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Abstract

Ocean domains used for the orthonormal (ON) systems developed by Hwang [I 991] are studied

to determine the maximum degree of spherical harmonic and orthonormal expansions that can be

constructed. Although Hwang showed one domain was restricted to degree 24, others he showed

could be constructed to determine expansions to at least degree 36. Since 1991 the maximum

degree expansion used for several Ohio State studies has been 24. In this report it is showq that

the maximum degree for the ocean domain used by Wang and Rapp [1994] was 32, and 29 for

the domain used by Rapp, Zhang. and Yi [1996]. A modification of the former domain was

developed (Die) that enabled a solution to degree 36 to be determined. A modification of the

Rapp, Zhang, Yi domain (D7d) enabled a degree 30 solution to be made. Combination coeffi-

cients were developed for domain Die, to degree 36, and to degree 30 for domain D7d. The

degree 30 spherical harmonic expaqsion provided by Pavlis [1998] of the POCM_4B dynamic

ocean topography (DOT), and the degree 30 part of the degree 360 expansion [Rapp, 1998] of the

POCM_4B model was converted to an ON expansion valid for the D7d domain. The degree 36

part of the degree 360 expansion was converted to the ON expansion for the Die domain. The

square root of the degree variances of the various solutions were compared. The root mean

square value of DOT from the Pavlis expansion, after conversion to the ON system, was +_66.52

cm (D7d domain). The value from the degree 30 part of the 360 expansion was +66.65 cm. The

value based on the actual POCM_4B data, in the D7d domain, was +_66.74 cm showing excellent

agreement with the ON results. If the spherical harmonic coefficients had been used the implied

root mean square value was _+60.76 cm [Pavlis] and +_59.70 cm [Rapp].

The geoid undulation accuracy by degree and cumulatively was determined for ocean domains

Die (to 36) and D7d (to 30) using the standard deviation of the coefficients of the JGM-3,

TEG-3, and EGM96 geopotential models. For the EGM96 model, the cumulative undulation

error was +_9.2 cm for domain Die and _+7.3 for domain D7d--both numbers being slightly (4%)

smaller than if the calculation was carried out for the global domain. As also found with the

spherical harmonic to orthononnal conversion, the last 2 or 3 degrees of the ON expansion

appear to be significantly reduced in magnitude from results found when the expansion is taken

to higher degrees. An aliasing effect appears to be at work here.

Realistic ocean domains can be defined that enable ON expansions to degree 36 to be determined

from spherical harmonic expansions. Error degree variances show small differences with corre-

sponding global estimates from spherical harmonic analysis. Higher degree ON solutions can be

obtained by simplifying the ocean domain definition.

Introduction

In 1991 Hwang developed a set of functions orthogonal over a user defined domain--the

oceans--that were used to represent the dynamic ocean topography (DOT) which is defined only

in an ocean domain. The orthonormal functions (ON) that were developed by Hwang were

expected to yield a better representation of DOT than spherical harmonic expansions, which are

most useful when a representation of a globally defined function is being determined. Of specific

importance was the spectral content by degree of the representation. The power, or degree

variance, of a non-global function represented by a spherical harmonic expansion was unreliable



becauseof thenon-globalnatureof the function beingusedwith functionsthat wereorthogonal
overtheentiresphere.

In the 1991report,Hwangshowedhow functionscouldbedevelopedovera userdefineddomain
thatwereorthononnalfunctions.Thefunctionsweredevelopedfor domainsthatweredefinedin
differentways,with all beinganapproximationto theocean.An important property of a domain

relates to the maximum degree for which the linear dependence of the spherical harmonics, over

the domain, can be desired. Hwang [I 991, p.89] described the procedures to be followed to test

different domains to see the maximum degree of expansion that could be used. These domains

will be described later in this report. One of the domains (domain 2) was defined by the existence

of the DOT of the Levit,s [1982] data set as modified by Engelis (1987). The data basically, but

not exclusively, covered the ocean where the depth was <-2250 m. For this realistic ocean

domain the maximum degree of expansion was 24. Other domains yielded higher (e.q. 36)
expansion degrees but domain 2 was considered to be the most reasonable ocean domain

estimate. This degree was used for numerous calculations by Hwang [1991, 1993, and 1995], by

Wang and Rapp [1994], and by Rapp, Zhang, and Yi [1996]. For several applications of this time

period degree 24 expansions were considered adequate. However, more recently, the

development of higher degree expansions in which the linear independence can be desired has

become of interest. Although such domains were defined by Hwang [i 991], other such domains

that would be suitable for use with current DOT models and satellite altimeter data sets could be

sought.

The purpose of this report is to describe the calculation of the highest degree for different domain

that could be of use for future ON expansions and to examine the power spectrum of high degree

ON expansion, and to use such domain with existing spherical harmonic representations of

dynamic ocean topography.

Orthonormal and Spherical Harmonic Relationships

Consider the representation of dynamic ocean topography, 5, in a system that is orthonormal over

the sphere (an SH expansion) and one that is orthonormai over the ocean domain (an ON

expansion). With 0 geocentric co-latitude and A longitude one has

and

s,,,,,
I1={| PlI=O

II=ll II1=0

(1)

(2)

where R ..... and S ..... are the fully normalized spherical harmonics, c,,,,, and s,,,,, are the SH

coefficients with 0 = 90 ° - 4_. and k is the maximum degree of the expansion. In the same way

0,,,,, and Q,,,,, are the orthonormal functions and a,,,,, and b,,,, are the ON coefficients. The theory

and initial testing for the ON approach were carried out by Hwang [1991. 1993]. Additional tests

using TOPEX data were described by Wang and Rapp [1994]. In the text that follows the

pertinent equations developed by Hwang [1991. 1993] are described without derivation. The
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discussion is given here to help in understandingthe computation that will lead to the
determinationof the highestdegreeof expansionfor a specificdomainof theoceanandfor the
determinationof the coefficients to convert spherical harmoniccoefficientsto orthonormal
coefficients.

The fully normalizedsphericalharmonics, R ..... and S ...... are orthogonal functions over the

sphere [Heiskanen and Morit-, 1967, section 1- 14]. This means, for example, that:

and

Ii3 addition:

f f R,,,,, (0.2_) R,, (0,2)do" = 0, if s ¢ n or ;"_ m oi" both (3)
fy

j'fS- .....(0,_,)R,, (O,2)dcr = 0. (4)
(.y

(5)

where c7is the surface of the sphere.

Hwang wished to develop the ON functions such that they would have similar orthogonality

properties over a specific ocean domain D. To do this he implemented the Gram-Schmidt

orthonomalizing process [Hwang, 1991, Sect. 3.2; 1993, p. 1149]. Consider a set of linearly

independent functions./),f_,,...3'; defined in domain D. Let./i be a set of orthononnal functions. The

Gram-Schmidt process of finding such functions can be represented in the following general

form [Hwang, 1991, eq. (3.2); 1993, eq. (2)]:

=Z ciif,, i=l .... n.
j=t

(6)

where cii are the combination coefficients in the orthonomalizing process. Equation (6) can be

written as [Hwang, 1991, eq. (3.7), 1993, eq. (3)]:

v = Cx (7)

where 3' = ( J'_ .... f ,, )T and x = (f;,...f,) T and C is a lower triangular matrix containing c/j. Since

all cii are positive, C -I exists and one has [Hwang, 1991, eq. (3.9); 1993, eq. (4)]:

x = C _v. (8)

Now the Gram matrix is defined as [Hwang, 1991, eq. (3.3); 1993, eq. (7)]:



G = C(.f,. f_ .....L ) =
('f""/")"'('f'"J':')1

J(.L,f,)...(I,,,L,)
(9)

If IGI = 0 not all the given functions/)./),.. :/i, are linearly independent.

Hwang [ 1991, Section 3.2.2] shows that the combination coefficient matrix can be written as:

(10)

where R T is the lower triangular matrix found from the Cholesky decomposition of G.

The Inner Products

Hwang next considered the inner products of the spherical harmonic function over the ocean

domain [Hwang, 1991 Section 5. I; 1993 Section 3]. The ocean/land division was defined by the

index function w_, [Hwang, 1991, eq. (5.1); 1993, eq. (9)]:

w_, ={10 OceanLand (11)

where k is a latitude index and # is a longitude index for a discrete block division of the surface

of the Earth. The inner product of functions f and g needed for the Gram matrix are in general
[Hwang, 1991, eq. 5.2: 1993, eq. (10)]:

(,/,,t,' ) =l f f fe 'dcr (12)
D

where a is now the area of the ocean domain. The discrete form of equation (12) is:

/_dcr (13)
= -- E 14'U a_ "

a /,=0 _=0 "

where n is the number of blocks in the latitude direction and 2n- 1 is the number of blocks in the

longitude direction, assuming equi-angular blocks. In general,/' and g can be complex functions.

The * indicates the complex conjugate operator. Four kinds of inner products were evaluated by
Hwang [1991, eq. (5,5)]:

tA...... Ic°m c°ss lB:";;,=_(S ......S,,)_= 1 ee-,,, -, /sinm,_sins_/C,'I;;, ](R ......S-,,)] a jjoP''(t)P'(t) cosmZsins_ dtdA

[D,',',,, L(S ......R,., )j [sin mA, cossAJ

(14)
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wheret = cos 0. Hwang [ 199 I. Sec. 5. I 1] shows that these inner products can be written as:

..... = 1,,,,,, _ ?

1CD'iiii,,f _-a _:,, /I'n(-V_[Im(U_ ))]J

where U and V are complex functions given in [Hwang,

additioq. Hwang [1991. eq. (5. I1 ); 1993. eq. (I 4)] gives the following:

(15)

1991, eq. (5.19); 1993, p.1150]. In

/ _ f0, _-I,,_1 -I,i......, = P,, (cosO)P,/(cosO)sinOdO.
Jo,

16)

The latter expression represents the integration of products of two associated Legendre functions

in the sub-interval Ok < 0 < 0k+_. The evaluation of I needs to be done for only one hemisphere.

Recursive [Hwang. 1991, Section 5.1.2] and product-sum [Hwang, 1991, Section 5.1.3] formulas

for the evaluation of I were implemented by Hwang. Calculations for the report were done using

the recursive procedure.

Hwang [1991, p.76] points out that an efficient calculation of all the inner products represented

by (15) can be computed by FFT methods. For the G matrix, only certain terms are needed and

can be obtained by a simple selection process [Hwang, 1991, p.76].

The Orthonormal Functions

The general equation for the construction of the ON function is represented by eq. (7), where C is

a lower triangular matrix of combination coefficients. Let Ln(O,A) be a surface spherical

harmonic. The ON function of degree n is then [Hwang, 1991, eq. (5.73); 1993. eq. (27)]:

Jt LX,(O,2)=_.c,,,, ,,(0.)0 (17)
p=l)

where Lt, is a specific surface spherical harmonic in the sequence [Hwang, 1991, eq. (5.72)]

{L.}: R,,.S,, S ....}. (18)

A form of this equation to compute the O,,m(O,A) and Q,,,,,(0,A) values is given by Hwang [ 1991,

eq. (5.74); 1993, eq. (28)].

Unique to this orthonormal system is the starting of the summation in eq. (17) from degree zero.

This process leads to the System 1 (Xj) ON system [Hwang, 1991, p.93; 1993, p.1152]. Two

other systems were described by Hwang. System 2 (Y/) started the summation from degree one.

This assumes there is no zero degree harmonic, or removes a zero degree harmonic, in a DOT

representation. For System 3 (Zi) the summation starts from 4 so that this representation does not
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usethefirst four sphericalharmonics(Rc_.Rto.R_t.S_ t). In dealing with DOT representation, the

X_ system is used and in dealing with geoid undulation accuracy, the Zi system is used.

Spherical Harmonic and Orthonormal Coefficient Conversion

Equation (1) and (2) represent DOT in a spherical harmonic and an orthononnal expansion,

respectively. Hwang [1991, Section 6.3; 1993. Section 7] developed the relationship between the

orthonormal coefficient (X.,) and the spherical harmonic coefficient (y,). Specifically, [Hwang,

1991, eq. (6.38), 1993, eq. (52); Wang and Rapp, !994, eq. (4-16)]:

X, =(C T) iy, (19)

where X, and Y_ are column vectors of coefficients and C is the lower triangular matrix of the

combination coefficients that are based on the inner product calculation and the Gram matrix as

shown in equation (10). Equation (19) is a key equation as it allows the coefficients of a spherical

harmonic expansion to be converted to coefficients of an ON expansion for a specific ocean

domain.

Degree Variances

The power of a function at a specific degree in a surface spherical harmonic expansion is:

A2 Z C_ _=,, = ( ,_,,,+,,,,,, ). (20)
m:O

The value of A: is the degree variance of the function. A similar expression exists for the power
H

implied by the ON expansion:

tl

= a,_., + ) (21)It I "

tl/=[I

The value represented by eq. (20) and (21) are sometime called degree variances [Heiskanen and

Moritz, 1967, p. 259].

When using the spherical harmonic representation, the degree variances represent a mean square

value of the function over the entire sphere. Such values may be misleading for the case of func-

tions, such as DOT, not defined in a global sense. The degree variance calculated from the ON

coefficients represent the power over the specific domain for which the orthonormal functions

were constructed. Therefore such values are more meaningful than spherical harmonic degree

variances for functions not globally defined. Error spectrum can be computed using eq. (20) and

(21 ), replacing coefficient values with coefficient standard deviations.
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Domain Definitions Considered by Hwang

Hwang [1991, 1993] defined five different domains and calculated the highest spherical degree

that could be used to assure a linear independence of the spherical harmonics over the ocean. To

do this Hwang calculated the inner products associated with each dornain to a maximum degree

of 36. The Gram matrix (eq. (9)) was then formed and used by program DEPEND, which uses

the Linpack routine SPPCO (for a real symmetric positive definite matrix in packed form) to

determine if the matrix is non-singular (harmonics to maximum degree used are independent) or

to determine the maximum number of harmonics that would yield a positive definite G matrix.

This number would correspond to the maximum number of coefficients that could be estimated

for the domain considered.

A key element in a domain definition is the determination if a specified cell is a land or water cell

so that the appropriate value of wt,--the ocean index function w_, (eq. (I l))--can be defined.

The studies of Hwang used a I °x 1° cell size with elevation of the TUG data set [Wieser, 1987].

The most comprehensive domain would be one where a cell, with the elevation less than zero is a

water cell, with all remaining cells considered land. Based on the TUG elevations, such a domain

was defined (domain i) and is shown as Figure I [originally Hwang, 1991, Fig. 5. I: also, 1993,

Fig. I].

Hwang [1991, Fig. 5.2; 1993, Fig. 2] also considered a domain where a cell was considered an

ocean cell if an estimate of DOT, based on an enhanced Levitus data set [En¢elis. 1987]. was

available. Primarily this domain included all ocean areas where the depth exceeded 2250 m and

the Mediterranean and Black Seas. The plot of this domain (domain 2) is shown in Figure 2.

Hwang also introduced certain ocean areas in which DOT estimates would not be available
because of the small size of each area. These areas were:

Area I:

Area 2:

Area 3:

Area 4:

Area 5:

The Caspian Sea: 35°<_<50 °, 45°<X<57 °.

The Red Sea: 12°<_<30 °, 31 °<X<43 °.

The Persian Gulf: 22°<_<31 °, 46°<X<560.

The Baltic Sea: 47°<_<60 °, 5°<_<30 ° and 60°<_<67 °, 15°<_<30 °.

The Hudson Bay and the Hudson Straight: 50°<_<72 °, 263°<?_<295 °.

With the definition of domain 1 given in Figure 1, and domain 2 in Figure 2, Hwan_ [199 l, p.89;

1993, p. 1151] defined three additional domains:

Domain 3:

Domain 4:

Domain 5:

The oceans given in Figure I, excluding the l°xl ° blocks

with H < 0 in areas 1,2, 3, 4, 5.

The oceans given in Figure 1, excluding the l°xl ° blocks

with H < 0 in areas 1,2, 3, 4, 5 and the area where _ > 72 °.

The ocean given in Figure 1, excluding the l°xl ° blocks

with H < 0 in areas 1, 2, 3, 4, 5 and the area where 10[> 72 °.

7
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For each of these 5 domains, the maximum number (17) of terms in the Lp sequence (eq. (18)) that

would assure independent surface spherical hannonics was determined. The maximum complete

degree (N) would be

(N + I) = int((p) I/2). (22)

The number of additional terms that could be determined beyond this maximum complete degree

would be p - (N + I )2.

Hwang [1991, Table 5.3; 1993, Table l] gives the values for his five domains based on compu-

tations where the maximum degree for which the I values and inner products were calculated was

36. The values found by Hwang are given in Table 1.

Table 1. Maximum p Values in the Spherical Harmonic System {Lp}

Before Which the Elements are Independent

Domain D Spherical Harmonic

I > 1369 >s 36.36

2 646 s 25.1o

3 > 1369 > s 36.3_

4 1321 s36,12

5 1321 s36._2

Domains I and 3 enabled expansions to above degree 36. Calculation to discover the degree

limitation for these domains, above 36, was not carried out by Hwang. Domain 2 is much more

complicated than either domain 1 or 3 because of the numerous small shallow parts of the ocean.

In this case, the maximum complete degree possible was 24, with additional terms to S 25,m.

Domain 4 and 5 considered as land areas locations above 72°N (domain 4) and above

72°N/below 72°S for domain 5. For both these cases the maximum complete degree was 35, with

harmonics to S 36,12possible.

For numerous computation done by Hwang, only expansions to degree 24 were used based on the

results for domain 2. Such degree was quite reasonable considering the data available in the early

and mid 1990's. For those who wished to go to higher degrees, alternate domains were possible.

For example, domain 5 would have been a very reasonable domain to work with when analyzing

satellite altimeter data but it was not. Instead, alternate domains were set up that were used at

Ohio State for specific purposes. These are discussed in the following sections.

9



Two Additional DomainsUsed at Ohio State

Wang and Rapp [1994] introduced a revised ocean domain definition for the analysis of DOT

derived from TOPEX satellite altimeter data. The ocean domain was defined through I°xl °

elevations in the region between +70 ° latitude and where the depth of the ocean was greater than

zero meters. Certain water areas (Baltic Sea, Caspian Sea, Black Sea, Red Sea) were defined to

be land areas since DOT determinations are not meaningful, from altimeter data, for such

regions. Certain island groups (e.g. Hawaiian Islands, Kerguelen Islands, parts of Indonesia) were

defined to be ocean to reduce the complexity of the ocean domain. The specific domain

definition can be seen from the listing of the domain program used for the determination of the

w_ values. (The domain definition program used in Wang and Rapp [1994], was stored on the

OSU mainframe: (TS0548.LIB.HWANG(OCEAN)). An exact copy of the program was in

ZHANGC.LIBT4(OCEAN), ZHANGC.LIBT4(OCEAN.DI), and RHRAPP.DOMAIN.DI. A

listing of this program is given in Appendix A. The ocean/land division of domain DI is shown

in Figure 3.

Another domain was used in the DOT analysis described in Rapp, Zhang, and Yi [1996]. This

domain was designated D7 and is shown in Figure 4. The program for this domain definition was

ZHANGC.LIBT4(OCEAN.D7) or RHRAPP.DOMAIN.D7. The listing of the latter program is in

Appendix A. Domain 7 was designed so that the ocean part excluded regions to the north of

65°N and to the south of 66°S. In addition the regions of the Black, Caspian, Mediterranean, and

Red Seas, and the Hudson Bay were excluded as were all land data. In addition, the land areas of

the Hawaiian Islands and Kerguelen Islands were excluded as they were in domain DI. In

addition, two land cells with incorrect ocean designations based on the TUG87 elevation file

included in domain DI, were now excluded. The two cells were located near: I) 47°N, 50 ° and 2)

29°S, i 36 °.

The DOT analyses in the Wang and Rapp [1994] and the Rapp, Zhang. and Yi [1996] studies

were carried out using a maximum spherical harmonic degree of 24. The selection of this degree

was a carryover from the studies of Hwang, as described previously. No tests were run for these

two studies with domain DI or D7 to determine the maximum degree for which the spherical

harmonics were independent over the ocean domain being used.

For this paper the maximum number of coefficients that could be determined was evaluated

using the procedure developed by Hwang and also described in this report. For the computations,

the maximum degree considered was 36, so that a file of the integration of the products of two

associated Legendre functions (eq. (16)) was generated on the Ohio Supercomputer Center

CRAY T90 using program PNMI2CR. (This and other CRAY programs for ON expansions were

run from the following directory: ]home/osu 1615/ON/rhr).

The needed inner products eq. (15) were generated with program innsh. These elements of the

Gram matrix were then analyzed by Linpack subroutine SPPCO in program depend written, as

were most of the programs used for the study, by Hwang. Table 2 gives the maximum p value

(see Table 1), the maximum complete degree, and the last spherical harmonic in the Lt, sequence

that could be determined for the specified domain.

10
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Table 2. Maximum p Value, Maximum Complete Spherical Harmonic

Degree, and Last Spherical Harmonic for Domains D I and D7

Maximum Last

Domain p Complete De_ree Spherical Harmonic

DI I114 32 $33,12

D7 940 29 c 3o.J,_

The results shown in Table 2 show that expansions higher than 24 could have been used with

either domains D I or D7 and that restricting the computations to degree 24 was not necessary.

Both the DI and D7 domains gave higher degree than that found for domain 2 of Hwang because

neither domain is as complex as domain 2, which was intricate because of the depth criteria used
to define it.

Modification of Domain D7

Pavlis et al. [1998] describe a representation of the POCM_4B DOT using a spherical harmonic

expansion to degree 30--based on a least squares solution to POCM_4B value--and an expansion

using 8608 Proudman functions placed, in an ocean domain, on a 2°x2 ° grid. The Proudman

functions were defined between 76.75°S to 69.25°N. The actual POCM_4B values were avail-

able from 74.97°S to 64.85°N except in selected areas (Black, Caspian, Mediterranean, Baltic,

and Red Seas, and the Hudson Bay). The resultant coverage area was quite similar to that of

domain D7. Several modifications of the D7 domain definition were considered with the goal of

having a definition similar to that of the POCM_4B data coverage and the coverage associated

with the Proudman functions, and with a maximum complete degree of at least 30. Such a

domain was designated domain D7d which is shown in Figure 5 with the code for the domain

definition given in Appendix A. The difference between domain D7 and domain D7d is that the

latter domain includes the ocean to 75°S while domain D7 was restricted to 66°S to match the

availability of TOPEX/Poseidon altimeter data.

The inner products of the D7d domain were calculated to degree 36 and the GRAM matrix

formed. Program DEPEND was run to determine the maximum number of independent spherical

harmonics that could be determined with the domain. This value was 986 (slightly higher than

940 found for domain D7) which would imply the maximum complete degree that could be

estimated would be estimated 30 with coefficients possible to S 31.12.

The combination coefficients, eq. (6), were calculated using the program gramclx for the Xj

system (/home/osu/615/ON/rhr), with the computed file being/tmp/osul615/gram30.d7d. The

"30" indicated the maximum degree of 30 would be used. This file was then ftp'ed to the OSU

mainframe (RHRAPP.GRAM30.D7D) and used to convert the spherical harmonic coefficient of

the degree 30 expansion of the POCM_4B DOT (hcad.psh.s02_nmax030) provided by Pavlis

[private communication, August 31, 1998]. The conversion program was

RHRAPP.ZHANGC.GEOID.ORTHOX. This program also computes the degree variance from

12



the ON coefficients and the cumulative power. The resultsof thesecomputationswill be
discussedshortly.

9O

LONGITUDE
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30 30

O 30 60 90 120 150 180 210 2qo 270 300 330
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Figure 5. Shaded Areas Representing Ocean Domain D7d.

-90

360

Modification of Domain DI

We next considered modification of domain D 1 with the goal of finding a reasonable domain that

could be used for expansions to degree 36. As shown in Table 2, domain D I could be used

complete to degree 32 with other coefficients to degree 33, order 12. The first modification

removed the two land cells, treated as ocean cells, as domain DI was implemented in Wang and

Rapp [1994]. The latitude coverage was extended so that ocean cells from 75°N to 75°S were

included in the domain definition. The final version of the modified domain was designated Dle.

This domain is shown in Figure 6. The listing of the mainframe program

RHRAPP.DOMAIN.DIE is given in Appendix A.

The inner products over the ocean domain, were also calculated to degree 40 and the Gram

matrix formed. The matrix was checked with program DEPEND and the value of p was 1382,

which implies the highest complete degree for domain Die would be 36 with coefficients to s37.6

estimable. Using the Gram matrix, the combination coefficients were formed for the Xi system

using the CRAY program gramclx. The output file was placed in/tmp/osu/615/gram36.dle. This

file was ftp'ed to the mainframe and saved as RHRAPP.GRAM36.DIE and saved as an ASCII

file. These coefficients can then be used to transform a spherical harmonic expansion of DOT

into an ON expansion valid for the Die domain.

13
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Figure 6. Shaded Areas Representing Ocean Domain Die.

Because of the large size of some of the matrices used in the coefficient transformation (e.g. the

full Gram matrix is 1369x1369 for a degree 36 expansion), the usual transformation program

(RHRAPP.ZHANGC.GEOID.ORTHOX) did not have access to sufficient space on the main-

frame where the max imum region size is 6144K. A modified program

(RHRAPP.GRAMCLX.BIG) assigned the largest arrays to dynamic common (DC). This

program was used to convert coefficients to degree 36, of the degree 360 expansion of the DOT

of POCM_4B [Rapp, 1998] to coefficients of the corresponding ON expansion. The degree vari-

ance of the ON expansion were computed and are discussed in the next section.

An attempt was made to modify domain Die so that higher degree expansions could be made.

The modification included in the ocean domain, ocean values (height less than zero) to be

included for latitudes to 90°N. (In domain Dle the north latitude limit was 75°N). Also included

in this new domain definition (domain Dlf) was the Baltic Sea, the Red Sea, and the Persian

Gulf. The inner products were computed to degree 40 and the number of independent spherical

harmonics was found to be 1454 corresponding to a complete expansion to degree 37. Since this

was not significantly greater than the degree 36 associated with domain Die and since Dlf is less

realistic because of the substantial polar ice regions now included, no additional computations

were done with domain Dlf. These results suggest that some additional simplification of the

land/ocean interface may be needed to carry out higher degree expansions where the spherical

harmonics are independent in the ocean domain.
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The Spectrum of DOT Implied by the Expansion in the New Domains

Given the ON coefficients for a particular spherical harmonic expansion and a particular domain,

the degree variances are computed using eq. (21). The cumulative power to a specified degree is

found by summing the degree variances Io the desired degree. Since there is degree one signal,

the summation should starl from degree one.

Results are given in Table 3 where the first result column gives the square root of the ON degree

variances of the Pavlis et al. [I 998] degree 30 solution of the POCM_4B DOT values. The next

column is the transformation of the degree 30 part of the degree 360 expansion of the POCM_4B

model [Rapp, 1998]. The values could be considered quite similar.

The square root of the sum of the ON degree variances from 1 to 30 is +66.52 cm for the Pavlis

et al. expansion and +66.65 cm for the degree 30 part of the degree 360 expansion. The weighted

root mean square value of the POCM_4B values over the latitude range 65°N to 75°S was

+66.74 cm which checks very well with the ON expansion results. The root mean square value

implied by the Pavlis et al. degree 30 spherical harmonic solution is +60.76 cm, while the corre-

sponding value for the degree 30 part of the POCM_4B degree 360 expansion was +59.70 cm.

These values are less than the actual DOT values because the spherical harmonic expansion

implied DOT behavior outside the ocean domain that has less signal than in the ocean domain.

The last column in Table 3 gives to degree 36 the square root of the degree variances computed

from the spherical harmonic expansion of the POCM_4B model to degree 360 [Rapp, 1998]. The

SH values are smaller in magnitude than the ON value to degree 5 after which they are larger

from degree 6 to 12, after which they are very similar except the last 2 or 3 degrees (34-36)

where the ON value appear unrealistically small. It could be that the last few degrees in the ON

expansion contain aliased signal from higher degrees and the reliability of the values may not be

as high at degrees 35 and 36 as at the lower degrees. A similar rapid fall off in the ON values at

degree 23 and 24 had been seen for the degree 24 expansions described in Rapp, Zhang, and Yi

[ 1996] and Rapp [ 1998]. A plot of the degree variances--both from the spherical harmonic and

orthonormal coefficients--is given in Appendix B. The total power of the degree 36 ON expan-

sion in this domain (Die) was (65.90 cm)=, slightly less than found with the degree 30 expansion

in domain D7d as would be expected since D le extends into regions where POCM_4B was not
defined.
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Table 3. Square Root of DOT ON Degree Variances lbr the POCM_4B
Circulation Model from Various Expansions and Various Domains. Units are cm.

Domain D7d* Domain D i e** Spherical
Harmonic

Pavlis [19981 Rapp [ 1998 ] Rapp [ 1998 ] Rapp [ 1998 ]

Degree Degree 30 Degree 360 Degree 360 Degree 360
1 34.87 34.54 32.71 25.58

2 47.88 48.46 47.72 40.30

3 19.52 19.26 21.18 17.00

4 15.61 15.85 14.05 5.41

5 6.15 6.40 8.81 6.70

6 6.36 6.05 7.56 16.61

7 4.42 4.38 3.91 12.60

8 8.05 7.83 7.36 14.02
9 5.35 5.26 6.48 10.23

10 4.() I 3.71 4.02 8.90

11 2.63 2.49 2.46 3.87

!2 3.10 2.90 2.88 3.67

13 2.60 2.43 2.79 2.63

14 3.10 3.24 2.77 2.60

15 2.60 2.43 2.79 2.63

!6 2.41 2.48 2.21 3.25
17 1.84 1.76 2.24 2.60

18 2.21 2.26 2.22 2.1 I

19 1.82 !.68 1.86 1.92

20 2.28 2.12 1.93 1.89

21 1.71 1.54 1.84 1.78

22 1.67 1.52 1.52 1.69
23 1.93 1.91 1.66 1.85

24 1.72 1.57 1.59 1.86

25 1.43 1.36 1.40 1.91

26 1.75 1.60 1.44 1.53

27 1.60 1.23 1.72 1.73

28 1.12 0.97 1.55 1.75
29 0.79 0.68 !.06 i .52

30 0.48 0.37 1. !5 1.25

31 1.23 1.25

32 1.01 1.31

33 0.94 I. 11

34 0.73 1.02

35 O.63 I. 18

36 0.35 0.99

*valid to degree 3(1 **valid to degree 36
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Geoid Undulation Accuracy in Domain D7d and Dle

The procedures described in the previous sections have related to the ON representation of DOT.

Another related topic is the accuracy of the geoid undulations implied by a geopotential model in

the ocean domain. Specifically, one usually studies the error degree variances in the ON system.

The procedures to be used in this analysis were described by Hwang [1991, Section 7.3: 1993,

Section 61. Results from a solution with Geosat data have been described by Hwang 119951, with

TOPEX data and the JGM-3 geopotential model by Rapp and Wang [1994, p.69], Rapp, Zhang

and Yi [1996], and with TOPEX data and the EGM96 geopotential model in Lemoine et al.

[1998, p. 10-22]. In all cases, analysis was limited to degree 24 although we now know that one

could have gone to higher degrees based on spherical harmonic independence over the ocean

domain.

Since the results of this report show that higher expansion degrees are possible, we now study

and determine the geoid undulation accuracy, by degree, in the ocean domain.

The undulation accuracy will be studied for two domains (Die and D7d) previously defined. The

Dle domain contained ocean data from 75°S to 75°N, including the Mediterranean Sea and the

Hudson Bay region. The D7d contained data from 75°S to 65°N, excluding the Mediterranean

Sea and the Hudson Bay.

The calculation of accuracy results from geopotential model requires the use of an orthonormal

system that excludes the four spherical harmonic Co,o, CI,_, Cl,_, and Sj,I. The system is System 3

or the Z; system by Hwang [ 1991, p.94; 1993, p.I 152]. The use of this system will yield combi-

nation coefficients different from those of the X/system used earlier. The software used for the

undulation accuracy results for the JGM-3 and EGM96 geopotential models is described in Rapp

[1997]. This software was used to calculate the geoid undulation accuracies in the two ocean

domains noted above. The calculations were carried to degree 36 for domain Die and to degree

30 for domain D7d. Computations were also made for the TEG-3 geopotential model [Tapley et

al., 1997]. The results are given to degree 30 for domain D7d in Table 4 and to degree 36 for
domain Die in Table 5.

The values shown in Tables 4 and 5 differ slightly, at corresponding degrees, from the values

given in Table 10.1.5.4-1 of Lemoine et al. [ 1998, p. 10-22] because the domains are slightly dif-

ferent. This is the same reason that the values differ between Table 4 and 5. For example, the

cumulative, to degree 30, geoid undulation standard deviation in domain Dle is 8. l cm while the

value for domain D7d is 7.3cm. Domain D7d is slightly smaller than domain Die and contains

less land cells, with poorer undulation accuracy, than Die.

One also sees from Table 4 and Table 5 the rapid decrease of the undulation standard deviation

near the highest degree of the solution. Compare the standard deviations at degrees 28, 29, and

30 from Table 4 (D7d) with corresponding value from Table 5 (Die). The rapid decay from 1.2

cm to 0.7 cm (Table 4) is not seen in the values from Table 5 where the value is 2.1 cm. The

implication is that the last few degrees---especially the last two in the ON expansion results--are

contaminated by truncation of the expansion degree.
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Table 4. ON GeoidUndulationStandardDeviationby
Degree,in theOceanDomainD7d.Unitsarecm.

GeopotentialModel
D%zree JGM-3 TEG-3 EGM96
2 O.3 0.3 O.2
3 0.5 0.4 0.3
4 0.6 0.6 0.4
5 0.8 0.8 0.6
6 I. I 1.0 0.7
7 1.4 1.2 0.9
8 1.6 1.4 !.0
9 1.9 1.7 I.1
I0 2.3 1.9 1.2
11 2.6 2.2 1.3
12 2.8 2.5 1.4
13 3.1 2.7 1.4

14 3.3 3.0 1.5

15 3.4 3.2 1.5

16 3.6 3.5 1.6

17 3.7 3.8 i.6

18 3.9 4.O 1.6

19 4.0 4.2 ! .7
20 4.2 4.3 ! .7

21 4.3 4.5 1.7

22 4.5 4.6 ! .7

23 4.6 4.7 1.8

24 4.7 4.7 1.8

25 4.7 4.7 1.8

26 4.7 4.6 1.8
27 4.5 4.3 1.7

28 4. I 3.9 1.5

29 3.5 3.2 1.5

30 1.8 1.6 0.7

Cumulative: 17.7 17.4 7.3
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Table 5. ON Geoid Undulation Standard Deviation by Degree.
in the Ocean Domain Die. Units are cm.

Geopotential Model

D%zree JGM-3 TEG-3 EGM96 EGM96*
2 0.4 0.4 0.2 0. I

3 0.6 0.5 0.3 0.2

4 0.7 0.7 0.4 0.3

5 0.9 0.9 0.6 0.4

6 1.1 I. 1 0.7 0.4

7 1.4 1.3 0.9 (1.7

8 1.7 1.5 0.9 0.7

9 1.9 1.7 1.1 1.0

10 2.2 1.9 1.2 0.9

11 2.6 2.2 1.3 1.2

12 2.8 2.4 1.3 I. 1
13 3. I 2.7 1.4 1.3

14 3.3 3.0 1.5 1.3

15 3.5 3.2 1.5 1.4

16 3.6 3.5 1.6 1.4

17 3.8 3.7 1.6 1.5

18 3.9 3.9 1.6 1.5

19 4. I 4.2 1.7 1.6
20 4.3 4.4 1.7 1.6

21 4.4 4.6 1.7 1.6

22 4.6 4.7 1.8 1.6

23 4.8 4.9 1.8 1.7

24 5.0 5.0 i .9 1.8

25 5.1 5.1 1.9 1.8

26 5.3 5.2 2.0 i.9

27 5.4 5.3 2.0 2.0
28 5.5 5.3 2.0 2.1

29 5.6 5.3 2.1 2. l

30 5.7 5.3 2.1 2.2

31 5.6 5.2 2.1 2.2

32 5.6 5.0 2.0 2.3

33 5.4 4.8 2.0 2.3

34 5.0 4.3 1.8 2.4

35 4.4 3.7 ! .6 2.4
36 2.8 2.4 ! .0 2.5

Cumulative: 23.5 22.3 9.2 9.6*

* values computed tbr the whole sphere based on spherical harmonic coefficients.

19



The global undulationstandarddeviationcanbecomputedfrom thecoefficientstandarddevia-
tions. An equationfor this computationis given in Lemoine et al. [1998, eq. (10.3.2-1)]. All

approximation to this equation was used to calculate the undulation standard deviations for the

EGM96 model. The approximation took the quantity in front of the summation sign equal to a

mean radius of the Earth to be consistent with the procedures for the ON analysis. Values are

given in Table 5. The values are not much different from those seen from the ON expansion

result. The cumulative undulation standard deviation is +9.6 cm from the spherical harmonic

coefficient and +9.2 cm from the ON expansion, both values to degree 36. The cumulative undu-

lation standard deviation in domain D7d, to degree 30, was +7.3 cm while the value from the

spherical harmonic coefficient was +7.7 cm. One might conclude that the ON and spherical har-

monic result--in terms of the standard deviations--are not significantly different for the degrees
and domains considered here.

The values of the geoid undulation accuracy--in the orthonormal system (domain Dle) and from

the spherical hannonic coefficient standard deviations for the global domain--are plotted i,l the
figure shown in Appendix B.

Finally, it should be noted that the area of the ocean domain is needed in one (erronvl) of the

programs used in the ON error analysis. The area value can be found in the output of the combi-
nation program (e.g. gramclx, gramclz). Area values, in radians, for three domains used here are:

Die, 8.670869; D7d, 8.421176; D7, 8.225967.

The CRAY programs and selected data sets for this accuracy analysis were placed in the
tollowing directory:/a/home/osu 1615/ON/EGM96/rhr.

Conclusions

This report has described the procedures developed by Hwang [1991], to represent a function

(such as DOT) in a specified domain such as the oceans. Various definitions used in previous

papers and reports were described. It was found that the domain used by Wang and Rapp [! 994]

could be used to obtain a spherical harmonic expansion, with harmonics independent in the

domain, to a maximum degree of 32. The more complicated domain used by Rapp, Zhang, and

Yi [1996] could be used to obtain a complete expansion to degree 29. In these two publications

the maximum degree actually used was 24 based on results obtained by Hwang [1991, 1993] for
a complicated domain definition.

Modifications of each of the domains were made in anticipation of being able to carry the expan-

sions to higher degrees. The extension of the domain used by Wang and Rapp led to a domain

designated Die. The maximum complete degree for the domain was 36. This domain included

ocean cells from 75°N to 75°S excluded several ocean regions as detailed in the text. The modifi-

cation of the domain used by Rapp, Zhang, and Yi [1996] was done to achieve an ocean domain

similar to that implied by the POCM_4B DOT definition and the region in which the Proudman

function expression was used by Pavlis et al. [1998]. The modified domain, designated D7d

domain, included ocean cells from 75°S to 66°N with selected ocean areas considered as land

areas as detailed in the text. The maximum complete degree found for this domain was 30.
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Thecombinationcoefficientswerecomputedfor domainDie to degree36andfor domainD7d
to degree30.Thesphericalharmoniccoefficientsto degree30of POCM_4B[Pavliset al., 1998]

were converted to ON coefficients and the degree variances computed. The degree variances

ag,'eed well with those found from the degree 30 part of the degree 360 expansion of POCM_4B

DOT described by Rat?p [ 1998].

The total power in the ocean domain D7d of the ON representation was (66.52 cm) 2 for the

Pavlis et al. [1998] de_ree 30 expansion, and (66.65 cm for the degree 30 part of the degree

360 expansion. These values agree very well with the value of (66.74 cm): computed directly

from the POCM_4B data in the domain of D7d.

The spherical hannonic coefficients to degree 36 of the degree 360 expansion of POCM_4B were

converted to ON coefficients and the degree variances computed. These values were very similar

to that computed from the spherical harmonic coefficient between degrees 12 and 33. At the

higher degrees the ON power is less than the SH power. This may be an artifact of the truncation

of the expansion. For example, at degrees 27 to 30 (especially degrees 29 and 30) the ON power

from the degree 36 solution was more than the power from the degree 30 solution at the

corresponding higher degrees. This would suggest that for best results an expansion be carried to

a certain N,,,,,, and the result discarded at the highest two or three degrees. A few attempts were

made to find domains valid for solutions higher than degree 36 and only one to degree 37 was

found. To increase this measure one needs to simplify the domain definition (the land/ocean

interface). As this simplification occurs one would expect the higher degree solutions to become

more feasible. On the other hand. these domains may not match the actual regions in which DOT

is determined from ocean circulation models or through the analysis of satellite altimeter data

with geoid undulation information derived from geopotential models. At this point solutions to

degree 36 in a reasonable ocean domain are possible.

The geoid undulation accuracy, by degree and cumulatively, was computed for domain D7d to

degree 30 and for domain Die to degree 36. The calculations were carried out for the JGM-3. the

TEG-3, and the EGM96 geopotential models. All computations were done assuming the coef-

ficient error correlation was zero. As known from previous studies (Lemoine et al. [1998, p. 10-

36]) the EGM96 accuracies were smaller than the other solutions tested. The cumulative undula-

tion error to degree 30 was +7.3 cm for domain D7d and +9.2 cm for domain Die. These values

were somewhat smaller than values found from global estimates based on the spherical harmonic

coefficient accuracy estimates. It was also noted that the accuracy estimate by degree fell off in

an unreasonably fast way at degrees N,,,,,-2, N,,,,,,- I, and Nm,,, due to conjectured effects in the ON

expansion.
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Appendix A

Listings of Domain Definition Programs

Program domain.d I

/ / JOB ,

// REGION=6144K, TIME= (10, 30)

*JOBPARM LINES=9999,DISKIC!=4000, SE_.VICE=R

/PROCLIB DD DISP=SHR, DSN:SEODSCI.PROCLIB

/ EXEC VSSURER

/GO. SOURCE DD *

PROGRAM OCEAN

C PRG COMPUTES OCEAN FROM TUG 87 ONE DEGREE

C i. RUN F558B TO GET THE ONE DEGREE ELEVATION

INTEGER IH(36<') , IA(360)

REAL PHI,LAM

N A = 0

DO -=,56 I:i,18[_: '

READ(i) (IH (K),K=I,369)

PHI:90.5-I

< <DO _.Sv S=I, 36£:

LAM=J-0 . 5

IF (PHI .LT. 50 .AND

IF (PHI LT.30.AND

IF (PHI LT.50.AND

IF (PHI LT.70.AND

IF (PHI LT.5,t,.AND

IF (PHI GE.65.AND

IF (PHI GE.65.AND

IF (PHI EQ.

IF (PHI EQ.

IF (ABS (PHI) .GE.70. )GOTO 123

IF(IH(J) .LE.0) GOTO 5

123

5

555

556

I01

112

MEAN ELEV. FILE

PHI.GT.45.AND.LAM.GT.295.AND.LAM.LT.300.)GOTO 123

PHI.GT.10.AND.LAM.GE.35.AND.LAM.LE.SO.)GOTO 123

PHI.GT.22.AND.LAM.GT.50.AND.LAM.LT.59.)GC'TO 123

PHI.GT.50.AND.LAM.GE.9.AND.LAM.LE.25 )GOTO i23

PHI.GE.37.9.AND.LAM.GE.25.AND.LAM.LE 60 )GOTO 123

LAM.GE.30.AND.LAM.LE.315.)GOTO 123

LAM.GE.30.AND.LAM.LE.200.)GOTO 123

53.5.AND.LAM.EQ.227.5)GOTO 5

63.5.AND.LAM.EQ.i89.5)GOTO 5

IF(PHI.LT.-45.AND.PHI.GT.-55.AND.LAM.GT.65.AND.LAM.LT 75 )GOTO 5

IF(PH!.LT 25.AND.PHI.GT.15.AND.LAM.GT.200.AND.LAM.LT.210 )GOTO 5

IF(PHI.LT -50.AND.PHI.GT.-55.AND.LAM.GT.295.AND.LAM.LT.325)GOTC' 5

IF(PHI.LT 68.AND.PHI.GT.6O.AND.LAM.GT.335.AND.LAM.LT.350.) GOTO 5

IF(PHI.LE 40.5.AND.PHI.GT.39.0.AND.LAM.GE.7.AND.LAM.LE.i0 )GOTO 5

IF(PHI.EQ 37.5.AND.LAM.GE.12.AND.LAM.LE.15.)GOTO 5

IF(PHI.LT 68.AND.PHI.GT 60.AND.LAM.GT.337.AND.LAM.LT.350. GOTO 5

IF(PHI.LT -5.AND.PHI.GT -9.AND.LAM.GT.IIS.AND.L_M.LT.120. GOTO 5

IA(J):0

write(ll,ll2)phi,lam, ia j)

NA-NA+I

GOTO 555

IA(J):I

write(ll,ll2)phi,lam, ia(j)

CONTINUE

WRITE(10,101) (IA(K),K:I,360)

CONTINUE

FORMAT(80II)

FORMAT(2FIS.8,I8)
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WRITE(6,*) 'NUMBER OF LAND',NA

STOP

END

//SO.FT@IF@01 DD DISP-SHR, DSN=ZHANGC.ELEV87.ONEDEG

,.'"GO.FTIOFO01 DD UNIT-ONEDAY,DISP (NEW, CATLG,DELETE) ,

/'/' SPACE= (TRK, (1[i, 10) , RLSE) , DSN=RHRAPP .OCEAN.D!,

// DCB=(RECFH=FB, LRECL=80,RLKSIZE=24000)

//GO.FTllF@01 DD UN IT-ONEDAY, D_SP= (NEW, CATLG, DELETE) ,

// SPACE (TRK, (510, 10) ,RLSE),DSN=RHRAPP.OCEAN.DAi,

// DCB (RECFH=FB,LRECL 80,ELKSIZE=24000)
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Appendix A (Continued)

Listings of Domain Definition Programs

Program domain.d le

//" JOB ,

/'/ REGION=6144K,TIME =(1,3, 30)

/*JOBPARM LINES=99 @_J,DISHIO=4000, SERVICE=R

/,/PROCLIB DD DISP=SHR, DSN=GEODSCi .PROCLIB

// EXEC VSSUPER

//GO.SOURCE DD *

PROGRAM ,OCEAN

C PRG COMPUTES OCEAN FROM TUG 87 ONE

C 1. RUN F558B TO GET THE ONE DEGREE

INTEGER IH(360), IA(360)

REAL PHI,LAM

NA=0

DO 556 I=i, 180

READ(I) (IH(K) ,H=1,360)

PHI=90. 5-

DO 5_.,_ _ J , 36C,

LAM =J- 0 E

C

C

123

5

555

DEGREE MEAN ELEV. FILE

ELEVATION

IF

IF

IF

IF

IF

IF

IF

IF

IF

IF

IF

IF

IF

IF

IF

IF

IF

IF

IF

IF

IF

IF

PHI

PHI

PHI

PHI

PHI

PHI

PHI

PHI

PHI

PHI

.LT 50

LT 30

LT 5O

LT 65

LT 55

GE 75

GE 75

EQ. 53

EQ. 63

LT. 63

AND PHI.GT

AND PHI GT

AND PHI GT

AND, PHI GT

AND PHI GE

AND LAM GE

AND LAM GE

5.AND.LAM.EQ.227.5)GOTO 5

5.AND.LAM.EQ.189.5)GOTO 5

AND.PHI.GT.30.AND.LAM.GT.25.AND.LAM.LT.60)

45.AND.LAH.GT.29S.AND.LAM.LT.30'8.)GOTO 123

10.AND.LAM.GE.35.AND.LAM.LE.50.)GOTO 123

22.AND.LAM.GT.50.AND.LAM.LT.59.)GOTO 123

50.AND.LAM.GE.14.AND.LAM.LE.25.)GOTO 12_

37.5.AND.LAM.GE.25.AND.LAM.LE.60.)GOTO 123

30.AND.LAM.LE.3iS.)GOTO 123

30.AND.LAM.LE.200.)GC'TO 12_

GOTO 123

PHI LT.-27 and. PHI.GT.-33.0.AND.LAM.GT.130.AND.LAM.LT.140)

go to 123

PHI.GE.75. GOTO 123

PHI.LT.-75 )GO TO 123

IH(J) .LE.0 GOTO 5

PHI LT.-45.AND.PHI.GT.-55.AND.LAM.GT.65.AND.LAM.LT.75.)GOTO 5

PHI LT.25.AND.PHI.GT.15.AND.LAM.GT.2O0.AND.LAM.LT.2!0.)GOTO 5

PHI LT.-50.AND.PHI.GT.-55.AND.LAM.GT.295.AND.LAM.LT.325)GOTO

PHI

PHI

PHI

PHI

PHI

LT.68.AND.PHI.GT.60.AND•LAM.GT.335.AND.LAM.LT.350.)

LE.40.5.AND.PHI.GT.39.0.AND.LAM.GE.7.AND.LAM.LE.10

EQ.37•5.AND.LAM.GE.12.AND.LAM.LE.15.)GOTO 5

LT.68.AND.PHI.GT 60.AND.LAM.GT.337.AND.LAM.LT.350.

LT.-5.AND.PHI.GT -9.AND.LAM.GT.IIS.AND.LAM.LT.120.

GOTO 5

)GOTO 5

GOTO 5

GOTO J

IA(J)=

write( l,ll2)phi,lam, ia j)

NA:NA+

GOTO 5 5

IA(J) :

write( i, ll2)phi, lain, ia(j)

CONTINUE
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WRITE(!0, i01) (IA(K) ,K-I, 360)

55<, CONTINUE

i_'1 FORMAT (80Ii)

112 FORMAT (2F!5 . 8, I8)

WRITE(<,,*) 'NUMBER C,F LAND',NA

STOP

END

/GO.FT@IF00! DD DISP=SHR, DSN=ZHANGC.ELEV37.ONEDEG

/GO.FTIOF001 D[) UNIT=ONEDAY,DISP:(NEW, CATLG,DELETE) ,

/ SPACE = (TRK, (]0, It), RLSE) , DSN=RHRAPF .OCEAN. DiE,

/ DCB= (RECFM=FB, LRECL 8C,, BLKSIZE=24000)

/GO.FTIIF001 DD UNIT=ONEDAY, D ISP= (NEW, CATLG, DELETE) ,

/ SPACE: (TRK, (510, !O) , RLSE), DSN=RHRAPP .OCEAN.DIEX,

/ DCB= (RECFM FB, LRECL=80,BLKSIZE=24000)
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Appendix A (Continued)

Listings of Domain Definition Programs

Program domain.d7

C

C

/ JOB ,

/ REGION=6124K,TIME (0],30)

*JOBPARM LINES=9999,DISKIO=9999,TAPEIO:00500,V=R

/PROCLIB DD DISP-SHR, DSN:GEODSCI.PROCLIB

/ EXEC VSSUPER

/GO.SOURCE DD *

123

PROGRAM OCEAN

PRG COMPUTES OCEAN FROM TUG

i. RUN F558B TO GET THE ONE

INTEGER IH(360 ,IA 36@)

real phi,lam

NA-0

DO 556 I:i,18O

READ(I) (IH(K) K 1 36,9)

PHI=90.5-I

DO 555 J:i,360

LAM J-0.5

87 ONE DEGREE MEAN ELEV. FILE

DEGREE ELEVATION

IF(PHI.LT 50

IF(PHI.LT 3£,

IF(PH!.LT 50

IF(PHI.LT 70

IF(PHI.LT 50

IF (PHI.GE 65

IF (PHI .GE %5

IF (PHI .EQ 53

IF (PHI.EQ 63

IF PHI.GE 65

IF PHI.LT -6

IF PHI.LT 72

IF PHI.LT 45

IF PHI.LT 40

IF PHI.LT

IF PHI.LT

go to 123

IF PHI.LT.40

IF(IH(J) .LT.

IF (PHI .LT.-4

IF(PHI LT 25

IF(PHI LT -5

IF(PHI LT 68

IF (PHI LE 40

IF(PHI EQ 37

IF(PHI LT 68

IF(PHI LT -5

IA(J):0

write(ll,ll2

NA-NA+I

AND

AND

AND

AND

AND

AND

AND

PHI

PHI

PHI

PHI

PHI

LAM

LAM

GT.45.AND.LAM.GT.295.AND.LAM.LT.300,)GOTO 123

GT.10.AND.LAM.GE.35.AND.LAM.LE.50.)GOTO 123

GT.22.AND.LAM.GT.50.AND.LAM.LT.59.)GOTO 123

GT.50.AND.LAM.GE.9.AND.LAM.LE.25.)GOTO 123

GE.37.5.AND.LAM.GE.25.AND.LAM.LE.60.)GOTO 123

GE.30.AND.LAM.LE.3!5.)GOTO 123

GE.30.AND.LAM.LE.200.)GOTO 123

5.AND.LAM.EQ.227.5)GOTG 5

5.AND.LAM.EQ.189.5)GOTO 5

)GOTO 123

.)GOTO 123

.and. PHI.GT.50.AND.LAM.GT.263.AND.LAM.LT.295) GOTO 123

.and. PHI.GT.30.AND.LAM.GT.0.AND.LAM.LT.35) GOTO 123

.and. PHI.GT.35.AND.LAM.GT.354.AND.LAM.LT.360) GOTO 123

63.and. PHI.GT.30.AND.LAM.GT.25.AND.LAM.LT.60) GOTO 123

-27.and. PHI.GT.-33.0.AND.LAM.GT.130.AND.LAM.LT.140)

.and. PHI.GT.20.AND.LAM.GT.20.AND.LAM.LT.45) GOTO 123

0) GOTO 5

5.AND.PHI.GT.-55.AND.LAM.GT.65.AND.LAM.LT.75.)GOTO 5

.AND.PHI.GT.15.AND.LAM.GT.200.AND.LAM.LT.210.)GOTO 5

0.AND.PHI.GT.-55.AND.LAM.GT.295.AND.LAM.LT.325)GOTO 5

.AND.PHI.GT.60.AND.LAM.GT.335.AND.LAM.LT.350.) GOTO 5

.5.AND.PHI.GT.39.0.AND.LAM.GE.7.AND.LAM.LE.i0.)GOTO 5

.5.AND.LAM.GE.12.AND.LAM.LE.15.)GOTO 5

.AND.PHI.GT.60.AND.LAM.GT.337.AND.LAM.LT.350.) GOTO 5

.AND.PHI.GT.-9.AND.LAM.GT.II5.AND.LAM.LT.120.) GOTO 5

)phi, lain, ia(j)
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GOTO 555

[ IA(J) =I

write (ii, i12) 9,hi, lain, ia (j)

_:55 CONTINUE

WRZTE (i0, _.Cl] ) (rA(K), K=!, 360)

E_& CONT!NTTE

] '91 FORMAT (9(_ I I )

!ll _ format (2fl__ .5, _:9)

WRITE(o,*} 'NUMBER OF LAND',NA

STOP

END

GO.ET01F001 DD DISP-SHR, DSN=ZHANGC.ELEV87.ONEDEG

GO.FTIOFO01 DD UNIT=ONEDAY,DISP:(NEW, CATLG,DELETE) ,

SPACE (TRK, (i0, i0) ,RLSE) ,DSN:RHRAPP.OCEAN.D7,

DCB= (RECFM=FB, LRECL-80,BLKSIZE:24000)

/GC,.FTIIF00i DD UNIT:ONEDAY,DISP:(NEW, CATLG, DELETE),

,/,/ SPACE= (TRK, (510, IF+:),RLSE) , DSN:RHRAPP.OCEAN.DAT7,

_ C,CB= (RECFM=FB LRECL=80,BLKSIZE:24000)/ /
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Appendix A (Continued)

Listings of Domain Definition Programs

Program domain.d7d

// JOB ,

// REGION=6124K,TIME =(01, 3@)

/*JOBPARM LINBS=9999,DISKIO=9999,TAPEIO=0@500,V R

//PROCLIB DD DISP=SHR, DSN-GEODSCI.PROCLIB

// EKEC VSSUPER

//GO.SOURCE DD *

P ROGRAH OCEAN

C PRG COHPUTES OCEAN FROM TUG 87 ONE DEGREE MEAN ELEV. FILE

C i. RUN F558B TO GE? THE ONE DEGREE ELEVATION

INTEGER IH(360) , IA(360,)

real phi, lam

NA:0

DO 556 Z-l,180

READ(I) (IH(K) ,K=1,3%0)

PHI=9@ . 5-1

DO 555 J:1,360

LAM J- 0. 5

IF PHI.LT 5:%.AND PHI.GT

IF PHI LT 30.AND PHI.GT

IF PHI LT 50.AND PHI.GT

IF PHI LT 66.AND PHI.GT

IF PHI LT 50.AND PHI.GE

C IF PHI GE 65.AND LAM.GE

IF PHI GE 65.AND LAM.GE

IF PHI GE 65.AND LAM.GE

IF (PHI EQ

IF (PHI EQ

IF (PHI GE

IF (PHI LT

IF (PHI LT

IF (PHI LT

IF (PHI LT

IF (PHI LT

IF (PHI LT

• go to

IF(PHI.LT.4@.and. PHI.GT.2@.AND.LAM.GT.2O.AND.LAM.LT.45) GOTO 123

IF(IH(J) .LT.0) GOTO 5

IF (PHI.LT.-45.AND.PHI.GT.-55.AND.LAM.GT.65.AND.LAM.LT.75.)GOTO 5

IF (PHI.LT.25.AND.PHI.GT. 15.AND.LAM.GT.2OO.AND.LAM.LT.210.)GOTO 5

IF(PHI.LT.-5O.AND.PHI.GT.-55.AND.LAM.GT.295.AND.LAM.LT.325)GOTO 5

IF(PHI.LT.68.AND.PHI.GT.6O.AND.LAM.GT.335.AND.LAM.LT.350.) GOTO 5

IF(PHI.LE.40.5.AND.PHI.GT.39.0.AND.LAM.GE.7.AND.LAM.LE.10 )GOTO 5

IF (PHI.EQ.37.5.AND.LAM.GE.12.AND.LAM.LE.15.)GOTO 5

IF(PHI.LT.68.AND PHI.GT 60.AND.LAM.GT.337.AND.LAM.LT.350. GOTO 5

IF(PHI.LT.-5.AND PHI.GT -9.AND.LAM.GT.IIS.AND.LAM.LT.120. GOTO 5

123 IA(J):0

write(ll,l!2)phi lam, ia j)

45.AND.LAM.GT.295.AND.LAH.LT.30@.)GOTO 123

10.AND.LAH.GE.35.AND.LAH.LE.50.)GOTO 123

22.AND.LAH.GT.50.AND.LAH.LT.59.)GOTO 123

5@.AND.LAH.GE.i4.AND.LAM.LE.25.)GOTO 123

37.5.AND.LAM.GE.25.AND.LAM.LE.60.)GOTO 123

3@.AND.LAH.LE.315.)GOTO 123

30.AND.LAH.LE.295.)GOTO 123

30.AND.LAM.LE.2@@.)GOTO 123

53.5.AND.LAM.EQ.227.5)GOTO 5

63.5.AND.LAM.EQ.189.5)GOTO 5

65.)GOTO 123

-75.)GOTO 123

72.and. PHI.GT.50.AND.LAM.GT.263.AND.LAM.LT.295) GOTO 123

45.and. PHI.GT.30.AND.LAM.GT.0.AND.LAM.LT.35) GC, TO 123

40.and. PHI.GT.35.AND.LAM.GT.354.AND.LAM.LT.360) GOTO 123

63.and. PHI.GT.3O.AND.LAM.GT.25.AND.LAM.LT.60) GOTO 123

-27.and. PHI.GT.-33.0.AND.LAM.GT.13@.AND.LAM.LT.140)

123
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NA=NA+I

GOT() 555

5 IA (J) =1

write(il, li2}phi,lam, ia(j)
555 CONTINUE

WRITE (10, i,1, i) (IA(K) ,K=l, 360)

55o CONTINUE

1Ol FORMAT (8011)

112 format (2f15.5,i8)

WRITE(6,*) 'NUMBER OF LAND',NA
STOP

END

//GO.FT01FO01 DD DISP=SHR, DSN=ZHANGC.ELEV87.ONEDEG

//GO.FTIOFOOI DD UNIT:ONEDAY, DISP:(NEW, CATLG, DELETE

// SPACE- (TRK, (I0, I0) , RLSE) ,DSN:RHRAPP .OCEAN.D7D,

// DCB:(RECFM:FB, LRECL=80,BLKSIZE:24000)

//GO.FTIIF001 DD UNIT:ONEDAY, DISP:(NEW, CATLG,DELETE

// SPACE= (TRK, (510, i0) , RLSE) , DSN=RHRAPP .OCEAN.DAT7D

// DCB:(RECFM-FB, LRECL:80, BLKSIZE:24000)
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Appendix B

Square root of the degree variance of the dynamic ocean topography from POCM_4B and geoid

undulation accuracy for EGM96, based on the spherical harmonic and orthonormal (domain Die)

systems.
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