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SOLVING UPWIND-BIASED DISCRETIZATIONS: DEFECT-CORRECTION

ITERATIONS

BORIS DISKIN* AND JAMES L. THOMAS?

Abstract. This paper considers defect-correction solvers for a second order upwind-biased discretization

of the 2D convection equation. The following important features are reported

1. The asymptotic convergence rate is about 0.5 per defect-correction iteration.

2. If the operators involved in defect-correction iterations have different approximation order, then

the initial convergence rates may be very slow. The number of iterations required to get into the

asymptotic convergence regime might grow on fine grids as a negative power of h. In the case of a

second order target operator and a first order driver operator, this number of iterations is roughly

proportional to h- 1/3.

3. If both the operators have the second approximation order, the defect-correction solver demonstrates

the asymptotic convergence rate after three iterations at most. The same three iterations are required

to converge algebraic error below the truncation error level.

A novel comprehensive half-space Fourier mode analysis (which, by the way, can take into account the

influence of discrctized outflow boundary conditions as well) for the defect-correction method is developed.

This analysis explains many phenomena observed in solving non-elliptic equations and provides a close

prediction of the actual solution behavior. It predicts the convergence rate for each iteration and the

asymptotic convergence rate. As a result of this analysis, a new very efficient adaptive multigrid algorithm

solving the discrete problem to within a given accuracy is proposed. Numerical simulations confirm the

accuracy of the analysis and the efficiency of the proposed algorithm. The results of the numerical tests are

reported.

Key words, convection, upwind-biased discretization, defect-correction iteration

Subject classification. Applied and Numerical Mathematics

1. Introduction. This is the first in a series of papers analyzing the efficiency of different iterative

algorithms solving upwind-biased discretizations of the convection operator. The model problem we study

in this paper is the 2D constant coefficient convection equation

(1.1) Lv_= v)v =F(x,y/,

where fi = (al,a2) is a given vector.

The solution U(x, y) is a differentiable function defined on the unit square (x, y) E [0, 1] × [0, 1]. In

this paper, we deal mostly with the homogeneous equation F(x, y) = O. Exceptions when non-homogeneous

right-hand side functions F(x, y) are considered will be emphasized specifically.
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Let ¢ be the non-alignment angle (another name which is common in CFD is thc angle of attack), i.e., thc

angle between the vector a and the positive direction of the x axis; t = tan ¢ = a2/al is the non-alignment

parameter. For simplicity we assume al _> a2 > 0 and, therefore, 1 > t > 0. Then, Eq. (1.1) can be rewritten

as

= F(x, Y)/V +(1.2)

where _ = _ isa variablealong the characteristicofEq. (1.1).

Eq. (1.1)is supplied with Dirichletboundary conditionsat the inflowboundary x = 0 and periodic

conditionsin the y direction.

(1.3) U(0, y) = g(y), U(x, y) = U(x, y + 1),

where g(y) is a given function.

This problem is discretized on the 2D Cartesian uniform grid with meshsizc h in both the x and y

directions. Let uil,, 2 be a discrete approximation to the solution U(x,y) at the point (x,y) = (ilh, i2h).

Then, the second order accurate discretization corresponding to the Van Leer's schemc with _ = 0 is defined

as

(1.4)

Lhu,,,. _=

1(LhuN,i2 -- 2_/]-¥-_h

i1= 1,2,...N-I, i2 = 1, 2,...N,

'tQl-t-l,i _ 3Uil,i 2 -- 51LQ_ l,i2 "_- UQ_2,i2 )

_-t(ltQ,i2+l-_-3UQ,i2--5UQ,i2_ l -_Uil,i2--2))

(31tN,i2 -- 4UN-l,i2 + _N-2,i_)

+t(3UN,i2 --4UN,i2-1+ UN,i2-2)) : fN,i2;

N = 1/h;

= fi_,i2 ;

uo,_2 = g(i2h), u-l,i2 = g'(i2h).

In computing L h at nodes with i2 = 1, i2 = 2, and i2 = N the vertical periodicity is employed.

The outflow boundary conditions at il = N are discretized by the second order upwind scheme. The

discretization of the right-hand side function is fil,i2 = F(il h, i2h)/vf_l + a_. Function g'(y) is an additional

numerical boundary condition. In model problems where the exact solution U(x, y) is known, one can define

g'(y) = V(-h, y).

The discrete scheme (1.4) is upwind biased but not a pure upstream scheme since for defining the

operator value at the point (il, i2), the solution values at the downstream points (il + 1, i2) and (il, i2 + 1)

are required.

1.1. Defect-Correction Schemes. The subject of this paper is the defect-correction method (see [6])

which is widely used to iterate non-upwind discretizations. Let our target discrete problem be

(1.5) Lhu_,,_ = fi_,,2,

where L h is a upwind-biased discretization of the convection operator (e.g., (1.4)).

Let Lsht be a stable (say, the first or the second order pure upwind) discretization of the same convection

operator and fii_,,2 be the current solution approximation. Then the improved approximation ui_,_2 is

calculated in the following two steps.



1. The correction v_l ,i2 is calculated by marching operator Lsht with a right hand side being represented

by the residual computed for the target operator L h with the current approximation. The inflow

boundary conditions for v are initialized with the zero values.

(1.6) hLstvil,i2 : fil,i2 - Lhuil,i2; V0,i2 : 0.

2. The current approximation is corrected

(1.7) fi_,_2 = ui_,i2 + vi_,i2.

The operator Lsht is called the driver operator. The steps (1.6)-(1.7) can be repeated until the desired

accuracy is reached.

In many papers (e.g., [5]), authors studying the defect-correction iteration for non-elliptic problems ob-

served a slow convergence or even divergence in some common error norms for the initial iterations and

good asymptotic convergence rates afterwards. This behavior is quite different from that demonstrated

by the defect-correction method in solving elliptic problems where the asymptotic convergence rate is the

slowest one. We realized that this "non-elliptic" feature is explained by some properties associated with the

cross-characteristic interaction (e.g, dissipation) in the operators involved in the defect-correction iterations.

Namely, this cross-characteristic interaction and the frequency of an incoming component define the pene-

tration distance (also termed "survival distance" in [4]) of this component. The penetration distance is the

distance from the inflow boundary on which the discrete solution of the homogeneous problem reasonably

approximates the continuous one (i.e., the Loo norm of the relative discretization error is essentially tess than

1). The ratio of penetration distances of the operators L h and Lsh determines the number of defect-correction

sweeps required to get into the asymptotic convergence regime. Moreover, comparison of the penetration

distances is a constructive and convenient tool allowing one to decide which grid is appropriate for a given

problem, provided information is known regarding flow direction variations, the frequency content of inflow

boundary conditions, the characteristic size of the domain, and the accuracy desired.

The analysis of the first differential approximations (FDA) (see [7]) to the operators involved in the

defect-correction iterations is presented in Sec. 1.2. It provides us with some qualitative description of

corresponding penetration distances. This analysis concludes that if the operators L h and Lsht have different

approximation orders (the case described in Sec. 2) then the efficiency of defect-correction iterations is,

actually, grid dependent. It means that the maximal number of sweeps which might be required to reach

the asymptotic convergence rate (or to reduce the algebraic error to the truncation error level) on fine grids

is larger than on coarse grids. This phenomenon relates to the fact that some smooth error components are

poorly approximated by the driver operator. In other cases, when the operators L h and Lsht have the same

approximation order (see Sec. 3), the defect-correction method can serve as a very efficient solver.

1.2. Poor Characteristic Component Approximation. The non-ellipticity of the operators to be

analyzed introduces a new issue in the standard discretization analysis common for elliptic operators. The

discretization error of a discrete elliptic operator regarding a given component is defined by (1) the operator's

approximation order and (2) frequencies of the component. For non-elliptic operators, the main factor is

(3) the penetration distance d of this component. The penetration distance of an incoming component

depends on its frequency w, i.e., d = d(cv). Note, that in the homogeneous differential problem (1.1)-

(1.3) all the incoming oscillations are translated along the characteristics without changing their phases

and amplitudes. However, on a grid non-aligned with the characteristic, any discretization unavoidably

introduces some numerical cross-characteristic interaction which damps amplitudes and/or shifts phases of



the incomingcomponents.A quantitativemeasureof thisnumericalcross-characteristicinteractionis the
coefficientofthelargestcross-characteristicderivativeappearinginthefirstdifferentialapproximationtothe
operatorunderconsideration.Whenthecross-characteristicinteractionisstrong,therearenoapproximation
propertiesprovidedbythediscreteoperatorbeyondsomeO (d) neighborhood of the inflow boundary. A

discretization is considered to be accurate with respect to a given incoming component if and only if the

penetration distance of this component is comparable with (or exceeds) the characteristic size of the domain.

Of course, the penetration distance of a given component increases on grids with smaller mesh sizes. The

coarsest grid on which the penetration distance approaches the characteristic size of the domain can be

considered as the optimal grid for resolving this component. The expected discretization behavior (i.e, the

discretization error of a p-th order accurate discrete operator is reduced by factor 2p when the grid mesh size

is refined to h/2) is observed only for grids which provide an accurate resolution for all the essential inflow

components.

Let L h be an accurate discretization with respect to some particular incoming component. To approxi-

mate the solution of L h operator by solving some less accurate operator Lst (with a correspondingly shorter

penetration distance), one has to iterate Lst as many times as needed to attain accuracy up to the L h

penetration distance. The following analysis shows that the required number of iterations depends on some

power of N, where N is the number of grid points in the characteristic direction. To be precise, the number

of iterations is proportional to Np+I, where p and r are the approximation orders of operators L h and Lst

respectively. Below, we derive the predicted dependence for a particular case where p = 2 and r = 1.

Before proceeding with the analysis, let us introduce a definition. The components which are much

more smooth in the characteristic direction than in other directions are referred to as the characteristic

components.

The target operator L h approximates the differential operator L from (1.1) with second order accuracy.

It means that its first differential approximation (FDA) is

FDA(L h) =O_-C2h2(an,, +O_B2(O_,a,)),

where C2 is a constant, r/= _ is the cross-characteristic coordinate and B2 (0_,(gv)is a linear combina-

tion of the second-order derivatives in _ and r/. For characteristic components (in terms of which 0 v >> 0_),

this approximation is simplified to

(1.8) FDA(L h) ._ 0, _ C2h20,,0.

Let the driver operator Lsh have the first order accuracy. Then, its FDA taken for the characteristic

components is

(1.9) FDA(Lht) _O,-ClhOv,,

where C1 is a positive constant.

We are going to perform a half-space mode analysis for the first differential approximations to the

operators L h and L.ht and demonstrate in this way that the driver operator L6ht (and the whole defect-

correction iterative process) is likely to approximate poorly some smooth characteristic components of the
second order solution.

Following [2] and [4], the half-space mode analysis presented in this section is focused on approximating

the characteristic components. It considers the discretizations of the homogeneous equation (1.1) on the half



¢

space _(x,y):x > O_ with boundary conditions (on x = 0) being represented by one Fourier mode e "_u at

a time. The purpose of this analysis is to estimate the penetration distance as a function of the incoming

oscillations.

For the driver operator, we seek a bounded differentiable function ¢(x, y) satisfying the following equation

and boundary conditions

(1.10) 0e¢ - ClhOo, ¢ = 0; ¢(0, y) = e i_u.

The exact solution can be written out as

where _ = a + ib is a complex number with a and b satisfying the system of the algebraic equations

Clh(a - b2)t + a = 0;2Clhabt + b = v_ + t2w.

From the system, a = O(h) and b = v/1 + t2w + O(h). Therefore, the leading term of the bounded solution

to (1.10)is

(1.11) ¢ _,_ e -Clh(l+t2)w2_+i_wv.

The factor e _(i_v) describes the exact solution of the continuous problem while the factor e -C1 h(1+t 2)_

is the influence of the numerical cross-characteristic interaction. In the case of the first order driver, this

is a dissipation which damps the amplitude. From (1.11), one can observe that the penetration distance

on which this damping becomes O(1) is proportional to d (1) - 1- _(---(3_' In a similar way one can derive

the penetration distance of a second order scheme, which is proportional to d (2) 1 For even order- _(Jh)_"
schemes, the only difference is that the numerical cross-characteristic interaction usually affects the phase

of the incoming component rather than the amplitude. The comparison of the penetration distances d (1)

and d (2) implies that the number N_,_p_ of defect-correction sweeps (1.6)-(1.7) needed to approximate the

incoming component eiwy to the second order accuracy is

d (2) 1

(1.12) N_ep_ "_ d(1) wh

It is obvious that this number increases when w tends to zero. On the other hand, if w is sufficiently small

(e.g., the component is nearly constant) then the penetration distance for any scheme covers the entire

domain and the desirable accuracy is achieved. This consideration implies that the worst case is the case

d (2) _-, R and d (1) << R, where R is a characteristic size of the domain (R = v_- + t2 in our problem). Thus,
1 2

on the given grid, the worst component is w _ R-_ h-_, and for this component

This meshsize dependence was first mentioned in [3]. It is really not very harmful and in many practical

calculations it can hardly be noticed. However, an accurate choice of data in the numerical experiments

allows us to observe this behavior.

_rther, in Sec. 2, a defect-correction method with the first order driver is considered. We introduce

another (nearly) precise discrete half-space mode analysis in Sec. 2.1 which then will be used to predict



theaccuracyandtheefficiencyof thedefect-correetioniterations(testedin Sec.2.3). Someanalytical
predictionsabouttheasymptoticconvergencerateof residualnormsaremadein Sec.2.2andarevalidated
in Sec.2.3. Thecomparisonof theanalyticalandthe numericalresultsforthedefect-correctionmethod
withasecondorderdriverispresentedinSec.3. A veryefficientadaptivemultigridalgorithmyieldingthe
approximatesolutionto adesiredaccuracyisproposedandtestedin Sec.4.

2. Defect-CorrectionMethod with First Order Driver (DC1). Thedriverusedin theDC1
algorithmis thefirstorderupwinddiscretizationoftheconvectionoperator(1.1).

1

il = 1,2,...N, i2 = 1,2,...N;

uo,i2 = g(i2h).

This scheme is stable for downstream marching. In our case of y-directional periodicity, the marching of this

scheme requires an implicit line-by-line rather than simple pointwise passage. The entire defect-correction

iterative process has already been defined above in Sec. 1.1.

2.1. Half-Space Mode Analysis. In this section we exhibit a discrete half-space mode analysis of

the defect-correction method which is distinct from the FDA analysis presented in Sec. 1.2: it considers

the discretizations themselves rather than their differential approximation. This tool is much more accurate

(and cumbersome at the same time). It can be used to explain in detail many phenomena observed in solving

non-elliptic equations and provides a close prediction of the actual solution behavior.

This analysis considers each discretization on the half space as it is, while the boundary condition is

represented by a Fourier component. In this way the original multidimensional problem is translated into a

1D discrete problem, where the frequencies of the boundary Fourier component are considered as parameters.

To regularize the half-space problem, the solution is not allowed to grow faster than a polynomial function.

The goal of this analysis is the comparison with each other of (1) the exact solution of the differential

problem, (2) the exact solution of the discrete problem and (3) the approximate solutions at different stages
of the solver.

2.1.1. Exact Solutions and Discretization Error. Choosing the domain to be {(x, y) : x _ 0}, for

each Fourier frequency w2, the differential problem (1.2), (1.3) can be reformulated in the following way:

find function U(x, y) such that

O_U = i&e i(_lx+_'y), U(O, y) = ei_2_,

where & = (wl + twa)/v/-i + t 2 is the characteristic frequency (fl_ _ 0 for characteristic components). The

exact solution of this problem is U(x, y) = e i(wIx+wau).

The discrete counterpart is

(2.2) Lhuit,i2 = ifl{ ei(flli*+flai=), uo,i= = e iflai=, U-l,ia = e i(-_l+flaia) ,

where L h is the target discrete operator, Q1 = 021h and _2 = w2h are normalized frequencies.

We seek a solution of the discrete problem in the form



(2.3) u_1,_2 = ¢,1ei_i2"

Then, the problem (2.2) can be reformulated for 8il as

(2.4)

(2.5)

where

a-2(_2)¢il-2-t-a-l(_2)¢il-1 _- ao (_'_2)¢il + al (_2)¢i1+1

¢0 = 1, ¢-1 = e -in1,

(2._)

= V_ + t2hi_e'_;

o_.(..)--
a-1 gt2 = _,

() )ao _2 = _+_ e -i2_-5e -_n2+3+e _2 ;

1

The solution to (2.4), (2.5) is given by

(2.7) ¢_-_Woeifllil-_ (1-Wo)(Cor_ 1 -FClr_),

where r0 and rl are the roots of the cubic equation

satisfying to }r] _ 1,

a-2 (_t2) + a-1 (_2)r + ao (_t2)r 2 + al(fl2)r 3 =0,

Wo = v_ + t2hi_ .

a-2(_2)e -_2_ -_a-l(_2)e -_ + ao(_2) -_-al(_2)e '_

C1 =

e'_l(ro--rl)"

We avoid here considering in details the exceptional cases where either the denominator in the expression

for W0 turns out to be zero or r0 = rl. In these cases, the form of the solution (2.7) remains the same while

W0 and/or Cj(j = 0, 1) might turn to some linear functions of il.

Thus, the discretization error is calculated as

: (1-Wo) [ei_lQ -Cor_l -Clr_l]ei_2'2;



2.1.2. DC1 Iteration. Let the boundary conditions be represented by a discrete Fourier mode e iflai2.

Then, the first order driver operator can be rewritten as

where fii_,i2 = ¢_ileifl=i2 is an approximate solution and

The general form of components appearing at any stage of the defect-correction iteration is

(2.8) P( i l )qq ei_2_ ,

where P(il) is a complex-coefficient polynomial of i l and q (Iql -< 1) is the base of the given component. This

form is invariant under all the transformations occurring in the DC1 iteration. In fact, for any component, the

only part to be changed is the polynomial P(il) which will be referred to as the amplitude of the corresponding

component qil eia2i=. This allows us to analyze separately any building block of this algorithm, such as the

calculation of residual or solving the driver equation. The underlying idea is to use computer capabilities

already at the step of deriving an analytic representation for the current solution approximation. We actually

analyze the response of each building block to an input component in the form (2.8). The output of the

block is formulated in the same form (2.8), except that the block may produce several output components,

differing in their bases q and/or frequencies _2-

Usually, the initial solution approximation satisfying the boundary conditions cannot be represented as

a sum of a finite number of components in the form (2.8), e.g., the zero approximation inside with given

(non-zero) boundary conditions at il = 0 and il -- -1. In this case, the collection of analytical components

(2.8) well describes the distant behavior of the approximation while an adjustment is still needed in the

neighborhood of the boundary. The approximation in the neighborhood is given by an additional pointwise

component

{ Bi_e i_2, 0<il <_No0 otherwise,

where Bil is a complex-valued vector of the length No. No = 0 at the beginning for many reasonable

initial approximations including (1) zero approximation, (2) solution of the driver equation, and (3) solution

interpolated from the coarse grid in the framework of a 2-level multigrid solver. Then, No is increased by

1 in each DC1 iteration. The segment 0 < il _ No we will call the pointwise representation region and the

vector B will be called the pointwise amplitude while the domain No < il will be referred to as the analytic

representation region.

Thus, the first necessary step in analyzing how the DC1 iteration affects the given approximation is to

separate all the components (including the pointwise component) in the approximation.

Let vil,i2 = P(il)qi_e if_2i2 be a particular component of the current solution approximation. We are

going to trace all the changes happening with the amplitude P(il) of this component in a DC1 iteration. The

changes in the pointwise component will be emphasized as well. An example of the DC1 iteration analysis

will be presented below in this section.



Taking Residual.. The residual amplitude R(il) of the component v_1,i2 is calculated as

R(il)=A h_ a-2 _2 q-2p(il-2)+a-1 _2 q-lP(il-1)

where A = i_ if qilei_2i2 is the right-hand side component (q = ei_), otherwise A = 0.

Let N_ = No + 2 and Bil = O, il > No. Then, the pointwise residual function is computed in thc

following way

() () (
1 a-2 122 So+a-1 _2 Bi_-i +ao _2 Bi_ +al _2 Bil+l, il = 2;

0, otherwise.

where S-1 and So are the boundary conditions (at il = -1 and il = 0 respectively) in the problem associated

with the pointwise representation region.

Correction Calculation.. The amplitude C(il) of the correction to the component vi_,i2 is calculated

from the equation

If vil,i2 is not an eigencomponent for the driver operator (q _ dl -- -do(f_2)/d-l(f_2)), then the power of
/

the polynomial C(il) is the same as of the polynomial R(Q); otherwise the C(il) power is higher.

To satisfy the zero conditions at the incoming boundary il = 0 which accompany the correction equation,

one has to complete the correction with the eigencomponent Do_ _e i_2i2 with the amplitude

D0 = -C(0).

The pointwise correction CP t is calculated from the following system of linear equations.

/ pt

CN; = 0

The amplitude D1 of the accompanying eigencomponent is computed by

h14i--4- Rr t ()-do f12 C_ t

D1 = - d-1(_2)
\/

New Amplitude.. The new amplitude/5(il) of the component vi_,ia is calculated as

D(Q) = P(il) + C(il).

The corrected pointwise amplitude/3i_ and the new boundary -f/0 of the pointwise representation region are

= + c t;  o=No+l

The amplitude D(il) of the eigencomponent is also changed to D(il)

/5(il) = D(il) + D0 + D1.



2.1.3. Discretization of Outflow Boundary Conditions. The discretization of the outflow bound-

ary conditions can be taken into account as well. Discrctized outflow boundary conditions usually imply

some special discretization stencil different from that in the interior. In order to incorporate this feature

into the analysis we have to introduce another pointwise representation zone near the outflow boundary. In

other words, an additional pointwise component is required to make the half-space analysis be precise for all

the y-periodic problems. In the analysis tests below (Sec. 2.3.1) we did not implement this adjustments. It

was realized that the analysis is actually precise even without this special care about the outflow boundary
conditions.

2.1.4. Example of Analysis. Let us consider the homogeneous problem (_ = 0) with boundary

conditions given by (2.5) and the zero initial approximation inside of the half-space 0 < il. At the beginning

the only component involved in calculation is the zero-length (No = 0) pointwise component. The problem

associated with this component is

So = 1, S-1 = e -_nl

1. The extended boundary of the pointwise approximation region is N_ -- 2.

2. The residual function is

{ nl pt _-- hv/_(a_2(_'_2),_l _-a-l(_2)So);

R pt 0, 2 < il.

3. A non-zero correction proves to be only at point il = 1

ClPt= h 1Y/_-_npt.

(n2) '

B 1 = cpt;

N0=l;

The eigencomponent is introduced with the amplitude

hl_-_-_R pt - d0 (__2) C1 pt

D1 =

4. The approximation obtained at the end of the first DC1 iteration is

Uil,i 2 _ 0(il)e ia2i2

Did1 + B1,Q(il) = Dldill '

5.

il = 1;

il > 1;

On the next iteration the initial approximation contains the eigencomponent with the amplitude

D(il) -- D1. Therefore, the boundary conditions in the problem associated with the pointwise

component is changed to

So = 1 - D(0), S_1 = e -'nl - D(-1)/dl.

10



Thecalculationscanbecontinued.Approximationsobtainedin theseiterationscanalwaysberepre-
sentedas

f_il,i_= Q(il) ein2i2,

{ D(il)d_ _+Bil, 1 <_il <_No;Q(il) = D(il)dill, No < il;

2.1.5. Algebraic and Total Errors. Let additional component wi_,i2 = W(il)e m_il e i_2_2 be involved

into the calculation due to the right-hand side function; then, after any iteration the current approximation

representation is a sum of this component, the cigencomponent di_,i2 = D(il)_e in_i2, and the pointwise

component. Thus, the current solution approximation is

(2.9) fiil ,i: = Q(il)e ia_i_ ,

{ W(il)e ialit + D(il)d_ _ + Bil, 1 <_ il <_ No;Q(il) = W(il)e i_li_ + D(il)d_ _, No < il.

The algebraic error function which is the difference between the exact and approximate solutions of the

discrete problem is given by

(2.10) fiil,i2-uil,i2=[Q(il)-(Woei_'il-l-Cor;l+Clr_l)]e i122i2 .

The total error function defined as the difference between an approximate solution of the discrete problem

and the exact solution of the differential problem is calculated as

(2.11) ui,,i2 - U(ilh, i2h)= [Q(il)- em'il] eia2i2.

Involving other components, either due to a non-zero initial approximation or since the algorithm itself

produces additional components, extends the number of items in (2.9) with straightforward changes in the

algebraic and total error expressions (2.10) and (2.11).

2.2. Convergence in Residual Norms. The matrix analysis described in this section can be con-

sidered as the asymptotic case of the half-space analysis (with the discretized outflow boundary conditions)

exhibited in Sec. 2.1. In this asymptotic regime, the pointwise representation region covers all the domain.

Let the problem (1.1)-(1.3) be defined on a layer (x, y) E [0, 1] x (-oc, +oo) with the input data (functions

F(x, y) and g(x, y)) such that the function U(x,y) = O(x)e i"_y is the exact solution of the problem. The

approximate solution of the corresponding discrete problem (1.4) is sought in the form (2.3). The problem

for the discrete function ¢i_ is derived similar to the problem (2.4)-(2.5)

¢0 : _(0), ¢-1 _- O(-h),

(2.12) a-2(_2)¢il-2 + a-I (Q2)¢i1-1 + ao (f_2)¢il -t- al (ft2)¢il+l

= h l_/i--_(Ox(ilh)+ itwO(ilh)), il = 1,... ,N- 1;

b-2 (f_2)¢N-2 + b-1 (f_2)¢N-1 + bo (fl2)¢N = h lx/i-_(_x(1)+ ita;(I)(i)).

Fhmctions aj (j = -2, -1, 0, 1) are defined in (2.6),

11



(2.13) b_l(n ) = -2;

bo _2 = -_ +-_ e -i2n_ -4e -in2+3 .

Let the N-dimensional vector ¢= (¢i_), (il = 1,...,N) be an approximate solution to (2.12) with the

orror:

where _ is the exact solution to (2.12).

The correction (_ = (5i L_ is calculated from the linear system of N equations
k /

D5 = -Te,

where N-by-N banded matrices T and D correspond to the target operator and to the driver operator

respectively.

ao al 0 0 0 ... 0 0 0 0

a-1 ao al 0 0 0 0 0 0

a__ a-1 ao al 0 0 0 0 0

T= 0 a-2 a-1 ao al 0 0 0 0 ,

0 0 0 0 0 a-2 a_l ao al

0 0 0 0 0 0 b-2 b--1 bo

D =

do 0 0 -.. 0 0 /

d-1 do 0 -.. 0 0

0 d_l do ... 0 0 .

0 0 0 .-. d-1 do

Then, the amplification matrix Ge of the defect correction iteration

en_w = G_

becomcs

G_ = I - D-1T.

Since the residual is usually used in practice to monitor the error, we can modify G_ to measure the residual

reduction, as

G,. = TG_T -1

so that

_new = Gr _

12



where

= -T_

represents the discrete residual. If we wish to bound the amplification of the residual, we could use the

spectral radius of Gr (p(Gr)) or the n2-norm of the matrix Gr (llGrtl2 = v/p(G*G_)). The spectral radius

p(Gr) is usually referred to as the asymptotic convergence rate, i.e., the rate corresponding to a large number

of iterations. The L2-norm (11G_112) indicates the "worst" possible convergence rate.

2.3. Numerical Tests.

2.3.1. Verification of Analytical Predictions: Discretization Accuracy Test. The discrctiza-

tion accuracy of an operator on the grid of meshsize h for a characteristic component c_(_1_+_2_) (where

wl + tw2 _ 0) is defined by the penetration distance of this component. (See Sec. 1.2.) The first differential

approximation to the target second order accurate discrete operator (1.4) is defined by

FDA(L h) : Ox + tOu

For characteristic components, it turns to

(2.14) F A(L ):0,

121v,I-+-_

h2 (-?+t)O,,,,
12(1 + t2) 2

where the non-alignment parameter t and the characteristic variables _ and _1are defined in Sec. 1. Notice,

when t _ 1, the coefficient of the third derivative with respect to _ vanishes in the FDA and the next term

(the fourth derivative) becomes important.

In the general case 0 < t < 1, the discretization error of L h (DE(Lh)) can be approximately calculated

from the asymptotic solution of the half-space problem associated with (2.14). The derived estimate is

where

(2.15)

DE(L h) = c{(_+_2Y) (1- e-£ ),

--i12v_ + t 2

DEFINITION 1. We say that a discretization has the accuracy e for the given characteristic component

with the inflow y-directional frequency w2 on the distance 6 (measured along the characteristic) from the

boundary if the following inequality holds

(2.16) 1-c-_ <e, for _<6,

where d is the normalized penetration distance of the given characteristic component. Note, that e defines

the relative accuracy, hence 0 < e < 1 and e _ 1 indicates very poor accuracy. For operator (1.4), d : d2

and the penetration distance of the e-accuracy is estimated from (2.16) as

(2.17) 62 : td21 arecos(1 - e2/2).
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TABLE 2.1

Penetration distances (in rneshsizes) of the 1% accuracy.

t 032

Penetration distances

27r

4rr

0.2 87r

107r

167r

2_r

4re

0.6 8rr

10_r

167r

2_r

4r

0.8 87r

10_r

16_r

target operator

256 256 256

256 256 256

256 256 256

256 256 256

82.564 81 81

256 256 256

256 256 256

256 256 256

169.092 162 162

41.282 37 37

256 256 256

256 256 256

256 256 256

225.456 181 181

55.043 35 35

driver operator

_N

139,034 139 139

34.758 34 34

8.69 8 8

5.561 5 5

2.172 2 2

34.758 34 34

8.69 8 8

2.172 2 2

1.39 1 1

0.543 0 0

23.172 23 23

5.793 5 5

1.448 1 1

0.927 0 0

0.362 0 0

The first differential approximation to the first order accurate driver operator (2.1) taken for the char-

acteristic components is given by

h

__0, ,(1+,,),(,,+,)00,,

+t'
(2.18) dl =

and the e-accuracy penetration distance is

(2.19) '_1 = -dl In(1 - e).

The first test we perform to validate the discrete half-space analysis from Sec. 2.1 and analytical

expressions (2.17) and (2.19) for penetration distances of characteristic components. We calculate penetration

distances of c ----0.01 accuracy for different values of t and w2 for operators (1.4) and (2.1). Our aim is to

comparc the following distances from the boundary (measured in meshsizes) : (1) calculated by formulas

(2.17) and (2.19) ((f(j) = _j/v/1 + t2/h, j = 1, 2), (2) derived from the half-space analyses from Sec. 2.1

(_)) and (3) computed in direct numerical simulations (5(_)). In analytical calculations, the exact solution

of thc differential problem (1.1), (1.3) is always assumed to be e i'_2(-tx+y). In direct numerical simulations

the exact solution has been chosen to be sin(w2(-tx + y)). The numerical distance is considered to be rn

if the Loo norm of the discretization error on (m + 1)-th vertical line is greater than 0.01. The simulation

grid is 257 x 257. If in analytical calculations the result exceeded 256 (the penetration distance covers all

the domain) it has been set to 256. Table 2.1 contains the test results. The two obvious conclusions are

14



1. The discrete half-space analysis is actually precise. In all the tests, the results predicted by this

analysis and obtained in real numerical calculations coincide.

2. The inequality (2.16) provides a good estimate of the penetration distance, especially, for the first

order operator or for small angles of attack (t _< 0.6). Some deterioration in predicting the second

order operator penetration distances for nearly diagonal alignment is explained by the fact that the

penetration distance in case of 45 ° angle of attack (t -- 1) is determined by the third order term

which is not taken into account in calculating d2. Nevertheless, the estimate obtained from (2.16)

seems to be reliable to predicting the key property: whether the penetration distance is comparable

with (or larger than) the characteristic size of the domain. Moreover, it gives us a possibility to

estimate the ratio between the penetration distances of the target and driver operators even on very

coarse grids where one of the distances (or both of them) is shorter than one mesh size.

2.3.2. Convergence to Within the Given Accuracy. Let function U(x,y) -- e i(_lx+_2_) be the

exact solution of (1.1) and (1.3). We can reformulate the discrete problem in the following way: we are

looking for a discrete function _1,_2 (an approximate solution to (1.4)) that possesses the total error (in the

Loo norm) which is not greater than given e, i.e.,

max - V( lh, i2h) < e.

In order to find such a solution, the discretization error of the target operator, of course, should satisfy

(2.20) - V(i h,  2h) < e,

where _2i_,i2 is the exact solution of (1.4). This, in particular, implies that the target operator penetration

distance _2 of the e-accuracy on the uniform grid with spacing h for incoming frequency w2 is larger than

the characteristic size R of the domain (R = v_ + t 2 in our case). The condition (2.20) actually defines the

coarsest possible grid on which the desired e-accuracy can be achieved. The goal of converging within the

discretization error, which is typical in FMG type algorithms, can be considered as a particular case where

e is the target operator discretization error.

The analysis from Sec. 2.1 provides us with an upper bound & for frequencies of incoming Fourier modes

w2 satisfying (2.20). The same analysis predicts the number of defect-correction sweeps N_p_ required to

achieve an approximation possessing the e-accuracy. Both & and N_,,eeps depend, of course, on the mesh

size h of the given grid, on the desired accuracy e, and on the non-alignment parameter t.

Fig. 1 demonstrates the typical behavior of w and Nsweeps as functions of the mesh size h. In all the

experiments we performed, the l%-accuracy (e = 0.01) was picked on. The choice of angles of attack was

representative. For simplicity, we always started from the initial approximation in the interior of the domain

(il > 0) obtained from the solution of the driver operator.

The results corroborate the conclusions made in Sec. 1.2 about the growth of the number of cycles

required to achieve an approximation possessing the e-accuracy. For obviousness we added to the lower plot

on Fig. 2.1 the solid line corresponding to the function h-Wa.

The practical conclusions are the following.

1. The number of DC1 iterations required to achieve a given accuracy grows as some (negative) power

of h (approximately h- _).

2. For any given (continuous) boundary conditions, the analysis is able to provide predictions of the

grid required to solve this problem to a desired accuracy and how many defect-correction sweeps

should be performed to achieve this accuracy.
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3. If the flow direction is variable, one should select & and NBw_ps such that cO satisfies (2.20) for all

the possible angles of attack and Nsweeps iterations provide the desired accuracy for characteristic

components with the incoming frequency cOfor any possible t.

4. A smart choice of the initial approximation (e.g., the initial approximation being interpolated from

the coarse grid in the framework of an FMG solver) can sometimes reduce Ns,,,eeps but the qualita-

tive behavior remains the same: the number of required defect-correction iterations grows as some

negative power of h in passing to finer grids.

There are several ways to change the algorithm in order to get Nsw_p_ independent on the meshsize h:

1. The first possibility which is studied in Sec. 3 is to apply a driver of the same approximation order

as the target operator. This cure is actual only for second order operators since for higher-order

scheme there are no stable upwind discretizations.

2. The second way is to use a predictor-corrector technique for solving the target operator. This method

suggests some marching along the flow direction. If this is possible (there arc no recirculation zones),

then this approach is, probably, one of the best allowing to achieve an optimal efficiency.

3. The third method is a smart multigrid algorithm which employs the coarse-grid operators approxi-

mating the characteristic component FDA of the target operator.

The two latest approaches are the subjects of future papers.

Before going to the defect-correction scheme with the second order driver we consider the asymptotic

convergence of the first order driver scheme.

2.3.3. Asymptotic Convergence. First of all wc believe that the most important characteristic of the

solver efficiency is the ability to fast solve the problem to the desired accuracy. The fact that the accuracy
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FIG. 2.2. DCI: residual convergence rate history.

has already been reached can be established from the comparison of the solutions on grids with different

meshsizes. In this view, delivering the residuals to the computer zero is less important. Other criteria (rather

than the vanished residuals) should be used to decide on stopping iterations on the given grid and passing

to a finer grid. However, the principal possibility to drive residuals to the computer zero is considered to be

useful. Tests below demonstrate that DC1 iterations possess this property.

It was observed by many researchers that the asymptotic convergence rate of the defect-correction solver

for (1.4) is about 0.5 per iteration. (In [5], authors emphasized that the asymptotic convergence rate can

somehow deteriorate for the central and the pure upwind target discretizations.) This asymptotic convergence

rate can actually be further improved by a proper residual weighting ([1] suggests the weight 2/3 for the pure

upwind operator). However, we already mentioned that this good convergence rate is only achieved after

many sweeps with a much poorer convergence. Fig. 2.2 demonstrate the residual convergence history for

different representative vales of the incoming frequency w2 and the non-alignment parameter t. In the legend,

the corresponding amplification factors (the asymptotic convergence rate (p(G_)) and the convergence rate

bound (IIG_II2)) calculated by the methodology explained in Sec. 2.2 are shown. In all the numerical tests

performed for the homogeneous problem (1.4) (fi_,i2 = 0) on the uniform grid with meshsizc h = 2 -_, the

iterations was stopped when the residual L2 norm became less than 10 -m. The results of the tests can be

summarized as following.

1. The asymptotic convergence rate is always good enough and the p(Gr) estimate is its accurate

prediction. However, this good convergence is manifested only either on very fine grids or after a

lot of iterations.

2. The bound JlG_1t2is not very sharp in the presented tests. The full space Fourier analysis (eliminating
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the characteristic components from the consideration) gives a similar estimate (see [5]). It, probably,

means that in order to observe this "worst" behavior one should test non-homogeneous problems.

3. Thc number of sweeps required to get into the asymptotic convergence regime is roughly propor-

tional to the ratio min(R, d2)/dl, where dl (2.18) and d2 (2.15) are the first and the second order

penetration distance parameters respectively. This number grows roughly as h -1/3 in passing to

finer grids.

4. For any given incoming frequency w2, there is a grid with small enough meshsize h (dl -- O(R)) on

which the defect-correction iterations demonstrate the asymptotic convergence rate from the very

beginning.

3. Defect-Correction Method with Second Order Driver (DC2). The second order accurate

upwind discretization is defined as

(3.1)
Lnuil'i_ - 2_h 3Uil,i2 -- 4_i1-1,i 2 -_- Uil-2,i2

+t(3uil#_- 4Ui1,i2-- 1 "_-Uil,i2_2)l;

il = 1,2,...N, i2 = 1,2,...N;

uo,,2 =- g(i2h), u-1,_2 = g'(i2h).

It is stable in marching and can serve as a driver for the defect-correction iterations.

We tested the DC2 iterations for the same test-cases as in See. 2. In all the experiments on all the

grids, the number of DC2 iterations required to get 1% accuracy did not exceed 3 (including the first sweep

marching the driver operator (3.1) to obtain the initial approximation). The residual convergence rate history

shown on Fig. 3.1 confirms the predicted efficiency of the defect-correction method with the second order

driver and demonstrates the reliability of the residual convergence analysis introduced in Sec. 2.2.

4. Adaptive Multigrid Algorithm (AMA). Any adaptive multigrid solver is usually required to

make two important decisions. The first is to decide on stopping iterating on the given grid and proceeding

to the next fine grid. The second issue is to realize that the required approximation is achieved and finish

its work.

Some prior information being incorporated into the solver can improve its performance a lot. For

example, if the amplitudes of all the significant (for the given _-accuracy) Fourier components of the inflow

boundary conditions can be estimated, then many calculations can be performed in advance. In particular,

using the half-space analysis for the highest frequency essential Fourier component, one can find the optimal

grid spacing h and the number of the defect-correction iterations on that grid required to achieve the desired

accuracy. Then, a single-grid algorithm performing the necessary Nsweeps iterations seems to be the optimal
solver.

For general boundary conditions, this approach does not work. In case of general boundary conditions,

however, all the decision should be done "automatically" employing only the data computed during the

solution process. The algorithm we propose in this section is based on the rite multigrid methodology where

the comparison between solutions on different grids becomes a criterion for stopping further refinement.

The adaptive multigrid algorithm solving the problem to the _-accuracy can be recursively defined in the

following 5 steps:
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1. Let U 2h be the solution on the grid with meshsize 2h. On the grid with meshsize h for the given e-

accuracy, the highest possible incoming frequency & for which this accuracy is achievable is calculated

from the half-space analysis. The required number of the sweeps gsweeps is defined as well.

2. The initial approximation on the interior of the h-grid is obtained by (bilinear) solution interpolation

from the 2h-grid.

3. One defect-correction iteration is performed and an approximate solution fih is obtained.

4. If the L_ norm of the difference between fih and u 2h is less than e then fih is the final solution.

Solver finishes its work.

Otherwise, additional defect-correction sweeps are performed. The iterations on the h-grid are

stopped when either the Loo norm of the difference between the two successive approximations

becomes less than e or the total number of sweeps (including the first one performed in the Step 3)

reaches the corresponding h-grid Nsweeps. In fact, as one can see from the numerical tests below,

the latter tolerance was reached only on relatively coarse grids, where the target discretization has

no accuracy at all. The last approximation is considered as the h-grid solution u h.

5. h replaced with h/2. Go to Step 1 for the next fine grid.

Table 4 collects & and Ysweeps values on grids with different meshsizes h for e -- 0.01. In this table,

& is the highest frequency resolved in the target second order operator on the h-grid to the e-accuracy for

any angle of attack (0 < t < 1) and Nsweeps is the number of DC1 sweeps ensures the convergence within

this accuracy. We found from the analysis and checked in numerical tests that on grids with h > 2 -7 the

maximal cross-characteristic interaction defining _0 is observed for the diagonal alignment case (t -- 1) while

on the finer grids the strongest interaction occurs at t _ 0.6. The maximal Nsweeps is always found at the

diagonal alignment.

If the driver is second order accurate then on all the grids the number of required DC2 sweeps is bounded

to Nsweeps ---- 3.

The Figs. 4.1 and 4.2 demonstrate the performance of AMA based on DC1 and DC2 defect-correction
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Limits for iterating DC1 scheme on different grids.
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FIG. 4.1. DCI: Adaptive multigrid algorithm (DC1-AMA).

iterations. The input data were chosen so that the function U(x,y) = sin(w2(y-tx)) is the exact solution of

(1.1), (1.3). The non-alignment parameter was set to t = 0.8. We tested ""different frequencies w2 providing a

smooth solution to the problem with y-periodic boundary conditions for which the l%-accurate solution can

be obtained on a grid with h _> 2 -9. The vertical coordinate on the figures marks (logarithm of) the total

error and vertical lines separate the results corresponding to calculations on different grids. The first value

on each grid (except the coarsest grid) is the value of the total error after the solution interpolation from the

previous coarse grid. All the next values indicate the total error after the corresponding defect-correction

iterations. The adaptive algorithm proved to be quite efficient requiring one extra level iteration at most to

ascertain that the l%-accuracy is already achieved. This is a very reasonable cost equal to the cost of few

additional sweeps on the coarsest possible grid where the l%-accuracy could be reached.

The small number of iterations performed by DC1-AMA on the fine grids does not disprove the claim

that the number of required iterations might grow on the fine grids. The accuracy considerations make sense

only for differentiable solution. The three solution conditions (the vertical periodicity, the 1%-accuracy on

a grid with h _> 2 -9 and the differentiability) together leave us just a few allowed components (only those

with w2 -- 27rk, k -- 0, 1,2,3, 4, 5, 6). Therefore, we have no chance to approach on the tested grids the

&-component which realizes this predicted behavior. Of course, on finer grids the expected behavior is much

likely to be manifested.

The efficiency of DC2-AMA seems to bc nearly optimal.
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5. Conclusions. To summarize the practical results of the research reported in this paper wc make

the following conclusions:

1. The efficiency of the defect-correction method with the first order driver is grid dependent. The

number of iterations required to reach the desired accuracy (or the asymptotic convergence rate

regime) might grow on the fine grids (roughly as h-½ ).

2. Using the second order driver in the defect-correction iterations eliminate this dependence resulting

in a very efficient solver. We are aware that in many cases the choice of the first order driver

is dictated by external reasons. For example, in solving discretized multidimensional hyperbolic

systems of equations where downstream marching is impossible, first order schemes arc considered

to be much easier to solve than higher-order schemes. Nevertheless, we believe that even in such

cases the opportunity of employing the second order driver should be carefully studied.

3. Any robust solver using defect-correction iterations should adopt the adaptive multigrid approach.

Several further simplifications can be suggested on this way. For example, if the boundary conditions

and/or the problem geometry prove to be too complicated, so that it seems hard to estimate Nsweeps

on each grid, then the second criterion in Step 4 for stopping iterations on a given grid (performing

all Nsweeps iterations) can be omitted. In many cases this results in some additional work on coarse

grids but does not affect the total work count.

4. The discrete half-space analysis described in Sec. 2.1 is an accurate and very efficient tool for

predicting actual solution behavior.

5. The defect-correction iterations converge residuals to the computer zero. The asymptotic conver-

gence rate and an upper (but not the sharpest) bound can be calculated by means of the matrix

analysis reported in Sec. 2.2
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