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[571 ABSTRACT 

The present invention is embodied in new priority queue 
data structures for event list management of computer 
simulations, and includes a new priority queue data structure 
and an improved event horizon applied to priority queue 
data structures. The new priority queue data structure is a 
Qheap and is made out of linked lists for robust, fast, 
reliable, and stable event list management and uses a tem- 
porary unsorted list to store all items until one of the items 
is needed. Then the list is sorted, next, the highest priority 
item is removed, and then the rest of the list is inserted in the 
Qheap. Also, an event horizon is applied to binary tree and 
splay tree priority queue data structures to form the 
improved event horizon for event management. 

29 Claims, 11 Drawing Sheets 
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PRIORITY QUEUES FOR COMPUTER 
SIMULATIONS 

ORIGIN OF INVENTION 

Whatever the merits of the prior techniques and methods, 
they do not achieve the benefits of the present invention. 

SUMMARY OF THE INVENTION 
5 The invention described herein was made in the perfor- 

mance of work under a NASA contract, and is subject to the 
provisions of Public Law 96-517 (35 USC 202) in which the 
contractor has elected not to retain title. 

To overcome the limitations in the prior art described 
above, and to overcome other limitations that will become 
apparent upon reading and understanding this specification, 
the present invention is embodied in new priority queue data 
structures for event list management of computer simula- 

The invention relates to priority queue data structures for Some of the new Priority queue data structures include 
use in simulation systems, such as for discrete event simu- use of an event horizon. One such event horizon is the 
lation of objects using a plurality of synchronous parallel Synchronous Parallel Environment for Emulation and Dis- 
computers in communication with each other so that the 15 crete Event Simulation C‘SPEEDES”) operating system as 
objects being simulated may interact. disclosed in the U.S. patent application referenced above. 

The event horizon is applied to linked lists, binary trees, and 
splay trees, to form new linked lists, binary trees, and splay 
trees. 

Of a new Qheap data structure. The new Qheap is a ‘Om- 

Pletely new data structure for robust, faster, more reliable, 

10 . TECHNICAL FIELD tions. 

BACKGROUND ART 

Priority queues are used for sequential event list manage- 

cessing systems with discrete-event simulations. Priority 
queues aid in managing the event list. Discrete-event simu- 

ment in computer simulations, for example in parallel pro- 20 The preferred priority queue data structure is comprised 

lations are built upon two fundamental building block.  
First, there are simulation objects. Discrete-event sirnula- 

and more event list management. Specifically, the 
QheaP of the Present invention uses a temporary unsorted 

tions normally 
to real world objects in the simulated system, ~~~h simu- 

describe its state. 
Second, there are events. d l  interactions between objects In addition, the QheaP of the Present invention can have 

in a logically correct discrete-event simulation occur 30 an event horizon applied to it to form a SPEEDES Qheap. 
through time-tagged events which must be processed for The SPEEDES QheaP Priority queue data structure of the 
each object in their correct time order to preserve present invention is built out of linked lists to form the heap. 
logical correctness. Logically correct parallel discrete-event This is different from heap data structures that use 
simulations usually require an event to be associated with a either fixed arrays Or binary trees. 
single simulation object. However, sequential simulations 35 d l  of the priority queue data structures of the present 
do not always enforce this requirement. It should be noted invention have excellent real world value in that they 
that events can modify the state of their corresponding provide fast event list management queues for utilization in 
simulation object, and also may schedule new events to computer systems, such as for computer simulations that use 
occur in the future (causality forbids events to ever be priority queues, such as networks, operating systems, 
scheduled in the past). 

As an example, during the course of a simulation, an event A feature of the present invention is a new event list 
list containing a list of pending events waiting to be pro- management system by a Qheap priority queue data struc- 
cessed is maintained by simulation machinery. If the event ture. Another feature of the present invention is to apply an 
list becomes empty at any time, then by definition, the event horizon to priority queue data structures, such as to 
simulation has reached an end time, and is therefore termi- linked lists, binary trees, splay trees, and the Qheap. 
nated. In sequential simulations, the pending event with the An advantage of the present invention is that the new 
earliest time tag is always the next event to be Processed. Qheap is robust, extremely fast, very reliable, and an excep- 
However, it should be noted that Parallel simulations, espe- tionally stable event list manager. Another advantage of the 
cially optimistic simulations, can be more complicated. present invention is that performance of previous priority 

Two basic operations are required for sequential event list queue data structures, such as linked lists, binary trees, splay 
management, a remove operation and an insert operation. trees, are improved by exploiting the event horizon with the 
The remove operation removes the event with the earliest new priority queue data structures disclosed herein. 
time tag from the list of Pending events SO that it can be Further, the Qheap and the event horizon applied to the 

event back into the list of Pending events. These two practical applications. For instance, the Qheap and the event 
operations are essentially the Same operations that are horizon applied to the priority queues is applicable in aiding 
required by priority queue data structures. both parallel and sequential discrete-event simulations. As 

Thus, it is apparent that efficient priority queue data such, the Qheap and the event horizon applied to the priority 
structures are desirable for computer simulation systems, 60 queues have tremendous real-world value in computer simu- 
such as for discrete-event simulations. However, current lation systems, such as in a computer simulation system 
priority queue data structures require large overhead of using the SPEEDES operating system disclosed in the U.S. 
event list management. In addition, the performance of application referenced above. 
current priority queue data structures are limited. For example, utilizing the Qheap in computer simulations 

Therefore, there is a need for priority queue data struc- 65 provides predicable, more stable, and faster event list man- 
tures that have increased efficiency, enhanced performance, agement. In addition, exploitation of the event horizon in 
and reduced overhead. parallel simulations allows one to process events optimisti- 

many objects which frequently map 2s list to store all items until one of the items is needed. Then 
the list is sorted, next, the highest priority item is removed, 

is made out of linked lists). 
lated object contains an encapsulated set of variables that and then the rest ofthe list is inserted in the QheaP (the heap 

40 simulations, artificial intelligence, etc. 

4s 

processed. The insert operation inserts a newly scheduled 55 priority queues of the present invention have immense 
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cally in a risk-free manner (i.e., without requiring message 10  for a simulation object received via a multir- 
antimessages) using adaptable “breathing” time cycles with outer 11 from the same processor or another processor. Time 
variable time widths. Further, use of the Qheap as well as tagged messages received are queued in an event library 12. 
exploitation of the event horizon significantly reduces the Multiple messages for a simulation object with the same 
overhead of event list management that is common to s time index will generate multiple event objects for the 
virtually every discrete-event simulation. simulation object. 

The foregoing and still further features and advantages of All event objects are user-defined as to their inherent 
the present invention as well as a complete under- capabilities from a base-class of generic simulation objects, 
standing thereof will be made apparent from a study of the where the term “objects” refers to object oriented program- 
following detailed description of the invention in connection 10 ming techniques used to simulate Physical objects assigned 
with the accompanying drawings and appended claims. to processors for simulation of events, such as missiles, 

airplanes, tanks, etc., for simulation of war games, for 
example. 

Event objects 14  are initialized by data contained within 
in which like reference 15 the messages received. After an event object is initialized, 

the message for it is discarded. Each event object is then 
attached to its own simulation object by a pointer to the 
simulation object 15. 

Processing an event object in a processor is done in 
20 multiple steps that are written by the user into the simulation 

BRIEF DESCRIPTION OF THE DRAWINGS 

Referring now to the 

FIG. 1 is a block diagram illustrating the object-based 

FIG. 2 is a timing diagram illustrating three successive 

numbers represent corresponding parts throughout: 

architecture at a single node of the invention; 

cycles of operation with a basic event horizon; 
FIG. 3 is a plot illustrating the nine beta-density functions 

analyzed in the example. These nine different beta functions 
program. In the first step, an event Object optimistically 
performs its and generates messages l3 to 
schedule future events. However, the event object of the represent a wide spectrum of event generation statistics; 
input message 10 is not immediately executed, i.e., the state 

zs of the simulation object, is not changed, and the messages 
for future event objects are not immediately released. 
Instead, the state changes and the generated messages are 
stored in the event object 14. Only the changes of the 

object state variables are stored within the event 

In the second step, the state variable changes that were 
computed in the first step are exchanged with the simulation 
object 15 so that the event object then has the old state values 
and the simulation object has the new values. For example, 

35 the state variables may consist of 1000 bytes. If the event 
requires only four bytes to be changed, only those four bytes 
are saved and exchanged, ~f rollback is later required, 
another exchange restores the previous state of the simula- 
tion object. 

This feature, referred to as “delta exchange,” reduces 
memory used in optimistic simulations at the expense of 
having to supply the exchange code in the simulation. 
Performing a delta exchange involves negligible time, so 
that rollback is carried out efficiently when needed without 

The simulation program may include as part of delta 
exchange, the step of each time writing out to files these 
deltas. The simulation may then be rewound if rollback is 

The following description is organized as follows. First, necessary through several pairs of steps resulting in a 
an introduction is presented on one discrete event simulation SO reverse delta exchange for several events in sequence in a 
operating system (SPEEDES) with a basic event horizon generic event queue 16, thus restoring the changes in reverse 
event list manager for informational purposes. Second, one order from the files. 
embodiment of the present invention, the new event horizon, Adelta exchange completes the first phase of carrying out 
as applied to priority data structures, is presented. Third, the an event, but as just noted, although the state of the simu- 
preferred embodiment of the present invention, the new ss lation object is changed in the first phase, it can be rolled 
Qheap priority data structure, is presented. Fourth, a new back. In the second phase, further processing is carried out, 
event horizon Qheap is presented (the event horizon applied such as cleaning up memory, or sending messages 13 out to 
to the new Qheap) to form a new SPEEDES Qheap. In all this and/or other processors and to graphics for record or 
of the sections, working examples are provided to compare display. This phase is carried out only after the event object 
performance. 60 is known to be valid so that there is no possibility of a 
1. Introduction rollback being required. Consequently, it is usually per- 

Object-based architecture of a simulation process operat- formed much later in time than the two steps in the first 
ing on a SPEEDES based processor carried out at each node phase, but always without changing the state variables of the 
is illustrated for a single simulation object in FIG. 1 .  simulation object. 
Discrete event simulation of objects begins with some basic 65 SPEEDES Internal Structure 
steps for a single processor, such as a processor at a node of 
a Hypercube. First an event object is initiated by an input 

FIG. 4 is a plot illustrating the average number of new 
events collected in the temporary queue (assuming the hold 
model) per event horizon as a function of the number of 
pending events for each of these nine beta functions; 

FIG. 5 illustrates tree rotation operation of a binary tree; 
FIG. 6 illustrates an example of the SPEEDES Binary 30 object 14. 

FIG. 7 illustrates zig-zig tree rotation of a Splay tree; 
FIG, 8 illustrates zig-zag tree rotation of a Splay tree; 

Tree data structure; 

a flow diagram Of the SPEEDES 
Tree data structure; 

into the Qheap; 

an item from the Qheap; 

Qheap operation; 

FIGS. 10A-1OD illustrate examples of inserting elements 

FIGS. 11A-11C illustrate a specific example of removing 

FIG. 12 is a flow chart illustrating an overview of the 

FIG, 13 is a flow chart illustrating Qheap insertion; and 
FIG. 14 is a flow chart illustrating Qheap removal. 

40 

45 the need of special-purpose hardware. 
DETAILED DESCRIPTION OF THE 

INVENTION 

While other multiple-synchronization systems (or test 
beds) have been developed, one reason for the success of 
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SPEEDES is its unique object-oriented design. First, event Managing a sorted list of future events can cripple the 
processing is broken into some very basic steps (see FIG. 1). performance of low-granularity simulation. In parallel dis- 
Creating an Event crete event simulations, such management often leads to 

An event is created by a message. Note that multiple superlinear speedup. One technique for event list manage- 
messages for an object with the same time stamp will s ment is the basic event horizon, 
generate multiple events, not a single event with multiple The basic event horizon is a fundamental concept used in 

be confused with simulation objects. User-defined events or heaps, For example, a basic event horizon has been used 

which defines various virtual functions. It is through these u,s, patent application Ser, No, 08,363,546 filed Dee, 12, 
1994 by Steinman entitled “SYNCHRONOUS PARALLEL virtual functions that events are processed. 

SYSTEM FOR EMULATION AND DISCRETE EVENT An important optimization is in the use of free lists for 
memory management. SPEEDES manages old messages 
and events in a free list and them whenever possible, SIMULATION’, which is herein incorporated by reference. 
This speeds up memory management and avoids the The basic event horizon continually maintains two lists. 
memory fragmentation problem. IS The primary list is sorted, while the secondary list is 
Initializing an Event unsorted. As new events are scheduled, they are put into the 

sage through a user-supplied virtual initialization function. secondary list is preserved. When the time to process this 
After the event is initialized, the message is discarded into event comes, the secondary list is sorted and then merged 
a free list. Each event is then attached to its own simulation 20 into the primary list. The time stamp of this critical event is 
object (i.e., the event object receives a pointer back to the the basic event horizon. Also, a global event horizon is 
simulation object). determined by an earliest local event horizon from among all 
Processing an Event: Phase 1 of the nodes and is defined as a value of one cycle for the 

Processing an event is done in multiple steps that are all system. 
supported with C++ virtual functions written by the user. In zs The processing of event objects in successive cycles 
the first step, an event optimistically performs its calcula- defined by the basic event horizon is illustrated in FIG. 2 .  
tions and generates messages to schedule future events. Basically, in FIG. 2,  events 20 generated during one cycle of 
However, the simulation object’s state must not change. In the simulation become pending events 22a, 22b during the 
addition, messages that would generate future events are not next cycle. Each cycle only processes those pending events 
immediately released. 30 22a which do not occur beyond the event horizon 24 of that 

The event object itself stores changes to the simulation cycle. Those pending events 22b which occur beyond the 
object’s state and the generated messages. Only variables event horizon are not processed during the current cycle. 
affected by the event are stored within the event object. Also, corresponding messages of a global event horizon can 
Thus, if a simulation object contains 50,000 bytes and an be transmitted to effect changes to state variables of the 
event requires changing one of those bytes, only that one 3s simulation object only for those events whose time stamps 
byte is stored within the event. There is no need to save are within the global event horizon. 
copies of all 50,000 bytes of the object in case of rollback. A complete mathematical formulation of the basic event 
Delta Exchange horizon was derived in the above-identified copending 

In the second step, the values computed in Phase 1 are patent application under equilibrium conditions using a hold 
exchanged with the simulation object. This exchange is 40 model. Various forms of a beta density function were 
performed immediately after the first step. After an consequently used to verify results of the analytic model. 
exchange, the event has the old state values and the simu- However, although the basic event horizon is very 
lation object has the new values. Two successive exchanges effective, the present invention is embodied in a new Qheap 
(in the case of rollback) then restore the simulation object’s priority queue data structure for event list management. 
state. 4s Also. the aresent invention is embodied in the above event 

messages. Events are separate objects in c++ and should not 

es from a base-c1ass generic event Object, 

parallel simulations, without using linked lists, binary trees, 

to support risk-free optimistic simulations, as described in 

Events are initialized by data contained within the mes- secondary list. The earliest event scheduled to occur in the 

When an event is rolled back, there are two possibilities 
concerning messages that were generated by the Phase 1 
processing. One is that the messages have already been 
released. In this case, antimessages must be sent to cancel 
those erroneous messages. The other is that the messages 
have not been released yet. In this case, the messages are 
simply discarded. 
Processing an Event: Phase 2 

In the third step, further processing is done for an event. 
This usually involves cleaning up memory or sending exter- 
nal messages out to graphics. This step is performed only 

I I  

horizon applied to priority queue data structures, such as 
linked lists, binary tress, splay trees, and the Qheap to form 
a new event horizon, as disclosed below. The new Qheap 
priority queue data structure and new event horizon of the 

Both the Qheap priority queue data structure and the new 
event horizon can be utilized in simulation systems, such as 
a system using the SPEEDES operating system disclosed in 
the U.S. application referenced above. However, it should be 

ss noted that the Qheap is a new priority queue in itself and can 
be used with numerous computer applications requiring a 

SO present invention both perform event list management. 

after the event is known to be valid, in other words, when priority queue. 
there is no possibility for the event to be rolled back. This The present invention improves performance of previous 
step is usually performed much later in time than the priority queue data structures with the new Qheap and with 
previous two steps. The simulation programmer should not 60 the new event horizon applied to priority queue data struc- 
assume that the simulation object contains valid state infor- tures disclosed herein. The following is a detailed descrip- 
mation when processing in Phase 2. The processing done in tion of the new Qheap data structure and the new event 
this step must not change the state variables of its simulation horizon along with performance results for each priority 
object. queue data structure. 
Managing the Event List: The Basic Event Horizon 

One of the most time-consuming tasks in supporting 
discrete event simulations can be managing the event list. 

65 2. The Improved Event Horizon 
In order to exploit the improved event horizon for event 

list management algorithms in accordance with the present 
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invention, it is assumed that as new events are generated, 
they are not immediately sent back into the main priority 
queue data structure, but instead are collected in an unsorted 
temporary holding queue. The event with the earliest time 
tag in this temporary queue is tracked. When the next event s 
to be processed is in the temporary queue (i.e., the event 

merge sort algorithm is easily performed on linked lists) and 
then merged back into the main priority queue data structure. 

queue, the insert operation is always accomplished in con- 
stant time with very low overhead since it simply involves 
adding another item to the bottom of an unsorted linked list. 
However, when the list must be sorted (this occurs after the 
event horizon is crossed), it is sometimes complicated to 

structure. It should be noted that the main priority queue events for each Of these nine beta functions. 
itself may be a very complicated data structure. All measurements in the working examples were obtained 

The following definitions are used in the description of using for example, an HP90001715 75 MHz workstation. 
the invention that follows: 2o The results were repeatable to within several microseconds. 

N=Number of processing nodes A C++ compiler was used with the optimizer enabled. For all 
n=Number of pending events measurements taken, each event generated a single new 

event distributed into the future according to the nine m=Average number of events per event horizon 
B=Event insertion bias (from top of list) 
Further, for simplicity, unless otherwise stated, the present All of the overheads (everything other than removing 

invention is described with the assumption that the simula- events from, and inserting new events into the list) were 
tion is under equilibrium conditions (i.e., one new event is carefully measured and subtracted from the timing measure- 

model). operations. Further, steps were taken to keep the overhead 
Priority Queues and the Improved Event Horizon small. Free lists were chosen to reuse event data structures 

A number of well known priority queue data structures in order to minimize memory-management overhead. Ran- 
exist. The following is an ~ ~ e r v i e w  of various Priority dom numbers were pregenerated and stored in large arrays 
queues, as well as performance analysis and measurements 35 to reduce random-number-generation overheads. 
of working examples. Techniques in accordance with the The result of these efforts to minimize the overhead was present invention for applying the improved event horizon to 

that 0.0029 ms per event was subtracted from each of the each of these data structures follows. 
Nine different beta-density functions were used in work- measurements. This amount of overhead was small com- 

event-list data structures, including flat 30, triangle up 32, event lists for large (n>1,000) data structures. Enough events 
triangle down 34, bell shaped 36, asymmetric near future 38, were Processed for each data structure to become stable. 
asymmetric far future 40, far future 42, near future 44, and Finally, the initial density of events as a function of time was 
two hump 46. The beta function was chosen because of its correctly generated using the results derived by the previous 
flexibility in Providing a wide variety of shapes. The beta 45 event horizon described in the U.S. patent application Ser. 
density function is given below as No. 081363,546 filed Dec. 12, 1994 by Steinman entitled 

TABLE 1-continued 

Nine beta functions 

Bias Description "1 nz 

horizon has been crossed), the queue is sorted (a binary Near Future 0 20 0.512 
Two Hump 0.20 20.0 0.523 

Because all new events are Put in the temporary holding lo FIG. 3 is a plot illustrating the nine beta-density functions 
analyzed in the example. These nine different beta functions 
represent a wide spectrum of event generation statistics, 
FIG, is a plot illustrating the average number of new events 

15 collected in the temporary queue (assuming the hold model) 

merge its sorted events with the main priority queue data per event horizon as a function Of the number Of pending 

25 different beta distributions (i.e., the hold model). 

generated per event processed, which is the basis of the hold ments by first running dummy loops that mimicked those 
30 

ing examples to measure the performance of the different 4o pared to the amount Of time it typically took to manage the 

"SYNCHRONOUS PARALLEL SYSTEM FOR EMULA- 
TION AND DISCRETE EVENT SIMULATION', refer- (n l+  nz + 1) 

nl!nz! B"I"Z(t) = Pl(1 - t)"z 

enced above. 
Linked ~i~~~ 

linked list. A linked list has events inserted and removed 
regularly. Inserting an event into a linked list data structure 

55 requires traversing the list until a proper slot is found for the 
event. Removing an event from the list is performed in 
constant time because the list is always sorted. The time for 
inserting and removing an event is given by: 

A two hump distribution was generated by combining two 
equally weighted near and far future beta distributions. 

represents the average fraction of events required for tra- 
versa1 in a linked list starting from the top of the list. 

These distributions are shown below in Table 1, The Bias The simp1est priority queue data structure is a sorted 

TABLE 1 

Nine beta functions 

Description "1 nz Bias 6o 

Flat 0 0 0.667 
TI,,,=ClBn+C2 

Triangle Up 1 0 0.800 
Triangle Down 0 1 0.600 Where Tlist is the time for inserting an event, C, represents 
Bell Shaped 20 20 0.913 the overhead for traversing a linked list, C, represents the 

65 overhead for removal, B is the event insertion bias, and n is Asymmetric Far Future 18 2 
Far Future 20 0 0.977 the number of pending events. Performance results for 

typical linked list priority queues are given below in Table 2. 

Asymmetric Near Future 2 18 0.710 
o,954 
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TABLE 2 

Performance in milliseconds 
for typical linked lists. 

Dist.\ n 10 102 io3  io4  1 os 
Flat 0.00130 0.01009 0.10626 4.79610 84.3564 
Tri. Up 0.00187 0.01214 0.12988 6.01976 97.8821 
Tri. Down 0.00166 0.01017 0.09735 4.28571 73.3466 
Bell Shaped 0.00187 0.01426 0.14734 6.94305 113.168 
Asym. Near 0.00185 0.01245 0.11435 5.11578 88.4158 
Asym. Far 0.00127 0.01273 0.14534 7.17282 117.524 

10 
SPEEDES Queue can also have very poor performance 
when m is close to the numerical value 1. In fact, when m 
is equal to 1, the SPEEDES Queue degenerates back into a 
linked list. Because of this, the SPEEDES Queue is not 

5 recommended for general discrete-event simulation 
systems, although it almost always is a better alternative to 
plain linked lists. There may be some exceptions, however, 
when the SPEEDES Queue is an excellent choice, especially 
when applications have enough lookahead to provide large 
event horizon cycles. Performance results of the SPEEDES 
Queue are given in Table 3. 

TABLE 3 Near Future 0.00130 0.00908 0.15098 3.52737 63.8613 
Far Future 0.00128 0.01047 0.13425 7.01388 118.910 
Two Hump 0.00155 0.00597 0.12154 3.67722 62.8712 Performance in milliseconds 

15 for the SPEEDES Queue. 

10 102 io3  io4  io5 The event horizon is easily applied t o linked list priority 
queues to form a new event horizon in accordance with the Dist,\ 

present invention for improving the overall results of the Flat 0.00182 0.00278 0.00724 0.06199 0.24959 
typical linked lists without an event horizon as shown in Tri. UP 0.00154 0.00296 0.00409 0.01940 0.04338 

Bell Shaped 0.00208 0.00204 0.00343 0.01117 0.01915 
Table 2. For instance, the temporary list is sorted at each 20 Tri. Down 0.00199 0.00306 0.00848 0.06959 o.28825 
event horizon boundary and then merged back into the main Asym, Near o,oo181 o,oo251 o,oo429 o,01653 o,03860 
list of pending events. The resulting data structure can be A ~ ~ ~ ,  F~~ 0,00152 0,00204 0,0030s 0,01028 0,01771 
used in the SPEEDES operating system to form a SPEEDES Near Future 0.00194 0.00304 0.01362 0.08391 0.33714 
Queue. The basic SPEEDES Queue, similar to the improved Far Future 0.00162 0.00241 0.00285 0.00880 0.01648 
SPEEDES Queue of the present invention, was used in one 2s o.oo222 0.00449 0.02764 0.18375 0.75607 
version of the SPEEDES operating system described in the 
U.S. patent application Ser. No. 081363,546 filed Dec. 12, 
1994 by Steinman “SYNCHRoNoUS PARALLEL Binary trees and their many variants are frequently used 
SYSTEM AND EVENT to support priority queue data structures. Each node in a 

30 binary tree has three pointers. The three pointers include a SIMULATION’, referenced above. 

pointer its left child a pointer to its left child, and a pointer Merging m (the average number of events per event 
horizon) sorted events into a list of n-m sorted events can be 
done in worst events can to its right child. The root node, of course, is unique because 

it has no parent since it is at the top of the tree. Leaf nodes be done in O(Log,(m)) time, and because the sort and merge 
(which are at the bottom of the tree) have no children. operations are only required every m events, the following Also, it is important to note that it is possible for a node expression relates the overhead for event list management that is not a leaf node to be missing either a left or right child. per event. 
Each node in a binary tree also has a time tag value that is 
used for sorting. By definition, all of the elements in the left 
subtree below a node have time tans less than or eaual to the 

~i~~~~ T~~~~ 

o(n) time, Because sorting 

35 

(3) TSPFEDSQ~~~~ = CI + Czlogz(m) + C3$ 
a 

40 node’s time tag. Similarly, all of the elements in the right 
subtree below a node have values greater than or equal to the 
node’s time tag, 

When using binary trees to support priority queues, it is 

Where, is the average number Of events per event 
horizon, C, represents the constant overhead for inserting 
and removing an event under normal circumstances, C, 
represents the Overhead for ’Orti% 

merge sort 
for merging 

the binary possible to maintain a special pointer to the leftmost element 
an event is 

removed from the tree, the event with the next smallest time 
On lists, and c, represents the Overhead 45 (i,e,, the event with the smallest time tag), 

events in the temporary list back into the 
tag can be found in constant time by locally traversing the 
tree from the point where the most recent event was 

main list that contains n-m events. 
The value for m that minimizes the overhead of the 

SPEEDES Queue can be derived 
the above expression with respect to 

taking the derivative Of removed, This is faster than always starting at the top of the 
it to zero. 50 tree and traversing downward to the left until the leftmost and 

leaf node is found. 
Thus, most of the overhead involved when using binary 

tree data structures as priority queues occurs from inserting 
(4) events, and not from removing events. Events are inserted 

55 by traversing down the tree, moving left or right, until a leaf 
is related to the overheads required by the merge and sort node is reached. The event is then added as either a left or 
operations. Under normal conditions, the merge operation is right child of the leaf node. 
expected to require less overhead than the sort operation. Inserting events can be very inefficient for “vanilla” 
This means that the optimal value for m should be somewhat binary trees. Because events are always removed from the 
less than 0.693 times the number of total pending events 60 left side of the tree and because new events are inserted 
(depending on the implementation). It also should be noted somewhat randomly with typical event insertion biases 
that the best performance to be expected from the SPEEDES larger than %, trees almost always become skewed to the 
Queue (obtained when plugging the optimal value for m right (exponential time based event-generation distributions 
back into equation 2) is logarithmic behavior with a very have an average bias of exactly %, which means that binary 
small coefficient. 65 trees will remain well balanced-also, it is possible for 

While the SPEEDES Queue has exceptionally good per- certain event generation statistics to result in average biases 
formance when m is close to its optimal value, the less than %). 

The result is given below. 
From the above expression, the optimal value for m 

c3 
moprTzomi = nloge(2) 
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For example, it is possible for the tree to degenerate into 
a linked list if events are scheduled with a constant looka- 
head value (FIFO: first-in-first-out event scheduling). The 
present invention provides various techniques (discussed 
below) to limit this skewing problem. Before describing 
these various techniques, the basic tree rotation operation 
used by all of the tree data structures of the present invention 
is defined. Table 4 illustrates the inefficiency of inserting 
events for “vanilla” binary trees. 

TABLE 4 

Performance in milliseconds for binarv trees. 

Dist.\ n 10 102 103 104 105 

Flat 
Tri. Up 
Tri. Down 
Bell Shaped 
Asym. Near 
Asym. Far 
Near Future 
Far Future 
Two Hump 

0.00498 
0.00506 
0.00478 
0.00588 
0.00506 
0.00552 
0.00506 
0.00589 
0.00505 

0.00784 
0.00940 
0.00691 
0.00840 
0.00718 
0.01307 
0.00709 
0.0186 
0.01178 

0.01540 
0.0202s 
0.01133 
0.01291 
0.01009 
0.02537 
0.01153 
0.05720 
0.04015 

0.06468 
0.10505 
0.02605 
0.03518 
0.02290 
0.06131 
0.02311 
0.36440 
0.21838 

0.29739 
0.50757 
0.05333 
0.04759 
0.03906 
0.23754 
0.03983 
2.26619 
1.17882 

Tree rotations permit the structure of a binary tree (or 
subtree) to change while preserving the tree’s integrity (i.e., 
the elements in the tree remain sorted). FIG. 5 illustrates tree 
rotation operation of a binary tree. The binary tree 50 has a 
node 52 and ascendants 54 (parent in this case), each with 
elements (denoted as A and B). As shown in FIG. 5, a right 
rotation 56 about the Y node preserves the B subtree so that 
the B subtree remains between X and Y. A left rotation 58 
about the X node restores the tree back to its original shape. 
Balanced Binary Trees 

One very well known technique for managing binary 
sorted trees was developed by Adelson, Velsky, and Landis 
(see AVL Trees, Crane C., 1972. “Linear Lists and Priority 
Queues as Balanced Binary Trees.” STAN-CS-72-259, 
Computer Science Department, Stanford University). 
Although the AVL Tree method ensures that a tree is always 
perfectly balanced, the overhead required is too high. In 
contrast, because large amounts of overhead are very unde- 
sirable and because a perfectly balanced tree is unnecessary, 
the present invention is embodied in method for producing 
a Balancing Heuristic Tree that contains less overhead, and 
can be used for example with the SPEEDES operating 
system. 
The SPEEDES Balancing Heuristic and the SPEEDES Tree 

The present invention includes a SPEEDES Balancing 
Heuristic to keep trees in rough balance with little overhead. 
To support this data structure, the number of descendants to 
the left and the number of descendants to the right are 
required by each node of the tree. Note that for a given node: 

Nl=f+N,,gh*+l=N,,b,,, (5) 

The balancing information is kept intact by the following. 
As events are removed or inserted, the tree is traversed 
downward starting from the root. The N,, and N,,, values 
are modified at each node visited along the traversed path 
until the event is either removed or inserted. When inserting 
a new event, a balancing heuristic is applied at each node 
along the traversed path that tests if the subtrees below are 
grossly out of balance. This check first determines if the 
following expression is true (it should be noted that the 
factor of 3 was chosen empirically). 

INlefr-N~rghrl>3(Nlefr+N~rghr) (6) 

If this condition is true, then a second check is made to 
determine if there are enough events in the subtrees below 

to make it beneficial to rotate its structure. It has been 
determined that a reasonable number to use is 20 (however, 
if there are less than 20 events in the combined subtrees of 
a given node, then it is not worth the effort to perform tree 

5 rotation operations). If there are enough events to warrant a 
rotation, the tree is rotated either left or right in order to 
improve its balance before moving downward. 

Because the rotations are done only when needed, it is 
possible for portions of the tree to become out of balance. 
This is not a serious problem, even though it may require 
additional work to bring the tree into balance, since it is 
amortized over time. Although the worst case performance 
of this heuristic is not guaranteed, working measurements 
indicate that the balancing heuristic of the present invention 
keeps the tree in nearly perfect balance with relatively low 
overheads. Sample performance of a working example for 
balancing the Heuristic tree of the present invention is 
provided in Table 5. 

10 

TABLE 5 
?” 
i” 

Performance in milliseconds for balancing 
heuristic tree of the present invention. 

Dist.\ n 10 102 io3  io4  io5 

25 Flat 
Tri. Up 
Tri. Down 
Bell Shaped 
Asym. Near 
Asym. Far 

3o Near Future 
Far Future 
Two Hump 

0.0 0 3 6 4 
0.00384 
0.00339 
0.00385 
0.00357 
0.00495 
0.00366 
0.00478 
0.00353 

0.00952 
0.01007 
0.00951 
0.01008 
0.00924 
0.01074 
0.00896 
0.01232 
0.01002 

0.01843 
0.01829 
0.01722 
0.01674 
0.01701 
0.01750 
0.01820 
0.01866 
0.01792 

0.03216 
0.03 175 
0.03236 
0.02986 
0.03162 
0.02838 
0.03271 
0.02887 
0.02935 

0.04941 
0.04865 
0.04969 
0.04648 
0.04948 
0.04470 
0.04922 
0.04240 
0.04541 

The balancing heuristic tree method described above can 
be extended to take advantage of the event horizon. To 

35 achieve this, first, events are not added to the tree one at a 
time, but instead are collected in a temporary holding queue. 
When the next event to be processed is in the temporary 
queue, it is sorted, the top event is removed (because it is the 
next event to be processed) and then the rest of the list is 

40 merged into the binary tree. In order to accomplish this 
merge operation, a time tag is required by each node of the 
tree. specifically, each node tracks the maximum possible 
time tag, T,,,, allowed in its subtree. This information 
permits the tree to be locally traversed as the sorted list is 

45 merged instead of forcing each event in the list to start at the 
top of the tree the way normal insertion is usually per- 
formed. 

When a node is inserted into the tree as a left descendent, 
its value for T,, is the time tag of its parent. If the event is 

SO a right descendent, its value for T,,, is the same as its 
parent’s value for T,,,. FIG. 6 illustrates an example of the 
SPEEDES Binary Tree data structure 60. In addition to 
normal pointers in a binary tree, and time tag values required 
for sorting, nodes 62 also maintain T,,,, N,,, and N,,,, 

ss values. The SPEEDES Tree also maintains a single pointer 
to the root of the tree and to the current event 64 (i.e., the 
node with the smallest time tag). 

In the SPEEDES Tree, a pointer always designates the 
event with the earliest time tag in the tree. As events are 

60 popped out of the tree to be processed, the pointer is updated 
locally. In other words, popping events out of the tree 
doesn’t require starting at the top of the tree and then 
working downward until the left-most node is found (this 
would take logarithmic time). Instead, the next event is 

65 obtained from the tree in constant time. 
While popping events out of the tree, the balancing 

information (Nlef, and Nrigh,) is ignored. Thus, by the time 
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the event horizon is about to be crossed, the tree balancing 
information is not correct. However, it can be corrected by 
working from the left-most event in the tree back up the tree 
until the root is reached, updating N,, on each node visited 
in the process. The number of steps is less than log,(n) 
because the tree will tend to be skewed to the right. Further, 
updating the tree-balancing information only occurs after m 
events are processed. Therefore, restoring the balancing 
information in the tree normally involves a negligible 
amount of overhead. 

Merging the sorted list of new events into the tree is a 
complex process. The first event to be processed at the start 
of the next cycle will be the first event in the sorted 
secondary list, not the next event in the tree (this is part of 
the definition of the event horizon). Therefore, the pointer to 
the next event will be the first event in the secondary list. 
This first event is inserted as the left child of what was 
previously thought of in the tree as being the next event. 

Now, the rest of the list must be merged into the tree. The 
tree is traversed left to right as events from the sorted 
secondary list are inserted into the SPEEDES Tree. After an 
event is inserted, the tree must be traversed upward until a 
node is reached that has T,, greater than the time tag of the 
next event to be inserted. Only then is it safe to insert the 
next event into the current subtree. As the tree is ascended, 
the tree-balancing information is updated. Then, the subtree 
is traversed downward left and right, until the bottom of the 
tree (where the event is to be inserted) is reached. As the 
subtree is descended, the balancing heuristic operation is 
performed, to keep the tree from becoming unbalanced. 

One way to further optimize event insertion is to track the 
most recent node that passes the T,, test. Inserting the next 
event can start from that node instead of from the bottom of 
the tree where the previous event was inserted. This reduces 
the overhead for going up the tree as events from the 
secondary list are merged with the tree. 

Once all of the events in the secondary list are merged into 
the tree, a final step is required. Starting from the last merged 
event, the tree must be ascended to the root, updating the tree 
balancing information along the way. After this step has 
been completed, the balancing information at each node of 
the tree is correct. 

Measurements have shown that the worst case time for 
insertion is logarithmic for all of the event generation 
distributions studied to date. However, if many events are 
collected in the secondary list, then the number of traversal 
steps for insertion is comparable to log,(n/m). Thus, the 
SPEEDES Tree performs better than logarithmic time for 
tree insertion (of course, at the expense of sorting the 
secondary list of m events). The average SPEEDES Tree 
overhead per event can be written as, 

(7) 

Here, C,, C,, and C, are the respective overhead coeffi- 
cients for removing, sorting, and merging events. Note that 
if C,=C,, there is no advantage to using the SPEEDES Tree 
over the plain Balancing Heuristic Tree described above. 
However, measurements have shown that there is an advan- 
tage to use the SPEEDES Tree if C,<<C,. In a specific 
working example, sorting 10,000 events on an IRIS4D SGI 
workstation using a binary merge sort algorithm was mea- 
sured to take about 0.004 ms per event, while inserting 
events generated by a flat distribution into a Balancing 
Heuristic Tree of size 10,000 took about 0.032 ms per event. 

The SPEEDES Tree data structure is ideal for managing 
events and is a significant improvement over the SPEEDES 
Queue of the U.S. application referenced above since it 

T3P€€D€3Tree=cl+c2 log 2(m)+c3 log 2(n/m) 

14 
exhibits worst case logarithmic behavior. Performance of the 
SPEEDES Tree data structure is provided in Table 6. 

TABLE 6 
5 

Performance in milliseconds 
for the SPEEDES tree. 

Dist.\ n 10 102 103 104 105 

Flat 
Tri. Up 
Tri. Down 
Bell Shaped 
Asym. Near 
Asym. Far 
Near Future 
Far Future 
Two Hump 

0.00440 
0.00421 
0.00459 
0.00412 
0.00440 
0.00339 
0.00395 
0.00339 
0.00450 

0.00653 
0.00578 
0.00690 
0.00588 
0.00672 
0.00457 
0.00746 
0.00493 
0.00718 

0.01353 
0.01046 
0.01285 
0.00951 
0.01350 
0.00676 
0.01555 
0.00610 
0.01554 

0.02625 
0.02514 
0.02699 
0.01838 
0.02792 
0.01691 
0.0288 
0.01401 
0.01896 

0.04217 
0.04264 
0.04396 
0.03468 
0.04327 
0.02607 
0.04510 
0.02247 
0.03315 

Splay Trees 
Another binary tree data structure includes the Splay Tree. 

The splay tree is regarded as one of the fastest tree-based 
priority queue data structures. Splay Trees use a two-step 
rotation operation, called the “splay operation”, to bring 
elements inserted or removed back to the top of the tree. This 

25 heuristic process keeps the parts of the tree that have been 
recently accessed near the top of the tree in order to reduce 
future access times. The heuristic process works very well 
when inserting a large number of events into the tree with the 
same (or similar) time tags. However, when events are 

30 somewhat randomly inserted into the tree, the results are not 
as favorable. This is because of the large number of expen- 
sive rotations that are involved (often worse than log,(n)). 

The splay operation on a node promotes that node to the 
35 top of the tree through a sequence of two-step rotations. 

There are four cases to consider when applying the splay 
operation to a node in the tree. In the first case, if the node 
is the root, then nothing needs to be done. In the second case, 
if the parent of the node is the root, then a rotation about the 

In the third case, sometimes called a Zig-Zig (or Zag-Zag) 
case, a node 70 and a parent 72 are either both left descen- 
dants or are both right descendants of a grandparent 74. For 
this case, the grandparent 74 is rotated 76 first, then the 
parent 72 is rotated 78, as shown in FIG. 7. 

The fourth case, sometimes called a Zig-Zag (or Zag-Zig) 
case, the node 70 and its parent 72 are either left-right or 
right-left descendants of the grandparent 74. In this case, the 

so parent 72 is rotated 80 first, then the grandparent 74 is 
rotated 82, as shown in FIG. 8. These steps are repeated until 
the node has been promoted to the top of the tree and 
becomes the root. 

Normally, the splay operation is performed whenever an 
ss event is inserted into or removed from the tree. However, by 

continually tracking the left-most node, events can be 
removed from the tree in constant time without applying the 
splay operation. While the heuristic of splaying may appear 
to have good amortized properties, it can involve an enor- 

60 mous amount of overhead since the number of rotations 
required can be very high. Table 7 shows the performance of 
Splay Trees. It should be noted that the splay operation 
reduces the number of operations for the Far Future and Two 
Hump distributions (which have a large amount of locality 

65 for event insertion) . However, it performs poorly for the Flat 
and Near Future distributions (where events have very little 
locality during event insertion). 

20 

40 root is performed to make the node the new root. 

45 
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TABLE 7 

Performance in milliseconds for Splay trees 

Dist.\ n 10 102 io3  104 105 

Flat 
Tri. Up 
Tri. Down 
Bell Shaped 
Asym. Near 
Asym. Far 
Near Future 
Far Future 
Two Hump 

0.00588 
0.00579 
0.00608 
0.00422 
0.00616 
0.00376 
0.00617 
0.00357 
0.00533 

0.01111 
0.01018 
0.01157 
0.00830 
0.01683 
0.00747 
0.01148 
0.00578 
0.00841 

0.01832 
0.01531 
0.01805 
0.01389 
0.03283 
0.01180 
0.01948 
0.01041 
0.01434 

0.03351 0.05461 
0.03079 0.05123 
0.03449 0.05642 
0.02560 0.04555 
0.05479 0.04327 10 
0.02282 0.04002 
0.03514 0.05694 
0.01911 0.03365 
0.02548 0.04406 

15 
In accordance with the present invention, the event hori- 

zon is applied to splay trees as shown in FIG. 9. Namely, 
events are simply inserted into a temporary queue in order 
to provide constant insertion times. Removing events from 
the Splay tree can also be performed in constant time if the 2o 
event horizon has not yet been crossed, and if the leftmost 
event is tracked in the Splay Tree without applying the splay 
operation. All of the real overhead in using the event horizon 
for Splay Trees comes when the event horizon is crossed. 

in the temporary list and then one at a time inserted into the 
Splay Tree using the splay operation. By sorting the events 
first, better locality is preserved as the events are inserted 
into the Splay Tree. One problem with this approach is that 
the splay tree can become grossly skewed to the left. This is 3o 
because of the predominance of left rotations required as 
sorted events are inserted into the tree. However, this is 
normally not a problem since all of the rotations are amor- 
tized over time. 

it should be noted this data structure is not preferred for 
event list management. Also, the SPEEDES Tree outper- 
formed the Splay Tree in almost every case. Further, the 
SPEEDES Qheap is generally much faster and has no worst 
case scenarios. Performances results of a working example 4o 
for the SPEEDES Splay Tree of the present invention are 
shown in Table 8. These results show that applying the event 
horizon to Splay Trees improves performance. 

When the event horizon is crossed, the events are sorted 25 

Because of the large overheads involved in Splay Trees, 35 
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Instead of describing heaps using binary trees and exploit- 
ing modular arithmetic schemes with fixed arrays, the 
present invention is embodied in a novel implementation of 
a heap using only linked lists. The new data structure of the 
present invention is the preferred embodiment and is 
referred to as a Qheap. The benefits of the Qheap of the 
present invention are very low overheads (typical of linked 
list manipulations), freedom from fixed array data structures, 
and simplicity. 

Fundamental to the Qheap is a sorted linked list, denoted 
by Q, that is never allowed to have more elements than a 
fixed size, denoted by S. The size, S, should roughly be 
chosen as the point where straight event insertion into an 
already sorted linked list outperforms traditional logarithmic 
techniques. If S is chosen to be 2, then the Qheap simply 
performs as a binary heap. However, just as divide and 
conquer sorting algorithms perform better when using 
straight insertion-sort techniques for small sublists, so does 
the Qheap by choosing S to be a reasonable value. Typical 
ranges for S might be somewhere between 20 and 80 (actual 
measurements indicated only about a 10% difference in 
performance for 20eSe80 a value of S=40 were used in the 
final results). 

As elements are added to the Qheap, they are directly 
inserted into Q. However, if the number of elements in Q is 
equal to S, the list is first metasized into a single metaitem 
with its sort value determined by the first element of Q. 
Metasizing Q into a single metaitem is done prior to the 
insertion of the new element. As further elements are added 
to Q, the same procedure is repeated. It is therefore possible 
for Q to contain metaitems mixed with real event items. 
Further, when metasizing Q into a single metaitem, it is 
possible for the new metaitem to also contain metaitems 
which in turn might contain other metaitems, etc. In this 
manner, the Qheap is actually a recursively linked list data 
structure that closely relates to the heap property (although 
it is not necessarily a binary heap). 

FIGS. 10A-1OD illustrate examples of inserting elements 
into the Qheap of the present invention. As shown in FIG. 
10B a new item 78 with a value of 25 needs to be inserted 
into a Qheap 80 of FIG. 10A with an S value equal to 3. It 
is assumed that the Qheap already contains 3 items, each 
with a value. In the first step, the item 78 with value 25 is 
inserted. Because there are aiready 3 items in Qheap 80, the 

45 items in Qheap 80 are metasized into a single metaitem 82 
with value 10 and then the item with value 25 is inserted. 
Referring to FIG. 10B, Qheap 80 now contains two items, 
namely item 78 and metaitem 82. 

Dist.\ n 10 102 io3  io4  io5 In a second step, referring to FIG. lOC, an item 84 with 
Flat 0.00653 0,01083 0,01735 0,03024 0,04824 50 value 35 is inserted directly into Qheap 80 because the 
Tri. Up 0.00552 0.00942 0.01247 0.02459 0.04213 Qheap 80 is less than the maximum value of S=3. 
Tri. Down 0.00682 0.01203 0.01692 0.03143 0.05024 In a third step, referring to FIG. 10D, an item 86 with a 

TABLE 8 

Performance in milliseconds 
for the SPEEDES Splay tree. 

Bell Shaped 0.00468 0.00625 0.00856 0.02000 0.05803 

Asym. Far 0.00440 0.00550 0.00696 0.01356 0.03959 since there are already s=3 items in QheaP 80 (maximum 

Far Future 0.00404 0.00513 0.00633 0.01328 0.028’22 a single itern 88 and then the itern 86 with value 15 is 
Two Hump 0.00681 0.00924 0.01441 0.02437 0.04057 

Asym, Near o,oos80 0.01026 0.01360 0.02718 0.04517 value 15 needs to be inserted into the Qheap 80. However, 

Near Future 0.00718 0.01131 0.01875 0.0322 0.05106 55 value), the items 82, 78, 84 of FIG. 1OC are metasized into 

inserted into the Qheap 80. Referring to FIG. 10D, the 
Qheap 80 ends up with 2 items 88, 86, one of which is a 

3. The Preferred Embodiment: The Qheap complex metaitem 88. 
Heaps are normally implemented as binary trees with the 60 Removing items from the Qheap is more difficult than 

property that each node is at least as small as the value of its inserting items because it is possible that the item removed 
children nodes (if they exist). Although it is not necessary, from the top of the Qheap is actually a metaitem itself. If this 
heaps are almost always implemented using fixed arrays for is so, then the metaitem must be untangled by removing its 
storing pointers to their tree nodes. Modular arithmetic top item, redefining the rest of the metaitem’s list as a new 
allows tree nodes to be directly accessed and manipulated, 65 metaitem, making sure that the Qheap does not have more 
thereby allowing the normal tree traversal operations to be than S elements (if it does, then the elements in the Qheap 
bypassed. are turned into a single metaitem and placed back into the 
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Qheap as its only element), and then inserting this new 
metaitem back into the Qheap. The untangling procedure is 
repeated until a single element is found. 

FIGS. 11A-11C illustrate a specific example of removing 
an item from the Qheap 80 of the present invention. It is 
again assumed that the Qheap has S=3 and that the Qheap 80 
initially has two items, item 88, which is comprised of a top 
metaitem 82 and another two items, and item 86. 

In a first step, the metaitem 88 with value 10 is removed 
from the Qheap 80. Since item 88 is a metaitem, the top 
metaitem 82 (containing 10,20,30) is removed. The rest 
(containing 25,35) are redefined as a new metaitem 90. This 
new metaitem 90 with value 25 is inserted back into the 
Qheap 80. 

Referring to FIG. 11B, in a second step, the item 92 with 
value 10 is removed from the metaitem 82 (containing 
10,20,30). The rest of the items (20,30) are redefined as a 
new metaitem 94 and inserted back into Qheap 80 with value 
20, as shown in FIG. 11C. Since the remaining item 92 
(value 10) is a single item (not a metaitem), the untangling 
procedure is finished. The item 92 (value 10) is then returned 
from the remove operation. Performance results of a work- 
ing example for the Qheap are provided in Table 9. These 
results were obtained using the value of 40 for S. 

TABLE 9 

Performance in milliseconds for the 
Qheap of the present invention. 

Dist.\ n 10 102 103 104 105 

Flat 
Tri. Up 
Tri. Down 
Bell Shaped 
Asym. Near 
Asym. Far 
Near Future 
Far Future 
Two Hump 

0.00328 
0.00302 
0.00311 
0.00320 
0.00329 
0.00283 
0.00324 
0.00289 
0.00286 

0.00636 
0.00652 
0.00689 
0.00662 
0.00672 
0.00634 
0.00671 
0.00606 
0.00497 

0.01131 
0.01084 
0.01196 
0.01007 
0.01123 
0.00811 
0.01136 
0.00701 
0.00836 

0.01829 
0.01746 
0.01801 
0.01644 
0.01847 
0.01496 
0.01793 
0.01323 
0.01470 

0.02913 
0.02848 
0.02928 
0.02655 
0.02967 
0.02371 
0.02943 
0.02134 
0.02314 

4. SPEEDES Qheap 
Further, the event horizon can be applied to the Qheap to 

form a SPEEDES Qheap in accordance with the present 
invention. FIG. 12 is a flow chart illustrating an overview of 
the Qheap operation with the event horizon. Namely, instead 
of directly inserting events into Q, they are added to Q,,,. 
When the event horizon is crossed, Q,,, is sorted, the top 
item is removed as the next event, the rest of the list is 
metasized, and then inserted into Q. The obvious advantage 
of using Q,,, is to provide for larger numbers of events to 
be in a single metaitem, thereby reducing the average 
number of untangling steps. This new data structure is an 
alternative embodiment of the Qheap (the preferred 
embodiment) of the present invention and will be referred to 
as the SPEEDES Qheap, and can be used in the SPEEDES 
operating system. 

Because heaps are known to have worst case log,(n) 
amortized behavior, the SPEEDES Qheap data structure 
should never break down. Also, because it is composed from 
linked lists, it will have very low overheads. In addition, 
complicated rotation operations or balancing heuristics are 
not necessary. Moreover, the SPEEDES Qheap data struc- 
ture does not require fixed sized arrays or modular arith- 
metic. It should be noted that, however, an untangling 
procedure, although very straight-forward, may be required. 
Performance results of a working example for the SPEEDES 
Qheap are provided in Table 10. 
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TABLE 10 

Performance in milliseconds for the 
SPEEDES Qheap of the present invention. 

5 

Dist.\ n 10 102 io3  io4  io5 

Flat 0.00275 0.00472 0.00778 0.01156 0.01627 
Tri. Up 0.00319 0.00484 0.00627 0.00996 0.01588 
Tri. Down 0.00273 0.00512 0.00791 0.01208 0.01664 

10 Bell Shaped 0.00274 0.00447 0.00563 0.01074 0.01918 
Asym. Near 0.00283 0.00464 0.00647 0.01014 0.01691 
Asym. Far 0.00301 0.00466 0.00552 0.00967 0.01818 
Near Future 0.00279 0.00482 0.00853 0.01255 0.01697 
Far Future 0.00244 0.00440 0.00510 0.01024 0.01713 
Two Hump 0.00282 0.00412 0.00619 0.01035 0.01425 

15 

Because of the very favorable properties, the SPEEDES 
Qheap data structure is highly recommended for general 
event list management in discrete-event simulations. Pro- 
vided below is a step-by-step procedure for supporting the 

SPEEDES Qheap Insertion 
FIG. 13 is a flow chart illustrating Qheap insertion. 

I. Place the item to be inserted at the end of the Q,,,. 
11. Update T,, if this item has the smallest time tag out of 

all the items in Q,,,. 
SPEEDES Qheap Removal 

FIG. 14  is a flow chart illustrating Qheap removal. 
I. Check if the event horizon is crossed (i.e., if T,, is less 

than the time tag of the next item in Q). If so, perform 
steps a through f and then return. Otherwise, go on to step 

2o SPEEDES Qheap. 

25 

30 

2. 
a. Sort Q,,, and then set T,, to infinity. 
b. Remove the top element (this is what is returned as the 

next event) and call it NextEvent. 
c. Metasize the rest of the elements from Q,,, into a new 

metaitem called Metatemp. 
d. Check if Q already contains S elements. If it does, 

metasize all of its elements into a new metaitem and 
place it back into Q as its only element. 

35 

40 

e. Insert Metatemp into Q. 
f. Return NextEvent. 

11. Remove the top item from Q and call it NextItem. Then 
loop over steps a through e below until NextItem is not a 

a. Check if NextItem is a metaitem. If not, then break out 
of the loop and return NextItem as the NextEvent. 
Otherwise, it is known that NextItem is a metaitem 
which must be untangled in the steps b-e below. 

b. Remove the top element from NextItem and call it 
NewItem. NextItem now contains one less item. If 
NextItem has only a single element, then unmetasize it 
so that NextItem is a regular item. 

C. Check if Q already contains S elements. If it does, 
metasize all of its elements into a new metaitem and 
place it back into Q as its only element. 

45 metaitem. 

so 

55 

d. Insert NextItem into Q. 
e. Set the item NextItem=NewItem and then go back to 

60 step a. 
Conclusions 

The present invention is embodied in various priority 
queue data structures with enhanced performance to exploit 
the event horizon. Results from working examples indicate 

65 that the SPEEDES Qheap easily outperformed the other data 
structures without any “worst-case” problems. The 
SPEEDES Qheap is not a binary heap, but instead is 
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recursively constructed from linked lists. Thus, it has low trigger value of S is realized and at a predetermined 
overheads that are typical of linked lists. event occurrence, and wherein said computer being 

The SPEEDES Qheap can also be applied to Calendar directed by said priority queue to manage said events. 
Queues, For instance, the SpEEDES Qheap can be used 9. The event manager as set forth in claim 8, wherein the 
instead of linked lists for each tirne bucket, The benefits of 5 predetermined event occurrence is when the element needs 
this may provide significant improvements in worst-case to be added to the Priority queue. 
Calendar Queue performance. 10. The event manager as set forth in claim 8, wherein the 

This concludes the description of the preferred embodi- trigger value of S is realized when the number of elements 
ment and alternative embodiments of the invention. The in the priority queue is 

11. An event manager for managing events for computer foregoing description of the invention's preferred and alter- i o  simulation systems, comprising: native embodiments has been presented for the purposes of 
illustration and description. It is not intended to be exhaus- a) a 
tive or to limit the invention to the precise form disclosed, b) a priority queue interactive with said events and limited 

to having only S elements, said priority queue and said Many modifications and variations are possible in the light events stored on said computer in said memory; of the above teaching. It is intended that the scope of the is 
queue only at a certain value of S and at a predeter- claims appended hereto. mined first event occurrence; What is claimed is: 

1. A computer-implemented process for managing events dl for removing an from the 
within a priority queue stored on a computer, comprising the 20 priority queue Only at a certain Of and at a 

predetermined first event occurrence; and steps o f  
e) means for metasizing the priority queue into a single a) limiting the priority queue to having only S elements; metaitem when a trigger value of S is realized and at a 

predetermined first event occurrence, means for assign- b) directly inserting an element into the priority queue at 
ing a sort value determined by a first element located in a predetermined first event occurrence and at a certain 
the priority queue, wherein the priority queue is meta- value of S; 

c) directly removing an element from the priority queue at sized prior to insertion of a new element. 
a Predetermined second event Occurrence and at a 12. The event manager as set forth in claim 11, wherein 
certain value of S; and the predetermined first event occurrence is when the element 

after a trigger value of s is realized and an element 13. The event manager as set forth in claim 11, wherein 
needs to be inserted, and assigning a sort value deter- the predetermined second event occurrence is when the 
mined by a first element located in the priority queue, element needs to be removed from the priority queue. 
wherein metasizing the priority queue into a single 14. The event manager as set forth in claim 11, wherein 
metaitem is performed prior to insertion of a new 35 the trigger value of S is realized when the number of 
element, and wherein said process provides fast and elements in the priority queue is equal to s. 
predicable event list management for computer simu- 15. The event manager as set forth in claim 14, wherein 
lation systems. the priority queue contains at least one of a metaitem and a 

2. The process for managing events as set forth in claim real event item. 
1, wherein the predetermined first event occurrence is when 4o 16. A computer-implemented process for managing 
the element needs to be added to the priority queue. events within a priority queue stored on a computer, said 

3. The process for managing events as set forth in claim priority queue interactive with an event horizon defined by 
1, wherein the predetermined second event occurrence is events processed in successive cycles, said computer- 
when the element needs to be removed from the priority implemented process comprising the steps of: 
queue. a) directly inserting an element into a temporary queue at 

4. The process for managing events as set forth in claim a predetermined first event occurrence and when the 
1, wherein a certain value of S is defined by a number of event horizon has not been crossed so that a next event 
elements in the queue less than S. to be processed is not in the temporary queue, wherein 

5. The process for managing events as set forth in claim said temporary queue is comprised of a top item and 
4, wherein the trigger value of S is realized when the number successive items; 
of elements in the priority queue is equal to S. b) directly removing an element from the temporary 

queue at a predetermined second event occurrence and 6. The process for managing events as set forth in claim 
1, wherein steps a-d are recursively repeated for all new when the event horizon has not been crossed; and 

c) sorting the temporary queue when the event horizon is elements added or removed. 

event, metasizing the successive items in the list, and 6, wherein the step of metasizing the priority queue into a 
then inserting an element into the queue that needs to single metaitem produces a priority queue with metaitems 

be inserted, wherein said process provides fast and comprised of metasized items. 
predicable event list management for computer simu- 8. An event manager for managing events, comprising: 

a programmable computer having memory; 60 lation systems. 
a priority queue interactive with said events, said priority 17, The process for managing events as set forth in claim 

queue and said events stored on said computer in said 16, wherein the predetermined first event occurrence is when 
memory; and the element needs to be added to the priority queue. 

at least one element located within said priority queue; 18. The process for managing events as set forth in claim 
wherein said priority queue being limited to having only 65 17, wherein the predetermined second event occurrence is 

S elements, wherein said elements are comprised of when the element needs to be removed from the priority 
real event items and metasized metaitems only when a queue. 

to s. 

computer having memory; 

invention be limited not by this description, but rather by the for inserting an into the priority 

25 

d) metasizing the priority queue into a single metaitem 3o needs to be added to the priority queue. 

45 

7. The process for managing events as set forth in 5s crossed, by removing the top itern and naming it a next 
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19. The process for managing events as set forth in claim 
16, wherein the event horizon has infinite cycles. 

20. A computer-implemented process for managing 
events within a priority queue stored on a computer, said 
priority queue interactive with an event horizon defined by 
events processed in successive cycles, said computer- 
implemented process comprising the steps of  

a) continually maintaining a primary list and a secondary 
list for said priority queue which is comprised of a tree 
with a starting root forming paths diverging from the 
root; 

b) sorting only the primary list at a first predetermined 
time; 

c) traversing along one of the paths as an event is removed 
until the event is removed and traversing along one of 
the paths as an event is inserted until the event is 
inserted; 

d) recursively placing a new event into the secondary list 
and applying a balancing heuristic at each node along 
the traversed path when a new event is scheduled to be 
inserted; 

e) preserving an earliest event scheduled to occur in the 
secondary list; and 

f )  sorting the secondary list at a second predetermined 
time and then merging the secondary list into the 
primary list, wherein said process provides fast and 
predicable event list management for computer simu- 
lation systems. 

21. The process for managing events as set forth in claim 
20, wherein the first predetermined time is when events do 
not need to be processed. 

22. The process for managing events as set forth in claim 
20, wherein the second predetermined time is when events 
need to be processed. 

23. The process of managing events as set forth in claim 
20, wherein said priority queue is a balanced binary tree. 

S 

10 

1s 

20 

2s 

30 

3s 
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24. The process of managing events as set forth in claim 

20, wherein steps (c) and (d) comprise the steps of inserting 
an event into a temporary queue for providing constant 
insertion times, removing events in constant time if the event 
horizon has not been crossed, sorting the events in the 
temporary queue when the event horizon is crossed, and 
inserting the event into the tree one at a time. 

25. The process of managing events as set forth in claim 
24, wherein said priority queue is a splay tree. 

26. A computer-readable medium for causing a computer 
system to manage events for computer simulation systems, 
comprising: 

a computer-readable storage medium; 
a computer program stored on said medium; 
wherein said computer program operates on said com- 

puter system and performs event management, wherein 
said computer program comprises, 
a priority queue interactive with said events, and 
at least one element located within said priority queue, 
wherein said priority queue being limited to having 

only S elements, wherein said elements are com- 
prised of real event items and metasized metaitems at 
a predetermined event occurrence and after a trigger 
value of S is realized. 

27. The event manager as set forth in claim 26, wherein 
the predetermined event occurrence is when the element 
needs to be added to the priority queue. 

28. The event manager as set forth in claim 27, wherein 
the trigger value of S is defined by a number of elements in 
the queue equal to S. 

29. The event manager as set forth in claim 28, wherein 
the priority queue contains at least one of a metaitem and a 
real event item. 

* * * * *  


