A Quantitative Investigation of Entrainment and Detrainment in Numerically Simulated
Convective Clouds. Part 11 Simulations of Cumulonimbus Clouds.

o -947
04’{\6 V...Z/

Charles Cohen
Institute for Global Change Research and Education”
Huntsville, Alabama

November, 1998

corresponding author address: Charles Cohen, Global Hydrology and Climate Center, 977
Explorer Blvd, Huntsville, AL 35806
E-mail: charlie.cohen(@msfc.nasa.gov

" The Institute for Global Change Rescarch and Education is jointly operated by the Universities Space Research
Association and the University of Alabama in Huntsville.



A Quantitative Investigation of Entrainment and Detrainment in Numerically Simulated
Convective Clouds. Part II: Simulations of Cumulonimbus Clouds

Charles Cohen
Institute for Global Change Research and Education’
Huntsville, Alabama

Abstract

Deep cumulonimbus clouds are simulated using a model that makes accurate
diagnoses of entrainment and detrainment rates and of the properties of entrained and
detrained air. Clouds generated by a variety of initial thermodynamic soundings are
compared.

In the simulations, updraft entrainment rates are large near and above cloud base,
through the entire depth of the conditionally unstable layer.

Stronger updrafts in a more unstable environment are better able to entrain
relatively undisturbed environmental air, while weaker updrafts can entrain only air that
has been modified by the clouds.

When the maximum buoyancy is large, the updraft includes parcels with a wide
range of buoyancies, while weaker clouds are more horizontally uniform.

Strong downdrafts originate from levels at which updrafts detrain, and their mass
flux depends on the mass flux of the updraft.

The magnitude of mixing between cloud and environment, not the entrainment
rate, varies inversely with the cloud radius. How much of the mixed air is entrained
depends on the buoyancy.

* The Institute for Global Change Research and Education is jointly operated by the Universities Space
Research Association and the University of Alabama in Huntsville.



Abstract

Deep cumulonimbus clouds are simulated using a model that makes accurate diagnoses
of entrainment and detrainment rates and of the properties of entrained and detrained air.
Clouds generated by a variety of initial thermodynamic soundings are compared.

In the simulations, updraft entrainment rates are large near and above cloud base,
through the entire depth of the conditionally unstable layer.

Stronger updrafts in a more unstable environment are better able to entrain relatively
undisturbed environmental air, while weaker updrafts can entrain only air that has been modified
by the clouds.

When the maximum buoyancy is large, the updraft includes parcels with a wide range of
buoyancies, while weaker clouds are more horizontally uniform.

Strong downdrafts originate from levels at which updrafts detrain, and their mass flux
depends on the mass flux of the updraft.

The magnitude of mixing between cloud and environment, not the entrainment rate,
varies inversely with the cloud radius. How much of the mixed air is entrained depends on the
buoyancy.



1. Introduction

It has always been difficult to obtain detailed knowledge of the dynamic and
thermodynamic properties of clouds. Blyth (1993) discusses some specific problems connected
with the use measuring devices within clouds. Limitations of radar prevented Grinnell et al.
(1996) from observing motions near the base of the cloud updraft or outside the cloud edges,
and induced them to calculate only the total vertical mass flux, instead of separate updraft and
downdraft mass fluxes. Aircraft measurements may be biased, Jorgensen ef al. (1985) explain,
because the flight may not penetrate the center of a cloud updraft or downdraft. An additional
limitation on gathering data within cumulonimbus clouds is the necessity for aircraft, in the
interests of safety, to avoid the areas of strongest vertical velocity and greatest electrical activity.

Numerical cloud models have therefore been used to supplement observational data.
One-dimensional models are easy to manipulate in order to design experiments, and their output
is easy to interpret, but their validity is limited by the simplifying assumptions that are required
to construct the models. Two- or three-dimensional primitive equation models, which are
designed with relatively few simplifying assumptions, provide complete and physically consistent
artificial data sets. Users of these models, however, may be overwhelmed with the massive
quantities of data that the models can provide.

Part I (Cohen, 1998) of this study developed a method of diagnosing entrainment and
detrainment rates and the properties of the entrained and detrained air in convective clouds
simulated with a primitive equation model. We will now use this new technique to study deep
cumulonimbus clouds.

2. Description of experiments

The Regional Atmospheric Modeling System (RAMS; Pielke e al., 1992; Walko et al.,
1995) is used in this study, along with the tracers described in Part 1, using an interval of 100
seconds between re-initializing the tracers.

- All simulations are initialized with thermodynamic soundings that were constructed
synthetically, based on the results of Betts (1986), Betts and Miller (1986), and Binder (1990),
so that they could be systematically varied among the simulations.

Initial surface pressure and temperature are specified for each simulation. The soundings
are conditionally unstable below the melting level. Above the melting level, the potential
temperature increases with height up to a specified tropopause pressure, where the potential
temperature has the value computed by lifting a parcel adiabatically from the surface.
Temperature is constant with height above the specified tropopause pressure.

The moisture sounding is computed by prescribing the saturation level departures, Py,

P

level departure, following Betts (1982), is the difference in pressure between a parcel and its
lifting condensation level (LCL). Given the surface pressure and temperature and Py, the

1 and Py, at the surface, the 0°C level, and the tropopause, respectively. The saturation

surface mixing ratio is computed. Potential temperature is constant up to the condensation level
of a parcel lifted from the surface. To produce a planetary boundary layer that is partially
mixed, the water vapor mixing ratio between the surface and the LCL is computed as 75% of
the surface mixing ratio plus 25% of the mixing ratio that would result from using a constant
saturation departure.



The degree of conditional instability between the LCL and the melting level is specified
by the parameter, o, which is used to compute the vertical gradient of potential temperature as
follows;

0 0
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op Py,
IS
where (68/30p)o, 18 the vertical gradient of potential temperature of the pseudo-adiabat

through a surface parcel. Between the melting level and the tropopause, in order to produce an
unstable midlatitude continental sounding, potential temperature is computed as 25% of what
results from linearly interpolating potential temperature in pressure plus 75% of the result of
linearly interpolating potential temperature in the logarithm of pressure. (For a maritime tropical
sounding, linearly interpolating potential temperature in pressure may be more appropriate.)
Water vapor mixing ratio between the LCL and the tropopause is then computed by linearly
interpolating the saturation departure between Py, and P, up to the melting level, and then

interpolating between P, and Pt above the melting level.
In all the simulations examined here, cloud updrafts are defined by w> 0.5 m sl and q¢
+q; > 0.01 g kg1, where q¢ and ¢; are the mixing ratios of cloud water and pristine ice crystals,

while cloud downdrafts are defined by w < 0.5 m s*! and total condensate > 0.01 g kgl. The
first experiment is identical to the one described in Part L.

All initial soundings use a surface pressure of 1000 mb and a surface temperature of 304
K. Other quantities used to compute the initial soundings are listed in Table 1. A value of 3.0,
appropriate for midlatitude continental convection, is assigned to the parameter, o, for the
initial soundings in the first five experiments. Exps. 2 and 3 (Fig. 1b) use initial soundings that
are drier and more moist, respectively, above the PBL. More stable soundings, that will produce
weaker and shallower convection, are constructed for exps. 4 and 5 (Fig. 1¢) by raising the LCL
of surface air (i.e. by increasing the saturation level departures, P}) in 50 mb increments while

the tropopause is lowered in 50 mb increments.

Exp. 6 is initialized with a sounding that has nearly the same Convective Available
Potential Energy (CAPE) as the sounding used to initialize the first experiment, but has a more
stable lower troposphere (i.¢. a smaller o) and a higher tropopause. These two soundings are
shown in Fig. la.

3. Results
a. sensitivity 1o variations in the humidity of the initial sounding

The initial soundings (Table | and Fig. 1) of exps. 1, 2, and 3 are identical below 1 km,
but the environment of exp. 2 is drier above the PBL than that of exp. 1, with a 6, as much as
4 9 K lower in the middle troposphere, while exp. 3 uses a more moist environment above the
PBL, with a 8, as much as 3.6 K higher than in exp. 1. Greater humidity in the environment
results in substantially more cloud mass flux (Fig. 2a).

For all three simulations, the updraft fractional entrainment rate (Fig. 3a) is largest near
cloud base and decreases with height in the lower troposphere, but for a more moist
environment, the entrainment rate decreases more slowly with height. This corresponds to the
type of air that is being entrained. Fig. 4 compares the 8, of the entrained air with the 6, of an



n

equal mixture of updraft air and air from the undisturbed initial sounding. Starting just below 2
km, these two quantities are very similar, but, beginning at a higher level for a more moist initial
sounding, the updraft entrains air with a higher 8, than the equal mixture. At the higher levels,

only the air that has been seriously modified by the clouds can be entrained into the updraft, and
the fractional entrainment rate is therefore small (Fig. 3a); at lower levels, where air from the
environment has a positive CAPE (Fig. 5a), more of the nearly undiluted environmental air can
be entrained, and the fractional entrainment rate is large. The conditionally unstable air (Fig. 5a)
and the larger entrainment rates (Fig. 3a) extend through a deeper layer above the surface for a
more moist sounding.

To verify that the undisturbed initial sounding can be used to represent the environment
of the clouds, 6, was averaged, for the first 2.5 hours, when nearly all of the cloud mass flux

occurred, over cloud-free grid points in an 80-km-wide area centered on the deep convection.
When this environmental 8, is substituted for the initial undisturbed 6, as shown in Fig. 4, the

conclusions are unchanged.

For the more moist initial sounding (exp. 3) the deeper conditionally unstable layer
enables the updraft mass flux to increase with height up to about 5 km (Fig. 2a). The updraft
mass flux increases somewhat more rapidly with height in exp. 1 than in exp. 2 from cloud base
up to 2 km, and also between 4 km and 6 km. Using the updraft mass flux and the fractional
entrainment and detrainment rates, we can compute the entrained mass flux and the detrained
mass flux. The results (Fig. 6) clearly show that the updraft continues both to grow and to mix
with its environment through a deeper layer above cloud base with a more moist initial sounding.

It can be seen in Fig. 7 that, in the upper troposphere, the ratio of downdraft mass flux to
updraft mass flux is larger for a drier environment, in which there is more evaporation or
sublimation. Below 3 km, however, the clouds in the more moist environment have relatively
more downdraft mass flux. (But the downdrafts are not stronger; the largest downward
velocities in exps. 1, 2, and 3, are, respectively, -15 m sl -16 ms’l, and -14 m s-1.) Whether
the downdrafts are generated by the negative buoyancy that results from evaporation, melting,
and condensate loading, or are dynamically forced, it is not surprising that a large downdraft
mass flux is formed in the lower troposphere, where large amounts of cloudy air are detrained by
the updraft. A stronger downdraft (Fig. 2a) extends through a deeper layer in the lower
troposphere for the more moist environment, just as does the updraft detrainment. The ratio of
downdraft mass flux to updraft mass flux is large when the updraft mass flux is increasing with
height, because the downdraft at any level was generated by the updraft at a higher level.

Below 5 km, the vertical gradient of 6, in the downdrafts is smaller for the more moist
environment (Fig. 8). This is consistent with the downdraft entrainment rates (Fig. 3b), which
peak at a greater height in the lower troposphere with a greater humidity. To predict the
properties of the downdraft outflow, we must first determine the level of origin of the air in the
low-level downdrafts. In the present simulations, this air is, on average, from a greater height,
where 0, is smaller, for the more moist environment. The more moist environment, therefore,
generates more updraft mass flux, which produces, starting at a higher level, more low-level
downdraft mass flux, bringing to the surface air with as low a 8, as for a drier environment.
Simpson et al. (1982) similarly concluded, based on their numerical simulations, that the strength
of low-level cumulus downdrafts and their ability to bring mid-level low-8,, air to the surface is
proportional to the updraft strength. In contrast, Gilmore and Wicker (1998) found that



downdrafts in a drier environment in their simulations were stronger and brought lower 0, air

to the ground.

The present results do agree with those of Gilmore and Wicker (1998) in that downdraft
CAPE, which measures the kinetic energy gained by an undilute parcel during descent, cannot
be used to predict downdraft strength. Unless there is sufficient forcing by the updraft at a
particular level, the potentially strong downdraft will not be realized.

h. sensitivity to the strength of the convection

When the soundings are changed, for exps. 4 and 5, in order to generate weaker
convection with higher cloud bases and lower cloud tops, there is substantially less mass flux in
both the updrafts and the downdrafts (Fig. 2b). With the most stable sounding, in exp. 5, the
cloud downdrafts (i.e. according to the definition in Section 2) do not extend below 2 km, and
only a very small amount of precipitation reaches the ground. The strongest upward velocities
in exps. 1, 4, and 5 are, respectively, 32 m sl 18 ms!, and 9 msl.

A comparison of the maximum upward velocity to the velocity that would have resulted
it all of the CAPE were converted to kinetic energy produces results similar to those of Zipser
and LeMone (1980) and Jorgensen and LeMone (1989). Using the CAPE for air at the surface,
the stronger updrafts achieve a greater fraction of the vertical velocity predicted from the CAPE.
For exps. 1, 4, and 5, respectively, the strongest upward velocities are 38%, 28%, and 18% of
the velocities 84 m s-1, 65 m s°1, and 49 m s°! predicted from the CAPE.

Because the mass fluxes shown in Fig. 2 are averages over space and time, and because
the vertical velocities are different for the three simulations, the mass fluxes do not necessarily
correspond to cloud radii. However, no cumulus parameterization is able to diagnose the cloud
radius accurately; for those parameterizations which require a cloud radius, most arbitrarily
specify one. One exception is that of Frank and Cohen (1987), who, assuming that increased
mass flux in a grid column is accomplished by larger clouds rather than by more updrafts, specify
an entrainment rate that decreases with an increasing mass flux. This is consistent with
traditional 1D cloud models, which use an entrainment rate that is inversely proportional to the
cloud radius. We might therefore expect exps. 1, 4, and 5 to have progressively larger
entrainment rates.

In fact, the updraft entrainment rates (Fig. 9) are nearly the same between 3 km and 7.5
km. (Below 3 km, the large entrainment rates at different heights for the three simulations
represent the air entering cloud base, while the cloud tops, where mass flux is small, produce
large fractional entrainment rates at different levels between 8 km and 14 km.) Although the
fractional entrainment rates are the same for the three simulations, the entrainment processes are
not identical. For exps. 1, 4, and 5, respectively, between 3 km and 7.5 km in height, 36%,
24%. and 12% of the mass flux entrained into the updrafts is in mixtures containing more than
90% environmental air. The larger and stronger clouds are better able to entrain nearly undilute
environmental air.

The conditional instability in the environment is different for the three simulations. When
the initial soundings are made more stable in exps. 4 and 5, the CAPE (Fig. 5b) is significantly
reduced for a parcel lifted from the surface, but the depth of the air with positive CAPE is
changed only slightly. Consistent with this, the interval in which the 6, of the entrained air is

nearly the same as the 6, of an equal mixture of updraft air and air from the undisturbed initial
sounding extends slightly higher for the more unstable sounding (Fig. 10), but the differences are



not as great as for the soundings with variations in the humidity in the middle and upper
troposphere (Fig. 4 and Section 3a). However, due to the higher cloud base, the height interval
in which updrafts in exp. 5 entrain air characteristic of the equal mixture is a smaller than for
exps. | and 4. Even within this height interval, 6, of the entrained air for exp. 5 is slightly

higher than that of the equal mixture, indicating that the weaker clouds are less able to entrain
undilute environmental air, as shown in the previous paragraph.

It appears that, when entrainment is defined, as stated in section 2a of Part I, as including
any clear air that becomes cloudy, then with a more unstable sounding, undilute, or nearly
undilute environmental air above cloud base can more easily be entrained. Entrainment, then, as
defined here, is not entirely a result of mixing between cloud and environment. Perhaps mixing,
not entrainment, is inversely proportional to cloud radius.

To investigate this, we compute the amount of environmental air that has mixed with
updraft air by adding the quantity T,V where V is the volume of a grid box, at all grid points

in which 0.01 < T,/p <0.99 and 0.01 < Ts/p <0.99. Using the subset of these grid points

which are in a cloud updraft gives the amount of environmental air that has mixed with updraft
air and been entrained into the updraft. Adding T,V over all grid points that are in a cloud
updraft gives the amount of environmental air that has been entrained into the updraft, with or
without mixing.

The results are shown in Fig. 11. (These quantities are assigned to the level at which the
air was detected at the end of each interval; the procedure, described in section 2a of Part I, for
assigning entrainment and detrainment rates to the correct levels was not used here.) The
fraction of mixed air that was entrained is not significantly different for the three simulations.
Averaged over the depth of the model, for exps. 1, 4, and 5, respectively, 32%, 32%, and 26%
of the environmental air that mixed air with updraft air was entrained into the updraft. We do
find substantial differences, however, when we compare the total amount of entrained air to the
amount of mixed air. For exps. 1, 4, and S, respectively, 28%, 20%, and 15% of the
environmental air that was entrained into the updraft had not been mixed before being entrained.
If we average over the height interval from 3 km to 7.5 km, where the entrainment rates are
nearly the same (Fig. 9), the results are more dramatic; in this height interval, 34%, 19%, and
8% of the entrained air had not been mixed. Stated differently, between 3 km and 7.5 km, the
ratio of environmental air that mixed with updraft air to environmental air that was entrained
into the updraft is 2.2, 2.8, and 4.3 for exps. 1, 4, and 5. Averaged over the depth of the model,
the same ratios are 2.2, 2.5, and 3.3. Therefore, for smaller clouds there is more mixing with the
environment, but not necessarily more entrainment.

This supports the approach taken by Kain and Fritsch (1990), except that they do not
account for undilute air joining the updraft above cloud base.

c. sensitivity 1o the buoyancy profile

The initial soundings in exps. | and 6 (Fig. 1a) are identical below 900 mb and have very
similar values of CAPE, as shown in Fig. 5b. (For a parcel lifted from the surface, the CAPE 1s
3488 for exp. 1 and 3375 for exp. 6.) With a more stable lower troposphere and a higher
tropopause, however, the buoyancy of an undilute parcel lifted from the surface in exp. 6 is
higher in altitude than in exp. 1 (Fig. 12). Using 1.5 instead of 3.0 for the parameter, o,
changes it from a value appropriate for a midlatitude continental sounding to one more
characteristic of a tropical maritime sounding (e.g. Binder, 1990; his Table 3).



Despite the similar CAPE and the higher tropopause, the convection in exp. 6 is much
weaker and slightly shorter than in exp. | (Fig. 2a), with a maximum upward velocity of 18 m s
I, compared to 32 m s for exp. 1.

To explain the weaker convection in exp. 6, we start by examining the properties of the
entrained and detrained air, particularly between 4 km and 6 km, where the space- and time-
averaged updraft mass flux is increasing with height in exp. 1 but decreasing with height in exp.

6 (Fig. 2a). This is near the 0°C level, where the two initial soundings differ the most (Fig. 1a).
In exp. 1, the entrained air and detrained air have nearly the same 0, at this level, and the
updraft 8, does not change much with height (Fig. 13a). Inexp. 6, in contrast, the detrained air
has a much higher 6, than the entrained air, and the average 0, of the updraft therefore
decreases with height (Fig. 13b). With a relatively low buoyancy in the lower troposphere in
exp. 6, only the most buoyant air can form a cloud, compared to exp. 3, in which air with a
relatively large range of buoyancies can ascend in the updraft. Updraft properties in exp. 1
therefore have a larger variance (Fig. 14a). Between 4 km and 6 km, values of 8, in the updraft
in exp. 1 as much as 13 K higher than the mean, which is 340 K (Fig. 13a), are evidence of a
nearly undilute core. The updraft in exp. I is detraining low-8, air from its periphery, while at
the same level in exp. 6, the updraft is more uniform, and air representative of the updraft is
being detrained.

Similarly, just above cloud base, where an undilute parcel is less buoyant in exp. 6 than in
exp. | (Fig. 12), the updraft in exp. 6 is detraining air with a 6, representative of the updraft,
while only the low-0, air is being detrained from the updraft in exp. 1 (Fig. 13). Airwitha
wider range of 8, is feeding the cloud updraft in exp. 1 (Fig. 14b), consistent with the greater
low-level buoyancy of the most unstable air.

Between 4 km and 6 km, the initial sounding in exp. 6 is warmer than in exp. 1, with the
same saturation level departure. Even though, at this level, there is no positive CAPE in the
initial soundings (Fig. 5b), exp. 6 does have a higher 8, than exp. 1. Consistent with this, the
updraft in exp. 6 is entraining air with a 0, close to that of an equal mixture of updraft air and

air from the undisturbed initial sounding (Fig. 10), unlike exp. 1, in which the updraft is able to
entrain only air which has been moditied by the updraft to a greater extent.

If we compare the rate of entrainment to the rate of mixing with the environment for the
updrafts in the two simulations, the greatest difference is that, in the lower troposphere, the ratio
of entrained air to mixed air is much smaller in exp. 6 (Fig. 11). This is partly because less of the
mixed air was entrained, and partly because less unmixed air joined the updraft.

By the time the updraft in exp. 6 reaches 9.5 km, where an undilute parcel would have a
greater buoyancy than one in exp. 1, it has already been weakened by entrainment and
detrainment to such an extent that it has a lower 8, than the updraft in exp. 1 (Fig. 13). The
buoyancy of an undilute parcel is therefore irrelevant at this height.

This comparison of exp. 1 and exp. 6 shows that, unlike Emanuel’s (1991) model,
whether or not cloud top is at the level of neutral buoyancy of an undilute parcel depends on the
low-level buoyancy. In practice, the soundings used to initialize exps. 1 and 6 could be
distinguished by following Blanchard’s (1998) advice that CAPE be computed in a 3-km thick
layer starting at the first level at which the density of a rising parcel would exceed that of its
environment.



4. Discussion and conclusions

The fact that the mass flux in the updrafts is determined partly by the depth of the layer
with positive CAPE, as shown in section 3a, has implications for the question, addressed by
Lucas ef al. (1994a, b, 1996) and Michaud (1996), of why midlatitude continental updraft cores
have larger vertical velocities than maritime tropical updraft cores. Fig. 15 compares the CAPEs
of air that originates at different levels in different types of soundings. The tropical soundings
are from the Australian Monsoon Experiment (AMEX) stage 1 (Frank and McBride, 1989), and
the GARP (Global Atmospheric Research Program) Atlantic Tropical Experiment (GATE)
cloud clusters, stage O (Frank, 1978). Midlatitude soundings are taken from the Preliminary
Regional Experiment for the Stormscale Operational and Research Meteorology Program
(PRESTORM; Cunning, 1986). The Oklahoma City sounding was taken ahead of a squall line
studied by Rutledge er al. (1988), Johnson and Hamilton (1988) and many others.

We see in Fig. 15 that the depth of the conditionally unstable air is much larger for the
midlatitude continental soundings than for the maritime tropical soundings. In particular, the
sounding from Woodward, Oklahoma, the same one used by Lucas ef al. (1994a; their Fig. 9)
has about the same maximum value of CAPE as the AMEX sounding, but it is obvious that,
with sufficient horizontal convergence over a deep enough layer, the Woodward sounding can
produce a cloud with more mass flux, and therefore a greater chance of including an undilute
core. Furthermore, any entrainment that occurs in the first few kilometers above the ground
would not decrease the buoyancy of the updraft as much as it would for the maritime tropical
soundings. Of course, a 4.5 km-deep layer of air with positive CAPE is not typical, but the
Oklahoma City sounding, with a maximum CAPE of over 4000, also has a deeper conditionally
unstable layer than does either tropical sounding.

Lucas et al. (1994a) suggested that midlatitude continental clouds have larger diameters
than do maritime tropical clouds because boundary layer eddies and hence the diameter of initial
cumuliform clouds scale with the boundary layer depth, which is larger over the continents. The
deeper conditionally unstable layer provides another possible explanation.

To simultaneously account for the degree of conditional instability in a sounding and the
depth of the conditionally unstable layer, a vertically integrated CAPE (Mapes, 1993) or a
generalized CAPE (Randall and Wang, 1992 Wang and Randall, 1994) may be useful.

Perry and Hobbs (1996) found that the methods developed by Bretherton and
Smolarkiewicz (1989) and Taylor and Baker (1991) successfully predicted the levels at which air
detrained from isolated cumulus clouds. We have seen here that the properties of the detrained
air are also variable. The clouds simulated in this study, unlike those in traditional 1D cloud
models, are not horizontally uniform. In particular, air detrained from clouds is not necessarily
representative of the cloud at that level. With the large low-level buoyancy that is characteristic
of mid-latitude continents, larger and stronger clouds, with nearly undilute cores, are generated,
and only the low-8,, air at the periphery is detrained. This influences the vertical gradient of the

horizontally averaged 6 in the cloud. Overa tropical ocean, with a more stable lower
troposphere, only the air with the highest CAPE can ascend in the clouds, and the clouds are
therefore narrower and more horizontally uniform, with more of the high-0, air mixing with the
environment and detraining.

We summarize our conclusions as follows.
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e Updraft entrainment rates are large near and above cloud base, through the entire depth of
the conditionally unstable layer.

e Stronger updrafts in a more unstable environment are better able to entrain relatively
undisturbed environmental air, while weaker updrafts can entrain only air that has been modified
by the clouds.

e When the maximum buoyancy is large, the updraft includes parcels with a wide range of
buoyancies, while weaker clouds are more horizontally uniform.

o Strong downdrafts originate from levels at which updrafts detrain, and their mass flux
depends on the mass flux of the updraft.

o The magnitude of mixing between cloud and environment, not the entrainment rate, varies
inversely with the cloud radius. How much of the mixed air is entrained depends on the
buoyancy.
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_1: Initial temperature and dewpoint soundings for (a) exp. 1 (solid) and exp. 6 (dashed), (b)
exp. 2 (solid) and exp. 3 (dashed), and (c) exp. 4 (solid) and exp. 5 (dashed). The
temperature soundings are identical for exps. 1, 2, and 3. The soundings are functions of
pressure; height, shown on the right side, is computed for the soundings shown by the solid
lines.
2: Horizontally averaged, time-averaged cloud mass flux for (a): exp. 1 (solid), exp. 2
(dashed), exp. 3 (dot-dash), and exp. 6 (dotted); and (b): exp. 1 (solid), exp. 4 (dashed),
and exp. 5 (dotted). Updraft mass fluxes are shown by the positive curves; downdraft mass
fluxes are shown by the negative curves
3 Fractional entrainment rates for the (a) updrafts and (b) downdrafts in exp. 1 (solid), exp.
2 (dashed), and exp. 3 (dotted).
4- Equivalent potential temperature of air entrained by the updraft (dashed) compared to an
equal mixture of updraft air and air from the undisturbed initial sounding (solid) for exps. 1,
2. and 3. The dotted curves are for an equal mixture of updraft air and environmental air,
which is computed as described in the text. For clarity, 4 K and 8 K have been added to the
pairs of curves for exp. 1 and exp. 3, respectively.
5- CAPE computed from the initial soundings of (a) exp. 1 (solid), exp. 2 (dotted), and exp.
3 (dashed); and (b) exp. 1 (solid), exp. 4 (dotted), exp. 5 (dashed), and exp. 6 (dot-dash).
The vertical axis shows the level of origin of the rising parcel.
6 Entrained (solid) and detrained (dashed) mass fluxes in the updrafts for (a) exp. 2, (b)
exp. 1, and (c) exp. 3.
7- Ratio of downdraft mass flux to updraft mass flux for exp. 1 (solid), exp. 2 (dashed), and
exp. 3 (dotted).
8: Average equivalent potential temperature for the downdrafts in exp. 1 (solid), exp. 2
(dashed), and exp. 3 (dotted).
9 Fractional entrainment rates for the updrafts in exp. 1 (solid), exp. 4 (dashed), and exp. 5
(dotted).
10: Equivalent potential temperature of air entrained by the updraft (dashed) compared to
an equal mixture of updraft air and air from the undisturbed initial sounding (solid) for exps.
1, 4,5, and 6. For clarity, 6 K has been added to the pair of curves for exp. 6.
11 Mass of environmental air that mixed with updraft air (dashed), mass of environmental
air that mixed with updraft air and was entrained into the updraft (solid), and mass of
environmental air that was entrained into the updraft, with or without mixing (dotted), for
(a) exp. 1, (b) exp. 4, (c) exp. 5, and (d) exp. 6.

12: Virtual temperature of air parcel minus environmental value for pseudoadiabatic ascent
from the surface, using the initial undisturbed soundings of exp. 1 (solid) and exp. 6
(dashed).

13: Equivalent potential temperature in (a) exp. 1 and (b) exp. 6 undisturbed initial
sounding (solid), updraft (dashed), entrained by the updraft (dot-dash), and detrained by the
updraft (dotted).

14 Probability density function of deviations of updraft 8, from its mean value for updrafts

at the same level, for exp. 1 (solid) and exp. 6 (dotted), for (a) the height interval from 3.9
km to 6.0 km, and (b) the height interval from the surface up to 3 km.



14

Fig. 15: CAPE computed from soundings observed at Woodward, Oklahoma, 0130 UTC 11
June 1985 (solid), and at Oklahoma City 2030 UTC 10 June 1985 (dot-dash), and for
composites of cloud clusters observed during GATE (dotted) and AMEX (dashed). The
vertical axis shows the level of origin of the rising parcel.



Table 1: Quantities used to compute initial

soundings.

LI

1 100 50 30 150

v
(9%

100 100 50 150

|9F)

100 200 10 150

(¥

(US)

5 200 50 30 250
6 100 S0 30 125 1.5

Py, Py, and Py are the saturation level

departures at the surface, the 0°C level, and the
tropopause, respectively.

Pyrop 1S the tropopause pressure.

o specifies the degree of conditional instability in

the lower troposphere, using Eq. 1.
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Fig. 1a: Initial temperature and dewpoint soundings for exp. 1 (solid) and exp. 6 (dashed). The soundings
are functions of pressurc; height, shown on the right side, is computed for the sounding shown by the

solid lines.
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Fig. 1b: Initial temperature and dewpoint soundings for exp. 2 (solid) and cxp. 3 (dashed). The
temperature soundings arc identical for exps. 1, 2, and 3. The soundings arc functions of pressurc,
height, shown on the right side. is computed for the soundings shown by the solid lincs.
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Fig. 1¢: Initial temperature and dewpoint soundings for exp. 4 (solid) and exp. 5 (dashed). The soundings
arc functions of pressure; height, shown on the right side, is computed for the soundings shown by
the solid lincs.
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Fig. 4: Equivalent potential temperoture of air entrained by the updraft (dashed) compared
to an equal mixture of updraft oir and air from the undisturbed initial sounding (solid)
for exps. 1, 2, and 3. The dotted curves are for an equal mixture of updraft cir ond
environmental air, which is computed as described in the text. For clority, 4 K and 8 K
have been added to the pairs of curves for exp. 1 and exp. 3, respectively.
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Fig. 7: Ratio of downdraft mass flux to updraft mass flux for
exp. 1 (solid), exp. 2 (dashed), ond exp. 3 (dotted).
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Fig. 8: Average equivalent potential temperature for the downdrafts
in exp. 1 (solid), exp. 2 (dashed), and exp. 3 (dotted).
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Fig. 9: Fractional entroinment rates for the updrofts in
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Fig. 10: Equivalent potential temperature of air entrained by the updraft (dashed) compared
to an equal mixture of updroft air and air from the undisturbed initial sounding (solid) for
exps. 1, 4, 5, ond 6. For clarity, 8 K has been added to the pairs of curves for exp. 6.
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Fig. 11: Mass of environmental air that mixed with updraft air (dashed), mass of
environmental oir that mixed with updraft air and was entrained into the updroft
(solid), and mass of environmental air that was entrained into the updraft, with
or without mixing (dotted), for (a) exp. 1, (b) exp. 4, (c) exp. 5, and (d) exp. 6.
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Fig. 12: Virtual temperature of air parcel minus environmental value, for
. pseudoadiabatic ascent from the surface, using the initial undisturbed
soundings of exp. 1 (solid) and exp. 6 (dashed).
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Fig. 14: Probability density function of deviations of updraft equivalent potential
temperature from its meaon value for updrafts at the same level, for exp. 1 (solid)

and exp. 6 (dotted), for (a) the height interval from 3.9 km to 6.0 km, and (b) the
height interval from the surface up to 3 km.
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Fig. 15: CAPE computed from soundings observed ot Woodward, Oklshoma, 0130 UTC
11 June 1985 (solid), and ot Oklahoma City 2030 UTC 10 June 1985 (dot—dash),
and for composites of cloud clusters observed during GATE (dotted) ond AMEX
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