
I11111 111111ll111 Ill11 Ill11 IIIII IIIII IIIII Ill11 IIIII 11111 11ll11111111111111
US005850538A

United States Patent [19] [i l l Patent Number: 5,850,538
Steinman [45] Date of Patent: Dec. 15, 1998

[54] PRIORITY QUEUES FOR COMPUTER
SIMULATIONS

[75] Inventor: Jeffrey S. Steinman, San Diego, Calif.

[73] Assignee: The United States of America as
represented by the Administrator of
the National Aeronautics and Space
Administration, Washington, D.C.

[21] Appl. No.: 845,262

[22] Filed: Apr. 23, 1997

[51]
[52]
[58]

Int. C1.6 .. G06F 15/16
U.S. C1. 395/500; 3951553; 3641578
Field of Search 3951500, 673,

3951676, 680, 553; 3641578

~561 References Cited

U.S. PATENT DOCUMENTS

4,901,260 211990 Lubachevsky 3641578
5,247,650 911993 Judd et al. 3951500

5,701,439 1211997 James et al. 3951500
5,794,005 811998 Steinman 3951500
5,801,938 911998 Kalantery 3641131

Primary Examiner4'aul V. Kulik
Attorney, Agent, or Firm-John H. Kusmiss

[571 ABSTRACT

The present invention is embodied in new priority queue
data structures for event list management of computer
simulations, and includes a new priority queue data structure
and an improved event horizon applied to priority queue
data structures. The new priority queue data structure is a
Qheap and is made out of linked lists for robust, fast,
reliable, and stable event list management and uses a tem-
porary unsorted list to store all items until one of the items
is needed. Then the list is sorted, next, the highest priority
item is removed, and then the rest of the list is inserted in the
Qheap. Also, an event horizon is applied to binary tree and
splay tree priority queue data structures to form the
improved event horizon for event management.

29 Claims, 11 Drawing Sheets

INSERTED INTO Q

IADD EVENT TO Qtemp 1

1. SORT Qtemp
2. REMOVE TOP ITEM

AS NEXTEVENT
3. METASIZE THE REST

OF THE LIST
4. INSERT METASIZED

UST(3.) INTO Q

U S . Patent Dec. 15, 1998 Sheet 1 of 11 5,850,538

J

U S . Patent Dec. 15, 1998 Sheet 2 of 11

>

4f
Y
cv

u

5,850,538

?-

n

U S . Patent Dec. 15, 1998 Sheet 3 of 11 5,850,538

46-

BETA
FUN CTiON

FIG. 3
100000

10000

1000

m= AVERAGE
NUMBER OF 100
EVENTS OR

CYCLES
10

1

FIG. 4

0.2 014 0.8 1 .o
TIME

1 100 1000 10000 100000
NUMBER OF EVENTS

U S . Patent Dec. 15, 1998 Sheet 4 of 11 5,850,538

50

FIG. 5

FIG .

U S . Patent Dec. 15, 1998 Sheet 5 of 11 5,850,538

FIG. '7

80 82

FIG. 8

U S . Patent Dec. 15, 1998 Sheet 6 of 11 5,850,538

SORT EVENTS IN
TEMPORARY QUEUE

i

V A

EVENTS INSERTED
INTO TEMPORARY

QUEUE

V
INSERT EVENTS INTO
SPLAY TREE ONE AT
A TIME USING SPLAY

0 P ERATlO N

t

1 CONSTANT TIME
INSERTION OF EVENTS

INTO SPLAY TREE

CONSTANT TIME
REMOVAL OF EVENTS

FROM SPLAY TREE

SPLAY TREE

ALL ROTATIONS
AMORTIZED OVER TIME

FIG. 9

U S . Patent Dec. 15, 1998 Sheet 7 of 11 5,850,538

@-@-@; I

I I I

FIG. I O A

S = l I s=2 I

78

82 I 1
S = l I s=2 I

I I

FIG. IOB

82 I I I
S=l I s=2 I s=3 I

78 84

FIG. 1OC

82 88
I

FIG. 1OD

U S . Patent

80---m

Dec. 15, 1998 Sheet 8 of 11

82
I

88
I

5,850,538

I I
I

FIG. 1 1 A

82
J 86 90

I

FIG. 11B

86
I

92
I

94
I

90
I

FIG. 1 1 C

U S . Patent Dec. 15, 1998 Sheet 9 of 11

L

EVENT TO BE
INSERTED

5,850,538

L

J
EVENT TO BE I INSERTED INTO Q

ADD EVENT TO Qtemp I
NO

1

1. SORT Qtemp
2. REMOVE TOP ITEM

AS NEXTEVENT
3. METASIZE THE REST

OF THE LIST
4. INSERT METASIZED

UST(3.) INTO Q

FIG. 12

UPDATE Tmin

FIG. 3.3

U S . Patent Dec. 15, 1998 Sheet 10 of 11 5,850,538

NO

(Tmin < TIME TAG OF
NEXT ITEM IN Q ?)

'?

,

1. SORT Qternp
2. SET Tmin = 00

.1

I 1. REMOVE TOP ELEMENT I 2. NAME TOP ELEMENT NEXTEVENT

1. METASIZE THE REST OF ELEMENTS

2. NAME NEW METAITEM METAtemp
FROM Qtemp INTO A NEW METAITEM

1, METASIZE ALL ELEMENTS INTO

2. PlACE NEW METAITEM BACK INTO
A NEW METAITEM

Q AS THE ONLY ELEMENT

I INSERT mTAtemp INTO Q I
J.

1 RETURN TO NEXTEVENT 1
TO

FIG. 148 FIG. 1 4 A

U S . Patent

NO

Dec. 15, 1998 Sheet 11 of 11

-
RETURN NEXTITEM

AS THE NEXTEVENT

I 1. REMOVE TOP ITEM FROM Q
2. NAME TOP ITEM NEXTITEM

-

5,850,538

SET NEXTITEM
= NEWITEM

I

1. METASIZE ALL OF Q’s ELEMENTS
INTO A NEW METAITEM

2. PLACE THE NEW METAITEM BACK
INTO Q AS THE ONLY ELEMENT

5,850,538
1 2

PRIORITY QUEUES FOR COMPUTER
SIMULATIONS

ORIGIN OF INVENTION

Whatever the merits of the prior techniques and methods,
they do not achieve the benefits of the present invention.

SUMMARY OF THE INVENTION
5 The invention described herein was made in the perfor-

mance of work under a NASA contract, and is subject to the
provisions of Public Law 96-517 (35 USC 202) in which the
contractor has elected not to retain title.

To overcome the limitations in the prior art described
above, and to overcome other limitations that will become
apparent upon reading and understanding this specification,
the present invention is embodied in new priority queue data
structures for event list management of computer simula-

The invention relates to priority queue data structures for Some of the new Priority queue data structures include
use in simulation systems, such as for discrete event simu- use of an event horizon. One such event horizon is the
lation of objects using a plurality of synchronous parallel Synchronous Parallel Environment for Emulation and Dis-
computers in communication with each other so that the 15 crete Event Simulation C‘SPEEDES”) operating system as
objects being simulated may interact. disclosed in the U.S. patent application referenced above.

The event horizon is applied to linked lists, binary trees, and
splay trees, to form new linked lists, binary trees, and splay
trees.

Of a new Qheap data structure. The new Qheap is a ‘Om-

Pletely new data structure for robust, faster, more reliable,

10 . TECHNICAL FIELD tions.

BACKGROUND ART

Priority queues are used for sequential event list manage-

cessing systems with discrete-event simulations. Priority
queues aid in managing the event list. Discrete-event simu-

ment in computer simulations, for example in parallel pro- 20 The preferred priority queue data structure is comprised

lations are built upon two fundamental building block.
First, there are simulation objects. Discrete-event sirnula-

and more event list management. Specifically, the
QheaP of the Present invention uses a temporary unsorted

tions normally
to real world objects in the simulated system, ~~~h simu-

describe its state.
Second, there are events. d l interactions between objects In addition, the QheaP of the Present invention can have

in a logically correct discrete-event simulation occur 30 an event horizon applied to it to form a SPEEDES Qheap.
through time-tagged events which must be processed for The SPEEDES QheaP Priority queue data structure of the
each object in their correct time order to preserve present invention is built out of linked lists to form the heap.
logical correctness. Logically correct parallel discrete-event This is different from heap data structures that use
simulations usually require an event to be associated with a either fixed arrays Or binary trees.
single simulation object. However, sequential simulations 35 d l of the priority queue data structures of the present
do not always enforce this requirement. It should be noted invention have excellent real world value in that they
that events can modify the state of their corresponding provide fast event list management queues for utilization in
simulation object, and also may schedule new events to computer systems, such as for computer simulations that use
occur in the future (causality forbids events to ever be priority queues, such as networks, operating systems,
scheduled in the past).

As an example, during the course of a simulation, an event A feature of the present invention is a new event list
list containing a list of pending events waiting to be pro- management system by a Qheap priority queue data struc-
cessed is maintained by simulation machinery. If the event ture. Another feature of the present invention is to apply an
list becomes empty at any time, then by definition, the event horizon to priority queue data structures, such as to
simulation has reached an end time, and is therefore termi- linked lists, binary trees, splay trees, and the Qheap.
nated. In sequential simulations, the pending event with the An advantage of the present invention is that the new
earliest time tag is always the next event to be Processed. Qheap is robust, extremely fast, very reliable, and an excep-
However, it should be noted that Parallel simulations, espe- tionally stable event list manager. Another advantage of the
cially optimistic simulations, can be more complicated. present invention is that performance of previous priority

Two basic operations are required for sequential event list queue data structures, such as linked lists, binary trees, splay
management, a remove operation and an insert operation. trees, are improved by exploiting the event horizon with the
The remove operation removes the event with the earliest new priority queue data structures disclosed herein.
time tag from the list of Pending events SO that it can be Further, the Qheap and the event horizon applied to the

event back into the list of Pending events. These two practical applications. For instance, the Qheap and the event
operations are essentially the Same operations that are horizon applied to the priority queues is applicable in aiding
required by priority queue data structures. both parallel and sequential discrete-event simulations. As

Thus, it is apparent that efficient priority queue data such, the Qheap and the event horizon applied to the priority
structures are desirable for computer simulation systems, 60 queues have tremendous real-world value in computer simu-
such as for discrete-event simulations. However, current lation systems, such as in a computer simulation system
priority queue data structures require large overhead of using the SPEEDES operating system disclosed in the U.S.
event list management. In addition, the performance of application referenced above.
current priority queue data structures are limited. For example, utilizing the Qheap in computer simulations

Therefore, there is a need for priority queue data struc- 65 provides predicable, more stable, and faster event list man-
tures that have increased efficiency, enhanced performance, agement. In addition, exploitation of the event horizon in
and reduced overhead. parallel simulations allows one to process events optimisti-

many objects which frequently map 2s list to store all items until one of the items is needed. Then
the list is sorted, next, the highest priority item is removed,

is made out of linked lists).
lated object contains an encapsulated set of variables that and then the rest ofthe list is inserted in the QheaP (the heap

40 simulations, artificial intelligence, etc.

4s

processed. The insert operation inserts a newly scheduled 55 priority queues of the present invention have immense

5,850,538
3 4

cally in a risk-free manner (i.e., without requiring message 10 for a simulation object received via a multir-
antimessages) using adaptable “breathing” time cycles with outer 11 from the same processor or another processor. Time
variable time widths. Further, use of the Qheap as well as tagged messages received are queued in an event library 12.
exploitation of the event horizon significantly reduces the Multiple messages for a simulation object with the same
overhead of event list management that is common to s time index will generate multiple event objects for the
virtually every discrete-event simulation. simulation object.

The foregoing and still further features and advantages of All event objects are user-defined as to their inherent
the present invention as well as a complete under- capabilities from a base-class of generic simulation objects,
standing thereof will be made apparent from a study of the where the term “objects” refers to object oriented program-
following detailed description of the invention in connection 10 ming techniques used to simulate Physical objects assigned
with the accompanying drawings and appended claims. to processors for simulation of events, such as missiles,

airplanes, tanks, etc., for simulation of war games, for
example.

Event objects 14 are initialized by data contained within
in which like reference 15 the messages received. After an event object is initialized,

the message for it is discarded. Each event object is then
attached to its own simulation object by a pointer to the
simulation object 15.

Processing an event object in a processor is done in
20 multiple steps that are written by the user into the simulation

BRIEF DESCRIPTION OF THE DRAWINGS

Referring now to the

FIG. 1 is a block diagram illustrating the object-based

FIG. 2 is a timing diagram illustrating three successive

numbers represent corresponding parts throughout:

architecture at a single node of the invention;

cycles of operation with a basic event horizon;
FIG. 3 is a plot illustrating the nine beta-density functions

analyzed in the example. These nine different beta functions
program. In the first step, an event Object optimistically
performs its and generates messages l3 to
schedule future events. However, the event object of the represent a wide spectrum of event generation statistics;
input message 10 is not immediately executed, i.e., the state

zs of the simulation object, is not changed, and the messages
for future event objects are not immediately released.
Instead, the state changes and the generated messages are
stored in the event object 14. Only the changes of the

object state variables are stored within the event

In the second step, the state variable changes that were
computed in the first step are exchanged with the simulation
object 15 so that the event object then has the old state values
and the simulation object has the new values. For example,

35 the state variables may consist of 1000 bytes. If the event
requires only four bytes to be changed, only those four bytes
are saved and exchanged, ~f rollback is later required,
another exchange restores the previous state of the simula-
tion object.

This feature, referred to as “delta exchange,” reduces
memory used in optimistic simulations at the expense of
having to supply the exchange code in the simulation.
Performing a delta exchange involves negligible time, so
that rollback is carried out efficiently when needed without

The simulation program may include as part of delta
exchange, the step of each time writing out to files these
deltas. The simulation may then be rewound if rollback is

The following description is organized as follows. First, necessary through several pairs of steps resulting in a
an introduction is presented on one discrete event simulation SO reverse delta exchange for several events in sequence in a
operating system (SPEEDES) with a basic event horizon generic event queue 16, thus restoring the changes in reverse
event list manager for informational purposes. Second, one order from the files.
embodiment of the present invention, the new event horizon, Adelta exchange completes the first phase of carrying out
as applied to priority data structures, is presented. Third, the an event, but as just noted, although the state of the simu-
preferred embodiment of the present invention, the new ss lation object is changed in the first phase, it can be rolled
Qheap priority data structure, is presented. Fourth, a new back. In the second phase, further processing is carried out,
event horizon Qheap is presented (the event horizon applied such as cleaning up memory, or sending messages 13 out to
to the new Qheap) to form a new SPEEDES Qheap. In all this and/or other processors and to graphics for record or
of the sections, working examples are provided to compare display. This phase is carried out only after the event object
performance. 60 is known to be valid so that there is no possibility of a
1. Introduction rollback being required. Consequently, it is usually per-

Object-based architecture of a simulation process operat- formed much later in time than the two steps in the first
ing on a SPEEDES based processor carried out at each node phase, but always without changing the state variables of the
is illustrated for a single simulation object in FIG. 1 . simulation object.
Discrete event simulation of objects begins with some basic 65 SPEEDES Internal Structure
steps for a single processor, such as a processor at a node of
a Hypercube. First an event object is initiated by an input

FIG. 4 is a plot illustrating the average number of new
events collected in the temporary queue (assuming the hold
model) per event horizon as a function of the number of
pending events for each of these nine beta functions;

FIG. 5 illustrates tree rotation operation of a binary tree;
FIG. 6 illustrates an example of the SPEEDES Binary 30 object 14.

FIG. 7 illustrates zig-zig tree rotation of a Splay tree;
FIG, 8 illustrates zig-zag tree rotation of a Splay tree;

Tree data structure;

a flow diagram Of the SPEEDES
Tree data structure;

into the Qheap;

an item from the Qheap;

Qheap operation;

FIGS. 10A-1OD illustrate examples of inserting elements

FIGS. 11A-11C illustrate a specific example of removing

FIG. 12 is a flow chart illustrating an overview of the

FIG, 13 is a flow chart illustrating Qheap insertion; and
FIG. 14 is a flow chart illustrating Qheap removal.

40

45 the need of special-purpose hardware.
DETAILED DESCRIPTION OF THE

INVENTION

While other multiple-synchronization systems (or test
beds) have been developed, one reason for the success of

5,850,538
5 6

SPEEDES is its unique object-oriented design. First, event Managing a sorted list of future events can cripple the
processing is broken into some very basic steps (see FIG. 1). performance of low-granularity simulation. In parallel dis-
Creating an Event crete event simulations, such management often leads to

An event is created by a message. Note that multiple superlinear speedup. One technique for event list manage-
messages for an object with the same time stamp will s ment is the basic event horizon,
generate multiple events, not a single event with multiple The basic event horizon is a fundamental concept used in

be confused with simulation objects. User-defined events or heaps, For example, a basic event horizon has been used

which defines various virtual functions. It is through these u,s, patent application Ser, No, 08,363,546 filed Dee, 12,
1994 by Steinman entitled “SYNCHRONOUS PARALLEL virtual functions that events are processed.

SYSTEM FOR EMULATION AND DISCRETE EVENT An important optimization is in the use of free lists for
memory management. SPEEDES manages old messages
and events in a free list and them whenever possible, SIMULATION’, which is herein incorporated by reference.
This speeds up memory management and avoids the The basic event horizon continually maintains two lists.
memory fragmentation problem. IS The primary list is sorted, while the secondary list is
Initializing an Event unsorted. As new events are scheduled, they are put into the

sage through a user-supplied virtual initialization function. secondary list is preserved. When the time to process this
After the event is initialized, the message is discarded into event comes, the secondary list is sorted and then merged
a free list. Each event is then attached to its own simulation 20 into the primary list. The time stamp of this critical event is
object (i.e., the event object receives a pointer back to the the basic event horizon. Also, a global event horizon is
simulation object). determined by an earliest local event horizon from among all
Processing an Event: Phase 1 of the nodes and is defined as a value of one cycle for the

Processing an event is done in multiple steps that are all system.
supported with C++ virtual functions written by the user. In zs The processing of event objects in successive cycles
the first step, an event optimistically performs its calcula- defined by the basic event horizon is illustrated in FIG. 2 .
tions and generates messages to schedule future events. Basically, in FIG. 2, events 20 generated during one cycle of
However, the simulation object’s state must not change. In the simulation become pending events 22a, 22b during the
addition, messages that would generate future events are not next cycle. Each cycle only processes those pending events
immediately released. 30 22a which do not occur beyond the event horizon 24 of that

The event object itself stores changes to the simulation cycle. Those pending events 22b which occur beyond the
object’s state and the generated messages. Only variables event horizon are not processed during the current cycle.
affected by the event are stored within the event object. Also, corresponding messages of a global event horizon can
Thus, if a simulation object contains 50,000 bytes and an be transmitted to effect changes to state variables of the
event requires changing one of those bytes, only that one 3s simulation object only for those events whose time stamps
byte is stored within the event. There is no need to save are within the global event horizon.
copies of all 50,000 bytes of the object in case of rollback. A complete mathematical formulation of the basic event
Delta Exchange horizon was derived in the above-identified copending

In the second step, the values computed in Phase 1 are patent application under equilibrium conditions using a hold
exchanged with the simulation object. This exchange is 40 model. Various forms of a beta density function were
performed immediately after the first step. After an consequently used to verify results of the analytic model.
exchange, the event has the old state values and the simu- However, although the basic event horizon is very
lation object has the new values. Two successive exchanges effective, the present invention is embodied in a new Qheap
(in the case of rollback) then restore the simulation object’s priority queue data structure for event list management.
state. 4s Also. the aresent invention is embodied in the above event

messages. Events are separate objects in c++ and should not

es from a base-c1ass generic event Object,

parallel simulations, without using linked lists, binary trees,

to support risk-free optimistic simulations, as described in

Events are initialized by data contained within the mes- secondary list. The earliest event scheduled to occur in the

When an event is rolled back, there are two possibilities
concerning messages that were generated by the Phase 1
processing. One is that the messages have already been
released. In this case, antimessages must be sent to cancel
those erroneous messages. The other is that the messages
have not been released yet. In this case, the messages are
simply discarded.
Processing an Event: Phase 2

In the third step, further processing is done for an event.
This usually involves cleaning up memory or sending exter-
nal messages out to graphics. This step is performed only

I I

horizon applied to priority queue data structures, such as
linked lists, binary tress, splay trees, and the Qheap to form
a new event horizon, as disclosed below. The new Qheap
priority queue data structure and new event horizon of the

Both the Qheap priority queue data structure and the new
event horizon can be utilized in simulation systems, such as
a system using the SPEEDES operating system disclosed in
the U.S. application referenced above. However, it should be

ss noted that the Qheap is a new priority queue in itself and can
be used with numerous computer applications requiring a

SO present invention both perform event list management.

after the event is known to be valid, in other words, when priority queue.
there is no possibility for the event to be rolled back. This The present invention improves performance of previous
step is usually performed much later in time than the priority queue data structures with the new Qheap and with
previous two steps. The simulation programmer should not 60 the new event horizon applied to priority queue data struc-
assume that the simulation object contains valid state infor- tures disclosed herein. The following is a detailed descrip-
mation when processing in Phase 2. The processing done in tion of the new Qheap data structure and the new event
this step must not change the state variables of its simulation horizon along with performance results for each priority
object. queue data structure.
Managing the Event List: The Basic Event Horizon

One of the most time-consuming tasks in supporting
discrete event simulations can be managing the event list.

65 2. The Improved Event Horizon
In order to exploit the improved event horizon for event

list management algorithms in accordance with the present

5,850,538
7 8

invention, it is assumed that as new events are generated,
they are not immediately sent back into the main priority
queue data structure, but instead are collected in an unsorted
temporary holding queue. The event with the earliest time
tag in this temporary queue is tracked. When the next event s
to be processed is in the temporary queue (i.e., the event

merge sort algorithm is easily performed on linked lists) and
then merged back into the main priority queue data structure.

queue, the insert operation is always accomplished in con-
stant time with very low overhead since it simply involves
adding another item to the bottom of an unsorted linked list.
However, when the list must be sorted (this occurs after the
event horizon is crossed), it is sometimes complicated to

structure. It should be noted that the main priority queue events for each Of these nine beta functions.
itself may be a very complicated data structure. All measurements in the working examples were obtained

The following definitions are used in the description of using for example, an HP90001715 75 MHz workstation.
the invention that follows: 2o The results were repeatable to within several microseconds.

N=Number of processing nodes A C++ compiler was used with the optimizer enabled. For all
n=Number of pending events measurements taken, each event generated a single new

event distributed into the future according to the nine m=Average number of events per event horizon
B=Event insertion bias (from top of list)
Further, for simplicity, unless otherwise stated, the present All of the overheads (everything other than removing

invention is described with the assumption that the simula- events from, and inserting new events into the list) were
tion is under equilibrium conditions (i.e., one new event is carefully measured and subtracted from the timing measure-

model). operations. Further, steps were taken to keep the overhead
Priority Queues and the Improved Event Horizon small. Free lists were chosen to reuse event data structures

A number of well known priority queue data structures in order to minimize memory-management overhead. Ran-
exist. The following is an ~ ~ e r v i e w of various Priority dom numbers were pregenerated and stored in large arrays
queues, as well as performance analysis and measurements 35 to reduce random-number-generation overheads.
of working examples. Techniques in accordance with the The result of these efforts to minimize the overhead was present invention for applying the improved event horizon to

that 0.0029 ms per event was subtracted from each of the each of these data structures follows.
Nine different beta-density functions were used in work- measurements. This amount of overhead was small com-

event-list data structures, including flat 30, triangle up 32, event lists for large (n>1,000) data structures. Enough events
triangle down 34, bell shaped 36, asymmetric near future 38, were Processed for each data structure to become stable.
asymmetric far future 40, far future 42, near future 44, and Finally, the initial density of events as a function of time was
two hump 46. The beta function was chosen because of its correctly generated using the results derived by the previous
flexibility in Providing a wide variety of shapes. The beta 45 event horizon described in the U.S. patent application Ser.
density function is given below as No. 081363,546 filed Dec. 12, 1994 by Steinman entitled

TABLE 1-continued

Nine beta functions

Bias Description "1 nz

horizon has been crossed), the queue is sorted (a binary Near Future 0 20 0.512
Two Hump 0.20 20.0 0.523

Because all new events are Put in the temporary holding lo FIG. 3 is a plot illustrating the nine beta-density functions
analyzed in the example. These nine different beta functions
represent a wide spectrum of event generation statistics,
FIG, is a plot illustrating the average number of new events

15 collected in the temporary queue (assuming the hold model)

merge its sorted events with the main priority queue data per event horizon as a function Of the number Of pending

25 different beta distributions (i.e., the hold model).

generated per event processed, which is the basis of the hold ments by first running dummy loops that mimicked those
30

ing examples to measure the performance of the different 4o pared to the amount Of time it typically took to manage the

"SYNCHRONOUS PARALLEL SYSTEM FOR EMULA-
TION AND DISCRETE EVENT SIMULATION', refer- (n l+ nz + 1)

nl!nz! B"I"Z(t) = Pl(1 - t)"z

enced above.
Linked ~i~~~

linked list. A linked list has events inserted and removed
regularly. Inserting an event into a linked list data structure

55 requires traversing the list until a proper slot is found for the
event. Removing an event from the list is performed in
constant time because the list is always sorted. The time for
inserting and removing an event is given by:

A two hump distribution was generated by combining two
equally weighted near and far future beta distributions.

represents the average fraction of events required for tra-
versa1 in a linked list starting from the top of the list.

These distributions are shown below in Table 1, The Bias The simp1est priority queue data structure is a sorted

TABLE 1

Nine beta functions

Description "1 nz Bias 6o

Flat 0 0 0.667
TI,,,=ClBn+C2

Triangle Up 1 0 0.800
Triangle Down 0 1 0.600 Where Tlist is the time for inserting an event, C, represents
Bell Shaped 20 20 0.913 the overhead for traversing a linked list, C, represents the

65 overhead for removal, B is the event insertion bias, and n is Asymmetric Far Future 18 2
Far Future 20 0 0.977 the number of pending events. Performance results for

typical linked list priority queues are given below in Table 2.

Asymmetric Near Future 2 18 0.710
o,954

5,850,538
9

TABLE 2

Performance in milliseconds
for typical linked lists.

Dist.\ n 10 102 io3 io4 1 os
Flat 0.00130 0.01009 0.10626 4.79610 84.3564
Tri. Up 0.00187 0.01214 0.12988 6.01976 97.8821
Tri. Down 0.00166 0.01017 0.09735 4.28571 73.3466
Bell Shaped 0.00187 0.01426 0.14734 6.94305 113.168
Asym. Near 0.00185 0.01245 0.11435 5.11578 88.4158
Asym. Far 0.00127 0.01273 0.14534 7.17282 117.524

10
SPEEDES Queue can also have very poor performance
when m is close to the numerical value 1. In fact, when m
is equal to 1, the SPEEDES Queue degenerates back into a
linked list. Because of this, the SPEEDES Queue is not

5 recommended for general discrete-event simulation
systems, although it almost always is a better alternative to
plain linked lists. There may be some exceptions, however,
when the SPEEDES Queue is an excellent choice, especially
when applications have enough lookahead to provide large
event horizon cycles. Performance results of the SPEEDES
Queue are given in Table 3.

TABLE 3 Near Future 0.00130 0.00908 0.15098 3.52737 63.8613
Far Future 0.00128 0.01047 0.13425 7.01388 118.910
Two Hump 0.00155 0.00597 0.12154 3.67722 62.8712 Performance in milliseconds

15 for the SPEEDES Queue.

10 102 io3 io4 io5 The event horizon is easily applied t o linked list priority
queues to form a new event horizon in accordance with the Dist,\

present invention for improving the overall results of the Flat 0.00182 0.00278 0.00724 0.06199 0.24959
typical linked lists without an event horizon as shown in Tri. UP 0.00154 0.00296 0.00409 0.01940 0.04338

Bell Shaped 0.00208 0.00204 0.00343 0.01117 0.01915
Table 2. For instance, the temporary list is sorted at each 20 Tri. Down 0.00199 0.00306 0.00848 0.06959 o.28825
event horizon boundary and then merged back into the main Asym, Near o,oo181 o,oo251 o,oo429 o,01653 o,03860
list of pending events. The resulting data structure can be A ~ ~ ~ , F~~ 0,00152 0,00204 0,0030s 0,01028 0,01771
used in the SPEEDES operating system to form a SPEEDES Near Future 0.00194 0.00304 0.01362 0.08391 0.33714
Queue. The basic SPEEDES Queue, similar to the improved Far Future 0.00162 0.00241 0.00285 0.00880 0.01648
SPEEDES Queue of the present invention, was used in one 2s o.oo222 0.00449 0.02764 0.18375 0.75607
version of the SPEEDES operating system described in the
U.S. patent application Ser. No. 081363,546 filed Dec. 12,
1994 by Steinman “SYNCHRoNoUS PARALLEL Binary trees and their many variants are frequently used
SYSTEM AND EVENT to support priority queue data structures. Each node in a

30 binary tree has three pointers. The three pointers include a SIMULATION’, referenced above.

pointer its left child a pointer to its left child, and a pointer Merging m (the average number of events per event
horizon) sorted events into a list of n-m sorted events can be
done in worst events can to its right child. The root node, of course, is unique because

it has no parent since it is at the top of the tree. Leaf nodes be done in O(Log,(m)) time, and because the sort and merge
(which are at the bottom of the tree) have no children. operations are only required every m events, the following Also, it is important to note that it is possible for a node expression relates the overhead for event list management that is not a leaf node to be missing either a left or right child. per event.
Each node in a binary tree also has a time tag value that is
used for sorting. By definition, all of the elements in the left
subtree below a node have time tans less than or eaual to the

~i~~~~ T~~~~

o(n) time, Because sorting

35

(3) TSPFEDSQ~~~~ = CI + Czlogz(m) + C3$
a

40 node’s time tag. Similarly, all of the elements in the right
subtree below a node have values greater than or equal to the
node’s time tag,

When using binary trees to support priority queues, it is

Where, is the average number Of events per event
horizon, C, represents the constant overhead for inserting
and removing an event under normal circumstances, C,
represents the Overhead for ’Orti%

merge sort
for merging

the binary possible to maintain a special pointer to the leftmost element
an event is

removed from the tree, the event with the next smallest time
On lists, and c, represents the Overhead 45 (i,e,, the event with the smallest time tag),

events in the temporary list back into the
tag can be found in constant time by locally traversing the
tree from the point where the most recent event was

main list that contains n-m events.
The value for m that minimizes the overhead of the

SPEEDES Queue can be derived
the above expression with respect to

taking the derivative Of removed, This is faster than always starting at the top of the
it to zero. 50 tree and traversing downward to the left until the leftmost and

leaf node is found.
Thus, most of the overhead involved when using binary

tree data structures as priority queues occurs from inserting
(4) events, and not from removing events. Events are inserted

55 by traversing down the tree, moving left or right, until a leaf
is related to the overheads required by the merge and sort node is reached. The event is then added as either a left or
operations. Under normal conditions, the merge operation is right child of the leaf node.
expected to require less overhead than the sort operation. Inserting events can be very inefficient for “vanilla”
This means that the optimal value for m should be somewhat binary trees. Because events are always removed from the
less than 0.693 times the number of total pending events 60 left side of the tree and because new events are inserted
(depending on the implementation). It also should be noted somewhat randomly with typical event insertion biases
that the best performance to be expected from the SPEEDES larger than %, trees almost always become skewed to the
Queue (obtained when plugging the optimal value for m right (exponential time based event-generation distributions
back into equation 2) is logarithmic behavior with a very have an average bias of exactly %, which means that binary
small coefficient. 65 trees will remain well balanced-also, it is possible for

While the SPEEDES Queue has exceptionally good per- certain event generation statistics to result in average biases
formance when m is close to its optimal value, the less than %).

The result is given below.
From the above expression, the optimal value for m

c3
moprTzomi = nloge(2)

5,850,538
11 12

For example, it is possible for the tree to degenerate into
a linked list if events are scheduled with a constant looka-
head value (FIFO: first-in-first-out event scheduling). The
present invention provides various techniques (discussed
below) to limit this skewing problem. Before describing
these various techniques, the basic tree rotation operation
used by all of the tree data structures of the present invention
is defined. Table 4 illustrates the inefficiency of inserting
events for “vanilla” binary trees.

TABLE 4

Performance in milliseconds for binarv trees.

Dist.\ n 10 102 103 104 105

Flat
Tri. Up
Tri. Down
Bell Shaped
Asym. Near
Asym. Far
Near Future
Far Future
Two Hump

0.00498
0.00506
0.00478
0.00588
0.00506
0.00552
0.00506
0.00589
0.00505

0.00784
0.00940
0.00691
0.00840
0.00718
0.01307
0.00709
0.0186
0.01178

0.01540
0.0202s
0.01133
0.01291
0.01009
0.02537
0.01153
0.05720
0.04015

0.06468
0.10505
0.02605
0.03518
0.02290
0.06131
0.02311
0.36440
0.21838

0.29739
0.50757
0.05333
0.04759
0.03906
0.23754
0.03983
2.26619
1.17882

Tree rotations permit the structure of a binary tree (or
subtree) to change while preserving the tree’s integrity (i.e.,
the elements in the tree remain sorted). FIG. 5 illustrates tree
rotation operation of a binary tree. The binary tree 50 has a
node 52 and ascendants 54 (parent in this case), each with
elements (denoted as A and B). As shown in FIG. 5, a right
rotation 56 about the Y node preserves the B subtree so that
the B subtree remains between X and Y. A left rotation 58
about the X node restores the tree back to its original shape.
Balanced Binary Trees

One very well known technique for managing binary
sorted trees was developed by Adelson, Velsky, and Landis
(see AVL Trees, Crane C., 1972. “Linear Lists and Priority
Queues as Balanced Binary Trees.” STAN-CS-72-259,
Computer Science Department, Stanford University).
Although the AVL Tree method ensures that a tree is always
perfectly balanced, the overhead required is too high. In
contrast, because large amounts of overhead are very unde-
sirable and because a perfectly balanced tree is unnecessary,
the present invention is embodied in method for producing
a Balancing Heuristic Tree that contains less overhead, and
can be used for example with the SPEEDES operating
system.
The SPEEDES Balancing Heuristic and the SPEEDES Tree

The present invention includes a SPEEDES Balancing
Heuristic to keep trees in rough balance with little overhead.
To support this data structure, the number of descendants to
the left and the number of descendants to the right are
required by each node of the tree. Note that for a given node:

Nl=f+N,,gh*+l=N,,b,,, (5)

The balancing information is kept intact by the following.
As events are removed or inserted, the tree is traversed
downward starting from the root. The N,, and N,,, values
are modified at each node visited along the traversed path
until the event is either removed or inserted. When inserting
a new event, a balancing heuristic is applied at each node
along the traversed path that tests if the subtrees below are
grossly out of balance. This check first determines if the
following expression is true (it should be noted that the
factor of 3 was chosen empirically).

INlefr-N~rghrl>3(Nlefr+N~rghr) (6)

If this condition is true, then a second check is made to
determine if there are enough events in the subtrees below

to make it beneficial to rotate its structure. It has been
determined that a reasonable number to use is 20 (however,
if there are less than 20 events in the combined subtrees of
a given node, then it is not worth the effort to perform tree

5 rotation operations). If there are enough events to warrant a
rotation, the tree is rotated either left or right in order to
improve its balance before moving downward.

Because the rotations are done only when needed, it is
possible for portions of the tree to become out of balance.
This is not a serious problem, even though it may require
additional work to bring the tree into balance, since it is
amortized over time. Although the worst case performance
of this heuristic is not guaranteed, working measurements
indicate that the balancing heuristic of the present invention
keeps the tree in nearly perfect balance with relatively low
overheads. Sample performance of a working example for
balancing the Heuristic tree of the present invention is
provided in Table 5.

10

TABLE 5
?”
i”

Performance in milliseconds for balancing
heuristic tree of the present invention.

Dist.\ n 10 102 io3 io4 io5

25 Flat
Tri. Up
Tri. Down
Bell Shaped
Asym. Near
Asym. Far

3o Near Future
Far Future
Two Hump

0.0 0 3 6 4
0.00384
0.00339
0.00385
0.00357
0.00495
0.00366
0.00478
0.00353

0.00952
0.01007
0.00951
0.01008
0.00924
0.01074
0.00896
0.01232
0.01002

0.01843
0.01829
0.01722
0.01674
0.01701
0.01750
0.01820
0.01866
0.01792

0.03216
0.03 175
0.03236
0.02986
0.03162
0.02838
0.03271
0.02887
0.02935

0.04941
0.04865
0.04969
0.04648
0.04948
0.04470
0.04922
0.04240
0.04541

The balancing heuristic tree method described above can
be extended to take advantage of the event horizon. To

35 achieve this, first, events are not added to the tree one at a
time, but instead are collected in a temporary holding queue.
When the next event to be processed is in the temporary
queue, it is sorted, the top event is removed (because it is the
next event to be processed) and then the rest of the list is

40 merged into the binary tree. In order to accomplish this
merge operation, a time tag is required by each node of the
tree. specifically, each node tracks the maximum possible
time tag, T,,,, allowed in its subtree. This information
permits the tree to be locally traversed as the sorted list is

45 merged instead of forcing each event in the list to start at the
top of the tree the way normal insertion is usually per-
formed.

When a node is inserted into the tree as a left descendent,
its value for T,, is the time tag of its parent. If the event is

SO a right descendent, its value for T,,, is the same as its
parent’s value for T,,,. FIG. 6 illustrates an example of the
SPEEDES Binary Tree data structure 60. In addition to
normal pointers in a binary tree, and time tag values required
for sorting, nodes 62 also maintain T,,,, N,,, and N,,,,

ss values. The SPEEDES Tree also maintains a single pointer
to the root of the tree and to the current event 64 (i.e., the
node with the smallest time tag).

In the SPEEDES Tree, a pointer always designates the
event with the earliest time tag in the tree. As events are

60 popped out of the tree to be processed, the pointer is updated
locally. In other words, popping events out of the tree
doesn’t require starting at the top of the tree and then
working downward until the left-most node is found (this
would take logarithmic time). Instead, the next event is

65 obtained from the tree in constant time.
While popping events out of the tree, the balancing

information (Nlef, and Nrigh,) is ignored. Thus, by the time

5,850,538
13

the event horizon is about to be crossed, the tree balancing
information is not correct. However, it can be corrected by
working from the left-most event in the tree back up the tree
until the root is reached, updating N,, on each node visited
in the process. The number of steps is less than log,(n)
because the tree will tend to be skewed to the right. Further,
updating the tree-balancing information only occurs after m
events are processed. Therefore, restoring the balancing
information in the tree normally involves a negligible
amount of overhead.

Merging the sorted list of new events into the tree is a
complex process. The first event to be processed at the start
of the next cycle will be the first event in the sorted
secondary list, not the next event in the tree (this is part of
the definition of the event horizon). Therefore, the pointer to
the next event will be the first event in the secondary list.
This first event is inserted as the left child of what was
previously thought of in the tree as being the next event.

Now, the rest of the list must be merged into the tree. The
tree is traversed left to right as events from the sorted
secondary list are inserted into the SPEEDES Tree. After an
event is inserted, the tree must be traversed upward until a
node is reached that has T,, greater than the time tag of the
next event to be inserted. Only then is it safe to insert the
next event into the current subtree. As the tree is ascended,
the tree-balancing information is updated. Then, the subtree
is traversed downward left and right, until the bottom of the
tree (where the event is to be inserted) is reached. As the
subtree is descended, the balancing heuristic operation is
performed, to keep the tree from becoming unbalanced.

One way to further optimize event insertion is to track the
most recent node that passes the T,, test. Inserting the next
event can start from that node instead of from the bottom of
the tree where the previous event was inserted. This reduces
the overhead for going up the tree as events from the
secondary list are merged with the tree.

Once all of the events in the secondary list are merged into
the tree, a final step is required. Starting from the last merged
event, the tree must be ascended to the root, updating the tree
balancing information along the way. After this step has
been completed, the balancing information at each node of
the tree is correct.

Measurements have shown that the worst case time for
insertion is logarithmic for all of the event generation
distributions studied to date. However, if many events are
collected in the secondary list, then the number of traversal
steps for insertion is comparable to log,(n/m). Thus, the
SPEEDES Tree performs better than logarithmic time for
tree insertion (of course, at the expense of sorting the
secondary list of m events). The average SPEEDES Tree
overhead per event can be written as,

(7)

Here, C,, C,, and C, are the respective overhead coeffi-
cients for removing, sorting, and merging events. Note that
if C,=C,, there is no advantage to using the SPEEDES Tree
over the plain Balancing Heuristic Tree described above.
However, measurements have shown that there is an advan-
tage to use the SPEEDES Tree if C,<<C,. In a specific
working example, sorting 10,000 events on an IRIS4D SGI
workstation using a binary merge sort algorithm was mea-
sured to take about 0.004 ms per event, while inserting
events generated by a flat distribution into a Balancing
Heuristic Tree of size 10,000 took about 0.032 ms per event.

The SPEEDES Tree data structure is ideal for managing
events and is a significant improvement over the SPEEDES
Queue of the U.S. application referenced above since it

T3P€€D€3Tree=cl+c2 log 2(m)+c3 log 2(n/m)

14
exhibits worst case logarithmic behavior. Performance of the
SPEEDES Tree data structure is provided in Table 6.

TABLE 6
5

Performance in milliseconds
for the SPEEDES tree.

Dist.\ n 10 102 103 104 105

Flat
Tri. Up
Tri. Down
Bell Shaped
Asym. Near
Asym. Far
Near Future
Far Future
Two Hump

0.00440
0.00421
0.00459
0.00412
0.00440
0.00339
0.00395
0.00339
0.00450

0.00653
0.00578
0.00690
0.00588
0.00672
0.00457
0.00746
0.00493
0.00718

0.01353
0.01046
0.01285
0.00951
0.01350
0.00676
0.01555
0.00610
0.01554

0.02625
0.02514
0.02699
0.01838
0.02792
0.01691
0.0288
0.01401
0.01896

0.04217
0.04264
0.04396
0.03468
0.04327
0.02607
0.04510
0.02247
0.03315

Splay Trees
Another binary tree data structure includes the Splay Tree.

The splay tree is regarded as one of the fastest tree-based
priority queue data structures. Splay Trees use a two-step
rotation operation, called the “splay operation”, to bring
elements inserted or removed back to the top of the tree. This

25 heuristic process keeps the parts of the tree that have been
recently accessed near the top of the tree in order to reduce
future access times. The heuristic process works very well
when inserting a large number of events into the tree with the
same (or similar) time tags. However, when events are

30 somewhat randomly inserted into the tree, the results are not
as favorable. This is because of the large number of expen-
sive rotations that are involved (often worse than log,(n)).

The splay operation on a node promotes that node to the
35 top of the tree through a sequence of two-step rotations.

There are four cases to consider when applying the splay
operation to a node in the tree. In the first case, if the node
is the root, then nothing needs to be done. In the second case,
if the parent of the node is the root, then a rotation about the

In the third case, sometimes called a Zig-Zig (or Zag-Zag)
case, a node 70 and a parent 72 are either both left descen-
dants or are both right descendants of a grandparent 74. For
this case, the grandparent 74 is rotated 76 first, then the
parent 72 is rotated 78, as shown in FIG. 7.

The fourth case, sometimes called a Zig-Zag (or Zag-Zig)
case, the node 70 and its parent 72 are either left-right or
right-left descendants of the grandparent 74. In this case, the

so parent 72 is rotated 80 first, then the grandparent 74 is
rotated 82, as shown in FIG. 8. These steps are repeated until
the node has been promoted to the top of the tree and
becomes the root.

Normally, the splay operation is performed whenever an
ss event is inserted into or removed from the tree. However, by

continually tracking the left-most node, events can be
removed from the tree in constant time without applying the
splay operation. While the heuristic of splaying may appear
to have good amortized properties, it can involve an enor-

60 mous amount of overhead since the number of rotations
required can be very high. Table 7 shows the performance of
Splay Trees. It should be noted that the splay operation
reduces the number of operations for the Far Future and Two
Hump distributions (which have a large amount of locality

65 for event insertion) . However, it performs poorly for the Flat
and Near Future distributions (where events have very little
locality during event insertion).

20

40 root is performed to make the node the new root.

45

5,850,
15

TABLE 7

Performance in milliseconds for Splay trees

Dist.\ n 10 102 io3 104 105

Flat
Tri. Up
Tri. Down
Bell Shaped
Asym. Near
Asym. Far
Near Future
Far Future
Two Hump

0.00588
0.00579
0.00608
0.00422
0.00616
0.00376
0.00617
0.00357
0.00533

0.01111
0.01018
0.01157
0.00830
0.01683
0.00747
0.01148
0.00578
0.00841

0.01832
0.01531
0.01805
0.01389
0.03283
0.01180
0.01948
0.01041
0.01434

0.03351 0.05461
0.03079 0.05123
0.03449 0.05642
0.02560 0.04555
0.05479 0.04327 10
0.02282 0.04002
0.03514 0.05694
0.01911 0.03365
0.02548 0.04406

15
In accordance with the present invention, the event hori-

zon is applied to splay trees as shown in FIG. 9. Namely,
events are simply inserted into a temporary queue in order
to provide constant insertion times. Removing events from
the Splay tree can also be performed in constant time if the 2o
event horizon has not yet been crossed, and if the leftmost
event is tracked in the Splay Tree without applying the splay
operation. All of the real overhead in using the event horizon
for Splay Trees comes when the event horizon is crossed.

in the temporary list and then one at a time inserted into the
Splay Tree using the splay operation. By sorting the events
first, better locality is preserved as the events are inserted
into the Splay Tree. One problem with this approach is that
the splay tree can become grossly skewed to the left. This is 3o
because of the predominance of left rotations required as
sorted events are inserted into the tree. However, this is
normally not a problem since all of the rotations are amor-
tized over time.

it should be noted this data structure is not preferred for
event list management. Also, the SPEEDES Tree outper-
formed the Splay Tree in almost every case. Further, the
SPEEDES Qheap is generally much faster and has no worst
case scenarios. Performances results of a working example 4o
for the SPEEDES Splay Tree of the present invention are
shown in Table 8. These results show that applying the event
horizon to Splay Trees improves performance.

When the event horizon is crossed, the events are sorted 25

Because of the large overheads involved in Splay Trees, 35

538
16

Instead of describing heaps using binary trees and exploit-
ing modular arithmetic schemes with fixed arrays, the
present invention is embodied in a novel implementation of
a heap using only linked lists. The new data structure of the
present invention is the preferred embodiment and is
referred to as a Qheap. The benefits of the Qheap of the
present invention are very low overheads (typical of linked
list manipulations), freedom from fixed array data structures,
and simplicity.

Fundamental to the Qheap is a sorted linked list, denoted
by Q, that is never allowed to have more elements than a
fixed size, denoted by S. The size, S, should roughly be
chosen as the point where straight event insertion into an
already sorted linked list outperforms traditional logarithmic
techniques. If S is chosen to be 2, then the Qheap simply
performs as a binary heap. However, just as divide and
conquer sorting algorithms perform better when using
straight insertion-sort techniques for small sublists, so does
the Qheap by choosing S to be a reasonable value. Typical
ranges for S might be somewhere between 20 and 80 (actual
measurements indicated only about a 10% difference in
performance for 20eSe80 a value of S=40 were used in the
final results).

As elements are added to the Qheap, they are directly
inserted into Q. However, if the number of elements in Q is
equal to S, the list is first metasized into a single metaitem
with its sort value determined by the first element of Q.
Metasizing Q into a single metaitem is done prior to the
insertion of the new element. As further elements are added
to Q, the same procedure is repeated. It is therefore possible
for Q to contain metaitems mixed with real event items.
Further, when metasizing Q into a single metaitem, it is
possible for the new metaitem to also contain metaitems
which in turn might contain other metaitems, etc. In this
manner, the Qheap is actually a recursively linked list data
structure that closely relates to the heap property (although
it is not necessarily a binary heap).

FIGS. 10A-1OD illustrate examples of inserting elements
into the Qheap of the present invention. As shown in FIG.
10B a new item 78 with a value of 25 needs to be inserted
into a Qheap 80 of FIG. 10A with an S value equal to 3. It
is assumed that the Qheap already contains 3 items, each
with a value. In the first step, the item 78 with value 25 is
inserted. Because there are aiready 3 items in Qheap 80, the

45 items in Qheap 80 are metasized into a single metaitem 82
with value 10 and then the item with value 25 is inserted.
Referring to FIG. 10B, Qheap 80 now contains two items,
namely item 78 and metaitem 82.

Dist.\ n 10 102 io3 io4 io5 In a second step, referring to FIG. lOC, an item 84 with
Flat 0.00653 0,01083 0,01735 0,03024 0,04824 50 value 35 is inserted directly into Qheap 80 because the
Tri. Up 0.00552 0.00942 0.01247 0.02459 0.04213 Qheap 80 is less than the maximum value of S=3.
Tri. Down 0.00682 0.01203 0.01692 0.03143 0.05024 In a third step, referring to FIG. 10D, an item 86 with a

TABLE 8

Performance in milliseconds
for the SPEEDES Splay tree.

Bell Shaped 0.00468 0.00625 0.00856 0.02000 0.05803

Asym. Far 0.00440 0.00550 0.00696 0.01356 0.03959 since there are already s=3 items in QheaP 80 (maximum

Far Future 0.00404 0.00513 0.00633 0.01328 0.028’22 a single itern 88 and then the itern 86 with value 15 is
Two Hump 0.00681 0.00924 0.01441 0.02437 0.04057

Asym, Near o,oos80 0.01026 0.01360 0.02718 0.04517 value 15 needs to be inserted into the Qheap 80. However,

Near Future 0.00718 0.01131 0.01875 0.0322 0.05106 55 value), the items 82, 78, 84 of FIG. 1OC are metasized into

inserted into the Qheap 80. Referring to FIG. 10D, the
Qheap 80 ends up with 2 items 88, 86, one of which is a

3. The Preferred Embodiment: The Qheap complex metaitem 88.
Heaps are normally implemented as binary trees with the 60 Removing items from the Qheap is more difficult than

property that each node is at least as small as the value of its inserting items because it is possible that the item removed
children nodes (if they exist). Although it is not necessary, from the top of the Qheap is actually a metaitem itself. If this
heaps are almost always implemented using fixed arrays for is so, then the metaitem must be untangled by removing its
storing pointers to their tree nodes. Modular arithmetic top item, redefining the rest of the metaitem’s list as a new
allows tree nodes to be directly accessed and manipulated, 65 metaitem, making sure that the Qheap does not have more
thereby allowing the normal tree traversal operations to be than S elements (if it does, then the elements in the Qheap
bypassed. are turned into a single metaitem and placed back into the

5,850,538
17

Qheap as its only element), and then inserting this new
metaitem back into the Qheap. The untangling procedure is
repeated until a single element is found.

FIGS. 11A-11C illustrate a specific example of removing
an item from the Qheap 80 of the present invention. It is
again assumed that the Qheap has S=3 and that the Qheap 80
initially has two items, item 88, which is comprised of a top
metaitem 82 and another two items, and item 86.

In a first step, the metaitem 88 with value 10 is removed
from the Qheap 80. Since item 88 is a metaitem, the top
metaitem 82 (containing 10,20,30) is removed. The rest
(containing 25,35) are redefined as a new metaitem 90. This
new metaitem 90 with value 25 is inserted back into the
Qheap 80.

Referring to FIG. 11B, in a second step, the item 92 with
value 10 is removed from the metaitem 82 (containing
10,20,30). The rest of the items (20,30) are redefined as a
new metaitem 94 and inserted back into Qheap 80 with value
20, as shown in FIG. 11C. Since the remaining item 92
(value 10) is a single item (not a metaitem), the untangling
procedure is finished. The item 92 (value 10) is then returned
from the remove operation. Performance results of a work-
ing example for the Qheap are provided in Table 9. These
results were obtained using the value of 40 for S.

TABLE 9

Performance in milliseconds for the
Qheap of the present invention.

Dist.\ n 10 102 103 104 105

Flat
Tri. Up
Tri. Down
Bell Shaped
Asym. Near
Asym. Far
Near Future
Far Future
Two Hump

0.00328
0.00302
0.00311
0.00320
0.00329
0.00283
0.00324
0.00289
0.00286

0.00636
0.00652
0.00689
0.00662
0.00672
0.00634
0.00671
0.00606
0.00497

0.01131
0.01084
0.01196
0.01007
0.01123
0.00811
0.01136
0.00701
0.00836

0.01829
0.01746
0.01801
0.01644
0.01847
0.01496
0.01793
0.01323
0.01470

0.02913
0.02848
0.02928
0.02655
0.02967
0.02371
0.02943
0.02134
0.02314

4. SPEEDES Qheap
Further, the event horizon can be applied to the Qheap to

form a SPEEDES Qheap in accordance with the present
invention. FIG. 12 is a flow chart illustrating an overview of
the Qheap operation with the event horizon. Namely, instead
of directly inserting events into Q, they are added to Q,,,.
When the event horizon is crossed, Q,,, is sorted, the top
item is removed as the next event, the rest of the list is
metasized, and then inserted into Q. The obvious advantage
of using Q,,, is to provide for larger numbers of events to
be in a single metaitem, thereby reducing the average
number of untangling steps. This new data structure is an
alternative embodiment of the Qheap (the preferred
embodiment) of the present invention and will be referred to
as the SPEEDES Qheap, and can be used in the SPEEDES
operating system.

Because heaps are known to have worst case log,(n)
amortized behavior, the SPEEDES Qheap data structure
should never break down. Also, because it is composed from
linked lists, it will have very low overheads. In addition,
complicated rotation operations or balancing heuristics are
not necessary. Moreover, the SPEEDES Qheap data struc-
ture does not require fixed sized arrays or modular arith-
metic. It should be noted that, however, an untangling
procedure, although very straight-forward, may be required.
Performance results of a working example for the SPEEDES
Qheap are provided in Table 10.

18

TABLE 10

Performance in milliseconds for the
SPEEDES Qheap of the present invention.

5

Dist.\ n 10 102 io3 io4 io5

Flat 0.00275 0.00472 0.00778 0.01156 0.01627
Tri. Up 0.00319 0.00484 0.00627 0.00996 0.01588
Tri. Down 0.00273 0.00512 0.00791 0.01208 0.01664

10 Bell Shaped 0.00274 0.00447 0.00563 0.01074 0.01918
Asym. Near 0.00283 0.00464 0.00647 0.01014 0.01691
Asym. Far 0.00301 0.00466 0.00552 0.00967 0.01818
Near Future 0.00279 0.00482 0.00853 0.01255 0.01697
Far Future 0.00244 0.00440 0.00510 0.01024 0.01713
Two Hump 0.00282 0.00412 0.00619 0.01035 0.01425

15

Because of the very favorable properties, the SPEEDES
Qheap data structure is highly recommended for general
event list management in discrete-event simulations. Pro-
vided below is a step-by-step procedure for supporting the

SPEEDES Qheap Insertion
FIG. 13 is a flow chart illustrating Qheap insertion.

I. Place the item to be inserted at the end of the Q,,,.
11. Update T,, if this item has the smallest time tag out of

all the items in Q,,,.
SPEEDES Qheap Removal

FIG. 14 is a flow chart illustrating Qheap removal.
I. Check if the event horizon is crossed (i.e., if T,, is less

than the time tag of the next item in Q). If so, perform
steps a through f and then return. Otherwise, go on to step

2o SPEEDES Qheap.

25

30

2.
a. Sort Q,,, and then set T,, to infinity.
b. Remove the top element (this is what is returned as the

next event) and call it NextEvent.
c. Metasize the rest of the elements from Q,,, into a new

metaitem called Metatemp.
d. Check if Q already contains S elements. If it does,

metasize all of its elements into a new metaitem and
place it back into Q as its only element.

35

40

e. Insert Metatemp into Q.
f. Return NextEvent.

11. Remove the top item from Q and call it NextItem. Then
loop over steps a through e below until NextItem is not a

a. Check if NextItem is a metaitem. If not, then break out
of the loop and return NextItem as the NextEvent.
Otherwise, it is known that NextItem is a metaitem
which must be untangled in the steps b-e below.

b. Remove the top element from NextItem and call it
NewItem. NextItem now contains one less item. If
NextItem has only a single element, then unmetasize it
so that NextItem is a regular item.

C. Check if Q already contains S elements. If it does,
metasize all of its elements into a new metaitem and
place it back into Q as its only element.

45 metaitem.

so

55

d. Insert NextItem into Q.
e. Set the item NextItem=NewItem and then go back to

60 step a.
Conclusions

The present invention is embodied in various priority
queue data structures with enhanced performance to exploit
the event horizon. Results from working examples indicate

65 that the SPEEDES Qheap easily outperformed the other data
structures without any “worst-case” problems. The
SPEEDES Qheap is not a binary heap, but instead is

5,850,538
19 20

recursively constructed from linked lists. Thus, it has low trigger value of S is realized and at a predetermined
overheads that are typical of linked lists. event occurrence, and wherein said computer being

The SPEEDES Qheap can also be applied to Calendar directed by said priority queue to manage said events.
Queues, For instance, the SpEEDES Qheap can be used 9. The event manager as set forth in claim 8, wherein the
instead of linked lists for each tirne bucket, The benefits of 5 predetermined event occurrence is when the element needs
this may provide significant improvements in worst-case to be added to the Priority queue.
Calendar Queue performance. 10. The event manager as set forth in claim 8, wherein the

This concludes the description of the preferred embodi- trigger value of S is realized when the number of elements
ment and alternative embodiments of the invention. The in the priority queue is

11. An event manager for managing events for computer foregoing description of the invention's preferred and alter- i o simulation systems, comprising: native embodiments has been presented for the purposes of
illustration and description. It is not intended to be exhaus- a) a
tive or to limit the invention to the precise form disclosed, b) a priority queue interactive with said events and limited

to having only S elements, said priority queue and said Many modifications and variations are possible in the light events stored on said computer in said memory; of the above teaching. It is intended that the scope of the is
queue only at a certain value of S and at a predeter- claims appended hereto. mined first event occurrence; What is claimed is:

1. A computer-implemented process for managing events dl for removing an from the
within a priority queue stored on a computer, comprising the 20 priority queue Only at a certain Of and at a

predetermined first event occurrence; and steps o f
e) means for metasizing the priority queue into a single a) limiting the priority queue to having only S elements; metaitem when a trigger value of S is realized and at a

predetermined first event occurrence, means for assign- b) directly inserting an element into the priority queue at
ing a sort value determined by a first element located in a predetermined first event occurrence and at a certain
the priority queue, wherein the priority queue is meta- value of S;

c) directly removing an element from the priority queue at sized prior to insertion of a new element.
a Predetermined second event Occurrence and at a 12. The event manager as set forth in claim 11, wherein
certain value of S; and the predetermined first event occurrence is when the element

after a trigger value of s is realized and an element 13. The event manager as set forth in claim 11, wherein
needs to be inserted, and assigning a sort value deter- the predetermined second event occurrence is when the
mined by a first element located in the priority queue, element needs to be removed from the priority queue.
wherein metasizing the priority queue into a single 14. The event manager as set forth in claim 11, wherein
metaitem is performed prior to insertion of a new 35 the trigger value of S is realized when the number of
element, and wherein said process provides fast and elements in the priority queue is equal to s.
predicable event list management for computer simu- 15. The event manager as set forth in claim 14, wherein
lation systems. the priority queue contains at least one of a metaitem and a

2. The process for managing events as set forth in claim real event item.
1, wherein the predetermined first event occurrence is when 4o 16. A computer-implemented process for managing
the element needs to be added to the priority queue. events within a priority queue stored on a computer, said

3. The process for managing events as set forth in claim priority queue interactive with an event horizon defined by
1, wherein the predetermined second event occurrence is events processed in successive cycles, said computer-
when the element needs to be removed from the priority implemented process comprising the steps of:
queue. a) directly inserting an element into a temporary queue at

4. The process for managing events as set forth in claim a predetermined first event occurrence and when the
1, wherein a certain value of S is defined by a number of event horizon has not been crossed so that a next event
elements in the queue less than S. to be processed is not in the temporary queue, wherein

5. The process for managing events as set forth in claim said temporary queue is comprised of a top item and
4, wherein the trigger value of S is realized when the number successive items;
of elements in the priority queue is equal to S. b) directly removing an element from the temporary

queue at a predetermined second event occurrence and 6. The process for managing events as set forth in claim
1, wherein steps a-d are recursively repeated for all new when the event horizon has not been crossed; and

c) sorting the temporary queue when the event horizon is elements added or removed.

event, metasizing the successive items in the list, and 6, wherein the step of metasizing the priority queue into a
then inserting an element into the queue that needs to single metaitem produces a priority queue with metaitems

be inserted, wherein said process provides fast and comprised of metasized items.
predicable event list management for computer simu- 8. An event manager for managing events, comprising:

a programmable computer having memory; 60 lation systems.
a priority queue interactive with said events, said priority 17, The process for managing events as set forth in claim

queue and said events stored on said computer in said 16, wherein the predetermined first event occurrence is when
memory; and the element needs to be added to the priority queue.

at least one element located within said priority queue; 18. The process for managing events as set forth in claim
wherein said priority queue being limited to having only 65 17, wherein the predetermined second event occurrence is

S elements, wherein said elements are comprised of when the element needs to be removed from the priority
real event items and metasized metaitems only when a queue.

to s.

computer having memory;

invention be limited not by this description, but rather by the for inserting an into the priority

25

d) metasizing the priority queue into a single metaitem 3o needs to be added to the priority queue.

45

7. The process for managing events as set forth in 5s crossed, by removing the top itern and naming it a next

5,850,538
21

19. The process for managing events as set forth in claim
16, wherein the event horizon has infinite cycles.

20. A computer-implemented process for managing
events within a priority queue stored on a computer, said
priority queue interactive with an event horizon defined by
events processed in successive cycles, said computer-
implemented process comprising the steps of

a) continually maintaining a primary list and a secondary
list for said priority queue which is comprised of a tree
with a starting root forming paths diverging from the
root;

b) sorting only the primary list at a first predetermined
time;

c) traversing along one of the paths as an event is removed
until the event is removed and traversing along one of
the paths as an event is inserted until the event is
inserted;

d) recursively placing a new event into the secondary list
and applying a balancing heuristic at each node along
the traversed path when a new event is scheduled to be
inserted;

e) preserving an earliest event scheduled to occur in the
secondary list; and

f) sorting the secondary list at a second predetermined
time and then merging the secondary list into the
primary list, wherein said process provides fast and
predicable event list management for computer simu-
lation systems.

21. The process for managing events as set forth in claim
20, wherein the first predetermined time is when events do
not need to be processed.

22. The process for managing events as set forth in claim
20, wherein the second predetermined time is when events
need to be processed.

23. The process of managing events as set forth in claim
20, wherein said priority queue is a balanced binary tree.

S

10

1s

20

2s

30

3s

22
24. The process of managing events as set forth in claim

20, wherein steps (c) and (d) comprise the steps of inserting
an event into a temporary queue for providing constant
insertion times, removing events in constant time if the event
horizon has not been crossed, sorting the events in the
temporary queue when the event horizon is crossed, and
inserting the event into the tree one at a time.

25. The process of managing events as set forth in claim
24, wherein said priority queue is a splay tree.

26. A computer-readable medium for causing a computer
system to manage events for computer simulation systems,
comprising:

a computer-readable storage medium;
a computer program stored on said medium;
wherein said computer program operates on said com-

puter system and performs event management, wherein
said computer program comprises,
a priority queue interactive with said events, and
at least one element located within said priority queue,
wherein said priority queue being limited to having

only S elements, wherein said elements are com-
prised of real event items and metasized metaitems at
a predetermined event occurrence and after a trigger
value of S is realized.

27. The event manager as set forth in claim 26, wherein
the predetermined event occurrence is when the element
needs to be added to the priority queue.

28. The event manager as set forth in claim 27, wherein
the trigger value of S is defined by a number of elements in
the queue equal to S.

29. The event manager as set forth in claim 28, wherein
the priority queue contains at least one of a metaitem and a
real event item.

* * * * *

