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Abstract

This paper provides a solution to the fundamental linear fractional order differential

equation, namely, ,d,qx(t)+ax(t)=bu(t). The impulse response solution is shown to be a series,

named the F-function, which generalizes the normal exponential function. The F-function provides

the basis for a qth order "fractional pole". Complex plane behavior is elucidated and a simple
example, the inductor terminated semi-infinite lossy line, is used to demonstrate the theory.

Introduction

The problem to be addressed here is the solution of the fractional order differential equation

,.D; _ x(t) = ,d, _ x(t) = - a x(t) + bu(t) (l)

where the notation has been defined in Lorenzo and Hartley (1998). Here it will be assumed for

clarity that the problem starts at t = 0, which sets c = 0. It is also assumed that all initial

conditions, or initialization functions, are zero. Thus we will primarily be concerned with the

forced response. The initialization response has been addressed in Lorenzo and Hartley (1998).
Rewriting Equation (1) with these assumptions gives

od, ux(t) = - a x(t) + b u (t). (2)

We will use Laplace transform techniques to simplify the solution of this differential
equation. In order to do so for this problem, the Laplace transform of the fractional differential is

required. Using the results given in Oldham and Spanier (1974) or Lorenzo and Hartley (1998),

and ignoring initialization terms, Equation (2) can be Laplace transformed as

s X(s)= -a X(s)+bU(s) . (3)

This equation can be rearranged to obtain the system transfer function

X(s) b
-G(s)- (4)

U(s) sq+a
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This is then the transfer function of the fundamental linear fractional order differential equation.

As such, it contains the fundamental "fractional" pole (to be discussed later) and is the building
block for more complicated systems, as discussed in the next paragraph.

Typically, transfer functions are used to study various properties of a particular system.
Specifically, they can be inverse transformed to obtain the system impulse response, which can

then be used with the convolution approach to the problem. Generally, if U(s) is given, then the

product G(s)U(s) can be expanded using partial fractions, and the forced response obtained by

inverse transforming each term separately. To accomplish these tasks, it is necessary to obtain

the inverse transform of Equation (4), which is the impulse response of the fundamental fractional
order system.

Unfortunately, referring to standard tables of Laplace transforms, such as Erdelyi (1952)
or Oberhettinger and Badii (1973), the inverse transform of the right side of Equation (4) is only

known when q = 0.5, q = 1.0, q = 2.0, or a = 0. As the intention is to obtain the solution for

arbitrary q, it is necessary to derive generalized fundamental impulse response for the fractional

order differential equation, Equation (2). This is done in the next section using Laplace
transforms.

The Generalized Impulse Response Function

Although the Laplace transform tables do not contain terms of the form of Equation (4),
they do contain the transform pair

[F(q)j' q>O.
(5)

Thus, if we can expand the right side of Equation (4) in descending powers of s, we can then

inverse transform the series term by term and obtain the generalized impulse response. It should

be noted that throughout this paper, it is assumed that q > 0.

As the constant b

of generality, to be unity.

division, gives

in Equation (4) is a constant multiplier, it can be assumed, with no loss

Then expanding the right side of Equation (4) about s = oo using long

9

.... 2--_-+ 3---T.... = (6)
S q -]-a S q S S _ S nq

This series can now be inverse transformed term by term using Equation (5). The result is

f

=/_,_,j 1 ag(t) t S q S 2q a2 } lq-I at2q -I a2t3q -I
-- Mff __

+ _ +"" F(q) F(2q) F(3q)
•_ °.°° (7)
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The right side cannow be collectedinto a summationand usedas the definitionof the
generalizedimpulseresponsefunction

g(t) tq-' _a (--a)"t"q= -Fq[-a,t], q>O. (8)
,=o F(nq + q)

We also have the important Laplace transform identity

1
- - , q > 0. (9)

L{Fq[a,,I} s q -a

Here we have defined the notation for this function to be Fq [a,t], as it is closely related to the

Mittag-Leffler function Eq[atq], function (Mittag-Leffler, 1903a; Mittag-Leffler, 1903b;

Mittag-Leffler, 1905). The Mittag-Leffler function is defined as

_0 XnE_[x]- = r(nq+l) ' q>O, (lOa)

(Erdelyi, 1954). Letting x =-at q , this becomes

(-a)" t "uEq[-at"]-
,=o F(nq + 1)

q > 0 (10b)

(Bagley and Calico, 1991), which is similar to, but not quite the same as Equation (8). The
Laplace transform of this Mittag-Leffler function can also be obtained via term by term transform

of series (10b), that is

L 1
L{Eq[-at"_= { F(-1) at q a2t 2q } = _1 _ __a a 2-- + +"" sq+l +- +''"F(l+q) F(l+2q) s s 2u÷1

(11)

or, equivalently

S q S 2q
o

(12)

It should now be recognized that the summation in this expression is similar to Equation (6).

Using that, Equation (12) can be written as

iV,° ]
L{Eq[-at'J_ = sL, +.j

(13)
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or equivalently

L{Eq[_atq_ = 1 Is q L{Fq[-a,t]}]. (14)
S

Thus, the general result can be written

L{Eq[atq_= sq-J
S q --a

q > 0. (15)

Also, notice from Equation (14), that the E-function and the F -function can be related as follows,

oe:'-' (16)

This section has shown that the F -function is the impulse response of the fundamental

linear fractional differential equation. Plots of the F -function and the E-function for various

values of q are given in Figures 1 and 2, respectively.
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Figure I. The F [- l,t]-function vs. time as q varies from 0.25 to 2.0 in 0.25 increments.
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It shouldbenotedthatother authors have obtained a solution to Equation (2), but they appear to

be much less direct. Bagley and Calico (1991) obtain a solution in terms of Mittag-Leffler
functions. Miller and Ross (1993) obtain a solution in terms of the fractional derivative of the

exponential function. They use the function

E,(v,a)= odZ"e " ' (17)

whose Laplace transform is

-1)

qE,(,,,a)}= <18)
s-a

Also, Glockle and Nonnenmacher (1991) obtain a solution in terms of the even more complicated

Fox Functions. Clearly, all of these functions are useful for this problem (Eqn. (4)), but the

F -function presented here appears to most properly generalize the exponential function for use

with fractional differential equations. Finally, it should be noted that the F-function is also

mentioned by other authors as well. Oidham and Spanier (1974, page 122) mention it in passing
in a footnote discussing eigenfunctions. We have recently discovered that Robotnov (1980) and

(1969) studied the F-function extensively with respect to hereditary integrals (he calls it the

Cyrillic backwards E, or "eh"-function) . Our assumption is that the fractional calculus
community has not discovered this work as it has been "hidden" there. In the next section we

will consider various properties of this function.
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Figure 2. The Mittag-Leffier function, Eq [-t q ] vs. time as q varies

from 0.25 to 2.0 in increments of 0.25.
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Important Properties of the F-function

In this section, several properties of the F -function are derived. This is done specifically,

so that it can be shown that the F -function solves the fractional differential equation, Equation (2),

by direct substitution. It is also shown that the F-function satisfies what Oldham and Spanier

(1974) refer to as the "eigenfunction" property. This essentially means that the qth -derivative of

the function Fq [a, t'l], returns the same function Fq [a,t q] for t > 0, (see Equation (27)). Several

intermediate results are necessary to show these properties, and they are now derived.

First of all, we will consider the step response of the system given in Equation (2). This

can be obtained via Laplace transforms by transforming the input function u(t), which is chosen

to be a unit step function. Its Laplace transform is _, which must then be multiplied by the

transfer function, via Equation (4), to give the transformed step response as

(19)

This equation can be manipulated to give

1/al a 1= l!a I sq 1 1/aj -- i s"+a.... s

sq/a

s(sq +a)
(20)

This equation can now be inverse transformed using Equation (14) for the second term on the

right. The result is the step response of the system,

x(t)=l[n(l)-Eq[-atq_=L-l{1)}a s(s q +a '
(21)

where H(t) is the Heaviside unit step function, and which also gives another Laplace transform

identity. This step response is given in Figure 3 for several values of qand a = 1. It is also

interesting to notice that taking the integer derivative (0d]) of both sides of Equation (21)

necessarily gives the F-function on the left (the derivative of the step response is the impulse
response), and a new identity on the right;

F[-a,t]:a-_l d (H(t)_E,[_atq])" (22)

Now referring back to Equation (14), and multiplying the Laplace transform there by s -'l gives

s -'l L{E,[-otq_: s-' L{Fq[-a,t]}= I
s (s q + a )' which is the Laplace transform of Equation (19).
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Inversetransformingthis usingEquation(21)showsthatthe stepresponseof the systemof
Equation(2)isalsoequaltotheqth -integral of the Mittag-Leffier function; that is

L-' ( s(sql +a) } = al [H(t)-Eq[-atq]]= °d'-q Eq[-atq]
(23)

Some other interesting identities can be obtained by taking the qth_derivative of the

F-function. Taking the uninitialized derivative ( od_ ) in the Laplace domain by multiplying

by s _ gives

L-1 ( sqsq +a
= odq F [-a,t]. (24)

It should now be noticed that this is also the integer derivative of the Mittag-Leffler function,

L-1 { sqs q +a

= od_, F_[-a, tl= od,' Eq[-atq]. (25)
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This equation can also be rewritten as

L -I s t:Lfmats q + a s q + a
=8(t)-aFq[-a,t] (26)

where the delta function is recognized as the unit impulse. Now comparing Equations (24) and

(26), it can be seen that

od," F,t[-a,t]= 6(t) - aFq[-a,t] . (27)

This equation demonstrates the eigenfunction property of returning the same function upon

qO,_order differentiation. This is a generalization of the exponential function in integer order

calculus.

It is now easy to show that the F -function is indeed the impulse response of the system

of Equation (2). Referring back to Equation (2), inserting u(t)= t_(t), and setting b = 1, yields

odq x(t) = -ax(t) + iS(t). (28)

For the F-function to be the impulse response of the system, it must be the solution to

Equation (2), that is x(t)=Fq [- a,t]. Inserting this into Equation (28) gives

od, q Fq[-a,t]=-aFq[-a,t]+ 6(t) . (29)

This equation has been obtained by direct substitution into the differential equation. Referring

back to Equation (27), however, shows that the qrh -derivative of the F -function on the left is in

fact equal to the right side of Equation (29). Thus it is shown by direct substitution that the

F -function is indeed the impulse response of the system of Equation (2).

Behavior of the F-function as the Parameter a Varies

In 1903, Mittag-Leffler (1903a) introduced his new function Eq [ax], q > 0. He considered the

parameter a to be a complex number, a = a e j_ . As he studied this function (Mittag-Leffler,

1903b; Mittag-Leffler, 1905) it became apparent that this function was either stable (decays to

zero) or unstable (goes to infinity) as x increases, depending upon how he chose the parameters

a and q. The result was that the function remained bounded for increasing x if

_> zr q (30)
2

This section will demonstrate that the F-function shares this property. Furthermore, this result

carries over directly to the Laplace s-domain, which provides a fairly straightforward approach

for proving the result of Mittag-Leffler in Equation (30).

NASA/TP-- 1998-208693 8



Thediscussionfollowsmosteasilyif weconsidertheLaplacetransformrepresentationof

the F -function from above,

L{Fq[-a,t]}=sq-_a, q>0. (31)

Generally, to understand the dynamics of any particular system, we often consider the nature of

the s-domain singularities. We will define s = re j° in what follows. The particular function of

Equation (31), however, does not have any poles on the primary Riemann sheet of the s-plane

as it is impossible to force the denominator of the right side of Equation (31) to zero

anywhere in the s-plane. Notice, however, that it is possible to force the denominator to zero if
secondary Riemann sheets are considered. For example, the denominator of the Laplace
transform

(32)

does not go to zero anywhere on the primary sheet of the s-plane, (]01</r). It does go to zero on

the secondary sheet, however. With s=e +-j2_ , the denominator is indeed zero. Thus this

Laplace transform has a pole at s=e +-j2_, which is at s = 1+ j0 on the second Riemann sheet.

This is shown in Figure 4, where is plotted as a function of Real(s) and Imaginary(s).

Normally, to get to a secondary Riemann sheet, it is necessary to go through a branch cut

on the primary Riemann sheet. This is accomplished by increasing the angle in the s-plane.

Referring to Figure 4, increasing the angle until 0 =+/t', gets us to the branch cut on the s-plane.

This can also be accomplished by decreasing the angle until 0 =-_ , which also gets us to the

branch cut. Thus the branch cut lies at s=re +-j_ , for all positive r. Further increasing the angle

eventually gets us to 0 =+ 2n". For the Laplace transform of Equation (32), the behavior of the

transform is completely described with the two Riemann sheets. Returning to the primary

Riemann sheet on the s-plane, the branch cut begins at s = 0, the s-plane origin, and extends out

the negative real axis to infinity. The ends of the branch cut are called branch points, which are
then at the origin and at minus infinity in the s-plane, for the example. These branch points can
also be considered to be singularities on the primary sheet of the s-plane as well, but the Laplace
domain function does not go to infinity there. Whereas inverse Laplace transforms are usually

obtained by integrating around these branches and branch points on the primary sheet, this

thinking effectively ignores the secondary sheets, where the singularities (poles) are located.

NASAFFP-- 1998-208693 9
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Figure 4. Both sheets of the Laplace transform of the F -function in the s-plane.

As it is difficult to visualize multiple Riemann sheets, it is useful to perform a conformal

transformation, following LePage (1961), into a new plane. Here we will let

w = s q . (33)

The transform in Equation (31) then becomes

1 1KI- l)-- _=_--. (34)L a,t--s +o w+a

With this transformation, we will study the w-plane poles. Once we understand the time domain

responses that correspond to the w-plane pole locations, we will be able to clearly understand the

implications of this new complex plane.

To accomplish this, it is necessary to map the s-plane, along with the time-domain

function properties associated with each point, into the new complex w-plane. To simplify

discussion we will limit the order of the fractional operator to 0 < q < 1. Let

w = pe j_' = a+ j_. (35)
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Thenreferringto Equation(33)

W= S q -=@eJ°) q --- rqe jq° (36)

With this equation, it is possible to map either lines of constant radius, or lines of constant angle

from the s-plane into the w-plane. Of particular interest, is the image of the line of s-plane

stability (the imaginary axis), that is s = re +-i_ . The image of this line in the w-plane is

w = rqe +-j_% (37)

which is the pair of lines at _ =--+ q_ . Thus, the right half of the s-plane maps into a wedge in
2

the w-plane of angle less than + 90q degrees, that is, the right half s-plane maps into

q/r
<_ (38)

2

For example, with q = _, the right half of the s-plane maps into the wedge bounded by

_0 < q_4, see Figure 5.

It is also important to consider the mapping of the negative real s-plane axis, s = re +_j_.

The image is

W = rqe +-iqzr . (39)

Thus the entire primary sheet of the s-plane maps into a w-plane wedge of angle less than

+180q degrees. For example, if q=_, then the negative real s-plane axis maps into the

w-plane lines at + 90 degrees, see Figure 5.

Continuing with the q=_ example, and referring to Figure 5, it should now be clear that

the right half of the w-plane corresponds to the primary sheet of the Laplace s-plane. AI....!!of the

time responses we are familiar with from integer order systems have poles that are in the right
half of the w-plane. The left half of the w-plane however, corresponds to the secondary Riemann

sheet of the s-plane. A pole at w =-1 + j0 lies at s = +1 + j0, on the secondary Riemann

sheet of the s-plane. This point in the s-plane is really not in the right half s-plane, corresponding
to instability, but rather is "underneath" the primary s-plane Riemann sheet, or even more

intuitively satisfying, this point is "inside" the negative real s-plane axis. Lying inside the

negative real s-plane axis is a better image, as the easiest way to get to this pole is by increasing

the angle of an s-plane point until 0 =+ it', at which time you are on the negative real s-axis.

Increasing the angle any further takes you "inside" the negative real s-axis onto the secondary
Riemann sheet, and consequently farther away from the right half s-plane. As the corresponding

time responses must then be even more than over-damped, we will call any time response whose

pole is on a secondary Riemann sheet, "hyperdamped." It should now be easy for the reader to

extend this analysis to other values of q.

NASA/TP--1998-208693 I I
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To summarize the above, the shape of the F -function time response, Fq [- a,t], depends

upon both q , and the parameter -a , which is the pole of Equation (34). This is shown in

Figure 6. For a fixed value of q, the angle _0 of the parameter -a, as measured from the positive

real w-axis, determines the type of response to expect. For small angles, _ <q_, the time

response will be unstable and oscillatory, corresponding to poles in the right half s-plane. For

larger angles, q__,< _ <q_, the time response will be stable and oscillatory, corresponding to

poles in the left half s-plane. For even larger angles, _0[>q/r, the time response will be

hyperdamped, corresponding to poles on secondary Riemann sheets.

It is now possible to do fractional system analysis and design directly in the w-plane. To

do this, it is necessary to first choose the greatest common fraction (q) of a particular system

(clearly non-rationally related powers are a problem and will be considered in a future paper,

although a close approximation of the irrational number will be sufficient for practical

application). Once this is done, all powers of s q are replaced by powers of w. Then the standard

pole-zero analysis procedures can be done with the w-variable, being careful to recognize the

different areas of the particular w-plane. This analysis includes root finding, partial fractions
(note that complex conjugate w-plane poles still occur in pairs), root locus, compensation, etc.

We have thus now completely characterized all possible behaviors for fractional order systems in

a new complex w-plane; that is, given a set of w-plane poles, the corresponding time domain

functions are known both quantitatively and qualitatively. Although most of the discussion has

actually been for 0 < q < _, it is somewhat applicable to larger values of q with the appropriate

modifications for many-to-many mappings.
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Figure 6. Step responses corresponding to various pole locations in the w-plane, for q = _.
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Example

In this section, a simple example is presented to demonstrate how to use the theory

presented in this paper to obtain the solution to a physical fractional order system. The system

considered is the inductor terminated lossy line studied by Heaviside (1922) and Bush (1929) and
shown in Figure 7.

sL

(
+

s

T T T ...-':.
I

Figure 7. Inductor terminated semi-infinite lossy line example.

The input to the system is the voltage at the left, and the output will be chosen to be the voltage at

the terminal of the Iossy line. Using impedances, with L= 1, gives the transfer relationship to be

Vo (s) _ G(s) -
V,(s)

s + y_s s X +1

It should be noted that this problem can be written in the time domain as

,,d_'- v,(t) + v,(t) = vi(t)

where it is assumed that the initializations are zero.

(40a)

(40b)

This problem can be solved in several ways depending upon the specific input and also

depending upon the base value of q that is chosen. Clearly, with q=_, the impulse response of

the system is given by Equation (9) as

t, (41)

The shape of this function can be seen in Figure 1. The step response of this system can also be

found from Equation (21) as

(42){ 'v o (t) = L-' s (s 24"-+ 1

The shape of this function can be seen in Figure 3.

NASA/TP-- 1998-208693 14



It is now instructive to solve this problem by assuming that the basis q = _ instead of

q = _. Clearly the answer must be the same; however, this approach will demonstrate the use of

the w-plane on a system with a known response, as well as some other interesting properties of

the F-function. In the original transfer function in Equation (40), let s=w _. The transfer

function then becomes

V° ( w) - G( w) - 1
V, ( w) w 3 + 1

(43)

This transfer function has w-plane poles at w = -1, w = e +j_, w = e -j% Referring back to the

w-plane in Figure 5, all the w-plane poles are to the left of the instability wedge at _O=+ _. The

two poles in the right half w-plane correspond to s-plane poles at s=e j'%, and thus an

oscillatory response is expected. The third pole at w =-1, is in the hyperdamped region and

should indicate a rapidly decaying time response added to the oscillatory response from above.

To obtain the impulse response, the w-plane transfer function must be expanded in partial

fractions using the base value of q,

0.3333 0.1667 + j0.2887 0.1667 - j0.2887
G(w) - - (44)

w + 1 w - 0.5000 - j9.8660 w - 0.5000 + j0.8660

The corresponding time response can be obtained by inverse transforming term by term to give

Vo(t) : 0.3333F_ [-1,t]- (0.1667 + jO.2887)F_[0.5000+ j0.8660,t]

- (0.1667 - j0.2887)F_ [0.5000- j0.8660,t]
(45)

which is equivalent to the solution given in Equation (41). This results also demonstrates that

F -functions of different indices can be directly related to one another.

Summary

The fundamental linear fractional order differential equation has been considered and its

impulse response has been obtained as an F -function. Several properties of this function have

been presented and discussed. In particular, the Laplace transform properties of the F-function

have been discussed using multiple Riemann sheets and a conformal mapping into a more readily
useful complex w-plane.

It is felt that this generalization of the exponential function, the F -function, is the most

easily understood and most readily implemented of the several other generalizations presented in
the literature.
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