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Development of a Linearized Unsteady Euler Analysis

with Application to Wake/Blade-Row Interactions

Joseph M. Verdon, Matthew D. Montgomery and H. Andrew Chuang

United Technologies Research Center

East Hartford, CT 06108

Summary

A three-dimensional, linearized, Euler analysis is being developed to provide a com-

prehensive and efficient unsteady aerodynamic analysis for predicting the aeroacoustic and

aeroelastic responses of axial-flow turbomachinery blading. The mathematical models needed

to describe nonlinear and linearized, inviscid, unsteady flows through a blade row operat-

ing within a cylindrical annular duct are presented in this report. A numerical model for

linearized inviscid unsteady flows, which couples a near-field, implicit, wave-split, finite vol-

ume analysis to far-field eigenanalyses, is also described. The linearized aerodynamic and

numerical models have been implemented into the three-dimensional unsteady flow code,

LINFLUX. This code is applied herein to predict unsteady subsonic flows driven by wake or

vortical excitations. The intent is to validate the LINFLUX analysis via numerical results

for simple benchmark unsteady flows and to demonstrate this analysis via application to

a realistic wake/blade-row interaction. Detailed numerical results for a three-dimensional

version of the 10th Standard Cascade and a fan exit guide vane indicate that LINFLUX

is becoming a reliable and useful unsteady aerodynamic prediction capability that can be

applied, in the future, to assess the three-dimensional, flow physics important to blade-row

aeroacoustic and aeroelastic responses.



1. Introduction

The development of analyses to predict unsteady flows in turbomachines has been mo-

tivated primarily by the need to predict the aeroelastic (flutter and forced vibration) and

aeroacoustic (sound generation and propagation) characteristics of the blading. Accurate

and efficient aerodynamic analyses are needed to determine the unsteady loads that act on

the blades and the unsteady pressure responses that persist upstream and downstream of the

blade row for various sources of excitation. The latter include prescribed structural (blade)

motions and prescribed aerodynamic disturbances at inlet and exit that carry energy towards

the blade row. The computational resources required to simulate nonlinear and viscous un-

steady fluid dynamic behavior continue to prohibit the use of such simulations in detailed

aeroelastic and aeroacoustic design studies. Therefore, approximate, e.g., linearized inviscid,

analyses are still needed to provide efficient predictions of unsteady response phenomena.

Until recently, the linearized analyses available for turbomachinery aeroelastic and aeroa-

coustic applications have been based on two- and three-dimensional, classical methods, see

[Whi87, Nam87] for reviews. Such methods are very efficient, but are restricted to shock-free

flows through lightly loaded blade rows. Because of these limitations, two-dimensional lin-

earizations relative to nonuniform potential mean flows have been developed, see [Ver93] for

a review. Such analyses account for the effects of real blade geometry, mean blade loading,

and operation at transonic Mach numbers on unsteady aerodynamic response. The physi-

cal understanding and computational efficiencies offered by the classical and potential-based

linearizations have motivated the recent development of more comprehensive linearizations

to address flows in which strong shocks occur and three-dimensional unsteady flows in which

the effects of mean swirl are important. For such flows, the nonlinear Euler equations are

required to model the nonisentropic and rotational steady background flow and linearized

versions of these equations are required to model the unsteady perturbations.

Thus, much attention is currently being given to the development of two- [HC93a, HC93b,

KK93, MV95] and three-dimensional [HL93, HCL94, Sre96, MV97, MG98, MV98] linearized

Euler analyses. In particular, the present authors have developed two- and three-dimensional

versions of the LINFLUX analysis. This analysis consists of a near-field, implicit, finite-

volume analysis to determine the unsteady perturbation of the mean flow through the blade

row, and far-field eigenanalyses to determine the unsteady perturbations of fully-developed,

axisymmetric, mean flows at inlet and exit. The near-field analysis is based upon the high-

resolution, wave-split, finite-volume scheme [WJS88], which is employed in the nonlinear

steady and unsteady flow analysis TURBO [Jan89, JHW92, CW93]. The flux or wave split-

ting allows a sharp resolution of nonlinear shock phenomena -- a feature which should

facilitate the accurate prediction of impulsive unsteady shock loads with the linearized anal-

ysis. The far-field eigenanalyses, which are coupled to the near-field, finite-volume analysis

at the computational inflow and outflow boundaries, have been constructed to allow incom-

ing external aerodynamic excitations to be prescribed, and outgoing response disturbances

to pass through these computational boundaries without reflection.

The 2D LINFLUX analysis is reported in [MV95, VMK95] along with numerical results

for subsonic and transonic unsteady flows through the 10th Standard Cascade [FV93], that

are excited by prescribed blade motions or by prescribed external aerodynamic disturbances.

Comparisons of the 2D LINFLUX results with those of the potential-based linearization,



LINFLO [VC84, UV91, HV91], and the nonlinear Euler/Navier-Stokesanalysis, NPHASE
[HSR91,SLH+94],indicate that the former givesaccurateresponseinformation for the var-
ious sourcesof unsteadyexcitation. However,improvementsin the numerical modeling in
the vicinity of shocksand near blade surfaceswould lead to better resolutions of unsteady
transonic flowsand unsteadyflowsexcited by vortical gusts,respectively.

The 3D LINFLUX analysishas beenreported in [MV97, MV98] along with numerical
results for subsonicunsteady flows through a helical fan and a three-dimensional version
of the 10th Standard Cascade(3D SC10) excited by prescribedblade motions or acoustic
disturbancesat inlet and exit. To allow comparisonswith 2D theories, the helical fan and
3D SC10havehigh hub to tip ratios, andweresubjectedto nearly two-dimensionalunsteady
excitations. For the most part, the 3D LINFLUX resultsat blade midspan were found to
be in very good agreementwith thoseof the classical2D analysisof Smith [Smi72],for the
helical fan, and thoseof the 2D LINFLO analysis,for the 3D SC10.

Under the presenteffort, the 3D LINFLUX analysishasbeen extendedand applied to
predict three-dimensional,unsteady,subsonicflows that are driven by vortical or wakeexci-
tations at inlet. In principle, suchexcitationsmust beprescribedassolutionsof the governing
flow equations. However,this is not leasable,at present,for the unsteadyperturbations of
three-dimensional,nonuniform, meanflows. Thus, as an interim practical approach,based
on exact solutions for uniform mean flows and a numericalstudy describedin §5.3of this
report, wehaverepresentedvortical excitationsasconvectedvelocity disturbancesthat carry
no pressureor density.Thesedisturbancessatisfy the fluid-dynamic conservationequations
axially and circumferentially, at eachradial station, but radial momentumis not conserved.

We will considervortically-excited unsteadyflows through rotor and stator blade rows,
and presentnumericalresultsfor the axial eigenvalues,radial eigenmodes,andthe amplitudes
of the far-field acoustic responses,the unsteadypressurefields and the unsteadypressures
acting at the bladesurfaces.In eachcasethe meanor steadybackgroundflow is determined
usingthe TURBO analysis,and the unsteadyperturbation is determined using LINFLUX.

The rotor is the three-dimensionalversion of the 10th Standard Cascadestudied in
[MV97, MV98]. For validation purposes,we have subjected this rotor to relatively sim-
ple vortical excitations, and havecomparedthe 3D LINFLUX resultsat midspanwith those
of the 2D LINFLO analysis.The stator is the fan exit guidevane(FEGV) of the NASA/PW
22 inch AdvancedDucted Propulsor [Neu97,Pod97]. Here, the wakeexcitation is basedon
velocity measurements,taken downstreamof the fan rotor, at NASA Lewis ResearchCen-
ter [Pod97]. However,a number of simplifying physical assumptions,as outlined in §6 and
§8.1,havebeenintroduced to approximatethe actual inflow conditions to the FEGV by an
analytical representationthat is suitable for usewith LINFLUX.

The numerical results, presentedboth previously and in this report, indicate that the
3D LINFLUX analysis is becominga reliable and useful unsteady aerodynamicprediction
capability for determining the unsteadypressureresponsesof bladerows to varioussourcesof
unsteadyexcitation. In particular, this analysispromisesto bea valuableresourcefor under-
standing the flow physicsassociatedwith blade-rowaeroelasticand aeroacousticresponses.
Improvements in the modeling of steady inflow conditions and unsteady wake excitations
arestill needed,however,sothat the unsteadypressureresponsesassociatedwith realistic
wake/blade-rowinteractionscanbe predicted accurately.
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2. Unsteady Flow through a Blade Row

We consider time-dependent adiabatic flow, with negligible body forces, of an inviscid

non-heat conducting perfect gas through a vibrating, rotor or stator, blade row (see Figure 1).

The blade row operates within a long stationary annular duct which has hub and duct radii

of r -- r_ and r = rD, respectively. It consists of Ns blades which, in the case of a rotor,

rotate about the duct axis at constant angular velocity f_ = fle_; for a stator, _2 - 0. In the

absence of vibratory motion, the blades are identical in shape, equally spaced around the

rotor, and identical in orientation relative to an axisymmetric inlet flow.

We will analyze this unsteady flow in a reference frame that rotates with the blade row,

in terms of cylindrical (r, 0, _, t) and Cartesian (Xl, x2, xs, t) = (_, r sin 8, -r cos 0, t)

coordinates. Here _ and r measure distance in the axial flow direction and radially outward

from the duct axis, respectively, 0 measures angular distance in the e¢ × er = e0 direction,

which, for a rotor, is opposite to the direction of blade rotation, and e is a unit vector. We

will also have occasion to examine a rotor flow in a stationary reference frame, and a stator

flow in a rotating frame. Thus, when needed for clarity, we will use the superscripts rel or

abs to indicate that a physical quantity is measured relative to a rotating or stationary frame

of reference, respectively; e.g., 8 abs = 0 _el + _t.

To describe flows in which the fluid domain deforms with time, it is useful to consider two

sets of independent variables, say (x, t) and (_, t). The position vector x(_, t) = _ + 7_(_, t)

describes the instantaneous location, in the blade row frame of reference, of a moving field

point, _ refers to the reference or mean position of this point, and 7_(_, t) is the displacement

of the point from its reference position. The displacement field, 7_, is prescribed so that the

solution domain deforms with the vibratory motions of the blades and is rigid far from the

blade row. Thus, if the blades do not vibrate, "R is simply set equal to zero.

In the present discussion, the physical variables are, for the most part, reported in di-

mensionless form. Lengths have been scaled with respect to the reference length L_r, time

with respect to the ratio L_f/V_ 4 where Vi_ef is the reference flow speed, velocity with

respect to V_f, density with respect to a reference density p_f, pressure with respect to

p_f(V_) 2 and specific internal energy with respect to (V_f) 2. Here, the superscript • refers

to a dimensional value of a flow variable. To allow convenient comparisons between the 3D

LINFLUX solutions and those of previous 2D analyses, the reference length is taken here to

be the blade chord at midspan; the reference fluid density and flow speed, to be the inlet

freestream density and relative flow speed at midspan, respectively.

For aeroelastic and aeroacoustic applications, we are usually interested in a restricted

class of unsteady flows; those in which the unsteady fluctuations can be regarded as pertur-

bations of a background flow that is steady in a reference frame that rotates with the blade

row. Moreover, the steady background flows far upstream (say _ < __) and far downstream

(_ > _+) from the blade row can be assumed to consist of at most a small steady pertur-

bation from a fully-developed, axisymmetric, steady flow. The time-dependent or unsteady

fluctuations in these flows arise from temporally and circumferentially periodic unsteady

excitations of small-amplitude, i.e., prescribed vibratory blade motions and prescribed aero-

dynamic disturbances at inlet and exit that travel towards the blade row.



For example, if the bladesvibrate at reducedfrequency,w, as seen by an observer in the

blade-row frame, and at constant interblade phase angle, a, we can write

7_B.(_,_+ 2rnlNB,$,t) = T, Re{Rs(f, 8,_)expli(wt + na)]}, _ on B. (2.1)

Here, 7_B, is the displacement of a point on the nth moving blade surface from its mean

position in the rotating frame; T, is a rotation matrix, which relates a vector in the reference

(n = 0) passage to its counterpart in the nth passage; n = 0, 1, 2,..., NB - 1 is a blade index;

Re{ } denotes the real part of { }; RB is the complex amplitude of the reference in - 0) blade

displacement; and B refers to the mean position of the reference blade. The interblade phase

angle, a, in equation (2.1), is determined by the nodal diameter pattern of the vibratory

blade motion, i.e., a = 2_rNDINB, where INDI, the number of nodal diameters, is the integer

count of the number of times a disturbance pattern repeats around the wheel. The sign

of ND is determined by the direction of rotation of the vibratory disturbance pattern. If

this pattern travels in the negative 8-direction, ND > 0. Thus, for a rotor, if No > 0, the

vibratory disturbance pattern travels in the direction of blade rotation.

The unsteady disturbances in the far upstream and far downstream regions are, in part,

prescribed as a fluid dynamic excitation and, in part, depend upon the interaction between

the fluid and the blading. Typically, an unsteady aerodynamic excitation is represented as

a linear combination of fundamental disturbances that are harmonic in time, at temporal

frequency w, and in the circumferential direction, at circumferential angular wave number

fn = ND + mNB , m -- 0, +l, ±2, .... For example, if the underlying absolute mean flow

is uniform, the pressure associated with a fundamental acoustic excitation is of the form

_A(r, 8,(,t) = Re{a±pR'+(r)exp[x+_ + i(_8 +wt)]}, _ < _. (2.2)

Here, l_Ai(x,t) describes an incident pressure disturbance, i.e., a pressure disturbance that

travels towards the blade row from far upstream (_ < __) or far downstream (_ > _+). The

quantities w, _ = ND + mNB or a,_ = 2r(ND/Ns + m), and the disturbance amplitude,

a +, are prescribed; the radial mode shape, pa,+(r), and the axial exponential coefficient

X + =/3 + + is_:, where/3 is the axial attenuation coefficient and _ is the axial wave number,
are determined from the equations that govern the unsteady fluid motion in the far field.
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3. Unsteady Aerodynamic Formulations

Nonlinear equations that govern the unsteady flows, described in §2, are derived from

the conservation laws for mass, momentum and energy and the thermodynamic relations for

a perfect gas. Consider an arbitrary moving control volume, 12(t), which is bounded by the

control surface .A(x, t) = 0. The conservation laws for the fluid within 12 at time t, referenced

to a coordinate frame that rotates with the blade row at constant angular velocity _, can
be written in the form

d

-_ _Od12 + S,t[F_ - UT_xj]nx_d.A = _ Sd12 . (3.1)

Here, the symbol - indicates an unsteady flow quantity, 7_. = (_z,, 7_z2, iR.x3) is the velocity

of a moving field point, at say x = _ + "R.(._, t), n is a unit normal vector pointing outward

from the surface, .4, and a summation over repeated indices is implied. The displacement

field "R. is prescribed, and the source term on the right-hand-side of (3.1) accounts for the

rotation of the reference coordinate frame. The latter is equal to zero if the blade row is

stationary.

The state, U, flux, _'x_,j = 1,2,3, and source term, S, vectors in equation (3.1) are

defined by

j¢:, Dj+,5",/D,+ P, Ij
0 = , Qx, , Dj+, 3/0, + P6 j

Dj+IC&+ P)/0,

, s(u,x)=

0

0

_2UlX2 + 2_[74

_2U'lX3 - 2F_U3

  (i&z2 +
(3.2)

Here _, 9, ET = /_ + T¢2/2 and P = (7 - 1)fiE = (I'- 1)[Us - U_-'(U22 + T/T2 + (_4)/21

are the time-dependent fluid density, velocity, specific total internal energy, and pressure,

respectively. The velocity and total internal energy are measured relative to the blade-row
frame of reference.

Local Field Equations

After interchanging the order of time differentiation and volume integration in equation

(3.1), converting the surface integral to a volume integral, and taking the limit of the resulting

volume integrals as 12(t) -+ 0, we arrive at a differential equation, i.e.,

Ol3/Ot ,, + O_':¢/cgxj = S, (3.3)

that governs the inviscid fluid motion at the field points, x, within the fluid domain, at

which this motion is continuous and differentiable. In addition, if we choose a volume that

contains a surface at which the fluid variables are discontinuous, and take the limits of the

terms in (3.1) as this volume collapses into the surface of discontinuity, we determine jump

conditions, i.e.,

[F_-OT_j]n_j=0 for x614;_ or x6Sh,, (3.4)



that apply at vortex-sheetwakes,PVn,and at shocks,Sh,,. Here [ ] denotes the jump in

a flow quantity across a surface of discontinuity and 7_ is the surface velocity. In principle,

jump conditions should be imposed explicitly in unsteady fluid dynamic calculations, but,

because of the associated difficulties, the usual procedure is to solve conservative forms of

the governing equations, e.g., (3.1) or (3.3), over the entire fluid domain and apply special

discretization techniques in an attempt to "capture" wake and shock phenomena.

We will also require a form of the field equation (3.3), that applies at fixed locations

(7_ - 0) in the blade-row frame, to describe the unsteady flow in the regions far upstream

(_ < __) and far downstream (_ > _+) of the blading. Expressed in terms of cylindrical

coordinates, this equation has the form

where x -- _, and the state and source-term vectors are given by

{ ° } i0

0
0}20V1+

-2U_ yl

0

(3.6)

The flux vectors _'_(lJcYl), F0(l_l cyl) and _'_(l_/Cyl) and the pressure P(U cyl)__ have functional

forms similar to those indicated previously for Fx_ (l]), j -- 1, 2, 3, and P(U).

Boundary Conditions

The foregoing field equations must be supplemented by conditions on the unsteady flow

at blade surfaces, duct walls, and at the inflow (_ = __) and outflow (_ = _+) boundaries of

the near-field computational domain. Flow tangency conditions, i.e.,

(V-7_)-n=0 for x e B_, r=r_ and r=rD, (3.7)

apply at the moving blade surfaces, B_, and at the stationary ('_ - 0) duct walls. In

addition, temporally- and circumferentially-averaged values of the total pressure, the total

temperature and the inlet flow angle are specified as functions of radius at the computational

inflow boundary, and the circumferentially- and temporally-averaged static pressure is spec-

ified at the outflow boundary, consistent with radial equilibrium. The unsteady fluctuations

at inlet and exit that carry energy towards the blade row must also be specified; those that

carry energy away from the blade row must be determined as part of the unsteady solution.

3.1 Linearized Unsteady Aerodynamic Model

Since the unsteady excitations are assumed to be of small amplitude (e.g., ['RB, I "-_

(P(e) << 1) and to occur at a single temporal frequency, w, in the rotating frame, the un-

steady component of the inviscid flow can be approximated as a first-order (in e), harmonic



perturbation of an underlying zeroth-order, nonlinear, background flow that is steady in

the blade-row frame. This approximation offers several computational advantages. First,

since the first-order unsteady flow properties have harmonic time-dependence, physical time

dependence can be removed from the unsteady boundary value problem. Second, as a conse-

quence of our assumptions regarding rotor geometry, inlet and exit mean-flow conditions, and

the circumferential behaviors of the unsteady excitations, numerical resolutions of the steady

and linearized unsteady flows can be limited to a single, extended, blade-passage region, i.e.,

a region of angular pitch A8 = 2_r/Ns. Finally, solutions for the unsteady perturbations of

fully-developed, axisymmetric, steady background flows can be constructed and matched to

a computational near-field solution to limit the axial extent of the computational domain.

To determine the linearized unsteady aerodynamic equations, we expand the unsteady

state vector, 1_/, into an asymptotic series of the form [HC93a]

l[l[x(:_, t), t] = U(:_) + fi[x(_,t),_] +... = U(_) + Re{u(Yc)exp(iwt)} + ... , (3.8)

where the column vectors U(_) and 5[x(_, t), t] contain the conservation variables for the

steady background flow at the mean position, _, and the first-order unsteady flow at the

instantaneous position, x = _ + SZ(_, t) = _ + Re{l:t(£) exp(iwt)}, of a moving field point,

respectively, and the dots refer to higher order terms. The components of the vector u

are the complex amplitudes of the first-order unsteady conservation variables, i.e., u T -

[p, _v=, +pV=, , _v=_+pV=2, _v=3+pV=a, _eT+pET] where _, V and ET and p, v, and eT are

the steady and the complex amplitudes of the first-order unsteady, primitive, flow variables,

respectively. The unsteady flux, _'=_, and source term, S, vectors are approximated using

Taylor series expansions about the mean flow state, U, and the reference spatial location, $,

i.e.,

OF=j - - 0S
_'=j(l:l) = F=¢(U)+-_--fi+ ... and S(U,x) = S(U,_)+_--_fi+(TZ.V_)S+... , (3.9)

where, 0F=j/0U and 0S/0U are flux and source-term Jacobian matrices, respectively.

The integral equations (3.1) have been expressed in terms of the moving control volume,

]), and the moving control surface, ,4; the corresponding differential equations (3.3), in

terms of the moving spatial coordinate x. However, because of the dependent variable

expansion (3.8), it is more appropriate to express the corresponding steady and linearized

unsteady equations in terms of the mean or steady-state values, V, A, and _ of l_, ,4, and x

respectively. To within first-order in e, the required spatial transformation relations are

d)2 = (1 + Vs. 7Z)dr/ + ... , ndA = fidA + A(fidA) exp(/wt) +... ,

and (3.10)

0 lax s = 0 - (O = lO j)O +...

where (V_ • 9Z) = 07_/0_m, fi is the unit outward normal vector to the control surface

,4, and A(fidfi_) is the complex amplitude of the first-harmonic component of nd_t - rid,4.

Finally, to within first order in e, the temporal derivative terms in equations (3.1) and (3.3)

transform according to

( )d])= \-_-]_+( )V_.7_ dlT+.., and _+7_x_O_-- +...

(3.11)
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The equations that govern the zeroth-order steady and the first-order unsteady flows

are obtained by substituting the foregoing series expansions into the nonlinear governing

equations; equating terms of like power in e; and neglecting terms of second and higher order

in e. This procedure leads to nonlinear and linear variable-coefficient equations, respectively,

for the zeroth- and first-order flows. The variable coefficients in the linear equations depend

upon the underlying steady background flow.

The conservation equation for the steady background flow is

_ Fx_nx_dA = _-ySdV or OFx_/O_;j - S .

In addition, the flow tangency conditions,

V-n=0, for _EBn, r=rHandr=rD

(3.12)

apply at the reference blade surfaces and at the duct walls, and periodic conditions on the

steady flow variables; e.g.,

or

_(_,_+ 2_rn/NB,_) = _(f,_,_) and V(f,_ + 2_rn/Ns,_) = TnV(f, 0,_) (3.14)

apply upstream and downstream of the blade row. Finally, circumferentially averaged values

of the appropriate steady flow variables are specified as functions of radius at the inflow and

outflow boundaries and circumferential harmonics of these variables are allowed to evolve to

values that are consistent with a blade row operating within a long annular duct.

The conservation equation that governs the first-harmonic unsteady perturbation is

(3.15a)

isgu
+ u -

1+

(3.15b)

respectively, where the terms on the right-hand side, which depend on the steady flow

quantities and the prescribed displacement field, R, are regarded as known source terms.

Linearized flow tangency conditions, i.e.,

v- fi = iwR. fi + V- V(R- fi), for _ E B_, r = rH and r = rD , (3.16)

apply at the mean blade surfaces and at the duct walls, and phase-shifted periodicity condi-

tions, e.g.,

p(_,_+2_n/gs,_) = p(_,_,_-)exp(ina) and v(_,_+2rn/NB,_) - T,v(f,_,_)exp(ina) ,

(3.17)

(3.13)



apply upstream and downstream of the blade row. The far-field conditions imposed in

the unsteady problem must allow for the prescription of external unsteady aerodynamic

excitations and permit unsteady disturbances coming from within the solution domain to

pass through the computational inlet (at _ -- __) and exit (at _ - _+) boundaries without

reflection.

Differential field equations that describe the steady and the first-order unsteady flows

at fixed points, x = _, in the far upstream (_ < __) or far downstream (_ > _+) regions,

can be determined by transforming the differential equations in (3.12) and (3.15) to cylin-

drical coordinates, or, alternatively, by applying the series expansions (3.8) and (3.9) to the

nonlinear, time-dependent equation (3.5), and setting R - 0. We find that

r_ 10rFr -1 (9F0 0F_
+r (3.18)

and

iwu ÷ r -10(rAu) 0Bu cOCu
Or + r-' 0-"_ -t- O---C- Du = 0, (3.19)

where A = 0Fr /0U cyl, B = 0F0 /OU Cyl and C = 0F_/0U cyt are flux Jacobian matrices

and D = 0S/0U Cyl is the source-term Jacobian matrix.

3.2 Solution Strategy

To predict the unsteady aerodynamic response of a blade row to a prescribed unsteady

excitation, we require sequential solutions to the foregoing nonlinear steady and linearized

unsteady boundary value problems. In the present study, we shall employ the nonlinear

analysis, TURBO [JHW92], to determine the steady background flow, and then seek solutions

to the linearized unsteady problem by matching a wave-split, finite-volume analysis for the

unsteady perturbation in the near field, i.e., in the region __ < _ < _+, to approximate

analytic/numeric descriptions for the unsteady perturbations of the fully-developed, axi-

symmetric, steady background flows that exist in the regions far upstream (_ < __) and far

downstream (_ _ _+) of the blade row.

For the near-field, finite-volume analysis, it is advantageous to regard the state vector u as

pseudo time dependent, i.e., to set u = u(_, _-), where _- is the pseudo time variable, and add

the term O(ff. udV)/O_- to the left-hand side of equation (3.15a). This allows conventional

time-marching algorithms to be used to converge the solution for the complex amplitude of

the unsteady state vector to a steady-state value.

The complex-amplitude of the displacement field, R('2), must be prescribed over the

entire solution domain. This field is defined so that the solution domain deforms with

the blade motion (i.e., R(_) = RB_(_) for _ E Bn), slides along the hub and duct walls

(R(_) .e_ = 0 for f = rH, rD), and remains rigid far from the blade row (R(_) _= 0 for

< _). In addition, R(_) is prescribed along one blade-to-blade periodic boundary, and

set at the other boundary, so as to satisfy phase-lagged periodicity, cf. (3.17). In the near

field, R(_) is determined, first, along the hub and duct walls, and then, in the interior of

the computational domain as solutions of Laplace's equation, V_R -- 0, subject to the

appropriate Dirichlet boundary conditions. For unsteady flows in which the blades are

stationary in the blade-row frame, R is simply set equal to zero.
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4. Near-Field Numerical Model

The numerical procedures used in LINFLUX to resolve the linearized unsteady flow in the

near field are based on those employed in the nonlinear analysis, TURBO [Jan89, JHW92,

CW93]. TURBO is applied in the present study to determine steady background flows. Both

analyses use sheared H-meshes [BH92, SS91] which define a curvilinear coordinate system,

such that there is a one-to-one correspondence between the points, _, in the physical domain

and the points, _, in a rectangular computational domain, where the grid is uniform and or-

thogonal. The al, a2 and a3 computational coordinates, or the I, J, K computational mesh

indices, correspond, generally to the axial, radial and circumferential directions, respectively.

Cell faces are surfaces of constant computational coordinate, with each cell bounded by the

six surfaces: al = I _ 1/2, a2 = J T 1/2 and a3 = K _ 1/2.

4.1 Finite Volume Equations

If we let the symbol ^ refer to a quantity expressed in terms of cell geometry, then a finite-

volume spatial discretization of the pseudo time dependent form of the linearized unsteady

equation (3.15a) can be written as

(4.1)

where fi = 0u, fj = (vOFj/aU)u = ijk(OFk/OU)u = ijkfk, and _d = -(gjU + aj_Fk. Here,

the quantities u, U, and S represent average values of the physical state and source term

vectors over a mean cell volume; _ is the mean cell volume; fi-jk is the mean area of a constant

aj cell face projected in the _k direction; the vectors Fj and fj are the steady and unsteady

fluxes, respectively, across a constant aj cell face; _d is the unsteady flux associated with the

displacement field, R; and 9 is the residual of the first-harmonic unsteady equation. The

steady quantities _, Ajk, U, Fj(U) and S(U, _) and the unsteady displacement field, R,

are regarded as known for the linearized unsteady analysis.

The operator 5j in equation (4.1) denotes the difference in the j-direction across adjacent

cell interfaces, and the repeated j index implies summation over all computational coordinate

directions. Thus, the terms 6jfj and 6jf] are the net unsteady fluxes through a cell due to

the unsteady fluid motion and the grid motion, respectively. The linearized perturbation

equation contains source terms that are associated with changes in cell volume, cell face

area, and cell radial location. These terms depend on known steady flow properties and on

the prescribed displacement field, R(_). In evaluating the volume terms AO = 6j (AjkR=,,)

and _j = iw.AjkR=k, the R_ are taken to be the average displacements over a cell face.

The perturbations in the cell face areas, ajk, and in cell location are computed using the

displacements of the cell vertices.

The unsteady field equation must be solved subject to conditions at the boundaries

of the near-field computational domain. Flow tangency conditions at the blade surfaces

and the duct walls, cf. (3.16), are implemented using phantom cells inside a solid sur-

face. The density and pressure in a phantom cell are defined by a first-order accurate

reflection condition, and the phantom cell velocity is defined such that the velocity at the
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solid surface,which is the averageof the velocities in the phantom and the interior cells,
satisfies the flow tangency condition, in a manner consistent with the finite volume dis-
cretization. The phase-shiftedperiodicity condition, cf. (3.17), is imposed along a passage

boundary by taking advantage of grid periodicity in the blade-to-blade direction. Thus, we

set uiI,j,K = T+lUS,J,K±(NK-1)exp(=l=ia) where NK denotes the number of blade-to-blade

grid points, and the Tn matrix rotates the x2 and xa components of the momentum vector

through n blade passages. Finally, analytic/numeric far-field solutions are matched to the

numerical near-field solution at the computational inflow and outflow boundaries (_ = _:F).

After replacing the pseudo time derivative in (4.1) by a first-order accurate, two-point,

backward, difference expression, and expanding the residual, _n+l, about the nth time level,

we can write the discretized unsteady field equation as

I + Au n ,

or, after making the appropriate substitutions, as

t_ Au):_o _

(4.2)

u"-Cl_jfj)n+s"-----_ '' , (4.3)

where s is the grid deformation source term. In equations (4.2) and (4.3), the superscript n

refers to the nth pseudo time level, El = _/AT, Au n = u n+l - u", [ is defined as in (4.1),

and 0_/0u is a constant, since the unsteady residual is a linear function of the state vector

Uo

4.2 Evaluation of Flux Terms and Pseudo-Time Integration

To simplify the descriptions of the spatial discretizations that are used to approximate

the flux terms in equation (4.3), and the pseudo-time integration that is used to solve this

equation, we will consider a "one-dimensional flow" in which Fj = F and fj = f are the

steady and unsteady flux vectors in the aj = a coordinate direction. The subscript J refers

to the cell volume bounded by the cell surfaces at a = J + 1/2 and a = J - 1/2. Extensions

of the equations that follow to three-dimensional flows is straightforward conceptually, but

involves the use of tedious additional nomenclature.

Flux difference splitting is applied to evaluate the flux terms on the left- and right-hand

sides of (4.3). The flux splitting, i.e.,

= +u = Itb- + u = ++ X-l -lu, (4.4)

is based on a similarity transformation and an eigenvalue decomposition of the flux Jacobian

matrix, 0F/0U, into matrices that account for right (+) and left (-) traveling disturbances.

The matrices T and 'i _-1 contain the right and left eigenvectors, respectively, of 0F/0U, and

sii+ and/k- are diagonal matrices containing the positive (+) and negative (-) eigenvalues.

The eigenvalues of the flux Jacobian matrix are used to determine which characteristic modes

are taken into account, thus controlling the direction of spatial differencing.
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We have chosento evaluatethe flux, fJ+ll2, at the J + 1/2 cell interface in terms of the

flux in the cell to the left (J) of the interface and the flux due to waves approaching the

interface from the right. Thus, we set

f'J+l/2 _" U

J+l/2

 (uj,2j+ll ) + _
[ Uj_el[2,AJ+I[2

(u j+l - u j) , (4.5)

where f(uj,-4J+1/2) is a flux based on the state vector in the Jth cell and the mean area

of the J + 1/2 cell interface. The flux Jacobian matrix OF/OUIu_o._ll2,xj+ll2 is evaluated in

TTROe and the area '_J+l/2,terms of the Roe-averaged [RoeS1] intermediate state vector "-'J+l/2

Roe is defined using the relations:where Uj+t/2,

= v/-PJPJ+ ,
Roe V_ VJ ÷ _J+l

Vj+l/2 = _ -_ V_J+I

and (4.6)

v Er,J +  dTJ- Er,

The discrete approximation (4.5) is first-order accurate, since the interfacial fluxes are

based only upon information from adjacent cells. Second order spatial accuracy can be

achieved by introducing corrective fluxes, which bring in information from additional neigh-

boring cells. In LINFLUX, the corrective perturbation flux at the J + 1/2 interface is

comprised of right traveling waves at the upstream interface (J - 1/2) of the Jth cell and

left traveling waves at the downstream interface (J + 3/2) of the (J + 1)th cell. These waves

are approximated using the Roe-averaged flux Jacobian matrix at the J + 1/2 interface.

Thus, second order spatial accuracy is achieved by adding the terms

10F] + IOFIj+I/2,Aj+I/,_
(u j-u j_l) and 2 0U

2 0U Ro, - Ro. -
Uj+I/2,AJ+I]2

U J+2 _ UJ+I)

to the right-hand side of (4.5).

Once the interfacial fluxes have been computed, they are spatially differenced to compute

the net flux terms that appear on the right- and left-hand sides of the unsteady equation

(4.3). The difference expression for the net unsteady flux through the Jth control volume is

< ll., b+,i - (4.7)

where the second-order discrete approximation is used in conjunction with (4.7) to evaluate

the net unsteady flux term that appears on the right-hand side of (4.3). The left-hand side

flux term, _[(0F/0U)Au]I , i.e., the change in the net unsteady flux due to the pseudo time
I J

update, is evaluated using the first-order accurate approximation in (4.5).

The linearized unsteady equation (4.2) is discretized, as outlined above, leading to a

system of linear algebraic equations. This system is solved, at each pseudo-time step, using
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a symmetric Gauss-Seidel(SGS) iteration procedurein which the left-hand side matrix is
decomposedinto diagonaland off-diagonalsubmatrices.Thus, weset

( Of" I )Au_ DjAu_ + n ^0jI + _uu u_ = - Mj-1Auj-1 + M_+IAU_+I = -r_ ,
(4.8)

where the D submatrix contains the diagonal elements of the original matrix, and the M + and

M- submatrices contain the off-diagonal elements in the negative and positive computational

coordinate directions, respectively.

The unsteady solutions to equation (4.8) are marched in pseudo-time until they converge

to a steady state, i.e., {1_'_11 --4 0. The current LINFLUX implementation uses explicit

boundary conditions. These conditions are incorporated into the SGS iteration procedure,

so that they are imposed in a semi-implicit manner. This treatment has been found to yield

better convergence properties than a purely explicit implementation.
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5. Unsteady Perturbations in the Far-Field

Analytical descriptions, based on reduced sets of governing equations, of the linearized

unsteady flows in the regions far upstream (_ < __) and far downstream (_ > _+) from a

blade row can be applied to limit the axial extent of the near-field computational domain. In

particular, approximate representations for the unsteady perturbations of fully-developed,

axisymmetric, mean flows can be used to describe the behaviors of the convected and the

modal type unsteady disturbances that exist in the far field. Such descriptions allow un-

steady disturbances that enter the computational domain (excitations) to be prescribed as

approximate solutions to the linearized governing equations, and by matching the far-field

solutions to a numerical near-field solution, to render the computational inflow and outflow

boundaries transparent or reflective, with specified coefficients, to outgoing waves.

We assume that, far from the blade row, the mean or steady flow quantities depend

only on radius; i.e., _ = p(r), P = P(r), etc., and that the radial component of the steady

velocity is negligible; i.e., V = Vo(r)ee + V_(r)e_. Under these conditions, the steady field

equation (3.18) reduces to

fi-i dP _ r_lV _ + 2_tVe + _2r - r-i(veabs) 2 .
dr

(5.1)

After combining (5.1) with the thermodynamic relations P#-_ exp(-7S) = C, where C is a

constant, and E = 7-ZT = (7- 1)-Ipp -z, we obtain the following equations to describe the

radial behaviors of the mean-flow thermodynamic properties

dP (_- 1)1_

7 1 [Cexp(TS)] z/_ dr
9'-

_ 9' [Cexp(TS)] [ d/_v-z
")'-1

._ ldS1

+ (7- 1)p - TrJ

dT T dS = r-ZVo 2 + 2gtxVe + gt2r = r-l(veabs) 2
dr -_r

(5.2)

Certain kinematic and thermodynamic information must be specified to determine a fully-

developed, axisymmetric, steady background flow. Typically, the absolute total temperature,

T_ bs T + (vabs)2/2, the absolute total pressure, p_bs _3_= = P [(7-1)A-2T_bs] _-1, where
A 2 = 7P/_ is the sound speed, and the circumferential velocity, Veabs or Vere_ = Ve, are

prescribed functions of radius. If, in addition, we assume that the mean-flow axial velocity

and thermodynamic properties are known at some reference radial location, say r = rref,

then the radial distribution of entropy can be determined from the relation

(5.3)

and the radial distributions of the pressure, density and temperature can be determined from

the relations given in (5.2). Moreover, the axial velocity, V_ bs = V_, is given by

V_abs= V_ = [2(T_, _- T) - (v_bs) 2] 1/2 (5.4)
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For the mean flow conditions just described, the linearized unsteady equation (3.19)
reducesto

iWU + r -lO(rA2u) + -1-- 0u 0u
Or r + c2y - Du = 0, (5.5)

where the subscript 2 on the Jacobian matrices in (5.5) indicates that they are evaluated at

U_2 1 = _V_ = 0; e.g., A2 --- OFr/OUCYl]u_=o.

5.1 Uniform Mean Flow

For the special case of a uniform mean flow, in the absolute frame, exact solutions to

equation (5.5) can be determined [VMK95]. Such solutions indicate that an arbitrary first-

order, unsteady, aerodynamic perturbation can be represented as the sum of independent

entropic, vortical and irrotational acoustic disturbances. The entropic and vortical distur-

bances are convected by the mean flow, and therefore, have general solutions of the form

= _(r, rS-Vot, _-V_t) and _,R _ 9R(r, rS-Vot, _-V_t), where _,R is the (rotational) velocity

associated with the vorticity, _ = V × v = V x v R. The acoustic disturbances are governed

by a convected wave equation for the pressure, which can be solved analytically using the

method of separation of variables [TS62, VTM82]. The state vector u that describes an

unsteady perturbation of a uniform stream can thus be expressed in the form u - Uc 4- UA,

where Uc describes convected entropic and vortical disturbances and UA describes acoustic
disturbances.

For an unsteady flow occurring at frequency w, the state vector, Uv, is a solution of the

convection equation Duc/Dt = iwue 4- V- Vuc = 0, of the form

OO

Uc = _ urn(r) exp[i(a¢,rn{ 4- rhO)] . (5.6)
rn_--O0

Here, the urn are arbitrary functions of radius; _¢,rn = -(w- rh_)V_ -1 - .abs,r-1---wrn v_ andrh=
ND 4- mNB are constant axial linear and circumferential angular wave numbers, respectively;

abs
and wrn - w - rh_ is the temporal frequency of the ruth disturbance as seen by an observer
stationed in the absolute frame.

The vectors urn in (5.6) can be expressed in terms of the ruth entropic, srn, and rotational
R and V Rvelocity, VR,rn, disturbances by setting prn = -_srn, vrn = vrn eT,rn = • vrn 4- S(ET --

V2/2) to determine that

Urn

Prn

prn Vo 4- pvo,rn

prn + Zv¢,rn

prnET 4- peT,m

= _srn

1

0

Yo

v 12

er

e0

e_

V0e0 + V_e¢

(5.7)
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The first term on the right-hand side of equation (5.7) describes the state variable flucuations

associated with the ruth entropic disturbance; the second term, the fluctuations associated

with the ruth rotational velocity or vortical disturbance.

The analytic solution for the complex-amplitude of the unsteady pressure has the form

OO

' + exp(x+._)] Em.(r) (5.8)p = _ exp(irh0) E, [a_. exp(x_,_) + am,
_------00 D=O

Here, the a_m_ are the complex amplitudes of upstream (-) and downstream (+) travel-

ing pressure waves and the E,n_(r) = Jm(km_r) + Qm_,Ym(km_r) are the "characteristic

E-functions" of [TS62]. The E-functions are combinations of Bessel functions, of order _,

of the first and second kinds. The constants km_ and Q,n_ are determined by the duct-wall

boundary conditions, e.g., see (3.16), and the index # = 0, 1, 2, ... indicates the number of

zero crossings or nodes in the #th radial mode.

The axial exponential coefficients, X_, in equation (5.8) are given by

X_. = _. + i_,m. = (1 - M_) -1 [iM_w_SlA + [(1 - M_)k2m. - (w_SlA)2] 112] , (5.9)

where Me - VJA < 1 and A are the axial Mach number and speed of sound propagation

in the steady background flow, respectively. If (w_bs) 2 > (1 2 2 2-- M_)A kin., then the X_. are

purely imaginary, and the m_ th pressure patterns propagate. If the X_m. are complex, then

one pattern attenuates, and the other grows exponentially, with increasing axial distance.

Each upstream and downstream traveling acoustic mode has a unique axial exponential coef-

ficient, X_., except at an acoustic resonance condition, and thus a unique propagation/decay
behavior and state vector.

The perturbation state vector for the irrotational acoustic disturbances is given by

oo oo

UA = _ e°'_°_ [a,_..u_.,c.,(r)exp (X_.,_) -I.-a+.u+.(r)exp(x+.,_)] (5.10)
n_=--oo p=O

where the modal state vectors,u_.(r), are determined, in terms of the modal pressure,

p_(r) - Em_(r), from the linearizedunsteady fieldequations. In particular,aftercarrying

out the necessary algebra,we findthat

where the A_.

P_m_

- q:

- _=
p_, V_ + pv_,,m ,

p_m_ET + PeT, m_,

= iw +

A-2

o/o,.

A- Vo _ -1
= p$., (5.11)

A-2V¢- (A_ _-_

(7- 1) -1 [1 + (7- 1)M2/2]

+

- i(w - _fl) + V_X_ , are constants determined by the

material derivative operator, D/Dt - iw + V. _7.
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Note that, in addition to different axial behaviors, the convected disturbances in (5.6) and

the acoustic disturbances in (5.10) have different radial behaviors. The radial dependence

of the former can be specified arbitrarily, whereas that of the latter depends upon radial

modes, which must be determined from the unsteady field equations.

5.2 Nonuniform Mean Flow

Guided by the exact solutions for uniform mean flows, approximate solutions to equa-

tion (5.5) can be constructed for the unsteady perturbations of nonuniform, fully-developed

and axisymmetric, mean flows. For this purpose, we set u - uc ÷ Uw, where Uc, describes

a convected disturbance field and uw describes a series of modal disturbances. The con-

vected disturbances are solutions of the unsteady equation (5.5) that satisfy the convection

equation, Duc/Dt = O. Therefore, uc, has a solution of the form (5.6), i.e.,

oo

Uv = Z u,_(r)exp{i[_¢,m(r)_ + _]), (5.12)
171_--OO

but, in the present case, the axial wave number, s¢,rn(r) = -[w + _nr-ZVo(r)]/V_(r) =

-[w_ s + fnr-iV_'bs(r)]/V_(r), depends on radius. The convected field may contain entropic

and/or vortical disturbances, depending on the properties of the mean flow. However, for

general nonisentropic, rotational mean flows no convected disturbance field will exist, because

the entropic and vortical disturbances are coupled to the modal disturbances [Ker77]

The complex amplitude, Uw, of the wave-type or modal disturbances is assumed to have
the form

Oo OO

Uw = _ _ am,,u_.(r)exp(xm._ + i_8) , (5.13)
_r_------ O0 _,._--0

where the terms on the right-hand-side are to be determined by solving of equation (5.5),

subject to boundary conditions at the duct walls.

Far-Field Eigenanalysis

After substituting the assumed form of the solution for Uw (5.13) into the field equation

(5.5) we determine the system of ordinary differential equations

i_I R -zd (rA2 R R R RUmn) ÷ iVar-ZB2 Umn ÷ XmnC2 Urn n Umnu,_+r _rr -D2 =0, (5.14)

which must be solved numerically. After discretizing equation (5.14), and applying the duct

wall boundary conditions vr = 0 at r = rH and r = rD, we obtain the matrix equation

(P - x_,C2) um,R = 0 (5.15)

where P = -iwI - L(r, A2) - irhr -1 B2 + D2 and L(r, A2) is a finite difference approximation

to r-ld(rA2u_)/dr. The column vector UmnRin equation (5.15) contains an entry for each

of the five conservation variables at each radial discretization point.
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Equation (5.15)canbe solved,using a standard linear algebraroutine, to determinethe
axial eigenvalues,X,_,, and the associated right eigenvectors, u_(r), of the modal far-field

disturbances. The left eigenvectors, u_, , are determined as a solution to the equation (P -

X,,_C)HuL, = 0, where the superscript H denotes the conjugate transpose. An orthonormal

=set of left eigenvectors can then be obtained by setting L H L H L _ R

Once the eigenvalues and the left and right eigenvectors of the system (5.14) have been

computed, the complex amplitudes, a,n,, of the modal disturbances can be determined by

taking inner products involving vLn and uw; i.e.,

L NB fO+2_/g8-- UW exp (--irhS) dO)
amn _ (Vmn' 27r jO

As described in §5.1, the unsteady perturbations of uniform mean flows can be repre-

sented as superpositions of independent entropic, vortical and irrotational acoustic distur-

bances. The entropic and vortical disturbances are convected downstream at the mean flow

velocity and, if the axial mean flow is subsonic, the acoustic disturbances travel upstream

and downstream. For nonuniform mean flows, the situation is more complicated [Kou95].

For example, for a rotational, but isentropic, mean flow, the unsteady entropy is an inde-

pendent convected disturbance; however, the unsteady vortical and acoustic disturbances

are coupled. Thus, instead of independent vortical and acoustic disturbances, downstream

traveling, nearly-convected, vorticity-dominated, modal disturbances, which contain pres-

sure, and upstream and downstream traveling, acoustic or pressure-dominated disturbances,

which contain vorticity, occur [AG98].

the eigenvalue problem (5.14).

The group velocity

0w

Vg,m. = OXm.

These types of disturbances emerge as solutions of

L(,,.... Cu .)
(vL,, (OP/0w) u_.) '

(5.17)

i.e., the axial velocity at which an unattenuated mnth modal disturbance carries energy,

is used to classify disturbances. Nearly-convected disturbances travel downstream, without

attenuation, at axial speeds slightly less than and slightly greater than the mean flow speed.

Unattenuated acoustic disturbances to a subsonic axial mean flow travel both upstream and

downstream.

We can decompose the state vector, Uw, by setting

uw(r,O,_) -- uN(r,O,_) + uA(r,O,_) , (5.18)

where UN and UA are the complex amplitudes of the vorticity- and the pressure-dominated

unsteady disturbances, respectively. The state vector for the nearly convected disturbances

is given by

OO OO

- R,- a + _ R,+ tUN = E exp(irh0)E [arn.,NUm.,N (r) exp (i_,ra.,N_) + rn,,Num,,g _'r) exp (in+.,N _)
m=-oo tt= l

(5.19)
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wherethe index # indicates the numberof radial nodes, and the - and + superscripts refer

to disturbances that travel slightly slower and slightly faster than the convection speed. The

axial eigenvalues of the modal nearly-convected disturbances are purely imaginary and the

axial wave numbers, _,,_u,N and +_,,_u,n, are less than and greater than, respectively, the

axial wave number of a corresponding ruth convected disturbance, i.e., n_,mu,N < _;_,,_,c(r) <
+

K'_,rn_,N "

The acoustic disturbances, i.e.,

OO OO

- R,- +
UA = _ exp(irhS)_ [amu,AUmu,A(r)exp (X_,A_) + am_,,AUmu,A+P_+ (r) exp (Xm_,A_)]

_=--00 _=0

(5.20)
are also ordered according to the number, #, of radial nodes, but in this case starting with

# = 0. The - and + superscripts in equation (5.20) refer to upstream and downstream

traveling acoustic disturbances, and the eigenvalues, X_u = _ + in_,,_u are complex.

Numerical Considerations

In numerical calculations, the series in equations (5.12), (5.19) and (5.20) must be trun-

cated, since only finite numbers of circumferential and radial modes can be accommodated.

Also, the numerical solutions to (5.15) will yield spurious modes; i.e., modes that satisfy the

difference equation (5.15) but not the differential equation (5.14). These modes must be fil-

tered out to yield a valid solution set. Since only a finite number of modes are retained after

the truncation and filtering processes, the far field modal description may be incomplete.

This caveat applies to both the circumferential and radial modes. Since the acoustic and

nearly-convected modes are ordered by the number of radial zero crossings, to determine if

any of the lower order modes are missing or if spurious modes are being kept, one can count

the zero crossings in the kept modes. If the number of kept modes with a given number of

zero crossings is one, or two for the nearly convected modes, then it is likely that only the

genuine modes are being retained.

The far field solutions must be applied in conjunction with a numerical near-field solution

to determine the linearized unsteady flow. The amplitudes of the incoming unsteady aero-

dynamic disturbances (excitations) are prescribed, and those of the outgoing disturbances

are determined by matching near- and far-field solutions. Convected, nearly-convected, and

acoustic disturbances that travel downstream are incoming disturbances at the inflow bound-

ary (_ = __) of the near-field computational domain, and outgoing disturbances at the out-

flow (_ = _+) boundary. Acoustic waves that travel upstream are incoming disturbances at

= _+ and outgoing disturbances at _ = __.

The amplitudes of the outgoing modal disturbances are determined by taking inner prod-

ucts, cf. (5.16), using the near-field state vector, u in lieu of Uw. Thus, we assume that
L L

(vm_ , u) _ (v,_n, uw), i.e., that the left eigenmodes of the modal disturbances are nearly

orthogonal to the convected disturbance. Once the amplitudes of the outgoing modes are

determined, by applying (5.16) at the computational inflow and outflow boundaries, the

wave-type modes are superposed to provide solutions for Uw = u A + u N. This solution is

based on the finite numbers of circumferential and radial modes that can be represented

accurately on the computational grid used to determine the near-field solution.
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At the upstreamfar-field boundary, the convecteddisturbanceis set to describeany in-
cident convectedgust. At the downstreamfar-field boundary, the wave-type modes are
subtracted from the total unsteady disturbance and the remainder, uc - u- Uw, is
treated as a convecteddisturbance. The convecteddisturbance in the region, _ > (+, is
computed by the method of characteristicsas a solution of the equation Duc/Dt - O.

Since the mean radial velocity has been assumed to be negligible, the functional form of

the far-downstream convected field along the constant-radius characteristics is uc(r, 8, _) --

uc(r, 8, _+ ) exp[-iw(_ - _+)/V_].

In the near field, the tinearized unsteady governing equations are solved using the pseudo-

time marching technique described in §5. After each iterative update of the near-field solu-

tion, the amplitudes of the outgoing wave-type modes, i.e., am_,, A at _ = __ and am_,A+ and

am,,N=F at _ = _+, and the far-downstream convected disturbance, uc(r, 8, _+), are updated.
The far-field solutions, which are the sums of the incoming and outgoing wave-type and con-

vected disturbances, are then updated, and used to supply the far-field information needed

for the next near-field update.

In principle, a linearized unsteady solution could proceed as outlined above. However,

in practice, it is very difficult to numerically determine the axial and radial behaviors of the

nearly-convected modal disturbances. Therefore, at present, for practical three-dimensional,

unsteady flow calculations, some liberties must be taken in describing the unsteady pertur-

bations of nonuniform mean inlet and exit flows. In particular, in the present effort, such

perturbations will be represented approximately as the sum of a finite series of acoustically-

dominated modal disturbances and a "convected" disturbance field. The axial eigenvalues

and radial shapes of the acoustic modes are determined by the far-field eigenanalysis. The

amplitudes of the incoming acoustic disturbances are prescribed, and those of the outgoing

acoustic disturbances are determined by matching the near- and far-field unsteady solutions.

The "convected" disturbance field, u - u A, is prescribed at inlet and numerically convected

downstream at the exit boundary.

5.3 Numerical Results for Simple Swirling Flows

At this point we have described a theoretical procedure for determining the axial and

radial behaviors of unsteady perturbations of a fully-developed, axisymmetric, steady back-

ground flow. We proceed now to evaluate the capabilities of the numerical eigenanalysis,

currently used in the LINFLUX code, anticipating that it will be difficult to determine the

eigenvalues and radial modes of the nearly-convected disturbances, and extremely difficult

to represent an arbitrary vortically-dominated disturbance as a series of nearly-convected,

modal disturbances.

We have determined numerical eigensolutions for the modal unsteady perturbations of

fully-developed, swirling, mean flows. These flows are assumed to occur far upstream of a

rotor, consisting of 24 blades, which rotate at constant angular velocity, _, and reside in an

annular duct with rD = 4.244 and tHirD ---- 0.8. The following conditions are prescribed on
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the inlet mean or steady-background flows at midspan, i.e., at r = rM ---- (r//+ rD)/2:

/5(rM) = 1.0, V(rM) = 1.0, S(rM)= 0,

M(rM) = 0.5 , and FlF(rM) = 55deg,

(5.21)

where M and Fly = cos-l(Vo/V) are the mean-flow Mach number and tangential flow angle,

respectively, in the rotating frame. The pressure, P = _V2/(TM 2) and the temperature,

T = V2/[(7 - 1)M2], at the reference radial location, r = rM, are 2.857 and 10, respectively.

In addition to these reference flow conditions, we assume that the absolute, circumferen-

tial velocity at inlet is given by

Vo___o= Cs + Flsr + rsr -_ (5.22)

where the terms on the right-hand side describe constant, solid-body, and free-vortex swirl

velocities, respectively. The swirl velocity, Cs, the angular velocity, Fls, and the circulation,

Fs, are prescribed quantities. Note that V0 = V0a_ - Fir, where f_ is the angular velocity

of the rotor, and Y0(rM) ---- V sin FiR. The radial distributions of temperature, pressure and

density can be found by integrating the relations in (5.2). For example the temperature

distribution is given by

T(r) = T(rM) + a2s(r2- r2M)/2+ 2FlsCs(r- rM)+ (2asrs + C_)ln(r/rM)

- 2rsCs(T-' - r;_1)- r_Cr-2 - r;,')/2.
(5.23)

Finally, we assume that the absolute total temperature, T_ bs, and the absolute total pressure,

p:_bs, are constants, i.e., T:_bS(r) -- T_b*(rM) and P:_b6(r) = P:_(rM), and hence, the mean

flow is isentropic with S(r) = 0. The radial distribution of the inlet axial velocity can be

determined from equation (5.4).

Numerical solutions have been determined for absolute steady flows with constant swirl,

V_ bs = Cs, solid-body swirl, V0*bs = Fist, and free-vortex swirl, V0abs = Fsr -1. In each case

the absolute swirl velocity, V0a_, and the blade-row angular velocity, Fl, are prescribed, so

that twenty (20) percent of the relative circumferential velocity at midspan, Y0(rM), is due to

the absolute flow, and eighty (80) percent is due to blade rotation. Thus, we set Cs - 0.1638

for the constant swirl condition, Fls = 0.0429 for the solid-body swirl and Fs = 0.6258 for

the free-vortex swirl. In each case, Fl = -0.1716. Also, in each case, the absolute total

temperature and absolute total pressure are T# bs -- 10.178 and p#b_ _ 3.039. The unsteady

flow is excited by a disturbance at the blade passing frequency of a stator or stationary blade

row consisting of Nv = 18 vanes, placed upstream or downstream of the rotor. Thus, the

unsteady flows occur at w = -Nvf_ = 3.089 and a = -2_rNv/NB = -3r/2.

The radial distributions of selected mean flow quantities are shown in Figure 2 for the

flow with constant swirl. The fluid thermodynamic properties, _, P and T, vary only very

slightly with radius; the axial velocity varies from 0.579 at the hub to 0.569 at the tip; the

relative circumferential velocity, from 0.746 to 0.892; and the radial velocity is zero. The

relative inlet Mach number and flow angle vary from 0.472 and 52.19 deg, respectively, at

the hub, to 0.529 and 57.48 deg at the tip.

22



The predictedaxial eigenvaluesandradial pressuremodesfor the acousticdisturbancesto
the prescribedmeanflow with constant swirl areshownin Figures3 and 4, respectively. The

numbers m, # above each symbol in Figure 3, indicate the circumferential (m) and radial (#)

mode orders of the acoustic disturbance. Only the acoustic disturbances in the (1,0) mode

are of propagating type. These disturbances repeat six times around the wheel and travel

in the direction of rotor rotation. The upstream propagating or response disturbance has an

axial wave number, _-, of 2.411; the downstream propagating disturbance (excitation), an

axial wave number of -1.046. The radial pressure modes, p_(r), of the upstream traveling

acoustic disturbances at m - -2,..., 2 and # = 0, 1, 2 are shown in Figure 4. The pressure

in the upstream propagating (1,0) mode shows very little variation with radius. However,

the upstream decaying modes show significant radial variation.

We have determined results, similar to those in Figures 2 through 4, for the mean flow

with solid-body swirl, V0ab_ - 0.0429r, and for the mean flow with free vortex swirl, V0abs --

0.6258r -x. In both cases the mean flow thermodynamic properties (_, P, and T) are almost

constant across the duct. For the solid-body swirl, the mean axial velocity varies from 0.583

at the hub to 0.562 at the tip; the relative inlet Mach number, from 0.467 to 0.535; and the

relative inlet flow angle, from 51.30 deg to 58.28 deg. For the free-vortex swirl, the axial

velocity is constant across the duct, V_ = 0.574, the relative Mach number varies from 0.479

at the hub to 0.523 at the tip, and the relative flow angle, from 53.20 deg at the hub to

56.77 deg at the tip.

For each of these steady background flows, the predicted axial eigenvalues and radial

pressure modes, at m = -2,..., 2 and # - 0, 1, 2, for an acoustic disturbance at w = 3.089

and a = -3_r/2 are in close agreement with the corresponding predictions for the mean flow

with constant swirl. The axial eigenvalues for the solid-body and free-vortex swirl cases are

shown in Figure 5. For the solid-body swirl, the upstream propagating acoustic disturbance

has an axial wave number _- = 2.410 and for the downstream propagating disturbance

_- = -1.046. For the free-vortex swirl, _ = 2.412 and _ = -1.047.

We have also examined acoustic disturbances, at w = 3.089 and a = -37r/2, to a uniform

mean inlet flow, V0abs = 0, at T_,bs = 10.164, p_bs = 3.025. Again, the lowest-order axial

eigenvalues and radial pressure modes are in close agreement with the corresponding results

for the three swirling flows, indicating that the uniform flow or "Tyler-Sofrin" modes may

often be useful approximations to the acoustic modes of closely related nonuniform mean

flows.

We have not been successful in determining the modal, nearly-convected, unsteady distur-

bances of the swirling mean flows considered above. For the most part, the axial eigenvalues

of these disturbances could not be determined or, when such eigenvalues appeared to be

predicted, the corresponding radial distributions of the fluid dynamic variables indicated

the modes to be spurious. Because of the serious difficulties associated with representing

incoming vortical or wake excitations as a series of nearly-convected modal disturbances, we

will adopt the interim, practical, solution strategy, described at the end of §5.3, for unsteady

flows, excited by wake/blade-row interactions. In particular, we will represent both the

convected and nearly-convected unsteady perturbations of nonuniform flows as convected

disturbances. Since the present numerical eigenanalysis seems to identify the axial eigen-

values and radial modes of acoustic perturbations to nonuniform flows, we will apply this
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analysis to represent the modal acoustic disturbances in the far upstream and far down-

stream regions of the flow. Thus, in the far field, we will assume an approximate solution for

the state vector, u, of the form u - UA + UC. The state vector UA represents a finite series of

low Iml and # order acoustic disturbances and the vector uc represents the remaining part

of the unsteady perturbation, which will be treated as a convected disturbance.
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6. Analytic Wake Excitation Model

Consider a reference rotating or stationary blade row, see Figure 6, which receives the

flow coming from an adjacent upstream row (i.e., a stator or a rotor, respectively). The

upstream and reference blade rows rotate at constant angular velocity _t' and _t, respectively.

Therefore, the upstream blade row rotates at angular velocity ft' - Ft - f_R = _Re_ relative

to the reference array, where _tR is the absolute angular velocity of the rotor. Because the

blade rows move relative to each other, any downstream traveling steady flow nonuniformity

produced by the upstream blade row; e.g., a nonuniformity due to the viscous blade wakes,

will excite an unsteady flow through the reference row. Although the wake excitation to the

reference array is associated with viscous effects in the flow through the upstream blade row,

it will be treated here as an inviscid velocity perturbation at the inlet to the responding or

reference blade row.

We will analyze the flow through the reference blade row in terms of cylindrical coordi-

nates (r, 0, _) and (r, 8' = 8- _Rt, _) attached to the reference and the upstream or excitation

blade rows, respectively. Here, both 0 and 0' measure angular distance in the e_ x er = e0

direction, where the radial unit vector er points from hub to tip. We assume that in the

absence of the reference blade row, the flow "far" downstream of the excitation blade row is

steady in the r, 0', _ coordinate frame, with relative velocity, V'(r, 0', _), density, _, and the

pressure/3, given by

9'(r,e',¢) = v'(,-) +...

= [V'(r) + _R(r,O',{)]eT(r) +... = f/'(r,O',{)eT(r) (6a)

_(r,O',{) = fi(r) +... and P(r,O',{) = P(r) + ....

Here V', p and P are circumferentially-averaged flow properties, _¢R(r, 0,{) is the first-

order velocity perturbation due to the wakes off the blades in the upstream blade row, the

density and pressure fluctuations associated with this velocity perturbation are assumed to

be negligible, and eT(r) is a unit vector tangent to the cylinder r = constant and pointing

in the far-downstream flow direction. Thus, far downstream of the excitation blade row, the

radial component of the total fluid velocity is negligible and the circumferentially-averaged

fluid velocity, V'(r) is axisymmetric and independent of axial distance. We assume that

circumferentially-averaged flow is a solution of the fluid-dynamic conservation equations;

i.e., the nonlinear Euler equations, for steady inviscid flow, cf. §5. However, in general, our

analytical representation for the wake perturbation will only approximate a true solution to

the linearized Euler equations.

The flow velocity, V' = V'e_, far downstream of the exciting blade row can be expressed

in terms of a Fourier series, i.e.,

=
c_

V'(r,_)exp(-inN'O')
n -_ -- O0

OO

= V0'(r ) + _Re{v_(r,{)exp(-inN'O')} (6.2)
n=l
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whereN' > 0 is the number of blades in the upstream blade row and the Fourier coefficients,

Vn, are given by

N ! fO'+2r/N' fZ'(r,O',_)exp(ing'O')dff, n = 0,+1,:i:2,...= J0, (6.3)

Here, V0I = V' is the circumferentially-averaged value of the far-downstream flow velocity and

v_R(r, _) = 2V,', n = 1, 2,..., is the complex amplitude of the nth circumferential harmonic

component of the perturbation velocity. The velocity _r', and therefore, V', the perturbation

velocity v_(r, _), n = 1, 2,..., and the unit vector eT(r), can be determined experimentally

or by performing a viscous flow calculation to determine the steady relative flow through the

upstream blade row.

If we assume that the complex amplitudes of the Fourier components of the perturbation

velocity, v nR= vnReT, vary harmonically with axial distance, i.e., v_(r, _) = v_(r) exp(ina_),

and set

= rvreT = (a_V_ - r-INIV_)eT/V'= O, (6.4)

where aT is the wave number of a "convected" velocity perturbation in the relative flow

direction; then the foregoing first-order flow perturbation will satisfy the linearized, inviscid,

conservation equations for mass, axial and circumferential momenta, and energy. However, in

general, this representation of a wake excitation does not satisfy the linearized conservation

equation for radial momentum, unless the absolute steady background flow is uniform. Thus,

for a nonuniform, absolute mean flow, it is, at best, only a convenient and hopefully useful,

approximate solution to the fluid-dynamic equations governing the inviscid flow through the

reference blade row.

The flow exiting from the upstream or excitation blade row enters the field of the reference

blade row. In particular, the imposed relative velocity at the inlet to the reference blade row

is

_r = _1 + _Re_ X r = V'+ f_ae_ x r+_a +... = V +_,a +... (6.5)

where the perturbation velocity, _,R, is invariant under a transformation from the r, 0I,

frame to the r, 0, _ frame. Thus, in terms of the coordinates r, 0, _ fixed to the reference

blade row, the steady and unsteady perturbation velocities at inlet are

V(r) = V_e_ + (V_ + _Rr)eo = V_e_ + Voeo (6.6)

and

where

oo

_R= _ Re{v_ exp[in(a{(- N'O + N'nRt)]} ,
n=l

(6.7)

-R (v_/V')(V_e¢ + V_eo) (v_/Vl)[V_e_ + (Vo £tRr)ee] (6.8)

w = ]V'_R is the fundamental (n = 1) excitation frequency in the frame of the reference

blade row and a_ = -(w - r-IN'Vo)/V¢ is the axial wave number of the fundamental wake

excitation. The interblade phase angle, a, of the fundamental excitation is -2rrN'/N, where
N is the number of blades in the reference blade row.
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Each term on the right-hand-side of equation (6.7) can be determined from the zeroth-

order term in the general expression, (5.12), for a convected disturbance at frequency w by

setting m = 0, rh = ND = -nN', w = nY'_R, and _,0 =-ng' [_R- r-ZV0(r)]/V_(r) in

equation (5.12). Note that, if the upstream blade row is a stator, V' is the absolute steady

fluid velocity and V is the velocity relative to the reference rotor blade row. If the upstream

blade row is a rotor, V' is the velocity relative to the rotor and V is the absolute fluid

velocity. In both situations, _' - _ = _Re_, where _R is the absolute angular speed of the

rotor.
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7. Numerical Results: 3D 10th Standard Configuration

The 3D 10th Standard Cascade (3D SC10) consists of 24 blades placed within a cylindrical

annular duct of inner radius r/_ = 3.395 = 0.8rD and outer radius rD = 4.244. It operates

in a uniform axial mean inlet flow, which, in the present study, occurs at M_a_ = 0.2868,

and rotates at constant angular velocity ft = -0.2145e_. The blades are twisted to reduce

the variation in relative mean incidence caused by blade rotation, and there is no clearance
between the blades and the outer duct wall.

At midspan (r = rM ---- 0.9rD), the blades are staggered at e(rM) -- 45deg with a

circumferential spacing, G(rM) -- 27rrM/NB, of unity, and the blade cross section is a NACA

5506 airfoil, altered slightly [Ver89], to close in a wedge-shaped trailing edge. This midspan

geometry was chosen to match the 2D 10th Standard Configuration of [FV93]. The relative

inlet Mach number, M-co, and the relative inlet flow angle, __co = tan-1 (V0/V_), at midspan,

are 0.5 and 55 deg, respectively.
The mean blade chord lines are located at

rO--_tane(r)+nG(r), O<__<_Cax, n=0,...,Ns-1, (7.1)

where

tan e(r) - (r/rM) tan e(rM) (7.2)

and the axial chord, c_ = c(r)cos e(r) = c(rM)COSe(rM), is constant. Hence, _ = 0 and

= 0 at the reference blade (n = 0) leading edge and _ = cos 45 deg at the trailing edge,

along the entire span. The airfoil chord, c(r), varies from 0.946 at the hub to 1.057 at the

tip, and the local thickness to chord ratio varies to maintain constant thickness.

TURBO nonlinear steady and LINFLUX linearized unsteady solutions for the 3D SC10

have been determined, over a single extended blade passage, on an H-type grid, cf. Figure 7,

consisting of 141 axial, 41 tangential and 11 radial surfaces (56,000 cells), with 81 axial

surfaces intersecting the blades. This H-grid extends approximately one axial chord upstream

and downstream from the blade row. Axial grid surfaces are clustered near blade leading

and trailing edges; circumferential surfaces, near the blades; and the radial surfaces are

distributed uniformly. The LINFLUX near-field, finite-volume solutions have been coupled

to far-field acoustic eigensolutions, which have been determined on a radial grid consisting of

36 points clustered near the hub and duct walls. For the unsteady flows under consideration,

convected vortical disturbances are prescribed at inlet, and any convected or nearly convected

disturbances that occur downstream of the blade row are simply convected numerically

through the computational outflow boundary.

The 3D SC10 solutions reported herein were determined on an IBM-3CT Workstation. At

present, LINFLUX has no convergence acceleration. As a result, 5,000 to 8,000 pseudo-time

steps, with two SGS subiterations at each time step, were applied to converge the LINFLUX

SC10 calculations. Approximately 600 time steps could be completed per CPU hour on

an IBM 3CT, corresponding to ll0#sec/time-step/cell or 8 to 13 CPU hrs for a solution.

The computing resources required for executing LINFLUX are much less than those that

would be required to determine a nonlinear unsteady solution using TURBO, especially for

excitations at nodal diameters that require nonlinear solutions over a large number of blade

passages.
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In addition to the 3D LINFLUX results, for purposesof comparison,we have also de-
termined predictions for the 10th Standard Cascadeusing the two-dimensionalsteady full-
potential analysisCASPOF [Cas83]and the potential-based,linearized unsteady analysis,
LINFLO [Ver93]. The full potential steadysolution for the midspansectionof the 3D SC10
hasbeendeterminedon acompositemeshconsistingof a local C-meshembeddedin a global
H-mesh;the LINFLO unsteadysolutions, on a streamline155x 41 H-mesh. The H-meshes
usedin the CASPOF and LINFLO calculationsextendone axial chord upstream and down-
streamfrom the blade row.

7.1 Steady Background Flow/Vortical Excitations

Predictions for the steady background flows through the 3D and 2D 10th Standard Cas-

cades have been determined using the TURBO 3D nonlinear Euler and the CASPOF 2D

full-potential analyses. For the TURBO calculations, the relative total pressure, total tem-

perature, and flow angle are specified at inlet (i.e., at _ = __), and the mean-flow static

pressure at the hub is specified at the exit (_ = _+). For the CASPOF calculation, the

relative inlet Mach number, M-oo - 0.5, and inlet flow angle, f_-oo -- 55 deg, are specified

and a Kutta condition is imposed at the blade trailing edges. In the present study, the exit

static pressure for the 3D calculation has been chosen such that the relative inlet flow at

midspan matches the conditions prescribed for the 2D CASPOF calculation.

The 3D 10th Standard Cascade operates in a uniform, absolute, mean inlet flow, but,

because of steady blade loading, the mean exit flow has swirl and axial shear. Radial

distributions of selected inlet and exit, mean-flow quantities for the 3D SC10, operating at

M_a_ = 0.2868 and $2 - f_ee = -0.2145ee, are shown in Figure 8. For the three-dimensional

flow, the steady pressure (P = 2.857), density (p = 1.0), and axial velocity (V_ = 0.574) are

constant at inlet, the relative circumferential velocity, Ve - -f_r varies linearly from 0.728

at the hub to 0.910 at the tip, and the relative Mach number, M = [p/(vP)]I/2V varies from

0.464 at the hub to 0.578 at the tip. At the exit boundary, the steady pressure, density,

and axial velocity vary with radius, and the circumferential velocity varies nonlinearly with

radius. The steady blade loading for this compressor blade row leads to small increases in

the pressure and density, a small decrease in the axial velocity and relatively large decreases

in the circumferential velocity and Mach number, across the blade row.

Predicted, steady, isentropic, surface Mach number and surface pressure distributions for

the 3D 10th Standard Cascade, are shown in Figures 9 and 10. The isentropic Mach number,

i.e.,

"'
is based on the local static pressure, P(r, 0, _) and the local relative total pressure, PT,-oo(r)

at inlet. The TURBO steady-flow predictions at the hub, r/rD = 0.8, midspan, r/rD = 0.9,

and tip, r/rD ---- 1.0, in Figures 9 and 10, indicate that the isentropic Mach numbers and

pressures on the blade suction and pressure surfaces vary with radius, leading to a small

increase in blade loading with increasing radius. In addition, the 3D TURBO predictions at

midspan are in close agreement with the 2D CASPOF predictions.

We will consider the response of the 3D Tenth Standard Cascade to a fundamental vortical

excitation coming from an adjacent upstream stator consisting of Nv equally-spaced vanes.
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The circumferentially-averaged background flow at the rotor inlet (stator exit), V abs = _e_,

is assumed to be axial and uniform. Superimposed on this uniform axial mean flow is a

vortical axial velocity perturbation, ._R _ _Re_ ' which is steady in the stator or absolute

frame, but unsteady in the rotor or relative frame.

It follows from equations (6.6) and (6.7), with nR - -n, N' - Nv and n - 1, that the

relative steady and unsteady velocities at the rotor inlet, i.e., "far" upstream of the rotor,

are given by

V = V + Is2lreo= V_ee + If lreo (7.4)

and

_rR= Re {vP'e_ exp [i(-NvOre'+ Nvl lt)] } (7.5)

The frequency of the unsteady vortical excitation in the rotor frame is w = Nv [f'tl = -Nvfl,

the axial wave number, _;_, of this excitation is zero, and the fundamental interblade phase

angle, a, is -2_Nv/NB. We are assuming that there is no density, pressure, radial velocity

or circumferential velocity associated with the axial velocity perturbation (7.5). Therefore,

the state vector, uc, associated with this perturbation has the form u S = fi(0, 0, 0, v_, V_v_).
Since the underlying absolute mean flow is uniform, uc is an exact solution of the linearized,

inviscid, unsteady equations.

For the present purpose of validating the LINFLUX code for relatively simple unsteady

flows, we assume that the complex amplitude, vR(r), of the vortical velocity is constant along

the span. Also, to allow convenient comparisons between 3D LINFLUX and 2D LINFLO

response predictions at blade midspan, we choose this constant such that

v R" eN = vRe_ • eN = --v R sin _-oo(rM) -- (1, 0) at r = rM , (7.6)

Here, e_r = V x ec/lV[ is a unit vector tangent to the cylinder r = constant and normal to the

inlet steady relative velocity, and f2__ = tan -1 (Ve/V_) is the steady relative inlet flow angle

at midspan (r = rM). Thus, the vortical excitation from upstream has a complex amplitude,

v R, of (-1.221,0) and it is convected by a mean flow, which has velocity components, V_,__ =

0.574 and V0,-_ = [I2[r at inlet.

7.2 Unsteady Response Predictions

We consider fundamental wake (vortical) excitations coming from upstream stators con-

sisting of Nv = 6, 12 and 18 blades. These excitations produce unsteady flows through

the 3D SC10 at w = -Nvf_ = 1.287 and a = -21rNv/NB = -90deg, w = 2.574 and

a = -180deg, and w = 3.861 and a - -270deg, respectively. The LINFLUX predic-

tions for the axial eigenvalues of the far field acoustic disturbances, associated with such

unsteady flows are shown in Figures 11 through 13. The designations upstream decaying

and upstream propagating in these figures refer to acoustic response disturbances at inlet

and acoustic excitations at exit; the terms downstream decaying and downstream propa-

gating refer to excitations at inlet and responses at exit. The amplitudes of the acoustic

response disturbances are determined by matching the LINFLUX near- and far-field solu-

tions. The amplitudes of the acoustic excitations are set equal to zero in the present study

on wake/blade-row interactions.
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The results in Figures 11 through 13 indicate that all acoustic disturbancesattenuate
with increasingaxial distancefrom the blade row for the unsteadyflows at w = 1.287 and

a = -90deg(Nv = 6), andw = 2.574 and a = -180deg(Nv = 12). For Nv = 6, the

least-damped modes occur at m, # - 0, 0; for Nv = 12, at m, # - 1,0. For the unsteady flow

at w = 3.861 and a = -270deg(Nv = 18), propagating acoustic response disturbances, at

m, # = 1, 0, occur far upstream and downstream of the blade row. The remaining acoustic

response modes attenuate, with the 1,1 mode having the lowest attenuation constant, 181.

The 3D LINFLUX predictions indicate that the upstream and downstream propagating

acoustic responses at Nv = 18 occur at axial eigenvalues X_,o = (0,3.075) and X1,0+ =

(0,-1.153). Here, the X_,_ are the axial eigenvalues of the acoustic response disturbances

in the ruth circumferential and the #th radial mode, and the superscripts - and + refer to

the upstream and downstream traveling disturbances, respectively. The axial eigenvalues of

the least-damped, modal, acoustic responses are as follows: for Nv = 6, Xo, o = (1.642, 0)

and X0,0+ = (-1.611,0.084); for Nv = 12, X_,0 = (1.685,0.803) and Xl+0 = (-2.453,0.563)"

and for Nv = 18, X_,x = (3.152, 0.803) and X_x = (-3.425, 0.646).

A two-dimensional, unsteady analysis will provide one upstream and one downstream

axial eigenvalue, say X_m, for each circumferential acoustic response mode. These approximate

the axial eigenvalues of the zeroth-order radial modes in a three-dimensional flow. In the

present study, the far-field eigenvalues, X_, m = 0, 4-1,/=2, for the 10th Standard Cascade, as

predicted using the 2D LINFLO analysis, are in very good agreement with the 3D LINFLUX

predictions for # = 0. In particular, the 2D predictions for the least damped acoustic response

modes for IVy = 6 are Xo = (1.640,0) and X + = (-1.601,0.081); those for Nv = 12 are

X7 = (1.700, 0.804) and X + = (-2.468, 0.567). The LINFLO predictions for the eigenvalues

of the propagating waves at IVy = 18 are X_- = (0, 3.080) and X + = (0,-1.159). The 2D

solution does not contain the least-damped, (1,1) disturbance modes that occur in the 35

unsteady flow at Nv = 18.

As indicated by the results in Figures 11 through 13, the axial wave numbers of the at-

tenuating acoustic disturbances do not depend on radial mode number for the uniform mean

flow far upstream; but, in the far downstream region, where the mean flow is nonuniform,

the axial wave numbers of the attenuating disturbances in a given circumferential mode vary

with radial mode number, #. Also, valid modes can be inadvertently filtered out by the

LINFLUX far-field eigenanalysis; e.g., the upstream and downstream decaying 1,2 modes at

inlet and the downstream decaying 0,2 and 2,2 modes at exit are missing from the results

for IVy = 18. Fortunately, such missing modes are usually highly attenuated, and therefore

are expected to have little impact on the unsteady solutions far from the blade row.

The radial eigenmodes of the pressures associated with the 3D SC10 far upstream and far

downstream acoustic responses are shown in Figures 14 through 16. Although the inlet and

exit mean-flow conditions differ, the upstream and downstream radial pressure modes are

very similar, with the downstream modes showing a somewhat greater radial variations than

their upstream counterparts. Note that the phases of the modal pressure disturbances are

independent of radius for the uniform absolute mean flow at inlet, but vary with radius for

the nonuniform mean flow that exists in the far downstream region. Thus, the far-upstream,

pressure modes, pR(r), are purely real, but the far-downstream modes have some imaginary

or out-of phase content. Also, the least-damped acoustic modes for IVy = 6, i.e., the 0,0

modes, show very little radial variation. The least damped modes for Nv = 12 (the 1,0
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modes)showsomevariation. Finally, the propagating (1,0) modesfor Nv = 18 show little

radial variation, but the least-damped (1,1) modes show strong radial variation.

Unsteady blade-surface pressure responses for the 3D SC10, subjected to vortical excita-

tions at Nv = 6, 12 and 18, are given in Figures 17 through 22. In particular, 3D LINFLUX

solutions for the unsteady surface pressure distributions at the hub, midspan and tip of the

reference [i.e., n = 0, in (7.1)] 3D SC10 blade are given in Figures 17 through Figures 19,

and LINFLUX and 2D LINFLO solutions for the unsteady surface pressures at midspan are

given in Figures 20 through 22. Here, the real and imaginary components of the pressure

are in- and out-of-phase, respectively, with the excitation velocity at the blade leading-edge

at midspan, i.e., at (r, 8, _) = (rM, 0, 0).

The LINFLUX surface pressure predictions at the hub, midspan and tip in Figures 17

through 19 show reasonable spanwise trends, with, as might be expected, rather small radial

variations in unsteady pressure. The LINFLUX and LINFLO results at midspan in Fig-

ures 20 through 22 are in very good agreement for the vortical excitations at Nv - 6 and 12,

but the agreement, although very reasonable, is not as close for the excitation at Nv -- 18.

The reasons for the discrepancies between the LINFLUX and LINFLO predictions for the

surface pressure responses at Nv = 18 are not clear, but possibilities include insufficient mesh

resolution, numerical losses in the steady and linear unsteady Euler calculations, and the ex-

istence of three-dimensional acoustic responses that are not predicted by a two-dimensional

calculation. Recall that the least-damped, attenuating acoustic response modes, i.e., the 1,1

modes for the vortical excitation at Nv "- 18 have significant radial variation and are not

accounted for in 2D solutions.

Contours of the in-phase component, Re{p}, of the unsteady pressure at midspan, as pre-

dicted by the 3D LINFLUX and 2D LINFLO analyses, for the unsteady flows through the

3D SC10, caused by the vortical excitations at Nv -- 6, 12 and 18, are shown in Figures 23

through 25. In each case, the unsteady pressure fields predicted by the two analyses are in

good agreement. The unsteady pressure responses associated with the vortical excitations

at Nv = 6 and Nv -" 12 attenuate with increasing distance from the blade row. Thus, the

unsteady pressure variations at the computational inlet and exit boundaries, shown in Fig-

ures 23 and 24, are due primarily to the least damped modal acoustic response disturbances,

i.e., the 0,0 disturbances for Nv - 6 and the 1,0 disturbances for Nv - 12. The excitation at

Nv - 18 produces propagating 1,0 acoustic response waves of significantly larger amplitude

at the inlet and exit boundaries, as indicated by the results in Figure 25.

The LINFLUX calculations indicate that the vortical excitation at Nv = 6 produces

attenuating (0,0) acoustic response disturbances at amplitudes of 0.144 and 0.075 at the

computational inlet and exit boundaries, respectively. The vortical excitation at iVy = 12

produces attenuating (1,0) disturbances at amplitudes of 0.190 and 0.033 at these boundaries.

The corresponding LINFLO results are 0.113 and 0.091 for Nv = 6 and 0.142 and 0.038

for Nv "- 12. Although the predicted amplitudes of the 3D and 2D attenuating acoustic

responses are not expected to be identical, particularly since the axial extents of the 3D and

2D computational domains differ, some level of agreement suggests that both analyses are

providing accurate predictions.

The vortical excitation at Nv = 18 (_ = 3.861 and a = -270 deg) produces propagating

1,0 acoustic responses upstream and downstream of the 3D SC10 rotor. These disturbances

occur at rh = runs - Nv = 6, i.e., at an interblade phase angle, al = 2_r_/NB, of 90 deg.
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Therefore,they repeatsix timesaround thewheeland travel in the direction of rotor rotation.
The LINFLUX and LINFLO predictions for the amplitudes of the upstream propagating
acousticresponsewaveare0.243and 0.248,respectively,thosefor the downstreamtravelling
wave are 0.405 and 0.390. If we define a circumferential wave number, _, as _ - rh/r,

then the LINFLUX solution, at midspan, indicates that the upstream propagating wave has

a wavelength 27r/(_ + _)1/2 of 1.820 and propagates away from the blade row and in the

direction of rotor rotation at an angle c_ = 180 deg- tan -1 (_/_) of 152.9 deg from the

axial flow direction. The downstream propagating response disturbance has a wavelength of

3.224 and travels away from the blade row and in the direction of rotor rotation at an angle

c_ = 180 deg- tan-l(_,/_) = 53.72 deg. The LINFLO predictions for the wavelengths and

propagation angles of the 1,0 acoustic response waves are in very close agreement with the

foregoing LINFLUX predictions.

The foregoing validation study, on a relatively simple 3D model problem, suggests that the

LINFLUX code is giving accurate predictions for the unsteady pressure responses resulting

from the interactions of vortical gusts with a rotating blade row. One area of concern involves

the differences, indicated in Figure 22, between the LINFLUX and LINFLO surface pressure

predictions for the gust at Nv = 18. We have performed a mesh resolution study to test

whether the LINFLUX results will approach those of LINFLO if a more refined mesh is used

for the LINFLUX calculations. For this purpose, we have applied the 2D LINFLUX code

[MV95] to predict the unsteady flow through the 2D 10th Standard Cascade that is excited

by a vortical disturbance from upstream at vR.eN "-- (1, 0), W -" 3.861 and a = -270 deg.

The 2D LINFLUX results were determined on a 141 x 41 grid, similar to that used at

midspan in the 3D LINFLUX calculations, and on refined meshes that are 1.5 and 2.0 times

as dense as this 141 × 41 mesh.

Results for the steady isentropic Mach number and unsteady pressure distributions along

the reference blade surface are shown in Figures 26 and 27, respectively. The CASPOF and

LINFLO results, indicated by the dashed lines in these figures, are the same as those shown

in Figures 9 and 22. The LINFLUX results indicate that the mesh refinement has had a

negligible impact on the surface Mach number and unsteady pressure predictions. However,

the 2D LINFLUX surface pressure distributions are in better agreement with the LINFLO

predictions than the corresponding 3D LINFLUX results. This suggests that some of the

differences between the LINFLO and the 3D LINFLUX solutions, indicated in Figure 22,

are due to the three-dimensional effects that are not captured by the LINFLO analysis.

The 2D unsteady vorticity and pressure fields predicted by the LINFLUX and LINFLO

codes, are shown in Figures 28 and 29. The LINFLUX solution on the 281 × 81 mesh shows

vorticity contours that become severely distorted, especially near the blades and their wakes,

as the gust moves downstream. Such distortions are even more severe in the coarser-mesh

LINFLUX solutions, and probably contribute to the relatively small differences between

the LINFLUX and LINFLO unsteady surface pressure predictions. The unsteady pressure

fields resulting from the 2D LINFLUX and LINFLO calculations are in good agreement as

indicated by the contours shown in Figure 29. Thus, the severe distortion of the vortical

gust produced by the LINFLUX calculation seems to have only a minor impact on the

unsteady pressure response. Part of the distortion in the LINFLUX predictions is due to

the numerical inaccuracies associated with computing velocity gradients, whereas LINFLO

computes vorticity directly.
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8. Numerical Results: Fan Exit Guide Vane

We proceed to consider a more realistic, three-dimensional, unsteady flows; namely, flows

through the exit guide vane of the NASA/PW, 22 inch, advanced ducted propulsor (ADP).

We will apply the 3D LINFLUX analysis to predict the unsteady pressure responses of this

stator blade row to the Fourier components, at one, two and three times the blade passing

frequency (BPF), of a rotor wake excitation. The analytical wake excitation is based on

velocity measurements taken downstream of the rotor [Pod97]. The results given below

stem from a first-time application of the LINFLUX-based unsteady flow model to a realistic

wake/blade row interaction. We anticipate that various aspects of this model, particularly

those associated with modeling the wake excitation, will be improved with time, and, in the

future, the analytical predictions will be compared with experimental measurements for the

modal acoustic responses at the exit of the aft duct.

The application of LINFLUX to predict the unsteady aerodynamic response of a blade

row to a wake excitation involves the use of four codes: TIGER [SS91], to generate a 3D H-

grid; AWAKEN [TE99], to define the steady and unsteady inflow conditions; TURBO [Jan89,

JHW92, CW93], to determine the steady background flow; and LINFLUX to determine the

linearized unsteady flow. At present, these codes use different forms of the flow variables.

As a consequence, the numerical results given below for the steady and unsteady inflow

conditions (Figures 33-36) are reported in terms of dimensional flow variables. The steady

flow properties at inlet and exit, given in Figure 39, are shown in terms of the non-dimensional

flow variables used in TURBO, which are described in §8.2. All other results for the FEGV

are given in terms of the non-dimensional variables used for the LINFLUX output, which

are described in §2.

A schematic of the advanced ducted propulsor is shown in Figure 30. The upstream fan

rotor consists of 18 blades which rotate clockwise, when viewed from upstream, at 5,425 rpm.

The radius of the fan is 11 in. and the nominal blade chord measured over the outer span

is 3.5 in. The fan exit guide vane (FEGV), cf. Figure 31, is placed at an axial distance

from the rotor-tip trailing edge to the stator-tip leading edge of 5.3 in. It consists of 45

blades, which are twisted, bowed, flared at the tip, and have rounded leading and trailing
edges. The FEGV resides in an aft duct which has variable inner and outer radii. The

chord, c*, and axial chord, c_, of the stator blades, at midspan, are 1.666 in. and 1.625 in.,

respectively. Here, the chord is taken as the linear distance between the leading- and trailing-

edge points at blade midspan, and it is the reference length used in non-dimensionalizing
the flow variables.

We have introduced several geometric simplifications to the actual FEGV configuration

to allow for the application of the TURBO and LINFLUX analyses. In particular, a wedge-

shaped, trailing-edge section, approximately 0.2 in. long, has been added to the original

vane geometry, so that the analytical vanes close in sharp trailing edges. This modification

is needed to eliminate trailing-edge separations from the TURBO predictions for the zeroth-

order background flow, thereby allowing the TURBO calculations to converge to a steady

solution. In addition, we have modified the aft-duct geometry, to provide a duct with inlet

and exit sections of constant inner and outer radii, as required by the assumptions used in

developing the LINFLUX far-field eigenanalysis.
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The computational domain prescribedfor the TURBO and LINFLUX, FEGV calcula-
tions extends axially 0.893in. upstream and 2.707in. downstreamfrom the blade leading
edgeat midspan. The axial extent of this domain waskept short deliberately, so that a
relatively densemeshcould be appliedto resolvethe near-fieldunsteadyflow. The constant
radii duct sectionsat inlet and exit extendalmost to the bladerow and haveinner and outer
radii ofr_ = 5.810 in. and r E = 11.410 in. at inlet; and ofr_ = 6.426 and r E = 11.288 in. at

exit. In terms of dimensionless coordinates, say _ = (*/c* and r = r*/c*, the key axial

coordinates, are ( - -0.536 at the computational inlet boundary, _ - 0 at the midspan

leading-edge point, ( = 0.975 at the midspan blunt trailing-edge point, ( = 1.085 at the

sharp trailing-edge point, and _ -- 1.625 at the computational exit boundary. The inner and

outer radii, r = r*/c', are 3.487 and 6.849 for the inlet duct section, and rH -- 3.857 and

rD = 6.776 for the exit section.

The TIGER grid generator [SS91] has been used to define a three-dimensional H-grid, for

the FEGV steady and unsteady flow calculations. The numerical results, reported herein,

were determined on an H-grid, consisting of 151 axial, 47 tangential and 25 radial surfaces

(165,600 cells). This grid extends axially from ( = -0.536 to ( = 1.625 with 47 axial

surfaces positioned upstream of the blade row, 83 intersecting the modified blade surfaces

and 21 positioned downstream of the blade row. Axial grid surfaces are clustered near blade

leading and trailing edges; circumferential surfaces, near the blade suction and pressure

surfaces; and radial surfaces, near the tip.

The H-grid used for the FEGV calculations is shown at 4 radial stations; one near the

hub, one near midspan, one near seventy five percent span, and one near the tip, in Figure 32.

The LINFLUX near-field, finite-volume solutions, computed on this grid, are coupled to far-

field acoustic eigensolutions, which have been determined on a radial grid consisting of 36

points clustered near the hub and duct walls. For the unsteady flows under consideration,

the unsteady wake excitations are prescribed at inlet, and convected and nearly convected

disturbances are convected numerically through the computational outflow boundary.

8.1 Rotor-Exit/Stator-Inlet Conditions

As in §6, we assume that the flow downstream of the fan can be represented as the

sum of a circumferentially averaged steady flow in which the velocity, entropy and pressure

vary only with radius, and a first-order perturbation in which the velocity is aligned with

the mean flow velocity and the density and pressure are negligible. Thus, for the present

example, the velocities V' and V' in §6 are measured relative to the fan rotor, N' -- NB is

the number of fan blades and nR = f_' is the angular velocity of the fan rotor.

The absolute steady and unsteady velocities, cf. equations (6.6) and (6.7), at the stator

inlet are given by

and

V abs = vre[eT + _Rree = V_e_ + (Vetel + f_Rr)eo (8.1)

_R_ _aeT = _Re {v_eTexp[in(_e_-- NB8 abs + Nef_Rt)]} (8.2)

where w abs = NB_, _ = --(w --r-INBVoabs)/V_ and a = -2_rNB/Nv are the fundamental
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frequency, in the stator frame, axial wave number and interblade phase angle, respectively,
R

of the excitation. The flow velocities V tel and v n can be determined from a Fourier analysis

of the rotor exit velocity, cf. (6.2) and (6.3). The state vector for the rotor wake excitation

is fT = _[0, 0, 9R, 9_, v0absg_ + V_v_]. This vector describes a first-order unsteady flow in

which mass, axial and circumferential momenta and energy, are conserved. In general, radial

momentum will be conserved only if V0abs = 0.

The inflow conditions used for the FEGV steady and unsteady flow calculations are based

on measurements of the rotor exit ftow [Pod97]. In particular, circumferentially-averaged

values of the total temperature and total pressure were determined at 10 radial stations

in an axial measurement plane 3.720 in. downstream of the rotor-tip trailing edge, and

LDV measurements of the rotor exit velocity were taken at 29 radial and 51 circumferential

locations in an axial plane 2.650 in. downstream of the rotor-tip trailing edge. This data was

post-processsed to provide the analytical inflow conditions; i.e., the radial distributions of

the circumferentially-averaged absolute total temperature, total pressure, and flow angle for

the TURBO steady flow calculation, and the Fourier amplitudes, v,n(r), of the perturbation

velocity for the LINFLUX linearized unsteady flow calculation.

In particular, a modification of the mean inflow data near the blade tip was introduced,

as part of the post-processing, to eliminate inviscid separation from the TURBO solution

for the nonlinear background flow through the FEGV. In addition, the experimental per-

turbation velocity was modified to remove endwall and splitter affects, and to make the

analytical description consistent with the unsteady, far-field, formulation currently used in

the LINFLUX analysis. Finally, empirical correlations for wake diffusion as a function of

axial distance [MG84] were applied to estimate the strength of the viscous wake excitation,

at the FEGV leading edge, from the measurements taken upstream.

Curves describing the radial distributions of the measured and derived absolute total

temperature, T_ b6, total pressure, p_b6, and flow angle, _ab6 = tan-1 (v_bs/V_), at the rotor

exit (stator inlet) for the flight condition of interest, i.e., landing approach, are shown in Fig-

ure 33. Here, the derived or analytical total temperature distribution has been obtained by

fitting a straight line through the data, and is in very close agreement with the experimental

distribution. The analytical P_ distribution has been obtained by assuming isentropic flow,

evaluating the entropy, Sw.f, at the reference point rRef -" 5.752, in terms of the measured

total temperature and total pressure at rp_f, and calculating the analytic p_bs distribution

in terms of the analytic T_ bs distribution and S_f. Finally, the analytical flow angle distri-

bution has been determined by fitting a linear curve through the corresponding measured

data for rH < r __ 6.282 and continuing this into a quadratic curve for 6.282 _ r < rD.

The coefficients in the quadratic fit were adjusted to reduce the inflow angle near the blade

tip and thereby avoid separation in the TURBO solution. The analytical distributions in

Figure 33 have been used as inlet conditions for the TURBO calculation of the FEGV steady

background flow. The analytic static pressure at the stator exit was prescribed such that

the analytical and experimental mass-flow rates would be the same.

Although the inflow conditions (T_ bs, p_bs f_abs) prescribed for the TURBO calculation

are in reasonably good agreement with the corresponding experimental values there are

significant differences between the calculated and measured mean flow velocities, particularly

over the outer span of the blade. The circumferentially-averaged, measured, relative and

absolute, velocities at the rotor exit (stator inlet) are shown in Figure 34, along with the
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values determined from the TURBO steady flow calculation. The reasons for the differences

between the measured and calculated steady inflow velocities are not clear at this time,

and will be investigated in more detail in our future work. Important contributors to these

differences may be representing the measured incoming viscous flow by an analytical inviscid

flow, ignoring radial velocities that may be present in the actual flow, and requiring that the

calculated inviscid mass flow agree with that observed in the experiment.

The analytical wake excitation model has been derived from the NASA LDV velocity

data in the following manner. The first step is to determine the wake velocity perturbation

by subtracting the circumferentially-averaged, measured, relative velocity from the actual

measured relative velocity. This yields perturbation velocity components, that are parallel,

VT (T,_,_E), and normal, VN (r, 8,_E), to the circumferentially averaged flow velocity at

the velocity measurement plane, _ = _E. The radial component of the wake perturbation

velocity was not measured and the normal component was generally found to be small.

Thus, in keeping with the assumptions used in developing the wake excitation model of §6,

the normal and radial components of the analytic wake perturbation velocity are assumed to

be negligible, and the parallel component of the measured perturbation velocity is used to

construct the analytic wake excitation velocity. Moreover, this parallel velocity component

is assumed to act in the direction of the analytic mean relative velocity at the inlet to the

stator, which is indicated by the dashed lines in Figure 34.

In analytical models of wake excitations, e.g., see [MG84], the wakes are assumed to be

aligned with the relative mean, rotor-exit velocity and to be identical from blade to blade.

At each radial station, the perturbation velocity, fJT(N), in a single wake, is assumed to

be symmetric relative to a wake centerline at N - 0, and the velocity distribution, 9T(N),

is described in terms of the wake edge, VT,_, and centerline, VT,min, velocities and a shape

function f(N) which depends on the wake half-width. In the present study, a symmetric,

hyperbolic-secant, velocity profile was fitted to the experimental data for _)T(r, O,_E) to

provide an analytical description of the wake velocity distribution at each radial station. The

wake velocity defect, VT,e - VT,min and wake half-width, were then determined as functions

of radius, based on the fitted velocity profiles. The radial and circumferential distributions

of the fitted wake velocity field were then modified near the hub and near the tip in an

attempt to remove the end wall and splitter effects (cf. Figure 30) contained in the data, and

to provide a more or less classical wake excitation over the entire span of the stator blades.

Finally, the diffusion of the viscous wakes, as they proceed downstream, is taken into

account by applying empirical relations [MG84] for the behavior of the wake velocity defect

and half-width, and hence, that of the analytic wake velocity profiles, with streamwise dis-

tance. The viscous wake velocity profiles at the stator leading-edge, are used to determine

the Fourier amplitudes, v,R, in equation (8.2), of the wake excitation velocity. Thus, the

Fourier components of the inviscid wake excitation, prescribed at the computational inlet

plane of the FEGV, are based on the estimated, viscous, rotor-wake, velocity distribution at

the FEGV leading edge.

Circumferential distributions, over 3 rotor passages, of the analytic, rotor-wake, veloc-

ity at the stator midspan leading-edge, as determined from the NASA data and the post-

processing procedure outlined above, are shown in Figure 35. In this figure, _G is the angular

gap of the rotor and, for clarity, the velocity profiles at each radius are offset by r/rD × 10 3.

The curves in Figure 35 indicate only the behavior of the coefficient, 9T, of the tangential
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perturbation velocity, but there are also strong changes in the direction of this velocity,

eT(r), with radius, as indicated by the dashed curve for _! in Figure 34. The circumferen-

tial locations at which the minimum wake velocity occurs also vary significantly along the

span. The velocity profiles in Figure 35 indicate that the wake velocity defect and half-width

are relatively large near the hub and tip, and much smaller over the blade midspan region.

However, this may be due to endwall effects that are still present in the post-processed wake

velocity data.

Radial distributions of the amplitude, [v_[, and phase, arg(v_), of the first five Fourier

components of the analytic wake excitation velocity at the stator leading edge are shown

in Figure 36. The amplitudes of the Fourier excitations decrease with increasing n. Also,

the amplitude of the first harmonic excitation shows a very strong radial variation over

the span. The higher harmonics show much smaller variations in amplitude. Large phase

variations also occur over the span; e.g., a phase variation of approximately 200 deg for the

first harmonic and approximately 360 deg for the second harmonic. The higher harmonics

show even greater phase variations. As will be seen subsequently, the strong radial variations

in the magnitude, direction and phase of the analytic rotor wake excitation lead to rather

complicated unsteady pressure responses for the FEGV blade row.

8.2 Steady Background Flow

The steady background flow through the fan exit guide vane (FEGV) has been calculated

by applying the TURBO, nonlinear, 3D, Euler analysis on the computational grid illustrated

in Figure 32. The radial distributions of absolute total temperature, absolute total pressure

and absolute flow angle, indicated by the dashed curves in Figure 33, were prescribed at

the computational inlet plane, located at _ = __ = -0.536, and the static pressure at the

hub was specified at exit, _ = _+ = 1.626, such that the calculated mass-flow rate matched

that measured in the NASA Lewis experiment. Prior to the present study, the TURBO

analysis lacked the capability of modeling a radially varying, swirling, inlet flow. Thus, this

capability was implemented into TURBO to permit the FEGV steady flow calculation.

Selected results from the TURBO steady flow calculation are shown in Figures 37 through

39. The computed results indicate that the isentropic absolute Mach number varies from

0.27 at the hub to 0.38 at the tip, at inlet, and from 0.20 at the hub to 0.36 at the tip, at

exit. The steady pressure field is shown, at four spanwise stations, in Figure 37. The steady

pressure variations generated by the stator die out within short axial distances upstream

and downstream from the blade row. As a result, the pressure is nearly constant at the

computational inlet and exit boundaries. Because of steady blade loading, there is a small

pressure rise across the FEGV blade row. The steady pressure distributions over the suction

and pressure surfaces of the modified blade, i.e., the original blade with a wedge-shaped

trailing-edge section added, are shown in Figure 38 and indicate an increase in blade loading

from hub to tip. The peak isentropic Mach numbers at the four radial stations indicated in

Figure 38 are approximately 0.38 at J=4, 0.46 at J=10, 0.51 at J=16 and 0.53 at J=22. The

spanwise location of the peak Mach number moves aft with increasing radius, but, generally

lies in the vicinity of _ -- 0.25c_.

Radial distributions of the steady density, pressure, and velocity at the computational

inlet and exit planes for the FEGV are shown in Figure 39, where the scalings for the non-
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dimensionalflow variablesdiffer from thoseusedelsewherein this report. In particular the

results given in Figure 39 are based on the scalings used in the TURBO code, where the

density is scaled by the standard atmospheric density, P}td -- 0.0764 Ibm/ft3; pressure, by

the standard pressure, P_td = 2,116.2 lbl/ft2; and velocity by the standard sound speed

A_t d -" 1,116.8 ft/sec. In TURBO, the standard density and sound speed are determined

from the standard atmospheric pressure and temperature, T_t d = 519°R, using the perfect

gas relations.

The results in Figure 39 also indicate that the steady pressure and density at the inlet and

exit of the FEGV are nearly constant, and there is a slight rise in pressure and density across

the blade row. The axial velocities at inlet and exit show fairly similar radial distributions.

The circumferential velocity distributions indicate that the steady inlet flow is one of almost

constant swirl, and the loading on the stator blade row essentially removes swirl from exit

flow. Finally, the inlet flow has, by prescription, zero radial velocity, but the exit flow has a

small radial velocity component, even though the prescribed exit section of the annular duct

has constant inner and outer radii.

8.3 Unsteady Response Predictions

We have determined the unsteady pressure responses of the FEGV to rotor wake exci-

tations at 1, 2, and 3BPF. Since these excitations are highly dependent on radius (e.g., see

Figures 34 and 35), it can be difficult to evaluate or interpret the predictions for the associ-

ated unsteady pressure responses. Therefore, we have also determined response predictions

for test excitations at 1, 2, and 3BPF. The test excitations occur at the same frequencies

and interblade phase angles as the corresponding wake excitations, but their Fourier ampli-

tudes, Iv_l, cf. equation (8.2), are proportional to the relative mean rotor exit flow speed,

and they have a constant phase at _ - 0. In particular, for the test excitations, we have set

R lYre'I, 0.Vn "-- __

The LINFLUX unsteady response calculations for the FEGV were performed on the

151 × 47 x 25 mesh illustrated in Figure 32. These calculations required from 3,000 to

4,000 pseudo time steps to converge. This translates to approximately 15 to 20 CPU hours

for a converged solution on an IBM 3CT Workstation. No difficulties were experienced in

determining the eigenvalues and radial shapes of the far-field, propagating and least-damped,

modal acoustic responses. The results for the 1 and 2BPF test and wake excitations are

shown in Figures 40 through 50. Although similar results have been determined for the

3BPF excitations, these have not been included in the present report.

The axial eigenvalues of the far field acoustic disturbances associated with the unsteady

flows, at 1 and 2BPF, through the FEGV are shown in Figures 40 and 41, respectively,

where we have labeled the circumferential and radial mode orders of the propagating and

least-damped acoustic response disturbances. The LINFLUX far-field eigenanalyses were

applied to determine the lowest-order radial acoustic modes for m = -2,-1, 0, 1, 2. As

for the 3D SC10 examples, some highly-attenuated modes are filtered out by the far-field

analyses, but such modes should have little impact on the overall unsteady solutions.

For the 1BPF excitation (see Figure 40) all acoustic response modes attenuate, with

the least damped response modes occurring at m, # -- 0, 0. The axial eigenvalues of the

upstream and downstream traveling 0,0 acoustic responses are X_,0 = 2.991 ÷ 0.192i and
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X0+0 - -2.828 + 0.490i, respectively. For the 2BPF excitation (Figure 41) three modes, i.e.,

the 1,0, 1,1, and 1,2 modes, propagate upstream and two, the 1,0 and 1,1 modes, propagate

downstream. The axial wave numbers of the 1,0,1,1 and 1,2 upstream propagating modes

are 3.623, 2.972 and 2.217, respectively; those of the 1,0 and 1,1 downstream propagating

modes are -1.347 and -0.732. The least damped upstream and downstream attenuating

response modes at 2BPF have axial eigenvalues X_,3 = 1.565-I-0.831i and Xl+2 = -1.085-I-
0.762i.

The radial shapes of the propagating acoustic modes for the 2BPF excitation are shown

in Figure 42. The propagating response disturbances occur in the m - 1 circumferential

mode, i.e., at rh = -2NB + Nv = 9 or al = 21r(n/Nv - 72 deg. Hence, they repeat nine

times around the stator blade row and travel circumferentially counter to the direction of

rotor rotation, i.e., in the negative e-direction. Each of the propagating modes, including

those at # = 0, show a strong spanwise pressure variation.

If we introduce the circumferential linear wave number r_ = rh/r, then the LINFLUX

far-field solutions for the 2BPF excitations indicate that the upstream 1,0 response wave has

a wavelength ,_ = 2_r/(_ + g2)1/2, that depends on radius and varies from 1.412 at the hub

to 1.630 at the tip. This disturbance travels upstream and counter to the direction of rotor

rotation at an angle c_ = 180 deg- tan -1 (r,_/_) that varies from 144.5 deg from the positive

_-axis at the hub to 160.1 deg at the tip. The upstream propagating 1,1 and 1,2 waves

have longer wave lengths and lower propagation angles. The wave length of the downstream

propagating 1,0 wave varies from 2.332 at the hub to 3.320 at the tip and travels away from

the blade row and opposite to the direction of rotor rotation at an angle of 60 deg at the

hub and 44.6 deg at the tip from the axial flow direction.

The unsteady blade surface pressure distributions resulting from the 1BPF test and wake

excitations are shown in Figures 43 and 44, respectively. The surface pressure responses are

given for the modified FEGV blades, which extend from the blade leading edge near _ - 0

to the sharp trailing edge near _ = 1.11c_. The trailing edge of the original (blunt-edged)

blade occurs near _ - c_. The amplitude of the test excitation varies with radius like IVrell,

and is, therefore, high near the tip, cf. Figure 34, and the phase is constant at _ - 0. This

test excitation gives rise to a surface-pressure response having the very reasonable spanwise

behavior, shown in Figure 43.

The amplitude of the 1BPF wake excitation is high at the hub and at the tip, cf. Figure 36,

and this excitation undergoes a large phase variation of approximately 200 deg, along the

span. As a result, the predicted surface pressure responses, shown in Figure 44, have a

more complicated spanwise behavior than those for the 1BPF test excitation. In addition,

since the wake excitation occurs at a much smaller amplitudes than the test excitation, the

resulting unsteady pressure responses have much smaller amplitudes than those for the test
excitation.

The FEGV unsteady pressure fields resulting from the 1BPF test and wake excitations

are shown in Figures 45 and 46, where we have plotted the out-of-phase, Im{p}, unsteady

pressure contours. The excitations at 1BPF produce attenuating acoustic responses upstream

and downstream of the blade row. Thus, the pressure variations at the computational

inlet and exit boundaries, shown in Figures 45 and 46, are due to acoustic responses that

die out with increasing axial distance from the blade row. For the test excitation, the

amplitudes of the least-damped 0,0 acoustic response modes, at the computational inlet and
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exit boundaries,are0.181and 0.0797,respectively.The next strongestmode at inlet is the
1,0 mode, with amplitude 0.112. The next strongestmode at exit is the 0,1 mode, which
has an amplitude of 0.020. The pressurecontours for the test excitation show moderate
radial pressurevariations at inlet, particularly from blademidspan to tip, and much smaller
variations at exit.

For the wake excitation, the two strongest modes at inlet are again the 0,0 and 1,0
modes,which haveamplitudes of 0.00476and 0.00341.The two strongestmodesat the exit
arealso the 0,0 and 1,0 modeswhich haveamplitudes of 0.00224and 0.00064. Again, the
unsteadypressurecontoursindicate small pressureperturbations at inlet, particularly in the
vicinity of 75% span, and very small perturbations at exit. Note that, near the tip (i.e.,
at J = 22), the unsteady pressure contours at inlet show a spurious behavior. This could

be due to prescribing a wake excitation that is not a solution of the linearized unsteady

equations. Since the near field solver takes this prescribed inflow information and enforces

the conservation laws, a spurious pressure behavior may be introduced into the unsteady

solution, just downstream of the inlet boundary.

The unsteady surface pressure responses of the FEGV to the 2BPF test and wake ex-

citations are shown in Figures 47 and 48. The complex amplitude, v2n, of the 2BPF test

excitation is v n = -IVrell, 0. The surface pressure responses to this excitation generally show

reasonable spanwise trends, with the pressure responses occurring at smaller amplitudes than

those for the 1BPF test excitation. The 2BPF wake excitation occurs at amplitudes that

vary from 10% at the hub, to 3% at midspan to 7% at the tip of the relative fan exit ve-

locity, Ivrell, and the phase varies from approximately +180 deg at the hub to -180 deg at

midspan to +180 deg at the tip. The real and imaginary surface pressure responses, shown

in Figure 48, to this highly three-dimensional excitation show no discernable simple trend,

but instead relatively complex radial variations, which are primarily due to the large phase

variations in the unsteady excitation. One disconcerting feature of the results for the 2BPF

excitations are the relatively large differences that occur in the out-of-phase pressures across

the sharp trailing edge of the FEGV blade.

The unsteady pressure fields associated with the 2BPF test and wake excitations are il-

lustrated in Figures 49 and 50, respectively, where, again, we have plotted the contours of the

out-of-phase pressure. In each case, there are three propagating acoustic response modes (the

1,0,1,1 and 1,2 modes) upstream and two (1,0 and 1,1) downstream. Various characteristics

of these response disturbances; i.e., wave numbers, wave lengths, and propagation angles, are

determined by the LINFLUX far-field analysis and have been discussed above. For the 2BPF

test excitation, the LINFLUX predictions for the amplitudes of the upstream propagating

modes are 0.183, 0.062 and 0.101. Those for the downstream propagating modes are 0.292

and 0.101. Thus, the 1,0 modes are dominant, especially downstream. The amplitudes of

the attenuating acoustic response modes, at the computational inlet and exit boundaries,

are small. Although there is some spurious pressure behavior at inlet, the contours for the

test excitation in Figure 49 give a clear indication of the 1,0 modes near the inlet and exit

boundaries. These results also indicate that the far-field 1,0 acoustic responses are relatively

weak at the hub and strong at the tip -- a behavior in accordance with the radial shapes of

the 1,0 acoustic modes shown in Figure 42.

The LINFLUX unsteady pressure responses to the 2BPF wake excitation, depicted in

Figure 50, indicate complicated acoustic responses, both upstream and downstream of the
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blade row. Here, the amplitudes of the upstream propagating 1,0, 1,1 and 1,2 acoustic
responsemodesat inlet are 0.00136,0.000702,and 0.00255,and the least-damped (1,3)
mode has an amplitude of 0.00192. At exit, the propagating (1,0) and (1,1) modes have
amplitudes of 0.00210and 0.00237,and the least-damped(1,2) mode has an amplitude of
0.00191.Thus, there is no clearly dominant acousticmodeat the computational inlet or exit
boundary. In addition, as indicated in Figure 42, the modesthat contribute to the pressure
responsesat inlet and exit reachtheir maximum amplitudes at different radial locations.
Suchfeaturesmakeit difficult to interpret the far-field acoustic responses from the contours

plotted in Figure 50. An additional complication is the spurious pressure behavior at the

computational inlet boundary, which is due, possibly, to errors introduced in specifying the
wake excitation.

In the present study on the FEGV, we have limited the axial extent of the computational

domain to ensure an adequate resolution of the near-field flow within available computer

memory resources. In the future, it would be interesting to repeat the FEGV calculations

on an H-mesh that extends further upstream and downstream from the blade row to see

if a better resolution and understanding of the unsteady response far upstream and far

downstream of the FEGV can be achieved. On an extended mesh, the attenuating acoustic

response disturbances would occur at reduced amplitudes, or essentially disappear, at the

computational inlet and exit boundaries, and the spurious behavior, associated with the wake

excitation, might be seen to die out within short axial distances from the inlet boundary. As

part of the present study, we have performed the FEGV, 1, 2 and 3BPF, response calculations

on a 141 x 33 x 25 H-mesh having the same axial extent as the 151 × 47 x 25 H-mesh shown

in Figure 32. The coarse and fine mesh results for the 1 and 2BPF excitations were found to

be in very good agreement, but the results for the 3BPF excitation, although qualitatively

similar, show small to moderate quantitative differences. Thus, at least for the 1 and 2BPF

excitations, it should be possible to construct a mesh that extends further from the blade

row, which still has the density required to accurately resolve the unsteady flows through

the FEGV.
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9. Concluding Remarks

LINFLUX, a linearized unsteady aerodynamic analysis, is being developed for turbo-

machinery aeroelastic and aeroacoustic response predictions. This analysis is based on

the linearized Euler equations; a near-field, implicit, wave-split, finite-volume analysis for

the unsteady perturbations of arbitrary mean flows; and far-field eigenanalyses for the

unsteady perturbations of fully-developed, axisymmetric mean flows. The near-field nu-

merical model is based on the scheme used in the nonlinear Euler/Navier-Stokes analysis,

TURBO [Jan89, JHW92, CW93]. The far-field analyses, which are coupled to the near-field

analysis at the computational inflow and outflow boundaries, allow incoming aerodynamic

excitations to be prescribed, and outgoing disturbances to pass through these boundaries

without spurious reflection. To date, this theoretical effort has been focused on formulating

the linearized inviscid unsteady aerodynamic equations and the near- and far-field solution

procedures, implementing these models into two- and three-dimensional unsteady aerody-

namic codes, and validating and demonstrating these codes via numerical examples.

LINFLUX results for a helical fan and a three-dimensional version of the 10th Standard

Cascade (3D SC10), each with a hub to tip ratio of 0.8, have been reported in [MV97, MV98]

for unsteady flows driven by prescribed blade motions and by prescribed acoustic excitations

at inlet and exit. In each case a nearly two-dimensional excitation was imposed, so that

the LINFLUX predictions could be evaluated via comparisons with the predictions of well-

known two-dimensional analyses. The numerical results indicate that the 3D LINFLUX

code gives accurate aerodynamic response information for acoustically dominated unsteady

flows, provided that the grids employed are of sufficient density and grid lines are clustered

near the blade surfaces. In particular, the LINFLUX blade-surface response predictions

show reasonable radial trends, and the results at midspan are in very good agreement with

2D predictions based on the Smith [Smi72] and the LINFLO [Ver93] analyses. Moreover,

the axial eigenvalues, radial shapes and amplitudes of the propagating and least damped,

far-field, modal acoustic disturbances are predicted accurately.

Under the present effort, we have applied the 3D LINFLUX analysis to vortically-excited,

unsteady, subsonic flows through rotor and stator blade rows. The rotor is the 3D SC10

studied in [MV97, MV98], and the stator is the exit guide vane of the NASA/P&W 22 inch

Advanced Ducted Propulsor [Neu97, Pod97]. The unsteady flows are excited by prescribed

vortical disturbances at inlet, which model wake excitations originating from an adjacent up-

stream blade row. The results for the 3D SC10 have been determined in an effort to validate

the LINFLUX code for simple, three-dimensional, wake/blade-row interactions; those for

the fan exit guide vane (FEGV), to demonstrate the application of LINFLUX to a realistic

wake/blade-row interaction. In the future, the predicted acoustic response at the exit of the

FEGV will be compared, on a mode by mode basis, with experimental data taken at NASA

Lewis Research Center.

The 3D SC10 consists of 24 blades which rotate within a cylindrical annular duct of

constant hub and tip radii. The mean flow at inlet is uniform in the absolute frame, and

thus, vortical excitations can be represented as pure axial velocity disturbances that are

convected by the mean flow. Such disturbances can be prescribed as exact solutions of the

linearized far-field equations. We have considered fundamental vortical or wake excitations
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coming from upstream stators consisting of Nv - 6, 12 and 18 blades and have presented

LINFLUX results for the axial eigenvalues and radial eigenmodes of the far-field acoustic

response, the unsteady pressures acting on a blade surface, the unsteady pressure field, and

the amplitudes of the modal acoustic responses that occur far upstream and far downstream

of the blade row.

The LINFLUX predictions for the 3D SC10 blade-surface pressures show reasonable

spanwise trends, and those at midspan are in very good agreement with the predictions of

the 2D LINFLO analysis. Small differences exist between the LINFLUX and the LINFLO

surface pressures at midspan for the Nv = 18 excitation, which are partially due to the

influence of 3D acoustic response modes that are not determined by a 2D analysis. The

predicted 3D and 2D pressure fields at blade midspan are also in good agreement, as are the

amplitudes of the propagating acoustic response disturbances that occur at Nv = 18.

The fan exit guide vane consists of 45 blades. This stator blade row resides in an aft duct

of variable inner and outer radii, downstream of a fan rotor consisting of 18 blades. We have

applied the LINFLUX analysis to predict the unsteady pressure responses of the FEGV to

the Fourier components, at one, two and three times the blade passing frequency (BPF), of

the rotor wake excitation. The analytical description of the rotor wake excitation is based on

velocity measurements taken downstream of the rotor at NASA Lewis Research Center, and

a number of simplifying assumptions. The mean or circumferentiallyoaveraged rotor exit flow

(stator inlet flow), has significant swirl and radial variation. Therefore, the wake velocity

excitation could not be prescribed as a solution of the linearized governing equations. Instead,

an approximate, quasi-three-dimensional representation has been employed in which the

wake perturbation velocity is assumed to be a convected disturbance that carries no pressure

or density. This disturbance satisfies the conservation laws for mass, axial and tangential

momenta and energy at each radial station, but it does not conserve radial momentum.

In addition, to the quasi-3D wake approximation a number of liberties had to be taken to

analytically model the actual fan-wake/FEGV interaction. These include: geometric changes

to the FEGV trailing edge and to the inlet and exit sections of the aft duct; modifications

to the rotor exit flow to provide an inlet flow to the stator which would not lead to inviscid

separation in the nonlinear background flow through the stator; and modifications to the inlet

perturbation velocity to circumvent endwall and splitter effects and provide a more or less

classical 2D wake excitation at each radial station. Empirical correlations [MG84] were also

applied to estimate the strength and circumferential variation of the viscous wake excitation

at the FEGV leading edge, in terms of the measurements taken upstream. Perhaps, the most

severe limitation of the analytical model is that the endwall and splitter effects, which are

present in the actual flow, are not properly included in the stator inflow excitation model.

We have determined the unsteady pressure responses of the FEGV to rotor wake exci-

tations at 1, 2, and 3BPF. Because of their significant radial variations, these excitations

produce very complicated unsteady pressure responses, which make it difficult to assess the

performance of the LINFLUX code. Therefore, we have also determined the responses of

the FEGV to simpler 1, 2, and 3BPF test excitations. The FEGV response calculations

were performed over a computational domain of relatively small axial extent, so that a dense

mesh could be applied to resolve the near-field unsteady flow.

We have provided detailed response predictions for the FEGV subjected to the test and

rotor-wake excitations at 1 and 2BPF. The acoustic response of the FEGV at 1BPF atten-
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uateswith axial distancefrom the blade row; whereas,at 2BPF, three acoustic response
modespersist far upstream and two persist downstream. These propagating acoustic re-
sponsesrepeatnine times aroundthe wheel,travel circumferentially counter to the direction
of the rotor rotation, and havestrong radial variations in amplitude and phase.

The FEGV unsteadypressureresponsesto the 1 and 2BPF test excitations showreason-
ablebehaviors,both on the bladesurfacesand within the fluid domain. The results for the
2BPF test excitation indicate that the m, # = 1, 0 acoustic responses are dominant far from

the blade row, and these responses show up clearly in the predicted pressure field. There is

some spurious pressure behavior near the inlet boundary, which is most likely due to errors

introduced by simplifying the specification of the vortical excitation.

The highly radially dependent 1 and 2BPF wake excitations produce complicated un-

steady pressure responses. In particular, the blade-surface pressures for the 2BPF wake

excitation show large spanwise and chordwise variations, and there is no dominant acoustic

response mode in either of the far-field regions. Instead, the three upstream propagating

and the two downstream propagating acoustic response modes all contribute to the pressure

responses at inlet and exit, as do the least-damped acoustic response disturbances. These

features make it difficult to understand the far-field responses on the basis of the predicted

pressure contours. However, the LINFLUX results for the FEGV, subjected to I and 2BPF

rotor wake excitations, do give an indication of the complexities associated with the acoustic

responses to realistic, three-dimensional, wake/blade-row interactions.

Based upon the numerical results presented to date, it appears that the LINFLUX near-

and far-field numerical algorithms are working properly and that these algorithms have

been coupled successfully. At present, the major limitations in applying the LINFLUX

analysis to study realistic wake/blade-row interactions are the inaccuracies associated with

inflow excitation model, and the use of empirical relations to determine the strength and

circumferential distribution of viscous wake excitation. Thus, future work should be focused

on improving these aspects of a linearized, inviscid, wake/blade-row, interaction model.

Improved representations of the inflow excitation will occur with time. The development of

a linearized viscous unsteady aerodynamic analysis; e.g. see [HML98], could eliminate the

need for an empirical wake model.

Several computational strategies could be investigated to improve the performance of the

LINFLUX code. In particular, the implementation of second-order accurate surface bound-

ary conditions would enhance solution accuracy near blade surfaces. Also, the implementa-

tion of a convergence acceleration scheme would improve computational efficiency. Finally,

the mesh densities required to resolve the unsteady flows associated with wake/blade-row

interactions are severe, particularly, for subsonic mean flows, at high Mach numbers, and

for unsteady excitations at high reduced frequency. Reduced frequencies on the order of 5

to 50 are typical for wake/blade-row interactions. The meshes required to resolve such flows

impose very serious constraints on computer memory. Thus, the development of a parallel

version of the LINFLUX code, or indeed, any similar unsteady aerodynamic code, should be

considered in future work.
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Figure 1. Rotating axial compressor blade row operating within an annular duct.

Figure 2. Relative frame (f_ - -0.1716e_), steady flow properties for a steady flow with

constant swirl (T_ bs = 10.178, p_bs = 3.039, V0ab_ = 0.164) in an annular duct with rD =

4.244 and rtl/rD = 0.8.

Figure 3. Axial eigenvalues, X = f_+ i_¢_, for five (m = -2,..., 2) circumferential and three

(# = 0, 1, 2) radial modes of acoustic perturbation, at w - 3.089 and a = -270 deg, to a

steady background flow with constant swirl (T_ _ = 10.178, p_b8 = 3.039, V_ b6 = 0.164),

occurring within a cylindrical annular duct with rD -- 4.244 and rtt/rD -- 0.8.

Figure 4. Radial pressure modes, p_(r), m = -2,...,2, # = 0, 1,2, for an upstream

traveling acoustic perturbation, at w = 3.089 and a - -270deg, to a steady background

flow with constant swirl (T_ bs = 10.178, p_bs = 3.039, V_ bs = 0.164), occurring within a

cylindrical annular duct with rD = 4.244 and rH/rD ---- 0.8.

Figure 5. Axial eigenvalues, X = fl + ia_, for five circumferential and three radial modes

of acoustic perturbations, at w -- 3.089 and a = -270 deg, to steady background flows

with solid-body swirl (T_ bs = 10.178, p_bs = 3.039, V_ bs = 0.429r) and free-vortex swirl

(T_ bs = 10.178, p_bs = 3.039, V0abs = 0.626/r), occurring within a cylindrical annular duct

with rD = 4.244 and rH/rD ---- 0.8.

Figure 6. Nomenclature for wake/blade-row interactions.

Figure 7. LINFLUX computational grid at midspan for the 3D 10th Standard Cascade.

Figure 8. Relative frame steady flow properties far upstream (a) and far downstream (b)
of the 3D 10th Standard Cascade abs(M_aoo ----0.2868, [$2[---- 0.2145).

Figure 9. Relative steady isentropic surface Mach number distributions for the 3D 10th

Standard Cascade (Mab£ = 0.2868, If21 = 0.2145): (a) TURBO predictions; (b) TURBO

and CASPOF predictions at midspan, r/rD = 0.9.

Figure 10. Steady surface pressure distributions for the 3D 10th Standard Cascade (M__oo=abs

0.2868, If21 = 0.2145): (a) TURBO predictions; (b) TURBO and CASPOF predictions at

midspan, r/rD = 0.9

Figure 11. Axial eigenvalues, X = f_ + ia_, for five circumferential (m = -2,..., 2) and

three radial (# = 0, 1, 2) modes of acoustic disturbance far upstream and far downstream of

the 3D 10th Standard Cascade for an unsteady flow at w = 1.287 and a = -90 deg (Nv = 6).

Figure 12. Axial eigenvalues, X = fl+ia_, for five circumferential (m = -2,..., 2) and three

radial (# = 0, 1, 2) modes of acoustic disturbance far upstream and far downstream of the

3D 10th Standard Cascade, for an unsteady flow at w = 2.574 and a = -180deg (Nv = 12).
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Figure 13. Axial eigenvalues, X = _+i_e, for five circumferential (m = -2,..., 2) and three

radial (_ = 0, 1, 2) modes of acoustic disturbance far upstream and far downstream of the

3D 10th Standard Cascade, for an unsteady flow at w = 3.861 and a = -270 deg (Nv = 18).

Figure 14. Radial pressure modes, nPro,, m - -1,0,1, # -- -1,0,1, for the acoustic

responses, at w = 1.287 and a = -90 deg (IVy = 6), far upstream and far downstream of the

3D 10th Standard Cascade: (_) in-phase (real) component of pR_, (-----) out-of-phase
R

(imaginary) component of Pm_.

Figure 15. Radial pressure modes, p_, m = 0, 1, 2, # = 0, 1, 2, for the acoustic responses,

at w = 2.574 and a = -180deg (IVy = 12), far upstream and far downstream of the 3D

10th Standard Cascade: ( ) in-phase (real) component nof Pm_, (- - -) out-of-phase

(imaginary) component of pRm_.

R
Figure 16. Radial pressure modes, Prom m = 0, 1, 2, /_ = 0, 1, 2, for the acoustic responses,

at w = 3.861 and a = -270deg (Nv = 18), far upstream and far downstream of the 3D

10th Standard Cascade: ( ) in-phase (real) component nof Prn_,, (-- -- --) out-of-phase

(imaginary) component of p_,.

Figure 17. Unsteady surface pressure distributions due to the interaction of a vortical gust

at w = 1.287 and a = -90 deg (Nv = 6) with the 3D 10th Standard Cascade.

Figure 18. Unsteady surface pressure distributions due to the interaction of a vortical gust

at w = 2.574 and a = -180 deg(Nv = 12) with the 3D 10th Standard Cascade.

Figure 19. Unsteady surface pressure distributions due to the interaction of a vortical gust

at w = 3.861 and a = -270 deg(Ny = 18) with the 3D 10th Standard Cascade.

Figure 20. Unsteady surface pressure distributions at midspan (r/rD = 0.9) due to the

interaction of a vortical gust at w = 1.287 and a = -90 deg(Ny - 6), with the 3D 10th

Standard Cascade.

Figure 21. Unsteady surface pressure distributions at midspan (r/rD = 0.9) due to the

interaction of a vortical gust at w = 2.574 and a = -180 deg(Ny = 12) with the 3D 10th
Standard Cascade.

Figure 22. Unsteady surface pressure distributions at midspan (r/rD = 0.9) due to the

interaction of a vortical gust at w = 3.861 and a = -270 deg(Nv = 18) with the 3D 10th
Standard Cascade.

Figure 23. Contours of the in-phase component of the unsteady pressure at midspan due

to the interaction of a vortical excitation at w = 1.287 and a = -90 deg (Nv - 6) with the
3D 10th Standard Cascade.

Figure 24. Contours of the in-phase component of the unsteady pressure at midspan due

to the interaction of a vortical excitation at w = 2.574 and a - -180 deg (Nv = 12) with
the 3D 10th Standard Cascade.
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Figure 25. Contours of the in-phase component of the unsteady pressure at midspan due

to the interaction of a vortical excitation at w - 3.861 and a = -270 deg (Nv = 18) with
the 3D 10th Standard Cascade.

Figure 26. Relative, isentropic, surface, Mach number distributions for the 2D 10th Stan-

dard Cascade (M-oo = 0.5, f_-oo = 55 deg).

Figure 27. Unsteady surface pressure distributions due to the interaction of a vortical

excitation at w = 3.861 and a = -270 deg (Nv - 18) with the 2D 10th Standard Cascade.

Figure 28. Contours of the in-phase component of the unsteady vorticity at midspan due

to the interaction of a vortical gust at w = 3.861 and a = -270 deg (Nv = 18) with the

2D 10th Standard Cascade: (a) LINFLUX calculation on a 281 x 81 H-mesh; (b) LINFLO
calculation.

Figure 29. Contours of the in-phase component of the unsteady pressure at midspan due

to the interaction of a vortical gust at w = 3.861 and a = -270deg(Nv = 18) with the

2D 10th Standard Cascade: (a) LINFLUX calculation on a 281 x 81 H-mesh; (b) LINFLO

calculation.

Figure 30. Schematic of the PW/NASA 22 inch advanced ducted propulsor (ADP).

Figure 31. Fan exit guide vane of the 22 inch ADP.

Figure 32. LINFLUX computational grid, at 4 radial stations, for the fan exit guide vane.

Figure 33. Steady flow properties far upstream of the FEGV.

Figure 34. Absolute and relative frame velocities at the fan exit (FEGV inlet).

Figure 35. Analytic rotor-wake tangential velocity perturbations at FEGV midspan leading-

edge plane (_ = 0).

Figure 36. Fourier components of the analytic wake excitation velocity, _r.

Figure 37. FEGV steady pressure field at four radial stations.

Figure 38. FEGV steady surface pressure distributions at four radial stations.

Figure 39. Absolute frame steady flow properties at the computational inlet and exit planes

of the fan exit guide vane (FEGV).

Figure 40. Axial eigenvalues, X -/_ + i_, of acoustic disturbances far upstream and far

downstream of the fan exit guide vane (FEGV) subjected to an unsteady excitation at 1BPF

(w = 3.658 and a = -144.0 deg).

Figure 41. Axial eigenvalues, X =/3 + i_e, of acoustic disturbances far upstream and far

downstream of the FEGV subjected to an unsteady excitation at 2BPF (w - 7.317 and

a = -288.0 deg).
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Figure 42. Radial pressuremodesof the propagatingacousticresponsesfar upstream and
far downstreamof the FEGV subjectedto an unsteadyexcitation at 2BPF (w = 7.317 and

R
a = -288.0deg): (_) real part of p,_,, (- - -) imaginary part of p,_,.R

Figure 43. Unsteady surface pressure distributions at 17.8 (J=4), 50.8 (J=10), 76.5 (J=16)

and 94.0 (J=22) percent span for the FEGV subjected to the 1BPF test excitation.

Figure 44. Unsteady surface pressure distributions at 17.8 (J=4), 50.8 (J=10), 76.5 (J=16)

and 94.0 (J=22) percent span for the FEGV subjected to the 1BPF wake excitation.

Figure 45. Unsteady pressure field, at four radial stations, for the FEGV subjected to the
1BPF test excitation.

Figure 46. Unsteady pressure field, at four radial stations, for the FEGV subjected to the

1BPF wake excitation.

Figure 47. Unsteady surface pressure distributions at 17.8 (J=4), 50.8 (J=10), 76.5 (J=16)

and 94.0 (J--22) percent span for the FEGV subjected to the 2BPF test excitation.

Figure 48. Unsteady surface pressure distributions at 17.8 (J=4), 50.8 (J-10), 76.5 (J=16)

and 94.0 (J=22) percent span for the FEGV subjected to the 2BPF wake excitation.

Figure 49. Unsteady pressure field, at four radial stations, for the FEGV subjected to the
2BPF test excitation.

Figure 50. Unsteady pressure field, at four radial stations, for the FEGV subjected to the
2BPF wake excitation.
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Figure 1: Rotating axial compressor blade row operating within an annular duet.
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Figure 2: Relative frame (fZ = -0.1716e_), steady flow properties for a steady flow with

constant swirl (T_ bs = 10.178, p_bs = 3.039, V0abs = 0.164) in an annular duct with rD =

4.244 and tHirD = 0.8.
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Figure 3: Axial eigenvalues, X = _ + i_;e, for five (m = -2,..., 2) circumferential and three

(# = 0, 1, 2) radial modes of acoustic perturbation, at w = 3.089 and a = -270 deg, to a

steady background flow with constant swirl (T_ bs = 10.178, p#bs = 3.039, Voabs = 0.164),

occurring within a cylindrical annular duct with rD = 4.244 and tHirD = 0.8.
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Figure 4: Radial pressure modes, par(r), m = -2,...,2, # = 0, 1,2, for an upstream

traveling acoustic perturbation, at w = 3.089 and a - -270 deg, to a steady background

flow with constant swirl (T_ bs = 10.178, p_bs = 3.039, V_ bs = 0.164), occurring within a

cylindrical annular duct with rD = 4.244 and rH/rD = 0.8.
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Figure 5: Axial eigenvalues, X = ;3 + i_, for five circumferential and three radial modes

of acoustic perturbations, at w = 3.089 and a = -270 deg, to steady background flows

with solid-body swirl (T_ bs = 10.178, p_bs = 3.039, V0abs = 0.429r) and free-vortex swirl

(T_ bS = 10.178, p_bs = 3.039, V_ bs - 0.626/r), occurring within a cylindrical annular duct

with rD = 4.244 and tHirD = 0.8.
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Figure 6: Nomenclature for wake/blade-row interactions.

58



Figure 7: LINFLUX computational grid at midspan for the 3D 10th Standard Cascade.
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Figure 8: Relative frame steady flow properties far upstream (a) and far downstream (b) of
the 3D 10th Standard Cascade aDs(Maoo = 0.2868, [f_] = 0.2145).
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Figure 9:

Standard Cascade abs
(M_a_ -- 0.2868, [_[ -- 0.2145): (a) TURBO predictions; (b) TURBO

and CASPOF predictions at midspan, r/rD = 0.9.
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Figure 10: Steady surface pressure distributions for the 3D 10th Standard Cascade (M._ab_ --

0.2868, Inl = 0.2145): (a) TURBO predictions; (b) TURBO and CASPOF predictions at
midspan, r/r D -- 0.9.
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Figure 11: Axial eigenvalues, X = D + ise, for five circumferential (m = -2,..., 2) and three

radial (# = 0, 1, 2) modes of acoustic disturbance far upstream and far downstream of the

3D 10th Standard Cascade for an unsteady flow at w = 1.287 and a = -90 deg (Nv = 6).
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Figure 12: Axial eigenvalues, X -- _ + ire, for five circumferential (m -- -2,..., 2) and three

radial (# = 0, 1, 2) modes of acoustic disturbance far upstream and far downstream of the

3D 10th Standard Cascade, for an unsteady flow at w = 2.574 and a = -180 deg (Nv = 12).
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Figure 13: Axial eigenvalues, X = fl + i_, for five circumferential (m = -2,..., 2) and three

radial (# = 0, 1, 2) modes of acoustic disturbance far upstream and far downstream of the
3D 10th Standard Cascade, for an unsteady flow at w = 3.861 and a = -270 deg (iVy = 18).
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Figure 14: Radial pressure modes, p_, m - -1, 0, 1, # = -1, 0, 1, for the acoustic re-

sponses, at w = 1.287 and a = -90 deg (Nv = 6), far upstream and far downstream of the
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(imaginary) component of RPm_,-
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Figure 15: Radial pressure modes, R
Pm_,, m = 0, 1, 2, # = 0, 1, 2, for the acoustic responses,

at _ = 2.574 and a -- -180deg (Nv = 12), far upstream and far downstream of the 3D

10th Standard Cascade: (_) in-phase (real) component of p_, (- - -) out-of-phase
(imaginary) component of P_m_-
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Figure 17: Unsteady surface pressure distributions due to the interaction of a vortical gust

at w = 1.287 and a = -90 deg (Nv = 6) with the 3D 10th Standard Cascade.
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Figure 18: Unsteady surface pressure distributions due to the interaction of a vortical gust

at w = 2.574 and a = -180deg(Nv = 12) with the 3D 10th Standard Cascade.
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Figure 19: Unsteady surface pressure distributions due to the interaction of a vortical gust

at w = 3.861 and a = -270 deg(Nv = 18) with the 3D 10th Standard Cascade.
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Figure 20: Unsteady surface pressure distributions at midspan (r/rD - 0.9) due to the

interaction of a vortical gust at w = 1.287 and a = -90 deg(Nv = 6), with the 3D 10th
Standard Cascade.
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Figure 21: Unsteady surface pressure distributions at midspan (r/rD = 0.9) due to the

interaction of a vortical gust at a; = 2.574 and a = -180 deg(Ny = 12) with the 3D 10th

Standard Cascade.
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Figure 22: Unsteady surface pressure distributions at midspan (r/rD "- 0.9) due to the

interaction of a vortical gust at w = 3.861 and a = -270 deg(Ny = 18) with the 3D 10th

Standard Cascade.
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Figure 23: Contoursof the in-phasecomponentof the unsteadypressureat midspandue to
the interaction of a vortical excitation at w = 1.287 and a = -90 deg (Nv = 6) with the 3D
10th Standard Cascade.
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Figure 24: Contours of the in-phase component of the unsteady pressure at midspan due to
the interaction of a vortical excitation at w = 2.574 and a = -180 deg (Nv = 12) with the

3D 10th Standard Cascade.
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Figure 25: Contours of the in-phase component of the unsteady pressure at midspan due to

the interaction of a vortical excitation at w - 3.861 and a - -270 deg (Nv - 18) with the
3D 10th Standard Cascade.
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Figure 27: Unsteady surface pressure distributions due to the interaction of a vortical exci-

tation at w = 3.861 and a = -270 deg (Nv = 18) with the 2D 10th Standard Cascade.
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Figure 28: Contours of the in-phase component of the unsteady vorticity at midspan due

to the interaction of a vortical gust at co = 3.861 and a = -270 deg (Nv = 18) with the

2D 10th Standard Cascade: (a) LINFLUX calculation on a 281 x 81 H-mesh; (b) LINFLO
calculation.
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Figure 29: Contours of the in-phase component of the unsteady pressure at midspan due

to the interaction of a vortical gust at co = 3.861 and a = -270 deg(Ny = 18) with the

2D 10th Standard Cascade: (a) LINFLUX calculation on a 281 × 81 H-mesh; (b) LINFLO
calculation.
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Figure 30: Schematic of the PW/NASA 22 inch advanced ducted propulsor (ADP).

Figure 31: Fan exit guide vane of the 22 inch ADP.
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Figure 32: LINFLUX computational grid, at 4 radial stations, for the fan exit guidevane.
76



600"

560'

T_ _ (degK)

520

480

44t
5 0:6 0:7 0:8

r/rD

measured
--- TURBO

2600

2400

P_ (psf)

2200.

2000

180_
0:9 1.o

--me_ur_
--- TURBO

0:6 o:7 0:8 o.9 1.0
r/rD

45

42

_-/ab, (deg)

39.

36'

measured

,.%,, --- TURBO

"-.. j
15 0:6 0]7 0[8 0.9

r/rD

1.0

Figure 33: Steady flow properties far upstream of the FEGV.
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Figure 34: Absolute and relative frame velocities at the fan exit (FEGV inlet).
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Figure 37: FEGV steady pressure field at four radial stations.
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Figure 40: Axial eigenvalues, X = 3 + i_e, of acoustic disturbances far upstream and far

downstream of the fan exit guide vane (FEGV) subjected to an unsteady excitation at 1BPF

(w = 3.658 and a = -144.0 deg).
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Figure 41: Axial eigenvalues, X = _ + i_, of acoustic disturbances far upstream and far

downstream of the FEGV subjected to an unsteady excitation at 2BPF (w = 7.317 and

a = -288.0 deg).
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Figure 43: Unsteady surface pressure distributions at 17.8 (J=4), 50.8 (J=10), 76.5 (J=16)

and 94.0 (J=22) percent span for the FEGV subjected to the 1BPF test excitation.
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Figure 44: Unsteady surface pressure distributions at 17.8 (J=4), 50.8 (J=10), 76.5 (J=16)

and 94.0 (J=22) percent span for the FEGV subjected to the 1BPF wake excitation.
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Figure 45: Unsteady pressure field, at four radial stations, for the FEGV subjected to the
1BPF test excitation.
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Figure 46: Unsteady pressure field, at four radial stations, for the FEGV subjected to the

1BPF wake excitation.
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Figure 47: Unsteady surface pressure distributions at 17.8 (J-4), 50.8 (J--10), 76.5 (J=16)

and 94.0 (J=22) percent span for the FEGV subjected to the 2BPF test excitation.
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Figure 48: Unsteady surface pressure distributions at 17.8 (J=4), 50.8 (J=10), 76.5 (J=16)

and 94.0 (J=22) percent span for the FEGV subjected to the 2BPF wake excitation.
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Figure 49: Unsteady pressure field, at four radial stations, for the FEGV subjected to the

2BPF test excitation.
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Figure 50: Unsteady pressure field, at four radial stations, for the FEGV subjected to the
2BPF wake excitation.
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