A Simple Method for Nucleon-Nucleon Cross Sections in a Nucleus

R. K. Tripathi
Hampton University, Hampton, Virginia

Francis A. Cucinotta
Lyndon B. Johnson Space Center, Houston, Texas

John W. Wilson
Langley Research Center, Hampton, Virginia

April 1999
The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA’s scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA’s institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counterpart or peer-reviewed formal professional papers, but having less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or co-sponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA’s mission.

Specialized services that complement the STI Program Office’s diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results . . . even providing videos.

For more information about the NASA STI Program Office, see the following:

- Email your question via the Internet to help@sti.nasa.gov

- Fax your question to the NASA STI Help Desk at (301) 621-0134

- Telephone the NASA STI Help Desk at (301) 621-0390

- Write to: NASA STI Help Desk NASA Center for AeroSpace Information 7121 Standard Drive Hanover, MD 21076-1320
A Simple Method for Nucleon-Nucleon Cross Sections in a Nucleus

R. K. Tripathi
Hampton University, Hampton, Virginia

Francis A. Cucinotta
Lyndon B. Johnson Space Center, Houston, Texas

John W. Wilson
Langley Research Center, Hampton, Virginia

April 1999
Acknowledgments

R. K. Tripathi performed this work for Langley Research Center under cooperative agreement NCC1-242.
Abstract

A simple reliable formalism is presented for obtaining nucleon-nucleon cross sections within a nucleus in nuclear collisions for a given projectile and target nucleus combination at a given energy for use in transport, Monte Carlo, and other calculations. The method relies on extraction of these values from experiments and has been tested and found to give excellent results.

1. Introduction

A significant amount of information about nucleon-nucleon (NN) collisions is obtained from experiments performed for free NN collisions. This information, when used for nucleon-nucleus and nucleus-nucleus collisions, has to be modified, mainly because of the presence of other nucleons in a nucleus (ref. 1). However, no simple reliable method obtained directly from experiments exists for this modification. The present work fills this void and gives reliable values of nucleon-nucleon cross sections in a nucleus for a given projectile-target system at a given energy. This method will also be useful for transport and Monte Carlo calculations.

2. Method

Following the coupled channel approach (refs. 2 to 7) developed at the Langley Research Center, recently we have extracted the values of nucleon-nucleon cross sections in a nucleus medium from experimental absorption cross sections. (See refs. 8 and 9.) The detailed steps and expressions used for this extraction are given in references 8 and 9; however, we sketch here some of the steps to make the present method more clear.

The absorption method in this formalism is given by

$$\sigma_{\text{abs}} = 2\pi \int_{b_0}^{b_1} \! db \{ 1 - \exp[-2\text{ Im}(\chi)] \}$$

(1)

where b is the projectile impact parameter and χ, the eikonal phase matrix (see refs. 2 to 7 for details), is given by

$$\chi(b) = \chi_{\text{dir}}(b) - \chi_{\text{ex}}(b)$$

(2)

The direct and exchange terms are calculated by using the following expressions (refs. 2 to 5):

$$\chi_{\text{dir}}(b) = \frac{A_p A_T}{2\pi k_{NN}} \int d^2 q \times \exp(iq \cdot b) F^1(-q) G^1(q) f_{NN}(q)$$

(3)

and

$$\chi_{\text{ex}}(b) = \frac{A_p A_T}{2\pi k_{NN}} \int d^2 q \exp(iq \cdot b) F^1(-q) G^1(q) \times \frac{1}{(2\pi)^2} \int d^2 q' \exp(iq' \cdot b) f_{NN}(q+q') C(q')$$

(4)

where F^1 and G^1 are projectile and target ground-state one-body form factors, respectively, and C is the correlation function (ref. 5). The mass numbers of projectile and target nuclei are represented by A_p and A_T, respectively. The two-body amplitude f_{NN} is parameterized as

$$f_{NN} = \frac{\sigma(\alpha + i)}{4\pi} k_{NN} \exp\left(\frac{-Bq^2}{2}\right)$$

(5)

where k_{NN} is the relative wave number in the two-body center of mass system, σ is the two-body cross section, B is the slope parameter, and α is the ratio of the real part to the imaginary part of the forward two-body amplitude.

Notice that the absorption cross section in equation (1) depends on the imaginary part of the eikonal phase matrix. Then the two-body amplitude in the medium $f_{NN,m}$ can be written as

$$f_{NN,m} = f_{m} f_{NN}$$

(6)
where f_{NN} is the free NN amplitude and f_m is the system and energy dependent medium multiplier function (refs. 8 and 9). The nucleon-nucleon cross sections in the medium (σ_m) can then be written as

$$\sigma_{NN,m} = f_m \sigma_{NN} \quad (7)$$

where σ_{NN} is the nucleon-nucleon cross section in free space and the medium multiplier is given by

$$f_m = 0.1 \exp\left(-\frac{E}{12}\right) + \left[1 - \left(\frac{\rho_{av}}{0.14}\right)^{1/3}\exp\left(-\frac{E}{D}\right)\right] \quad (8)$$

where, for $A_T < 56$,

$$D = 46.72 + 2.21A_T - (2.25 \times 10^{-2})A_T^2 \quad (9)$$

and for $A_T \geq 56$,

$$D = 100 \quad (10)$$

In equation (8), ρ_{av} refers to the average density of the colliding system and is given by

$$\rho_{av} = \frac{1}{2}\left(\rho_{Ap} + \rho_{AT}\right) \quad (11)$$

where the density of a nucleus $A_i (i = P, T)$ is calculated in the hard sphere model and is given by

$$\rho_{A_i} = \frac{A_i}{4\pi r_i^3} \quad (12)$$

where the radius of the nucleus r_i is defined by

$$r_i = 1.29(r_i)_{rms} \quad (13)$$

The root-mean-square radius $(r_i)_{rms}$ is obtained directly from experiment (ref. 10) after “subtraction” of the nucleon charge form factor (ref. 2).

Use of equations (7) to (10) modifies free neutron-proton cross sections (σ_{np}) and proton-proton cross sections (σ_{pp}), which in turn can be used to calculate nucleon-nucleon (NN) cross sections for any system of colliding nuclei by taking the isospin average value as

$$\sigma_{NN} = \frac{Z_pZ_T + N_pN_T}{A_pA_T} \sigma_{pp} + \frac{N_pZ_T + Z_pN_T}{A_pA_T} \sigma_{np} \quad (14)$$

where Z_p, N_p, and A_p (Z_T, N_T, and A_T) are the charge, neutron, and mass number of the projectile (target) nucleus.

3. Procedure

For convenience, we fit free neutron-proton (np) and proton-proton (pp) cross section data (refs. 11 to 13) at available energies by following smooth functions of energy for ease of interpolation and for their availability at a given energy:

$$\sigma = A \exp\left(-\frac{E}{25}\right) + \frac{B}{1 + \exp[(400 - E)/75]}$$

$$+ \frac{C}{1 + \exp[(E - 300)/75]}$$

$$+ 28 \exp\left(-\frac{E}{125}\right)\cos(26E^{0.453}) \quad (15)$$

where for pp system, $A = 300, B = 44, and C = 15$ and for np systems, $A = 922, B = 40, and C = 50$. Figures 1 and 2 show the present representation (eq. (15)) of free np and pp cross sections compared with the available experimental data (refs. 11 to 13).

The procedure for obtaining in-medium cross sections is as follows. For a given projectile colliding with a target at laboratory energy (A MeV), the medium multipliers are calculated by using equations (8) to (13). Having calculated the medium multiplier, equation (7) is used to calculate in-medium np and pp cross sections, and then in-medium NN cross sections are calculated by using equation (14).

4. Discussion and Results

Figures 3 to 6 show results of in-medium cross sections in proton-nucleus collisions for a set of representative nuclei. For any other particular case, our formalism can be used to get specific values. Note that at lower energies (less than 200 A MeV), there is system
dependence of the cross sections, and at higher energies between 200 A MeV and 600 A MeV the system dependence is less important. It is also interesting to note that for energies greater than 600 A MeV, the medium modifications become less important and the free nucleon-nucleon cross sections appear adequate.

Figures 7 to 10 give medium modified cross sections for neutron-nucleus collisions for various systems. For comparison with the proton-nucleus systems, we have kept the same set of nuclei for these collisions. The general features of the proton-nucleus collisions are seen in the neutron-nucleus collisions as well. However, it is very interesting to compare the modified cross sections for the two cases. We note that the modified cross sections needed for the proton-nucleus system are very different from the neutron-nucleus systems. This observation is interesting, and to our knowledge has not been pointed out in the literature before; it will significantly impact the applications.

Figures 11 to 14 give results for nucleus-nucleus collisions; to make our points, we have chosen carbon as the projectile. However, we need to emphasize again that for a specific case of interest it will be good to generate system modified cross sections by using our formalism rather than taking the values from other systems because the values are system dependent as shown; this is a really interesting observation. For nucleus-nucleus collisions, the system modified cross sections are significantly different from the proton-nucleus and neutron-nucleus collisions. Our calculation seems to indicate that not only the nuclear force but the Coulomb force also plays a role in modifying the cross sections in a nucleus; this effect has been ignored by others.

5. Concluding Remarks

Very interesting features have been shown for the system dependence of the cross sections for various systems. The system dependent cross sections depend both on the kinetics and the dynamics of the system. These effects are important. Our formalism includes them in a simple and reliable way. In addition, our approach points out several interesting features which were not recognized by others. Our method is easy to use and gives excellent agreement with experiments. The usefulness of our method for various applications—transport, Monte Carlo, radiation protection, radiation therapy—is noted.
6. References

Figure 1. Free neutron-proton cross sections σ_{np}.

Figure 2. Free proton-proton cross sections σ_{pp}.
Figure 3. Modified proton-proton cross sections $\sigma_{pp,m}$ for various proton-nucleus collisions.

Figure 4. Modified neutron-proton cross sections $\sigma_{np,n}$ for various proton-nucleus collisions.
Figure 5. Modified nucleon-nucleon cross sections $\sigma_{NN,m}$ for various proton-nucleus collisions.

Figure 6. Modified nucleon-nucleon cross sections $\sigma_{NN,m}$ for various proton-nucleus collisions with energy range extended to 2 A GeV to demonstrate variation of nucleon-nucleon cross sections with energy.
Figure 7. Modified proton-proton cross sections $\sigma_{pp,m}$ for various neutron-nucleus collisions.

Figure 8. Modified neutron-proton cross sections $\sigma_{np,m}$ for various neutron-nucleus collisions.
Figure 9. Modified nucleon-nucleon cross sections $\sigma_{NN,m}$ for various neutron-nucleus collisions.

Figure 10. Modified nucleon-nucleon cross sections $\sigma_{NN,m}$ for various neutron-nucleus collisions with energy range extended to 2 A GeV to demonstrate variation of nucleon-nucleon cross sections with energy.
Figure 11. Modified proton-proton cross sections $\sigma_{pp,m}$ for various nucleus-nucleus collisions.

Figure 12. Modified neutron-proton cross sections $\sigma_{np,m}$ for various nucleus-nucleus collisions.
Figure 13. Modified nucleon-nucleon cross sections $\sigma_{NN,m}$ for various nucleus-nucleus collisions.

Figure 14. Modified nucleon-nucleon cross sections $\sigma_{NN,m}$ for various nucleus-nucleus collisions with energy range extended to 2 A GeV to demonstrate variation of nucleon-nucleon cross sections with energy.
A simple reliable formalism is presented for obtaining nucleon-nucleon cross sections within a nucleus in nuclear collisions for a given projectile and target nucleus combination at a given energy for use in transport, Monte Carlo, and other calculations. The method relies on extraction of these values from experiments and has been tested and found to give excellent results.