Inconsistencies in spatial and textual style of an interface designed by several designers may result in a
chaotic layout. Each designer may have different interpretation of terminology and may use hisher own
style of abbreviations and computer terms. Furthermore designers personal preferences on fonts and colors
add to the problem in group designs. Such anomalies in terminology and format lead to poor design,
ultimately misleading and confusing the user (Chimera & Shneiderman, 1993). Although many
organizations are adopting more stringent usability testing standards to monitor quality and layout of the
design, better automated evaluation tools are needed which would scan for inconsistencies in the interface
layout at early design and development stages, thereby providing an aid to the Usability testing. Also,
these automated tools may unearth problems that would be missed by usability testing.

Usability testing is a highly beneficial but costly process when compared with automated evaluation.
Prerequisites for these tests may include availability of developed working prototypes, test users and expert
evaluators (Sears, 1994). These requirements are hindrances in this very powerful evaluation method.
Alternative techniques like Heuristic Evaluations (Nielsen & Molich, 1990) can decrease but not eliminate
these requirements. Furthermore usability testing works best for smaller applications. It is practically
infeasible to analyze every dialog box in an application with thousands of dialog boxes with the current
evaluation methods. Finding anomalies or differences while reviewing thousands of dialog boxes is even
hard for expert reviewers who may leave undetected flaws and inconsistencies. In contrast automated
evaluation tools can be used in early prototypes (or later iterations) and can detect anomalies across
thousands of dialog boxes. These automated tools in addition to detecting anomalies can make interface
cleaner and easier to use.

Automated tools for consistency checking are meant to replace the current consistency checking process
which is complex, expensive, error prone and manual. These tools can be made independent of platform
and development tool, as textual and spatial properties are independent of these constraints. Spatial metncs
to check consistencies in alignment, screen symmetry, screen balance, average distance between groups of
items, percentage of screen used to display information, average size of groups of items were introduced by
Streveler and Wasserman (1987) and were later implemented by Tullis(1988). Furthermore Kim and Foley
(1993) used metrics as a constraint for design space and layout style. They developed a tool which
generated potential designs for an interface when provided with design specifications and guidelines for
metrics. Effectiveness of their metrics has not yet been evaluated.

Evolution of modern user interfaces like multimedia interfaces has sparked research in automated
evaluation based on visual techniques. Vanderdonckt and Gillo (1994) proposed five visual techniques:
physical, composition, association, ordering and photographic which identified more spatial properties
than traditional balance, symmetry, and alignment. These visual properties also include proportion,
neutrality, singularity, repartion, grouping, sparing, and simplicity. Dynamic strategies for automated
evaluation using these visual techniques have been introduced. (Bodart, Hennebert, Leheureux and
Vanderdonckt,1994). Visual metrics introduced above for traditional layout grids and multimedia layout
frames have not yet been tested.

SEW Proceedings

Sears (1 993, 1994) has developed a fist generation tool using automated metrics for both design and
evaluation using Layout Appropriateness metrics. The tool AIDE (semi- Automated Interface Design and
Evaluator) allows designers to create, evaluate and modify an interface using a single tool. Layout
Appropriateness compares layout based on user's task sequences and frequencies. AIDE has demonstrated
its effectiveness in analyzing simple interfaces. Currently, studies are being done by Comber and Maltby
(1995) in assesing the usefulness of layout complexity metric in evaluating the usability of different screen
designs.

2. METRICS EVALUATION USING CANONICAL FORMAT
Our research evolved from the concept of converting interface form files generated by Visual Basic into
canonical format files and feeding them as input to the SHERLOCK. The canonical format is an organized
set of GUI object descriptions which embrace interface layout and terminology information in a sequence
of attribute-value pairs. These canonical formats may be created for other interface development tools like
Power Builder, Galaxy, and Visual C t t and by writing a translator program for these tools. SHERLOCK
is not specific to Visual Basic and can be used for evaluating interfaces developed by other tools.

2.1 Our Evaluation Method
This research is an extension of previous work (Shneiderman, Chimera, Jog, Stimart and White, 1995) in
which we developed spatial and textual evaluation tools. The spatial tool was a dialog box summary table
which gave an overview of spatial and visual properties. Each dialog box corresponded to a distinct row
and each column a metric. The metrics Aspect Ratio, Widget Totals, Non-Widget Area, Widget Density,
Margins, Top-Bottom Balance, Left-Right Balance and Distinct Typefaces formed our metrics column set.
This list of metrics was developed by consultation with analysts at University of Maryland and General
Electric Information Services to evaluate categories such as spatial layout, alignment, clustering, cluttering,
fonts, etc. The textual tool was a concordance built to extract all the words that appear in labels, menus,
buttons, etc. in every dialog box. These words were sorted in one file with reference to the dialog boxes
containing them. The concordance was to help designers in appropriate word use such as spelling,
abbreviation, tense consistency, case consistency, passivelactive voice etc.

SHERLOCK "A family of consistency checking tools" was constructed by modifying our previous tools.
The metrics of the dialog box summary table have been modified and new metrics have been added after
evaluating more interfaces. Further, the tool set has been expanded by adding new tools which in many
cases perform exception reporting by outputting the possible anomalies and irregularities in spatial and
textual layout. The reports generated by these mini tools require less interpretation, thereby expediting the
quick evaluation process and providing feedback to the designer. The designer then must decide whether
the spotted inconsistencies are relevant to the particular prototype. We have developed six consistency
checking tools:

d i a l o ~ box summarv table to give an overview of spatial and visual properties of the interface dialogs.
interface concordance to spot variant capitalization and abbreviation in button widgets.

0 b u t t o n to spot variant capitalization, distinct typefaces, distinct background colors and
variant sizes in all the interface buttons.

0 button lavout table to spot any inconsistencies in height, width and relative position among a given
group of buttons.

8 interface s~el ler to detect terms used in the interface that are nonexistent in the dictionary.
Jermlnology basket to provide the interface designer with the feedback on misleading synonym
computer terms.

2.1.1 Dialog Box Summary Table
The dialog box summary table is a compact overview of spatial and visual properties of the dozens or

hundreds of dialog boxes of the interface. Each row represents a dialog box and each column represents a
single metric. Typical use would be to scan down the columns looking for extreme values, spotting
inconsistencies, and understanding patterns within the design. The following are the columns of the table:

SEW Proceedings

Aspect Ratio: The ratio of the height of a dialog to its width. Numbers in the range 0.5 thru 0.8 are
desirable. Dialogs that perform similar functions should have the same aspect ratio.

Widget Totals: Counts of all the widgets and the top level widgets. Increasing difference between all and
top level counts indicates greater nesting of widgets, such as buttons inside containers.

Non-Widget Area: The ratio of the non-widget area to the total area of the dialog, expressed as a
percentage. Numbers closer to 100 indicate high utilization, and low numbers (< 30) indicate possibilities
of redesign.

Widget Density: The number of top-level widgets divided by the total area of the dialog (multiplied by
100,000 to normalize it). High numbers greater than 100 indicate that a comparatively large number of
widgets are present in a small area. This number is a measure of the 'crowding' of widgets in the dialog.

Margins: The number of pixels between the dialog box border and the closest widget. The left, right, top
and bottom margins should all be approximately equal to each other in a dialog, and should also he the
same across different dialogs.

Gridedness: Gridedness is a measure of alignment of widgets. High values of x-gridedness and y
girdedness indicate the possibility of misaligned widgets. X-gridedness counts the number of stacks of
widgets with the same x coordinates (excluding labels). Similarly Y-gridedness counts the number of
stacks of the widgets with the same y coordinates. An extension of Gridedness is Button Gridedness where
the above metrics are applied to button widgets.

Area Balances: A measure of how evenly widgets are spread out over the dialog box. There are two
measures: a horizontal balance, which is the ratio of the total widget area in the left half of the dialog to the
total widget area in the right half of the dialog; and the vertical balance, which uses top area divided by
hottom area. High value of balances between 4.0 and 10.0 indicate screens are not well balanced.

Distinct Typefaces: Typeface consists of a font, font size, bold and italics information. Each distinct
typeface in all the dialog hoxes is randomly assigned an integer to facilitate quick interpretation. For each
dialog box all the integers representing the distinct typefaces are listed so that the typeface inconsistencies
can be easily spotted locally within each dialog box and globally among all the dialog boxes. The idea is
that a small number of typefaces should be used for all the dialog boxes.

Distinct Background Colors: All the distinct background colors(RGB values) in a dialog box are
displayed. The purpose of this metric is to check if all the dialog boxes have consistent background colors.
Multiple background colors in a dialog box may indicate inconsistency.

Distinct Foreground Colors: Similar to distinct background colors, displays all the distinct foreground
colors(RGB values) in a dialog box. The purpose of this metric is to check if all the dialog hoxes have
consistent foreground colors.

This tool was tested with all the four test applications and inconsistencies were revealed in al l the
applications. A portion of the table from the 51 dialog box University of Maryland, AT&T teaching
theater interface (Table 1) is shown below which uses 12 distinct typefaces, 7 background colors and 9
foreground colors. Our programs allowed the designers to check the dialog boxes for inconsistencies and
the output of the dialog box summary table revealed anomalies which otherwise may not have been
detected. For example the margins were irregular and aspect ratio was variant even for similar styled dialog
boxes. The non-widget area varied from single digits to nearly 100%.Thus, some screens were crowded
with widgets and others were almost blank showing inefficient screen designs of the application.

SEW Proceedings

No. Dialog Aspect -WIDGET--
Name Ratio TOTALS

(WW) All Top
Level

42 review5.frm 1.60 15 7
43singlel.fnn 1.30 20 9
44 t i m e g p . h 0.67 5 3
45 time-up2.h 0.67 4 2
46 topic2.h. 0.76 13 8
47 vdmdi3.frm 0.78 72 9
48 winchat8.h 0.77 19 9
49 winstat.frm G.92 12 11
50 zoom.fnn 0.47 5 4

Non- Widget -----M A R G I N S ----- --GRIDEDNESS-- --Balances-- Distinct
Widget Density Left Right Top Bottom Top Level Bunons Area Ratios Typefaces
Area widget1 (pixels) X Y X Y Horiz Vert

(%) area (LfR) CTB)
43.5 64 0 22 0 17 2 4 1 2 2.1 0.4 4
57.3 58 0 37 0 87 4 5 0 0 2.4 0.6 4
79.4 140 0 78 0 31 1 2 1 1 8.4 3.9 4 9
79.4 105 0 78 0 31 2 2 1 1 4.6 2.1 4 9
55.7 55 24 25 8 16 4 5 0 1 0.9 1.2 4
94.2 25 0 0 0 0 1 1 0 1 0.0 0.0 4
16.5 39 0 0 0 0 3 4 0 0 0.8 0.4 411
89.2 29 0 70 0 24 0 3 0 1 1.6 0.3 4 12
14.4 108 3 5 2 17 1 2 0 1 1.1 1.0 4

Distinct
Bgrnd
Colors

Maximum 1.60 72 IS 100.0 140 48 381 27 276 5 6 1 3 10.0 10.0
Minimum 0.13 1 1 5.0 0 0 0 0 0 0 0 0 0 0.0 0.0
Average 0.77 11 5 53.8 48 9 53 6 29 1 2 0 0 2.2 1.7

DISTINCT TYPEFACES:
1 = Aria1 13.5 Bold 2 = Symbol 9.75 Bold 3 = Aria1 8.25 Bold 4 = MS Sans Serif 8.25 Bold
5 = System 9.75 Bold 6 = Arial 15.75 Bold 7 = MS Sans Serif 9.75 Bold 8 = MS Sans Serif 16.5 Bold
9 = MS Sans Serif 12 Bold 10 = MS Serif 30 Bold 11 = Times New Roman 12 Bold 12 = MS Serif 12 Bold

DISTINCT BACKGROUPr?) COLORS:
I = ffffff 2 = ffffffff8-5 5 = cOcOc0 6 = f f 9 = e0ffff 10 = 404040 12 = ffffffff8000000f

DISTINCT FOREGROUND COLORS:
2 = ffffffff80000005 3 = ffffffff8~000008 4 =0 6 = ff 7 = ffOOOO 8 = cOOOcO 11 = 808080 13 = cOOO 14 = cOOOOO

Table 1

2.1.2 Interface Concordance
The interface concordance tool checks for variant capitalization for all the terms that appear in buttons,
labels , menus, etc. in every dialog box of the interface. This tool outputs strings which have variant
capitalization, listing all the variant formats of the string and its dialog box sources. These variant forms
are spelling differences and may be acceptable, but they may be something that should be reconsidered.
For example the words "MESSAGES" , "messages" ,"Messagesn and "msgs" are Variant Capitalization
forms of the same word.

2.1.3 Button Concordance
As buttons are one of the most frequently used widgets performing vital functions like "Save", "Open",
"Delete", "Exit" etc., checking consistency in their size, placement, typefaces, colors and case usage
becomes more important. This tool outputs all the buttons used in the interface, listing the dialog boxes
containing the buttons plus fonts, colors and button sizes. The hutton concordance identifies variant
capitalization, distinct typefaces, distinct foreground colors and variant sizes in buttons.

SEW Proceedings

Table 2

173

BUTTON
(a , W)

24,112
24.68
32,72
33,73
29,92
32,64
25,73
33,57

33,105

BUTTON
PO-COLOR

1
1
2
2
1
1
1
1

1

BUTTON
TYPEFACE

1
1 .
1
1
1
1
1
1

1

BUTTON
LABEL

OK

Ok

FORM CONTAINING
THE BUTTON

find.frrn.cft
grid3 .fnn.cft
help. fnn.cft
help5.frm.cft
list2 .fnn.cft
listque2.frm.cft
opensav2.frm.cft
time-up.frm.cft

form3 .fnn.cft

A small portion of the button concordance table from one of the test interfaces is shown above (Table 2).
The designer have used both OK and Ok buttons with the height of buttons varying from 24 to 33 pixels
and the width varying from 57 to 112 pixels which is an inconsistency. Also, two different foreground
colors have been used in the interface for button labels. Fig. 1-3 show some of the dialogs from this
interface.

Fig. 1 find.frm.cft

Fig. 2 timeup2.frm.cftt

. Fig. 3 form3.frm.cft

2.1.4 Button Layout Table
Given a set of buttons that frequently occur together (e.g. OK Cancel, Close, Help), if the first button in the
set is detected in the dialog box then the program outputs the height, width and position relative to the first
button of every button detected in the set. The relative position of every button detected in the set is
outputted as (x + offset, y+ offset) to the first button, where offset is in pixels. Buttons stacked in rows
would yield (x+ offset, y) relative position and those stacked in columns would yield (x, y+ offset). The
Button Layout table identifies inconsistencies in button placement, inconsistencies in button terminology
plus variant button sizes locally within a dialog box and globally across all the dialog boxes.

Our program reads an ASCII file containing different sets of buttons. These button sets were constructed
after analyzing many previously developed interfaces. Variations in terminology were considered while
constructing these button sets. Button set (Start Stop Exit) is incomplete as designers may use "Close" ,
"Done" or "Cancel" instead of "Exit". The set (Start Stop Halt Pause Cancel Close Done End Exit Quit)
forms a much better button detector set.. Some of the sample button sets ,are:

e OK Cancel Close Exit Q u i t Help
S t a r t Stop Halt Pause Cancel Close Done End
Exi t Quit

* Add Remove Delete Copy Clear . Cancel Close Ex i t

SEW Proceedings

H e l p C l o s e C a n c e l Exit

A portion of the output using the button set (OK Cancel Close Exit Quit Help) tested with the small 30
dialog box GE application is shown below (Table 3). Inconsistency in height and relative button positions
within a button set can be checked by moving across the rows of the table. Inconsistency in height and
relative position for a particular button can be spotted by moving down in columns. For example, the
height of the "OK" button varies from 22 pixels to 26 pixels and the width varies from 62 pixels to 82
pixels. Also, the relative position between "OK" and "Cancel" buttons varies in all the three forms in
which they occur together. In the forms "nbatch.cftV and "systinp.cft" the "Cancel" button is 20 pixels and
13 pixels down respectively from the "OK button, but in the form "admprof.cftU the buttons occur next to
each other in the same row. Also, both the buttons "Cancel" and "ExitW(Fig. 4 and Fig. 5) have been used
with the button "OK" essentially to perform the same task which is a terminology inconsistency.

Table 3

Form Name

admprof.cft

checkpsw.cft

nbatch.cft

systinp.cft

Fig. 4

Fig. 5

OK
(H , W)

2 2 , 6 8

2 5 , 8 2

2 5 . 6 2

2 6 , 7 2

SEW Proceedings

Cancel
(H , W) R e l . Pos.

2 2 , 6 8 x + 1 6 , y

2 5 . 6 2 x-1, y+20

2 6 , 7 2 x + l , y+13

Exit
(H , W) R e l . Pos.

2 2 , 6 8 x + 9 8 , y

2 5 . 8 2 x+18 , y

2 5 , 6 2 x , y+66

H e l p
(H , W) Rel. Pos.

2 5 , 8 2 ~ + 1 1 6 , Y+l

2 5 , 7 3 x + 2 , y+48

2.1.5 Interface Speller
Interface Speller is a spell checking tool which reads all the terms used in widgets including menus,
buttons, list boxes, combo boxes etc. throughout the interface and outputs terms that are not found in the
dictionary. The spell checking operation is performed within the code and all the possible misspelled words
are stored in a file. This file can be reviewed by the designer to detect possible misspelled and abbreviated
words which may create confusion for the end users. The output is filtered through a file containing valid
computer terms and default Visual Basic terms that may he detected as spelling errors by the dictionary.
The tool detected few misspelled words, but many incomplete and abbreviated words such as "App",
"Trans", "Ins" , "Opr" were found in all the test applications which are potentially confusing abbreviations.

2.1.6 Terminology Baskets
A terminology basket is a collection of computer task terms including their different tense formats which
may be used as synonyms by the interface designers. Our goal is to construct different sets of terminology
baskets by constructing our own computer thesaurus and then search for these baskets in every dialog box
of the interface. The purpose of terminology baskets is to provide interface designers with feedback on
misleading synonym computer terms, e.g. "Close", "Cancel", "End", "'Exit", "Terminate", "Quit".
Our program reads an ASCII file containing the basket list. The baskets are sorted alphabetically and for
each basket all the dialog boxes containing any of the basket terms are outputted. The list of baskets may
be easily updated as more interfaces are analyzed in the future. Some of the idiosyncratic baskets were:

Remove Removes Removed Removing Delete Deletes Deleted Deleting Clear Clears Cleared
Clearing Purge Purges Purged Purging Cancel Cancels Canceled Canceling Refresh Refreshed
Item Items Entry Entries Record Records Segment Segments Segmented Segmenting Field Fields
Add Adds Added Adding Insert Inserts Inserted Inserting Create Creates Creating
Message Messages Note Notes Letter Letters Comment Comments

Our basket browser revealed some interesting terminology anomalies after analyzing the large 130 dialog
box interface that led to reconsideration of previous design. As shown below terms like "record",
"segment", "field and "item" were used in similar context in different dialog boxes. Other interesting
anomalies included use of "start", "execute" and "run" for identical tasks in different dialogue boxes.

B a s k e t : Entries, Entry, Field, Fields, Item, Itemized, Itemizing, Items
Record, Records, Segment, Segmented , Segmenting, Segments

3. TESTING OUR EVALUATION TOOLS
Effectiveness of these consistency checking tools has been determined by evaluating two commercial
prototype applications developed in Microsoft Visual Basic. These applications included a 139 and 30
dialog box GE Electronic Data Interchange Interface plus, a 51 and 29 dialog box University of Maryland,
AT&T Teaching Theater Interface. Our testing method incorporates a sequence of steps beginning with
applying the tools to the prototype application followed by analysis and review of the interface screen shots

B a s k e t Term

Field

Items

Record

Segment

SEW Proceedings

Form Containing the B a s k e t Term

search.cft

reconly.cft reconly.cft reconly.cft
reconly.cft sendrec.cft sendrec-cft
sendrec.cft sendrec.cft wastedef.cft

ffadm.cft profile. cft

addr . cf t search.cft .

and outputs generated by our tools. Our evaluation tools were not created with reference to any particular
test prototype and can evaluate any interface that is converted to the canonical format.

Our evaluation tools act as consistency patrollers reporting exceptions and anomalies, making
interpretation easier for the developers. Both small and large applications had inconsistencies in use of
proper typefaces and colors. Most of the screens used the same typefaces, but their were screens which
used more than 5 different typefaces and seven different background or foreground colors, the reason being
all of these applications had multiple designers working on the project. The large application had more
terminology inconsistencies than the smaller applications., misleading synonyms were used for both labels
and buttons for e.g. "File and Document", "Remove and Delete", "Add and Insert", "Search and Retrieve",
"Item and Record, "Run and Execute". These terminology inconsistencies were detected by our
terminology basket tool, which would have been left undetected otherwise. Button placement, button
terminology and button capitalization inconsistencies were evident in all the applications. For eg. the most
frequently used button set (OK, Cancel, Help) had inconsistent placement in every application. In some
forms these buttons were placed on the top right of the dialog box, in others they were left aligned or right
aligned or center aligned on the bottom of the dialog box. Sizes and relative position of buttons were also
inconsistent. There were cases when no two OK buttons in an application had the same height and width.
Button terminology inconsistencies like Cancel being replaced by Close and sometimes by Quit or Exit
were also detected by our tools.

Test results and interpretations were shown to developers to elicit feedback and reactions. Terminology
inconsistencies in the interface had the greatest impact on the developers, who after looking at the results
modified the previously undiscovered synonym slips they had made. Another important concern was the
use of so many different typefaces in a single form, previously undetected. There was an application in
which 17 distinct typefaces were used in a 30 dialog box interface, developers went back to look at the
application after seeing our results. The use of multiple typefaces and colors was due to multiple
designers working on the application. Developers plan to stress more on these consistent terminology and
layout issues in their internal guidelines in the future. Our consistency checking team is in the process of
testing more complex commercial prototypes created by GE Information Services and other companies.

4. LIMITATIONS
Our evaluation tools are designed to aid the interface evaluation process by providing a compact overview
of possible inconsistencies and anomalies on certain textual and spatial characteristics of the interface. The
designer must decide what to do, if anything with these possible inconsistencies. Certain issues like
efficiency in screen layout including proper placement of widgets on the dialog box, violation of any
design constraints, use of inappropriate widgets types are not evaluated by our tools. Other evaluation
methods, such as usability. testing and heuristic evaluation, are needed to locate typical user interface
design problems such as inappropriate metaphors, missing functionality, chaotic screen layouts,
unexpected sequencing of screens, misleading menus, excessive demands on short-term memory, poor
error messages, or inadequate help screens. Currently, the evaluation is limited to Visual Basic
applications, but any experienced programmer can write a translator to convert interface form files created
by other development tools to a canonical format read by our evaluation tools.

5. FUTURE DIRECTIONS
Currently, the printouts provided by our tools showing 'the possible anomalies and inconsistency patterns
need to be compared manually with the interface dialog boxes. Checking back and forth between the
printouts and dialog boxes to make corrections can be time consuming for large interfaces. It would he
good to have these mini evaluation tools as interactive evaluation and modification tools. This would help
developers to interactively make changes to the prototype while creating it rather than amassing printouts.
In the future, we plan to incorporate the canonical format file translator and the evaluation tools together in
Visual Basic. We also plan to diversify the metrics set of our evaluation tools to perform more detailed

SEW Proceedings

interface evaluation. We are currently working on writing a translator to convert the Visual C* resource
files into a Canonical format so that SHERLOCK can evaluate Visual C++ interfaces.

Acknowledgments
We appreciate the support for this project from GE Information Services and the Maryland Industrial
Partnerships program. We thank Ren Stimart and David White at GE Information Services for their help in
every part of this project. We thank Mun Yi and CS Chang at the University of Maryland for providing the
test prototypes. We are grateful for draft comments from Richard Chimera, Catherine Plaisant, Anne Rose,
Andrew Sears and Zhijun Zhang. We thank Eser Kandogan and Adil Rajput for providing programming
assistance.

References
Ashlund, S. and Hix, D. (1992), "IDEAL: A tool to Enable User- Centred Design", Proc. of CHI' 92

(Posters and short talk supplement to proceedings) , ACM, New York, 119-120.
Bodart, F., Hennebert, A.-M., Leheureux, J.-M., and Vanderdonckt, J. (1994), "Towards a dynamic

strategy for computer-aided visual placement", In Catarci, T., Costabile, M., Levialdi, S., and Santucci,
G. (Editors), Proc. Advanced Visual Interfaces Conference '94, ACM Press, New York, 78-87.

Chimera, R. and Shneiderman, B. (1993), "User interface consistency: An evaluation of original and
revised interfaces for a videodisk library", In Shneiderman, B. (Editor), Sparks of Innovation in Human-
Computer Interaction , Ahlex Publishers, Norwood, NJ, 259-271.

Comber, T. and Maltby, J. (1995), "Evaluating Usability of screen design with layout complexity", Proc.
of the CHISIG Annual Conference, Melborne, Australia (in press, 6 pages)

Hix, D. and Hartson, H. R. (1993), Developing User Integaces: Ensuring Usability l;hrough Product &
Process, John Wiley & Sons, New York, NY.

Kim, W. and Foley, J. (1993), "Providing high-level control and expert assistance in the user interface
presentation design", Proc. of CHI'93, ACM, New York, 430-437. .

Nielsen, J. and Molich, R., (1990) "Heuristic evaluation of user interfaces", Proc. of CH1'90, ACM, New
York, 249-256.

Sears, A. (1993), "Layout Appropriateness: A metric for evaluating user interface widget layouts", IEEE
Transactions on Software Engineering 19,7, 707-719.

Sears, A. (1994), "Using automated metrics to design and evaluate user interfaces", DePaul University
Dept of Computer Science Technical Report #94-002, Chicago, IL.

Shneiderman, B. (1992), Designing the User Interface: Strategies for Effective Human-Computer
Interaction: Second Edition, Addison-Wesley Puhl. Co., Reading, MA.

Shneiderman, B., Chimera, R., Jog, N., Stimart, R. and White, D. (1993, "Evaluating spatial and textual
style of displays", Proe of Getting the Best from State-of the-An Display Systems '95, London.

Streveler, D. and Wasserman, A. (1987), "Quantitative measures of the spatial properties of screen
designs", Proc. of INTERACT '87, Elsevier Science, Amsterdam, 125-133.

Tullis, T. S. (1988a), "Screen design", In Helander, M. (Editor), Handbook of Human- Computer
Interaction, Elsevier Science, Amsterdam, The Netherlands, 377-4 1 1.

Tullis, T. S. (1988b), "A system for evaluating screen formats: Research and application", In Hartson, H.
Rex and Hix, Hartson, Advances in Human-Computer Interaction: Volume 2, Ahlex Publishing Corp.,
Norwood, NJ, 214-286.

Vanderdonckt, J. and Gillo, X. (1994). "Visual techniques for traditional and multimedia layouts", In
Catarci, T., Costabile, M., Levialdi, S. and Santucci, G . (Editors), Proc. Advanced Visual Interfaces
Conference '94, ACM Press, New York, 95-104.

SEW Proceedings

A Family of User Interface
Consistency Checking Tools:

Design & Development of
SHERLOCK

Rohit Mahajan & Ben Shneiderman
Human-Computer Interaction Laboratory &

Department of Computer Science
University of Maryland

http://www.cs.umd.edu/projects/hciI

Supported by
General Electric Information Services

Consistency checking across multiple dialog boxes

Multiple designers working on the same interface.
Designers not adhering to design guidelines.

Use automated tools to perform consistency checking
and evaluation.
A single tool evaluates one aspect of design
A set of tools can evaluate multiple design issues.

SEW Proceedings

Our Evaluation Tools

Dialos Box Summarv Table

Compact overview of the spatial layout and visual
properties of hundreds of dialog boxes.

Each row of the table represents a single dialog box.

Each column of the table represents a single metric.

U m e m t y d MaqImd

JWR 4.1993
N w 2. IS33

D r 20.1993
Feb 25.1934 Developed by Y.Yoo and W. G~lbert

Ahout-N.frm

Aspect Ratio = 1.50 Aspect Ratio = 0.84

SEW Proceedings

Widget Totals

Servinp.cft
Widget Totals:
r Top Level= 14
= All=215

5

Non-Widget Area = 5%

i
6

SEW Proceedings

Widget Density

Widget Density = 206

.......................

.-. -.

Top Margin = 16 Bottom Margin = 16 Top Margin = 0 Bottom Margin = 1

SEW Proceedings

Button Gridedness

.

X-Gridedness = 1 X-Gridedness = 0

Y -Gridedness = 2 Y-Gridedness = 1

123 pr.filc.m 0 75 170 21 34 78 8 -10 8 6 1 2 0 1 0.9 I 1 2 3 4 I 3 7 2 3
1 2 4 w m . m 0 7 5 4 3 3 8 7 8 1 6 3 1 8 7 1 1 I 1 I 1 3 1 I 2
$25 r c k l + n 0.75 6 7 11 5.4 36 0 9 0 4 0 I 0 1 0.9 0.9 1 1 2 3
126 at.1m)r.m 0 75 4 3 43 64 16 30 I 6 7 2 1 I 0 1 1.4 1 I 2 3
127 1 1 r y 3 1 m 0.76 28 14 25 60 8 13 8 7 1 2 0 1 I 0.5 1 1 2 3
I 2 8 lplcrp.cfl 0.76 4 3 45 60 24 U 16 7 0 2 0 I 1.1 1.2 1 1 2 3
129.Uf.&,.dt 0.77 25 I 3 28 74 8 26 8 I 1 I 1 1 0.7 1 1 2
130 svq.r.Cn 0.77 27 17 14 63 0 15 0 3 1 2 0 1 0.8 0.9 I I 2 3 8
i 3 i b m m u t t 0 . 7 9 3 8 1 7 1 7 1 1 1 8 3 0 7 1 I I 0 I 0.7 1 1 2 3
132-rW.cf10.112 4 3 3 6 U 1 6 2 3 I b 13 2 1 2 0 1 1 . 3 1 1 2 3
133 .Urbt.dl 0.84 45 29 16 177 0 13 0 6 2 0 I 0 l l 0.8 1 1 2 3
134pr.trt.m 0.66 4 3 42 54 (1 2s 8 15 I I I I I 2.1 1 I 2
135ei f l#wld lO.B7 5 4 4 9 4 5 2 4 49 16 27 1 1 I 1 1 1 . 5 1 I 2
136 rm.m 0.88 ? 6 lil 65 0 13 0 2 1 2 0 1 I 1.4 1 I 2 3
137 rmt . lp .m 0.89 10 9 56 121 16 10 8 6 I 2 0 1 3 0.7 1 I 2 3
l 3 8 k r r t . d l 0.99 14 5 38 111 8 26 8 4 2 4 1 0 2.2 0.7 1 1 2 3
139 rr.rlr..cn 1.00 20 19 59 120 8 6 8 I 1 I 2 0 1 1.2 I 1 I 2 3

IUXlnUli 1.00 170 31 98 271 00 56 24 27 4 5 5 4 6.2 8.6
nlulnun 0.32 3 2 0.2 14 o o o o o o o 0 0.3 0

0.59 17 # 43 86 I 2 19 7 7 I , 1 0 0 1.1 1.4

DlSIlYtT NPEFLCP:
I - NSSanrScrif 8.25 Lld 2 - NSSan.Strrf B 25 3 - IZSSen,Scrsf B i s bldlt.:>r 4 -CGS.nrSrrlf e 25 &la Iblic
5 -iirnal 8 25 Bolo 6 - r n s ~ ~ s ~ n f :8 Bold 7 = m s a n s s ~ r n f P i s mld

DISTIYCT BAECGROUMO COLORS:
1 80000005 3 - ff 6- fWf 5 - sOcOc0 6 = 808000 7 = 0 P = BO8o80 l f i - 8OOOOOR

DISTIYtT FOPE690UID COLOCS:

SEW Proceedings

WIDGET DENSITY
(A MEASURE OF CROWDING OF WIDGETS

IN M E DIALOG BOX)

Dialog No.

Concordance & Terminology Checking

Interface Concordance

Button Concordance

Button Layout Table

Interface Speller

Terminology Baskets

SEW Proceedings

Button Concordance

Form Containing Button Button
The Button Typeface F G o l o r (H,W)
delete.frm.cft
attapp94.frm.cft
winstat.frm.cft

list2.frm.cft
form3.frm.cft

Distinct Typefaces in Buttons: Distinct FgColors in Buttons:
1= MS Sans Serif 8.25 Bold 1= ~ 0 0 0 0 0 0 5

2= MS Sanss Serif 12 Bold 2= 404040
3= MS Serif 12 Bold

Button Concordance

timeup2.frm.cft form3.frm.cft

SEW Proceedings

Button Layout Table

SEW Proceedings

Terminology Baskets

- -- - -- ---- -- ---- ------- -- - -- - -- ----- ---- - --- -- - - - -- - - - ----- - - ----
Enable Enabled Enables Enabling Execute Executed Execute.~ Executing

Basket: Run Running RUN Start Started Starting Start
---*---------------------

Basket Term Form Containing the Basket Term

admpwdcft admpwdcft

exnow.cft schcdcf? schedcft

sview.cft

shed&

Sample terminology baskets are:

Remove Removes Removed Removing Delete
Deletes Deleted Deleting Clear Clears Cleared
Clearing Purge Purges Purged Purging
Cancel Cancels Canceled Canceling Refresh
Refreshed Refreshing

Item Items Entry Entries Record Records
Segment Segments Field Fields

R Add Adds Added Adding Insert Inserts
Inserted Inserting Create Creates Creating

SEW Proceedings

Limitations

Design issues not evaluated by our tools:

B Violation of any design constraints
B Use of inappropriate widget types

Missing functionality
Misleading menus
Poor error messages
Inadequate help screens

Future Work

H Analyze more interfaces in Visual Basic to
improve metrics.
Analyze interfaces in Visual C++ and validate
the canonical format approach.

H Subdivide the dialog box summary table to deal
with exceptions of individual metrics.

Expand the terminology basket sets.
Create more consistency checking tools.

SEW Proceedings

A COTS Selection Method and Experiences of Its use* >:';.***

Jyrki ~ont io ' , Show-Fune chen2, Kevin ~ im~eros ' ,
,I c.2 (2

Roseanne ~esoriero], Gianluigi Caldieral, Mike ~ e u t s c h ~ ~ ' & L & P / ,!

i University of Maryland ' Hughes Information Technology Corporation
Department of Computer Science 16 16A McCormick Dr.

A.V.Williarns Building
College Park, MD 20742, U.S.A. Landover, MD 20785-5372, U.S.A.

Ijkontio, roseanne, gcaldiera] @cs.umd.edu [schen, klimpero, miked] @eos.hitc .com

Abstract:

This paper presents the OTSO method for reusable component selection. The OTSO
method has been developed to provide a basis for evaluating and selecting reusable
components for software development. The main characteristics of the OTSO method
include (i) a well-defined, documented process, (ii) hierarchical and detailed
evaluation criteria decomposition and definition, (iii) a model for making alternatives
comparable in terms of cost and added value they produce, and (iv) use of appropriate
techniques for consolidating evaluation data.

The OTSO method has been evaluated in two real-world case studies. The case
studies indicated that a well-defined process allows the selection process to take place
efficiently, the overhead of formal criteria definition is marginal, and the use of
different data consolidation methods may influence the results.

1. Introduction

Reuse has been considered an important
solution to many of the problems in software
development. It has been claimed to be
important in improving productivity and
quality of software development
[2,7,16,24,30,33] and significant benefits .
have been reported by many organizations
[14,23]. A large volume of research has
produced several useful tools to support
reuse [16,30,34] but it is widely believed that

successful reuse is not only dependent on
technical issues, it also requires the solving of
organizational, motivational and legal issues
[4,5,33,35,36]: It has been argued that an
important characteristic of the infrastructure
supporting reuse is the existence of a
"marketplace" that both provides access to
reuse producers and consumers as well as
provides a mechanism to transfer benefits
between the parties [8,22,23,37].

- This work has been sponsored by the Hughes Information Technology Corporation.

SEW Proceedings 189

Many organizations have implemented externally developed, off-the-shelf (COTS1),
systematic reuse programs [14] which have software selection and the issues of how to
resulted in in-house libraries of reusable define the evaluation criteria are not
components. The increased commercial addressed. Furthermore, most of the reusable
offering of embeddable software component literature does not seem to
components, standardization of basic emphasize the sensitivity of such criteria to
software environments (e.g., MS-Windows, each situation.
UNIX), and popularization of Internet have
resulted in a new situation for reusable
software consumers: there are many more
accessible, potential reuse candidates. Given
the high interest in reuse and motivation to
the use of commercially available software,
many software development projects include
the evaluation and selection of reusable
components as an important activity in the
project, with a high potential impact on the
product and project objectives. According to
our observations in many organizations, the
selection process typically is not defined,
each project finds its own approach to it,
often under schedule pressure, and there are
no mechanisms to learn from previous
selection cases. Yet the selection of the right
reusable component is often a non-trivial
task and requires careful consideration of
multiple criteria and careful balancing
between application requirements, technical
characteristics and financial issues. It seems
that there is a lot of potential for non-optimal
or inconsistent software reuse decisions.

However, the issues and problems associated
with the selection of suitable reusable
components have rarely addressed in the
reuse community. Poulin et al. present an
overall selection process [23] and include
some general criteria for assessing the
suitability of reuse candidate [32]. Some
general criteria have been proposed to help
in the search of potential reusable
components [24,25]. Boloix and Robillard
recently presented a general framework for
assessing the software product, process and
their impact on the organization [9].
However, little of this work is specific to

We have developed a method that addresses
the selection process of packaged, reusable
off-the-shelf software. The method, called
OTSO~, supports the search, evaluation and
selection of reusable software and provides
specific techniques for defining the evaluation
criteria, comparing the costs and benefits of
alternatives, and consolidating the evaluation
results for decision making.

We have applied the OTSO method in two
case studies that are referred to in this paper.
These case studies indicate that the method is
feasible and has a low overhead. It also seems
that the method results in efficient and
consistent evaluations and increases decision
makers' confidence in evaluation results.

This paper presents the OTSO method and its
underlying principles. We have reported more
details about the method and its usage
experiences separately [17-201.

' COTS stands for "commercial off-the-shelf'. This
term is frequently used to refer to software packages
that have been.developed or are suitable for reuse. In
this paper the term refers to all off-the-shelf software,
regardless of its origin (commercial or in-house).

OTSO stands for Off-The-Shelf Option. The OTSO
method represents a systematic approach to evaluate
such an option.

SEW Proceedings

2. The OTSO Method

The OTSO method was developed to
facilitate a systematic, repeatable and
requirements-driven COTS software
selection process. The main principles of the
OTSO method are the following:

a well-defined, systematic process that
covers the whole reusable component
selection process,

e a systematic method for deriving detailed
COTS software evaluation criteria from
reuse goals

a method for estimating the relative
effort or cost-benefits of different
alternatives,

e a method for comparing the "non-
financial" aspects of alternatives,
including situations involving multiple
criteria, and

The overall phases of COTS software
selection are presented in Figure 1. The
horizontal axis in Figure 1 represents the
progress of the evaluation (i.e., time) and
vertical axis the number of alternatives
considered at each phase. Starting by the
search phase, the number of possible
alternatives may grow quite rapidly. The

Search
Screening

most potential candidates wiU need to be
sorted out (screening) to pick the ones that
can be evaluated in more detail with the
resources available. Detailed evaluation of a
limited number of alternatives determines how
well each of the alternatives meets the
evaluation criteria. These results are
systematically documented. We have separated
out the analysis phase to emphasize the
unportance of interpreting evaluation data.
Sometimes it may be possible to make
straight-forward conclusions if one of the
alternatives is clearly superior to others.
However, in most cases it is necessary to use
systematic multiple criteria decision making
techniques to arrive at a decision. Based on
the decisions made, typically one of the
alternatives is selected and deployed. Finally,
in order to improve the selection process and
to provide feedback on potential further reuse
of the component, it is necessary to assess the
success of the reuse component used in a
project.

Figure 1 presents a high level, sequential view
of the OTSO selection process. In Figure 2 we
have presented a more realistic and detailed
view of the OTSO process, using a data flow
diagram notation. Figure 2 highlights the
central role of evaluation criteria definition. In

Evaluation
Analysis

Time

Figure 1: The phases in COTS selection

SEW Proceedings

our method, the evaluation criteria are evaluation attribute definitions should include
gradually defined as selection process a detailed description of the attribute, its
progresses. The evaluation criteria are rationale, as well as the scale and measurement
derived from reuse goals and factors that unit used.
influence these goals [17]. The evaluation criteria definition process

2.1 Evaluation Criteria Definition essentially decomposes the requirements for
the COTS software into a hierarchical criteria

The evaluation criteria are formally defined set. Each branch in this hierarchy ends in an
so that the evaluation of alternatives can be evaluation attribute: a well-defined
conducted efficiently and consistently. We measurement or a piece of information that
have defined a template that can be used for will be determined during evaluation. This
such definition [17,18]. As a minimum, the hierarchical decomposition principle has been

Requirement Design
Project plan Organizational

specification specificatton characteristics

requirements
current practices, existing

infrastructure, management
commitment

Evaluation
Search criteria

definition

External COTS
sources \

Product

Screening

sources criteria

Evaluation

results (data) definitions

Cost models

Value
Selected COTS+Decision(s estimation

models

Figure 2: The OTSO selection process

SEW Proceedings

derived from Basili's GQM [3,6] and Saaty's
approach [27]. The evaluation attributes
should have clear operational definitions so
that consistency can be maintained during
evaluation. The decomposition principles
have been described in a separate technical
report [1 71.

It is possible to identlfy four different
subprocesses in the definition of evaluation
criteria search criteria definition, definition of
the baseline, detailed evaluation criteria
definition, and weighting of criteria. Figure 3
presents a graphical representation of these
processes.

First, when the available alternatives are
searched and surveyed it is necessary to
define the main search criteria and the
information that needs to be collected for
each alternative. The search criteria is
typically based on the required main
functionality (e.g . , "visualization of earth's
surface" or "hypertext browser") and some
key constraints (e.g., "must run on Unix and
MS-Windows" or "cost must be less than
$X"). As far as the main functionality is
concerned, an effective way to communicate
such requirements is to use an existing
product as a reference point, i.e., defming the
functionality search criteria as "look for
COTS products that are similar to our
prototype".

It is enough to define the search criteria
broadly so that the search is not
unnecessarily limited by too many
constraints. The reuse strategy and
application requirements are used as the
main input in the definition of this criteria. In
Figure 3 the search criteria definition and
actual search are presented as separate
processes.

The screening process uses the criteria and
determines the "quahfying thresholds", which
are in deciding which alternatives are selected
for closer evaluation. These threshold values
will be documented together with the criteria
definitions.

The defintion of the baseline criteria set is
essential for cost estimates and for conducting
qualitative ranking of alternatives, as we will
discuss later in this document. This can be
done in parallel with the detailed evaluation
criteria definition.

The search criteria, however, often is not
detailed enough to act as a basis for detailed
technical evaluation. Therefore, the criteria
will need to be refined and formalized before
initiating the technical evaluation. The
evaluation criteria for the search of
alternatives do not need to be very detailed or
formally defined. However, as we discussed
earlier, there must be detailed and
unambiguous definitions for the criteria before
detailed technical evaluation can be carried
out. Without such definitions it is difficult to
conduct a consistent and systematic
evaluation, let alone consolidate the evaluation
results for decision making. We have defined a
template for criteria test definition that helps in
defining criteria and tests in adequate detail
[17,18].

2.2 Search

The search in the selection process attempts to
identlfy and find all potential candidates for
reuse. The search is driven by the guidelines
and criteria defined in the criteria definition
process. By its nature, search is an
opportunistic process and it is not meaningful
to define it formally in detail. However, some
guidelines about the main issues involved in
the search can be presented.

SEW Proceedings

Design
P r o j e c t plan Organizational

s p e c i f i c a t i o n characteristics

7
design and architecture

reuse strategy, capabilities.
current practices.

R e q u i r e m e n t

spec i f i ca t i on

/
Changes to requirements

Criteria feedback

Search criteria

Figure 3: Evaluation criteria definition process3

It is important to use several sources, or software is repeated often in an organization,

leads, of information in the search process. it is a good idea to document the possible

Relying on a single source limits the search sources well so that access to these is as easy

space drastically. If the search for COTS as possible. Typical sources are described in
the following.

Note that the Figure 3 i s a refinement of Figure 2.

SEW Proceedings

In-house reuse libraries: an organization
may have an internal library of components
that have been developed for reuse. This
internal reuse library should be used to
determine whether any suitable components
exist.

Internet and World Wide Web: they contain
large amounts of up-to-date information on
most commercial and shareware software
products. Some search facilities may be used,
e.g., the following may provide good leads:
o Yahoo -- http://www.yahoo.com/

Lycos -- http:/lwww.lycos.com/
Infoseek -- http://www.infoseek.com/

o CUI W3 Catalog -- http:llcuiwww.unige.cNw3catalog
WWW Virtual Library --
htp://www.w3.org/hypertext/DataSources/bO
verview.html

Magazines and journals: there are several
magazines that contain reviews of products
and large amounts of advertisements. Many
of these are dedicated to the type of platform
(e.g., Mac or MS-Windows), given
technology (e.g., object oriented
programming, user interfaces or databases)
or application area.

Trade shows and conferences: many
conferences include extensive vendor
exhibitions where it is possible to see several
products at the same time, ask detailed
questions and order for more information.

Vendors: once some vendors have been
recognized, one of the best ways to identlfy
the most important competitors is to ask the
vendors directly ("what are your main
competitors and how is your product
different from them?").

Colleagues, experts and consultants: it is
important to utilize the network of people
that may have been exposed to reuse
candidates.

Other organizations: other organizations
may have developed software that has the
required features and functionality. They may

have internal reuse programs that may make it
easy to access a large amount of reuse
candidates. Even when there is no reuse library
and there may not be components that have
been developed for reuse, it may be possible to
identlfy similar applications and define joint
development efforts. The potential for such
sharing of reusable components is particularly
promising in the government domain, as the
proprietary and competitive issues are not as
big of a problem as they may in industry.

The search process can be initiated as soon as
the main features of the required component
have been defined. In other words, the entry
criterion is: main features for the reuse
candidates have been defined.

One main challenge in the search is the
difficulty of deciding when to stop the search:
how do you know that you have searched
enough and found all the relevant
alternatives ? A simple strategy for ending the
search is to use several sources in the search,
conduct the search in small increments (e.g., a
few days at a time) and review the frequency
of discovering new alternatives at each
increment. When the all sources have resulted
in more or less the same set of alternatives and
new alternatives have not appeared for a
while, there is a reason to believe that the
marginal benefits of additional searches are
low.

The note that the search process can also
influence both the requirements defined for the
whole system and the evaluation criteria. It is
quite possible that when new tools are
encountered, they trigger new ideas about the
possible functionality in the application. This is
an important feedback mechanism that can be
used to enhance the development process and
user satisfaction.

2.3 Screening

The objective of the screening process is to
decide which alternatives should be selected

SEW Proceedings 195
SEL-95-004

for more detailed evaluation. In most cases
the results of the search process are too
general to be taken as the basis for the
COTS software reuse decision. Evaluating
and analyzing all the relevant characteristics
of any one alternative takes a non-trivial
amount of time, typically more than the
organization has available for evaluating all
of the alternatives. Therefore, it is both
necessary and cost-effective to select the
most promising candidates for detailed
evaluation.

Screening is based on the same criteria that
was used in the search process. In screening,
the "qualifying thresholds" are defined. In
other words, the criteria and rationale for
selecting alternatives for detailed evaluation
is defined and documented.

The screening process can be initiated as
soon as there is at least one relevant
alternative to consider. This may be, in fact,
a necessary way to shorten the overall
duration of the selection process:
arrangements for obtaining copies of tools
for evaluation can be initiated as soon as
decisions are made. While incremental
screening decisions may result premature
decisions and it may be theoretically biased,
in practice it may be a very important
technique to reduce the overall duration of
the process.

Screening is considered to be complete when
evaluation alternatives selected and
evaluation tasks have been assigned. Note
that when the screening is done, the process
may need to reactivated if new alternatives
are discovered.

2.4 Evaluation

The objective of the evaluation process is to
evaluate the selected alternatives by the
evaluation criteria and document evaluation

results. Evaluation produces data on how well
each alternative meets the criteria defined.

Evaluation includes the practical arrangements
of obtaining copies of the tools to be
evaluated, instahg them, learning to use
them, studying their features and assessing
them against the criteria. It is important to
point out that there can be considerable time
delays in the evaluation process. Procurement
for obtaining legitimate copies of tools may
take time, as well as shipping and handhg,
there may be significant installation problems
due to compatibility problems, and it may take
a considerable amount of time to learn to use
the tool. Given the potential for delays, it is
recommended that evaluation process is
initiated as early as possible.

The evaluation criteria typically is so
comprehensive that all of it may not be
covered within the time available for
evaluation. Therefore, the ranking of
importance of evaluating each criteria should
be used as a guideline in evaluation.
Nevertheless, it is still quite likely that not all
data for the criteria is available. Missing data
will need to be handled in the analysis process.

The results of the evaluation phase will be
documented using the evaluation criteria
template defined by the evaluation criteria
definition process. here are two particular
tasks in the evaluation. The cost to baseline
estimate will be used in calculating the
frnancial cost figure for the alternative. The
qualitative characteristics of each alternative
are evaluated thought the "tests", which can
be a measurements, experiments or other
pieces of information about the alternatives.
The results of such tests are documented,
together with a qualitative description that
elaborates any issues that could be relevant in
interpreting the outcome of the test.

SEW Proceedings

The evaluation is completed when all decision making technique.
alternatives have been evaluated by the
defined criteria or required data has been The decision of COTS software is based
determined not to be available. on the estimated costs of an COTS alternative

2.5 Analysis of Results

The evaluation of alternatives in the OTSO
method concentrates in producing consistent
data about the alternatives. We deliberately
want to separate the analysis of this data
from producing the data. This allows the use
of appropriate techniques in evaluation data
analysis for decision making.

The analysis process of graphically presented
in Figure 4. Note that the hierarchical
decomposition of criteria and their weighting
has already been done in the criteria

and the estimated value it will bring to the
project. The cost and value estimation has two
challenges. First, as with all estimation
problems, it is difficult to estimate
characteristics that are based on events and
processes that have not taken place. The
second problem is that each COTS alternative
may have distinct characteristics that make
their comparison rather dGcult, even if
reliable cost and feature estimates were
available. One alternative may have features
that others lack so it is difficult to normalize
the costs associated with each alternative.

definition process. The OTSO method also The OTSO method uses an approach that
assumes the use of AHP as a multiple criteria allows a balanced comparison of alternatives

Evaluation
results (dataj

Cost models

Evaluation evaluation data

criteria T~ qualitative descriptions
definitions -',

Criteria weights

Cost estimation

Value
estimation

models
hierarchical rankings of cost to

alternatives baseline totals

\ making I

Selected library /
(libraries)

Figure 4: Analysis of results process

SEW Proceedings 197

with respect to their costs and value they
provide. This section presents the general
principle of the OTSO cost and value
assessment, as well as the individual
approach possible for evaluating cost and
value separately. .
The OTSO cost and value assessment is
based on the idea of making all alternatives
through a common reference point. This
reference point is called the baseline.
Baseline should be defined as a set of

Each vector represents how well each
alternative (A,) satisfies the characteristics (c,)
defined in the baseline. A vector can be
referenced by defining the alternative and the
characteristic in question (Arc,). Examples of
possible characteristics include:

stated functionality (e.g., "zoom in
capability" or "supports background
printing")

quality characteristic (e.g., "reliability",
"level of documentation")

characteristics that each COTS alternative . consumption of resources (e.g.,
must meet, or exceed, after they have been space required")
modified and developed further for the
project's purposes. Baseline should reflect standards compliance (e.g., "Win95

realistically the true situation in the project. compatible", "matches our coding

It should represent the characteristics and standards")
features that must be satisfied, no more, no
less. The baseline should be derived from the
requirement specification and good
understanding of the possible implied
requirements. The cost estimation for each
alternative is based on how much it costs to
obtain, develop them further and integrate
them to meet the baseline.

The value estimation of each alternative is
based on their characteristics assuming that
they have been developed further and
integrated to meet the baseline. This way, the
cost estimation problem is dealt with
separately and results in cost estimates that
are comparable with respect to the baseline
requirements. The value estimation is based
on the baseline reference point and each
alternative is rewarded for characteristics
that exceed the baseline.

The idea behind the baseline as a basis for
cost and value estimation can be illustrated
with the help of Figure 5 [17]. The different
characteristics that are relevant for the
baseline are presented on x axis. The Figure
5 assumes that each characteristic can be
expressed as a vector, in terms of being able
to refer to how well it meets the baseline.

Figure 5 shows an example situation where an
alternative's situation is presented as a set of
vectors. Baseline is defrned as a set of vectors
Bj and represented by a horizontal, zagged
bold line in Figure 5. Alternative Al's current
vector set is represented by vectors Alcj,
where j= 1,. . .lo. The cost estimation problem
for Al is to estimate the cost of "upgrading"
Al's characteristics to meet the baseline.

2.5.1 Estimating the Cost of COTS
software

Two main approaches for cost estimation are
available: use of cost models or work
breakdown structure analysis. Cost models, in
theory, may provide a way to obtain unbiased
estimates but their problem is that traditional
cost models are not very applicable for COTS
software cost estimation and it is difficult to
capture all relevant factors into a single cost
model. A COTS specific cost model has been
recently developed and this may provide a
partial solution to such cost estimation [I I].
However, this kind of model may require
customization and calibration for each
organization to be effective.

SEW Proceedings
198

The work breakdown structure analysis may
be, for many organizations, the feasible
method for COTS software cost estimation:
the development and integration tasks for a
COTS software are listed and decomposed,
effort for each task estimated and total effort
summed up. The disadvantage of this
approach is that it can be very sensitive to
bias or the experience of the personnel.

The OTSO method does not address what
method or model is used for COTS software
reuse cost estimation. Whatever approach is
used, the OTSO method extends the financial
COTS software evaluation by allowing the
consideration of other factors that may
influence the decision. Examples of such
factors include the consideration of features
that exceed the requirement specification,
quality characteristics that are not included in
the cost estimation model (e.g., reliability,
maintainability, portability, effciency, etc.),
and business or strategic issues that may
influence the decision. These issues can
sometimes be decisive in COTS software
selection and cost estimation alone cannot

effectively cover these aspects.

The costs of acquiring COTS software can be
broken down to three main classes: acquisition
costs, further development costs and
integration costs. The OTSO method contains
a template for breaking these down further to
support COTS software cost estimation (Table
1). While the acquisition costs are relatively
straightforward to estimate, the further
development costs and integration costs
present much more challenging problems.

The further development costs of COTS
products are based on developing them to
meet the baseline. However, as the baseline
may be difficult to define accurately and as
few organizations have accurate COTS
software cost estimation models or expertise,
this cost estimate may have a large margin of
error.

Sometimes COTS software includes features
that were not originally required for the
application. We refer to such functionality or
characteristics features as unrequired features.
Dealing with these unrequired features may

this difference is

estimation function

-
c , > C 2 C 3 C 4 C 5 C 6 C 7 C 9

Baseline characteristics

Figure 5: The baseline estimation principle.

SEW Proceedings

Table 1: Cost components

complicate the cost estimation process. approach for this in many organizations is an
Although some unrequired features may be approach that can be called the weighted
marginally useful for users, they may make scoring method (WSM). The W S M method is
the system too complex for some users. typically applied in the following fashion:
Added functionality may also increase criteria are defined and each criterion is
integration and development costs. assigned a weight or a score. In the case of

We recommend that organizations involved using weights, they may be normalized so that

in component reuse initiate procedures to their total is one. If "scoring" is used, this is

develop and customize their cost models for done, e.g., by assigning a "weight score"

this purpose. As it takes time to develop between one and five for each criterion. Then,

these models, most organizations may have each alternative is given a score on each

to rely on expert judgments in these cost criterion. The score for each alternative is

estimates. ,counted by the following formula:

2.5.2 Qualitative Analysis of Benefits score, = (weightj * score,)
j=l

As the have ken where subscript a represents an alternative and
the evaluation data needs be n represents the number of criteria. There are

used for making a decision. A several shortcomings in this approach and it is

SEW Proceedings

questionable whether WSM can represent
true preferences between alternatives [17].

The OTSO method relies on the use of the
Analytic Hierarchy Process (AHP) for
consolidating the evaluation data for decision
making purposes. The AHP technique was
developed by Thomas Saaty for multiple
criteria decision making situations [26,27].
The technique has been widely and
successfully used in several fields [28],
including software engineering [121 and
software selection [15,21]. It has been
reported to be an effective technique in
multiple criteria decision making situations in
several case studies and experiments
[10,13,28,31]. Due to the hierarchical
treatment of our criteria, AHP fits well into
our evaluation process as well. AHP is
supported by a commercial tool that
supports the entering of judgments and
performs all the necessary calculations [29].

The AHP is based on the idea of
decomposing a multiple criteria decision
making problem into a hierarchy of criteria.
At each level in the hierarchy the relative
importance of factors is assessed by pair-
wise comparisons. Finally, the alternatives
are compared in pairs with respect to the
criteria.

From our perspective the main advantage of
AHP is that it provides a systematic,
validated approach for consolidating
information about alternatives using multiple
criteria. AHP can be used to "add up" the
characteristics of each alternative.
Furthermore, an additional benefit of AHP is
that we can choose the level of
consolidation. We recommend that
consolidation is only carried out to the level
that is possible without sacrificing important
information. On the other hand, some
consolidation may be necessary in order not
to overflow the decision makers with too
much detailed, unstructured information.

3. Case Studies

We have carried out two case studies using the
OTSO method. The first case study was aimed
at assessing the overall feasibility of the
method and the second one focused on the
comparison of analysis methods. Both case
studies took place in the NASA/EOS program
and were dealing with real software
development projects facing a COTS selection
problem.

Our first case study, the ReMap project [17],
dealt with the selection of a library that would
be used to develop an interactive, geographical
user interface for entering location information
on Earth's surface areas. This case study used
the OTSO method's hierarchical and detailed
criteria definition approach. The cost to
baseline principle was applied separately after
the only feasible alternative was selected.

In addition to providing feedback to the
development of the OTSO method, the
ReMap project lead us to make some other
observations that are useful in similar selection
processes. First, it was necessary to refine the
stated requirements significantly in order to
develop a meaningful evaluation criteria set.
We believe that this is a common
phenomenon. When the COTS software
selection process takes place, requirements are
typically not defined in much detail. Yet
detailed requirement definitions are necessary
for evaluating different products. The
interaction of the COTS software selection
process and requirements definition process is
essential. We also witnessed that evaluating
COTS alternatives not only helped in refining
the requirements, it also lead to extending of

.requirements in some situations. This is an
additional challenge in requirements
management. In our case the extended
requirements were limited to the area of the
COTS software but it is also quite conceivable
that the evaluation process influences the
whole system requirements.

SEW Proceedings

Second, a considerable amount of calendar
time may need to be spent on installation and
logistics before the evaluation can
commence. In our case, this limited the time
available for detailed evaluation. If the
COTS software selection is in the critical
path in the project, some attention needs to
be placed on the logistics and procurement
so that unnecessary delays are avoided.
Overall, it seems that the actual effort spent
on evaluating each alternative was actually
not very high but the calendar time elapsed
was.

Finally, despite all the efforts in criteria
definition and evaluation, there will
inevitably some data that is missing. This
may be because the data is simply not
available, because it would be too costly to
obtain the data or the data is not available in
time. The main conclusion of the ReMap
case study was that the OTSO method
seemed to be a feasible approach in COTS
software selection and its overhead costs are
rather marginal.

The second case study dealt with the
selection of a hypertext browser for the EOS
information service [1,17-201. The objectives
of the second case study [18] were to (i)
validate the feasibility of the evaluation
criteria definition approach in the OTSO
method and (ii) compare the AHP and the
weighted scoring method for analyzing the
data. Our hypothesis was that the more
detailed evaluation criteria definition will
result in more effective, consistent and
reliable evaluation process. We also expected
that the AHP method would give decision
makers more confidence in the decisions they
made.

The details about the selection process were
collected and this case study included a
comparison between two analysis methods,
the AHP method and a weighted scoring
method. This case study further supported

SEW Proceedings

our conclusion of the low overhead of the
OTSO method. Furthermore, the second case
study involved several evaluators and our
criteria definition approach improved the
efficiency and consistency of the evaluation.
The second case study also had an unexpected
result when the two analysis methods were
compared: they yielded different results, i.e.,
the rankings of the COTS alternatives were
different with the two analysis methods, even
though they were based on the same data.

4. Conclusions

We have presented the main characteristics of
the OTSO method for COTS software
selection. The method addresses an important
software development activity that, to our
knowledge, has not been addressed by the
reuse research community extensively. The
method supports systematic evaluation of
COTS alternatives and considers both financial
and qualitative aspects of the selection
process.

The experiences from our case studies indicate
that the method is feasible in operational
context, it improves the efficiency and
consistency of evaluations, it has low overhead
costs, and it makes the COTS software
selection decision rationale explicit in the
organization. The detailed evaluation criteria
also contribute to the refinement of application
requirements. We also observed that the
selection process can be very sensitive to the
method used in analyzing the evaluation data.

Although the initial experiences from the
method are encouraging, further and more
formal experiments are required to validate the
method. At the moment we are particularly
concerned about the method's sensitivity to
the cost estimation method used, as it is a
strong factor in the decision making process.
Also. the feasibility of documenting the
baseline in adequate detail may be an issue that

lirmt s
larger

the applicability
applications.

of our method in

5. References
[I] J. D. Baker. Planet Earth, The View from

Space, H. Friedman (Ed). Cambridge,
Massachusetts: Harvard University Press,
1990.

[2] B. Barnes, T. Durek, J. Gaffney, and A.
Pyster. A Framework and Economic
Foundation for Software Reuse. In:
Tutorial: Software Reuse: Emerging
Technology, ed. W. Tracz. Washington:
IEEE Computer Society, 1988.pp. 77-88.

[3] V. R. Basili, Software Modeling and
Measurement: The GoaVQuestion/Metric
Paradigm CS-TR-2956, 1992. Computer
Science Technical Report Series.
University of Maryland. College Park,
MD.

[4] V. R. Basili, G. Caldiera, and G. Cantone,
A Reference Architecture for the
Component Factory, ACM Transactions
on Software Engineering and
Methodology, vol. 1, 1. pp. 53-80, 1992.

[5] V. R. Basili, G. Caldiera, and H. D.
Rombach. The Experience Factory. In:
Encyclopedia of Software Engineering,
Anonymous New York: John Wiley &
Sons, I994.p~. 470-476.

[6] V. R. Basili and H. D. Rombach, Tailoring
the Software Process to Project Goals and
Environments, pp. 345-357, 1987.
Proceedings of the 9th International
Conference on Software Engineering.
IEEE Computer Society Press.

[7] T. Birgerstaff and C. Richter, Reusability
Framework, Assessment, and Directions,
IEEE Software, vol. March. pp. 41-49,
1987.

[8] T. B. Bollinger and S. L. Pfleeger,
Economics of Reuse: issues and
alternatives, Information and Software
Technology, vol. 32, 10. pp. 643-652,
1991.

[9] G. Boloix and P. N. Robillard, A Software
System Evaluation Framework, IEEE
Computer, vol. 28, 12. pp. 17-26, 1995.

[10]A. T. W. Chu and R. E. Kalaba, A
Comparison of Two Methods for
Determining the Weights Belonging to
Fuzzy Sets, Journal of Optimization Theory
and Applications, vol. 27, 4. pp. 531-538,
1979.

[11]T. Ellis, COTS Integration in Software
Solutions - A Cost Model, 1995.
Proceedings of the NCOSE International
Symposium "Systems Engineering in the
Global Marketplace".

[12] G. R. Finnie, G. E. Wittig, and D. I. Petkov,
Prioritizing Software Development
Productivity Factors Using the Analytic
Hierarchy Process, Journal of Systems and
Software, vol. 22, pp. 129-1 39, 1995.

[13] E. H. Forman, Facts and Fictions about the
Analytic Hierarchy Process, Mathematical
and Computer Modelling, vol. 17, 4-5. pp.
19-26, 1993.

[14] M. L. Griss, Software reuse: From library to
factory, IBM Systems Journal, vol. 32, 4.
pp. 548-566, 1993.

[15] S. Hong and R. Nigam. Analytic Hierarchy
Process Applied to Evaluation of Financial
Modeling Software. In: Proceedings of the
1 st International Conference on Decision
Support Systems, Atlanta, GA,
Anonymous 198 1.

[16] J. W. Hooper and R. 0 . Chester. Software
Reuse: Guidelines and Methods, R.A.
Demillo (Ed). New York: Plenum Press,
1991.

[17] J. Kontio, OTSO: A Systematic Process for
Reusable Software Component Selection
CS-TR-3478, 1995. University of Maryland
Technical Reports. University of Maryland.
College Park, MD.

[I81 J. Kontio, A Case Study in Applying a
Systematic Method for COTS Selection,
1996. Proceedings of the 18th International

. Conference on Software Engineering.
[19] J. Kontio and S. Chen, Hypertext Document

Viewing Tool Trade Study: Summary of
Evaluation Results 441 -TP-002-001, 1 995.
EOS project Technical Paper. Hughes
Corporation, EOS project.

[20] J. Kontio, S. Chen, K. Limperos, and J.
Hung, Hypertext Document Viewing Tool

SEW Proceedings 203
SEL-95-004

Trade Study: Evaluation Criteria
Definitions 1995. Internal project
documentation. University of Maryland.

[21] H. Min, Selection of Software: The
Analytic Hierarchy Process, International
Journal of Physical Distribution &
Logistics Management, vol. 22, 1. pp. 42-
52, 1992.

[22] S. L. Pfleeger and T. B. Bollinger, The
Economics of Reuse: New Approaches to
Modeling and Assessing Cost, Information
and Software Technology, vol. 1994.

[23] J. S. Poulin, J. M. Caruso, and D. R.
Hancock, The business case for software
reuse, IBM Systems Journal, vol. 32, 4.
pp. 567-594, 1993.

[24] R. Prieto-Diaz, Implementing faceted
classification for software reuse,
Communications of the ACM, vol. 34,
5.1991.

[25] C. V. Ramarnoorthy, V. Garg, and A.
Prakash, Support for Reusability in
Genesis, pp. 299-305, 1986. Proceedings
of Compsac 86. Chicago.

[26] T. L. Saaty. Decision Making for Leaders,
Belmont, California: Lifetime Learning
Publications, 1982. 29 1 pages.

[27] T. L. Saaty. The Analytic Hierarchy
Process, New York: McGraw-Hill, 1990.
287 pages.

[28] T. L. Saaty. Analytic Hierarchy. In:
Encyclopedia of Science & Technology,
Anonymous McGraw-Hill, 1992.p~. 559-
563.

[29] T. L. Saaty, Expert Choice software 1995,
ver. 9, rel. 1995. Expert Choice Inc. IBM.
DOS.

[30] W. Schafer, R. Prieto-Diaz, and M.
Matsumoto. Software Reusability, W.
Schafer, R. Prieto-Diaz, and M.
Matsumoto (Eds). Hemel Hempstead: Ellis
Horwood, 1994.

[31] P. I. Schoemaker and C. C. Waid, An
Experimental Comparison of Different
Approaches to Determining Weights in
Additive Utility Models, Management
Science, vol. 28, 2. pp. 182-196, 1982.

[32] W. Tracz, Reusability Comes of Age,
IEEE Software, vol. July. pp. 6-8, 1987.

[33] W. Tracz. Software Reuse: Motivators and
Inhibitors. In: Tutorial: Software Reuse:
Emerging Technology, ed. W. Tracz.
Washington: IEEE Computer Society,
1988.p~. 62-67.

[34]W. Tracz. Tutorial: Software Reuse:
Emerging Technology, W. Tracz (Ed).
Washington: IEEE Computer Society, 1988.

[35] W. Tracz, Legal obligations for software
reuse, American Programmer, vol.
March.1991.

[36] M. Wasmund, Implementing Critical
Success Factors in software reuse, IBM
Systems Journal, vol. 32, 4. pp. 595-61 1,
1993.

[37] F. Wolff, Long-term controlling of software
reuse, Information and Software
Technology, vol. 34, 3. pp. 178-184, 1992.

SEW Proceedings 204

A COTS Selection Method and
Experiences of Its Use
Jyrki Kontio Show-Fune Chen

Roseanne Tesoriero Kevin Limperos
Gianluigi Caldiera Mike Deutsch

University of Maryland Hughes Information Technology Corporation
Computer Science Department 1616A McCormick Dr.

A.V.Williarns Building Landover, MD 20785-5372, U.S.A.
College Park, MD 20742. U.S.A. [schen, klimpero. miked] @eos.hitc.com

ukontio, roseanne, gcaldieraJ@cs.umd.edu

The EOS Program
ECS (EOSDIS Core System) is designed to collect, process,
store, and distribute Earth Science related data to the Earth
Science Community.

The ECS Flight Operations System is designed to control ECS
spacecraft and deliver raw data to the Ground System.

The ECS Ground System is being developed as a series of
subsystems, described below, each with its own piece of the
overall ECS design.

SEW Proceedings

Introduction
Reuse is increasing
+ systems are developed from components
+ pressure to reuse from customers or corporate policies

External sources for Reuse
* more alternatives for reuse: standard platforms and OS, more competition,

better access to products

Many projects have the option to select from several reuse
candidates

COTS = Commercial Off-The-Shelf Software, this presentation
also applies to other reusable components (commercial, public
domain, internal, etc..)

The Problem
Reuse decisions are frequent in large projects

a lot time time and effort spent, high potential impact on the final product

Reuse decision process is rarely well defined and formalized
* each project reinvents the wheel under schedule pressure

Selection criteria often over emphasize technical criteria
0 user requirements receive less attention

s Simplistic techniques are often used for consolidating evaluation
results

may bias conclusions

COTS alternatives may be difficult to compare
"Apples and oranges" -- some provide additional value, cost structure may be
different

*Reusable component selection
process needs to be supported

SEW Proceedings

The OTSO Method
D.*'V"'"' ,, '.,,... ,

A defined COTS selection process

Requirements-driven, explicit and

detailed evaluation criteria definition

A model for comparing the cost and

value of different COTS alternatives

Use of a reliable method for

synthesizing evaluation results

COTS Selection Process
The selection phases have different goals

Each phase can be defined and supported

Assessment

. .

1

Time

SEW Proceedings

Evaluation Criteria +

Hierarchical decomposition of criteria from requirements
in practice, this involves refinement of requirements, e.g:
+ functional requirements: required functionality of the COTS
+ quality: e.g., maintainability, reliability. portability, etc.
+ managementlstrategic concerns: will the vendor be there in the future.

what is its market share, future development plans

Definition of "tests" for each criteria
+ an observation, test, or a metric that can be used to characterize a

criterion

"Operational definitions" for all "tests"
+ unambiguous definitions for the criteria and "tests"
+ limits evaluator freedom but produces more consistent results

w Criteria evolve over time
+ the "Search and "Screening" phases can deal with few general

criteria

Evaluation
CriteriaIExam~le

GOAL

canceled occasionally.
Free fomat description

selective interrupt of retrievals

Tests done with the tools.
est priority Recommended

SEW Proceedings

Cost Estimation Approaches
Cost models
+ using COTS specific cost models

to estimate costs, e.g., Cocomo or
function point variations

+ Requires calibration and historical
data

+ Accumulates experience but may
ignore situation specific issues

Cost component breakdown
+ Different cost components are

identified and estimated

f

Value Estimation
Development cost < > value
+ especially when you have other options than developing it all yourself

Multiple criteria approach
* several factors affect the value (i.e., utility)
+ alternatives can be ranked more reliably by using multiple criteria decision

support tools
+ Recommended technique: Analytic Hierarchy Process (AHP) by Saaty

+ sound theoretical basis
+ strong empirical validation
+ widely used
+ tool support

SEW Proceedings

Cost + Value Estimation
1. Define the baseline: the minimum set of characteristics

that the COTS must have
+ include work that you would really have to do if you selected the

alternative

2. Assess the cost to baseline by cost estimation techniques
+ use the cost estimation method that is suitable for your

organization

3. Assume that each alternative will be develop to meet the
baseline, assess the value of alternatives
+ use the AHP approach
+ define criteria, evaluate alternatives and elicit preferences
+ tool support is a practical necessity

4. Present the results to decision makers
+ Consolidate information according to their preferences

Consolidating the Information
Weighted scoring method (WSM) common
+ "define criteria define weights Q define scores Q multiply and add *

pick the highest score"

AHP is a widely used decision support technique, supported by a
tool (Expert Choice)
The AHP process:
+ Define criteria (hierarchical decomposition)
+ Weigh criteria by pair-wise comparisons
+ Rank alternatives by pair-wise comparisons

AHP benefits:
+ Systematic and sound elicitation of judgments
+ Ratio scale preferences between alternatives
+ Results can be presented in a way that decision makers understand the

rationale

SEW Proceedings

Consolidating the Information/
WSM Example

Use of AHP
U. . -. . . ,. . . -

NETSCAP 291

HOTJA .249

WEBWOR .248

MOSAIC 212

SEW Proceedings

Browser Selection Effort
Activity

Search

Netscape I 91 6%
W ebworks 1 9.51 7%

Effort (hrs)/ %
20 1 14%

Screening
Evaluation

Criteria definition
Mosaic for X

I I I

l~dministration (~~annina meetinas. reoortina. etc.) I 20 1

40

10

Summary

Learning about the methods
other (vendor contacts, installations)
Total

OTSO is a reusable selection process that supports organizational
learning

8
79

m Formalization and support of COTS selection process does not
require a large effort, yet it seems to result in more efficient
selection process

6%

2 5 %
(28%) -
7%

1
4

144

m Detailed and requirements-based evaluation criteria lead to
consistent and understandable decisions

1%
3%

Cost and value of COTS are different things

The method of consolidating evaluation results matters, AHP
seems to be more reliable than the weighted scoring method

SEW Proceedings

Main References
J. Kontio, OTSO: A Systematic Process for Reusable Software Component
Selection CS-TR-3478, UMIACS-TR-95-63, 1995. University of Maryland
Technical Reports. University of Maryland. College Park, MD.
J. Kontio and S. Chen, Hypertext Document Viewing Tool Trade Study:
Summary of Evaluation Results 441 -TP-002-001, 1995. EOS project
Technical Paper. Hughes Corporation, EOS project.

T. L. Saaty. The Analytic Hierarchy Process, New York: McGraw-Hill, 1990.
T. L. Saaty. Analytic Hierarchy. In: Encyclopedia of Science & Technology,
McGraw-Hill, 1992.
Expert Choice software 1995, ver. 9.0, re]. 1995. Expert Choice Inc. Windows
95.

More information:
+ email: jkontio@cs.umd.edu
+ WWW: http://www.cs.umd.edu/projects/SoftEng/tame/

SEW Proceedings

SEW Proceedings

Process Enactment Within An Environment

Abstract

Roseanne Tesoriero and Marvin Zelkowitz f

* - * , ; 3 L
,, 2

Department of Computer Science c' c ,>

University of Maryland . {.lsd

College Park, Maryland 20742

Environment research has often centered on
either the set of tools needed to support soft-
ware development or on the set of process
steps followed by personnel on a project as
they complete their activities. In this pa-
per, we address the effects that the envi-
ronment has on the development process in
order to complete a project. In particular,
we are interested in how software process
steps are actually performed using a typical
programming environment. We then intro-
duce a model to measure a software engi-
neering process in order to be able to de-
termine the relative tradeoffs among manual
process steps and automated environmental
tools. Understanding process complexity is
a potential result of this model. Data from the
Flight Dynamics Division at NASA Goddard
Space Flight Center is used to understand
these issues.

1 Introduction

Since 1976 the Software engineering Laboratory1
(SEL) at the NASA Goddard Space Flight Center
(GSFC) has been studying flight dynamics software
development and has produced over 300 papers and
reports describing numerous process improvement
technologies. Figure 1 briefly summarizes this ac-
tivity and outlines the SEL approach to understand,
assess, and package technologies useful for the flight
dynamics domain. Many of these technologies (e.g.,
resource models, cleanroom, IV&V, object-oriented
design) have been studied and some made part of
the SEL development process.

'A joint activity of NASNGSFC Flight Dynamics Division, Com-
puter Sciences Corporation (CSC), and the University of Maryland.

There are two interesting issues not answerable by
the set of studies addressed by this figure:

1. Software productivity has obviously improved in
the 20 years since the SEL started (and 20 years
worth of workshop proceedings attest to that).
But by how much? Also, everyone's productiv-
ity has improved in these past 20 years. Is the
SEL doing relatively better than other develop-
ment organizations? How do we understand this
and measure this improvement?

2. What impact has technology (i.e., tools) had on
this improvement? Most SEL studies are on pro-
cesses that personnel undertake in the develo-
ment of software. What impact has the set of
computers, workstations, and software had on
development productivity and quality?

The first issue can be explained by the following
analogy. Assume an organization purchased four
PCs over the past 15 years:
m 8088 4.77Mhz PC-XT with 10 Mbyte disk bought in
1983 for $5,300

80286 6Mhz PC-AT with 20 Mbyte disk bought in
1984 for $4,000
m 1486Dx2 66Mhz PC with 340 Mbyte disk bought in
1993 for $2,600
m Pentium 75Mhz PC with 850 Mbyte disk bought in
1995 for $1,700

The fourth system (the Pentium) is obviously the
fastest most powerful system of the four. However,
the more interesting question is which is most power-
ful relative to the era in which they were available? Is
this organization doing better or worse than other or-
ganizations in its industry relative to computer power
if it followed this purchase plan?

For answering this question, we have many hard-
ware performance measures: LINPACK, TPC-A,

SEW Proceedings 21 5
SEL-95-004

PACKAGING 4

Recommended approaches I
I Training material I

I Cleanroom process model

I SME I I Ada users manual I
Manager's handbook I

I I Programmer's handbooq

ASSESSING I
Evaluate cleanroom

p G G z q
Exper~ence Factory model

UNDERSTANDING

pproach to data collection

1-1
Environments

Maintenance characterization

1976-1 980 1980-1 985 1985-1 990 1990-1 995

Figure 1 : Summary of SEL activities.

1. How do we model such a process performance Figure 2: ITEM Model.
measure? We will base our model on a service-
based model of an environment.

dresses each of these questions.
2. What is an environmental service? We will de-

$/mips, dhrystones, etc. All have their faults, but at
< TIME

least they generate a set of numbers that can be dis-
cussed. How would we do the same for software
development practices? We have no such measures

scribe such a model of an environment service.
2 How do we model such a process per-

3. What tools are used in the SEL environment? We formance measure?
looked at the evolution of tool use within the SEL

of performance. It is toward this end we are trying to .$A
a develop a model. - n g

This then focuses the remainder of this paper. We
are interested in a process measure that addresses

to see how tool use reflects the set of services in The model we choose to use is an extension to a
our environment model. model developed by Zelkowitz and Cuthill at the Na-

4. How do we classify flight dynamics processes? tional Institute of Standards and Technology. Called

Can we adapt this service-based model to the the Information Technology Engineering and Mea-

flight dynamics application domain better? Can surement (ITEM) model [16], it addresses the role

we measure the complexity of a process accord- of both automation and process in an environment.

- - - - - _ _ - - - - _ _ _ - - - _ _ PIOC,&S horizon - - - - _ _ '

.

rng to this model? The model (Figure 2) locates a given development
activity according to three parameters:

The next four sections of this paper, in turn, ad- 1. Percent automation (ranging from a manual pro-

the following issues: simple task level Abstraction level application
P

SEW Proceedings 216 SEL-95-004

cess to totally automated one).
2. Service abstraction level (from simple low-level in-
frastructure to an entire application domain).
3. Process complexity

We are interested in understanding activities from
these three perspectives. We want to know how
much of a solution the activity addresses. A tool that
does compilation is relatively simple, while one that
integrates design, compilation, and testing (assuming
such a tool existed) would be more complex, and fi-
nally one that by pushing a button configures an entire
ground support system for NASA would be even more
complex. We call this aspect of an environment the
abstraction level and is represented by its horizontal
placement in the figure.

For any specific activity, there are multiple ways
to address its solution. Take for example, sorting a

. list of names. A totally manual process would be to
sort each name by hand from a set of cards, each
containing one name. A more automated solution
would be the UNlX sort command on a file of names.
This is the automation levelof that activity.

Finally, for each activity, there is a limit to the com-
plexity that can be attempted in its solution. For exam-
ple, sorting a list of names where one first translates
by hand each name into binary, sorts that binary list by
hand, and then translates the binary back into ASCII,
probably represents a solution that is fraught with er-
rors. We call such a solution too complex, or above
the process horizon for that activity. The process hori-
zon is represented by the dotted line in Figure 2. Note
that the line rises as the automation level increases -
more automated tasks can handle more complex so-
lutions due to the increased use of computer-based
tools that handle the mundane part of the solution.

The point on the model labeled "chaos" represents
an extremely low-level manual task of great complex-
ity. This represents a chaotic state of development.
On the other hand, the point labeled "order" repre-
sents a totally automated solution of the application
domain with simple complexity. This is our desired
goal. So our problem is to try and describe the loca-
tion of each process in this ITEM structure and then
to show that over time we progress toward the point
labeled "order."

Time is a parameter that makes the application of
this model even more complex. As technology im-
proves over time, complex tasks of last year are now
relatively simple. A complex task like assembly code

in 1955 was replaced by the similarly complex task of
compiling a Pascal program in 1970, which was re-
placed by the more similarly complex task of writing
a C++ or Ada program today. We can quibble with
the term "similiarly complex," but the basic concept
is that all of these tasks represented about the same
level of effort in their respective eras. However, to-
day, the same assembly language compiler would be
considered a more complex lower-level activity than
the Ada compiler, and thus would be to the left and
higher (more process complexity) in the ITEM figure.
This concept is called technological drift. All technol-
ogy moves to the left over time in the ITEM model.
A future goal (one we would like to solve, but dare
not even try yet) is to measure this flow of technology
over time.

3 What is an environmental service?

The ITEM model describes an abstraction level as
a way to characterize the functionality of a given activ-
ity. For the software development application domain,
two service-based models have been developed that
address this functional - the NISTIECMA frame-
work for software engineering environments and the
Project Support Environment (PSE) reference model.

3.1 Reference Models

In 1989, the European Computer Manufacturers
Association (ECMA) produced a model for the de-
scription of services useful for supporting software
development activities. In 1991, the National Insti-
tute of Standards and Technology (NIST) joined with
ECMA to develop the ctjrrent Edition 3 of this model,
known as the NISTIECMA software engineering en-
vironment frameworks reference model [I I].

The NISTIECMA model, also known as the "toaster
model" based on a graphic that was developed by
George Tatge of HP (Figure 3), defines the underlying
infrastructure set of services for supporting tools ex-
ecuting on a software engineering environment. The
model consists of 66 services catalogued according
to the classification of Figure 3 plus a seventh Oper-
ating System set of services that supports the other
six categories. Software products, called tools, are
added to the environment and interact among one
another and with the environment itself by using the
operations defined within the seven classes of infras-
tructure services.

While the NISTIECMA model defines the under-

SEW Proceedings

Services

Figure 3: Framework Reference Model Service Groupings.

lying infrastructure for supporting tools within an en-
vironment, there was also a need to define the set
of tools that users would need for application de-
velopment within the environment. In order to ad-
dress this functionality, the U.S. Navy's Next Gener-
ation Computer Resources (NGCR) program created
the Project Support Environment Standards Working
Group (PSESWG). PSESWG developed the Project
Support Environment (PSE) Reference Model of the
set of services needed to support users of software
engineering environments [5]. This model included
the NISTIECMA framework model as the core set of
framework services, but adds a structure on the "tool
slots" of the framework model.

Services in the PSE model are either end-user or
framework. The former services directly support the
execution of a project (i.e., services that tend to be
used by those who directly participate in the execu-
tion of a project such as programmers, managers,
and secretaries). The latter services generally per-
tain to the operation of the computer system itself
(e.g., a human user performing such activities as tool
installation) or are used directly by other services in
the environment. End-user services are further sub-
divided into Technical Engineering, Technical Man-
agement, Project Management, and Support service
categories.

project scheduling, estimation, and tracking. Support
services include activities such as editing, publishing,
electronic mail, and other supporting activities.

The model has been used to map (i.e., describe
and contrast) the functionality of various products or
standards in order to determine how the functionality
they provide compares to the functionality present in
the model [14].

3.2 Service Hierarchy

Process Steps: We will define a process step as the
smallest identified self-contained activity performed in
the development of a software project. Personnel on
a project perform process steps, and the underlying
computer environment executes one or more tasks in
response to those steps. For many process steps,
there is a one-to-one correspondence between pro-
cess steps and tasks (e-g., editing a file and a tool
such as VI or EMACS, placing a file under configu-
ration management and tools such as PANVALET or
SCCS). In other instances the process step is clearly
defined by a small set of tasks (e.g., creating a soft-
ware module requires the tasks of editing and compil-
ing). However, other process steps may require man-
ual components as part of the process step, which

For example, within the Software Engineering may not involve the-use of a computer (and its ex-

group of services'within the Technical Engineering ecution of tasks) (e.g., software design, inspections,

category are the common software development ac- software quality assurance). In these cases, process

tivities, such as software design, Compilation, De- steps may be implemented by a sequence of actions

bugging, etc. Project management services include using process execution notation, such as MARVEL
I1 01.

SEW Proceedings 218

Reference model services: The tasks provided by
an environment can be mapped into the end-user ser-
vices defined in the reference model. These may also
be viewed as an initial set of process steps useful in
the software development process.

Level 1 : Basic Services. These represent the cru-
cial processes in software development. Software
development would be impossible without them, and
all are bresent in every realistic development. In ad-
dition, they are all implemented as single tasks in an
environment. The process steps and example tools

The services in the reference model represent a
broad range of capabilities. Some are clearly crucial
to the success of a project (e.g., the existence of a
compiler for the compilation process step). Without
these services, the development of software would
be impossible.

for these services are given in Table 1.

Process Step I Sample tasks (tools)
Configuration I PANVALET, CMS, SCCS

YACC, 4GLs, IDL tools

Other services, while not necessities, help to im-
prove the quality and reliability of a software system.
For example, program verification helps to improve
the correctness and reliability of a program. However,
the difficulty of using verification tools and the general
lack of availability of effective verification tools means
that most development processes omit a verification
step.

Generation*
Software Testing
Software Static

I Analysis*
I Numeric I spreadsheets such as QuattroPro

Software Testworks
source code analyzers. SAP

Processing
Figure Processing
Mail

One way of representing the relative complexity of
the services is to impose a hierarchy on them. The
levels in the hierarchy indicate increasing levels of
complexity in the services provided by the project
support environment. Because of advancements in
technology and research, we believe that the levels
will continuously evolve and change. Currently, the
services of the lower levels of the hierarchy repre-
sent steps in the software process that are well de-
fined and understood. We can easily identify tools
that provide these services. As the levels of the hi-
erarchy increase, the current understanding of the
process steps required to provide the services of the
level decreases. It becomes increasingly difficult to
find examples of tools which provide these services.
We believe that over time, as the knowledge and un-
derstanding of complex services become clearer, the
services will drop to the lower levels of the service
hierarchy.

and 1-2-3
MacDraw, MacPaint, xfig
ccMail. Eudora

Bulletin Board*
Tool Installation
and
Customization
Host-Target (Xterrn, ftp, telnet

Readnews, ccMail
UNlX .rc tool customization files

connection
Audio and Video
Processing*
Calendar and
Reminder*
Conferencing*
Information

MBone

Synchronize, CRON

Unix talk
Archie, Gopher, yellow pages, parts

Mgmt.'
Planning
Estimation

Tracking
Data

* Optional process steps

lists, Xmosaic, Netscape
TimeLine, MacProject
Software Management Environment
(SME), tools that implement cost
models
SME, Gantt and Pert charts)
binhex, uuencode/uudecode, Kermit

Interchange"
Publishing

-
Tex, Latex, Framemaker, Power-
Point, MS Word

Table 2: Level 2 Services. Process Step
Compilation

Debugging
Softifare Build
Text Processing

Level 2: Single Task Services. These services

Sample tasks (tools)
Ada, C, or FORTRAN compilers,
preprocessors
symbolic debuggers
make
editors such as VI or EMACS represent the process steps that are usually per-

formed in an environment. The process steps often
exist as single tasks in an environment and tools to
automate them are readily available. Most of the listed Table 1: Level 1 Services.

services are typically utilized in an environment; how-
We propose the following four complexity levels of

the reference model end-user services:
ever, some, although automated and readily avail-
able, are not necessarily required. Those services

SEW Proceedings

that are considered to be optional are indicated by an
* in Table 2.

I Process Step I Sample tasks (tools)
i System
1 Integration

System Testing
i

System Static
Analysis
Software Require- OOATool and DCDS
ments
Engineering
Software Design IDE's Software through Pictures

(StP), Teamwork ObjectMaker
Software Simula- Simula, screen simulators
tion and Modeling 1
Software 1 ORCA (Object-based Requirements

Management 1
Reuse 1 Asset Source for Software Engi-

Traceability

Change

I Management 1 tral Archive for Reusable Defense - 1 neering Technology (ASSET), Cen-

Capture and Analysis) and RETRAC
(REquirements TRACeability)
Netherworld, Changevision

I Software (CARDS)
Metrics (Amadeus, COCOMO (Cost COn-

tainment Model), cyclomatic com-
plexitv structure models

Annotation
Process I MARVEL, shell scripts
Management
Target Monitoring

Table 3: Level 3 Services.

Level 3: Composite Services. The services at this
level represent process steps that are required in soft-
ware development, but there is rarely a single tool
which can be used to accomplish all of the activities
of the process step. These process steps generally
represent the state of the art in software engineering
research. As the table in Table 3 demonstrates, there
are not as many tools available for for implementing
these as single tasks within an environment. As tech-
nology evolves and improves, it is expected that these
services will become single task services.

Level 4: Advanced Services. The services in this
level represent needed research in software engineer-
ing. Not every project incorporates these process
steps into their development process. Often, if tools
are available for these services, they are experimen-
tal. It is expected that as more research and exper-

imentation is completed, these services will move to
Level 3 services. The process steps and examples
for these services are given in Table 4.

Process Step I Sample tasks (tools) I

System Require- 1
ments I

I Engineering
System Design I configuration languages and sys-
and Allocation
System Simula-
tion and Modeling

System
Traceability

Software Reverse
Enaineerina

tems (Polylith, ~apide)
Performance Oriented Design (POD)
and Synthetic Environments for Re-
quirements and Concepts Evaluation
and Synthesis (SERCES)
ORCA (Object-based Requirements
Capture and Analysis), RETRAC
(REquirements TRACeability)

Software
Re-engineering
Process Definition

Exchange
Process Usage I EAST, Cohesion

state transition charts, MARVEL, ac-

Process Library
Process

I Risk Analvsis I I

tion diagrams, Petri nets
Process Asset Library (PAL)

I system 1
~e-engineering I
Software I Cleanroom, Z, VDM

I Verification I I
Policy
Enforcement

Table 4: Level 4 Services.

4 Tools are used in the SEL environment

In order to study tool use and process interaction,
we are using data collected by the NASA/GSFC SEL.
The SEL has been collecting data since 1976 on over
125 ground support software projects for unmanned
spacecraft developed by the Flight Dynamics Division.
The data in this paper is a result of reading history re-
ports on lessons learned from approximately 20 such
recent projects, and from interviews with personnel
who built this software.

4.1 Flight Dynamics Software Development

Two classes of products form the core of the work
within this division:

(1) Attitude Ground Support Software (AGSS)

SEW Proceedings
220

SEL-95-004

provides attitude determination capabilities for de-
termining spacecraft location and orientation (e.g.,
where is it and in which direction is it pointing at a
given time in the future). This is needed to coordi-
nate spacecraft location with the data collected by
on-board scientific instruments and for spacecraft or-
bit modification.

(2) Simulators for testing onboard computer ca-
pabilities before launch.

Until the late 1980s, all source programs were writ-
ten in FORTRAN. AGSS software is still written in
FORTRAN, while most simulators are now written in
Ada. Other software is written in FORTRAN, in Ada,
or in C. There is now a project investigating the appli-
cability of C++ in this environment.

The programming (e.g., hardware and software)
environment at NASA has generally passed through

. three distinct phases since the SEL was created
in 1976. Initially, all work was performed on IBM-
compatible mainframes. In the early 1980s, the DEC
VAX computer was used for some development, while
the mainframes were still the operational computers
for spacecraft control. In the late 1980s, PCs started
to appear on desktops and were sometimes used for
initial editing and compilation of modules. Today there
are some initial moves to use UNlX workstations and
build systems using a client-server architecture. The
following briefly describes this evolution.

IBM Mainframe Environment

The mainframe environment is the oldest of the
three development environments. It is also the least
sophisticated. The mainframe environment is used for
the development of AGSS systems with FORTRAN
being the programming language used for develop-
ment. In order to integrate the various tools available
in the IBM mainframe environment, the Software De-
velopment Environment (SDE) was built. SDE is an
application that was built on top of ISPF (Interactive
System Productivity Facility). It is a menu-driven fa-
cility that provides a common interface to the tools
available in this environment (Table 5).

Activity I Tool
Design I DesignAid CASE 2000, MacDraw,

Table 5: Tools in the IBM mainframe environment.

-

Code

Configuration
Mgmt.
Test

tion; however, it was not utilized to its fullest potential.
One reason cited is that the task of re-entering data
flow diagrams and data dictionaries from the func-
tional specifications document to the PC was too time
consuming.

~ o r e i ~ r a w
SDE*, ISPF, QED , VS FORTRAN,
assembler, linker, RXVP80, ICA,
GESS Display Builder'
PANVALET

CAT

The reuse rates for these early FORTRAN projects
were low, approximately 10 percent, while later FOR-
TRAN projects were able to achieve reuse rates be-
tween 80 and 90 percent. Part of the increase in
reuse rate may be attributed to the creation of two
FORTRAN libraries that handle nearly 80 percent of
the functionality of new ground support systems. It
is interesting to note that the high reuse rates were
achieved without the support of specific reuse tools.

* -Tool developed for use within this environment

Code: QED (a line editor) and ISPF (a screen edi-
tor) are the editors used in this environment. To cre-
ate executable code, users use the FORTRAN com-
piler, the IBM assembler and the IBM linkage edi-
.tor. Other than editors and compilers, there are few
other tools available for use. RXVP80 and ICA are
tools for static analysis of FORTRAN code used to
detect inconsistencies in program structure or mis-
use of variables. To generate code for displays, the
GESS Display Builder, developed and maintained by
NASA over the past 20 years, is used. This tool was
to be replaced after the COBE project ended in 1988;

. however, no replacement has yet been developed.

There is no symbolic debugger available to main-
Design: In the mainframe environment, there is lim- frame users. To compensate for this deficiency, de-
ited automated support for software design. On three velopers typically place debugging statements in their
projects (GRO, UARS and EUVE), DesignAid CASE code. On the TONS project, Microsoft FORTRAN and
2000 was used for design. The history reports indi-

'

CodeView were used to build code on PCs initially.
cate that the tool was useful in some areas such as When the code was considered complete, it was re-
drawing design diagrams and organizing documenta- compiled with the mainframe FORTRAN compiler.

SEW Proceedings 221
SEL-95-004

Configuration Management: For configuration
management, the environment offers PANVALET, a
commercial source code management system. PAN-
VALET has been the exclusive source of configuration
management in the mainframe environment for over
12 years.

Test: There are no standard tools available for soft-
ware testing and verification. Data for testing are gen-
erated with the assistance of FDD developed simula-
tors or by small programs developed by testers. Any
software problems that are found while executing the
test plan are reported by filling out a Software Trou-
ble Report (STR). On one project, SAMPEX, the STR
form was automated. There are no standard tools that
support the generation of test plans or the tracking of
test cases. The Configuration Analysis Tool (CAT)
was used on the ERBS and COBE projects to track
discrepancies and test cases. The capabilities of this
tool were described as being useful, but limited. Usu-
ally, the tracking of the status of software problems is
done through spreadsheets on Macintoshes or PCs,
as was done on the COBE project.

Although there are no specific tools for test case
generation and analysis, the quality of the code has
improved over time. The defect rates for early FOR-
TRAN projects were 9.8 development errors per thou-
sand lines of code, while the defect rates for more re-
cent FORTRAN projects are 4.8 development errors
per thousand lines of code.

VAX Environment

In 1985 the FDD began to experiment with the use
of Ada for software development. It was found that
the mainframe Ada was not reliable enough for AGSS
development, but the DEC VAX computer provided an
environment suitable for simulator development [I 51.
Although the initial plan was to completely transition
from the mainframe environment to an Ada develop-
ment environment on the VAX, the VAX environment
has been used for the development of telemetry and
dynamic simulators only. To support Ada develop-
ment, this environment has the Ada Compilation Sys-
tem (ACS). Users of the ACS have expressed satis-
faction with the capabilities provided by this system.
Table 6 lists the tools that are available in the VAX
environment.

Table 6: Tools in the VAX environment.

Activity
Design
Code

Configuration
Mgmt.
Test

Design: There are no standard tools used for the
design of projects on the VAX, although several
projects have experimented with a few CASE tools.
System Architect was used on TONS. The diagrams
produced by the tool were considered to be poor in
quality. The learning curve and the unavailability of
multiple copies of the tool discouraged future use of
the tool. The WINDPOLR project experimented with
Software through Pictures (StP). The project experi-
enced difficulties with consistency and configuration
control when they tried to make changes to the de-
sign. The use of StP was discontinued in the design
phase.

Tool
System Architect, StP
ACS, EDT, LSE, Ada compiler, as-
sembler, linker, debugger, PCA, SCA
CMS

None

Initial reuse rates for Ada projects range between
5 and 20 percent. After the FDD became more fa-
miliar with the Ada language and began to experi-
ment with object-oriented techniques, the reuse rates
increased. More recently, the reuse rates for Ada
projects are closer to 90 percent for projects with sim-
ilar domains. As with mainframe projects, the high
reuse rates have been accomplished without the use
of specific reuse tools. However, as mentioned pre-
viously, higher reuse also occurred in the mainframe
FORTRAN environment. This implies that increased
reuse is not resulting only from the use of the Ada lan-
guage; the use of object-oriented technology is having
an across-the-board effect on productivity.

Code: The ACS provides various services neces-
sary for software development. For editing, a screen
editor (EDT) and a language sensitive editor (LSE)
are available. To produce executables, the VAX
Ada Compiler, VAX assembler, and linker are avail-
able. The Performance Code Analyzer (PCA) and
the Source Code Analyzer (SCA) provide dynamic
and static analysis of code. Configuration manage-
ment is handled by the Code Management System
(CMS). Unlike the mainframe environment, the VAX
environment provides a symbolic debugger. Addition-
ally, VAX users can use electronic mail for communi-
cation.

SEW Proceedings 222

For project management, the Software Manage-
ment Environment (SME) has been used by the
WINDPOLR and EUVE projects. SME accesses the
SEL database of past project histories and plots the
current project's attributes over time (e.g., errors per
week, effort per week) as compared to these his-
tories. CSC's Performance Measurement System
(PMS) was used to track project resources in terms of
schedule, performance and cost by tasks on the GRO
and UARS projects. Both of these tools run on PCs.

Test: There are no standard tools used for testing in
the VAX environment. The testing process is carried
out similar to the way it is done in the mainframe
environment.

As with FORTRAN programs, reliability of Ada
code has improved over the past 10 years. The de-
fect rates for the early Ada projects were 10.5 de-
velopment errors per thousand lines of code. More
recently, the defect rates are 4.0 development errors
per thousand lines of code.

Workstation Environment

Over the past few years, several projects have
been developed on PCs and HP workstations running
UNIX. Most new development is expected to transition
to this environment over the next few years. There
have only been a handful of workstation projects so
far: a multi-application user interface system (UIX);
multi-application attitude support components (GSS
RI); and a mission AGSS application (XTE AGSS).
For development on PCs, the Santa Cruz Operation
(SCO) Open Desktop environment was used. For the
workstations, HP's desktop environment was used.
Table 7 lists the tools available in the workstation en-
vironment.

The design process for the workstation projects dif-
fered from the traditional mainframe and VAX design
process. The conventional design process in the FDD
calls for all component designs to be completed be-
fore the critical design review. For the XTE AGSS
project, the first AGSS built in the open systems work-
station environment, the design process was modi-
fied to include iteration. Each build of the system
was designed then coded successively. This led to
difficulties in estimating and assessing the progress
of the project. Productivity on the initial builds was
considerably lower than expected and the size of the
applications was underestimated by a factor of three
t41.

Activity
Design
Code
Configuration
Mgrnt.
Test

The difficulty in transitioning to the workstation en-
vironment was greater than anticipated. The perspec-
tive of the developers had to change from a purely
software engineering one to a systems engineering
perspective. Because the infrastructures of the main-
frame and VAX environments were stable, the FDD
developers had little experience with system engi-
neering techniques. This led to unexpected difficulties
in design.

Tool
MacDraw, Microsoft Word
SCO Unix, HP Desktop
PVCS, SCCS

None

Code: The desktop environments include tools for
editing, compilation and debugging. Because they
are UNlX environments, the standard UNlX com-
mands (e.g., diff, grep, ftp, make) are also available.
To build WMotif windows, Builder Xcessory was used
on the XTE project. There are several tools that are
available in this environment, but, they have not been
used successfully. For example, SCCS is available
for source code management, but, for the XTE project,
the UNlX file system was used instead. This implies
a more manual error-prone process to make sure that
only appropriate versions of a system are used at
the appropriate time. Similarly, a performance profiler
(probe) was not used successfully during the XTE
project.

The use of tools such as Builder Xcessory for
' interface design also indicates a growing trend to-
wards the use of Commercial Off-the-shelf (COTS)

Table 7: Tools in the workstation environment. software components in future FDD systems. In the
past, because of a stable computing environment, the
FDD tended to build customized software develop-

Design: No design tools have been used on any of ment toolsets and supporting infrastructures. When
the workstation projects. Microsoft's Word was used development moved to the workstation environment,
to draw design diagrams and create the design docu- the problems addressed by the customized toolsets
ments. and infrastructure had to be resolved again.

SEW Proceedings
223

SEL-95-004

An Ada development tool set was considered for
the workstation environment. Because of the cost,
matching the capabilities available on the VAX was
not considered as feasible. So, Ada development is
still done on the VAX and integrated and tested on the
workstations.

Configuration Management: SCCS was at-
tempted for source code management on the XTE
project, but it was not used successfully. The UNlX
file system was used instead. Additionally, PVCS was
also used on both the PCs and HP workstations for
version control.

Test: For testing, the process for workstations is
' similar to the VAX and mainframe test process. Inter-

nally developed simulators generate and send data
for testing. The simulators used for the XTE and UIX

' projects include the TPOCC internal simulator and the
GMlS simulator.

Additional Support

History reports discuss tools specific for the devel-
opment of flight dynamics software. However, many
other technologies are standard in this environment
and are not so mentioned. No one today considers
devices such as telephones, fax machines, or copies
as significant technologies in doing business, yet all
are crucial to project success.

The same is true of some computer tools. Elec-
tronic mail is all pervasive for communicating among
project members, although connections to others
via the Internet is not particularly efficient. The
NASAIGSFC mail system has undergone several
changes over the past few years, and according to
the authors of this report, is still substandard with
communication to the world outside of GSFC being
very slow. ccMail is the current mail system of choice.

In all three of the environments, the activities of
documentation and management are supported by
the same tools. Table 8 indicates the tools used for
these activities.

There were several tools that were used to support
the workstation projects that were not UNlX tools. For
instance. MacDraw and CorelDraw were used to cre-
ate diagrams. These are general purpose graphics
programs and not designed specifically for program

Table 8: Tools in the support environment.

Activity
Documentation
Management

design applications. General purpose word proces-
sors, such as Microsoft Word and PC-Write were used
for word processing. QuattroPro is the spreadsheet
that was used for tracking status. Additionally, CSC's
software estimation spreadsheet, BEMSIBPMS was
used. BPMSIBEMS is a spreadsheet tool that has
been developed by CSC for project planning and esti-
mation. Depending upon the life cycle model chosen
for the project, the tool generates estimated start and
completion dates for all phases of the life cycle. The
tool is also used for producing charts and reports with
the planning and estimation information.

Tool
Microsoft Word, PC Write
SME*, PMS*, BPMSIBEMS*,
QuattroPro

4.2 Development Models

-Tool developed for use within this environment

In describing the three NASA environments, the
discussion centered on the tools that were used (e.g.,
ISPF, SME, Ada compiler, MS Word) and the pro-
cesses used to develop modules (e.g., design, test-
ing, documentation). What is the relationship be-
tween the processes that need to be accomplished
and the set of tools that can be executed to help solve
development problems? In this section, we look at the
concepts of software processes and programming en-
vironments. We describe formal models of each. In
the next section, we unify both concepts in order to
describe the process architecture of the FDD devel-
opment environment.

Processes

For our purposes, we use the term processto mean
a set of partially ordered process steps intended to
reach a goal [6]. A process is a fairly complex un-
dertaking, such as software design or configuration
management. Performing such processes involves
the enactment of many of these process steps.

A process step is defined as a subprocess of a pro-
cess or any recursively defined process step. Creat-
ing a module or building a version of the system from
the configuration management library are generally
considered as process steps. An elementary process
step is called an activity. Activities are composed
of tasks, the simpliest action under consideration in

SEW Proceedings
224 SEL-95-004

a development. For the most part, tasks are single
executions of a tool in an environment. Compiling a
program, editing a file, or checking in a module are
considered to be tasks.

There are various approaches to examining pro-
cess development. One approach is to form a gener-
alized, ideal model and refine it to a specific instanti-
ation. The Software Engineering Institute's (SEI) Ca-
pability Maturity Model (CMM) for Software [12] and
process modeling languages and environments are
often used in this manner. Alternatively, a model can
evolve and be extracted from data based on previ-
ous experiences. This is the approach taken by the
Software Engineering Laboratory's Experience Fac-
tory. The Experience Factory builds models based
on knowledge gained from past software projects and
experiments.

Process-centered Software Engineering Environ-
ments. As described in [q, a process-centered soft-
ware engineering environment provides assistance to
its users by interpreting explicit guidance-oriented or
enforcement-oriented software process models. The
generic process interpretor, the process engine, is
the heart of a process-centered software engineer-
ing environment. Guidance-oriented process models
give the process performer indirect assistance while
enforcement-orientsd process models give direct as-
sistance. Often, such environments follow scripts,
developed by the process engineer, which define the
sequence of actions to undertake. Such scripts of-
ten look like programming language source programs.
For example, to create a new module, a simple script
could look something like:

Loop
Call Editor (module name)
Call Compiler (module name)
If errors, repeat loop
Call Testing Program
If errors, repeat loop

End Loop
Check (module name) in Configuration Libraly

It should seem clear that this script will iteratively call
the editor as long as either the compiler or testing
program finds errors. Programs are only entered in
the configuration library if they pass both tests without
errors. If the development team is bound by these
process rules, complex sets of interactions can be
developed for a development team to follow.

Use of such scripting allows for greater control over
the development process. For example, one could
prohibit checking a module into the configuration li-
brary until the testing program succeeded. Data could
be collected by automatically calling a data repository
program (e.g., Amadeus) at appropriate steps in the
script. Cooperative workflow models can be devel-
oped as mail is sent from one developer to another
informing the new developer of work needing to be
done. For example, after checking in a module into
the configuration library, an automatic prompt could
inform testing personnel that a new module needs to
be incorporated into the latest build of the system.

MARVEL [8] [9] [lo] is an example of an
enforcement-oriented process-centered software en-
gineering environment. The MARVEL environment
uses strategies which are predefined by the process
engineer. A strategy consists of an objectbase de-
scription, tool descriptions, and/or rules that model the
software development process. The objectbase de-
scription defines the structure (objects) of the project
database. The tool descriptions provide the mapping
from the objects defined in the objectbase description
to the actual location of the tool implementation. The
MARVEL rules follow the style of Hoare's assertions
for program verification. When the preconditions of
an activity are satisfied, it is scheduled for invocation.
After the completion of an activity, the postconditions
become true and may satisfy the preconditions of an-
other activity. All activities with satisfied preconditions
are then scheduled for invocation.

Capability Maturity Model. The CMM [12] is a
cross between a software quality approach and a pro-
cess engineering approach. The CMM identifies key
practices that state the fundamental policies, proce-
dures and activities for key process areas. These
process areas are grouped into five levels of maturity:
(1) Initial; (2) Repeatable; (3) Defined; (4) Managed;
and (5) Optimizing. The CMM provides a framework
for the practices and areas that should be addressed

' by a process model, although it doesn't specify the
process model that should be used. The individual
organization utilizes the framework to build a process
model that encompasses the practices identified in
the CMM. As an organization matures, the process
model covers more of the key process areas at higher
levels. The CMM gives the organization a strategy for
the steps to be taken for continuous process improve-
ment.

SEW Proceedings 225
SEL-95-004

The Software Engineering Laboratory. The Expe-
rience Factory was developed by the NASAIGSFC
Software Engineering Laboratory as an empirically-
based feedback-oriented model of process improve-
ment.

The SEL collects data both manually and auto-
matically. Manual data includes effort data (e.g.,
time spent by programmers on a variety of tasks:
design, coding, testing), error data (e.g.. errors or
changes, and the effort to find, design and make those
changes), and subjective and objective facts about
projects (e.g., start and end completion dates, goals
and attributes of project and whether they were met).
Automatically collected data includes computer use,
program static analysis, and source line and module
counts.

Software development in the SEL is based upon
the Experience Factory concept. The Experience
Factory [2] [3] is an infrastructure aimed at capitaliz-
ing and reusing the life cycle experience and products.
The Experience Factory is the basis for the process
model driving FDD product development. The Expe-
rience Factory is a logical and physical organization
with activities independent from the ones of the de-
velopment organization. The purpose of the develop-
ment orgainzation is to develop and deliver systems.
It provides the Experience Factory with product de-
velopment and environment characteristics, data and
a diversity of models (resources, quality, product, pro-
cess) currently used by the projects in order to deliver
their capabilities. The Experience Factory processes
this information and provides direct feedback to each
project activity, together with goals and models tai-
lored from previous project increments. It also pro-
duces, stores and provides upon request baselines,
tools, lessons learned, and data; all presented from a
more generalized perspective.

The distinguishing characteristic of the Experience
Factory is that the organization defines itself as con-
tinuously improving because it learns from its own
business, not from an external, ideal process model.
Process improvements are based on the understand-
ing of the relationship between process and product
in the specific organization.

4.3 Process Enactment in the FDD

In this section we classify the set of processes un-
dertaken as part of NASAIGSFC FDD software devel-
opment to understand the impact that the underlying

computer system has on this development. We will
do this by merging the concepts of processes and en-
vironment reference models described in the previous
section.

FDD Tool Use

From our survey of the three FDD environments,
we collected information on various tools used by
many projects over the past 10 years (Figure 4). We
can classify those tools according to the tasks (i.e.,
services) that they implement in the PSE model (Fig-
ure 5).

The PSE reference model was built around the set
of tasks that can be applied to the software devel-
opment process. For the most part, each PSE ser-
vice can be mapped to a specific tool that executes
within an environment. For some of these services,
the mapping is quite simple. The Compilation service
obviously maps to the Ada or FORTRAN compiler in
the NASA SEL environment. However, other services
of the PSE model map to process steps in'the NASA
environment. For example, there is no single software
testing tool in the FDD. Instead, the software testing
service becomes a process step enacted as a se-
quence of tasks, some manual and some automated.
We wish to chara~teriz~such processes.

In what follows, we use the classification of ser-
vices in the PSE reference model as a means to
characterize the functionality of tools that may ap-
pear within an environment. Our goal is to show the
relationship between these services and the set of
process steps that define the software development
process.

FDD Process Enactment Examples

To understand how tools are used in the FDD en-
vironment, it is instructive to examine how processes
are enacted in the environment. Services can be pro-
vided in various ways. For example, a tool set could
be integrated to present the user with the necessary
services. Integrated toolsets such as Microsoft's Of-
fice (Word, Excel, Powerpoint and Access) and IDE's
Software through Pictures are commercial examples
of this. In such cases the user interacts with a sin-
gle interface to ease the transition among the various
tools in the colleciton. As mentioned earlier, the SEL
developed the SDE interface for the mainframe envi-
ronment in order to provide this integrated set of tools
to the developer.

SEW Proceedings
226

KEY

0 M;:infr;lrnc pr~~jcclr
0 VAX pnjjcc1.r

0 Wc>rk.slalion pro~ccls

Figure 4: FDD tool use.

Currcn! Envln>nrncnl
AGSS simulator Works(ali0n

SEW Proceedings

3 '

E

0
PANVALET

0

SFORT .
CAT
VS FORTRAN
RXVPBO I e..
GESS (Display Bullderl - 1

i
m e . . . SDE .:

ASSEMBLER H . . i
CONVERT
PANEXEC
TEXT dlsplay package
ICA
CCC
SuperPDL
ISPF
QED
ACS
Ada Compller
CMS

3 >

2
8 o

. .
0

. *

. . . * . . .

.

•
•

. • . .
• . 0

VAX mall
VAX debugger
LSE
SCA
TARTAN Ada Complier
SME (PC cl~ent)
SIP (UNlXl
WM0tlf
HP full screen ed~tor
VI ed~tor
HP c compller
HP FORTRAN compller
HP symbolic debugger (xdb)
HP desHop environment
Bullder Xcessov
x tem and vT200 emulator
UNlX commands (d~ff.make,ftP)

. * O

0 . 0

a
8

0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 . 0

0 . 0

e . 0

0 . . -

GSFC Code 510 code counter
probe
HP VADS Ada Compiler
Softbench
xoftwarel32
HPTRAN
TPOCC internal s~mulator
GMlS simulator
GSU stmulator

PCTRAN
PVCS
CorelDraw
MS Word
PC-Wnte
ccMail
QuattroPro
BEMS/BPMS
sco untx
SCO Open Desktop

. o

.

. O

*

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

O 0 0 0 0 0 0 0 0

0 0 0 0 0

0 0

0

0

0

0

0 0 0 0 0 0

0 C

CODEBASE
DEMO
MS FORTRAN
MS CodeVlew

STR-generattng program
PMS
System Arch~tect

DestgnAd CASE 2000
RIM
GSFC telemail
MacDraw
MATHCAD

0

0 0

o o

0
o o

- 0 0
0 0

0
- 0 0

. o O

0 0

0 0

- 0 0
- 0 0

o o

r o o
0 0

- 0 0

+ o o

- 0 0

* O o

. o O
0

0

0

. O O

Figure 5: FDD automated tasks.

SEW Proceedings

luu;lhl.f. I '.*".. k.,",,rnrn~. I

*s*r.rr l,.",~" i s t ~ w u . . \~mu!m,.n .nd n.drljny
b.*lru.. v..,lir.,,m
s,+war r..nrru41.n
O"rq,,,.,,.m
\ ' * , W ~ C Jut,. nn.ly\,~
Ikhuy","~
hl*r.ur'r<fi,n"
5,,,wu< l,",ld
>r*rrur KC\.,.< !.n~,n.r.,ny
s.l(,rac K.. .m*,rr,,ny

I ! . .I
.I . . . I . .

I . . . ; .. i* ... I i I

.

I i
I

I !
I

1rn.r.. I*.,,",,","
.

,*,.<.a. I.,,.,,,
I'.s.<s< ICXb"<< ! 1.n.r.. rnsr
(imls#".ulm Y.".~,.".rnt
('h.nyr .w.mgmm,
Inllmulhn Y.,"$rn*."l
K.U." M.P.II.~.",

.

Alternatively, the user may have to manually debugging is defined by us as a Level 1 Service;
change among different tools to obtain the required however, it is not achieved easily in the main-
services. In what follows, we examine examples of frame environment.
the enactment of several processes in the FDD envi-
ronment.

New Module Development

The Level 1 Services have been defined to be the
most fundamental services of software development,
without which software cannot be developed. Con-
sider the process steps for creating new software
modules in the mainframe environment. Most of the
Level 1 Services are represented in this process.
Starting with the module's requirements, the devel-
oper must design the module, implement it in FOR-
TRAN, test it, and then release it for configuration
control. This involves a complex series of interac-
tions using several tools on the mainframe. This is
given by Figure 6. The key for Figure 6 is presented
in Figure 7.

I

Process steps
i

1
I
I 1 7 1 ON sources

Figure 7: Key for process diagrams.

Several interesting aspects are demonstrated by
this figure:

1. No design tool is employed in the Software De-
sign process step. A standard picture-drawing
program is used for design documents. This lim-
its the ability to automate traceability back from
source programs to specific requirements.

2. The Text Processing process step is employed
twice in this process. In one case, an editor (e.g.,

4. Each activity of the new module development
process requires the user to explicitly request the
services from each tool. There is no automated
sequencing from one activity to the next. For
example, there is no guarantee that the design
is complete before the Text Processing activity
begins or that no errors are found in testing be-
fore module is released for Configuration Man-
agement. This is not to imply that the developers
"cut corners," only that there is no automated pro-
cess for ensuring that quality control aspects of
the process are followed.

As we stated earlier, the FDD is now achieving
much higher reuse rates in their software develop-
ment. How is that achieved? Later we give the Soft-
ware Reuse process, and indicate how it differs from
new module development.

Software Testing

The FDD projects have good reliability rates, yet
there are no standard tools available for testing. Typ-
ically, previously developed simulators are used to
generate and send data to test the new systems.

One explanation for the high reliability in FDD sys-
tems may be familiarity. Since the systems con-
structed by the FDD are very similar in functionality,
new systems benefit from the testing done on previ-
ous systems. In some cases, up to 90 percent [I]
of the functionality is supplied by an existing system.
The FDD has become very good at developing the
types of systems where they have experience.

When a system on a completely different architec-
ture was attempted, the results were different. There
were many problems with the workstation projects [4].
The developers were not prepared for the changes re-
quired for a completely different architecture than the
ones of previous systems.

ISPF) is used to create and modify the modules, Reuse MaMgement while in the other case, a pen is used to complete
a paper form for processing the Component Orig- When looking at reuse, two different approaches
ination Form (COF). can be identified:

3. There is no debugger available in this environ-
ment. To compensate for this, debug statements e Reuse achieved by adjusting the components of
must be placed rn the code and the programmer an existing system to fit the requirements of a
must run the program to find errors. Notice that new system.

SEW Proceedings 229
SEL-95-004

CorelDraw Assembler;
Inspection

I I I

Errors

Software
Design Config.

1 Design Document 1 Source I COF

Figure 6: New Module Development Subprocess in the Mainframe Environment.

Reuse achieved by taking components from var- reuse system or process. A designer is not likely to
ious sources and piecing them together to form forget about a component from one project to the next.
a new system. This approach does, however, require a configuration

management tool. That could explain why, the exist-

- [+] ing project support environments of the FDD do not

Verbal ~essa'
include any reuse tools or reuse mechanisms, but do
have several configuration management tools. It also

The process for module reuse in the mainframe en-
vironment is presented in Figure 8. The most notable
feature of this figure is the Reuse Management step
of the process. In the FDD, reuse is highly depen-
dent upon the personal knowledge of the designers.
Component reuse is achieved by the designer ver-
bally communicating the name of the component to
the programmer. Although this does not appear to
be an effective approach to reuse management, the
FDD has extremely high reuse rates. There are sev-
eral possible explanations for these results. The FDD
tends to use the first of the two approaches mentioned
for reuse. The functionality provided by new systems
in the FDD are very similar to the functionality of ex-
isting systems. Therefore, the code from the compo-
nents of an existing system can be used verbatim or
with slight modifications in a new system. This type of
system construction does not require a sophisticated

explains the extremely high reuse rates of 80 to 90

5 Classifying FDD application functions

New Module Development

The subprocess descnbed in the
' previous t~gure

The final step in this development is to apply a
measurement framework to our ITEM model. This
workis only preliminary and addresses how we intend
to continue this activity.

percent [I] for the projects.

On the POWITS project, the reuse rate was not
as high as previous projects; it was 40 percent [I].

Our ITEM model depents upon three parameters:
abstraction level, automation level, and process com-
plexity. The following is a brief overview of how to
impose a metric on top of these concepts.

The dip in the reuse rate is attributed to a change
in the domain. The simulation software had to be

Component Name Local Copy changed from a three-axis stabilized spacecraft to
a spin-stabilized spacecraft. To accommodate the

Figure 8: Module Development from a Reusable change, new software had to be written.
Component in the Mainframe Environment.

As shown in Figure 6, a process is simply a graph,
where the circles represent the services of the PSE
model. As given in Section 3.2, we can classify the
complexity of each service. We will define the ab-
sstraction level as the set of services from the PSE
model that are addressed by the activity. A previously-

SEW Proceedings
230

SEL-95-004

developed graph complexity model [I31 based upon
an information theoretic view of program graphs, we
can impose a measurement on each such activity.
This represents process complexity. For automation
level we have the degree of reuse of a given project
since this represents the amount of effort that is not
being undertaken on a given project. We can then cor-
relate the point in the ITEM model defined by these
three numbers with the number of errors or effort ex-
pended in developing a given product.

To complete this validation, we need to develop
activity graphs for all SEL development processes and
then for each project in our database, we need to plot
its location on the model. While this will not provide
an absolute scale for this model, it should provide a
relative evaluation of different developments.

6 Conclusions

After studying this environment, we can separate

introduced, it is not given a "fair" chance. For ex-
ample, StP was only tried one time. The users did
not understand the methodology behind the tool.
Instead of providing more training, the tool was
not used again. This approach is very different
from the way in which process-centric methods
(e.g. Cleanroom) have been introduced over the
years.

4. Many of the process steps are enacted manually.
For example, there are numerous forms (Compo-
nent Origination Form, Software Trouble Report)
that are required by the SEL to track the software
process. Currently, these forms are filled out with
pen and paper.

5. The testing process in the FDD does not utilize
conventional software testing tools. Instead, sim-
ulators designed and implemented by the FDD
are utilized to generate data for testing. The rest
of the testing process is mostly unsupported by
tools.

our conclusions into those that reflect on software de-
velopment within the FDD at GSFC and on conclu- 6. The software design process in the FDD doesn't

sions reflecting process and environment research in use conventional design tools. General purpose

general. drawing tools are used to create design dia-
grams. This may lead to difficulties in software

6.1 FDD Observations

The overriding concern in this environment is the
process for software development and not in the
tool support for the developers and managers.
There is considerable care in developing mod-
els of how personnel interact. Process-centric
methods for development, such as cleanroom
and object-oriented technology, have been stud-
ied in depth.

2. When the need for the automation of an activity
arises, the FDD tends to develop a tool or search
internally for a solution. The use of SDE in the
mainframe environment to achieve a level of tool
integration is an example of this. Another ex-
ample is the use of BPMSIBEMS spreadsheets
for project status tracking and estimation. This
approach led to difficulties in the transition from
the VAX and IBM mainframe environments to an
open systems workstation environment.

3. The environments of the FDD have remained rel-
atively constant over the years. The FDD does
not experiment very often with new tools in their
environment. PANVALET has been used for con-
figuration management in the mainframe envi-
ronment for over 12 years. When a new tool is

6.2 General Observations

1. We still need to impose our meaurement frame-
work on top of the ITEM model in order to deter-
mine the effectiveness of our measurement ap-
proach. This work is ongoing and will be reported
on soon.

2. The PSE reference model seems to be lacking a
level of services. Although the PSE reference
model was useful for examining the coverage
of the tools in the environment, it seemed to be
missing a level of services. The reference model
includes the concepts of infrastructure services
as well as complex services (e.g. Software De-
sign). There seems to be an intermediate level of
services missing from the model. What are the
process steps required for a complex process
like software design? The current version of the
reference model does not address this issue.

3. The impact of reuse management tools is un-
clear. FDD has high reuse rates, but utilizes no
reuse management tools. What is the real impact
of reuse management tools? We believe that we
have identified two classes of reuse:

SEW Proceedings
23 1

SEL-95-004

(a) Create a system by reusing components
from a similar system.

(b) Create a system by using components from
various systems or libraries of components.

When discussing reuse, both concepts are usu-
ally merged, but they represent very different con-
cepts. In the FDD case, as described earlier,
reuse occurs by beginning with the reusable com-
ponents of an ex~sting system. Perhaps, reuse
management tools are only necessary in devel-
opment projects that assemble components from
various sources.

4. The impact of conventional testing tools is un-
clear. FDD has very low error rates, yet uses no
specific tools for testing. What is the real impact
of testing tools?

References

[I] Bailey, J., Waligora, S., Stark, M., Impact of Ada
in the Flight Dynamics Division: excitement and
frustration. In Procedingsof the 18th Annual Soft-
ware Engineering Workshop, (Dec, 1993), 422-
438.

[2] Basili, V.R., Caldiera, G. and Rombach, H.D.,
The experience factory. Encyclopedia of Soft-
ware Engineering, Wiley, 1994.

[3] Basili, V.R., Caldiera, G., McGarry, F., Pajerski,
R., Page, G. and Waligora S., The Software En-
gineering Laboratory - an operational software
experience factory, ACMIIEEE 14th lnternational
Conf. on Soft. Eng., Melbourne, Australia (May,
1 992), 370-381.

[4] Boland, D.E., Green, D.S., Steger, W.L.,
Lessons learned in transitioning to an open sys-
tems environment, 1 gth NASA Software Engi-
neering Workshop, Greenbelt, MD (December
1994), 191 -202.

[5] Brown A., Carney D., Oberndorf P. and Zelkowitz
M. (Eds), The Project Support Reference Model,
Version 2.0, National Institute of Standards and
Technology, Special Publication SP 500-213,
(November, 1993) (Also CMUISEI TR 93-TR-23,
November, 1993).

[6] Feiler, P.H., Humphrey, W.S., Software process
development and enactment: concepts and def-
initions. In Proceedings of the 2nd Int. Conf.
on Software Process, Berlin, Germany (March,
1993), 28-40 (Also CMUISEI-92-TR-4,1992).

[7] Lonchamp, J., A structured conceptual and ter-
minological framework for software process en-
gineering. In Proceedings of the 2nd lnternational
Conference on the Software Process, 'Berlin
(February, 1993), 41 -53.

[8] Kaiser, G.E., Rule-based modeling of the soft-
ware development process. In Proceedings of
the 4th lnternational Software Process Work-
shop, Devon, UK (May, 1988), 84-86.

[9] Kaiser, G.E., A bi-level language for software
process modeling. ACMIIEEE lSh lnternational
Conf. on Soft. Eng., Baltimore, MD (May, 1993),
132-1 42.

[lo] Kaiser, G.E., Feiler P.H. and Popovich S.S., Intel-
ligent assistance for software development and
maintenance. IEEE Software 5(3):40-49, May,
1988.

[I 11 NIST, Reference Model for Frameworks of Soft-
ware Engineering Environments Special Publi-
cation 500-21 1, Natl. Inst. of Stnds and Tech.,
(August, 1993) (Also ECMA TRl55, Edition 3,
(June, 1993)).

[I21 Paulk, M.C., Curtis, B., Chrissis M.B. and Weber
C.V., The Capability Maturity Model for Software,
Version 1 . l , CMUISEI-93-TR-24, (1 993).

[13] Tian J., and M. V. Zelkowitz, A formal model of
program complexity and its application, J. of Sys-
tems and Software 17, 3 (1 992) 253-266.

[14] Zelkowitz M. V., Use of an environment classifi-
cation model, ACMIIEEE 1 !jth lnternational Conf.
on Soft. Eng., Baltimore, MD (May 1993), 348-
357.

[15] Zelkowitz M. V., Software engineering technol-
ogy transfer: Understanding the process, 1 8th
NASA Software Engineering Workshop, Green-
belt, MD (December 1993), 450-458.

[16] Zelkowitz M. V. and B. Cuthill, Application of an
information technology model to software engi-
neering environments, Journal of Sys and Soft-
ware, 1 996, (To appear).

SEW Proceedings
232

[I995 Software ~ n ~ i n e e r @ WVorkshopl

Process Enactment Within An Environment

Roseanne Tesoriero and Marvin V. Zelkowitz

Institute for Advanced Computer Studies and

Department o f Computer Science

University of Maryland '

College Park, Maryland

.20 years of studies in flight dynamics application domain

- Most SEL studies were on the effects of processes on the
development o f products

. SEL obviously is more productive than it was 20 years ago

- How much has productivity improved since 1976?
- But everyone's productivity has improved since 1976.

- How much better is productivity now relative to other
environments?

. Question: Can we measure process complexity and then apply it t o
SEL flight dynamics domain?

- This is the initial phase o f an ongoing research effort that grew
out o f an earlier study on NASA technology transfer efforts. (See
paper in 1993 Software Engineering Workshop proceedings.)

SEW Proceedings

!Process Complexity]

. We understand (somewhat) hardware complexity measures

. Which is a more complex system?

- 8088 4.77Mhz PC-XT with 10 Mbyte disk bought in 1983 for
$5,300

- 80286 6Mhz PC-AT with 20 Mbyte disk bought in 1984 for $4,000
- 1486Dx2 66Mhz PC with 340 Mbyte disk bought in 1993 for

52.600
- Pentium 75Mhz PC with 850 Mbyte disk bought in 1995 for

$1,700

. Pentium is obviously more powerful, but which is more powerful
relative t o the era in which it was produced?

. We have benchmarks for hardware ($/MIPS, Dhrystone, TPC-A,
LINPACK, ...), but can we do the same for software?

fl%?
?ad /Environment Benchmark 1
%fir&

. Want a performance measure that addresses effects of processes
and tools on productivity

. Measure should be: Services-produced per tool-use per life-cycle-activity

. Rest o f talk concerns investigation of this measure:

- 1. How do we model such a process performance measure?
- 2. What is an environmental service?
- 3. What tools are used in the §EL environment?
- 4. How do we classify flight dynamics application functions?

SEW Proceedings

&it 11. HOW do we model a process measure?]
e,nm6', -- -

. Assumptions:

- Increased automation allows for increased complexity
- There is a l imit t o process complexity

- Over time. this complexity increases, due t o innovation -
Technological drift improves all environments each year.

. Use a model based upon work done previously at NlST (ITEM -
Information Technology Engineering and Measurement Model)

. Three parameters o f model:

- Percent automation (from manual t o total ly automated)

- Service abstraction level (from low-level infrastructure to entire
application domain)

- Process complexity

rc TIME

chaos

- - - - - - _ _ _ - - - - _ _ - - - - - - - - _ _ _ _ _

0-• order
1995 1990

-

level
simple task application

Abstraction level

SEW Proceedings

0% % Automation 100%

. Increased automation allows for increased complexity

. There is a l imit t o process complexity

. Need to keep a given process under this horizon a t all times

. Over time. this complexity increases, due to innovation

12. What is an environmental function?]
*wr)H

. Need a standard reference architecture for describing information
flow through an environment

. Reference architecture is a service-based model of the functionality
performed by the tools in an environment

. Several models of environments have been proposed

. Two used for this study:

- N lST - ECMA Software Engineering Environment Framework -
Called "toaster model" due t o graphic that has been used t o
describe it

- Project Support Environment (PSE) reference model o f end user
services

SEW Proceedings

[NIST - ECMA Model /

I
+ Policy Enforcement Services

Communication Services + Framework Administration
Services

&&%
~ $ 2 INlST - ECMA Reference Model I q;

. Based upon a set o f 66 services needed for environment frameworks

. Services grouped by convenience into related categories:

- Object Management Services. For creation o f data objects and
management o f the data repository.

- Process Management Services. For definition of computer-assisted
software development activities.

- Communication Service. For communication among components o f
the environment.

- User Interface Services. For communication with users of the
framework.

- Tool Services. For installing tools t o tailor the framework for
specific applications.

- Policy Enforcement Services. For providing security and integrity
mon~tor ing services.

- Framework Administration and Configuration Services. For controlling
access and resources available in the framework.

SEW Proceedings

/PSE Reference Model j

. Developed 1991-93 by Navy NGCR program

. It is an end user service model built on top of the NIST-ECMA
infrastructure

. Developed for the software engineering software development
domain

. Service Categories:

- Technical Engineering (Requirements, Design. Coding,
Traceability. Testing. ...)

- Technical Management (Configuration management, . . .)
- Project Management (Planning. Estimation, Scheduling, ...)
- Support service (Editing, Publishing, Figure processing, Email, ...)

. Goal is to map current tool use using this model and then develop a
model oriented toward FDD application domain

@) 13. What tools are used in the SEL environment?]

. Environment evolution over past 20 years:

- IBM mainframe
- VAX
- Workstation-based

. Can we understand what tools have been used i n the FDD domain?

. How has tool use changed over the past 20 years?

. Can we map the reference model services t o these tools?

SEW Proceedings

-
Y) rl "'I I I00s0.e0 & * L O Y " . V O * C O . D 0 0 0 0 v 2

I

SPOl Wet stool XVA sloot dH SlWt3d

/Services Used]

SEW Proceedings

@ lSurnrnary of Services Used j
\gi:r;.a

/ PSEService I IUhl ! VAX ' HI' TPT-J
-.-..t-̂. I

SEW Proceedings

[~ o o l Use in SEL]

. Basic functionality of tools has not changed much over last 20 years.

. Not much variability in tool use among different projects

. Underlying technology certainly has changed

. What is relationship of tools t o the services they provide?

. Process complexity much more complex than represented by tool
use (e.g., New module development on mainframe)

[~ e w Module Development Process 1

SEW Proceedings

.&%%
i?$@af /Process Complexity?
43- '

. Each process can be represented as a graph

. Previous research on graph complexity - Prime Program Structural
Complexity

- Services enacted gives a measure o f the nodes of the graph, and
external data objects gives a measure of the data i n the graph.

- Measure information theoretic content (entropy) of the graph

. Need to develop process models for additional steps i n the SEL
development process

14. How d o we classify FDD applications? j
'%.a&

. Current processes are driven by manual intervention

. Has the FDD improved their development practices?

. Can we improve the degree o f automation in the FDD environment?

.What are 'the set of services that define this environment?

- Three approaches towards applications: Standard development,
C++ class library (GSS). FDDS development

- Study each t o look for a common thread of services

- Develop FDD reference model that more closely defines this
application domain

SEW Proceedings

\Flight Dynamics "Services" (PreIiminary)

Database Telemetry Data
Measurement Data
Uplink Tables
instrument View Timeline

Dynamics Disturbance
3-Axis Stabilized Attitude
Orbit Dynamics
Reference Coordinate System

Hardware Sensor Model
Spacecraft Model Spacecraft Structure

Surface
Environment Stars

Earth Atmospheric Density
Solar Flux

Utilities Interpolator
Inertial Coordinate Converter
interval Root Estimator

Application Domain Simulation
Telemetry
Measurement Sensor Measurements

Star Identification
Estimation Estimator

Measurement Model
Simulation Schedule

Condition
Simulated Sensor

Attitude History
Estimation Data
Antenna Contact Parameters

Attitude Dynamics
Spin-Stabilized Attitude
Orbit Model

Actuator Model
Spacecraft Component

Solar System Body
Geomagnetic Field
Gravitational Field
Integrator
Root-Searcher

Estimation

Actuator Measurements
Validation
Dynamic Model

Event
Command
Simulated Actuator

]Model Measurements I k&

. This represents the first steps toward quantifying this model.
Parameters:
- Percent reuse is a first approximation of degree of automation
- Services implemented provides a rough approximation of level o f

abstraction
- Entropy (prime program structural complexity) provides a first

approximation o f process complexity

. Current model is static. Need t o factor i n annual increase i n
technological changes. (e.g., If average increase is 4%. what does
this even mean?)

. Reliability of development process (i.e.. faults found via SEL
database) and productivity data provide some validation of process
complexity

. Goal: To develop a measurement process using these attributes
with validation of this model through SEL database

SEW Proceedings

. This talk represents a first step a t addressing the important issue of
measuring process complexity

. The goal is compounded by the knowledge that "average"
complexity increases over t ime

.Wi th in SEL, tool use has changed over time, but tool functionality
has not changed significantly

. D o not have a good "figure o f merit" for effective tool use

. We are currently working on developing such a model

. An application-specific model o f environmental services should help

SEW Proceedings

I ,

y&d / 5 -
po'.tL.-

Session 4: Models

Reliability and Risk Analysis of the NASA Space Shuttle Flight Software
Norman Schneidewind, Naval Postgraduate School

Modeling and Simulation of Software Projects
Anke Drappa, University of Stuttgart

Evaluating Empirical Models for the Detection of High-Risk Components:
Some Lessons Learned

Filippo Lanubile, University of Bari

SEW Proceedings

SEW Proceedings

Reliability and Risk Analvsis of the NASA Space Shuttle Flight Software

Norman F. Schneidewind i

Code SMJSs ., . - / > '

Naval Postgraduate School > J
' -

Monterey, CA 93943

Voice: (408) 656-2719
Fax : (408) 656-3407
Internet: schneidewind@nps.navy.mil

Introduction,

We have used two categories of software reliability measurements and predictions in combination to
assist in assuring the safety of the software of the NASA Space Shuttle Primary Avionics Sofhuare System.
The two categories are: 1) measurements and predictions that are associated with residual software faults
and failures, and 2) measurements and predictions that are associated with the ability of the software to
survive a mission without experiencing a serious failure. In the first category are: remaining failures, total

failures, fraction of remaining failures, and test time required to attain a given number or fraction of
remaining failures. In the second category are: time to next failure and test time required to attain a given
time to next failure. In addition, we define the risk associated with not attaining the required remaining
failures and time to next failure. Lastly, we have derived a quantity from the fraction of remaining failures
that we call operational quality. The benefits of predicting these quantities are: 1) they provide confidence
that the software has achieved safety goals, and 2) they provide a means of rationalizing how long to test
a piece of software. Having predictions of the extent that the software is not fault fiee (remaining failures)
and its ability to survive a mission (time to next failure) are meaningfbl for assessing the risk of deploying
safety critical software. In addition, with this type of information a program manager can determine whether
more testing is warranted, or whether the software is sufficiently tested to allow its release or unrestricted
use. These predictions, in combination with other methods of assurance, such as inspections, defect
prevention, project control boards, process assessment, and fault tracking, provide a quantitative basis for
achieving safety and reliability objectives [BIL94].

Loral Space Information Systems, the primary contractor on the Shuttle Flight Soffware project is
experimenting with a promising algorithm which involves the use of the SchneidwindSofhvare Reliability
M A 1 to compute a parameter: fraction of remaining failures=remaining failureslm- as a
hnction of the archived failure history during testing and operation. [KEL95]. Our prediction methodology
provides bounds on test time, remaining failures, operational quality, and time to next failure that are
necessary to meet Shuttle software safety requirements. 'we also show that there is a pronounced asymptotic
characteristic to the test time and operational quality curves that indicate the possibility of big gains in
reliabiity as testing continues; eventually the gains become marginal as testing continues. We conclude that
the prediction methodology is feasible for the Shuttle and other safety critical applications.

SEW Proceedings

Although remaining failures has been discussed in general as a type of software reliability prediction
[MUS87], and various stopping rules for testing have been proposed, based on the economics of testing
PAL941 and a testability criterion [VOA95], our approach is novel because we integrate safety criteria,
risk analysis, and a stopping rule for testing. Furthermore, we use reliability measurements and predictions
to assess whether safety goals are likely to be achieved. Thus we advocate using safety analysis and reliability
analysis synergistically in a mutually supportive way rather than treat these fields as disjoint and unrelated.

Criteria for Safety

Ifwe define our safety goal as the reduction of failures that would cause loss of life, loss of mission, or
abort of mission to an acceptable level of risk [LEV86], then for software to be ready to deploy, after having
been tested for time t,, we must satisfjr the following criteria:

1) predicted remaining failures R(t2)<k,
where R, is a specified critical value , and

2) predicted time to next failure TF(tJ>tm,
where tm is mission duration.

For systems that are tested and operated continuously like the Shuttle, t,, TF(t2), and t,,, are measured in
execution time. Note that, as with any methodology for assuring software safety, we can't guarantee safety.
Rather, with these criteria, we seek to reduce the risk of deploying the software to an acceptable level.

remain in^ Failures Criterion

On the assumption that the faults associated with failures are removed (this is the case for the Shuttle),
criterion I specifies that the residual failures and faults must be reduced to a level where the risk of operating
the software is acceptable. As a practical matter, we suggest &=l. That is, the goal would be to reduce the
expected remaining failures to less than one before deploying the software. If we predict R(t32&, we would
continue to test for a total time t,'>t2 that is predicted to achieve R(t,')<&, on the assumption that we will
experience more failures and correct more faults so that the remaining failures will be reduced by the quantity
R(t2)-R(t,'). If the developer does not have the resources to satis@ the criterion or is unable to satis@ the
criterion through additional testing, the risk of deploying the software prematurely should be assessed (see
the next section). We know fiom Dijkstra's dictum that we can't demonstrate the absence of faults; however
we can reduce the risk of failures occurring to an acceptable level, as represented by &. This scenario is
shown in Figure 1. In case A we predict R(tJ<R, and the mission begins at t,. In case B we predict R(t&R,
and postpone the mission until we test for time t,' and predict R(t,?<R. In both cases criterion 2) must also
be satisfied for the mission to begin.

One way to specifjr R, is by failure severity level (e.g., severity level I for life threatening failures).
Another way, which imposes a more demanding safety requirement, is to specifj that R, represents all
severity levels. For example, R(t&l would mean that R(t3 must be less than one failure, independent of
severity level.

SEW Proceedings

Time to Next Failure C riterion

Criterion 2 specifies that the software must survive for a time greater than the duration of the mission.
If we predict TF(t2)s&, we would continue to test for a total time t,'3t2 that is predicted to achieve
T,&")Y, on the assumption that we will experience more failures and correct more faults so that the time
to next failure will be increased by the quantity TF(~")-TF(t2). Again, if it is infeasible for the developer to
satisfjl the criterion for lack of resources or failure to achieve test objectives, the risk of deploying the
software prematurely should be assessed (see the next section). This scenario is shown in Figure 2. In case
A we predict TF(t&,, and the mission begins at t,. In case B we predict TF(tJst,,, and postpone the mission
until we test for time h" and predict TF(kw)Y, In both cases criterion I) must also be satisfied for the mission
to begin. If neither criterion is satisfied, we test for a time which is the greater oft,' or t,".

Risk Assessment

The amount of test execution time t, can be considered a measure of the maturity of the software. This
is particularly the case for systems like the Shuttle where the software is subjected to continuous and rigorous
testing for several years. If we view t, as an input to a risk reduction process, and R(t,) and TF(t2) as the
outputs, we can portray the process as shown in Figure 3, where R, and t,,, are shown as "levels" of safety
that control the process.

Remainin? Failures

We can formulate the risk of criterion I as follows:

We plot equation (3) in Figure 4 as a function of t, for &=I, where positive, zero, and negative risk
correspond to R(tJ>R, R (w and R(tJ<&, respectively, and the UNSAFE and SAFE regions are above
and below the X-axis, respectively. This graph is for the Shuttle operational increment OID; an operational
increment (01) is comprised of modules and configured from a series of builds to meet mission hnctional
requirements. In this example we see that at approximately t2=57 the risk transitions from the UNSAFE
region to the SAFE region.

Time to Next Failure

Similarly, we can formulate the risk of criterion 2 as follows:

We plot equation (4) in Figure 5 as a hnction oft, for ~ = 8 days (a typical mission duration time for this 01),
where positive, zero, and negative risk corresponds to T,(t,)<t,, TF(t2)=tm, and TF(t2)>tm, respectively, and
the UNSAFE and SAFE regions are above and below the X-axis, respectively. This graph is for the Shuttle
operational increment OIC. In this example we see that at all values of t, the risk is in the SAFE region.

SEW Proceedings

Approach to Prediction

In order to support our safety goal and to assess the risk of deploying the software, we make various
reliability and quality predictions. In addition, we use these predictions to make tradeoff analysis between
reliability and test time (cost). Thus our approach to reliability prediction is the following: 1) Use a software
reliability model to predict total failures, remaining failures, and operational quality; 2) Predict the time
to next failure (beyond the last observed failure); 3) Predict the test time necessary to achieve required levels
of remainingfaures (fwlt) level, operational quality, and time to next failure; and 4) Examine the tradeoff
between increases in levels of reliability and quality with increases in testing.

The predictions are based on the Schneidewind Soffware Reliability Model, one of the four models
recommended in the AIAA Recommended Practice for S o f ~ e Reliability [AIA93]. It is not our purpose
to derive the model equations because they have been derived in other publications [AIA93, SCH93, SCH92,
SCH751. Rather we apply the model to analyze the reliability of the Space Shuttle Primary Avionics
Software.

Because the flight software is run continuously, around the clock, in simulation, test, or flight, "time"
refers to continuous execution time and test time refers to execution time that is used for testing.

Makin? Safety Decisions

In making the decision about how long to test t,, we apply our safety criteria and risk assessment
approach. We use Table 1 and Figure 6 to illustrate the process. For test time h=18 (when the last failure
occurred on OL4), &=I, and t,,,=8 days (-267 intervals), we show remaining failures R(t3, risk of remaining
failures, time to next failure TF(t-J, risk of time to next failure, and operational quality Q, where Q=1-
fraction remaining failures, in Table 1. These results indicate that safety criterion 2 is satisfied but not
criterion I (i.e., W A F E with respect to remaining failures); also operational quality is low. With these
results in hand, the soha re manager could choose to continue to test. If testing were to continue until t2=52,
the predictions in Table 1 and annotated on Figure 6 would be obtained. These results show that criterion
I is now satisfied fie., SAFE) and operational quality is high. We also see that at this value of h, fbrther
increases in t, would not result in a significant increase in reliability and safety.

Table 1
Safety Criteria Assessment

&=I 4,,=8 days

5: 30 day intervals
* Can't predict because predicted Remaining Failures is less than one.

SEW Proceedings 250

Conclusions

Software reliability models provide one of several tools that software reliability managers of the Space
Shuftle Primmy Avionics Softrvare are using to provide confidence that the software meets required safety
goals. Other tools are inspections, software reviews, testing, change control boards, and perhaps most
important -- experience and judgement. We have shown how to apply these models; the approach would
seem to be applicable to other safety critical systems. We encourage practitioners to apply these methods.

References

[MA931 Recommended Practice for Software Reliability, R-013-1992, American National Standards
Institute/American Institute of Aeronautics and Astronautics, 370 L'Enfant Promenade, SW,
Washington, DC 20024, 1993.

[BE941 C. Billings, et al, "Journey to a Mature Software Process", IBM Systems Journal Vol. 33, No.
1, 1994, pp. 46-61.

[DL941 S. R. Dalal and A. A. McIntosh, "When to Stop Testing for Large Software Systems with
Changing Code", IEEE Transactions on Software Engineering, Vol. 20, No. 4, April 1994, pp.
3 18-323.

p L 9 5] Ted Keller, Norman F. Schneidewind, and Patti A. Thornton "Predictions for Increasing
Confidence in the Reliability of the Space Shuttle Flight Software", Proceedings of the AIAA
Computing in Aerospace 10, San Antonio, TX, March 28, 1995, pp. 1-8.

[LEV861 Nancy G. Leveson, "Software Safety: What, Why, and How", ACM Computing Surveys, Vol.
18, No. 2, June 1986, pp. 125-163.

[MUS87] John Musa, et al, Software Reliabity: Measurement, Prediction, Application, McGraw-Hill, New
York, 1987.

[SCH93] Norman F. Schneidewind, "Software Reliability Model with Optimal Selection of Failure Data",
IEEE Transactions on Software Engineering, Vol. 19, No. 1 1, November 1993, pp. 1095-1 104.

[SCH92] Norman F. Schneidewind and T.W. Keller, "Application of Reliability Models to the Space
Shuttle", IEEE Software, Vol. 9, No. 4, July 1992 pp. 28-33.

[SCH75] NormmF. Schneidewind, "Analysis of Error Processes in Computer Software", Proceedings of
the International Conference on Reliable Sohare, IEEE Computer Society, 21-23 April 1975,
pp. 337-346.

[VOA95] Jeffrey M. Voas and Keith W, Miller, "Software Testability: The New Verification", IEEE
Sofiware, Vol. 12, No. 3, May 1995, pp. 17-28.

SEW Proceedings

Shr t Ttst End Tat, Bcgh Mlsrion End Mlssloa

Start Test
End Teat

Continue Ttst Begla Mlsslon Ead Mlsslon

Figure 1. Rtmaining Failuru Criterion Scenario

Start Test Ead Test, Begin Missioa End Mission

Strrt Test
End Test

Continue Test Btgia Mission End Mission

Figure 2. Time to Next Failure Criterion Sctnsiio

SEW Proceedings

Levels

Rc tm

t2 ----+
Software Maturity

Risk

Reduction
-* R(t2)

-* TF(W
Reliability Measures

Figure 3. Risk Reduction

Figure 4. Risk of Remaining Failures

rJ

A

u -

5
U.

! L - -

i - -

4 7

SEW Proceedings

-

- -
-

1 I I 1-

u .I. a 1U 0

Test ExecuOon Thne t2 30 Day Intervals

= Y P I 4 l U

Test Execution Tlme t2 30 Day Interval8

SEW Proceedings

Reliability and Risk Analysis of the NASA Space
Shuttle Flisht Software

Norman F. Schneidewind

Code SMISs
Naval Postgraduate School

Monterey, CA 93943

Voice: (408) 656-27 19
Fax : (408) 656-3407

Internet:
schneidewind@nps .navy .mil

SEW Proceedings

OUTLINE

o Shuttle Critical Software

o Shuttle Software Configuration

o Safety Criteria

- Remaining Failures

- Time to Next Failure

o Risk Reduction

- Risk of Remaining Failures

- Risk of Time to Next Failure

o Software Deployment Decision

o Conclusions

SEW Proceedings

SOFTWARE CRITICAL TO NASA SHUTTLE

11
ONBOARD DATA PROCESSING SYSTEM AND
SOFTWARE

Mission - Critical Software System - "Fly By Wiren
Supports All Flight Phases From Pre - Launch to Rollout

Hardware: 5 General Purpose Computers, Associated
Displays, Keyboards, Mass Storage Devices
Software:
- Primary Avionics Software System (PASS) Keyed to

Mission Phases
- Backup Flight System Provides Redundancy During

Critical Ascent and Entry Phases
During Critical Phases, 4 of the 5 Computers Execute the
PASS Redundantly

SEW Proceedings

SOFTWARE CONFIGURATION FOR A
TYPICAL SHUTTLE FLIGHT

SEW Proceedings

Start Test End Tert, Btgla Mtsrtoa End Mbrlon

Start Tnt
End Test

Contlmee Test Begin Mlirloa End MIulon

Figure 1. Remaining Failures Criterioa Scenario

Start Tut End Test, Begin Mbsk. End Mlnbn

Start Test
Ead Tat

Cofitinue Test Begh Mlrrlar Emd Mlssiaa

Figare 2. Time to Next Faikre Criterion Scenario

SEW Proceedings

t2 -----+
Software Maturity

Levels
Rc tm

Risk

Reduction

Figure 3. Risk Reduction

SEW Proceedings

~-> R(t2)

-> TF(t2)
Reliability Mensans

73 1,.
I

.%,

h
F i '%.,

1 ; '\
i ' 63:- '*,

Y
'.

\
.\
\
i
-\

i
\
i
\
\ '\.. -. --.

i *"-.yQWu
; -------"---..-----..-..-------------------^---+z-~- -- -- --'--"..-- ----
I --.
i '"-. -
i

--....-.. --...- "_
4.7 i.- -..... I --- --...-...-..- " .. 1 J

18 55:6 '49 U R m

Test Execution Time t2 30 Day intervals

SEW Proceedings

t UNSAFE TF<t2)<tm

Test Execution Time t2 30 Day Intervals

SEW Proceedings

SAFETY CRITERION 1:

The first criterion required for flight safety is that the
predicted remaining failures (i. e., residual faults) be
at an acceptable level (e.g., R(t2)<l) at test &me t2.

This is shown in the figure where we test for a time
t,=time until launcIz =52 intervals, and at this time
R(52)=.6.

SAFET .@

Not shown is the second criterion: TF(52)>&(time to
next failure>mission d ~ r a t i o ~) .

SEW Proceedings

t2cll.c MI l L.-h

Execution Time (30 Day Intervals)

SEW Proceedings

0 onclllslons

Software reliability inodels provide one of

several tools that software reliability managers of

the Space Slr uttle Primary Avionics Software are

using to provide confidence that the software

meets required safety goals. Other tools are

inspections, software reviews, testing, change

control boards, and perhaps most important --

experience and judgement. We have shown how to

apply these models; the approacl~ would seem to be

applicable to other safety critical systems. We

encourage practitioners td apply these methods.

SEW Proceedings

WHERE TO OBTAIN METRICS AND RELIABILITY
DOCUMENTS:

STANDARD FOR A SOFTWARE QUALITY METLUCS
METHODOLOGY, IEEE STD 1061-1992, MARCH 12,1993:

IEEE Standards Office
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 08855-1331, U.S.A.
Tek 1-800-678-IEEE

STATISTICAL MODELlNG AND ESTIMATION OF
RELLABILI'IY FUNCTIONS FOR SOFIWARE (SMERFS):

Version 5 of this program is available from Dr. William H.
Farr, Code B10, Naval Surface Warfare Center, Dahlgren
Division, Dahlgren, VA 22448, U. S .A.
Tel: 1-540-653-8388.

ANSIfAIAA RECOMMENDED PRACTICE FOR
SOFTWARE RELIABILITY:

James French
Director of Standards
AIAA Headquarters
370 LIEnfant Promenade, SW
Washington, DC 20024-2518, U.S.A.
' Tel: 1-202-646-7400

SEW Proceedings 267

SEW Proceedings

Modeling and Simulation of Software Projects

A. Drappa, M. Deininger, J. Ludewig, R. Melchisedech

SofhYare Engineering Group, University of Stuttgart - % y 2 - & Breitwiesenstr. 20 - 22,D-70565 Stuttgart, Germany
/

drappa@infomuztik.uni-stuttgart.de

1. Introduction to SESAM

Over the last twenty five years, software development projects have increasingly been plagued
by schedule and cost overruns, while product quality is often poor. The term "software crisis"
has been coined to highlight this situation. The lack of adequate methods and tools to support
software development, and of techniques to simplify project management tasks have been
identified as major factors contributing to the "software crisis".
In reaction to this, the software engineering community has attempted to devise a number of
analytical and constructive operations to both handle the complexity of software development
and assure quality of the resulting products. However, despite an impressive evolution of
methods and technology in the past years, neither the software development process nor overall
product quality have improved significantly. Part of the reason for this appears to be a serious
lack of understanding of the software development process. It is often unclear how to integrate
methods and tools in the development process to achieve best results because little is known
about the most important influencing factors that determine process and product quality.

Our research project SESAM (Software Engineering Simulation by Animated Models)
attempts to address the problems outlined above. With the SESAM project, we pursue the
following two main goals.

1) Building quantitative models of sofhvare development projects to gain a better
understanding of the underlying processes.
Detailed description of software processes is an absolute requirement for informed
discussion about effects observable in software development projects. Software projects
can be described by a set of simple effects, where each effect influences the course of the
process and the quality of the resulting products. The software project is thus determined
by simple rules and their effect on the whole process. Our goal is to identify these effects,
and to describe them in a quantitative way wherever possible. Even though some of the
quantitative effects are currently hypothetical in nature, the formal description provides a
sound basis for their validation with empiricd data.

2) Simulation of software development projects, taking the models as a basis to educate
future project managers.
Teaching project management from text books has been proved to be insufficient, while
training on the job is difficult due to the length and costs of software projects. Taking the
knowledge captured in SESAM models as a basis, the simulation of software projects
allows students to gain reality-like experience without jeopardizing the progress of real

SEW Proceedings
269

SEL-95-004

20th Annual Software Engineering Workshop 2f7

projects. Thus, the simulation offers the opportunity to transfer the available knowledge of
software processes to project managers who in turn can apply this knowledge in real
industrial projects.

The idea of SESAM was first described in 1989 Ludewig891. Since then we have built three
consecutive prototypes, and 'have finished the system SESAM-1 in 1994. This work has
produced new results in three important categories:

more elaborate concepts of SESAM models,
* further development of a language to adequately describe those models, and

new features needed for the simulation system.

A selection of these results will be presented in the following three sections. Finally, we will
summarize our experience with a SESAM model in a project management course held at our
department and briefly outline some of our current research activities.

2. Basic Principles and Related Work

The approach we took to develop SESAM is influenced by a number of underlying basic
concepts. In the following section, we will outline our general approach, refer to some of the
concepts developed by other groups and illustrate how our approach differs from previous
attempts to model software development processes.

Building models that can be validated.
Effective teaching of software engineering and project management knowledge by simulation
requires that the models used be realistic, provide quantitative information, and be capable of
reflecting process and product quality. Thus in SESAM, we have to iden@ cause and effect
relationships between objects involved in the software process and to describe them
quantitatively as far as possible. Consequently, the SESAM models were designed to be able
to reflect and process quantitative data. Since the software engineering knowledge currently
available largely is a collection of "rules of thumb", our models have to be bolstered by
empirical data from real projects. Therefore, SESAM models are intended to be detailed (fine-
grained) so that results of the simulation can be directly related to real project data.

Learning by trial and error.
The traditional way of teaching project management is to convey one (the best) predefined
solution of a given problem to a student. In our experience, teaching is more effective, and
learning is much easier, if the student has a chance to try different solutions. Subsequently, he
or she can analyze which solution is the best, and why. Therefore, software projects should be
simulated by allowing the student to trigger any sequence of actions, driving the project in what
he or she thinks is the right direction. Conversely, the simulation system reacts by presenting
informal messages reflecting the current state of the project. As a consequence, SESAM
models are built to be interactive, i.e. models must accept input from the student, and react
appropriately to the actions taken.

Related Work
Quantitative modeling is not a new idea. The pioneering work of Tarek Abdel-Hamid aimed at
gaining a fundamental understanding of software project management processes [Abdel-
Hamid911. His results have influenced a number of similar approaches [Levarygl], [C d O] ,
the basic idea of which is to describe and simulate software processes using system dynamics.
The drawback of system dynamics models is that they are neither interactive, nor fine-grained.
While well suited to describe quantitative aspects, they do not provide means of interaction
between model and student for training purposes.

SEW Proceedings
270

20th Annual Software Engineering Workshop 317

At the present time, software process modeling is an active and growing area of research. An
overview is presented in [Curtis92]. Among the principal goals of this research is the
construction of Process Centered Software Engineering Environments (PCSEE) offering tools
to facilitate product development and integrate information about the whole process. By
strongly guiding the process, management tasks can be simplified significantly [Snowdon94].
The construction of PCSEEs also requires detailed description of software processes, and much
effort has been devoted to the definition of new modeling approaches and languages
pinkelstein94]. These approaches, however, tend to emphasize a predefined course of the
modeled project, and do not provide the flexibility required for our purposes.

3. SESAM - Modeling Approach and Language

We concluded that for our purposes, a new modeling approach was desirable. We set out to
define a multi-paradigm language integrating a number of well established concepts.

The following description of the SESAM models is structured into two parts. The static
perspective mainly focuses on the description and type definition of objects involved in the
software process and possible relationships between these objects. The dynamic behavior is
described by a set of generic rules specifying actions and effects which change the state of the
simulated software project [Schneider94].

Static perspective - the scheme

To describe the static perspective called the SESAM scheme, the extended entity-relationship
notation is used. Types of real world objects, like Developer or Document, and of possible
relationships between these objects, like reads or writes, are identified and further described by
attributes. Possible attributes of the entity type Developer include for example name, age, or
experience. The type Document could be characterized by the attributes name, size, and
#-of-faults. The scheme is described graphically. A very simple part of the scheme is shown in
figure 3.1.

Figure 3.1: Part of a SESAM scheme

Dynamic perspective - the rules

The dynamic behavior is represented by a set of rules. Each rule essentially describes how the
state of the simulated project changes with time, or as the result of an action triggered by the
project manager. Consider a simple example: The project leader asks a developer to write a
document, perhaps the specification. One effect of this action is that as long as the developer
is writing the document, the document grows at a speed depending on the developer's
experience. Assume further that the average writing productivity is 3 pages per day, and that
experience is a multiplier with a value of less than one for a rookie, and greater than one for a
very experienced team member. In SESAM this rule is described as shown in figure 3.2.

The graphical notation for SESAM rules is based on a combination of graph grammars and
system dynamics. The basic idea is that the current state of the simulated project is represented
by a graph to which graph grammar productions can be applied. Each SESAM rule performs

SEW Proceedings 27 1
SEL-95-004

20th Annual Software Engineering Workshop

writes

Figure 3.2: A simple SESAM rule

such a graph production, i.e. it specifies which subgraph must be matched so that the rule can
be activated. The notation has been extended by system dynamics elements to reflect
continuous changes of attribute values with simulation time (see attribute size in figure 3.2).
The interaction between model and player is described by events. Rule notation and the formal
foundations are discussed in more detail in [Drappa95].

Before simulation can begin, another model component has to be provided: the initial situation.
This part essentially defines the initial graph to which the rules can be applied. The initial
situation comprises the problem description of a specific project, and instances from the entity
or relationship types defined in the scheme. Examples for objects that could be defined in this
context are team members or tools that are individually characterized by their specific attribute
values.

4. SESAM Simulation

Having formally described the software process, the simulation of a software project can begin.
The user of the simulator (maybe a project management student) receives the project
description and plans the project according to his abilities. The player then communicates with
the system using a very simple interface.

w r e John

Bankmiller starts working. From now on you have to pay 800
M per day of the remaining budget to John Bankmiller.

[let John specify

John Bankmiller says: 'I really like to specify. You can tal
to many people. But sometimes they themselves don't know wha QX
roceed 1 0 days

current date is 29.11.1995

Figure 4.1: The player interface of the SESAM system

SEW Proceedings 272 SEL-95-004

20th Annual Software Engineering Workshop 517

Either he or she triggers actions to drive the project in the right direction, e.g. hiring new people
or assigning tasks to the team members, or helshe lets time proceed giving staff members a
chance to perform their tasks. In return, the player gets reactions from the system. The example
shown in figure 4.1 is now discussed in some more detail. The player commands are displayed
in bold-typed letters whereas the system replies are in standard type-face. The first action, the
player has decided on is to "hire John". The system replies that "John Bankmiller starts working
and that he costs 800 DM per day". After having hired John, the player assigns a task to him.
John shall write the specification. He is delighted at this idea and says that he likes specifying
very much. The third command shown differs from the previous two. Besides giving
instructions and taking decisions, the player is also in charge of the simulation time. Thus he
or she is able to determine the time needed for different project tasks.

As shown above, the player receives informal messages from the system depending on the
actions taken. These messages mostly do not reveal any internal data. But they may give hints
to the player. In the example above, the player can conclude that John Bankmiller is
experienced in writing the requirements specification and that he might perform the task well.
This reflects the real situation where it can be difficult for managers to get detailed knowledge
of the capabilities of their staff members and of the progress of the project in general.

After having finished the simulated project, the course of the project can be analyzed. To
facilitate this analysis, the SESAM system provides a so-called analysis component. This
component is able to display the attribute values over time. Effects that occured during the
project can be visualized and explained. Players learn which action has caused which effect.
Subsequently, they can check if this effect has been a positive or a negative one with respect to
the overall project. Figure 4.2 shows an example analysis of a simulated project. Assume that
the progress of this project is measured in terms of recognized requirements. However, the
features the developers have recognized and described in the specification document are not
necessarily the same as those which the customer initially required. To deal with this problem,
the player of this simulated project has decided to perform a review on the requirements
specification. The curve shown in figure 4.2 reveals that the number of requirements is
continually growing as long as the developers work on the specification. Then the document is
given to the customer who should verify it. The customer tries to find inconsistencies and
missing or obsolete functionality. As long as the customer reviews the specification, the
number of requirements remains unchanged. When the customer has finished the review he
reports about the findings, and the developers start to improve the document. Since the number
of requirements decreases significantly, the customer has found much more obsolete than
missing requirements.

The analysis component conceptually belongs to the simulation component. The modeling
component and the simulation component, however, have been fully separated. This was an
important design decision, since models can easily be adapted, extended, and analyzed. At the
same time, the complexity of the simulation component is significantly reduced. The simulator
mainly activates and deactivates the applicable rules according to the graph structure
representing the state of the simulated project.

SEW Proceedings

20th Annual Software Engineering Workshop 617

Figure 4.2: An example analysis of a simulated project

5. Experiences and Future Work

To test our modeling and simulation approach, we constructed a comprehensive model of a
software process which comprises all phases of the software development lifecycle
[Deininger94]. It consisted of a detailed scheme and approximately 100 rules. The model has
been successfully applied in an experiment conducted at our department.

In this experiment five groups with two students each had to simulate a "check accountance"
project. The experiment took twelve weeks. The students received the project information at
the beginning. They had to plan and to manage the check accountance project according to their
knowledge and skills. At the end, the success of the project, or its failure, respectively, was
assessed using three measures: The needed time, the needed budget, and the conformance of
the product with respect to the initial customer requirements. This last measure reflected how
many customer requirements have been transmitted into the final product, and how many have
been lost or introduced by mistake.

The results of the experiment were convincing. Students gained experiences similar to those
real project managers report about. Some groups even felt panic when the simulated project got
into some simulated trouble. By revealing their individual management strategies, the students
gained deep insight into the software process in general and into the consequences of their
individual decisions.

SEW Proceedings

20th Annual Software Engineering Workshop 717

For research purposes however, the model proved to be less adequate. As explained above, the
basic metaphor is to model product quality by a number of abstract units which initially
represent customer requirements. These requirements have to be transferred-from document to
document to the final product. Every unit lost, or added without proper reason, decreases the
quality of the emerging product. This measure appears too abstract and has no equivalent in
reality, which makes it harder to validate the model. We are currently working on a new
simulation model that is assembled from several modules. These modules help to reduce
complexity of fine-grained models, and they can be analyzed and validated separately. The
basic approach we pursue now is to collect quality aspects of software, and to identify suitable
metrics to measure these quality aspects. It is important to choose metrics that can be applied
to real documents in order to assure the possibility of comparing our models to real projects
(the only way to validate the models). Our hope is that eventually, the models should be able
to gradually replace the accumulation of rules of thumb now prevalent in the textbooks on
software engineering.

References

[Abdel-Hamid911 Abdel-Hamid, T.K.; Madnick, S.E.: Software Project Dynamics: An Integrated Approach.
Prentice Hall (Engelwood Cliffs), 1991.

[Car1901 Can, D.; Koestler, R.: System Dynamics Models of Software Developments. Proceedings of the 5th
International Software Process Workshop. 10. - 13. Oktober 1989, Kemebunkport, ME (USA), 1990, p. 46 - 48.

[Curtis921 Curtis, B.; Kellner, M.I.; Over, J.: Process Modeling. Communications of the ACM (35), Nr. 9,1992,
p. 75 - 90.

[Deininger94] Deininger, M.; Schneider, K.: Teaching Software Project Management by Simulation - Experi-
ences with a Comprehensive Model. In: Diaz-Herrera, J. (Hrsg.): Software Engineering Education - 7th SEI
CSEE Conference. San Antonio, Texas, USA, January 1994. Proceedings. Springer (Berlin), Lecture Notes in
Computer Science No. 750, 1994, p. 227 - 242.

[Drappa95] Drappa, A.; Melchisedech, R.: The Use of Graph Grammar in a Software Engineering Education
Tool. Proceedings of the Joint COMPUGRAPWSEMAGRAPH Workshop on Graph Rewriting and Computa-
tion. 28. August - 01. September 1995, Volterra (Italien), 1995, p. 133 - 140.

@?imkelstein94] Finkelstein, A.; Kramer, J.; Nuseibeh, B. (Eds.): Software Process Modelling and Technology.
John Wiley & Sons Inc. (New York), 1994.

[Levary91] Levary, R.R.; Lin, C.Y.: Modelling the Software Development Process using an Expert Simulation
System Having Fuzzy Logic. Software - Practice and Experience (21/2), 1991, p. 133 - 148.

[Ludewig89] Ludewig, 3.: Modelle der Software-Entwicklung - Abbilder oder Vorbilder? Softwaretechnik-
Trends (9), No. 3,1989, p. 1 - 12 (in german).
budewig921 Ludewig, J.; Bassler, T.; Deininger, M.; Schneider, K.; Schwille, J.: SESAM - Simulating Software
Projects. Proceedings of the 4th International Conference on Software Engineering and Knowledge Engineering.
Juni, 1992, Capri (Italien), 1992, p. 608 - 615.
[Schneider94] Schneider, K.: Ausfiihrbare Modelle der Software-Entwicklung. vdf Hochschulverlag (Ziirich),
1994 (in german).
[Snowdon941 Snowdon, R.A.; Warboys, B.C.: An Introduction to Process-Centred Environments. In: Finkelstein,
A.; Kramer, J.; Nuseibeh, B. (Hrsg.): Software Process Mbdelling and Technology. John Wiley & Sons Inc. (New
York), 1994, p. 1 - 8.

SEW Proceedings

..... :.:-c;:.:... Overview y-.. ..-..

Modeling and Simulation of Software Projects
with SESAM

Anke Drappa
University of Stuttgart

drappa@informatik.uni-stuttgart.de

Overview

Part I: The Problem - Software Engineering Education
Part 11: The Solution - The SESAM System
Part 111: The Results - Experiences with the System

- O Anke Drappa (November 29, 1995) ' 0

..... .::.:.:.:.-..
:;:~i"i"p.:: ::::iB2::: Part I: The Problem

A Tough Problem in Software Engineering

Teaching project managers adequately seems hard

Current approaches:
- learning from textbooks
- learning by leading real projects

A Solution from an other Area

Simulation

Example:
- teaching pilots using a flight simulator

Is that something we can apply to Software Engineering?

- O Anke Drappa (November 29,1995) ' 1

SEW Proceedings 276
SEL-95-004

. .-.-.-.-.-. .. :..ti...:
$i$$$: Part I: The Problem .:.>..:...- .-.. --.-.-.-.....-. .-.-.

Research Project SESAM:
Software Engineering Simulation by Animated Models

Project leader

interacts z
simulated real

s

- O Anke Drappa (November 29,1995) ' 2

..... . ..* .-.. .. :<<.:.:.:.. .
;;;;igg;$ Part 11: The Solution - SESAM System :...-:..::.

The Player's Interface of the SESAM System
I 1

d
" " ^ - " t *r$

I

John Bankmiller starts working. From now on you have to pay
800 DM per day of the remaining budget to John Bankmiller. :

let John specify

like to specify. You can talk
ey themselves don't know what 1

f

i

- 63 Anke Drappa (November 29.1995) ' 3

SEW Proceedings

..... :<<.:<... ... :.:.: ;:.> .:.,$g::::: :.:...... Part 11: The Solution - SESAM System -.: -;-

- C Anke Drappa (November 29,1995) '
4

.....
.:-3:;:5
:=gigg Part II: The Solution - SESAM System

Specification

- O Anke Drappa (November 29,1995) 4

SEW Proceedings

.....*:.:x.>:.s
Part II: The Solution - SESAM System~ ~.

Architecture of the SESAM System

Player 9 a Knowledge 2 Model
Builder

- O Anke Drappa (November 29,1995) ' 5

Analysis
Component

.....
............sf. :. ~ w : : Part 11: The Solution - SESAM System
...'2.:.?:::::

Model
Builder

Interface

Model Building in SESAM: Basic Ideas
Modeling simple effects where each effect influences
the course of the simulated project

changes inspects
,

Building fine-grained models allowing the player
to gain reality-like experiences

defines

Building descriptive models

An Example

"Walkthroughs catch 60 percent of the errors."
Boehm, B.: Industrial Software Metrics Top 10 List. IEEE Software (No. 5), 1987, p. 84-85.

1

Game '+

- O Anke Drappa (November 29,1995) ' 6

State

SEW Proceedings 279 SEL-95-004

changes
J

SESAM Simulator

..... -. . .-:;<.:.:.-.. .
::~~?@:S> :.:.: Part 111: The Solution - SESAM System f......-

Model Building in SESAM: Formal Description

has - reviewed

I# - of - detected - errorsb [# - of - errors]

Equation: y.# - of - detected - errors := ye# - of - errors * 0.6

--- O Anke Drappa (November 29,1995) ' 7

..... .:.'-'-:.-.. @g$g Part III: The Results -.---:..--..:.-.

Simulating Software Projects: An Experiment

5 groups with 2 students each simulated a
''check accountance" project

we used a simple model which covered all phases
of software development

success of the simulated projects was measured considering
recognized requirements, time, and budget

0 the students gained experiences similar to those
real project managers report about

I=> "post-mortem" analysis of the project allowed deep insight
into the software development process

- O Anke Drappa (November 29,1995) ' 8

SEW Proceedings 280

..... :<.x.:<.:.: - - Mi.2; Part ID: The Results .:.:*...-: *. ..-..

Future Work

* Building models which are
- more detailed,
- more realistic, and
- cover more aspects of the software development process

* Bolstering models by quantitative data which is collected in
experiments with students conducted in our department

Enhancing functionality of the SESAM simulation system

- O Anke Drappa (November 29,1995) ' 9

..... .:::..:::..:.:<
::::::g2.::,* < ::::. University of Stuttgart .:.: :: :
.I...-...*.:

SE
SAM

- O Anke Drappa (November 29,1995) ' 10

SEW Proceedings 28 1

SEW Proceedings

Evaluating Empirical Models for the Detection of

1. Introduction

High-Risk Components: Some Lessons Learned
4'-

113 -G/
Filippo ~anubile' and Giuseppe Visaggio

'>-
Dipartimento di Infonnatica, University of Bari *

r i +.

Via Orabona 4,70126 Bari, Italy
email: [lanubilelvisaggio] @ seldi.uniba.it 3 C, 6 7 0 di;

Software complexity metrics are often used as indirect metrics of reliability since they can be
obtained relatively early in the software development life cycle. Using complexity metrics to
idenhfy high-risk components, i.e. components which likely contain faults, allows software
engineers to focus the verification effort on them, thus achieving a reliable product at a lower
cost. Since in this study the direct metric of reliability is the class to which the software
component belongs (high-risk or low-risk), the prediction problem is reduced to a classification
model.
Classification problems have traditionally been solved by various methods, which originate from
different problem-solving paradigms such as statistical analysis, machine learning, and neural
networks. This study compares different modeling techniques which cover all the three
classification paradigms: principal component analysis, discriminant analysis, logistic regression,
logical classification models, layered neural networks, and holographic networks. A detailed
description of our implementation choices in building the classification models can be found in
[LLV95].

2. Data Description

Raw data were obtained from 27 projects performed in a software engineering course at the
University of Bari, by different three student-teams over a period of 4-10 months. The systems,
business applications developed from a same specification, range in size from 1100 to 9400
lines of Pascal source code. From each system, we randomly selected a group of 4-5
components for a total of 118 components, ranging in size from 60 to 530 lines of code. Here,
the term software component refers to functional abstractions of code such as procedures,
functions and main programs. Each group of component was tested by independent student
teams of an advanced software engineering course with the aim to find faults.
In order to build unbiased classification models, we decided to have an approximately equal
number of components in the classes of reliability. Thus, we defined as high-risk any software
component where faults were detected during testing, and low-risk any component with no
faults discovered.

Filippo Lanubile is spending a sabbatical period at the University of Maryland, College Park.

SEW Proceedings
283

SEL-95-004

In addition to the fault data, 11 software complexity metrics were used to construct the
classification models:

1. McCabe7s cyclomatic complexity (v(G))
2. Halstead's number of unique operands (q,)
3. Halstead's total number of operands (N,)
4. Total number of lines of code (LOC)
5. Number of non-comment lines of code (NCLOC)
6. Halstead's program length (N)
7. Halstead's volume (V)
8. Henry&Kafura's fan-in w i n)
9. Henry&KafuraYs fan-out (fanout)
10. Henry&Ka€uraYs information flow (IF)
1 1. density of comments (DC)

The metrics have been selected so as to measure both design and implementation attributes of
the components, such as control flow structure (metric I), data structure (metrics 2-3), size
(metrics 4-7), coupling (metrics 8-10), and documentation (metric 11). Most of these metrics
have been already used in other empirical studies to test predictive models with respect to faults
[MK92, LK941, and program changes [KLM93, KS94, LK941.
The set of 118 observations was subsequently divided into two groups. Two thirds of the
components, made up of 79 observations, were randomly selected to create and tune the
predictive models. The remaining 39 observations provided the data to test the models and
compare their performances. From now on, the first group of observations will be called
training set, while the second one testing set.

3. Evaluation Criteria

We selected statistical criteria which are based on the analysis of categorical data. In our study
we have two variables (real risk and predicted risk) that can assume only two discrete values
(low and high) in a nominal scale. Then the data can be represented by a two-dimensional
contingency table with one row for each level of the variable real risk and one column for each
level of the variable predicted risk. The evaluation criteria are predictive validity,
misclassification rate, achieved quality and verification cost.
The predictive validity is the capability of the model to predict the future component behavior
from present and past behavior. The present and past behavior is represented by data in the
training set while the future behavior of components is described by data in the testing set. In
our context, where data are represented by a contingency table, we apply the predictive validity
by testing the null hypothesis of no association between the row variable (real risk) and the
column variable (predicted risk). In this case, the predictive model is not able to discriminate
low-risk components from high-risk components. The alternative hypothesis is one of general
association. A chi-square (~ 2) statistic with a distribution of one degree of freedom is applied
to test the null hypothesis.
We use the criterion of predictive validity for assessment, since we determine the absolute
worth of a predictive model by looking at its statistical significance. A model which does not

SEW Proceedings

meet the criterion of predictive validity should be rejected. The remaining criteria are used for
comparison, taking into account that the choice between the accepted models depends from the
perspective of the software engineering manager. In practice he could be more interested in
achieving a better quality at a high verification cost or be satisfied of a lower quality, sparing
verification effort.
For our predictive models, which classify components as either low-risk or high-risk, two
misclassification errors are possible. A Type 1 error is made when a high-risk component is
classfied as low-risk, while a Type 2 when a low-risk component is classified as high-risk It is
desirable to have both types of error small. However, since the two types of errors are not
independent, software engineering managers should consider their different implications. As a
result of Type 1 error, a component actually being high-risk could pass the quality control. This
would cause the release of a lower quality product and more fix effort when a failure will
happen. As a result of Type 2 error, a component actually being low-risk will receive more
testing and inspection effort than needed. This would cause a waste of effort. We adopt from
[Sch94], as measures of misclassification, the proportions of Type 1, Type 2, and Type 1 +
Type 2 errors.
We are interested in measuring how effective are the predictive models in terms of the quality
achieved after that the components classified as high-risk have been undergone to a verification
activity. We suppose that the verification will be so exhaustive to fmd the faults of all the
components which are actually high-risk. We measure this criterion using the completeness
measure [BTH93], which is the percentage of faulty components that have been actually
classified as such by the model.
Quality is achieved by increasing the cost of verification due to an extra effort in inspection and
testing for the components which have been flagged as high-risk We measure the verification
cost by using two indicators. The former, inspection [Sch94], measures the overall cost by
considering the percentage of components which should be verified, The latter, wasted
inspection, is the percentage of verified components which do not contain faults because they
have been incorrectly classified.

4. Analysis of the Results

We applied the evaluation criteria on the testing set and analyzed the resulting data, shown in *
a is the probability of uncorrectly rejecting the null hypothesis (no association)
Table 1. The first two columns show the chi-square values and the significance levels across the
classification models built using different modeling techniques. From the low values of chi-
square and high significance levels in the testing set, we accept the null hypothesis of no
association between predicted risk and real risk. Zn fact, all the values of significance are too
high with respect to the most common values which are used to reject the null hypothesis.
As regards the misclassification rate, we recall that a casual prediction should have 50 percent
of proportion of Type 1 + Type 2, and 25 percent for both proportion of Type 1 and Type 2.
From data showing the misclassification rates, we see that the proportion of Type 1 + Type 2
error ranges between 46 percent and 59 percent. Discriminant analysis and logistic regression,
when applied in conjunction with principal component analysis, have a high proportion of Type
2 error (respectively 41 and 46 percent) with respect to the proportion of Type 1 error

SEW Proceedings

(respectively 15 and 13 percent). On the contrary, the other models have balanced values of
Type 1 and Type 2 error, ranging between 20 and 28 percent.

+ Principal cmpnt.
Logistic regression
Logistic regression
+ Principal cmpnt

* a is the probability of unconectly rejecting the null hypothesis (no association)

Table 1. Results of evaluation criteria

Looking at the achieved quality and the verification cost, we can interpret better the
misclassification results. In fact, the highest values of quality correspond to the models built
with principal component analysis followed from either discriminant analysis or logistic
regression (completeness is, respectively, 68 and 74 percent). But these high values of quality
are obtained by inspecting the great majority of components (inspection is, respectively, 74 and
82 percent), thus wasting more than one half of the verification effort (wasted inspection is,
respectively, 55 and 56 percent). The lowest level of quality (completeness is 42 percent) is
achieved by both discriminant analysis and logistic regression, when used without principal
component analysis, and by the layered neural network. The logistic regression without
principal components and the layered neural network have also the poorest results in correctly
identifying the high-risk components (wasted inspection is 58 percent). On the contrary the
logical classification model is the only model which dissipates less than one half of the
verification effort (wasted inspection is 47 percent).

5. Lessons learned

This empirical investigation of the modeling techniques for identifying high-risk modules has
taught us three lessons:

* Predicting the future behavior of software products does not always lead to successful
results. Despite of the variegated selection of modeling techniques, no model satisfies the
criterion of predictive validity, that is no model is able to discriminate between components
with faults and components without faults. This result is in contrast with various papers which
report successful results in recognizing fault-prone components from analogous sets of
complexity measures.

SEW Proceedings

Briand et al. [BBH93] presented an experiment for predicting high-risk components using two
logical classification models (Optimized Set Reduction and classification tree) and two logistic
regression models (with and without principal components). Design and code metrics were
collected from 146 components of a 260 KLOC system. OSR classifications were found to be
the most complete (96 percent) and correct (92 percent), where correctness is the complement
of our wasted inspection. The classification tree was more complete (82 percent) and correct
(83 percent) than logistic regression models. The use of principal components improved the
accuracy of logistic regression, from 67 to 71 percent of completeness and from 77 to 80
percent of correctness.
Porter [Por93] presented an application of classification trees to data collected from 1400
components of six FORTRAN projects in NASA environment. For each component, 19
attributes were measured, capturing information spanning from design specifications to
implementation. He measured the mean accuracy across aLl tree applications according to
completeness (82 percent) and to the percentage of components whose target class membership
is correctly identified (72 percent), that is the complement of the Proportion of Type 1 and
Type 2 error.
Munson and Koshgoftaar [MU21 detected faulty components by applying principal component
analysis and discriminant analysis to discriminate between programs with less than five faults
and programs having 5 or more faults. The data set included 327 program modules from two
distinct Ada projects of a command and control communication system. They collected 14
metrics, including Halstead's metrics together with other code metrics. Applying discriminant
analysis with principal components, at a probability level of 80 percent, resulted in recognizing
79 percent of the modules with a total misclassification rate of 5 percent.
Our result is closer with the investigation performed by Basil. and Perricone [BP84], where the
unexpected result was that module size and cyclomatic complexity had no relationship with the
number of faults, although there was a negative relationship with the fault density.

Predictive modeling techniques are only as good as the data they are based on. The
relationship between software complexity measures and software faults cannot be considered
an assumption which holds for any data set and project. A predictive model, from the simplest
to the most complex, is worthwhile only if there is a local process to select metrics which are
valid as predictors.

Principal component analysis does not always produce a better input for predictive models.
The domain metrics have often been used in the software engineering field [BBH93, BTH93,
MK92, KLM931 to reduce the dimensions of a metric space when the metrics have a strong
relationship between them, and obtain a smaller number of orthogonal domain rnetrics to be
used as input to regression and discriminant analysis models. In our study, we built two
classification models for both discriminant analysis and logistic regression. The first couple of
models was based on the eleven original complexity measures, while the second one used the
three domain metrics which had been generated from the principal component analysis. An
unexpected result of the models using orthogonal domain metrics is that the good performance
in achieved quality is exclusively the result of classifying very often components to be high-risk.

SEW Proceedings

Acknowledgments

Our thanks to Aurora Lonigro and Giulia Festino for their help in the preparation, execution
and analysis of this study.

References

[BTH93] L. C. Briand, W. M. Thomas, and C. J. Hetrnanski, b'Modeling and managing risk
early in software development", in Proceedings of the 15th International Conference
on Software Engineering, Baltimore, Maryland, May 1993, pp.55-65.

[BBH93] L. C. Briand, V. R. Basili, and C. J. Hetmanski, 'Developing interpretable models
with optimized set reduction for identifying high-risk software components", IEEE
Transactions on Software Engineering, vol. 19, no. 11, November 1993, pp. 1028-
1044.

[KLM93] T. M. Khoshgoftaar, D. L. Lanning, and J. C. Munson, "A comparative study of
predictive models for program changes during system testing and maintenance", in
Proceedings of the Conference on Software Maintenance, Montreal, Canada,
September 1993, pp.72-79.

[KS94] T. M. Khoshgoftaar, and R. M. Szabo, "Improving code chum prediction during the
system test and maintenance phases7', in Proceedings of the International
Conference on SofhYare Maintenance, Victoria, British Columbia, Canada,
September 1994, pp.58-67.

[LK94] D. L. Lanning, and T. M. Khoshgoftaar "Canonical modeling of software complexity
and fault correction activity", in Proceedings of the International Conference on
Software Maintenance, Victoria, British Columbia, Canada, September 1994,
pp.374-381.

[LLV95] F. Lanubile, A. Lonigro, and G. Visaggio, "Comparing models for identifying fault-
prone software components", in Proceedings of the 7th International Conference on
Software Engineering and Knowledge Engineering, Rockville, Maryland, USA, June
1995, pp.312-319.

[MU21 J. C. Munson, and T. M. Khoshgoftaar, '"The detection of fault-prone programs",
IEEE Transactions on Software Engineering, vol.18, no.5, May 1992, pp.423-433.

[Po1931 A. A. Porter, 'Developing and analyzing classification rules for predicting faulty
software components", in Proceedings of the 5th International Conference on
Software Engineering and Knowledge Engineering, San Francisco, California, June
1993, pp.453-461.

[Qui93] J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kauffman Publishers,
San Mateo, CA, 1993.

[Sch94] N. F. Schneidewind, "Validating mebics for ensuring Space Shuttle Flight software
quality", Computer, August 1994, pp.50-57.

SEW Proceedings

20th Annual
Software Engineering Workshop

Evaluating Empirical Models for the
Detection of High-Risk Components:

Some Lessons Learned

Filippo Lanubile Giuseppe Visaggio
University of Bari, Italy

Research Questions

Are the modeling techniques (from statistical analysis,
machine learning, and neural networks) useful to predict
the reliability of software components?
What modeling techniques perform better?
Under which conditions?
- Predictive model R = Fi (R1 , R2,, Rn)

>> R1, R2,, Rn are indirect measures of reliability
>> R is a direct measure of reliability
>> Fi is a modeling technique

SEW Proceedings

Direct Metric
--- --

* Risk-class to which the software component belongs

- high-risk: any software component with faults detected
during testing

- low-risk: any software component with no faults
detected

The prediction model is reduced to a classification model

Indirect Metrics

* Control flow: cyclomatic complexity (v(G))
Data structure: number of unique operands (n2),
total number of operands (N2)

* - Size: number of lines of code (LOC), number of
non-comment lines of code (NCLOC), program
length (N), volume (V)
Coupling fanin, fanout, information flow (IF).

Documentation: density' of comments (DC)

SEW Proceedings

Modeling Techniques
Statistical analysis
- Discriminant Analysis
- Principal Component Analysis + Discriminant Analysis
- Logistic Regression
- Principal Component Analysis + Logistic Regression

* Machine Learning
- Logical Classification Models

Neural Network
- Layered Neural Networks
- Holographic Networks

Environment

Software engineering course with 27 information
system projects
- same specification but developed by different three

person-teams
- moderate-sized Pascal programs (1-9 KLOC)

SEW Proceedings

Data

Random selection of 1 18 components (4-5
components from each program)
Unit tests performed by independent student teams
on the 1 1 8 components
Random division of data between
- Model creation

>, training set: observations from 213 of components
- Model evaluation

>> testing set: observations from 113 of components

Evaluation Criteria

Predicted Risk

Real Risk low high

low n1.

high I n2*

n.1 n.2 n

Preditive validity Misclassification rate
' Quality achieved

Verification cost

SEW Proceedings

Predictive Validity
Predicted Risk

Real Risk low high

low

high

"*l "-2 n

* Capability of the model to predict the future
component behavior (testing set) fiom present and
past behavior (training set)
- Null hypothesis: no association between the row

variable (real risk) and the column variable (predicted
risk)

Evaluation of Predictive Validity
Modeling Techniques ; x 2 1 p

Discriminant anal. !0.244! 0.621

Discriminant anal.+Principal cmpnts 0.6851 0.408

Logistic regression

Logistic regression+Principal cmpnts 1.76 1 ! 0.184

Logical classification model !0.215 i 0.643

Layered neural network: :0.64810.421 t

Holographic network i0.22710.634
if p > 0.05 there is no significant association

SEW Proceedings

Misclassification rate
Predicted Risk

Real Risk low high

low

high

Type 1

Itel 11.2 n

* Proportion of Type 1: P1 = n,, I n
Proportion of Type 2: P2 = n,, 1 n

* Proportion of Type 1 +Type 2: P,, = (n,, + n,,) I n

Evaluation of Misclassification Rate

Modeling Techniques

Discriminant anal.

Discriminant anal.+Princ.cmpmts

Logis tic regression

Logistic regression+Princ.cmpnts

Logical classification model

Layered neural network

Holographic network

SEW Proceedings

Achieved Quality
Predicted Risk

Real Risk low high

low

high

n.1 "02 n
How effective are the predictive models in terms of the
quality achieved after that the components classified as
high-risk have been undergone to a verification activity

Completeness: C = n22 / n2.

Evaluation of Achieved Quality

Modeling Techniques C j

Discriminant anal. <42.11*

Discriminant anal.+ Princ. cmpnts ,68.42:

Logistic regression 42.11

Logistic regression+Princ. cmpnts : 73 -68:

Logical classification model i 47.37

Layered neural network
8

i42.11:
I I

Holographic network 147.371

SEW Proceedings

Verification Cost
Predicted Risk

Real Risk low high

low

high

Extra effort in inspection and testing for the components
which have been flagged as high-risk

Inspection: I = ne,/ n
Wasted Inspection: WI = nI2 / ne2

Evaluation of Verification Cost

Modeling Techniques I / W I

Discriminant anal.

Discriminant anal.+ Princ. cmpnts .74.36/55.17

Logistic regression :48.72157.89

Logisticregression+Princ.cmpnts 82.05156.25

Logical classification model 43.59147.06

Layered neural network i48.72157.89

Holographic network 51.28/55.00

SEW Proceedings

Lessons learned - 1

Predicting the future behavior of software
products does not always lead to successful
results
- no model satisfies the criterion of predictive

validity
- contrast with various studies reporting

successful results in recognizing fault-prone
components fiom analogous sets of complexity
measures

Lessons learned - 2

* Predictive modeling techniques are only as
good as the data they are based on
- The relationship between software complexity

measures and software faults cannot be
considered an assumption which holds for any
data set and project

- A predictive model is worthwhile only if there
is a local process ta select metrics which are
valid as predictors

SEW Proceedings

Lessons learned - 3

Principal component analysis does not
always produce a better input for predictive
models
- In our study, the models using orthogonal

domain metrics show better performance in
achieved quality as a result of classifying very
often components to be high-risk

SEW Proceedings

>.

Session 5: Method Evaluation

Object-Oriented Sofmare Metrics for Predicting Reusability
and Estimating Size

Pete Sanderson, Southwest Missouri State University

Improving the Software Testing Process in NASA's Sojhvare Engineering
Laboratory

Sharon Waligora, Computer Sciences Corporation

How Do Formal Methods Aflect Code Quality?
Shari Lawrence Pfleeger, SystemsISoftware, Inc.

SEW Proceedings

SEW Proceedings

OBJECT-ORIENTED SOFTWARE METRICS FOR PREDICTING
REUSABILITY AND ESTIMATING SIZE

- - /) $ <A ,*z ; ! { ? 9*

D. Peter sanderson*
Department of Computer Science

Southwest Missouri State University 'r
Springfield, MO 65804 o]/j ,//
dps9lOf@c1?as.srnsu.ed~~

Tuyet-Lan Tran, Josef S. Sherif, Susan S. Lee
Jet Propulsion Laboratory 6 ,I:,, 14,

California Institute of Technology
Pasadena, CA 9 1 109

As object-oriented software development methods
come into more widespread use, basic questions of
software quality assurance must be reconsidered. We
will highlight efforts now undenvay at NASA's Jet
Propulsion Laboratory to both assess the quality of
softwire systems developed using object-oriented
technology and develop guidelines for future
development of such systems. The current focus is
on design and code reusability, and system size
estimation. A number of metrics are proposed, and
two JPL software systems measured and analyzed.
The preliminarq' results reported here should be
particularly useful to software development and
quality assurance personnel working in a C++
implementation environment. .

characteristics of quality (such as reliability,
reusability, maintainability, and readability).

The current focus of our work is twofold: predicting
design and code reusability and estimating software
size. Both contribute to economical software
production. However, metrics selected and adapted
pursuant to these goals may be applied to others as
well. For instance, size metrics predict maintenance
as well as development complexity and costs. A
metric may also contribute toward contradictorq'
quality goals. For instance, the inheritance property
allows an object of one class to possess components
and perform operations defined in a related class. This
contributes both toward greater reuse, a positive
factor, and greater coupling between classes, a
negative one.

1. INTRODUCTION 2. BACKGROUND

The concepts and use of software metrics in quality
assurance are well-established. However, traditional
metrics were developed and validated for a design
methodology in which system functional and data
elements are distinguished. The object-oriented
methodology combines them, necessitating
reconsideration of traditional metrics and motivating
the quest for new ones. Metrics are best applied as
part of a quality assurance strategy that considers both
the purpose for measuring (such as estimation,
prediction, assessment, and improvement) and

The object-oriented technologies are based on the
concept of a software system as a collection of
interacting objects. Objects encapsulate both the
state and behavior of identifiable abstractions in the
application domain. The class is a mechanism for
specifying object types. The class declares both data
and function members. The data members, also
called instance variables, specify object state and are
typically private to the class. The member functions,
also called instance methods (or just methods),
specify object behaviors and are typically accessible

** Supported in part by a 1995 NASAIASEE Summer Faculty Fellowship.

SEW Proceedings 301

throughout the system. Given the identi5 of an
object, a client object ma? interact with it by sending
it a message, which invokes the corresponding
method. It is through such interactions that
computation proceeds in object-oriented systems.
Classes may be related to other classes through
specialization, in which a class is defined to inherit
the attributes of another, more general, class and
extend it through additional, unique characteristics.
Such inheritance provides a measure of reuse, since
the child class possesses the variables and methods of
its parent class without explicitly defining them.

A large number of software metrics have been
developed based on the proceduml paradigm. As a
result, their focus is on measuring the characteristics
of procedures. Examples are Halstead's software
science [Halstead n] which measures complexity
based on operator and operand counts, and McCabe's
cyclomatic complexity [McCabe 761 which measures
complexity based on the number of control paths in a
procedure. The measurement of object-oriented
software, however, should focus the major elements
of the object-oriented paradigm: classes and objects.

The seminal work in this area of that of Chidamber
and Kemerer at MIT, as most recently reported in
[Chidamber and Kemerer 943. They present a suite of
six metrics designed to measure complexity in the
design of classes. The theoretical basis for each
metric is explained, and measurement results from
two software development sites is summarized. The
versatility of these metrics is demonstrated by their
incorporation into other metric programs, such as
those reported by Li and Henry 93, Lorenzand Kidd
94, Rosenberg 951. They are utilized in our work as
well, and will be cited below as appropriate. A large
metric suite including metrics for size and reuse is
reported in [Abreu and Carapuca 943.

3. THE METRICS

We have defined two small metrics suites, one to
assess system size and the other reuse and reusability.
They are by no means exhaustive, but contain metrics
relevant to their intended purpose. The metrics are
quantifiable, and easily collected from detailed design
documents or source code files. Thus they measure
static system qualities. We were able to quickly
develop a software tool to collect most of the
measurements from C++ source files. The metrics
for both suites are described here, with thresholds for

SEW Proceedings

all metrics described in the analysis of the two JPL
systems measured.

3.1 System Size Metrics

We measure system size using three metrics for
comparison purposes. All are based on the sum of
the class sizes. In a completely object-oriented
system, all system functionality is contained within
class method definitions. In hybrid languages such as
C++, which allow non-object-oriented structures, this
is rarely the case. If a substantial portion of an
application is known to be non-object-oriented, the '

system size metric should be supplemented with
measurements from conventional size metrics.

If each class is assigned a size of unity, the metric
becomes number of classes. Alternatively, each
class can be sized according to the sum of its method
sizes. Only those methods defined in a class are
included, to assure that inherited methods are not
counted repeatedly. If each method is assigned a size
of unity, the metric becomes number of methods.
Alternatively, each method can be sized using any of
a number of available metrics such as the McCabe or
Halstead measures. Since such measures assign
weights to individual methods, the resulting system
size metric is the sum of method weights. We
have selected non-comment source statements
(NCSS) as the basis for weighing methods [Grady
El. This differs from lines of code in that comments
are not included, and that the free-format syntax of
modem programming languages is taken into
account.

3.3 Reuse and Reusability Metrics

There are different forms of design and code reuse; we
focus on that which naturally results from method
inheritance based on class hierarchies. Such
hierarchies are formed when subclasses are defined as
specializations of other classes. A subclass inherits
the variables and methods of the more general class
from which it is derived. Indeed, reuse increases as the
inheritance tree of classes changes through iterative
system development. As mentioned above, this also
contributes to: a higher degree of coupling between the
related classes. Reuse through inheritance is
measured using two of the Chidamber and Kemerer
metrics, number of child classes (NOC) and
depth in inheritance tree (DIT). Both metrics
are based on the inheritance hierarchy structures,

which are trees since we consider single inheritance
only (a class may have but one parent). NOC is the
number of classes directly derived from the subject
class. DIT is the number of hops required to reach
the root of the inheritance tree in which the subject
class resides.

Reusability metrics are those which attempt to assess
the potential for reuse of existing design or code.
This is more difficult to measure than system size or
reuse, yet is potentially the most significant in terms
of development cost savings. Metrics contributing
toward an assessment of reusability include NOC and
DIT from above, plus coupling between object
c I asses (CBO) [Chidamber and Kemerer 941, the
number of instance variables per class and
number of methods per class. The CBO metric
determines coupling by the number of messages
objects send to each other. This occurs whenever a
method is invoked via an object. An instance
variable is a class dab member which is instantiated
for each new object. Analysis of the distributions of
these metrics is as useful as that of the averages and
extremes.

4. THE MEASUREMENTS

We measured two existing C++ software systems
with respect to the metrics and goals described above.
Both are JPL applications developed to serve specific
spacecraft communication and control support
functions: (1) The Sequence Generator (SEQ-GEN),
which is an element in the sequence subsystem of the
Advanced Multimission Operations System, and (2)
The Microwave Generic Controller (UGC) for the 34
meter Beam Waveguide Antenna. Our UGC system
focus is on the code comprising the Generic Kernel
(UGC-GK) software component. Neither system is
completely object-oriented; size metrics for functions
not associated with a class were collected but are not
reported here.

Metric values for the SEQ-GEN and UGC-GK
source code were collected using a measurement tool

,

developed by the principal author during a summer
fellowship at JPL [Sanderson 951. The tool is a
collection of UNIX shell scripts, AWK scripts and C
programs which communicate through the shell's
pipe and redirection capabilities. All the above
described metrics except coupling between objects
(CBO) were measured. Measurements of metrics for
system size estimation are summarized in Tables I

through 3. Measurements for reuse and reusability
assessment are summarized in Figures 1 through 5.

5. ANALYSIS

Measurements from SEQ-GEN and UGC-GK were
analyzed, and the results reported. Since the
applications are unequal size, charted results have
been normalized to allow direct comparison.
When explanations cite other results in the literature,
they refer to the charts presented in [Chidamber and
Kemerer 941 and [Lorenz and Kidd 9.41.

5.1 System Size

Table 1 contains the system size measurements for
the SEQ-GEN and UGC-GK applications. The last
column indicates the relative size of SEQ-GEN to
UGC-GK under the three metrics.
Size ratios based on class and method counts are
nearly identical, since the average number of methods
per class are about the same for the two applications
(see Table 2). If system size is measured by the sum
of method weights, SEQ-GEN is seen as relatively
much smaller, about four times the size of UGC-GK
rather than about seven times. There is currently no
consensus in the literature on which metric is best.

5.3 Reuse

The more interesting rnetrics are those to assess reuse
and potential for reuse. We first consider evidence of
reuse through inheritance. All measurements were
taken from the production versions of SEQ-GEN and
UGC-GK, thus it was not possible to track reuse as
system development progressed through several
preliminary versions.

Number of Child Classes: Distributions for
both systems are shown in Figure 1, normalized to
the percent of classes for each value for easy
comparison. The distributions appear quite similar;
both indicate that very few classes benefit from
inheritance and thus code reuse is low. All classes
with NOC value 0 represent the "leaf' nodes in the
tree formed by the system class hierarchy. The
proportion of such classes is expected to be high in
any case (over 50 percent for a perfect binary tree, for
example). Classes having high NOC values,
however, may warrant individual attention. For
example, one SEQ-GEN class has 56 child classes.

SEW Proceedings

Typically only one class (often named "Object" or
"Node") will possess such an attribute. Metric values
for individual classes are included on the report (not
shown here) generated by the measurement tool.

Depth In Tree: DIT distributions are summarized
in Figure 2. In this case the maximum values are
similar but the distributions quite different Cjust the
opposite of NOC). A class having DIT value of 0 is
by definition the root of a class hierarchy. Since
nearly two-thirds of UGC-GK classes are therefore
roots and over 80% of them are leaves, the
application consists mainly of single unrelated
classes. This indicates a low level of reuse through
inheritance, due to either the nature or size of the
application. The SEQ-GEN metric is more normally
distributed, and is more characteristic of systems
analyzed in the literature. The application provides
many related abstractions, and the designers were able
to exploit them. In any case, the maximum DIT
should rarely exceed seven; such subclasses may not
really be specializations of the classes from which
they inherit.

5.3 Reusability

Most of the metrics with which we are experimenting
are directed toward assessing the potential reusability
of existing designs and code. As these efforts are still
in the early stages, the number of candidate metrics is
subject to revision and refinement. We expect
candidates to be refined as research progresses until a
small but significant set remains. The analysis of
SEQ-GEN and UGC-GK considers the averages,
maxima, and distributions of the metrics.

Number of Variables: The number of instance
variables indicates object size and complexity.
Each instance variable is declared as a data member.
The measurement tool currently counts only the
variables explicitly declared in a class definition; it
will be enhanced to also include inherited variables.
The averages and distributions are given in Table 2
and Figure 3, respectively. The distribution of values
across the SEQ-GEN application indicate that the
bulk of classes declare three or less instance variables;
the UGC-GK values are more evenly distributed.
The differences would narrow if inherited variables
were included in the analysis, since a higher
percentage of SEQ-GEN classes inherit attributes
(DIT > 0, see Figure 2). A high average coupled
with little subclassing could indicate that abstractions
are being broadly defined. A class with a high

SEW Proceedings

number of instance variables should be analyzed for
possible reorganization into a subtree of related
classes. Reusability is enhanced also.

Number of Methods: The number of instance
methods indicates the scope of behaviors that an
object may exhibit. Each instance method is declared
as a member function. As with variables, the
measurement tool excludes inherited methods. This
metric corresponds to the Chidamber and Kemerer
metric weighted methods per class (WMC), with a
weight of unity assigned each method. The averages
and distributions for SEQ-GEN and UGC-GK are
given in Table 2 and Figure 4, respectively. Their
averages are similar, and the UGC-GK distribution is
slightly skewed toward the higher values. Thresholds
follow the same trend as for number of variables.
However, higher numbers of methods are acceptable,
since in addition to methods which manipulate
variables, the class may define an extractor method for
each variable (public method which yields the value
of the private variable). In general, classes having a
large number of methods are less reusable. Such
classes are usually very specific and thus not prone to
specialization through subclasses or adaptation to a
different application.

Method Weights: Each method is defineda
weighted based on the number of non-comment
source statements (NCSS) in its definition. The
system wide averages are given in Table 3.
The per-class sum of method weights is of greater
interest, however, since the class is the building
block of an object-oriented system. The averages and
distributions of the sums are shown in Table 2 and
Figure 5, respectively. The distribution curves are
quite similar, and heavily skewed to the low end.
Most classes contain a relatively small amount of
source code, less than 100 NCSS, indicating effective
decomposition of the application. The sum of
method weights tends to correlate directly to the
number of methods.

The following metrics are relevant to the
measurement and analysis of method weights.

Non-Comment Source Statements: This is
reflected in all metrics involving method weights.
It was collected from C++ source code by counting
the number of semi-colons (;), which serve as
statement terminators, as well as curly braces ({ and
)), which group statements in the fashion of begin-
end

Inline Methods: C++ provides method and
function inlining to enhance runtime performance.
Inlining is the compile-time substitution of a
function body at the point of each call to it, which
avoids the runtime overhead of context switching. A
method is automatically inlined if defined within the
class definition itself. Most inline methods are
trivial, such as those which return the value of a
private variable. The measurement tool counts each
one as 3 NCSS. The use of inline functions will
contribute to low method weight metrics, possibly to
the point of hiding the complexity of the remaining

methods. The ratio of inline to total methods is
expressed as a percentage in Table 3.

Pure Virtual Methods: Such methods are
literally defined to be null, but are used as place
holders in the implementation of polymorphism in
C++. They contribute nothing to the system size,
but are counted as methods nonetheless. One expects
to find a small number of such functions,
concentrated in classes at or near the root of an
inheritance tree. Their small numbers are reflected in
the percentages given in Table 3.

Table 1. System Size Metrics.

METRIC

Number of Classes

SEQ-GEN UGC-GK -.-..--.- .-..-..---- Ratio

313 43 7.3 - 1

Number of Methods 3283 303 7.5 - 1

Sum of Method Weights 30345 7423 4.1 - 1
: c - ~ ~ - . ~ ~ . ~ - - a ~ ~ ~ ~ ~ , ~ x ~ m m . ~ m - " - ~ ~ m m ~ m ~ ~ ~ : ~ m ~ - ~ ~ - ~ ~ ~ ~ , ~ " ~ . ~ - ~ , , ~ ~ ~ ~ . % ~

Table 2. Class Metric Averages. Table 3. Selected Method Metrics.

* - - ~ " ~ . % ~ . * w m = m ~ ~ - v - ~ - ~ - w . % * - r m ~ v m - - ~ ~ ~ - = - , ~ . . , ~ m ~ . - - - ~ ~ - * _ * L . ~ . ~ Y _ _ - - r - - ~ " - ~ % ~ . ~ - w ~ v

METRIC SEQ-GEN UGC-GK METRIC SEQ-GEN UGC-GK -- -- -" -----------F.-------p-----..

Number of Variables 3.7 6.1 Average NCSS 13.7 26.3

Number of Methods 7.3 7.0 % Inline Methods 53.9 12.6

Method Welghts 96.9 173.6 '% 'o re Virtual Methods 2.7 1.4
11_1,-----,-------m-7--"--.-- rC~C__l-r_1_7_*----""-"--.-----

Figure 1. Metric Distribution:
Number of Child Classes.

90
80
70

Percent 60

0 f 50

Classes 40
30 WGC-GK
20
10
0

0 1 2 3 4 5 6 ~

Number of Children

SEW Proceedings

Figure 2. ~ e t r i c Distribution:
Depth In Tree.

70

6 0

5 0
Percent 40

of
Classes 30

2 0

10

0
0 1 2 3 4

Depth In Tree

Figure 3. Metric Distribution: Number of Figure 4. Metric Distribution: Number of
Variables. Methods.

35 50
45 30
40

35 25

Percent 30
of 25

Percent of 20
Classes

Classes 20

IS 10

10
5 5

0 0
0 2 4 6 8 10 12 14 1 6 1 8 2 O t 0 2 4 6 8 10 12 14 16 18 20t

Number of Variables Number of Methods

Figure 5. Metric Distribution: Method Weights.
I . I - - _ _

707 <

Percent of
Classes

Sum of Method Weights

6. CONCLUSIONS

Although our efforts in this research are still at an early
stage, some preliminary conclusions can be drawn. First,
we are encouraged by the results achieved so far, and
intend to continue the endeavor. Second, metrics selected
from the Chidamber and Kemerer suite may be applied and
adapted to a variety of software quality assurance goals, in
this case size estimation and reusability prediction. Third,
care should be taken in the selection of the system size
metric, if a single such metric is desired. Fourth,
reusability prediction through metric collection and
analysis is a difficult task.

SEW Proceedings

UGC-GK

Our metric analysis of the SEQ-GEN and UGC-GK
systems shows results consistent with those of similar
analyses reported in the literature. The relatively small
size of UGC-GK accounts for most of the obsen-ed
differences in metric values and distributions. More work
needs to be done, and more systems studied, before
reasonable conclusions about reusability can be made. We
also conclude from our analysis that sound methods of
object-oriented design were applied to both systems. This
provides some evidence of reusability based on the
inherent qualities of well-designed classes. Neither system
is completely object-oriented; size metrics for free
function (not associated with a class) were collected but
not reported here.

The metrics and analysis described here may be applied to
other object-oriented systems given detailed design
documents or source code. Confidence in our methods
will prow as more applications are analyzed, but even
these preliminary results should be useful to those
concerned with quality assurance as well as other aspects
of the development of object-oriented software for
technical applications.

ACKNOWLEDGMENTS

The research described in this paper was camed out at the
Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National
Aeronautics and Space Administration. The principal
author was supported in part by a 1995 NASAIASEE
Summer Faculty Fellowship.

REFERENCES

Abreu, F.B., and R. Carapuca, Candidate metrics for
object-oriented software within a taxonomy framework,
Journal of Systems and Software, Vol. 24, 1994,87-96.

Chidamber, S.R., and C.F. Kemerer, A metrics suite for
object oriented design, IEEE Transactions on Somare
Engineering, Vol. 20, No. 6, June 1994,476-493.

SEW Proceedings

Grad y, R. B., Practical Sofhare Metrics for Project
Management and Process Improvement, Prentice Hall,
1993.

Halstead, M.H., Elements of Sofhare Science, Elsevier
North-Holland, New York, 1977.

Li, W., and S. Henq, Object-oriented memcs that predict
maintainability, Jor~rnal of Systems and Sofhare, Vol.
23, 1993, 11 1-122.

Lorenz, M., and J. Kidd, Object-OrientedSofhuare
Metrics, Prentice Hall, 1994.

McCabe, T.J., A complexity measure, IEEETransactions
on Software Engineering, Vol. SE-2, No. 4,308-20,
1976.

Rosenberg, L.H., Metrics for risk assessment, software
quality, and process improvement, Tlze Third Symposium
on Foundations of Sofhare Engineering, October 1995.

Sanderson, D.P., "Overview of oo-metrics: A tool for
measuring object-oriented metrics for C u , " unpublished
report funded by NASAIASEE Summer Facdty
Fellowship. Jet Propulsion Laboratory, August 1995.

SEW Proceedings

Object-Oriented Software
Metrics for Predicting

usability and Estimating S

Peter Sanderson
southwest Missouri State University

T.-L. Tran, J. S. Sherif, S. S. Lee

Jet Propulsion Laboratory

Outline

Introduction

Background

Description of

Systems Measi

Metric Results

Conclusions

SEW Proceedings

Metrics

ured

ize

ntroduction

Metrics for Object-Or

Metric Project Goals:
+ Size Estimation

+ Reusability Prediction

iented Systems

Background

4 Lexicon of object-or
+ Class

+ Instance Variable

+ Instance Method

+ Inheritance

ChidamberIKemerer

iented terms

metrics suite

SEW Proceedings

System Size Estimation Metrics

Number of Classes
Total Number of Methods

Sum of Method Weights
+ Non-Comment Source Statements

All are based on "sum of class sizes."

Class Reusability Metric

Number of Child Classes
Depth in Inheritance Tree
Coupling Between Classes (not

w Number of Instance Variables
Number of Instance Methods

Method Weights .

,s

measured)

SEW Proceedings

Systems Measured

w Sequence Generator (SEQ-GEN)
4 subsystem of Advanced Multimission

Operations System

w Microwave Generic Controller (UGC-GK)
4 controls 34-meter Beam Waveguide Antenna

+ measured Generic Kernel software

Both implemented in C++

w Measured using author's 00-metrics tool

SEW Proceedings

Metrics Results: Reusability

Class metrics summarized

Distribution characterizes

Extremes call attention to

on graphs

system

individual classes

Number of Child Classes

Percent
of

Classes

- 0 1 2 ' 3 4 5 6+
Number of Children

SEW Proceedings

Depth in Inheritance Tree

Percent
of

Classes

0 1 2 3 4
Depth In Tree

umber of Instance Varia

0 2 4 6 8 10 12 14 16 18 20
+

Number of Variables

bles

SEW Proceedings

umber of Instance Methc

354 I

Number of Methods

la SEQ-GEN

UGCGK

SEW Proceedings

Preliminary results are encouraging.

Size metric should be selected carefully.

Reusability is difficult to predict using
metric s.

Systems studied are consistent with others
reported in literature.

SEW Proceedings

', , f . ?

8 :/2 />

Improving the Software Testing Process
in NASA's Software Engineering Laboratory bd'26) 0 ;;<

Sharon Waligora Richard Coon
Computer Sciences Corporation Computer Sciences Corporation

10 1 1 0 Aerospace Road 10 1 1 0 Aerospace Road
Lanham-Seabrook, MD 20706 Lanham-Seabrook, MD 20706

(301) 794-1 744 (301) 794-1979
swaligor@csc.com rcoonl @csc.com

In 1992, the Software Engineering Laboratory (SEL) introduced a major change
to the system testing process used to develop mission ground support systems in
NASA Goddard's Flight Dynamics Division. This process change replaced two
sequential functional testing phases (system testing and acceptance testing) with a
single functional testing phase performed by an independent test team; functional
system testing by the software developers was eliminated. To date, nine projects
have been completed using the new independent testing process. The SEL
recently conducted a study to determine the value of the new testing process, by
assessing the impact of the testing process change on the delivered products and
overall project performance. This paper reports the results of this study; it presents
quantitative evidence that this streamlined independent testing approach has
improved testing efficiency.

This paper presents the results of a study that the authors conducted in 1995 to assess the value of
a major system testing process change that was introduced in 1992 in the Flight Dynamics
Division at NASA Goddard. It first presents background information to provide the context for
the study. This includes information about the SEL and its project environment and highlights
some key improvements that had taken place before the testing change was introduced. It then
describes the testing process change and our goals and expectations for the new process. The
bulk of the paper presents quantitative results that clearly show the impact of the new testing
process on recent projects. These results are followed by the conclusions drawn from this study.

Background

The Software Engineering Laboratory (SEL) is a partnership of NASA Goddard's Flight
Dynamics Division, its major software contractor, Computer Sciences Corporation, and the
University of Maryland's Department of Computer Science. The SEL is responsible for the

SEW Proceedings

management and continuous improvement of the software engineering processes used on Flight
Dynamics Division projects.

The SEL process improvement approach [I] is based on the Quality Improvement Paradigm [2],
in which process changes and new technologies are 1) selected based on a solid understanding of
organization characteristics, needs, and goals, 2) piloted and assessed using the scientific method
to identify those that add value, and 3) packaged for broader use throughout the organization.
Using this approach, the SEL has successfully facilitated and measured significant improvement
in project performance and product quality [I].

The Flight Dynamics Division primarily builds software systems that provide ground-based
flight dynamics support for scientific satellites. The projects included in this study cover the
period from 1985 through 1995 and fall into two sets: ground systems and simulators. Ground
systems are midsize systems that average around 250 thousand lines of code (KSLOC). Ground
system projects typically last approximately 2 years. Most of the systems have been built in
FORTRAN on mainframes, but recent projects contain some subsystems written in C and C++
on workstations. The simulators are smaller systems averaging around 60 KSLOC. These are
much smaller projects that last between 1 and 1.5 years. Most of them have been built in Ada on
a VAX computer. Simulators provide the test data for the ground systems. The project
characteristics of these systems are shown in Table 1.

Table 1. Characteristics of Flight Dynamics Division Projects

150 - 400 KSLOC 40 - 80 KSLOC

Before delving into the testing process change and its results, it is important to understand where
the SEL was in its improvement process when the testing improvement initiative began.
Previously, the SEL had largely focused its efforts on activities of the design and implementation
phases of the life cycle. Experimentation with object-oriented analysis and design had led to a
threefold increase in software reuse [3]. Projects were regularly achieving 60% to 90% reuse in
the early 1990s. This, in turn, had significantly reduced the cost to deliver systems by reducing
the amount of code that needed to be developed. However, it is interesting to note that the cost to
develop new code had remained relatively constant. The SEL had also done extensive studies of
unit testing techniques and code inspections that led to reduced development error rates (75%
reduction).

SEW Proceedings

By 1992, system testing had become the largest part of the software development job, as shown
in Figure 1. With higher reuse, less project effort was required in design and coding. In fact,
more time was now being spent doing testing
than doing design and coding combined.
From the business point of view, testing was
a natural target for the next major
improvement initiative. Also, the testers had
pointed out that although the system testing
process was effective, in that it produced
high-quality systems, they felt it was
somewhat inefficient. The SEL had also
learned quite a bit about the value of
independent testing from experimentation
with the Cleanroom methodology. Thus, the
SEL turned its attention to improving the
system testing process.

Figure 1. Project Effort By Activity

System Testing Process Changes

So, in 1992, the SEL began its initiative to improve the system testing process. The primary
goals of this initiative were to reduce the cost of testing and to shorten the project cycle time
without degrading the quality of our delivered systems. Sofhvare developers, managers, and
acceptance testers worked together to identify inefficiencies and weaknesses in the standard SEL
testing approach and to propose improvements.

This group proposed a series of process changes and corresponding organizational changes to
support them. The changes focused on eliminating redundancy in functional testing and
identifling operational deficiencies (deficient requirements or software) earlier in the life cycle.
The following subsections provide a high level description and comparison of the standard SEL
testing approach (old testing process) and the new combined independent testing approach (new
testing process).

Standard SEL Testing Process

Figure 2 presents the standard life cycle that had been used in the SEL for many years [4]. It is a
typical waterfall life cycle in which the system is fully implemented before any system testing
begins. There are two sequential functional testing phases. In the system testing phase, the
developers test the system against their interpretation of the written requirements. When they are
satisfied, they hand it over to a separate group of testers representing the users, who perform
another round of functional testing on the system; called acceptance testing. These testers have
flight dynamics application expertise and operational experience. They test the system to be sure
that it meets operational requirements (i.e., that it can successfully support the mission). Thus,
two very similar sets of functional tests are run, with the second set being most realistic for the
mission. When the system passes acceptance testing, it is delivered to the users.

SEW Proceedings

Figure 2. Standard SEL Testing Approach

This approach has several disadvantages. First, operational deficiencies are not uncovered until
very late in the development life cycle. Second, the separate, sequential functional testing phases
are time consuming and somewhat redundant. Thus, the value of separate functional testing
phases is questionable.

New Combined Independent Testing Approach

The new testing approach, shown in Figure 3, involved both an organizational change and a
process change. First, we combined system testing and acceptance testing into a single
independent testing phase. Second, we created an independent test group within the software
engineering organization to do all functional testing and staffed it with people who have flight
dynamics expertise and operational experience. Third, we began independent testing earlier, as
soon as the first build is completed. The testers test the most recently completed build while the
developers move on and implement the next build. The developers are responsible for integration
testing of each build before it is delivered to the independent testers. When the system is
complete, the testers perform end-to-end testing of the h l l system for a short period.

Developers

Testers

Figure 3. New Combined Independent Testing Approach

comparison of Testing Approaches

Figure 4 highlights the key differences between the two approaches. The new approach is shown
on the top and the standard or old testing approach is shown on the bottom. Key differences are
as follows:

o In the new approach, system testing begins much earlier, about halfway through the
development life cycle. This allows more calendar time for testing the integrated system
and enables the testers to identify operational deficiencies earlier in the project.

In the new approach, the system is completed very late in the life cycle. This allows the
developers more time to resolve incomplete requirements and to respond to the changing
requirements that are inevitable in our business.

SEW Proceedings

e In both cases, the software is placed under configuration control near the completion of
build 1. However, in the new approach, system testing begins right after the start of
configuration control. Therefore, errors found in the configured code would be reported
during the testing phase rather than distributed over the code and testing phases as they
were with standard approach.

Figure 4. Comparison of Testing Approaches

Configuration Control System Complete
New Approach

Code
+

Code Builds 2 through N
+

Test
Design Build 1 Test Builds 1 through N-1 Only

2 T
Begin Independent Deliver
Functional Testing to User

Old Approach

Quantitative Analysis

Code

To assess the overall impact, or value, of the new testing approach, we did a quantitative analysis
of key process and product measures fiom projects before and after the introduction of the new
testing process. We computed new baseline measures' for projects that used the new testing
approach and compared them with baseline measures of comparable earlier projects.

System

Sova used a different approach in a similar study [5] in which he compared three testing
approaches used in the Flight Dynamics Division, namely the standard SEL approach, the
modified or combined independent testing approach, and the Cleanroom statistical testing
approach. His selection criteria carefully screened the projects to be sure that the project samples
were highly comparable except for the testing process used. His study focused on one subsystem
common to all ground systems that was minimally affected by reuse. Six projects were included
in his study; two projects for each testing approach. In contrast, our analysis included ground
systems and simulator projects completed during each baseline period, excluding only those
projects where special circumstances caused them to be unrepresentative samples.

\
Acceptance

4
Design Builds I through N Testing Testing

t f f Deliver to
Configuration Control System Complete Independent Test

To date, five ground systems and four simulators have been completed using the new
independent testing process. The study compared software engineering measures for this recent
project set (projects completed between 1993 and 1995) with those from two earlier baseline
time periods. The first includes projects between 1985 and 1989, when a fairly traditional

'A baseline measurement is the average of the projects (measurements) in a particular baseline time period; it
represents the typical project measurement from that time period.

SEW Proceedings 32 1

waterfall process was used and projects averaged 20% reuse. The second period covers 1990
through 1992, when projects were regularly achieving between 60% and 90% reuse and the
process had been tailored to accommodate high levels of verbatim reuse. All projects in both of
the earlier baseline periods used the standard SEL (system and acceptance) testing process
described above. We separated the earlier projects into two baseline sets according to reuse levels
so that we could more clearly see the effect of the testing process change fiom one high reuse
period to another. Table 2 shows the characteristics and number of projects included in each
baseline period.

Table 2. Characteristics of Baseline Periods

Process Change Confirmed
Software development activity ,data, shown in Figure 5, clearly confirms that a process change
has taken place. Displayed here are two donut charts. In each case, the inside donut represents the
standard testing approach and the outside one represents the new testing approach. The left chart
shows the relative percent of effort performed by the developer organization vs. the independent
testing organization. The chart on the right shows the percentage of project effort spent doing
development activities (design and coding) vs. testing activities regardless of organization. In
both charts the testing portion is shaded.

Time Period

1985 - 1989

1990 - 1993

1993 - 1995

Effort By Organization Effort By Activity

New Testing Approac

Figure 5. Distribution of Project Effort

Testing Approach

Standard Testing (ST)

Standard Testing (ST)

Independent Testing (IT)

Overall system testing effort declined fiom 41% to 31% of the total project effort (a 25%
reduction). Although recent projects spent a smaller portion of the total effort doing testing

SEW Proceedings

Reuse Level

Low Reuse (LR)

High Reuse (HR)

High Reuse (HR)

Systems Included

4 Ground Systems
5 Simulators

3 Ground Systems
3 Simulators

5 Ground Systems
4 Simulators

overall than earlier projects did, the independent testing organization now contributes a larger
part of the total effort (an increase from 19% to 27%). The difference between the total testing
effort and the amount spent by the independent testers represents the amount of testing done by
the software developers. This data indicates that currently software developers are spending only
4% of the total effort on integration testing as compared with 22% on system testing
activities(inc1uding integration testing) for the earlier systems. This confirms a major shift in the
process used and the responsibility for testing systems.

Cost To Deliver a Line of Code

Figure 6 shows the average cost to deliver a line of code2 for each of the three baseline periods.
The labels under the bars indicate the testing approach and the level of reuse during each period
(see Table 2). Each bar is divided into three parts showing the portion of the cost attributable to
the various software engineering activities. The bottom portion represents design and coding, the
middle indicates the amount of system or integration testing done by the developers, and the top
section indicates the portion of the effort spent doing independent or acceptance testing.

As you can see, there was a significant reduction in the overall cost to deliver a line of code with
the increase in reuse. The introduction of the new testing approach in the third baseline period
had a smaller impact (1 5% reduction) on the cost to deliver.

1 rr\ 1 55% Reduction (~euse) 1

O Accept I Indep. Test

I System I Integ. Test

U Design B Code

Figure 6. Cost to Deliver A Line of Code

Cost To Develop a New Line of Code

By removing the effects of reuse, we see a different picture. Figure 7 is similar to Figure 6 except
that it shows only the cost to develop new code3: As you can see, the cost to develop a new line
af code increased somewhat in the middle time period, along with a fairly large increase in the
cost of testing a new line of code.

-

Cost to Deliver = Total Project Effort 1 Total Lines of Code
' Cost to Develop a New Line of Code = Total Project Effort /New and Modified Lines of Code

SEW Proceedings 323
SEL-95-004

After the introduction of independent testing, effort measures show a 23% reduction in actual
cost to develop a new line of code. A closer look shows that most of the savings have occurred in
testing activities, where a reduction in developer test effort (78%) and a 33% rise in independent
testing effort (33%) together net a 40% reduction in overall testing cost per new line of code.
This is significant because the SEL had previously never seen a decrease in the cost to develop
new code despite large reductions in the cost to deliver systems as a result of high reuse.

ST-LR ST-HR IT-HR

Figure 7. Cost To Develop A New Line of Code

Separating the data shown in Figure 7 by project type uncovered a difference in cost savings. As
shown in Figure 8, ground system development projects reaped a significant 35% savings, almost
entirely due to a reduction in testing cost, while simulators experienced only a 10% overall
reduction in cost with minimal savings in testing. Close examination of project histories
revealed that the simulators tended to have fewer builds and a smaller overlap between coding
and testing. Also, simulators are now tested under more schedule pressure because they are
needed earlier to begin testing the ground systems. This data seems to indicate that cost may be
negatively affected by schedule pressure. Further analysis is needed to clarify this.

ST- LR ST- HR IT- HR ST- LR ST- HR IT- HR

Figure 8. Cost To Develop A New Line of Code by Project Type

0.4

SEW Proceedings

- Ground Systems Simulators

Shorter Cycle Time to Delivery
Schedule data for the recent projects, presented in Figure 9, show a slight reduction in average
project duration for ground systems and a 29% reduction for simulators, when compared to the
middle (high reuse) time period. Notice that the schedule impact on each type of project is the
opposite of the impact on cost (shown in Figure 8). Simulators saved time, but not cost; while
ground systems saved cost, but not time. It appears that the ground systems projects have used
the productivity gain from the new testing process to reduce staff, while the simulator projects
have used it to reduce schedule. Further analysis is required to fully understand the trade-off
between cost and schedule and its relationship to the testing process, but is clear that the new
testing process has helped projects meet their various objectives.

I 4 O 1 Ground Systems I Simulators 1

ST- LR ST- HR IT- HR

29% Reduction I lTeotinal

Figure 9. Average Project Duration by Project Type

System Quality
Development error rates of the recent systems, shown
in Figure 10, also decreased when compared with the
earlier systems. The average error rate on the recent
projects is 1.5 errors per KSLOC. This is down from
4.3 errors per KSLOC and 2.8 errors per KSLOC for
the two earlier baseline periods. The distribution of
errors by phase (indicated by the shaded subsections of
each bar in Figure 10) reveals that very few errors are
now reported by the software developers (during the
implementation phase). Although more errors are
uncovered by the independent test team using the new
approach than when doing standard acceptance testing,
fewer errors were reported altogether during the
system testing portions of the life cycle. However, it is

SEW Proceedings

4

0
0
&

i ,
W

1

0
ST- Ui ST- HR IT-HR

Figure 10. Development Error Rates

unclear from this data whether the product quality is improving or whether the independent
testers are not finding all of the errors. A better indicator of system quality would be the error
rate during the first year of operational use. Unfortunately, records of operational errors were not
kept for systems in the early baseline period and the recent systems, tested using the new testing
method, are now just beginning to be used operationally. Thus, it is too early to judge whether
the new testing process maintains quality.

Conclusions

Based on our quantitative analysis, we conclude that the combined independent testing approach
is beneficial and should be adopted as the standard testing approach to be used on future projects
in the Flight Dynamics Division. Our analysis revealed that project performance improved
without sacrificing quality on projects using the new testing approach. Specific performance
factors are addressed below.

Cost: We conclude that the new testing approach reduces project cost. There was
significantly reduced testing effort on projects using the new approach, which consistently
contributed to overall project cost savings.

Cycle Time: Because cycle time improvement varied by project type, we conclude that
shorter cycle times are possible, but not guaranteed when using the new approach. There
appears to be a tradeoff between cycle time and cost; i.e., the shorter the test phase, the more
it will cost.

Quality: It is too early to determine the impact of the new testing approach on product
quality. Although project data continue to show a decline in the development error rates,
operational error rates are not yet available for most of the recent systems.

One additional benefit of the new testing approach is the longer overlapped periods of
implementation and testing. This allows more calendar time for both development and testing.
This stretched-out development time period provides the flexibility needed to deal efficiently
with late-doming requirements, thereby reducing rework. The stretched-out testing time period
allows for a smaller team of testers to test each system, thereby reducing the learning curve and
capitalizing on growing mission knowledge as testing proceeds.

The results of this study are similar to those found by Sova [5]. His study found the independent
testing approach (referred to as the modified approach) to be most efficient and produce the
lowest fault density. Thus, both the broad brush analysis of baseline comparisons and the
detailed comparison of carefully selected samples confirm that the new independent system
testing approach is beneficial and should be adopted as the Flight Dynamics Division standard
testing process.

References

1. McGarry, F., G. Page, V. Basili, et al., An Overview of the Software Engineering Laboratory,
Software Engineering Laboratory, SEL-94-005, December 1994

2. Basili, V., "Quantitative Evaluation of a Software Engineering Methodology," Proceedings
of the First Pan PaciJic Computer Conference, Melbome, Australia, September 1985

SEW Proceedings
326

SEL-95-004

3. Waligora, S., J. Bailey, M. Stark, Impact ofAda and Object-Oriented Design in the Flight
Dynamics Division at Goddard Space Flight Center, Software Engineering Laboratory,
March 1995

4. Landis, L., S. Waligora, F. McGarry, et al., Recommended Approach to Software
Development (Revision 3), Software Engineering Laboratory, June 1992

5. Sova Jr., D., "A Study of Software Testing Methodologies Within the Software Engineering
Laboratory", M.S. Thesis, University of Maryland, 1995

SEW Proceedings

SEW Proceedings

Improving the Software
Testing Process in the

Soft ware Engineering Laboratory
Sharon Waligora and Richard Coon

Computer Sciences Corporation

Topics

I Background
I Process Changes

Quantitative Results
Conclusions

SEW Proceedings

SEL Environment

Previous SEL Improvements

Characteristics

System Size

Project Duration

Staffing (technical)

Language

Hardware

fl

Focused on design and implementation activities
- Object-oriented techniques
- Code inspections and unit testing

Increased reuse of code from 20% to -80%
Reduced cost to deliver systems by 55%
- Cost to develop a new line of code remained the

same

Reduced error rates by 75%

SEW Proceedings

Applications

Ground Systems

150 - 400 KSLOC

1.5 - 2.5 years

10 - 35 staff-years

FORTRAN, C, C++

IBM Mainframes,
Workstations

Simulators

40 - 80 KSLOC

1 -1.5 years

1 - 7 staff-years

Ada, FORTRAN

VAX

Status of Testing in 1992
-

Effort by Activity

B Testing had become the
largest portion of project
effort

a Developers and testers
felt that the standard

Test*
testing process was

13%
41 % effective, but inefficient

Cleanroom experiments
showed the value of
using independent testers

Test includes integration testing,
system testing, and acceptance testing

Standard SEL Testing Approach

System completely implemented before system
testing begins
Two sequential functional testing phases
Acceptance testing done by separate
organization representing the users
- Testers have operational flight dynamics expertise

SEW Proceedings

lmprovement Goals and
Expectations

Improvement goals
- Eliminate redundant functional testing
- Identify operational deficiencies earlier in life

cycle
Expected results
- Reduce cost of testing
- Shorten cycle time
- Maintain quality

New Combined lndependent
Testing Approach

Developers

Test
Testers Prepare Test Plans

Test Full

Independent testing group within the software
engineering organization performs all
functional testing
Developers perform integration testing only
Incremental builds are delivered for testing

SEW Proceedings

Comparison of Testing
Approaches

Configuration Control System Complete
New Approach 4 4

.
Begin Independent Deliver
Functional Testing to User

Standard Approach I i

f ? 7 Deliver to
Configuration Control System Complete independent Test

Quantitative Analysis

Comparison of projects before and after
introduction of new testing approach in la& 1992
Three baseline time periods

SEW Proceedings

Testing Effort Shifted to
Independent Testers

--

Effort By Organization Effort By Activity

Testers I

New ~ e s t i n ~ 4
Approach

Cost To Deliver a Line of Code
Decreased Sliahtlv

Cost to Deliver a Line of Code

[-A / 55% Reduction (Reuse) /

(Testing) I

=System I Integ. Test
Design & Code

SEW Proceedings

Cost To Develop a New Line of

Cost to Develop a New Line of Code
-

P)
0.3 -

0
.w
0 -
6,
s 2 0.2 -
E z -
L

g, 0.1 -
c
f
0 -
I

0.0 -
ST-LR ST-HR IT-HR

t!Sl SySem I Integ. Test
p Design & Code

Cycle Time Improved

Actual Change in Project Duration

140 - Ground Systems 1 Simulators

ST- LR ST- HR IT- HR ST- LR ST- HR IT- HR

SEW Proceedings

Quality Has Been Maintained

Error Rates By Phase

System Test

Development error
rates have continued

U
3 3- to decrease
n
Y -
L
9)

Most errors are found
2 -

2 * in independent testing
e -
B 1 -

-
0 -

ST- LR ST- HR IT- HR

Conclusions

The new combined independent testing
approach significantly reduces testing effort
Shorter cycle times are possible, but there
appears to be a tradeoff with cost
Stretched out development time period provides
flexibility needed to efficiently deal with late-
coming requirements
No degradation of quality is evident

SEW Proceedings

- . - 7
> (-.'

How Do Formal Methods Affect Code Quality? * .-,r,-' .. -*

(f *rJ:-
Shari Lawrence Pfleeger
Systems/Sofhvare, Inc.
45 19 Davenport St. NW
Washington, DC 200 16-44 1 5
USA
phone: 202 244-3740

Les Hatton
Programming Research Ltd. /$, /+
Glenbrook House, 1/11 Molesey Road

'

Hersham, Surrey KT 12 4RH
England
4-441932888080 , {: (< j 3 7
4-44 1932 888081 (fax)

email: slpfleegeraaol. com les-hatton@prqa.co.uk

Formal methods are advocated on many projects, in the hope that their use will improve the
quality of the resulting software. However, to date there has been little quantitative evidence of
their effectiveness, especially for safety-critical applications. We examined the code and
development records for a large air traffic control support system to see if the use of formal
methods made a measurable difference. In this case study, we show that formal specification, in
concert with thorough unit testing and carehl reviews, can lead to high-quality code. However,
formal specification on its own may not have achieved this goal; the data show a clear, direct
relationship between the number of developers and the number of faults.

As Anthony Hail describes in a paper soon to appear in IEEE Software, Praxis built an air traffic
control information system for the UK Civil Aviation Authority in the early 1990s using a variety
of formal methods. The Central Control Function Display Information System (CDIS) provides
controllers at the London Air Traffic Control Centre with key information, allowing them to
manipulate the approach sequence of aircraft for the one of the busiest airspaces in the world.
Hall describes the system hnction and architecture, making it clear that formal methods were an
appealing technique for ensuring the quality of the CDIS software.

Praxis had used formal methods before, but not to the extent used in CDIS. Several different
formal methods were involved in the development. For reasons of clarity described in detail by
Hall, Praxis decided to do a complete, top-level formal specification of critical system elements
using VDM. The development team found that this use of formal notation to capture essential
CDIS operations improved their understanding of the requirements.

The abstract specification was written in a formal language, similar to VDM. The user interface
definitions, derived from a prototyping exercise, were expressed as pictures, text and state-
transition diagrams. The concurrency specification was a mixture of data flow diagrams and
formal notation using Robin Milner's calculus of communicating sequential processes (CCS)
technique. The abstract specification was by far the largest document, and all other documents
were linked to its definitions.

SEW Proceedings

2
The overall CDIS design was described in a design overview, containing the overall system
architecture and design rationale. Then, each of the four major parts of the system had its own
design document.

1. The application code was designed by writing VDM specifications of the application
modules, created as refinements of the core specification.

2. The user interface code was designed informally, using pseudocode for each window
class.

3. The processes needed to achieve concurrency and invoke the application code were
defined as finite state machines.

4. The local area network software was designed formally, using a mixture of VDM and
CCS. Because this area was particularly difficult, some formal proofs were done to
find faults in the design.

As Hall points out, "While the three kinds of specification were three different views of the same
thing, the four different designs (excluding the overview) were designs for different parts of the
software." Thus, formal methods were involved in three places in the design: VDM for the
application modules, finite state machines for the processes, and VDM with CCS for the LAN.
For this reason, we can categorize any code in CDIS as being influenced by one of four design
types: VDM, FSM, VDWCCS or informally-designed.

Of the almost 200,000 lines of code delivered to the Civil Aviation Authority, the VDWCCS-
derived code (that is, the local area network software) was designed and implemented by a team
of two developers. Most of the FSM work (including the links to external systems) was designed
by one person. The graphical user interface code, which comprised most of the informally-
developed programs, was developed by a team of four people. The VDM-only designs have as
many as ten dserent authors, though several took responsibility for small areas of the overall
system; the number of people who wrote the code from these designs was greater.

At the same time that CDIS was being developed, the British Department of Trade and Industry
and the Science and Engineering Research Council fbnded a project to investigate the
effectiveness of software engineering standards. Called SMARTIE (Standards and Methods
Assessment using Rigorous Techniques in Industrial Environments) and led by the Centre for
Software Reliability at City University, the collaborative academic-industrial partnership defined a
h e w o r k for assessing standards and performed several case studies to investigate the
effectiveness of particular standards in actual development environments. Shari Lawrence
Pfleeger, Norman Fenton and Stella Page reported on the initial results of SMARTIE in the
September 1994 issue of lEEE Computer.

Praxis offered the SMARTIE researchers the opportunity to examine CDIS development data to
determine if the use of various formal methods had a positive effect on the resulting code. The
CDIS development team had kept carehl records of all faults reported during in-house system
testing, as well as after fielding the system. Comments from the Civil Aviation Authority and

SEW Proceedings

users of the system were very positive, and the next step was to determine whether the
perceptions of the users were supported quantitatively.

The SMARTIE team had three basic questions to answer:

1. Did the formal methods make a quantitative difference to the code quality?
2. Was one formal method superior to another?
3. How could data collection and analysis be improved to make quality questions easier to

answer?

To begin our investigation, we captured information about each of the over-three thousand fault
reports that were generated from the end of 1990 to the middle of 1992, when the software was
delivered to the Civil Aviation Authority. Next, we classified each module and document by the
type of design that influenced it: VDM, VDM/CCS, FSM or informal methods. Then, we
generated some summary numbers to get a general idea of how design type affected the number
of fault reports that were issued.

If quality is measured by the number of changes needed to correct modules, then our results show
no clear indication that formal design methods produced higher-quality code than informal ones.
(However, when viewed in terms of the number of developers involved in producing each type of
code, there is a clear relationship. For each of the VDWCCS, FSM and VDM components, the
fewer the developers, the fewer the faults.) We analyzed the documents in the same way, doing a
causal analysis to determine which changes occurred because of specification problems, design
problems and code problems. None of our analysis provides compelling evidence that formal
design methods are better than informal, in terms of the number of faults located in each design
type.

The analysis of fault records was supplemented by a static analysis of the delivered code. Since
the CDIS code is written almost entirely in C, the code was audited by Programming Research
Ltd. using QAC, an automated inspection toolset for the C language. In essence, this toolset
detects reliance on unsafe features of these languages as documented in Safer C (McGraw-Hill,
1995), Les Hatton's guidelines for developing safety-critical systems.

Programming Research has audited millions of lines of code in C packages from around the world
in the last few years; this code, representing a wide variety of application domains including many
safety-critical systems, formed the population against which the static code analytical results were
compared. The audit involved two key steps: analyzing each module for potential faults
remaining, and calculating several structure and dependence measures to compare the modules
with the larger population in the Programming Research database. The first step helps Praxis to
understand what types of coding errors are missed in their testing process; this step is
accompanied by a risk evaluation to assess the likelihood that each latent fault will cause a
significant error. The second step compares the overall system with other systems written in C, to
give a general indication of where Praxis code quality falls in the larger universe of developed
systems.

SEW Proceedings

We found that CDIS contains an unusually low proportion of components with high complexity
compared to the population at large. In fact, the CDIS code is one of the simplest large packages
yet encountered in terms of component complexity. The audit presents a picture of modules that
have a very simple design and are very loosely coupled with one another. Since the several
packages comprising CDIS exhibit the same characteristics, and since the design techniques were
different for each package, the simplicity cannot be attributed to a particular design method,
formal or informal. Instead, the simplicity seems likely to be a direct legacy of the specification
rather than the design. Whether the simplicity results from the use of a formal method for
specifying the system or from a more thorough than usual analysis of the specification (that is, an
indirect result of the formal method) is not clear and requires hrther investigation. However, the
simple modules with few inter-module dependencies suggest that unit testing of such components
would be highly effective.

Consequently, we investigated unit testing techniques and results. Praxis provided us with data
showing the types of faults discovered during development but before system testing. Of all the
pre-delivery faults reported, 340 occurred during code review, 725 in unit testing and 2200 during
system and acceptance testing (that is, the non-zero fault reports we analyzed above). The faults
discovered during unit testing were found in informally-designed modules more ofken than in
formally-designed ones; this relationship persists even when the number of faults is normalized by
dividing by the number of modules in a given design type, suggesting that formal design may have
helped to minimize errors or to aid discovery early in development. The thoroughness of pre-
delivery testing is dramatically borne out by the differences in failures reported before and after
release; only 273 problems were reported between delivery in 1992 and the end of our dataset in
June 1994 (of which 147 were actual code faults), so the delivered code is approximately ten
times less fault-prone after system testing.

In our experience, this distribution of faults across review, unit testing and system testing is
unusual. Statistics reported in the literature suggest that code review is far more effective than
unit testing, so more faults should be found in review than in unit testing. There may be many
reasons for this aberration, including the possibility that the use of formal methods makes
problems more visible during unit testing; we do not have the data to enable us to make this
determination.

A look at the post-delivery failures and their relationship to formal methods is also instructive,
showing that far fewer changes were required to formally-designed parts of the delivered system
than to informally-designed parts. A similar picture of high quality can be seen when the non-zero
post-delivery problems are viewed in terms of their severity categories and root causes. Only six
problems were rated Category 1, and only one specification and one design problem have arisen
since delivery; the remaining problems were minor.

The difference between pre-delivery and post-delivery faults implies a strong demarcation
between classes of faults founds by the different methodologies used for reviewing and testing the
system. In particular, the difference illustrates how formal methods have two effects, one direct

SEW Proceedings

5
and one indirect. The direct effect is the large reduction in departures of the working system from
the requirements, as shown by the post-delivery failure spread. The indirect effect is the highly-
testable system that resulted, allowing satisfaction of the requirement for 100% statement
coverage. What is intriguing is that the informally-designed code was just as testable, as shown
by the metrics generated by the static code analysis. It is not possible to tell from the data
whether this effect was cultural (that is, was a result of the general Praxis emphasis on quality and
repeatability) or the result of some other technology or attitude. The informally-designed code
was tested in a different way from the formally-designed code, so the testing technique may have
influenced the results in ways that are not captured in the data.

Given the results described above, we can draw several important conclusions from these
quantitative analyses performed on the Praxis code.

1. In this case study, there is no compelling quantitative evidence that formal design techniques
alone are responsible for producing code of higher quality than informally-designed code,
since the pre-delivery fault profile shows no difference between formally-designed and
informally-designed code. On the other hand, the unit testing data show fewer errors revealed
in formally-designed code, and post-delivery failures are significantly less for formally-
designed code. Thus, formal design together with other techniques have led to code that is
highly reliable.

2. Because the high-quality audit profile was uniform and independent of design type, it is likely
that it was the formal specificatiorz that led to components that were relatively simple and
independent, making them relatively easy to unit-test.

3. Thorough testing (due to the customer's requirement of 100% statement coverage) combined
with thorough specification have resulted in very low failure rates.

4. Even with thorough testing and specification, the CDIS code contained some latent faults that
were revealed only through static inspection. Thus, to achieve the highest levels of reliability,
developers should combine formal specification and good testing with static inspection.

In other words, formal specification and design are effective under some but not necessarily all
circumstances. Their effectiveness may be improved by supplementing them with other
approaches, so that in concert they address most of the likely problems of software development.
Moreover, formal methods may be more effective in acting as a catalyst for other techniques,
especially testing, by virtue of producing testable components.

SEW Proceedings

SEW Proceedings

How Be FetmI Ylatkods AfFett Cede
Qlir llw

Shari Lawrence Pfleeger Les Hatton

SystemdSoftware, Inc. Programming Research Ltd.

4519 Davenport St. RW Glenbrook House

Washington, DC 20016-4415 Hersham, Surrey Kf 12

slpfleeger@aol.com les-hatton@prqa.co.uk

Do formal methods make a quantitative difference to
the code quality?

I s one formal method superior to another?

How can data collection and analysis be improved to
make quality questions easier to answer? . .

g
:f
>< $
g
$
8
6
$
$ g
I 3
8
$$

%;,
-9,

,$

r%%mHIs~flr55~~&s$$~ 5155m '~~stemsl~oftware, Inc. @'
c m g ~ 199s mai Lnnme Pllngs

SEW Proceedings

Praxis built CDlS using several formal methods
$
$ Specification
$ I 8
f - formal specification of the system (language similar to VDM) L d
$ - user interface specified using prototyping, pictures, text, state transition diagrams $
g - concurrency specified using DFDs and Mliner's communicating sepueatial processes 1

ices t
8
4 Design
f - application code used VDM refinements o f core specification $
$ - user Interface dasigned informally, using pseudocede 6
B - concurrency defined as FSMs 1
8 - local area network designed using VDM and CCS (some formal proofs done)
i; 6
t% 3 +.

%..
'*a,.. ~ ~ ~ ~ 5 w ~ ~ ~ 5 5 I m v r S v ~ w N A ~ ; c I w , z m ~ c m s s s ~ ~ m w ~ , Y s ~ w ~ ~ ~ 5 I w ~ x w r S m x ~ SystemslSoftware, Inc.

C-N 19% 6hai LannrePlkcgef

SEW Proceedings

SEW Proceedings

I
$
$ Design Type Total Ltnes of Number of Fault Code Number of Total Percent

f
$

$ $ FSM
/ vDM

VDMICCS
g~orrnal
ghforrnal

Delrvered Code Report- Changes Modules Number of Delrvered
generated Code per U O C Hovmg T ~ I S Deltvered Modules

Changes In Deslgn Type Modules Changed
Delrvered Code Changed

19064 260 13 6 67 52 78%
61061 1539 25 2 352 284 81%

202 9 1 82 57 70% 22201
102326 2001 19 6 501 393 78%

1 644 21 0 469 335 71% 78178
g

s

Olarter d Yea

SEW Proceedings

Faults Normalized by KLOC for Delivered Code by Design Type

Ql;\rter of Year

_ _ _ - - -

SEW Proceedings

Syntax and constraint violations.

In- l ine and interface faults.

Reliance on imprecisely-defined features o f C.

Potential reliance on unini t ia l i red variables.

Reliance on impl ic i t narrowing conversions and impl ic i t
conversions between signed and unsigned behavior.

Clutter (unused variables and unreachable code)

Component and system complewity (cyclomatic number, static
path count, maximum depth o f nesting, etc.)

C++ compatibility.
<3. .,.
'%*. ,

C ~ % ~ X I m ~ 5 5 f C + % 5 ~ ~ s ~ I a w ~ ; 5 s ~ ; 5 ' , ~ 5 m I I 5 D m I 5 I . Y ~ ~ ~ I m a I ~ x 5 D + ; 5 S 5 C I ~ ~ SystemslSoftware, Inc.
c m n row Shfl Lnmnce Pneega

Changes required after delivery 2

M o u e s
Design Type Normalized Having This Changes

by KLOC Design Type NormaIi
zed by

Number

~ & l e s
FSM 6 19064 .3 1 67 .09
VDM 1 44 61061 .72 352 .13
VDMICCS I 9 2220 1 .4 1 82 .I 1

$ Formal 1 59 102326 . .58 50 1 .12

*.
%, '.*,

./> +*. .
- v ~ ~ ~ f i ~ ~ ~ - / ~ ~ m p SystemslSoftware, Inc.

C ~ t ~ U u l L m m c e ~ ~

SEW Proceedings

SEW Proceedings

lnline faults

Interface faults

Nesting

Decisions

Paths

Uninitiated variables

External coupling

I
I

h
I
I
I *
I
I

b
8
I +
I
I

b
I
I
I b
I
I

b
I

g
<%. ..,. Bad Average '<*,. =Ood $$A

. , , m s w A w w , w w A s P m m s s ~ m ~ - ~ SystemslSoftware, Inc.
c m p n tow mat L a r r r n c e m a

I

Siemens oueratinp. svstan I Assemblv 6-15 No

Source

. - ,
KAG scientific libran- 3.00 No

Language Failures per Fonnal
KLOC methods wed?

//- I
;j fke ee@~I&piols

0 Did the formal methods make a quantitative difference to the code

Satellite planning &dy
Unisys communications software

1 quality?

Fortran 6-1 6 No
Ada 2-9 No

- No evidence that fermal design &ppoduced superior code; probably formal f
6 design plus othor techniques (like thorough unit testing) led to geod code

5 - &cause audit profile was uniform and independent of design type, formal *
6 rpscItIc~tI~n made components simple and independent -- easy to unit test

0 Was one formal method superior to another?

$ - No difference before dol i~~~ry , but cleat differenca h post-delivery faults I 0 How could data collection and aaalp is be improved h make
qual i ty questions easier to answer?.

$ - Clear deflnltlo8s of fault, problem, sptem type 1 - Static code analysis
- Capture size of change, effort to change

=-z. SystemslSoftware, Inc.)

~ l w s ~ L m n s c P (* r g s

SEW Proceedings

This i s only a case study!

I t might be the thoroughness of the specification, rather than the
formality, that made it effective.

There seems to be a relationship between team size and quality
(smaller i s better), but i t i s d i f t icu l t to separate from effects of
subsystem type.

More studies o f this type need to be performed -- w i th
measurement planning before the project i s started.

SEW Proceedings

SEW Proceedings

Panel isc cuss ion: Has the Investment in Process Demonstrated
an Impact on Software?

6J33 ' J ? ' ,

Moderator: Vic Basili, University of Maryland c .7 --)

Tom DeMarco, The Atlantic Systems Guild, Inc.

Jim Herbsleb, Software Engineering Institute

Dieter Rombach, University of Kaiserslautern

Tony Wasserrnan, IDE, Inc.

SEW Proceedings

SEW Proceedings

&;// 7-
/-,9

, 1.. -
SEW Panelists Ask, Is Process Enough? /-- k-y57,*c9 s

Marueen McSharry
Computer Sciences Corporation

Reprinted with Permission from IEEE Software

Although the question posed at the 2 0 ~ Annual Software Engineering Workshop was "Has
investment in process had an impact on software?"e answers from a panel of software-
engineering notables steered the discussion toward art versus engineering, covering people,
process, tools, and technology along the way.

In a cunning presentation in which he made erudite sport of everything from his fellow
panelists to climatic conditions in the conference auditorium, Tom DeMarco of The Atlantic
Systems Guild engaged the crowd with his perspective on investment in process. DeMarco
claimed that people - not process - represent the bulk of every organization's investment,
and people are the repositories for experience, expertise, and skills that represent potential for
future advancement. He said that "companies that think of their people as capital assets and
invest in them have had huge impact, and companies that don't have not."

DeMarco was joined by three other panelists. Jim Herbsleb, representing the SEI, gave a
thorough and, in his words, "predictable" argument for the efficacy of the Capability Maturity
Model. "Maturity matters," he said, and proceeded to document his view, citing "substantial
evidence that . . . there is business value for making these kinds of improvements." While
Herbsleb essentially pitched the SEI party line in his presentation, during the discussion he was
open-minded and flexible on process issues. "Don't slavishly follow a model in a mechanical,
thoughtless way," he advised, "the CMM is a tool to help you pursue your business
objectives." Herbsleb's attitude went a long way toward dispelling the SEI's image as the
enforcer of the KPAs.

MORE THAN METRICS

Dieter Rombach, the reigning "king" of software engineering in Europe and a faculty member
at the University of Kaiserslautern, argued the importance of using relevant measurements to
transform the "art" of software into the "engineering" of software. He stressed that in today's
competitive environment credibility must be proven through measurable business processes.
'The goal is to move from an ad hoc process, to a repeatable process, to a demonstrable
process," Rombach said. True to his roots, Rombach favored metrics programs and "learning
organizations" built on the SEL Experience Factory model to help guide "sensible investment in
process." And why not? It works for him. Rombach has recently been endowed by the
German govemment to establish a software-engineering research institute within the
Fraunhofer Institute, with, as one attendee quipped, "an operating budget greater than the entire
software-engineering research budget of Canada."

Tony Wasserman, of Software through Pictures fame, was expected to represent the tools
perspective, but actually illustrate - through pictures, naturally - the folly of elevating
process, tools, or any other single element as the exclusive solution to software-engineering
issues. "Process helps," Wasserman said, "but process can be thrown off by poor
management, poor staff, poor tools, poor working environments."

To illustrate this point, he displayed an image of the title characters from the film "Dumb and
Dumber" as he posed the question, "If process is everything, then why not hire these guys to

SEW Proceedings

build the product?" Wasserman displayed many film stills during the presentation, giving the
impression that he may have struck a product-placement deal with a Hollywood studio. Or
perhaps he intended for the stills - inasmuch as they represent the essence of American culture
- to underscore another of his points: The importance of culture in the technological universe.
Wasserman claimed that process is "dependent on the organizational culture" and the
"tendencies of the people."

Following the opening presentations, moderator Victor Basili, University of Maryland -
whom DeMarco dubbed "the man who has never had an unpublished thought" - took the
floor. Finding the role of neutral moderator too confining, Basili seemed irresistibly drawn to
the overhead projector where he weighed in with a quickly sketched slide depicting the
relationship of art and engineering in software. Lively debate ensued, especially after what
Rombach labeled DeMarco7s "second presentation" - in which DeMarco, according to his
own characterization, "attacked, ad homonym" each of the panelists and the moderator.

BACK TO REALITY

Although DeMarco dominated the panel presentation, when the discussion was opened to the
floor, virtually all of the questions were directed to Herbsleb of the SEI and addressed CMM-
related issues - a telling sign that in practice, anyway, whatever its shortcomings, people are
grappling with CMM. Herbsleb remained eminently calm as DeMarco beseeched the audience
to consider the "very upsetting possibility" that "getting higher and higher CMM levels may
well be making us more and more effective at doing things that are less and less worth doing."
Attendees asked Herbsleb why the KPAs are organized as they are, why the CMM doesn't
provide specific guidance for measurement, and "What if I'm a level-1 and I think a level3
KPA might be helpful to me? Can I do it?' Herbsleb advised one and all to "do what works"
using CMM as a tool, not a "religious text."

AN OUTRAGEOUS IDEA

John Musa, AT&T Bell Laboratories, who spoke in an earlier workshop session, approached
the audience microphone and suggested that "Process is something you define when you have
no confidence in your people." This remark drew chortles of appreciation from the crowd.
"Dumb and Dumber" redux? While the panelists disagreed with Musa's admittedly
"outrageous" statement, his comment spurred the discussion on to a consideration of what
combination of elements is needed to effectively engineer software. In the end, each speaker
gave his last word, and, not surprisingly, their ideas converged harmoniously in the view that
no one element is dominant. People are indeed critical to the software process; "investment"
represents not only the training of those people, but the acquisition and application of
appropriate tools and technology to support them. Process tools, such as CMM, help people
work more effectively. Structured measurement and analysis, such as the Experience Factory
model, deliver a credible, justifiable business case for particular process choices.

HARMONY RESTORED

As for the art versus engineering debate, the panel concluded that repeatable processes, far
from enslaving us on an assembly line, rather release us from mundane software chores. They
free us to apply our creativity and intellectual power to ever more challenging problems: to the
"art" of software engineering. Basili's late-breaking slide captured this balance in a curve,
rising infinitely over time, in which today's artistic challenges become tomonow's engineered.

SEW Proceedings

Appendix A: Workshop Attendees

SEW Proceedings

SEW Proceedings

Appendix A: Workshop Attendees

Agresti, Bill W, MITRE
corp

Allen, Charles J., Unisys
carp

Anderson, Barbara, Jet
Propulsion Lab

Angevine, Jim, ALTA
Systems, Inc

Ayers, Everett, ARINC
Research Corp

Bacon, Beverly, Computer
Sciences Corp

Bailey, John, Software
Metrics, Inc

Basili, Victor R., University
of Maryland

Bassman, Mitchell J.,
Computer Sciences Corp

Baxter, Mary E., Hughes-
STX

Beall, Shelly, Social Security
Administration

Becker, Shirley, The
American University

Beifeld, David, Unisys Corp
Bennett, Stephen, Joint

Warfare Analysis Center
Bernier, Cathy, BTG, Inc
Berthiaume, Fred, Unisys

corp
Beswick, Charles A., Jet

Propulsion Lab
Bhatia, Kiran, MITRE Corp
Blagmon, Lowell E., Naval

Center For Cost Analysis
Bobowiec, Paul W.,

COMPTEK Federal
Systems

Boland, Dillard, Computer
Sciences Corp

Bozoki, Martin J., Lockheed
Missiles & Space Co, Inc

Briand, Lionel, CRIM
Bristow, John, NASAIGSFC
Brock, 0. K., EG&G
Brown, Cindy, Computer

Sciences Corp
Bryant, Joan L., IRS

Calavaro, Giuseppe F.,
Hughes Information
Technology Corp

SEW Proceedings

Caldiera, Gianluigi,
University of Maryland

Callahan, Jack, West Virginia
University

Carlson, Randall, NSWCDD
Carnahan, Rich, Lockheed

Martin
Childers, Donald E., Joint

Warfare Analysis Center
Christensen, Joel A., TASC
Chu, Martha, Computer

Sciences Corp
Chu, Richard, Loral AeroSys
Church, Vic, Computer

Sciences Corp
Condon, Steven E.,

Computer Sciences Corp
Corbin, Regina, Social

Security Administration
Corderman, Elizabeth,

NASAIGSFC
Cortes, Elvia E., DISA
Crawford, Art, Mantech

Advanced Technology
Systems

Cuesta, Emesto, Computer
Sciences Corp

Cummins, Mary, Loral
AeroSys

Cusick, James, AT&T Bell
Labs

D'Agostino, Jeff, The
Hammers Co

Daku, Walter, Unisys Corp
Daniele, Carl J.,

NASALeRC
DeMarco, Tom, The Atlantic

Systems Guild
Debaud, Jean-Marc, Georgia

Institute of Technology
Decker, William J.,

Computer Sciences Corp
Deutsch, Michael S., Hughes

Applied Info Systems, Inc
Deyton, Ray, Loral AeroSys
DiNunno, Donn, Computer

Sciences Corp
Diskin, David H., Defense

Information Systems
Agency

Doland, Jerry T., Computer
Sciences Corp

Dolphin, Leonard, ALTA
Systems, Inc

Donahue, Brian E., Harris
Corp - GASD

Drappa, Anke, Universitat
Stuttgart

Dudash, Ed, Naval Surface
Warfare Center

DuffL, Terry, McDonnell
Douglas

Easterbrook, Steve, West
Virginia University

Edelson, Robert, Jet
Propulsian Lab

Elliott, Frank, Social
Security Administration

Estep, James, NASA IV&V
Facility

Fagerhus, Geir, Q-Labs
Farr, William H., Naval

Surface Warfare Center
Farmkh, Ghulam, George

Mason University
Feerrar, Wallace, MITRE

corp
Femandes, Vernon,

Computer Sciences Corp
Field, Brian S., Computer

Sciences Corp ISMD
Fike, Shem, Ball Aerospace
Fitch, Chris, IIT Research

Institute
Fleming, Barbara, DISA
Flora, Jackie, Social Security

Administration
Forsythe, Ron,

NASANallops Flight
Facility

Frahrn, Mary J., Computer
Sciences Corp

Funch, Paul G., MITRE
corp

Futcher, Joseph M, Naval
Surface Warfare Center

Gant, Donna, GDE Systems,
Inc

Gantzer, D. J., Loral Federal
Systems

Geiger, Jennifer,
NASAIGSFC

Gieser, Jim, Unisys Corp
Godfiey, Sally,

NASAIGSFC
Golden, John R., Information

Technologies
Goodman, Nancy,

NASAIGSFC
Green, David S., Computer

Sciences Corp
Green, Scott, NASAIGSFC
Gregory, Judith A.,

NASAIMSFC
Griffin, Wesley
Groveman, Brian S.,

Computer Sciences Corp

Hall, Dana L., SAIC
Hall, Joseph F., DPRO-

Westinghouse, ES
Hall, Ken R., Computer

Sciences Corp
Halterman, Karen,

NASAIGSFC
Hanis, Barbara A., USDA
Harris, Chi Cha, DPRO-

Westinghouse
Hanis, Karlette, PRC, Inc
Heasty, Richard, Computer

Sciences Corp
Heintzelman, Clinton L., US

Air Force
Heller, Gerry H., Computer

Sciences Corp
Herbsleb, Jim, Software

Engineering Institute
Hill, Ken, Unisys Corp
Hirsch, Steven J., DoD
Hoffinann, Kenneth, Ryan

Computer Systems, Inc
Holmes, Joseph A., IRS
Hopkins, Hany A., DISA

Janzon, Tove, Q-Labs
Jay, Elizabeth M.,

NASAIGSFC
Jefferson, Karen, Computer

Sciences Corp
Jeletic, Jim, NASAIGSFC
Jeletic, Kellyann,

NASAIGSFC
Jones, Christopher C., IIT

Research Institute
Jones, Jay, OAO Corp
Jordan, Gary, Unisys Corp
Jordano, Tony J., SAIC
Joyce, Keith, GDE Systems,

Inc

Kalin, Jay, Loral AeroSys
Kanzinger, Erica, Health Care

Financing Administration
Kassebaum, Robert, MCI
Kelly, John C., Jet

Propulsion Lab
Kemp, Kathryn M., Office of

Safety & Mission
Assurance

Kester, Rush W., Computer
Sciences Corp

Kettenring, Jon R.,
BELLCORE

Kim, Yong-Mi, University of
Maryland

Kontio, Jyrki, University of
Maryland

Kraft, Steve, NASAIGSFC
Krarner, Nancy,

DynCorpNiar
Kronisch, Mark, US Census

Bureau
Kuhne, Fran, Social Security

Administration
Kurihara, Tom M., Logicon,

Inc
Lakhotia, A m , University of

Southwestern Louisiana

Landis, Linda C., Computer
Sciences Corp

Landry, Huet C., DISA
Lane, Allan C., AlliedSignal

Technical Services Corp
Lang, Keith R., Lockheed

Martin
Lanubile, Filippo, University

of Maryland
Lawrence Pfleeger, Shari,

SystemsISoftware, Inc
Leach, Ronald J., Howard

University
Leasure, William C., DPRO-

Westinghouse
Leydorf, Steven M., IIT

Research Institute
Liebexmann, Roxanne, US

Census Bureau
Liu, Jean C., Computer

Sciences Corp .
Livingston, Karen, IIT

Research Institute
Loesh, Bob E., Software

Engineering Sciences, Inc
Lucas, Janice P., US

Treasury Department
Luczak, Ray W., Computer

Sciences Corp

Ludford, Joseph F.,
Computer Sciences Corp

Lyons, Howie,
AFPCAIGADB

Mahajan, Rohit, University
of Maryland

Marciniak, John J., Karnan
Sciences Corp

Martinez, Bill, Loral Federal
Systems

Maury, Jesse, Omitron, Inc
McCafferty, Brian, XonTech,

Inc
McGany, Frank E.,

Computer Sciences Corp
McGany, Mary Ann, IIT

Research Institute
McGrane, Janet K., US

Census Bureau
McGuire, Gene, American

University
McRoberts, Terry L.,

NASAIGSFC
McShany, Maureen,

Computer Sciences Corp
Melo, Walcelio L.,

University of Maryland
Michel, Del,

DISA/JIEO/CES/JEBEC
Mike, Debbie, Unisys Corp
Miller, Martin E., DPRO-

Westinghouse
Moms, Jeff, Lockheed

Martin Corp
Mucci, David, Computer

Sciences Corp
Mulvaney, Bill, DISA
Musa, John D., AT&T Bell

Labs
Myers, Philip I., Computer

Sciences Corp

Narrow, Bernie, AlliedSignal
Technical Services Corp

Nero, Thema
NestIerode, Howard, Unisys

COT
New, Ronald, COMPU-

HELP
Nokovich, Sandra L., US

Census Bureau
Norcio, Tony F., University

of Maryland-Baltimore Co

Obenzu, Ray, Software
Engineering Institute

SEW Proceedings

Page, Gerald T., Computer
Sciences Corp

Pajerski, Rose, NASAIGSFC
Paletar, Teresa L., Naval Air

Warfare Center
Panlilio-Yap, Nikki M.,

Loral Sofhvare Systems
Resource Center

Parra, Amy T., Computer
Sciences Corp

Patel, Shirishbhai,
NASAJKSC

Pavnica, Paul,
TreasurytFincen

Pedersen, Bonnie, Loral
AeroSys

Peeples, Ron L., Intermetrics
Perry, Howard, Computer

Sciences Corp
Pfitzer, Bonita, Madison

Research Corp
Poe, Kevin, NASA IV&V

Facility
Pollack, Ida, Cybersoft
Pollack, Jay, Computer

Sciences Corp
Polly, Mike, Raytheon
Powers, Lany T., Unisys

COT
Pugliese, Tom, QSS Group

Quann, Eileen S., Fastrak
Training, Inc

Reesman, Leslie J.,
Hernandez Engineering, Inc

Regardie, Myrna L.,
Computer Sciences Corp

Rizer, Stephani, NAWC-AD
Rodgers, Thomas M.,

Lockheed-Martin
Rombach, H. Dieter,

University of
Kaiserslautem

Rosenberg, Linda H., Unisys
corp

Russell, Earl, USDA

Sabolish, George J., NASA
IV&V Facility

Samuels, George, Social
Security Administration

Sanderson, Peter, Southwest
Missouri State University

Sands, Judy, US Census
Bureau

Sands, Robert D., US
Census Bureau

SEW Proceedings

Santiago, Richard, Jet
Propulsion Lab

Sauble, George, Omitron, Inc
Schappelle, Sam, IBM

Object Technology
University

Schneider, Laurie, General
Sciences CorplSAIC

Schneidewind, Norman F.,
Naval Postgraduate School

Schuler, Pat M.,
NASAlLaRC

Schulterbrandt, Sherwin D.,
Health Care Financing
Administration

Schwartz, Benjamin L.,
Consultant

Schweiss, Robert,
NASAIGSFC

Seaman, Carolyn B.,
University of Maryland

Seaton, Bonita,
NASAIGSFC

Seidewitz, Ed, NASAIGSFC
Selmon, Lisa, SAICIASSET
Shah, Rohini, US Census

Bureau
Sheckler, John D.,

AlliedSignal Technical
Services Corp

Shefner, John D., MITRE
corp

Shneidennan, Ben,
University of Maryland

Shull, Forrest, University of
Maryland

Sim, Ed, Bowie State
University

Singer, Carl A., BELLCORE
Slade, Lucius, USDA
Slonim, Jacob, IBM Canada

Lab - CAS
Smidts, Carol, University of

Maryland
Smith, Donald,

NASNGSFC
Smith, George F., Space &

Naval Warfare Systems
Command

Smith, Vivian A., FAA
Solomon, Arthur, DISA
Sorumgard, Sivert,

University of Maryland
Sova, Don, NASAMQ
Spangler, Alan, IBM
Sparmo, Joe, NASAIGSFC
Squires, Burton E., Orion

Scientific, Inc

Stagmer, Cheryl A., Health
Care Financing
Administration

Stankewicz, Bonnie,
Computer Sciences Corp

Stark, Michael,
NASAIGSFC

Stauffer, Michael, Lockheed
Martin, M&DSO

Steinberg, Sandee, Computer
Sciences Corp

Stoddard, Robert W., Texas
Instruments

Stoos, Pat, Social Security
Administration

Sukri, Judin, Computer
Sciences Corp

Swain, Barbara, University of
Maryland

Szulewski, Paul A., CS
Draper Labs, Inc

Tasaki, Keiji, NASAIGSFC
Taylor, Michael, Computer

Sciences Corp
Tesoriero, Roseanne,

University of Maryland
Thomas, William, MITRE

COT
Thomason, Clarke, Pailen-

Johnson Associates, Inc
Trachta, Greg, Unisys Corp
Tran, Tuyet-Lan, Jet

Propulsion Lab
Tupman, Jack R., Jet

Propulsion Lab

Ulery, Bradford T., MITRE
carp

Underwood, David A., IIT
Research Institute

Valett, Jon, NASAIGSFC
Valett, Susan, NASNGSFC
Van Nee, Lee, Boeing
Veillon, Nancy, Social

Security Administration
Voigt, Susan J.,

NA SA/LaRC

Wackley, Joseph A., Jet
Propulsion Lab

Waligora, Sharon R.,
Computer Sciences Corp

Walker, James A., DoD
Walsh, Chip, IRS
Walsh, Chuck, RMS

Associates

Wasserman, Tony, IDE
Waszkiewicz, Mary Lily,

Computer Sciences Corp
Watson, Jim, NASALaRC
Weisenberger, Mike,

McDomell Douglas
Weiss, Sandy L., IIT

Research Institute
West, Tim, DISA
Weszka, Joan, Loral Federal

Systems Group
Wetherholt, Martha S.,

NASAJLeRC
Whisenand, Tom, Social

Security Administration

SEW Proceedings

Whitehead, John W.,
COMPTEK Federal
Systems

Widmaier, James, DoD
Williams, James K, DISA
Wilson, Robert K., Jet

Propulsion Lab
Wohlin, Claes, Lund

University, Sweden
Wolf, Bryan, McDomell

Douglas
Wolfish, Hannah K., Social

Security Administration
Wood, Richard J., Computer

Sciences Corp

Woodyard, Charles E.,
NASAIGSFC

Young, Andy, Young
Engineering Services, Inc

Young, Wendall, Pailen-
Johnson Associates, Inc

Zeitvogel, Barney, SECON
Zekowitz, Maw, University

of Maryland
Zimet, Beth, EIS

Appendix B: Standard Bibliography of SEL Literature

SEW Proceedings

SEW Proceedings

STANDARD BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in this bibliography are organized
into two groups. The first group is composed of documents issued by the Software Engineering
Laboratory (SEL) during its research and development activities. The second group includes
materials that were published elsewhere but pertain to SEL activities. The Annotated
Bibliography of Sojhvare Engineering Laboratory Literature contains an abstract for each
document and is available via the SEL Products Page at http://fdd.gsfc.nasa.gov/selprods.htrnl.

SEL-ORIGINATED DOCUMENTS

SEL-76-001, Proceedings From the First Summer Sohare Engineering Workshop, August
1976

SEL-77-002, Proceedings From the Second Summer Sojhvare Engineering Workshop,
September 1977

SEL-78-005, Proceedings From the Third Summer Software Engineering Workshop, September
1978

SEL-78-006, GSFC Sojhvare Engineering Research Requirements Analysis Study, P. A. Scheffer
and C. E. Velez, November 1978

SEL-78-007, Applicability of the RayZeigh Curve to the SEL Environment, T. E. Mapp,
December 1978

SEL-78-302, FORTRAN Static Source Code Analyzer Program (SAP) User's Guide (Revision 3),
W . J . Decker, W. A. Taylor, et al., July 1986

SEL-79-002, The Sojhvare Engineering Laboratory: Relationship Equations, K. Freburger and
V. R. Basili, May 1979

SEL-79-004, Evaluation of the Caine, Farber, and Gordon Program Design Language (PDL) in
the Goddard Space Flight Center (GSFC) Code 580 SofhYae Design Environment,
C. E. Goorevich, A. L. Green, and W. J. Decker, September 1979

SEL-79-005, Proceedings From the Fourth Summer Sojhvare Engineering Workshop, November
1979

SEL-80-002, Multi-Level Expression Design Language-Requirement Level (MEDL-R) System
Evaluation, W . J . Decker and C. E. Goorevich, May 1980

SEL-80-005, A Study of the Musa Reliability Model, A. M. Miller, November 1980

SEL-80-006, Proceedings From the FiJi'h Annual Sofiare Engineering Workshop, November
1980

SEW Proceedings

SEL-80-007, An Appraisal of Selected Cost/Resource Estimation Models for Sofhare Systems,
J . F . Cook and F . E. McGarry, December 1980

SEL-80-008, Tutorial on Models and Metrics for Software Management and Engineering,
V . R. Basili, 1980

SEL-8 1-01 1 , Evaluating Software Development by Analysis of Change Data, D. M. Weiss,
November 198 1

SEL-81-012, The Rayleigh Curve as a Model for Eflort Distribution Over the Life of Medium
Scale Sofiare Systems, G. 0. Picasso, December 1981

SEL-8 1-0 1 3, Proceedings of the Sixth Annual Sofhare Engineering Workshop, December 198 1

SEL-8 1 -0 14, Automated Collection of Software Engineering Data in the Sofhare Engineering
Laboratory (SEL), A. L. Green, W. J . Decker, and F. E. McGarry, September 1981

SEL-8 1 - 1 0 1 , Guide to Data Collection, V . E. Church, D. N. Card, F . E. McGarry, et al., August
1982

SEL-8 1 - 1 1 0, Evaluation of an Independent Verification and Validation (IV& Methodology for
Flight Qnamics, G. Page, F . E. McGarry, and D. N. Card, June 1985

SEL-81-305, Recommended Approach to Sojiware Development, L. Landis, S. Waligora,
F. E.lMcGarry, et al., June 1992

SEL-8 1-3 05 S P 1 , Ada Developers' Supplement to the Recommended Approach, R. Kester and
L. Landis, November 1993

SEL-82-001, Evaluation of Management Measures of SoJtware Development, G. Page,
D. N . Card, and F. E. McGarry, September 1982, vols. 1 and 2

SEL-82-004, Collected Software Engineering Papers: Volume I , July 1982

SEL-82-007, Proceedings of the Seventh Annual SoJtware Engineering Workshop, December
1982

SEL-82-008, Evaluating SoJfware Development by Analysis of Changes: The Data From the
Software Engineering Laboratory, V . R. Basili and D. M. Weiss, December 1982

SEL-82-102, FORTRAN Static Source Code Analyzer Program (SAP) System Description
(Revision I), W . A. Taylor and W . J. Decker, April 1985

SEL-82-105, Glossary of Software Engineering Laboratory Terms, T. A. Babst, M. G. Rohleder,
and F. E. McGany, October 1983

SEL-83-001, An Approach to SoJlware Cost Estimation, F . E. McGarry, G. Page, D. N. Card, et
al., February 1984

SEL-83-002, Measures and Metrics for So@are Development, D. N. Card, F. E. McGarry,
G. Page, et al., March 1984

SEW Proceedings

SEL-83-003, Collected Software Engineering Papers: Volume 11, November 1983

SEL-83-007, Proceedings of the Eighth Annual Software Engineering Workshop, November
1983

SEL-83-106, Monitoring Software Development Through Dynamic Variables (Revision I) ,
C. W . Doerflinger, November 1989

SEL-84-003, Investigation of Spec$cation Measures for the Software Engineering Laboratory
(SEL), W . W . Agresti, V . E. Church, and F. E. McGarry, December 1984

SEL-84-004, Proceedings of the Ninth Annual Sofiare Engineering Workshop, November 1984

S EL-84- 1 0 1 , Manager 's Handbook for Sof iare Development (Revision I), L. Landis,
F. E. McGarry, S. Waligora, et al., November 1990

SEL-85-001, A Comparison of Software VeriJication Techniques, D. N. Card, R. W. Selby, Jr.,
F . E. McGarry, et al., April 1985

SEL-85-002, Ada Training Evaluation and Recommendations From the Gamma Ray
Observatory Ada Development Team, R. Murphy and M. Stark, October 1985

SEL-85-003, Collected SoJtware Engineering Papers: Volume III, November 1985

S EL-85-004, Evaluations of Software Technologies: Testing, CLEANROOM, and Metrics,
R. W. Selby, Jr., and V . R. Basili, May 1985

SEL-85-005, SoJiware Verzjication and Testing, D. N. Card, E. Edwards, F . McGarry, and
C. Antle, December 1985

SEL-85-006, Proceedings of the Tenth Annual Sofiare Engineering Workshop, December 1985

SEL-86-001, Programmer S Handbook for Flight Dynamics Sofnyare Development, R. Wood
and E. Edwards, March 1986

SEL-86-002, General Object-Oriented Software Development, E. Seidewitz and M, Stark,
August 1 986

SEL-86-003, Flight Dynamics System Software Development Environment (FDS/SDE) Tutorial,
J . Buell and P. Myers, July 1986

SEL-86-004, Collected Software Engineering Papers: Volume IV, November 1986

SEL-86-005, Measuring Software Design, D. N. Card et al., November 1986

SEL-86-006, Proceedings of the Eleventh Annual Software Engineering Workshop, December
1986

SEL-87-00 1 , Product Assurance Policies and Procedures for Flight Dynamics Sofiare
Development, S. Perry et al., March 1987

SEL-87-002, ~ d a @ S ~ l e Guide (Version I. I), E. Seidewitz et al., May 1987

SEW Proceedings

SEL-87-003, Guidelines for Applying the Composite Spec$cation Model (CSW, W. W. Agresti,
June 1987

SEL-87-004, Assessing the ~ d a @ Design Process and Its Implications: A Case Study,
S . Godfiey, C. Brophy, et al., July 1987

SEL-87-009, Collected Soffware Engineering Papers: Volume V, November 1987

SEL-87-0 10, Proceedings of the Twevh Annual SoJiware Engineering Workshop, December
1987

SEL-88-001, System Testing of a Production Ada Project: The GRODY Study, J. Seigle, L.
Esker, and Y . Shi, November 1988

SEL-88-002, Collected Soffware Engineering Papers: Volume VI, November 1988

SEL-88-003, Evolution of Ada Technology in the Flight Dynamics Area: Design Phase Analysis,
K. Quimby and L. Esker, December 1988

SEL-88-004, Proceedings of the Thirteenth Annual Soware Engineering Workshop, November
1988

SEL-88-005, Proceedings of the First NASA Ada User's Symposium, December 1988

SEL-89-002, Implementation of a Production Ada Project: The GRODY Study, S. Godfiey and
C. Brophy, September 1989

SEL-89-004, Evolution of Ada Technology in the Flight Dynamics Area:
ImplementatioidTesting Phase Analysis, K. Quimby, L. Esker, L. Smith, M. Stark, and F.
McGarry, November 1989

SEL-89-005, Lessons Learned in the Transition to Ada From FORTMN at NASMGoddard,
C. Brophy, November 1989

SEL-89-006, Collected Soffware Engineering Papers: Volume VII, November 1 989

SEL-89-007, Proceedings of the Fourteenth Annual Sofiware Engineering Workshop, November
1989

SEL-89-008, Proceedings of the Second NASA Ada Users ' Symposium, November 1989

SEL-89- 103, Soffware Management Environment (SME) Concepts and Architecture (Revision
I) , R. Hendrick, D. Kistler, and J . Valett, September 1992

SEL-89-301, SoJiware Engineering Laborary (SEL) Database Organization and User's Guide
(Revision 3), L. Morusiewicz, February 1995

SEL-90-001, Database Access Manager for the Soffware Engineering Laboratory (DAMSEL)
User's Guide, M. Buhler, K. Purnphrey, and D. Spiegel, March 1990

SEL-90-002, The Cleanroom Case Study in the Sofrware ~ n ~ i n e e r i n ~ Laboratory: Project
Description and Early Analysis, S . Green et al., March 1990

SEW Proceedings

SEL-90-003, A Study of the Portability of an Ada System in the Sofrware Engineering
Laboratory (SEL), L. 0. Jun and S. R. Valett, June 1990

SEL-90-004, Gamma Ray Observatory Dynamics Simulator in Ada (GRODIJ Experiment
Summary, T . McDennott and M. Stark, September 1990

SEL-90-005, Collected Soflwae Engineering Papers: Volume VIII, November 1990

SEL-90-006, Proceedings of the Fzjleenth Annual SoJtware Engineering Workshop, November
1990

SEL-9 1-00 1 , Sojhvare Engineering Laboratory (SEL) Relationships, Models, and Management
Rules, W. Decker, R. Hendrick, and J . Valett, February 1991

SEL-91-003, SoJiware Engineering Laboratory (SEL) Ada Performance Stu& Report,
E. W. Booth and M . E. Stark, July 1991

SEL-91-004, Software Engineering Laboratory (SEL) Cleanroom Process Model, S. Green,
November 199 1

SEL-9 1 -005, Collected SoJtware Engineering Papers: Volume LY, November 199 1

SEL-9 1 -006, Proceedings of the Sixteenth Annual Sojiware Engineering Workshop, December
1991

SEL-9 1 - 102, SoJtware Engineering Laborato,y (SEL) Data and Information Policy (Revision I) ,
F . McGarry, August 199 1

SEL-92-001, Softwae Management Environment (SME) Installation Guide, D. Kistler and
K. Jeletic, January 1992

SEL-92-002, Data Collection Procedures for the SoJtware Engineering Laboratory (SEL)
Database, G. Heller, J . Valett, and M. Wild, March 1992

SEL-92-003, Collected SoJtware Engineering Papers: Volume X, November 1992

SEL-92-004, Proceedings of the Seventeenth Annual Sojiware Engineering Workshop, December
1992

SEL-93-00 1 , Collected SoJiware Engineering Papers: Volume XI, November 1993

SEL-93-002, Cost and Schedule Estimation Study Report, S. Condon, M. Regardie, M. Stark, et
al., November 1993

SEL-93-003, Proceedings of the Eighteenth Annual Sofrware Engineering Workshop, December
1993

SEL-94-00 1 , Sofrwae Management ~nvironment (SME) Components and Algorithms,
R. Hendrick, D. Kistler, and J . Valett, February 1994

SEL-94-003, C Style Guide, J . Doland and J . Valett, August 1994

SEL-94-004, Collected Software Engineering Papers: Volume XII, November 1 994

SEW Proceedings

SEL-94-005, An Overview of the Sojiware Engineering Laboratory, F. McGarry, G. Page,
V. Basili, et al., December 1994

SEL-94-006, Proceedings of the Nineteenth Annual SoJiware Engineering Workshop, December
1994

SEL-94-102, Sojiware Measurement Guidebook (Revision I), M. Bassman, F. McGarry,
R. Pajerski, June 1995

SEL-95-001, Impact of Ada and Object-Oriented Design in the Flight Dynamics Division at
Goddard Space Flight Center, S. Waligora, J. Bailey, M. Stark, March 1995

SEL-95-003, Collected Sojiware Engineering Papers: Volume XIII, November 1995

SEL-95-004, Proceedings of the Twentieth Annual Sojiware Engineering Workshop, December
1995

SEL-95-102, Sojiware Process Improvement Guidebook (Revision I), K. Jeletic, R. Pajerski,
C. Brown, March 1996

SEL-RELATED LITERATURE

10Abd-El-Hafiz, S. K., V. R. Basili, and G. Caldiera, "Towards Automated Support for
Extraction of Reusable Components," Proceedings of the IEEE Conference on Sojiware
Maintenance-1 991 (CSM 91), October 1 99 1

4Agresti, W. W., V. E. Church, D. N. Card, and P. L. Lo, "Designing With Ada for Satellite
Simulation: A Case Study," Proceedings of the First International Symposium on Ada for the
NASA Space Station, June 1986

2~gresti, W. W., F. E. McGarry, D. N. Card, et al., "Measuring Software Technology," Program
Transformation and Programming Environments. New York: Springer-Verlag, 1984

'Bailey, J. W., and V. R. Basili, "A Meta-Model for Software Development Resource
Expenditures," Proceedings of the Fzjlh International Conference on Sojiware Engineering.
New York: IEEE Computer Society Press, 198 1

SBailey, J. W., and V. R. Basili, "Software Reclamation: Improving Post-Development
Reusability," Proceedings of the Eighth Annual National Conference on Ada Technology, March
1990

1°Bailey, J. W., and V. R. Basili, "The Software-Cycle Model for Re-Engineering and Reuse,"
Proceedings of the ACM Tri-Ada 91 Conference, October 1991

IBasili, V. R., "Models and Metrics for Software Management and Engineering," ASME
Advances in Computer Technology, January 1980, vol. 1

Basili, V. R., Tutorial on Models and Metrics for SoJiware Management and Engineering. New
York: IEEE Computer Society Press, 1980 (also designated SEL-80-008)

SEW Proceedings

3Basili, V. R., "Quantitative Evaluation of Software Methodology," Proceedings of the First
Pan-PaciJic Computer Conference, September 1985

7Basili, V. R., Maintenance = Reuse-Oriented Sofiware Development, University of Maryland,
Technical Report TR-2244, May 1 989

7Basili, V. R., Software Development: A Paradigm for the Future, University of Maryland,
Technical Report TR-2263, June 1989

gBasili, V. R., "Viewing Maintenance of Reuse-Oriented Software Development," IEEE
Sofhyare, January 1990

13Basili, V. R., "The Experience Factory and Its Relationship to Other Quality Approaches,"
Advances in Computers, vol. 41, Academic Press, Incorporated, 1995

IBasili, V. R., and J. Beane, "Can the Parr Curve Help With Manpower Distribution and
Resource Estimation Problems?," Journal of Systems and SoJiware, February 198 1, vol. 2, no. 1

13Basili, V. R., L. Briand, and W. L. Melo, A Validation of Object-Oriented Design Metrics,
University of Maryland, Computer Science Technical Report, CS-TR-3443, UMIACS-TR-95-
40, April 1995

13Basili, V. R., and G. Caldiera, The Experience Factory Strategy and Practice, University of
Maryland, Computer Science Technical Report, CS-TR-3483, UMIACS-TR-95-67, May 1995

gBasili, V. R., G. Caldiera, and G. Cantone, "A Reference Architecture for the Component
Factory,"ACM Transactions on Sofiware Engineering and Methodology, January 1 992

loBasili, V., G. Caldiera, F. McGarry, et al., "The Software Engineering Laboratory-An
Operational Software Experience Factory," Proceedings of the Fourteenth International
Conference on SofhYare Engineering (ICSE 92), May 1992

IBasili, V. R., and K. Freburger, "Programming Measurement and Estimation in the Software
Engineering Laboratory," Journal of Systems and Sofiware, February 1981, vol. 2, no. 1

IZBasili, V. R., and S. Green, "Software Process Evolution at the SEL," IEEE Sofiware, July
1994, pp. 58-66

3Basili, V. R., and N. M. Panlilio-Yap, "Finding Relationships Between Effort and Other
Variables in the SEL," Proceedings of the International Computer SofhYae and Applications
Conference, October 1985

4Basili, V. R., and D. Patnaik, A Study on Fault Prediction and Reliability Assessment in the SEL
Environment, University of Maryland, Technical Report TR-1699, August 1986

2Basili, V. R., and B. T. Perricone, "Software Errors and Complexity: An Empirical
Investigation," Communications of the ACM, January 1984, vol. 27, no. 1

SEW Proceedings

IBasili, V. R., and T. Phillips, "Evaluating and Comparing Software Metrics in the Software
Engineering Laboratory," Proceedings of the ACM SIGMETRICS Symposiurn/Workshop:
Quality Metrics, March 1 98 1

3Basili, V. R., and C. L. Ramsey, "ARROWSMITH-P-A Prototype Expert System for Software
Engineering Management," Proceedings of the IEEE/MITm Expert Systems in Government
Symposium, October 1985 '

Basili, V. R., and J. Ramsey, Structural Coverage of Functional Testing, University of
Maryland, Technical Report TR-1442, September 1984

Basili, V. R., and R. Reiter, "Evaluating Automatable Measures for Software Development,"
Proceedings of the Workshop on Quantitative Softwae Models for Reliability, Complexity, and
Cost. New York: IEEE Computer Society Press, 1979

5Basili, V. R., and H. D. Rombach, "Tailoring the Software Process to Project Goals and
Environments," Proceedings of the 9th International Conference on SoJiware Engineering,
March 1987

SBasili, V. R., and H. D. Rombach, "TAME: Tailoring an Ada Measurement Environment,"
Proceedings of the Joint Ada Conference, March 1987

SBasili, V. R., and H. D. Rombach, "TAME: Integrating Measurement Into Software
Environments," University of Maryland, Technical Report TR- 1764, June 1987

6Basili, V. R., and H. D. Rombach, "The TAME Project: Towards Improvement-Oriented
Software Environments," IEEE Transactions on Sojhvare Engineering, June 1 988

7Basili, V. R., and H. D. Rombach, Towards A Comprehensive Frameworkfor Reuse: A Reuse-
Enabling Soware Evolution Environment, University of Maryland, Technical Report TR-2158,
December 1988

SBasili, V. R., and H. D. Rombach, Towards A Comprehensive Framework for Reuse: Model-
Based Reuse Characterization Schemes, University of Maryland, Technical Report 732-2446,
April 1990

gBasili, V. R., and H. D. Rombach, "Support for Comprehensive Reuse," Sojhvare Engineering
Journal, September 199 1

3Basili, V. R., and R. W. Selby, Jr., "Calculation and Use of an Environment's Characteristic
Sofhvare Metric Set," Proceedings of the Eighth International Conference on Software
Engineering. New York: IEEE Computer Society Press, 1985

Basili, V. R., and R. W. Selby, "Comparing the Effectiveness of Software Testing Strategies,"
IEEE Transactions on Sojiware Engineering, December 1987

3Basili, V. R., and R. W. Selby, Jr., "Four Applications of .a Software Data Collection and
Analysis Methodology," Proceedings of the NATO Advanced Study Institute, August 1985

SEW Proceedings

SBasili, V. R., and R. Selby, "Comparing the Effectiveness of Software Testing Strategies,"
IEEE Transactions on Sofhare Engineering, December 1987

9~asili, V. R., and R. W. Selby, "Paradigms for Experimentation and Empirical Studies in
Software Engineering," Reliability Engineering and System Safety, January 199 1

4Basili, V. R., R. W. Selby, Jr., and D. H. Hutchens, "Experimentation in Software Engineering,"
IEEE Transactions on SoJ2ware Engineering, July 1 986

*Bas%, V. R., R. W. Selby, and T. Phillips, "Metric Analysis and Data Validation Across
FORTRAN Projects," IEEE Transactions on Software Engineering, November 1983

ZBasili, V. R., and D. M. Weiss, A Methodology for Collecting Valid SoJiware Engineering
Data, University of Maryland, Technical Report TR- 1235, December 1982

3Basili, V. R., and D. M. Weiss, "A Methodology for Collecting Valid Software Engineering
Data," IEEE Transactions on Software Engineering, November 1984

IBasili, V. R., and M. V. Zelkowitz, "The Software Engineering Laboratory: Objectives,"
Proceedings of the FiJieenth Annual Conference on Computer Personnel Research, August 1977

Basili, V. R., and M. V. Zelkowitz, "Designing a Software Measurement Experiment,"
Proceedings of the Software Life Cycle Management Workshop, September 1977

IBasili, V. R., and M. V. Zelkowitz, "Operation of the Software Engineering Laboratory,"
Proceedings of the Second Sofiare Life Cycle Management Workshop, August 1 978

IBasili, V. R., and M. V. Zelkowitz, "Measuring Software Development Characteristics in the
Local Environment," Computers and Structures, August 1978, vol. 10

Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale Software Development,"
Proceedings of the Third International Conference on SoJiware Engineering. New York: IEEE
Computer Society Press, 1978

13Basili, V., M. Zelkowitz, F. McGarry, G. Page, S. Waligora, and R. Pajerski, "SEL's Software
Process-Improvement Program," IEEE SoJiware, vol. 12, no. 6 , November 1995, pp. 83-87

Bassman, M. J., F. McGany, and R. Pajerski, SoJiware Measurement Guidebook, NASA-GB-
00 1-94, Software Engineering Program, July 1994

9Booth, E. W., and M. E. Stark, "Designing Configurable Software: COMPASS Implementation
Concepts," Proceedings of Tri-Ada 1991, October 1991

loBooth, E. W., and M. E. Stark, "Software Engineering Laboratory Ada Performance
Study-Results and Implications," Proceedings of the Fourth Annual NASA Ada User's
Symposium, April 1992

loBriand, L. C., and V. R. Basili, "A Classification Procedure for the Effective Management of
Changes During the Maintenance Process," Proceedings of the 1992 IEEE Conference on
Sofhare Maintenance (CSM 92), November 1 992

SEW Proceedings

IoBriand, L. C., V. R. Basili, and C. J. Hetrnanski, "Providing an Empirical Basis for Optimizing
the Verification and Testing Phases of Software Development," Proceedings of the Third IEEE
International Symposium on Software Reliability Engineering (ISSRE 92), October 1992

IlBriand, L. C., V. R. Basili, and C. J. Hetmanski, Developing Interpretable Models with
Optimized set Reduction for Identzfiing High Risk Software Components, University of
Maryland, Technical Report TR-3048, March 1993

12Briand, L. C., V. R. Basili, Y. Kim, and D. R. Squier, "A Change Analysis Process to
Characterize Software Maintenance Projects," Proceedings of the International Conference on
Software Maintenance, Victoria, British Columbia, Canada, September 19-23,1994, pp. 38-49

gBriand, L. C., V. R. Basili, and W. M. Thomas, A Pattern Recognition Approachfor Software
Engineering Data Analysis, University of Maryland, Technical Report TR-2672, May 199 1

13Briand, L., W. Melo, C. Seaman, and V. Basili, "Characterizing and Assessing a Large-Scale
Software Maintenance Organization," Proceedings of the 17th International Conference on
SofhYare Engineering, Seattle, Washington, U.S.A., April 23-30,1995

IlBriand, L. C., S. Morasca, and V. R. Basili, "Measuring and Assessing Maintainability at the
End of High Level Design," Proceedings of the 1993 IEEE Conference on SoJiware Maintenance
(CSM 93), November 1993

12Briand, L., S. Morasca, and V. R. Basili, DeJining and Validating High-Level Design Metrics,
University of Maryland, Computer Science Technical Report, CS-TR-3301, UMIACS-TR-94-
75, June 1994

13Briand, L., S. Morasca, and V. R. Basili, Property-based Software Engineering Measurement,
University of Maryland, Computer Science Technical Report, CS-TR-3368, UMIACS-TR-94-
1 19, November 1994

13Briand, L., S. Morasca, and V. R. Basili, Goal-Driven DeJinition of Product Metrics Based on
Properties, University of Maryland, Computer Science Technical Report, CS-TR-3346,
UMIACS-TR-94- 106, December 1994

IlBriand, L. C., W. M. Thomas, and C. J. Hetmanski, "Modeling and Managing Risk Early in
Software Development," Proceedings of the FiJieenth International Conference on Sofiare
Engineering (ICSE 93), May 1993

5Brophy, C. E., W. W. Agresti, and V. R. Basili, "Lessons Learned in Use of Ada-Oriented
Design Methods," Proceedings of the Joint Ada Conference, March 1987

6Brophy, C. E., S. Godfrey, W. W. Agresti, and V. R. Basili, "Lessons Learned in the
Implementation Phase of a Large Ada Project," Proceedings of the Washington Ada Technical
Conference, March 1988

2Card, D. N., "Early Estimation of Resource Expenditures and Program Size," Computer
Sciences Corporation, Technical Memorandum, June 1982

SEW Proceedings

*Card, D. N., "Comparison of Regression Modeling Techniques for Resource Estimation,"
Computer Sciences Corporation, Technical Memorandum, November 1982

3Card, D. N., "A Software Technology Evaluation Program," Annais do XC/III Congresso
Nacional de Informatica October 1985

SCard, D. N., and W. W. Agresti, "Resolving the Software Science Anomaly," Journal of
Systems and Sojiware, 1987

6Card, D. N., and W. W. Agresti, "Measuring Software Design Complexity," Journal of Systems
and Sojhvare, June 1988

4Card, D. N., V. E. Church, and W. W. Agresti, "An Empirical Study of Software Design
Practices," IEEE Transactions on Sojiware Engineering, February 1986

Card, D. N., V. E. Church, W. W. Agresti, and Q. L. Jordan, "A Software Engineering View of
Flight Dynamics Analysis System," Parts I and 11, Computer Sciences Corporation, Technical
Memorandum, February 1984

Card, D. N., Q. L. Jordan, and V. E. Church, "Characteristics of FORTRAN Modules,"
Computer Sciences Corporation, Technical Memorandum, June 1 984

SCard, D. N., F. E. McGany, and G. T. Page, "Evaluating Software Engineering Technologies,"
IEEE Transactions on Sojiware Engineering, July 1987

3Card, D. N., G. T. Page, and F. E. McGarry, "Criteria for Software Modularization,"
Proceedings of the Eighth International Conference on SoJiware Engineering. New York: IEEE
Computer Society Press, 1985

lChen, E., and M. V. Zelkowitz, "Use of Cluster Analysis To Evaluate Software Engineering
Methodologies," Proceedings of the FiJh International Conference on Sojiware Engineering.
New York: IEEE Computer Society Press, 198 1

4Church, V. E., D. N. Card, W. W. Agresti, and Q. L. Jordan, "An Approach for Assessing
Software Prototypes," ACM Sojhvare Engineering Notes, July 1986

2Doerflinger, C. W., and V. R. Basili, "Monitoring Software Development Through Dynamic
Variables," Proceedings of the Seventh International Computer Sojhvare and Applications
Conference. New York: IEEE Computer Society Press, 1983

Doubleday, D., ASAP: An Ada Static Source Code Analyzer Program, University of Maryland,
Technical Report TR- 1895, August 1987 (NOTE: 100 pages long)

6Godfiey, S., and C. Brophy, "Experiences in the Implementation of a Large Ada Project," '
Proceedings of the 1988 Washington Ada Symposium, June 1988

SJeffery, D. R., and V. Basili, Characterizing Resource Data: A Model for Logical Association
of Sofiware Data, University of Maryland, Technical Report TR-1848, May 1987

SEW Proceedings

6Jeffery, D. R., and V. R. Basili, "Validating the TAME Resource Data Model," Proceedings of
the Tenth International Conference on Sojhvare Engineering, April 1988

IILi, N. R., and M. V. Zelkowitz, "An Information Model for Use in Software Management
Estimation and Prediction," Proceedings of the Second International Conference on Information
Knowledge Management, November 1993

SMark, L., and H. D. Rombach, A Meta Information Base for Sofiare Engineering, University
of Maryland, Technical Report TR- 1 765, July 1 987

6Mark, L., and H. D. Rombach, "Generating Customized Software Engineering Information
Bases From Software Process and Product Specifications," Proceedings of the 22nd Annual
Hawaii International Conference on System Sciences, January 1989

5McGarry, F. E., and W. W. Agresti, "Measuring Ada for Software Development in the Software
Engineering Laboratory (SEL)," Proceedings of the 21st Annual Hawaii International
Conference on System Sciences, January 1988

7McGany, F., L. Esker, and K. Quimby, "Evolution of Ada Technology in a Production
Software Environment," Proceedings of the Sixth Washington Ada Symposium (WADAS), June
1989

McGany, F., R. Pajerski, G. Page, et al., Sofiware Process Improvement in the NASA Soware
Engineering Laboratory, Carnegie-Mellon University, Software Engineering Insitute, Technical
Report CMU/SEI-94-TR-22, ESC-TR-94-022, December 1994

3McGany, F. E., J. Valett, and D. Hall, "Measuring the Impact of Computer Resource Quality on
the Software Development Process and Product," Proceedings of the Hawaiian International
Conference on System Sciences, January 1985

3Page, G., F. E. McGarry, and D. N. Card, "A Practical Experience With Independent
Verification and Validation," Proceedings of the Eighth International Computer Sofiware and
Applications Conference, November 1 984

12Porter, A. A., L. G. Votta, Jr., and V. R. Basili, Comparing Detection Methodsfor Soware
Requirements Inspections: A Replicated Experiment, University of Maryland, Technical Report
TR-3327, July 1994

5Ramsey, C. L., and V. R. Basili, "An Evaluation of Expert Systems for S o h a r e Engineering
Management," IEEE Transactions on SoJiware Engineering, June 1989

3Ramsey, J., and V. R. Basili, "Analyzing the Test Process Using Structural Coverage,"
Proceedings of the Eighth International Conference on SoJiware Engineering. New York: IEEE
Computer Society Press, 1985

SRombach, H. D., "A Controlled Experiment on the Impact of Software Structure on
Maintainability," IEEE Transactions on SoJiware Engineering, March 1987

SRombach, H. D., "Design Measurement: Some Lessons Learned," IEEE SoJtware, March 1990

SEW Proceedings
376 SEL-95-004

gRombach, H. D., "Software Reuse: A Key to the Maintenance Problem," Buttenvorth Journal
of Information and SoJiware Technology, January/February 1 99 1

6Rombach, H. D., and V. R. Basili, "Quantitative Assessment of Maintenance: An Industrial
Case Study," Proceedings From the Conference on SoJiware Maintenance, September 1987

6Rombach, H. D., and L. Mark, "Software Process and Product Specifications: A Basis for
Generating Customized SE Information Bases," Proceedings of the 22nd Annual Hawaii
International Conference on System Sciences, January 1989

7Rombach, H. D., and B. T. Ulery, Establishing a Measurement Based Maintenance
Improvement Program: Lessons Learned in the SEL, University of Maryland, Technical Report
TR-2252, May 1 989

IORombach, H. D., B. T. Ulery, and J. D. Valett, "Toward Full Life Cycle Control: Adding
Maintenance Measurement to the SEL," Journal of Systems and Sofnare, May 1992

6Seidewitz, E., "Object-Oriented Programming in Smalltalk and Ada," Proceedings of the 1987
Conference on Object-Oriented Programming Systems, Languages, and Applications, October
1987

SSeidewitz, E., "General Object-Oriented Software Development: Background and Experience,"
Proceedings of the 21st Hawaii International Conference on System Sciences, January 1988

6Seidewitz, E., "General Object-Oriented Software Development with Ada: A Life Cycle
Approach," Proceedings of the CASE Technology Conference, April 1988

gSeidewitz, E., "Object-Oriented Programming Through Type Extension in Ada 9X," Ada
Letters, MarchIApril 199 1

IOSeidewitz, E., "Object-Oriented Programming With Mixins in Ada," Ada Letters, MarcWApril
1992

l*Seidewitz, E., "Genericity versus Inheritance Reconsidered: Self-Reference Using Generics,"
Proceedings of the Conference on Object-Oriented Programming Systems, Languages, and
Applications, October 1994

%eidewitz, E., and M. Stark, "Towards a General Object-Oriented Software Development
Methodology," Proceedings of the First International Symposium on Ada for the NASA Space
Station, June 1986

gseidewitz, E., and M. Stark, "An Object-Oriented Approach to Parameterized Software in Ada,"
Proceedings of the Eighth Washington Ada Symposium, June 1 99 1

%ark, M., "On Designing Parametrized systems Using Ada," Proceedings of the Seventh
Washington Ada Symposium, June 1990

SEW Proceedings

IlStark, M., "Impacts of Object-Oriented Technologies: Seven Years of SEL Studies,"
Proceedings of the Conference on Object-Oriented Programming Systems, Languages, and
Applications, September 1993

7Stark, M. E. and E. W. Booth, "Using Ada to Maximize Verbatim Software Reuse,"
Proceedings of TRI-Ada 1989, October 1 989

SStark, M., and E. Seidewitz, "Towards a General Object-Oriented Ada Lifecycle," Proceedings
of the Joint Ada Conference, March 1987

13Stark, M., and E. Seidewitz, "Generalized Support Soha re : Domain Analysis and Implemen-
tation," Addendum to the Proceedings OOPSLA '94, Ninth Annual Conference, Portland,
Oregon, U.S.A., October 1994, pp. 8-13

IOStraub, P. A., and M. V. Zelkowitz, "On the Nature of Bias and Defects in the Software
Specification Process," Proceedings of the Sixteenth International Computer Soware and
Applications Conference (COMPSAC 92), September 1992

SStraub, P. A., and M. V. Zelkowitz, "PUC: A Functional Specification Language for Ada,"
Proceedings of the Tenth International Conference of the Chilean Computer Science Society,
July 1990

~Sunazuka, T., and V. R. Basili, Integrating Automated Support for a Soware Management
Cycle Into the TAME System, University of Maryland, Technical Report TR-2289, July 1989

13Thomas, W. M., A. Delis, and V. R. Basili, An Analysis of Errors in a Reuse-Oriented
Development Environment, University of Maryland, Computer Science Technical Report,
CS-TR-3424, UMIACS-TR-95-24, February 1995

loTian, J., A. Porter, and M. V. Zelkowitz, "An Improved Classification Tree Analysis of High
Cost Modules Based Upon an Axiomatic Definition of Complexity," Proceedings of the Third
IEEE International Symposium on SoJiware Reliability Engineering (ISSRE 92), October 1992

Turner, C., and G. Caron,. A Comparison of RADC and NASA/SEL Sofnyare Development Data,
Data and Analysis Center for Software, Special Publication, May 198 1

lovalett, J. D., "Automated Support for Experience-Based Software Management," Proceedings
of the Second Iwine SoJiware Symposium (ISS -92), March 1992

5Valett, J. D., and F. E. McGarry, "A Summary of Software Measurement Experiences in the
Software Engineering Laboratory," Proceedings of the 21st Annual Hawaii International
Conference on System Sciences, January 1988

SWeiss, D. M., and V. R. Basili, "Evaluating Software Development by Analysis of Changes:
Some Data From the Software Engineering Laboratory," IEEE Transactions on SoJiware
Engineering, February 1985

~ W U , L., V. R. Bgili, and K. Reed, "A Structure Coverage Tool for Ada Software Systems,"
Proceedings of the Joint Ada Conference, March 1987

SEW Proceedings 378

IZelkowitz, M. V., "Resource Estimation for Medium-Scale Software Projects," Proceedings of
the Twelph Conference on the Interface of Statistics and Computer Science. New York: IEEE
Computer Society Press, 1979

2Zelkowitz, M. V., "Data Collection and Evaluation for Experimental Computer Science
Research," Empirical Foundations for Computer and Information Science (Proceedings),
November 1982

6Zelkowitz, M. Y., "The Effectiveness of Software Prototyping: A Case Study," Proceedings of
the 26th Annual Technical Symposium of the Washington, D.C., Chapter of the ACM, June 1987

6Zelkowitz, M. V., "Resource Utilization During Software Development," Journal of Systems
and SoJlware, 1988

SZelkowitz, M. V., "Evolution Towards Specifications Environment: Experiences With Syntax
Editors," Information and Soware Technology, April 1990

SEW Proceedings

NOTES:

lThis article also appears in SEL-82-004, Collected Software Engineering Papers: Volume I,
July 1982.

2This article also appears in SEL-83-003, Collected Sofiware Engineering Papers: Volume 11,
November 1983.

3This article also appears in SEL-85-003, Collected Sofiware Engineering Papers: Volume 111,
November 1 985.

4This article also appears in SEL-86-004, Collected Sofiware Engineering Papers: Volume IV,
November 1986.

5This article also appears in SEL-87-009, Collected Sofiware Engineering Papers: Volume V,
November 1 987.

6This article also appears in SEL-88-002, Collected So@are Engineering Papers: Volume VI,
November 1988.

7This article also appears in SEL-89-006, Collected Software Engineering Papers: Volume VII,
November 1989.

8This article also appears in SEL-90-005, Collected SoJiware Engineering Papers: Volume VIII,
November 1990.

9This article also appears in SEL-9 1-005, Collected SoJiware Engineering Papers: Volume N,
November 1 99 1 .

lOThis article also appears in SEL-92-003, Collected Sofiware Engineering Papers: Volume X,
November 1992.

11This article also appears in SEL-93-001, Collected Sofiware Engineering Papers: Volume XI,
November 1 993.

12This article also appears in SEL-94-004, Collected SoJiware Engineering Papers: Volume XII,
November 1994.

13This article also appears in SEL-95-003, Collected So@are Engineering Papers:
Volume XIII, November 1995.

SEW Proceedings

I
I REPORT DOCUMENTATION PAGE I Form Approved

OMB NO. 0704-0188

Flight Dynamics Systems Branch

I
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 3. REPORT TYPE AND DATES COVERED
December 1995 Technical Memorandum

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS (ES)

Goddard Space Flight Center
Greenbelt, Maryland 2077 1

4. TITLE AND SUBTITLE

Software Engineering Laboratory Series
Proceedings of the 20th Annual Software Engineering Workshop

8. PEFORMING ORGANIZATION
REPORT NUMBER

5. FUNDING NUMBERS

Code 55 1

National Aeronautics and Space Administration
Washington, DC 20546-0001

9. SPONSORING I MONITORING AGENCY NAME(S) AND ADDRESS (ES)

I

11. SUPPLEMENTARY NOTES

10. SPONSORING I MONITORING
AGENCY REPORT NUMBER

12a. DISTRIBUTION I AVAILABILITY STATEMENT

Unclassified-Unlimited
Subject Category: 82
Report available from the NASA Center for Aerospace Information,
7 121 Standard Drive, Hanover, MD 21076-1320. (301) 621-0390.

13. ABSTRACT (Maximum 200 words)

12b. DISTRIBUTION CODE

The Software Engineering Laboratory (SEL) is an organization sponsored by NASAIGSFC and created to
investigate the effectiveness of software engineering technologies when applied to the development of applica-
tion software.

The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory
Series, a continuing series of reports that includes this document.

1 14. SUBJECT TERMS 1 15. NUMBER OF PAGES 1

I Software Engineering Laboratory, Proceedings
Application software, Documentation 16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN 75dK-nl-780-5500 Standard Form 298 (Rev. 2-89)

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT
Unclassified

- - - -

20. LIMITATION OF ABSTRACT

UL

