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Abstract:

The Earth’s land surface, including its biomass, is an integral part of the Earth’s weather and climate
system. Land surface heterogeneity, such as the type and amount of vegetative covering, has a profound
effect on local weather variability and therefore on regional variations of the global climate.

Surface conditions affect local weather and climate through a number of mechanisms. First, they
determine the re-distribution of the net radiative energy received at the surface, through the atmosphere,
from the sun. A certain fraction of this energy increases the surface ground temperature, another warms
the near-surface atmosphere, and the rest evaporates surface water, which in turn creates clouds and causes
precipitation. Second, they determine how much rainfall and snowmelt can be stored in the soil and how
much instead runs off into waterways. Finally, surface conditions influence the near-surface concentration
and distribution of greenhouse gases such as carbon dioxide.

The processes through which these mechanisms interact with the atmosphere can be modeled mathe-
matically, to within some degree of uncertainty, on the basis of underlying physical principles. Such a land
surface model provides predictive capability for surface variables including ground temperature, surface
humidity, and soil moisture and temperature. This information is important for agriculture and industry,
as well as for addressing fundamental scientific questions concerning global and local climate change.

In this study we apply a methodology known as tangent linear modeling to help us understand more
deeply the behavior of the Mosaic land surface model, a model that has been developed over the past several
years at NASA/GSFC. This methodology allows us to examine, directly and quantitatively, the dependence
of prediction errors in land surface variables upon different vegetation conditions. The work also highlights
the importance of accurate soil moisture information. Although surface variables are predicted imperfectly
due to inherent uncertainties in the modeling process, our study suggests how satellite observations can be
combined with the model, through land surface data assimilation, to improve their prediction.
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Abstract:

We explore the internal dynamical and physical features of the Mosaic land surface model (LSM,
Koster and Suarez 1992) using a tangent linear model (TLM) eigenanalysis. The integration with the
Mosaic LSM is performed for both grass and bare soil land covers with the atmospheric boundary forcing
conditions observed at the Hapex-Mobilhy Caumont site in France. The TLM is derived numerically
by finite differencing with realistic values of the basic state. The eigenvalues of this TLM represent
characteristic time scales of land surface state perturbations, and the scaled eigenvectors (modes) illustrate
the coupling among the land surface state perturbations. The results suggest that: (1) the Mosaic land
surface model is stable for the considered basic state, i.e., any initial perturbation, or initial error, will
decay with time. The constraints based on physical principles in the Mosaic LSM prevent instabilities
of the land surface state perturbations. (2) The time scales of land surface state perturbations range
from a few minutes to several months. Modes mainly representing the behavior of surface temperature
and surface moisture perturbations exhibit short time scales, whereas the modes mainly representing soil
moisture transfer between the root and deep model layers exhibit long time scales. (3) The time scales
of the modes depend significantly upon vegetation parameters, soil hydraulic parameters, and soil layer
structure.

TLM eigenanalysis provides quantitative estimates of the time scales and structure of the land surface
state perturbations. It is an efficient and effective tool for developing the understanding of the Mosaic
LSM internal features. Moreover, it provides useful insight for error covariance modeling needed in land

surface data assimilation.



1. Introduction

A land surface model or soil-vegetation-atmosphere-transfer (SVAT) scheme exhibits a wide range of
variability on time scales from hours to months, and even years through atmospheric interactions (Delworth
and Manabe 1988, 1993; Entekhabi 1995). These time scales are strongly controlled by external forcing
terms, especially precipitation and downward short-wave and long-wave radiation at the surface. They are
also modulated by the internal dynamics and physics of land surface systems, in particular soil moisture
dynamics. There are numerous studies on the variability of land surface models. Common approaches to
date include: 1) performing numerical simulations, 2) building relatively simple land surface systems that
can be solved analytically, and 3) performing numerical sensitivity tests.

In the first approach, either a General Circulation Model (GCM) including a land surface model or
a stand-alone land surface model is integrated over long periods (e.g., Dickinson et al. 1984; Sato et al.
1989). These studies have demonstrated the main variability of the land surface system and the pronounced
effect of the land surface on atmospheric variability. The second approach, solving equations of a simple
land surface model analytically, estimates characteristic time scales of land surface variables in extreme or
simplified cases (e.g., Delworth and Manabe 1988; Brubaker and Entekhabi 1995; Yang et al. 1995). This
approach greatly simplifies complex land surface processes. For example, one can represent the evaporation
and runoff process as a bucket model or treat the soil moisture system as a first-order Markov process.
However, such approximations may represent an oversimplification of land surface processes. In the third
approach, using either a coupled GCM or stand-alone land surface model, sensitivity experiments are
usually performed with a change in one particular parameter or parameterization scheme (e.g., Henderson-
Sellers et al. 1995: Xue et al. 1996a, 1996b). The results are then compared with a control integration,
to reveal the impact of the change. This type of sensitivity experiment identifies important parameters or

parameterizations in land surface models.



These three approaches do not disclose much information about variability due solely to the internal
dynamics and physics in land surface models. They mainly reveal the impact of external forcing variability,
due to the dominant control of the forcing terms (Entekhabi 1995; Delworth and Manabe 1988, 1993). Even
in sensitivity tests, the signature of internal dynamics and physics is embedded within that of external
forcing variability.

Understanding of the internal dynamics and physics of a land surface model is important for the
development of land surface data assimilation methods. First, under the tangent linear approximation,
the internal dyvnamics and physics alone control land surface state perturbations, which are defined as the
departures from a nonlinear model trajectory. Second, with an understanding of the internal features, we
can readily identify key parameters and parameterizations that affect land surface state variations with
minimum influence of the external forcing.

In this study, we explore the application of tangent linear model (TLM) analysis to the internal physics
and dynamics of the Mosaic Land Surface Model (LSM, Koster and Suarez 1992). In a recent review
paper, Errico (1997) describes the development and applications of tangent linear models in meteorology.
A tangent linear model, together with its adjoint model, is an exceptionally powerful tool for solving many
meteorological problems. Its main applications include sensitivity analysis of atmospheric system, optimal
analysis in the data assimilation, and dynamic stability analysis. Though the use of tangent linear models
and adjoint models has been increasing rapidly during the last decade, the application to land surface
models is not vet common. In this paper we present the TLM development and eigenanalysis for the
Mosaic LSM. The results show that TLM eigenanalysis provides a effective method for understanding the
internal features of the Mosaic LSM.

In Section 2 we briefly describe the Mosaic land surface model. In Section 3, we derive the tangent

linear model based on the prognostic equations of the Mosaic LSM, and we describe the experimental



design and precautions taken in deriving the TLM numerically. In Section 4 we present the results of the
TLM eigenanalysis, including characteristic time scales and modes of the land surface state perturbations.
In Section 5, we obtain a linearized soil moisture subsystem and examine the role of soil moisture dynamics.
We further simplify this subsystem to find explicit relationships between the eigenvalues and the Mosaic
LSM parameters. Finally, in Section 6 we summarize the main results and discuss their application to land
surface data assimilation.

2. Description of Mosaic Land Surface Model

The Mosaic LSM (Koster and Suarez 1992) is named for its use of the “mosaic” strategy to account for
subgrid heterogeneity in surface characteristics. In the Mosaic LSM, every surface grid cell in a GCM 1is
subdivided into relatively homogeneous subregions, or “mosaic tiles”. Each tile contains a single vegetation
or bare soil type. Energy and water balance calculations are performed over each tile. The tiles in a grid
cell respond to the mean conditions in the overlaying GCM grid cell. This GCM grid cell, in turn, responds
to the area-weighted fluxes of heat and moisture from the tiles (Koster and Suarez 1996).

The Mosaic LSM is based on the Simple Biosphere (SiB) model of Sellers et al. (1986), and includes
sophisticated biophysical processes. Similar to SiB, it calculates the energy and water transfers using an
electrical resistance network analog (Fig. 1). For example, to calculate the latent heat flux (current) along
a given pathway, the difference between surface and atmospheric vapor pressures (potentials) is divided
by an effective resistance, which is a function of the atmospheric conditions, and plant and soil properties.
Similarly, the sensible heat flux is determined by the difference between the temperatures (potentials) of the
surface and the boundary atmosphere. Recently the Mosaic LSM has been successfully implemented into
the Goddard Earth Observing System General Circulation Model (GEOS GCM) at the Data Assimilation
Office of the NASA Goddard Space Flight Center (DAO 1996).

The eight prognostic variables in each tile of the Mosaic LSM are:



T.: temperature of the surface/canopy system

T4: temperature in deep soil

C': moisture in the canopy interception reservoir

W; (i=1,2,3): moisture in the top, middle, and the bottom soil layers, respectively
S: water equivalent in the snowpack, if any

€,: vapor pressure in near surface layer (within the canopy for the vegetation tiles).

The prognostic equations are as follows:

oT.

Cr AL Row—net + Rtu — R,Tw —H - AE -Gy, (1)
Cu—deep% = Gy, (2)

iit =P+ Snar — Eine — Pr, (3)

% = Pr — Ry — Eys — Erransp1 — Q1,2, (4)
%V[;z = Q12— Etransp2 — Q2.3 (5)

M Qus - Qo (6)

5 = P St~ B (7)

The prognostic equation for surface layer or canopy air vapor pressure (e,) is obtained by differentiating

the following diagnostic equation for surface evaporation E with respect to T; and e,:

5o Pt es(T.) — e, -
Ps reff(Tc’ ea)
The details of the derivation are given in Koster and Suarez (1992, 1994, 1996).

The terms in the equations are:

At: model time step



C'11: heat capacity of surface/canopy system
R —net: Net short-wave radiation at surface
R} : downward long-wave radiation at surface

-
RlTw: upward long-wave radiation at surface

H: sensible heat flux

AE: latent heat flux

G4: heat flux to deep soil

C'11-deep: heat capacity of deep soil system

P: precipitation rate

Smert: snow-melt rate

E;.;: evaporation of intercepted water

Pr: throughfall rate of precipitation

R,: surface runoff rate

Fys: evaporation rate from surface

Etransp,i (1=1,2): water removal rate via transpiration from the ith soil layer
Qi,;: moisture flux from ith soil layer to jth soil layer

P;: snow fall rate

Eg0n: snow sublimation rate

es: saturated vapor pressure, a function of T,

refy: effective surface resistance to vapor transport, a function of T, and e,
p: air density

e: ratio of the molecular weight of water vapor to that of dry air

ps: surface pressure

(692}



3. TLM derivation and experimental design
a. Tangent linear model derivation
Let X denote the vector of prognostic (state) variables. Written as a system of eight ordinary differential

equations, the general form of equations (1)-(8) is

% = F(X) + external forcing, ¥

where the vector F'(X) can be represented by F(X) =(Fy, Fa, ....F3)T, and the superscript T' denotes the
transpose. External forcing terms are the near-surface atmospheric conditions, such as precipitation and
downward solar and longwave radiation fluxes at the surface. These terms do not depend explicitly on the
land surface state X.

A perturbation method is used to linearize the nonlinear system (9). A solution X of equation (9) is

decomposed into a “basic state” X = X(t) satisfying (9), plus a perturbation X”:
X=X+X" (10)

The Taylor expansion of F around the basic state X is

Fi(X)=F(X)+ Z(g—f )XJ‘ +O(X"). (11)
J X, =X

=4

Substituting equations (10) and (11) into the system (9) and neglecting the higher-order terms, we obtain

the tangent linear model:

dX’

= = AX, (12)

dF;

where Al'j = (W
A

), and 4 = A(X(t)) is the tangent linear matrix or Jacobian. In a data
XJ:X'J

assimilation context, the basic state X denotes a nonlinear model trajectory, and the linear system (12)

approximates the evolution of an initial error X’(O) = X'(t = 0) in that trajectory. Since the linear system



(12) eliminates the external forcing term, the behavior of X'(t) is determined by the internal physics and
dynamics of the Mosaic LSM in the vicinity of the basic state. Dependence of X'(t) on the external forcing
is implicit, through the dependence of A(X (f)) on the basic state.

We study the behavior of (12) for A evaluated either at a specific time or for a specific time-mean state.
This simplifies the problem considerably, for in each case A is then independent of time. The solution of
(12) is just

X'(t) = M X'(0). (13)

The eigendecomposition of A is given by

A=UAUT, (14)

where A is the diagonal matrix of eigenvalues of 4, and the columns of U are the corresponding eigenvectors.
An eigenvector (mode) corresponding to a given eigenvalue expresses a specific coupling among the variables
X ().

Since we consider A to be independent of time, the stability of the linear system (12) depends on
the eigenvalues A. If all eigenvalues have negative real parts, the system is stable for the basic state we
consider, and any initial error will decay with time; if any one of the eigenvalues has a positive real part,
the system is unstable. If all eigenvalues are real, the solutions are non-oscillatory. A negative eigenvalue
A represents a decay rate with e-folding time 7 = _—\1
b. Experimental design

We perform four experiments with two considerably different sets of vegetation parameters and basic
states. The purpose is to examine the characteristic time scales and the coupling of land surface state
perturbations or errors, under different land surface conditions and basic states. In experiments one and
two (EXP 1, EXP 2), the vegetation type is grass, with two different basic states. In experiments three

and four (EXP 3, EXP 4), the vegetation type is bare soil, and the same basic states of EXP 1 and EXP
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2 are used.

We first generated a 3-year long control integration with 90% grass and 10% bare soil using one year
of observed surface forcing repeatedly. The purpose of the control run is two-fold. First, it shows the
length of time required for the Mosaic LSM to arrive at equilibrium. Second, it provides appropriate basic
state values for the four experiments. We selected values for the basic state from the control run after
equilibrium was reached.

The near-surface atmospheric forcing for the control run was observed at the Hapex-Mobilhy Caumont
site, in France (43041”N, 0°6" W) (Goutorbe 1991; Goutorbe and Tarrieu 1991). The data are available
at 30-minute time intervals for 1986. When the data were unavailable, neighboring meteorological stations
were selected to provide the required information. This data set has been used in the Project of Intercom-
parison of Land surface Processes Phase 2 (PILPS-2) experiments (Henderson-Sellers et al., 1993). The
forcing terms include downward shortwave and longwave radiation, precipitation, air temperature, 2-meter
specific humidity, 2-meter wind speed, and surface pressure.

We found that the Mosaic LSM reaches an equilibrium state in about six months. Therefore, we use
the results from the second year of the control run. Figure 2 shows the monthly-mean diurnal cycle of the
Jand surface variables for June. It represents a typical example for middle latitude regions. The canopy
air vapor pressure (e,) is consistently higher than the 2-meter vapor pressure (e2») with strong diurnal
variability. The surface canopy temperature (7%) is higher than that at 2-meter (77) during the day with
a peak difference around noon. At night, the surface temperature becomes lower than that at 2-meter as
a result of longwave emission from the surface. The deep soil temperature (Ty) does not change much.
The soil wetness of the first two layers, which is defined as the degree of saturation in each respective soil
layer, is dryer than in the deep layer, since evaporation and evapotranspiration take place from the first

two layers. Only the surface layer exhibits a significant soil wetness diurnal cycle.



Based on this long-term control run, we selected two basic states: the state at 13Z June 1, 1986, and
the June monthly mean state at 13Z. The other input parameters to the TLM correspond to these two
situations. We select noontime and a summer month, June, since the land surface processes are most
active then. Due to the lack of snow cover and interception storage during these times, the original eight
prognostic equations are reduced to six equations. The counterparts of equations (3) and (7) are therefore
eliminated from the TLM (equation 12).

Table 1 summarizes the four experiments, together with the two basic states, leaf area index, and soil
physical parameters. There are clear differences between the two basic states: the temperature and surface
vapor pressure values at 137 mean for June are higher than at 137 June 1, and all three soil wetness values
at 137 mean for June are consistently lower than those at 13Z June 1. The vegetation and soil parameters
are also significantly different between grass and bare soil. The “scaling values” in Table 1 are described
in the next subsection.

c. Tangent linear matriz calculation

The tangent linear matrices A(X) for the four experiments were calculated using a centered difference
schemes, rather than an analytical derivative, as follows. For each experiment, six pairs of perturbed states
(X +0z;) and (X —éz;), j = 1,2,...,6 are formed first. Here X is the basic state and dz; is a perturbation,

described below, around the j** component of the basic state. Six pairs of one-step integrations with

(X +6z;)—F (X — s -
Hess IJZ)(;: (X=923) a5 an approximation to A;;(X) for

the Mosaic LSM are then performed, to compute
i,j=1,2,....,6. Then the perturbation magnitude is reduced by a factor of two and the process is repeated.
At the n®* step, da; = Ef—:f_—ll,— for j = 1,2,...,6, where dz;! is the perturbation at the initial step. The
process is halted when the successive matrices show sufficient convergence of their eigenvalues, as described

in the following section. Thus we arrive at A(X) for each of the four experiments.

The magnitudes of the initial perturbations should be meaningful, for example, not larger than the



Table 1: Experiment description. SW; is soil wetness (the degree of saturation, Wi/Wisat) - and Wi 40 18
the saturation moisture content in iy, soil layer. 87, ; is the distance between the centers of i, and jin soil
layer. LAI is the leaf area index.

ITEM EXP 1 EXP 2 EXP 3 EXP 4
Description basic state basic state basic state basic state
of basic state and forcing terms | and forcing terms | and forcing terms | and forcing terms
and forcing from: 137 from: 137 from: 137 from: 137
terms June 1, 1986 mean for June June 1, 1986 mean for June
Vegetation type | grass grass bare soil bare soil
Basic states:

T. (K) 18.27 26.08 18.27 26.08

Ty (K) 16.53 17.72 16.53 17.72

eq (hpa) 18.95 22.64 18.95 22.64
SW, 0.5439 0.4143 0.5439 0.4143
SWy 0.5782 0.4948 0.5782 0.4948
SWsy 0.6910 0.6244 0.6910 0.6244
Parameters:

LAl 3.671 3.671 0.001 0.001

W sat(mm) 8.4 8.4 4.0 4.0

W3 sat(mm) 197.4 197.4 4.0 4.0

W3 gqt(mm) 420.0 420.0 130.56 130.56

87y 2(m) 0.245 0.245 0.0092 0.0092
873 3(m) 0.735 0.735 0.1546 0.1546
Scaling Value:

for T, (K) 5.6 5.6 9.0 9.0

for Ty (K) 1.53 1.53 2.13 2.13

for e, (hpa) 5.0 5.0 3.7 3.7

for Wy (mm) 0.59 0.59 0.52 0.52

for W, (mm) 11.10 11.10 0.375 0.375

for W3 (mm) 17.34 17.34 5.23 5.23
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size of uncertainties in the land surface state. Also the perturbed states should stay within the local
linear regime of the basic state. As shown in the control run, the basic state at noon time satisfies the
relationships SW5 > SWq > SWi, 1. > Tay, and €, > €2,,. The perturbed states should retain these
relationships to stay within the linear regime. There are also numerous “conditionals™ in the formulation of
the Mosaic LSM. For example, soil moisture diffusion between two adjacent layers depends on the moisture
gradient. If the perturbed state reverses this gradient, the soil moisture flux will abruptly change sign and
magnitude. We carefully chose the perturbation magnitudes so that the perturbed states lie within the
same continuous regime as the basic state. The initial perturbation magnitude was one degree Celsius for
T. and T}, one hpa for €4, 3% for the first and second layer soil wetness, and 5% for deep soil wetness.

An eigenanalysis will be applied to each of the four matrices A(X) as described in Section 4. The
eigenvectors are scaled to nondimensionalize and to enable to comparison of their elements, and are also
normalized to unity upon dividing by the largest magnitude of the respective eigenvector elements. For
EXP 1 and EXP 2, we select the scaling magnitudes as the standard deviations of each state variable at
137 over the month of June from the control run. For EXP 3 and EXP 4, we performed a second control
run with bare soil to obtain scaling magnitudes, since the standard deviations differ from the control run
with grass (see scaling values in Table 1). The standard deviations at 13Z of June from this second control
run are selected as the scaling magnitudes for EXP 3 and EXP 4.
4. Eigenanalysis of the tangent linear matrix
a. Eigenanalysis for the two experiments with vegetation cover

Table 2 lists the e-folding times (negative reciprocals of the eigenvalues) for EXP 1 for 3 successively
smaller perturbations, denoted by P;, i = 1,2, 3. All eigenvalues are negative and real, indicating a locally
stable and nonoscillatory system. The e-folding times range from 5 minutes (mode 1) to about four months

(mode 6). The e-folding times of the first five modes from the second perturbation are almost identical to
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Table 2: The e-folding times for EXP 1. The tangent linear matrix A(X) was derived using successively

smaller perturbations, indicated by P1, P2, and P3.

PERT. [ MODE 1 | MODE 2 | MODE 3 | MODE 4 | MODE 5 | MODE 6
P1 5.06 min | 19.71 min | 1.04 hr | 3.15 day | 11.52 day | 111.93 day
P2 5.06 min | 19.68 min | 7.60 hr | 3.30 day | 11.52 day | 118.72 day
P3 5.07 min | 19.67 min | 7.62 hr | 3.30 day | 11.52 day | 104.85 day

those from the third perturbation, indicating convergence. The last mode shows some oscillation due to
the numerical difficulty of solving for the minimum eigenvalue of a matrix with a wide range of eigenvalues;
the ratio of the largest to the smallest eigenvalue exceeds four orders of magnitude.

Figure 3 shows the six normalized eigenvectors (modes) for EXP 1, corresponding to P3 in Table 2.
Each panel corresponds to one mode and the bars denote the magnitude of the elements. Each element is
associated with one of the six prognostic variables or state perturbations. Our discussion will be qualitative,
focusing on the dominant variables for each mode. While a moderate change of the scaling values would
affect the quantitative appearance of Fig. 3, it would not affect the qualitative features.

The first mode shows that a perturbation in the surface vapor pressure e, alone will decay quickly,
with a 5-minute e-folding time. The second mode indicates the coupling of 7. with e,. For this mode, a
high surface temperature provides more energy for surface evaporation, and increases the moisture-holding
capacity of the surface air. The near-surface air moisture gradient then increases, which stimulates more
evaporation from the ground. This mode has a 20-minute e-folding time scale. The third mode shows a
relatively weak negative coupling between the soil moisture in the top two layers. The fourth and sixth
modes depict the coupling between the soil moisture in the three layers. The soil moisture transfer in the
three layers exhibits two distinctive time scales. The fourth mode, representing soil moisture transfer from
the third layer to the upper two layers (or the reverse), has about a 3-day e-folding time. The sixth mode,
representing moisture transfer throughout the entire soil column, has a time scale of about 3 months. The

fifth mode primarily isolates T,y with a 12-day e-folding time.
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Table 3 lists the e-folding times for each mode of EXP 2. Again all eigenvalues are negative and real.
The six eigenvectors corresponding to the fifth perturbations P5 (Fig. 4) are similar to those of EXP 1.
The e-folding times of EXP 2 are comparable to those of EXP 1. However, the third and sixth modes, which
represent soil moisture transfer from the top soil layer and throughout the whole soil column respectively,
have much shorter time scales. The reduction in time scales of these two modes corresponds to the lower

basic state soil wetness (Table 1) of EXP 2 compared with EXP 1.

Table 3: As in Table 2 but for EXP 2,

PERT. | MODE 1 | MODE 2 | MODE 3 | MODE 4 | MODE 5 | MODE 6
P1 5.03 min | 16.21 min | 4.49 hr 3.43 day | 11.39 day | 47.77 day
P2 5.01 min | 16.19 min | 4.56 hr 3.56 day | 11.41 day | 51.65 day
P3 5.01 min | 16.86 min { 4.61 hr | 3.59 day | 11.45 day | 52.87 day
P4 5.02 min | 16.86 min | 4.61 hr | 3.59 day | 11.45 day | 48.92 day
P5 5.00 min | 16.88 min | 4.61 hr | 3.59 day | 11.46 day | 58.49 day

b. Figenanalysis for the two erperiments without vegelation cover

Table 4 and Fig. 5 show the eigenvalues and eigenvectors for EXP 3, which has the same basic state as
EXP 1 but with bare soil. The e-folding times of EXP 3 are significantly shorter than those of both EXP
1 and EXP 2. The first three modes have time scales on the order of minutes. There are no intermediate
modes with e-folding times between one hour and 10 days. The longest time scale is reduced to about a
month.

Unlike EXP 1 and EXP 2, the first eigenvector of EXP 3 (Figure 5) represents the soil moisture transfer
between the first two adjacent soil layers. The e-folding time of this mode is about 4 minutes, which is
much shorter than that of the corresponding mode in EXP 1 and EXP 2 (third mode). This reduction in
time scale results from two factors. First, bare soil has no evapotranspiration, so soil moisture evaporates
directly from the surface. Second, the soil depth of the first two layers is shallow (see Table 1), so moisture

transfer is fast. The second mode isolates e, with a 5-minute time scale, which is similar to the first mode
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Table 4: Similar to Table 2 except for EXP 3.

PERT. | MODE 1 | MODE 2 | MODE 3 | MODE 4 | MODE 5 | MODE 6
P1 4.47 min | 4.96 min | 28.08 min | 57.08 min | 11.87 day | 23.46 day
P2 4.15 min | 4.96 min | 28.04 min | 59.25 min | 11.87 day | 24.49 day
P3 3.91 min | 4.96 min | 28.03 min 1.00 hr 11.87 day | 24.57 day
P4 3.73 min | 4.96 min | 28.03 min 1.03 hr 11.87 day | 26.07 day
P5 3.55 min { 4.96 min | 28.03 min 1.08 hr 11.82 day | 21.47 day
P6 3.55 min | 4.96 min | 28.03 min 1.08 hr 11.87 day | 30.04 day
Table 5: Similar to Table 2 except for EXP 4.
PERT. | MODE 1 | MODE 2 | MODE 3 | MODE 4 | MODE 5 | MODE 6
P1 4.13 min | 5.25 min | 25.24 min | 1.45 hr | 3.15 day | 13.03 day
P2 4.30 min | 5.25 min | 25.19 min | 1.46 hr | 3.41 day | 13.06 day
P3 4.34 min | 5.25 min | 25.19 min | 1.46 hr | 3.50 day | 13.07 day
P4 4.35 min | 5.25 min | 25.18 min | 1.46 hr | 3.50 day | 13.06 day
P5 4.35 min | 5.25 min | 25.18 min | 1.46 hr | 3.48 day | 13.05 day
P6 4.35 min | 5.25 min | 25.18 min | 1.46 hr | 3.60 day | 13.12 day
P7 4.35 min | 5.24 min | 25.20 min | 1.46 hr | 3.56 day | 13.06 day

of the two previous experiments. The third mode shows the positive coupling between T. and ¢, with a
28-minute e-folding time, which is relatively long compared with the corresponding mode in EXP 1 and
EXP 2 (second mode). Once again, the fourth and sixth modes depict two different soil moisture transfer
processes, but now with shorter timescales. The fourth mode, with a one hour time scale, shows a negative
relationship between the soil moisture in the upper two layers and that of the third layer. The sixth mode,
with about a one month time scale, depicts transfer of moisture throughout the entire soil column. The
fifth mode that primarily isolated Ty in EXP 1 and EXP 2 now also includes components of moisture
exhibiting a similar time scale. Its e-folding time is comparable to that in EXP 1 and EXP 2.

Table 5 lists the e-folding times for EXP 4. They are comparable with those of EXP 3, except that
of mode 5 (around 3 days), which represents soil moisture transfer throughout the entire soil column
(compared with mode 6 of EXP 3, around 30 days). Figure 6 displays the eigenvectors for EXP 4.

Similarly to EXP 3, the first eigenvector depicts a negative coupling between the soil moisture in the first
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two soil layers. However, e, appears as a dominant variable in this mode. The second mode again isolates
e,. The third mode shows once more the coupling between 7. and e,, with an e-folding time of 25 minutes.
Modes 4 and 5 represent significant moisture transfer among the model layers. The time scale of mode 5
is reduced to about 3.5 days which is probably related to the smaller initial soil wetness used in EXP 4.

Again, there is a mode isolating T, (last mode) with about a 13-day time scale, similar to mode 5 of EXP

c. Summary of the four experiments

The results from all four experiments show common features even though different basic states and
land covers were used. Tables 6 and 7 summarize the modes and associated physical processes. The e-
folding times range widely in all experiments indicating clear different characteristic time scales of these
land surface processes. There are several distinctive modes including those isolating e,, Ty, soil moisture
transfer and coupling between T, and e,.

The two different basic states generally do not produce large changes in eigenvalues (EXP 1 versus
EXP 2, EXP 3 versus EXP 4). However, the mode that represents soil moisture transfer in the entire soil
column shows a much shorter time scale when the basic state of 13Z monthly mean for June is used. This
suggests that higher basic state surface temperature and vapor pressure and lower soil wetness causes a
soil moisture perturbation decaying more quickly throughout the soil column.

The eigenvectors of EXP 1 and EXP 2 are also similar, as are those of EXP 3 and EXP 4. However,
the eigenvectors change significantly depending on whether or not there is vegetation cover.

The impact of vegetation is clear. In bare soil (EXP 3, EXP 4), the three modes representing soil
moisture transfer have much shorter e-folding times compared with those obtained when there is vegetation
covering (EXP 1, EXP 2). The soil moisture perturbation in the first two layers is also coupled.

The mode isolating the Ty perturbation has a consistent e-folding time across the four experiments. The



reason is explained by examining the linearized T, prognostic equation (2). The solution of the linearized
perturbation equation shows that the e-folding time of T, perturbation is determined mainly by the soil
heat capacity and the depth of of soil layer where the temperature varies slowly and does not have diurnal

variation. In the Mosaic LSM, these parameters are the same for grass and bare soil.

Table 6: Description of the eigenmodes derived from EXP 1 and EXP 2. The e-folding times for EXP 2
are given in parentheses.

Mode Description Mode Order | e-folding Time
Dominant e, perturbation Mode 1 5.07 (5.00)min
Coupling between T, and €, Mode 2 19.67 (16.88) min
Dominant W perturbation Mode 3 7.62 (4.61) hr
Coupling of soil moisture in the three soil layers. Mode 4 3.30 (3.59) day

Moisture perturbation in the deep layer has

the opposite sign of that in the upper two layers.
Dominant 7Ty perturbation Mode 5 11.52 (11.46) day
Coupling of soil moisture. Signs of the soil moisture | Mode 6 104.85 (58.49) day

perturbations are the same in the three layers.

Table 7: Description of the eigenmodes derived from EXP 3 and EXP 4. The e-folding times and the
different mode orders for EXP 4 are given in parentheses.

Mode Description Mode Order e-folding Time
Dominant e, perturbation Mode 1 4.96 (5.24)min
Coupling of soil moisture between the upper Mode 2

two soil layers. In EXP 4, this coupling is 3.55 (4.35) min
associated with e, perturbation

Coupling between T, and e, perturbation Mode 3 28.03 (25.20) min
Coupling of soil moisture in the three soil Mode 4 1.08 (1.46) hr

layers. Moisture perturbation in the deep

layer has the opposite sign of that in the upper
two layers.

Dominant Ty perturbation Mode 5 (Mode 6) | 11.87 (13.06) days
Coupling of soil moisture. Signs of the soil moisture | Mode 6 (Mode 5) | 30.04 (3.56) day
perturbations are the same in the three layers.

5. Eigenanalysis of soil moisture dynamic subsystem
As shown above, the modes representing the evolution of soil moisture perturbations have relatively long

time scales. These modes are important because they retain the initial soil moisture error with the model
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integrations. These modes are also weakly coupled with other land surface state variables as suggested
by the eigenvector patterns shown above. We therefore derive a soil moisture subsystem by isolating soil
moisture variables to further examine soil moisture dynamics. This subsystem consists of equations (5),
(6), and (7). The tangent linear matrix was obtained analytically. We then evaluate the tangent linear
matrices using basic states and land covering conditions described in Section 3b. The scaling magnitudes
for soil moisture are the same as used in section 3. The details of deriving this subsystem are given in the
Appendix.
a. Eigenvalues and eigenvectors

The tangent linear matrices for the soil moisture subsystem are similar to the corresponding submatrix
of the full system. The magnitudes generally differ from that of the full system by less than 1%. Again,
all eigenvalues are negative and real. Table 8 lists the e-folding times for the four experiments. The values
of the first two modes are comparable with those derived from the 6-equation system (see Table 2-Table
5). The modes of EXP 1 and 2 again exhibit longer time scales than those of EXP 3 and 4. However, the
e-folding time of the last mode differs considerably from the previous experiments. This large difference is
likely related to the lack of the soil moisture coupling with other state variables in this subsystem.

Figure 7 illustrates the three normalized eigenvectors derived from this subsystem with the conditions
of EXP 1. The first mode mainly represents the evolution of the surface layer soil moisture perturbation.
The second mode shows the soil moisture transfer from the top two layers to the deep layer during the
decaying of th esoil moisture perturbations. The third mode represents the soil moisture extraction in the
entire soil column. As before, the third mode has the longest time scale. Figure 8 shows that the three
eigenvectors with EXP 2 conditions are comparable to that of EXP 1. Figures 9 and 10 display the three
eigenvectors with the conditions used in EXP 3 and 4. The eigenvectors of all four experiments derived

from the subsystem are similar to the respective eigenvectors derived from the 6-equation system. This
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indicates that the behavior of soil moisture perturbation in the full TLM can be approximated by that of

a TLM from a simplified sub-system.

Table 8: The e-folding times derived from the TLM of the soil dynamic subsystem for the four experiments.

EXP. LABEL | MODE 1 | MODE 2 | MODE 3
EXP 1 7.46 hr | 3.29 day | 93.79 day
EXP 2 9.50 hr | 3.89 day | 75.57 day
EXP 3 3.57 min 1.09 hr | 17.70 day
EXP 4 4.34 min 1.63 hr | 12.37 day

b. Key parameters
We further simplify this soil moisture dynamic subsystem to get explicit dependencies on key param-
eters. We first rewrite the equation (Al) (see Appendix) including only the dominant terms that are

evaluated with the basic state values described in Section 3:

dW’
dt

= BW' & (b;) W', (15)

where i)ij denotes a dominant term in the equation (A1), and W' is the soil moisture perturbation (see
Appendix). Tables 9 and 10 list these dominant terms (with signs) for EXP 1 and EXP 3, respectively. The
dominant terms for EXP 2 and EXP 4 are similar but with slight changes. For both grass and bare soil land
conditions, the terms representing moisture flux and the impact of soil moisture on surface evaporation
are dominant, whereas the influence of soil moisture on evapotranspiration is less important. Soil physical
parameters and soil layer depth are the key parameters as shown below. Note that W; denotes the mean
state of soil moisture here.
For convenience, we list the notations used below and in the Appendix.

K;, h;, ¥;: soil hydraulic conductivity, hydraulic head, and soil moisture potential in layer ith respectively
b: a soil parameter related to soil pore size distribution index

AZ; ;. mean depth between the ith and jth soil layer
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Table 9: IA),-,J', the dominant terms of the tangent linear matrix of the soil dynamical system, equation (15),
with a grass land cover condition (EXP 1).

w7 = =~ =
— bi 1 b; 2 bi 3

1_1 Bwl\yzb}tlr’l _ 12Eh2sr_2 _ Qu'1\72b§/”2 . Q £2b+32 0

= AZ12 W, W, AZ W, 1.2 7,

=2 —pwhpbiy Pwliobdn | puKabyn + Q 2043 _2b+3Q _ pwliand

= AZ12 W, AZ1 oWy T AZy W, 1,273, Wo ¥2:37 AZ, W

.. _pwhaynab 2643y, pwhiaPab 2643

1=3 0 AZQISVL"Q Wa QZ’J + AZZB"VS Ws Q3,r)o

rps: resistance to bare soil evaporation

gs(7.): saturated specific humidity at 7,

g, air specific humidity

rsurf: resistance provided by the soil itself to bare soil evaporation

rseq: vegetation specific constant

frum: relative humidity factor on the resistance to bare soil evaporation.

Er: total evapotranspiration

ro: Canopy resistance to transpiration

Pe_unstress: unstressed canopy resistance to transpiration, independent of soil wetness

F(VPD) and F(T): factors by which canopy resistance increases due to temperature and vapor pressure
deficit (VPD) stress respectively, independent of soil moisture.

F(y): factor by which canopy resistance increase due to leaf water potential stress, dependent on soil
moisture

¥, soil moisture potential in the root zone

Pplants U5, WS, I'st, I's2: prescribed physical parameters in the Mosaic LSM

E3: an estimate of evapotranspiration

K ay,: averaged hydraulic conductivity in the root zone, dependent on soil moisture

C4 and r~2: see the appendix for explanation.
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Table 10: IA)i,J', dominant terms in the tangent linear matrix of the soil dynamical system, equation (15},

with a bare soil land cover condition (EXP 3).

%{— Bi,l [A)l-’2 i)i,g
i=1 % - 2{?;‘3 Q1,2 -&“le‘zbl‘;'z 0
=2 [ -7 | B Qua+ Ry S | U Qa - B
i 57, TG, , + agats?

We discuss the solution of equation (15) under two simplifying assumptions.
Assumption 1: Assume that the soil moisture perturbation in the top layer (“’;) is decoupled from the
other two variables. This simplification holds in EXP 1 and 2 (shown by the first eigenvector patterns in
Figs 7 and 8). Equation (15) then becomes:

!
dw -
1 b !
~ 0w
dt b

and the solution is
wh (t) = wh(0)exp(by 1t). (17)

=L

From Tables 9, we see that the e-folding time, ©

. has two components. The first component is proportional
1,1

to AZ; 5 and Wy, and inversely proportional to soil conductivity and soil moisture potential of layers 1
and 2, and soil constant b. For EXP 3 with bare soil, 131_1 has only one term.

Assumption 2: Assume that the deep soil moisture perturbation w§ is decoupled from the other two soil
moisture variables. In fact, w} is a dominant variable in the third eigenvector for the all four experiments
(Fig 7 to Fig. 10). Then we have a form similar to (16) holds for 117'3. The e-folding time i for w}
increases with AZ, 3 and W35, and decreases with soil conductivity and soil moisture potential of the third
layer, and soil constant b. For the case with grass, the moisture flux leaving the column also plays role.

The soil moisture perturbation at the second layer w) is always tightly coupled with either w} or wj

with intermediate time scale compared to the above two isolated modes. The experiments show that the
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e-folding time of the coupling mode increases with the mean depth between the layers one and two, and
decreases with soil physical parameters listed above.

Table 11 summarizes these relationships between the e-folding time and key parameters and mean
state derived from the simplified situations. Of these key parameters, the mean depth of the adjacent two
soil layers, AZ; 2 and AZ, 3, mainly accounts for the large differences in the e-folding time between the
experiments with vegetation and without vegetation. This is because all the other key parameters are the
same for grass and bare soil conditions in the Mosaic LSM. These results agree qualitatively with previous

studies (Yang et al. 1995; Yang et al., 1994).

Table 11: General relationships between the e-folding times and dominant items of the tangent linear
matrix for soil moisture subsystem.

Magnitude of e-folding time | soil hydraulic conductivity:
decreases with: Kqi,.K,, K3

soil hydraulic potential:
U1, W2, U3

soil constant:

b

Magnitude of e-folding time | basic state of soil moisture:
increases with: Wi, Wa,Ws

mean depth of soil layer:
AZyg, AZas

6. Summary and discussion
The TLM eigenanalysis efficiently computes the characteristic time scales and structure of the model’s
land surface state perturbations. It effectively synthesizes the impact of different basic state and vegetation
conditions on the evolution of initial state errors. An understanding of these features is important for
assimilating land surface data into models and for improving the physical parameterizations in the land
surface schemes. It also provides additional information about the natural variability in a Mosaic LSM.
The main results are summarized as follows:

(1) The Mosaic LSM exhibits a wide range of internal variability. The e-folding times of the different
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modes range from a few minutes to about 3 months. Modes representing the evolution of perturbations in
surface temperature and surface moisture exhibit short time scales. The modes representing the evolution of
soil moisture perturbations within the whole soil column exhibit longer time scales. The mode representing
the deep soil temperature () perturbation is weakly coupled to the other land surface variables and has
a consistent e-folding time across the experiments.

(2) The time scales depend significantly upon vegetation parameters, soil parameters, and basic state
conditions. The modes representing the behavior of soil moisture perturbations have significantly longer
time scales when vegetated. The influence of two different basic states is relatively small because the two
states used here are not significantly different. However, warm surface temperature and high surface air
moisture tend to shorten the e-folding times.

(3) For the simplified soil moisture dynamic subsystem, the terms representing moisture flux and
the effect of soil moisture on surface evaporation are important. Whereas the effect of soil moisture on
evapotranspiration is not significant. Note these results are with respect to the forcing condition used. In
particular, soil moisture is not dry. The key parameters determining the e-folding time include: the mean
depth of soil layer, soil hydraulic conductivity and potential, soil parameter b, and mean soil moisture.
Deeper and wetter soils have longer time scales. Soils with high soil constant b and high soil hydraulic
conductivity and potential tend to have short time scales.

(4) The experiments suggest that the Mosaic LSM is stable with respect to the basic states used. Any
initial perturbation, or initial error, will decay with time. The constraints based on physical principles in
the Mosaic LSM appear to prevent instabilities of the land surface state perturbations.

The results highlights the importance of accurate initial soil moisture and deep soil temperature in-
formation in land surface data assimilation. The initial errors in soil moisture and deep soil temperature

decay slowly. Therefore, emphasis should be placed on obtaining highly accurate data for these variables.
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The results also show the significant dependence of the time scale on vegetation condition and soil physical
parameters. Currently there is uncertainty in these prescribed parameters. However, it is very promising
that the use of Satellite data from advanced instruments, such as Moderate-Resolution Imaging Spectrora-
diometer (MODIS) on Earth Observing System (EOS), will improve global estimates of soil moisture and
those parameters.

We must be careful when generalizing the results obtained in this study. First, the results were ob-
tained with respect to two sets of basic state and vegetation conditions. For other regions with different
atmospheric and vegetation conditions, eigenvalues and eigenvectors may be different. Second, we chose
perturbation magnitudes in a way that ensures the perturbed state stays in the same local continuous
domain as the basic state. In reality, the perturbed state may evolved towards a different domain. In this
case the linear approximation around the basic state does not hold. A thorough discussion regarding this
issue is given by Errico (1997). Finally, the selection of perturbation and scaling magnitudes remains an
open question. The perturbation magnitudes used in this study were empirically derived based on stan-
dard deviation from the control runs. The chosen perterbation magnitudes are comparable to measurement
uncertainty in these fields, but may change for different land surface regimes.
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Appendix: Linearizing the soil moisture dynamic subsystem

The prognostic equations for the three soil moisture variables in the Mosaic LSM are given in equations
(4), (5), and (6).

To simplify these three equations, we assume the following: (1) surface runoff rate R, for one time step
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is negligible, and (2) soil wetness is moderate, therefore f},,,, is approximated as one (Koster and Suarez
1995).
Following the same procedure as in the Section 3a, let W; = W, + W/, to get the tangent linear model

for the soil moisture dynamic subsystem:

dw’
dt

= BW' = (bi;) W'. (A1)

Here, W’ is a vector consisting of the three soil moisture state perturbations, and B is the 3x3 Jacobian
matrix of this soil moisture subsystem. We obtain B analytically, as follows.

The first element, by 1, consists of three partial derivatives:

. ()Fl _ aEbs OEtrrzrlsp,l 8Q1.2 .
M= o = A - A . (A2)
th ()”1 oW 1 8‘4’1

To derive the first term on the right side of equation (A2), the following formulae used in the Mosaic LSM

are needed:

s Tc — Ya Cv
g, = Pl ) _ G (43)
Tps Ths
Tps = (rsurf + 7‘sca)fhum ~ Vsur f + Pscay (44)
1% -2
Fsurf = 26 + 6 ( . ! ) . (‘45)
H/l—sat

Here Cy =p(¢s(T:) — ¢o). Taking the partial derivative of Ejy; with respect to W, we have:

IEy, ., O 1 12C, W) )‘2
- = C,' [ e = . “1
oW, Low, (Tbs) (r5s)2 W (Wl_m (46)

Applying (A3) to (A6) we have:

OE)s _ 12Egs'l‘—2
BWI - C'l H/l

(A6)
here, r~2% = (—ﬂl—) _2.

H'yl —sat
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To derive the second term of the right side of equation (A2), the following formulae are needed:

ErW)y -
E rans = T i ‘4
meenl T W Wy A7)
ErW,
Eiransp2 = o5 A8
ranspd T w4 W, (A8)
C[v
Er=—, (A9)
re
I'c = Te—unstress Pj("/PD)F(T)F(ZH), (410)
1 - Wy — 7 — E;‘F;_,lan;):'rsoxl _ ws ( 111)
Fldn) N ‘ ‘
‘ Wy + W, )""
V= Py . s Al2
=t (WI_W F Waat (A12)
Pseil = Te1 + ( 7:32 )v (413)
I\(I,’Ug
: : Wi+ W, )‘2“3
Iav :I's - ; . Al4d
tovg ' (1/‘/1—sat+”/‘2—sat ( )
Applying all of these formulae to the partial derivative of Lyyqngp 1 in (A2), we have
OEtransp) W, JFET 4 ErW, 3 W, C1 ¢, b 1 ESrsa(26+ 3)W) Etransp.2
0”’1 B I‘/Vl + VV2 8”/1 (”'l + I'VQ)Z N (‘/Vroot)QCv‘Z ¢’C C"'Z U"C/)w I\'!l ug(mfraot)2 w/vroot '
(Al5)
where Cy = re_ynstress F(VPD)YF(T), and ¢ = ¢{ — ¢5.
To derive the third term of the right hand of (A2), the following formulae are needed
. [ h1—h2
= polt: N ) Al6
Q1,2 P \2( OZLQ > ( 3)
W, —b
b = th, . Al17
¢ (W/i—sat> ( ‘)
Here, p,, is the water density. The final expression is:
( wi by
0Q12  puliabih (A18)

AW, — 6Z Wy
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by consists of the sum of terms in equations (A6), (A15), and (A18).
The derivations of the other elements in B are similar. We therefore only list the final expressions for
the other bl'yj.

by 2, the derivative of Fy with respect to IW,, consist of two terms:

aFl _8Etransp,1 an,?

= — . Al9
The final expression of by 5 is:
of  WiCivb | Eyanspn  Q1226+3 pubKatry WIChE3rsa(2b 4 3) (A20)
oW, W2 _.Chye W, oot Wy 871 2Wa W2 Covpy Koy ’

b13 = 0, since F} is not a function of Wj.
by 1, the derivative of Fy with respect to ¥, consists of two terms (Q2 3 is not a function of Wy):

aFZ o 0Q1,2 aEtfransp,?

oW, oW, oW (421)
The final expression of equation (A21) is:
0F; pul2byy  WoCiwb WoC EZrg(2b+3) | Etvansp,2 .
OW,  0Z1.Wy | WE Cour WE Cottpu K Wroot (422)
by, the derivative of F, with respect to Wy, is:
OF; _ 0Qi12  OFiansp2 dQa3 (423)

oW, — oW, oW, oWy’
Here, Q23 = pu,l(g%zz—;—}?, if soil wetness in the third layer is wetter than in the second layer. The final
expression of equation (A23) is:

OF; _ Q12(26+3) n pulaby  WoC19pb  Eiransp, n pulizib  Ci1Ejre (204 3)IW,

= - ‘ - — - . A24

oW, W, 8Z12Wo W2 _Coye Wioot WabZa 3 Cote P K augWiog ( )
by 3, the expression of the derivative of Fy with respect to Wi, is:
oF: - 20+ DK 3y

y  —Q23(20+3)  pubKsys (425)

OWs Wi 87y 3Wy
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b 1 is zero since F3 is not a function of W.

b3.2, the derivative of F3 with respect to W5, is:

OF;  0Q23 0Q3.00
= = — : A2
oW, oW, oWy ' ( 6)

where (3 -, is the moisture diffusion flux out the bottom of the lowest layer and depends on the topography.

Since . is not a function of W,, this expression can be simplified as:
3,00 2

OF3  —py K3nb

= " A27
8W2 ”/20223 ( ‘ )

Finally, b33, the derivative of F3 with respect to W3, is:
OF3  Q3(2b+3) | bRstspy  Qae(2b+ 3). (A28)

0”’3 - VVg (522,3‘”‘”73 VV3
The B matrix is evaluated with the basic state values described in the Section 3.
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Figure captions

Fig. 1. The resistance network used for each tile in Mosaic LSM. The canopy covers 100% of the
land surface; water evaporating from the bare soil moves through the canopy air space (from Koster
and Suarez 1992).

Fig. 2. Monthly mean diurnal cycles averaged from the second June of a two-year Mosaic inte-
gration forced by a time series of the observed atmospheric conditions at the Caumont of Hapex-
Mobilhy, France, 1986. Upper panel: surface ground water vapor pressure €, (solid line) and near
surface water vapor pressure €,, (mb) (dashed solid line). Middle panel: ground temperature 7,
(C?) (solid line), deep soil temperature Ty (long dashed line), and near surface air temperature 7y,
(short dash line). Bottom: soil wetness in the first layer W, (short dash line), root layer W, (long
dash line), and the deep layer W3 (solid line).

Fig. 3. Six normalized eigenvectors (in order of increasing time scales) derived from the TLM for
EXP 1. A bar denotes the magnitude of each variable.

Fig. 4. Same as Fig. 3 but for EXP 2.

Fig. 5. Same as Fig. 3 but for EXP 3.

Fig. 6. Same as Fig. 3 but for EXP 4.

Fig. 7: Three normalized eigenvectors (in order of increasing time scales) derived from the soil
dynamic subsystem with similar condition of EXP 1.

Fig. 8: Same as Fig. 7 but for EXP 2.

Fig. 9: Same as Fig. 7 but for EXP 3.



Fig. 10: Same as Fig. 7 but for EXP 4.
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