DS-2 MARS MICROPROBE BATTERY

H. FRANK, A. KINDLER, F. DELIGIANNIS, E. DAVIES, J. BLANKEVOORT, B. V. RATNAKUMAR, AND S. SURAMPUDI

NASA BATTERY WORKSHOP
HUNTSVILLE, AL
OCTOBER 27, 1998

Electrochemical Technologies Group
OUTLINE

• DS-2 MISSION OVERVIEW
• DS-2 BATTERY PERF. REQUIREMENTS
• BATTERY TECHNOLOGY CHALLENGES
• CHEMISTRY SELECTION
• CELL DESIGN OVERVIEW
• PROBLEMS ENCOUNTERED
• PERFORMANCE RESULTS
• CONCLUSIONS
NM DS-2 MISSION OVERVIEW

LAUNCH: JAN. 1999
IMPACT MARS: DEC. 1999

1998 NASA Aerospace Battery Workshop -93- General Session
DS2 MISSION OBJECTIVES

TECHNICAL OBJECTIVES

- Demonstrate key technologies which enable future network science missions (e.g., multiple landers, penetrators, or spacecraft)
- Demonstrate a passive atmospheric entry.
- Demonstrate highly integrated microelectronics which can withstand both low temperatures and high decelerations.
- Demonstrate in-situ, surface and subsurface science data acquisition

- Scientific Objectives

 - Determine if ice is present below the Martian surface
 - Measure the local atmospheric pressure
 - Characterize the thermal properties of the Martian subsurface soil
 - Estimate the vertical temperature gradient of the Martian soil
DS-2 AFTBODY

- Antenna
- Sun Sensor
- Transceiver
- Pressure Sensor
- Descent Accelerometer
- Batteries
- Mars Surface

Mars Microprobe in Landed Configuration (Aftbody)

Electrochemical Technologies Group
<table>
<thead>
<tr>
<th>Requirement</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two 4 cell batteries</td>
<td>6-14 V</td>
</tr>
<tr>
<td>Battery Voltage:</td>
<td>550 mAh at -80°C</td>
</tr>
<tr>
<td>Battery Capacity:</td>
<td>2 Ah at 25°C</td>
</tr>
<tr>
<td>Shelf Life:</td>
<td>2.5 Years</td>
</tr>
<tr>
<td>Operating Temp.:</td>
<td>-60°C and below</td>
</tr>
<tr>
<td>Shock Impact:</td>
<td>80,000 g</td>
</tr>
</tbody>
</table>
Technology Challenges

- Ultra Low Temperature Operation (-80C)
- High Impact Shock Capability
- Minimal Voltage Delay at -60 C and below
- Three Year Shelf Life
Technical Approach

- Select Cell Chemistry
- Award Contract for Cell Fabrication
- Demonstrate Electrical Performance at -80°C
- Demonstrate Impact Resistance
- Demonstrate Life (Microcal)
- Demonstrate Safety
- Deliver Quality Cells to Project
DS 2 BATTERY
Li-SOCL₂ SYSTEM

Cell Voltage (V)

Current (A)

-100 C

0

1.0

1.5

2.0

2.5

3.0

3.5

4.0

-100 C

-80 C

-60 C

-40 C

-20 C

0 C

20 C
DS 2 BATTERY
Li-SOCl₂ CHEMISTRY DEVELOPMENT
Discharge curves of D-size Li-SOCl₂ Cell at -80°C at 120 ohm

Cell Voltage, V

Discharge Time, h

0.5M
1.5M
5 ohms

Electrochemical Technologies Group
Ds-2 Microprobe Battery

- Parallel Plate Configuration Perpendicular to Cyl. Axis
- LiGaCl$_4$/SOCl$_2$ Electrolyte
- Thin Electrodes
- Tefzel Spacer to Provide Stack Compression

INDUSTRIAL PARTNER: YARDNEY TECHNICAL PRODUCTS

Electrochemical Technologies Group
PROFILE TEST

Current (mA)

Voltage (V)

Temp (°C)

-15°C -20°C -30°C -40°C -80°C

0 Meets profile with conditioning
MICROCAL SUMMARY

Heat, Microwatts

Time, days

- Series1
- Power (Series1)

Max loss rate ≈ 100 μW = 26.9 μA = 0.2 Ah/yr
PROBLEMS ENCOUNTERED

- IMPACT SENSITIVITY
- CRACKING OF SEALS
- VOLTAGE DELAY
IMPACT TESTING

Problems Encountered

<table>
<thead>
<tr>
<th>TEST</th>
<th>DATE</th>
<th># Cells</th>
<th>CELL TYPE</th>
<th>PROBLEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>3/13/97</td>
<td>4</td>
<td>Old Design</td>
<td>Electrolyte Leak, GTM Cracks, Three Cells Functioned</td>
</tr>
<tr>
<td>38</td>
<td>4/4/97</td>
<td>2</td>
<td>Old Design</td>
<td>Electrolyte Leak, GTM Cracks, Two Cells Functioned</td>
</tr>
<tr>
<td>42</td>
<td>5/29/97</td>
<td>8</td>
<td>Old Design</td>
<td>Electrolyte Leak, GTM Cracks, Seven Cells Functioned</td>
</tr>
<tr>
<td>50</td>
<td>8/28/97</td>
<td>8</td>
<td>New Design</td>
<td>One Cell Vented, One Cell Bulged, Seven Cells Functioned</td>
</tr>
<tr>
<td>53</td>
<td>10/29/97</td>
<td>7</td>
<td>New Design</td>
<td>Electrochemical Technologies Group</td>
</tr>
</tbody>
</table>
SEAL PROBLEM

PROBLEMS

- RADIAL CRACKS (1-3) WERE OBSERVED IN THE GLASS TO METAL SEALS IN 34 OF 48 CELLS

- FOURTEEN CELLS SHOWED NO CRACKS ON INSPECTION

- CIRCUMFERENTIAL TOOL MARKS OBSERVED IN SOME SEALS CORRECTIVE ACTIONS

PRE WELD FILL TUBE

IMPROVED HEAT SINKING DURING CASE TO COVER WELD

CHANGE SEAL DIMENSIONS TO REDUCE STRESS

--- Electrochemical Technologies Group
VOLTAGE DELAY PROBLEM

PROBLEM

- Voltage delay in excess of 50 seconds was seen at temperatures lower than -45 C

CORRECTIVE SOLUTION

- Dry the Electrodes to Reduce Water Contamination
- Assemble the Cells within a Week of Electrode Manufacturing
- Ensure Electrolyte Purity (Iron, Water Content)
- Provide second depassivation pulse after landing
DS-2 Battery

Additional Tests Satisfied

Environmental
- Thermal cycling, -30 to +75°C.
- Quasi-static acceleration, 100g for 60 sec.
- Random vibration

Safety
- Discharge and Reversal at 114 mA, and at 25 and -80°C.
- Shorting across 0.020 Ohms.
DS-2 BATTERY ACCOMPLISHMENTS

- Demonstrated low temp (to -80°C) capability.
- Demonstrated capability to withstand shock.
- Demonstrated functionality for mission profile at low temp after shock.
- Demonstrated acceptably low self discharge for 2 year mission life.
- Delivered hardware and documentation.
DS-2 BATTERY CONCLUSIONS

- Can withstand shock (to 80,000 g).
- Can meet discharge profile post shock at Mars temps.
- Self discharge rate moderate but not excessive (0.2 Ah/year max).
- Can meet environmental requirements and tolerate electrical abuse.
DS-2 BATTERY
ACKNOWLEDGMENTS

- This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology under contract with National Aeronautical and Space Administration and in collaboration with Yardney Technical Products, Inc.,.

Electrochemical Technologies Group