NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Microgravity Processing of Oxide SuperconductorsConsiderable effort has been concentrated on the synthesis and characterization of high T(sub c) oxide superconducting materials. The YBaCuO system has received the most intense study, as this material has shown promise for the application of both thin film and bulk materials. There are many problems with the application of bulk materials- weak links, poor connectivity, small coherence length, oxygen content and control, environmental reactivity, phase stability, incongruent melting behavior, grain boundary contamination, brittle mechanical behavior, and flux creep. The extent to which these problems are intrinsic or associated with processing is the subject of controversy. This study seeks to understand solidification processing of these materials, and to use this knowledge for alternative processing strategies, which, at the very least, will improve the understanding of bulk material properties and deficiencies. In general, the phase diagram studies of the YBaCuO system have concentrated on solid state reactions and on the Y2BaCuO(x) + liquid yields YBa2Cu3O(7-delta) peritectic reaction. Little information is available on the complete melting relations, undercooling, and solidification behavior of these materials. In addition, rare earth substitutions such as Nd and Gd affect the liquidus and phase relations. These materials have promising applications, but lack of information on the high temperature phase relations has hampered research. In general, the understanding of undercooling and solidification of high temperature oxide systems lags behind the science of these phenomena in metallic systems. Therefore, this research investigates the fundamental melting relations, undercooling, and solidification behavior of oxide superconductors with an emphasis on improving ground based synthesis of these materials.
Document ID
19990040294
Acquisition Source
Marshall Space Flight Center
Document Type
Conference Paper
Authors
Olive, James R.
(Vanderbilt Univ. Nashville, TN United States)
Hofmeister, William H.
(Vanderbilt Univ. Nashville, TN United States)
Bayuzick, Robert J.
(Vanderbilt Univ. Nashville, TN United States)
Vlasse, Marcus
(NASA Marshall Space Flight Center Huntsville, AL United States)
Date Acquired
August 19, 2013
Publication Date
February 1, 1999
Publication Information
Publication: NASA Microgravity Materials Science Conference
Subject Category
Materials Processing
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available