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ABSTRACT

Applying the sta,,idardweighted m(,an for,nul_ [_i 7_i(r:2]/[_i _:'2], to determino

the weighted mean of data, 7zi, drawn from a Poisson distribution, will, on average,

underestimate the true mean by ,-_1 for all true mean values larger than --_3 when the

common assumption is made that the error of the ith observation is cri = max(v_i, 1).

This small, but statistically signific_tnt of['sel, explains the long-known observation

that chi-square minimization techniques which us(, th(, modified Neyman's \2 statistic,

\_ =_ }-_i(l_i - yi)2/max('tt/, 1), to compare Poisson-distrit)ute(t data with model

values, yi, will typically i)redict a. total numl)er of counts that underestimates the

true total by about 1 count per bin. Based on my tinding that the weighted mean

of data drawn from a Poisson distribution can 1)e determined using the formula

[_i ["i +rain (,zi, 1)] (,,i + 1)-1]/[_,.(,,i + 1)-'], I prof)ose tha.t a new \2 statistic,

\_ -- _i[l_i + rain ("i, 1) - yi] 2/[,_i + 1], should always be used t.o analyze Poisson-

distril)uted data in preference to the modified Neyman's ;k2 statistic. I demonstrate the

power and usefulness of X_ minimization t)y using two statistical fitting techniques and

five X2 statistics to analyze simulated X-ray [)ower-law 15-channel spectra, with large

and small counts pet" bin. I show that X_ minimization with the Levenberg-Marquardt

or Powell's method can produce exc(_llent results (meau slope errors <_3_,) with spectra

having as few as 2.5 total counts.

Subject headil_gs: methods: numerical -- methods: statistical X-rays: general
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1. INTRODUCTION

Tile determination of tile weighted mean is the fundamental problem for chi-square (X2)

minimization methods. The goodness-of-fit between an observation of :\r data values, ._'i, with

errors, _ri, and a model, mi, can be deterinined by using the standard chi-square statistic:

N 2

The theory of least-squares states thal the optimum value of all the parameters of the model are

obtained when the chi-square statistic is minimized with respect to each parameter simultaneously.

For example, the standard formula of the weighted mean can be derived by assuming that the

model is a. constant and then solving the equation,

07'_E .__- t,w : 0, (2)
" " i=1 O'i

for that constant:
N

i_l 2'i

t',,- : (3)
N ]

i=1

The standard weighted-mean formula thus weights every data value, .ri, inversely by its own

variance (i.e. _]).

Let. US assume that all the data vahms come from a i)ure counting experiment where each

data vahle, ni, is a random integer deviate drawn fronl a Poisson (1837) distribution,

t lk __

P(_'; t,)- >7,,._ , (4)

with a mean value oft t. Let us also lnake the common assumption that the error of each data value

is the square root of the mean of the parent Poisson distribution. Using these transforlnations,

xi => ni and ai => v_, we see that Equation (3) becomes

N

•= tI
tq_ = , ('_)

N 1

•= t _

which reduces to become the definition of the sample mean:

1 N



In tile limit of a large nunfl)er of observations of the Poisson distribution P(k; I_), we find that

Equation (6) will, on average, determine the mean of the parent Poisson distribution for all true

mean values tz:

lim [/m] - lim

lira k NP(/,'; eL)
N--+ oo

k=0

OG

=
k=0

£ " tt -u

k=0

J tO __ _ IXJ ]lk

= ow.,_ +c-,'_ (_,-11,
h=l

11 k-1

= _-"l, _ (_- -l)!
k----I

,x, tt;

j=O

: C--I_II6 _*

_ ,. (7)

determine the

weighted mcan of data, hi, drawn from a Poisson distribution, will, on average, determine the

m_cm of thc pare_t Poissou distribution for all true "metro values if a constant weight is assigned

to all data ealues (i.e. cr-2 = constant).

It is a common practice to assume that the error of a Poisson deviate n is a - v/n.

[;nfort unately, this practice causes the standard weighted-mean formula to be undefined for data

values of zero. A simple solution to this computational problem is to arbitrarily assign a non-zero

constant error to all Poisson deviates with a value of zero. Let us make the common assumption

that the error of each data value, hi, is equal to _, or 1 whichever is greater. Using the

following transformations, xi =# n, and ai _ max(_._, t), we see that Equation (3) becomes

N

E 1_ i.= max(n/, 1)
PN --Z N (8)

1

n,a_(,,i,1)
i= 1
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In the limit of a large number of observations of the Poisson distribution P(k;tt), we find that

lira [t_'] - lira i--1 max(hi, i)
N-+,_+ N-+_, 1

max(,_i, 1)

lira -= max(k, 1)
N --+,_ '_ ]

h_O llla,x(l,,, ]) {NI)(]_';II)}

E max(k, 1)
h=O

,x, 1 {p(k:tt) }max(/,', 1)
h=O

k=l

k=l

1 -- C -*_

'_' ilk

c-'+ e-" _ kk!
k= 1

e ¢* - 1
= (9)

1+ _..,j
e _z -- 1

= (I0)

1+ [Ei(_)- -,,-,,(,)] ,

CxD _,--t X C -t

where El(x) is the exponential integral of x, El(x) = - f2_. --t- dt = f__,._<,--i- dt (for x > 0), and 7

[{ '}- In(n)] = 0.5772156649... (see, e.g.,is the Euler-_lascheroni constant: 7 = lim,,_+,x, _}_-1 n

Abramowitz & Stegun 1964).

Let us now investigate the limit of Equation (10) with large Poisson lnean values. The

transformation of Equation (9) to Equation (10) used the power series of El(x),

x x 2 x 3

El(x) = 7 + In(x) + _ + _ + _ +... , (11)

which has the following asymi)totic exl)ansion:

cx( 1' 2! 3' )Ei(x) v-- 1+--+ + +... (12)
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l:ronl the following limit,

-- + + + .... a: = -1 (1.3)

we see that El(x) asymptotically approaches the function e_'/(z - 1) for large values of x. For

.r _> 13 this approximation has an error of <1%; for x >_ 33 the error is <0.1%. In the limit of

large mean Poisson values, we see that the numerator of Equation (10) is dominated by the e_

term while the denominator is dominated by the El(#) term which asymptotically approaches the

value of c'/ (t_- 1). We then have come to the surprising coT_clusiol_ that for Poisson distributions

with larg_ inca, values, limj',_oo [ttN] approaches the value of tt - 1 i_z.stead of the expected value of

It.

Equation (10) can also be investigated graphicaJly. Figure la plots the difference between

lhe weighted mean computed using Equation (8) and the true mean for Poisson-distributed data

wilh true mean values between 0.001 and 1000. Each open square represents the weighted mean

of 4x 10" Poisson deviates at each given true mean value. The solid curve through the data [open

squares in Fig. la] is the difference between Equation (10) and the true mean. Note that Equation

(10) underestimates the true mean by _1 for large true mean values (as predicted above).

"--'''IJ'_i''f] '1''.[ .''''''(''_''(t '''(t_l't{(' 1''{_'1' JC''''''''l(', [C_ 1_:2] / [ c_ _:2]' '0 ('_I '{I 1'1'_ _1_{ ' 1' _'

wt ighted mean of data, 1_i. drawn from a Poisson distribution, will. o1_ accrag_, u_Merestimate the

true mean by _1 for all true mean calues lawer thal_ ,,_3 when the common assumption is made

that the error of the ith obsercation i_ cri = max(_i, 1).

2. THE WEIGHTED MEAN OF POISSON-DISTRIBUTED DATA

We wUl now develop a weighted-mean formula for Poisson-distributed data that will, on

average, delermilm the true mean of the l)arent distribution for all true mean values.

Let us assume that the error of each data value, hi, is equal to _ + 1 instead of max(_,., 1).

Using the following transformations, _'i => l_ and cri => _ + 1, we see that Equation (3) becomes

N

7_i_ .= hi-+-1

1

i_1 ni + 1

in the limit of a large nulnber of observations of the Poisson distribution P(k;/t), we find that

lim [tto] = lim
[k _ -+ ,_, N --+, _-'<._

k rti

i=l ni + 1

i=l ni + 1
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;\r _.+ ,,-,..2,

k=O

'_ k {P(k;_--_ k + 1
k=O

k+l

k + i NP(k;

k 1 {P(k;
_-=0 k+ 1

1 (, _ 1+ _-")
/l

1
-(1 -_-')
tt

tL 1.
1 -e-"

,)}

,)}

(15)

Figure lb graphically confirlns this finding. Increasing the error estimates from max(_, 1) to

_i + 1 has only yielded a minor iml)rovement. Notice that the dip in the solid curve in Fig. la.

at t_ _ 6 is not present in the solid curve in Fig. lb. A more radical change appears to be required

in order for us to develop a weighted-mean formula for Poisson-distributed data.

Let us now add one to all data values and assume that the error of each data value is the

square root of the new data value. Using these transformations, a:i => ni + 1 and cri => _+ 1,

we see that Equation (3) becomes

N ni + 1K-"
Z__, ni + 1

- _=_ (16)
[t,d -- N

1

E hi+ 1
i=l

In the limit of a large number of observations of the Poisson <listribution P(k; tz), we find that

lira [/l;3] _ lira
N -.4- c.c_ _'k,r_..}.oo

[_ ni 4- 1

i=1 n,i + 1

W- 1

'hi + 1

+1
1

,':=0 k + 1 "I.NP(k;tO
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C'O

k=o

oo 1

k=O

1

#

1 -- U--_L
(17)

l:igure lc graphically confirms this finding. We have now made significant progress towards our

goal of developing a weighted-mean formula for Poisson-distributed data. Applying Equation (16)

Io determine tile weighted mean of Poisson-distributed data, will, on average, estimate tile true

mean with <1% errors for true Poisson mean values/t >_.,5.

The deviation of the solid curve in l:igure lc from zero can be eliminated by, making .just. a

minor change to our transformations. Using the same errors as above, cri => v/777+ 1, but now

adding one to only those data values that are initially greater than zero, ni => ni + rain(hi, 1) , we

see that Equation (3) becomes
N

"zi + min(,,i, 1)
i=l 7_i + 1

#_, = ,, (18)
1

n,: + 1
i=1

in the limit of a large number of observations of the Poisson distribution P(k;tl), we find that

lim [tl,.,] - lim
N ,-1.,_, N ..-.+

_ lim
N -).,:_

[_ 'ni + rain(hi, 1)
i=1 ni + 1

:'¢ 17_i + 1
i=1

c,o

k + min(k, 1) {P(k;t,)}
k=o k+l

£ ' (,>;,,)}
_-=o k + 1



o_, k+lp,k"P(o;;,) +
k=l

e(k;;,)
k=O

1 -- e -;t

1
- (1 - c-')
tl

= p. (19)

Figure 1(I graphically conth'ms this finding. We have now achieved our goal of developing a

weighted-nman formula for Poisson-dist.ributed data. Applyin 9 Equation (15) to determine the

weighted mca.n of Poisson-dislribute:d data will, on av_'rage cstimat_ tk_ true mean for all truc

Poi.s.so;_ m__an values (t; >_ 0).

3. THE \_ STATISTIC

Based Oll lllV finding that the weighted mean of data drawn fi'om a Poisson distribution can

be determined using the formula [_-'_i[7li + rain 0_i, 1)] (hi + 1)-']/[_i(,,i"_ + 1)-lJ,' I propose

that, given N observations (hi) and a model (mi), a new \2 statistic,

2 _[ni + rain (;'i, 1) -mi] 2 (20)
i=l ni + 1

should always be used to analyze Poisson-distributed data in preference to the modified Neyman's

\2 statistic,

X_ ---- _ max(r,i, 1) ' (21)

because the weighted-mean formula for the modified Neyman's X2 statistic [PN: Equation (8)]

systematically underestitnates the true mean value of Poisson-(listributed data with true mean

values p _ 0.5 (see Fig. la).

For Poisson-distributed data, it, has long been observed that, in many cases, chi-square fits

using the modified Neyman's \2 statistic and tile Pearson's \2 statistic,

N (.;_
-- , (22)

i:1 ll_ i

will underestimate and overestimate the total area, respectively, while the usage of tlle maximum

likelihood ratio statistic for Poisson distributions,

N
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preserves the total area (e.g., Baker & Cousins 198,:1 and references therein).

It has been known for" decades that chi-square nfinimization techniques using the modified

Neylnan's X2 statistic to analyze Poisson-distributed data will typically predict a. total number

of counts (total area) that underestimates the true total counts by about 1 count per bin (e.g.,

Bevington 1969, Wheaton et al. 1995). The reason why this underestimation occurs is now

obvious: the application of the modified Neyman's ,t 2 statistic to Poisson-distributed data causes

the fitted model value a.t each bin, mi, to be, on average, underestimated by _,,1 count for all

true Poisson model mean values 2,3. The underestimation of the true mean by one count gives

a very large 20_Z. error when the true mean of the data. is 5 but only a 1% error when the true

mean of the data is 100. It would clearly be difficult to detect such a small systematic error with

small samples of Poisson-distributed data with large true mean values. Figure la shows that this

underestimation is real and is easily measurable with large samples of Poisson-distributed data.

The number of degrees of freedom, colnlnonly represented with the symbol u, of a chi-square

minimization problem is the difference between the number of observations (sample size) and the

numl)er of free parameters (M) of the model: u - N - M.

The reduced chi-square o[" the Pearson's \2 statistic is, by definition, the value of Pearson's

\_ statistic divided by the number of degrees of freedom:

1 N (l,i- ,/y/i)2

x?-__u :\r ,_I m.i
(24)

()n average, the expected reduced chi-square value of a proper \2 statistic with a perfect model

is one given a large number of observations. Now let us assume that our data comes from a

Poisson distributioll with a mean value of tg. In this case, the model m, will be a constant, ILp

[Equation (.5)], which will, on average, have a value, tzP', given by Equation (7) in the limit of

a large number of observations (N.B. lip, = It). The model is a constant and therefore there is

only one degree-of-freedom: M = 1. Given these assumptions, we find that, in the limit of a large

number of observations, the reduced chi-square of the Pearson's ,\.2 statistic with the model//p is

N-+ ,_ N --+c,o N -_,I 7__,i

= lim - -
N--+,x_ _ [tp

{ t}=E
A.:o tq" P(k; t_

k=O tt
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1

= ,,,([/+,,]_2,,[,,]+,,211])
(2.5)

The reduced chi-square of tile modified Neyman's ;k2 statistic is, by definition, tile value of

tile modified Neyman's X2 statistic divided I)3: tile number of degrees of fi'eedom:

N 2

_ 1 _;-_!ui- re,j_k_ _ _

y N _l_max(.i, 1)
(26)

Now let us assume that our data comes from a Poisson distribution with a mean value of it. In this

case, tile model m_ will be a constant, tZN [Equation (8)], which will, on average, have a value, ttN',

given by Equation (10) in the lilnit of a large number of observations. Given these assumt)tions,

the reduced chi-square of tile modifiedwe find that, in the limit of a large number of observations

Neyman's x 2 statistic with the model fin is

[,N--+,x, _V il I i= 1

= linl [ ] _'_=1('li-ttN)2"

1 '_' ]1,Z__o
_ £ {,,(,.;,,)}

@ (/" - t_x,)2
= _'N"-"2.-, + ":-" k P(k; tt)

k=l

= tt_,e-" + kP(k;tl) - 2tt N, P(]¢;t t ) -F tt_, P(k;tt)

= ff_,,e-'[1 + Ei(ff)-7-hl(/t)]-2/,,N, [1- e-"] + [/_]

= - 2tzN, --
k [tN' J

= {tzN'} [e-" - 1] + t'

= { P'-I } [c-" - 1] +t,1 + El(t,) - 3.... ln(#)

2 -- 6't_ -- e -v"

= + tI •
Ei(tz) - 7 - In(It) + 1

(27)
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In tile limit of largemeanPoissonvalues,weseethat tile numeratorof thefirst term of Equation
(27) is dominatedby the -e'_ term whilethe denominatorof tile first term is dominatedby the
Ei(tl) term whichasynq)toticallyapproachesthe valueof e"/(/, - 1). We then conclude that tile

reduced chi-square of the \_ statistic applied to a Poisson distribution [Equation (27)] approaches

the value of one for large true Poisson mean values. Figure 2 graphically confirms this finding;

we see that Equation (27) reaches a value of _1 only for very large true Poisson mean values

(t' _ 100).

.2 statistic is. by definition, t.he value of the X._The reduced chi-square of the new .k3 . 2 statistic

divided by lhe number of degrees of freedom:

/]

1 @["i + min(,zi, 1) - rail 2
2_, (28)

Now let us assume that our data colnes from a Poisson distribution with a mean value of p. In

this case, the model mi will be a. constant, tt_, [Equation (18)], which will, on average, have a

value, p^,,, given by Equation (19) in the limit of a large uumber of observations (N.B. #_, = #).

Given these assumptions, we find that, in the limit of a large number of observations, the reduced

chi-square o[" the new \2 statistic with the model tt_ is

]iln [ -1 2Y[lli÷lllin(l_.i,1)--I_i]2]
_=1

te--+.=.:,lim[_k___0[1 _.-_.[k+min(l,',l)-p_,]2 {Np(k:it)} ]I,:+ 1

= _-_[/"+min(k, 1)-I",'] 2 {p(/,.;t,)}
k=0 h'+l

oo

= Z: {p(k-;#)}
k=0 k+l

= I*2c-_' + k [h' + 1 - #]2k-v {e(k;,,)}

I_____-i ] [k=_l 1 [___1 1P(/c;t')l= t,2e-*'+ IvP(tv;It ) ÷ (1 - 21,) P(/c;#) ,÷t, 2

= l÷_-*'(p- 1) (29)

l:igure 2 shows that the reduced chi-square of the X._ statistic applied to a Poisson distribution

[Equation (29)] approaches the value of one for small true Poisson mean values (i.e. p _, 7).
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Figure 3 shows tile variance of tile reduced chi-square of the _,, 2 2 2_YN, _Y_., and j'(.\ statistics as

a function of the true Poisson mean. This figure was derived by analyzing the data. used in Figure

1.

4. SIMULATED X-RAY POWER-LAW SPECTRA

I now demonstrate the new .\3 statistic t)y using it to study a. data.set of simulated X-ray

power-law spectra. This da.taset is based on my duplication of the simple numerical experiment

of Nousek _ Shue (1989). The llumber of X-ray 1)borons per energy interval (bin) of a X-ray

power-law spectrum is

dN = :VoE -_ dE . (30)

Over an energy range, E,,,in _< E < Emax ke\:, the expectation value for the total number of counts

can be determined as follows

:\' = No _[E ..... E -^_ dE , (31)
/_JEmin

which implies that

No = 1-_,_ 1A-^' . (32)
E,nin -max

Following Nousek _ Shue, I chose the slope value of 7 = 2.0 and used the energy range of

0.09.5-0.845 keV which was split into 1.5 equal bins of 0.050 keV per bin. I simulated 104 X-ray

spectra, for each of the theoretical N values used by Nousek _(: Shue: 25, .50, 75, 100, 1.50,250,500,

7.50, 1000, 2500, 5000, and 104 photons per spectrum. Figure 4 shows four of the simulated X-ray

power-law spectra.

4.1. Powell's Method: Solving for 7 and N using \2N, k_, S_:2

I determined the best-fit model l)arameters ")'_k and N:._l,- for each simulated spectrum with

Powell's function minilnization method 2 using the modified Neyman's \2 statistic (\_), Pearson's

k2 statistic (Xp),2 and the new \_2 statistic. I used the following crude initial guesses: 7 = 0.0 and

.V = 1.3 _5 hi, where ni is the observed number of photons in tile ith channel (bin). I computed

tlle robust mean (average) and robust standard deviation 3 of the ratios 7calc/7 and N¢_I¢/N for tile

104 simulated spectra of each dataset. The results of Powell's method with two free parameters

(_:, N) using the _,_, X_, X_ statistics are presented in Table 1 and Figure .5 The first column,

2The primary reference for Powell's minimization method is Powell (1964). More accessible descriptions may be

found in the numerical-inethods literature (e.g., Acton 1970, Gill, Murray & Wright 1981, and Press et al. 1986)

3The robust mean given in all tl,e tables is the mean of all values within two average deviations of the standard

mean value. The robust standard deviation given in all the tables is 1.55a where a is tim standard deviation of all

values within two average deviations of the standard mean values.
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N, of Table 1 corresponds to tlle total theoretical number of counts ill tile spectrum. The columns

"^/calc/7" and "Nc_lc/N" are tile robust mean values of tile ratios of tile best-fit parameters

divided by tile original value that was used to create tile datasets. Tile parenthetical numbers are

the robust staudard deviations which call be used to determine the significance of the deviation

from the perfect ratio value of one. For example, the first value of tile 2nd column of Table 1 is

1.002(ll) which represents the value of 1.002-t-0.011. Tile deviation of this value from one (i.e.

0.002) is statistically significant since the error of the mean is only-_0.011/lv/_or,-_0.00011.

Figure 5 indicates that the new \3 statistic gives tile best results. Using a 5% criteria for

both fitted paranleters (7, N), we see that tile X_, statistic gives good results for spectra with

Z50 photons. By comparison, Pearson's ,\2 statistic requires _,2.50 photons and the modified

Neyman's \2 statistic requires _,750 photons in order to get tile same quality of results. Baker &

Cousins (1984) noted that, ill many cases, \,2 fits using the the modified Neyman's X 2 statistic

will underestimate the total number of counts willie 7_2 fits using Pearson's X"2 statistic will

overestimate the total number of counts; both systematic errors are clearly seen in the bottom

panel of Figure 5. I stated in the previous section that the usage of the modified Neyman's ,\2

statislh" with l)oisson-distril)uted data will tyl)ically underesthnate the total counts by one count

I)er bin. Nix' results for tile \2 statistic clearly exhibit this systematic error: the results of the

ratio ,_\:c_l_/.\ r [br spectra with N Z 250 photons (squares in the bottom l)anel of Fig..5) are well

mo(lele(t by the function (N- 15)/N where 1.5 is the number of bins (channels) in our spectra [see

the dashed curve in the bottom panel of Fig. 5].

A comt)arison of my analysis of ")'_1c/7 using the modified Neyma.n's \2 statistic (2nd column

of Table 1) with the analysis of Nousek c_ Shue for Powell's method (3rd column of their Table

3) shows nearly identical results. In my version of this nulnerical experiment, I used tile two

parameters :\_ and _/ while Nousek & Shue used "Y0 and 7. A comparison of my analysis of s\r_,]_/e\ '

(3rd columu of Table 1) with their Powell's method analysis of Nc_lc/N0 (2nd column of their

Table 3) shows that my analysis with A_I_/N has produced better estimates. This should not be

surprising because tile pa.rameter No is not a.n independent parameter- N0 depends on both the

slope of the spectrum and the theoretical nuinber of photons in the spectrum. As a. general rule,

one gets better results by solving for independent parameters instead of dependent parameters.

4.2. Levenberg-Marquardt Method: Solving for 7 and N using -¢_, -_, _

I determiued the best-fit model parameters "_'c_l_ and Attic for each simulated spectrum with

Levenberg-Marquardt method 4 using the modified Neyman's X2 statistic (X_), Pearson's X2

statistic (\_), and the new \2 statistic. I used the previous crude initial guesses: ^_= 0.0 and

t'['he primary references for Levenberg-Mavquardl method are Levenberg (1944) and Marquardt (1963). More

accessible descripIions may be found in the nulnerical-met.hods literature (e.g., Bevington 1969, Gill, Murray &

\\'right 1981, and Press el al. 1986)
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AT = 1.3 _5 hi. I computed tile robust mean and robust standard deviation of the ratios 7c_1c/7

and Nc_lc/N for the 104 simulated spectra of each dataset. The results of Levenberg-Marquardt

method with two free parameters (3, N) using the _, X_, \'_. statistics are presented in Table 2

and Figure 6

Figure 6 indicates that the new _. statistic gives the best results. Using a 5% criteria for

.2 statistic gives good results for all the spectraboth fitted parameters (3, N), we see that the .\.y

(N _ 25 photons). By comparison, Pearson's %2 statistic requires _.100 photons and the modified

Neyman's _2 statistic requires _500 photons in order to get the same quality of results.

The results for the 1'_2, and k_ statistics are nearly ideutical with either Powell's method (Table

1) or the Levenberg-Marquar(tt method (Table 2). This finding refutes the determination by Nousek

Shue (1989) that Powell's method gives more accurate results than tile Levenberg-Marquardt

method.

Tile results for Pearson's X2 improved significant]y by using the Levenberg-Marquardt

method instead of Powell's method. All inspection of the individual fits showed that the

Levenberg-Marquardt method with the \'_ statistic produced a best-fit value for N that was

within aone-tellth of one percent of the total number of photons in the spectrum. Needless to

say, with such all inlprovenmnt ill the determination of N, a much better estimate for the slope

could be deternfined.

This peculiar result tells us son]ething important about this particular minimization problem:

all excellent estimate of tile total number of photons in the best-fit spectrum is the total number

of photons in the actual spectrum. Thus by setting N to be a constant, N _= _--_5 hi, we can

eliminate one parameter and solve fol'7 alone.

4.3. Powell's Method: Solving for using )_N,2 _, _._,2

I determined tile best-fit model parameter 7,:_lc for each simulated spectrum with Powell's

function minimization method using the modified Neyman's _2 statistic (\_), Pearson's ,_2

statistic (X:_), and the new .\2 statistic. I set N - _5 ni and used the crude initial guess of

7 = 0.0. I computed the robust mean and robust standard deviation of the ratios 7calc/7 for the

10 4 simulated spectra of each dataset. The results of Powell's inethod with two free parameters

(7, N) using the .l'_, ,k_, :(_ statistics are presented in Table 3 aud Figure 7

2 statistic gives the best results. Using a 5% criteria, weFigure 7 indicates that the new k_

see that the X_ statistic gives good results for all the spectra (N _, 25 photons). By comparison,

Pearson's X 2 statistic requires _,250 photons and tile modified Neylnan's X 2 statistic requires

_,750 photons in order to get the same quality of results.

Fitting only for tile slope 9' has improved the results for the new X2, statistic and the modified

Neynlan's X2 statistic. The results for Pearson's ,1-2 show no improvemeut over the two free
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parameterresult.

4.4. Levenberg-Marquardt Method: Solving for "_ using \_, _, ,y2

I determined tile best-fit model parameter 7talc for each simulated spectrum with the

Levenberg-Marquardt minimization method using tile modified Neyman's _y2 statistic ()/_),

Pearson's X 2 statistic (X_), and tile new X_ statistic. I set N = _5 ni and used the crude initial

guess of _/' = 0.0. I computed the robust, mean and robust standard deviation of the ratios 7c_1c/7

for the 10 4 simulated spectra, of each dataset. The results of the Levenberg-Marquardt method

with one free parameter (7) using tile X_, X_, X_, statistics are presented in Table 4 and Figure 8

Figure 8 indicates that Pearson's X 2 statistic gives the best results. Using a 5% criteria.,

we see that both tile new statistic and the \_ statistic give good results for all the spectra

(X _ 2.5 photons). By comparison, the modified Neyman's k2 statistic still requires _,7.50 photons

2 and ,\_.in order to get. tile same quality of results. Once again, we note that the results for the X-_

slatistics are nearly identical with either Powell's method (Table 3) or tile Levenberg-Marquardt

met hod (Table 4).

4.5. Error Estimates

One expects the quality of the slope determination to degrade as the total number of photons

in tile X-ray spectra decline. Figure 9 shows the distribution of tile best-fit values for the slope 7

for the faintest spectra with a theoretical total of 100, 50, and 25 photons. As expected, the range

of besl-fit slope values measured for spectra with only N = 2.5 photons is considera.bly larger than

tile range of values for spectra with N = 100 photons.

Tile Levenberg-Marquardt method not only provides best-fit values for [)ara.meters but

it also provides an error estimate (apt>roximately 1 ¢r errors) of those fitted parameters. How

believable are these error estimates? Figure 10 shows all analysis of the errors estimated by

the Levenberg-Marquardt method when the new X2 statistic was used to analyze spectra with

lheoretical totals of 100, 50, and 25 photons.

Tile top panel of Figure 10 shows tile error analysis of spectra with N - 100 photons. Tile

median slope value is 1.989 and the median error estimate is 0.194. A total of 1.5.87% of the

spectra have estimates of 7 _< 1.789 and 15.87_. of the spectra have esthnates of 7 _> 2.211.

For a normal distributiou, one expects 68.26¢fl¢, of the deviates to be found within one standard

deviation of the mean. Assuming that the distribution of best-fit 7 values approxinlates a normal

dislribution, then half of the difference between the 84.13 and 15.87 percentile values of _ can be

used as an estimate for tile slope error: ¢r:, _ (Ts4.1a% - 715.sr%)/2 = (2.211 - 1.789)/2 = 0.211.
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This valueis 8.8%largerthan tile medianLevenberg-Marquardterrorestimate;a fractionalerror
of 10.6%insteadof tlle predicted9.8%.

Tile middlepanelof Figure10showstile erroranalysisof spectrawith N _= 50 photons. Tile

median slope value is 2.009 and the median error estimate is 0.301. A total of 15.87% of the

spectra have estimates of 7 _< 1.732 and 15.87% of the spectra have estimates of ^t >_ 2.334. This

gives an estimated slope error of a_ _ (784.1a% - %5.s>y_)/2 = 0.301 . This value is exactly equal

to the median Levenberg-Marquardt error estimate.

The bottom panel of Figure 10 shows the error analysis of spectra with N =_ 25 photons.

The median slope value is 2.071 and the median error estimate is 0A84. A total of 15.87%of

the spectra have estimates of 7 _< 1.692 and 15.S7% of the spectra have estimates of 7 _> 2.570.

This gives an estilnated slope error of cr_ _, (%4.13'Z - %.s.s>7,)/2 = 0.439. This value is 9.3% less

than the median Levenberg-Marquardt error estimate; a fraclionaI error of 21.2% instead of the

predicted 23.4%.

The errors estimated by the Lc_:enberg-,llarquardt mcthod _rc seeu to bc reasouable. Figure

11 shows the simulated X-ray spectra of Fig. ,1 now plotted with :V_ fits produced by the

Levenberg-Marquardt method with one free parmater. The Levenberg-Marquardt method has

done a good job even with the two faintest spectra which have actual totals of only 28 and 101

photons.

4.6. The k,_ and Cash's C statistics

For the sake of completeness, I determined the best-fit model parameter "/'calc for each

simulated spectrum with Powell's function minimization method using the maximum likelihood

ratio statistic for Poisson distributions, ,y_ [Equation (23)], and Cash's C' statistic,

N

c' - 2z [,< - h, (a3)
i=1

[Equation (6) of Cash 1979]. I set N - _.Sni and used the crude initial guess of 7= 0.0.

l computed the robust mean and robust standard deviation of the ratios 7c_1¢/7 for the 104

simulated spectra of each dataset. The results of Powell's method with one free parameter (7)

using the ,k_ statistic and Cash's C statistic are presented in Table 5 and Figure 12 .

Table 5 and the right panel of Figure 12 shows that Cash's C statistic and the maximum

likelihood ratio statistic for Poisson distributions, ,y,_, give identical results. This is not surprising

because Cash's C,' statistic is a variant of the more well-known X,_ statistic which has been

discussed in the literature for over 70 )rears (e.g., Neyman & Pearson 1928).

I also determined the best-fit model parameter 7c_l_ for each simulated spectrum with the

Levenberg-Marquardt nfinimiza.t.ion method using the maximum likelihood ratio statistic for
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Poissondistributions,X:_-I setN = _5 I_i and used tile crude initial guess of _ = 0.0. I computed

the robust average and robust standard deviation of the ratios 7c_1c/7 for tile 104 simulated

spectra of each dataset. The results of the Levenberg-Marquardt method with one free parameter

(7) using the X'2 statistic is presented in Table 6 and Figure 12 . The maximum likelihood

ratio statistic for Poisson distributions, 2X.\, produces nearly identical results with either Powell's

method or the Levenberg-Marquardt minimization method.

Of the two statistics, \2 and the new \'_, which is better? Although Tables 6 and 4 indicate

that the _._ is slightly better, we see that the actual differences between the distributions presented

in Figure 12 are really quite negligible when compared with the overall uncertainty caused by

simple sampling errors (counting statistics) of the simulated X-ray spectra.

5. SUMMARY

I have demonstrated that the apt)lication of the standard weighted mean formula,

I_,"i'["l/]_,ic_(-2l, to determine the weighted mean of data, "i, drawn from a Poisson
L at. .l

distribution, will, on average, underestimate the true mean by _1 for all true mean values

larger than ,_a when the common assumption is made that the error of tile ith observation

is cri = max(_, 1). This small, but statistically significant offset, explains the long-known

observation that chi-square minimization techniques which use the modified Neyman's X2 statistic,

\_ = F,i(_zi - gi)2/max(1_i, 1), to compare Poisson-distributed data with model values, yi, will

typically predict a total number of counts that underestimates the true total by about. 1 count per

bin. Based on my finding that the weighted mean of data drawn Dora a Poisson distribution can

using the formula [__,i["'i + rain (,,/, 1)] (,z/+ 1)-']/[_,i(n i + 1)-1], I proposed
be determined

that a new .\2 statistic, X 2 = _ [*zi + rain (Tt/, 1) - gi] '2/ ['_zi + 1], should always be used to analyze

l)olsson-dist.ributed data in preference 1o the modified Neyman's ._2 statistic.

I demonstrated the t)ower and usefulness of \_ minimization t)3, using two statistical fitting

techniques (Powell's method and the Levenberg-Marquardt method) and five \2 statistics (_, _(_,

\_, X:_, and Cash's C') to analyze simulated X-ray power-law 15-channel st)ectra with large and

small counts per bin. I showed that X_ minimization with the Levenl)erg-Marquardt or Powell's

method can produce excellent results (mean slope errors <_3%) with spectra having as few as :25

total counts.

This analysis shows that there is nothing inherently wrong with either the Levenberg-

Marquardt method or Powell's method in the low-count regime -- provided that one uses

an appropriate \2 statistic for the type of data being analyzed. Given Poisson-distributed

2 statistic in preference to the modified Neyman's _y2data, one should always use the new X_

statistic because that statistic produces small, but statistically significant, systematic errors with

Poisson-distribut.ed data.
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2 statistic is not perfect,neitheris tile morewell-known\,_statistic (e.g.,While the newX_.
,2

see Figures 2 and 3). Both statistics have problems in the very-low-count regime. The new \,_

statistic complements but. does not replace the older k,'_ statistic. Which statistic is "best." will

generally depend on the particular l)roblem being analyzed. An important difference between

these two statistics is that the \,_ statistic assumes that all data is perfect. With data. from perfect.

counting experiments, the _,_ statistic may give slightly better results than the new X'_ statistic.

However, data is typically obtained under less-than-perfect circumstances with multiple imperfect

detectors. The X_ statistic, by definition, is a weighted _2 statistic which makes it easy to assign a

lower weight to data. fl'om poor detectors. Thus in the analysis of real data obtained with noisy

and imperfect detectors, the \_ statistic may well outperform the classic )¢_ statistic because

low-quality data can be given a lower weight instead of being completely rejected.

Finally, I note in passing that two simi)le transformations may" make it possible to retrofit

lnany existing computer implementations (i.e. executal)le binaries) of X_- minimization algorithms

to do ,_ minimization through the simple expedient of changing the input data fl'om [hi] to

[hi + rain ('_i, 1)], and error estimates, er,., from [max (_, 1)] t.o [_.
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Fig. 1.-- Analysis of four weighted-mean formulae applied to Poisson-distributed data. Each open

square represents the weighted mean of 4x10 6 Poisson deviates at each given true mean value:

0.001 < ff < 1000.

(a) The difference between the weighted mean computed using Equation (8), #N, and the

true mean, #. The solid curve is the difference between Equation (10) and the true mean:

{[d'- 1][1 + El(p) - 7-ln(p)]-' } - #.

(b) The difference between the weighted mean computed using Equation (14), tL_, and the

true mean, #. The solid curve is the difference between Equation (15) and the true mean:

{iz[1 - e-"]-' - 1} - p.

(c) The difference between the weighted mean computed using Equation (16), p_, and the

true lnean, t t. The solid curve is the difference between Equation (17) and the true mean:

{#[1-e-"] -1} -j,.

(d) The difference t)etween the weighted mean coral)uteri using l_(luation (18), tl_,, and the true

mean, p. The solid curve is the difference between E(luation (19) and the true mean. The difference

is zero because tz_,. is the weighted-mean formula for Poisson-distributed data.
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Fig. 2. Reduced chi-square (X2/u) as a function of true Poisson mean, #, for 4 _\.2 statistics:

-- , g -'NPearson's \2 [X_ = E_"l(".i ,,_i)2/mi], the modified Ney,nan's X 2 [..k'_' = /_...,i=l(1Zi-
N nmi)2/max(,,/, l)], the new X_,statistic [X_. - Xi=_ ( i+,nin(',,i, 1)-z_,i)2/(,,i+l)], and the maximum

likelihood ratio statistic for Poisson distributions [X,_--2g_'_, (,,,,- ,,_+ ,_],, (,,Jm_))]. Wh_
Poisson distributions of Figure 1 were analyzed to produce this plot. The formula for the curve

connecting the values for modified Neyman's X72 statistic (X_) is given in Equation (27). The

formula for the curve connecting the values for new X2 statistic is given in gquation (29). The
dotted line shows the ideal value of one.
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(left.) and Powell's method with i fl'ee parameter (right) for three statistics: j\_, _,_, Cash's C'. The
statistical analysis of this data is presented in Tabh_s 3, 5, and 6.
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TABLE 1.

Results of Powell's method with 2 free parameters (3,N) for 3 statistics: k_, X_, ,\'_

")cMc/_[ !_'rcMc/L_r _/'cMc/ _ i_r,:alc/"_r _calc/_/ fVcMc/]V

10000 ...... 1.002(11)
5000 ....... 1.003(1,5)
2.500 ....... 1.007(23)
1000 ....... 1.019(:_7)

7.'50 ........ 1.02.5(4.5)
500 ........ 1.040(.58)
250 ........ 1.071(82)

1.50 ........ 1.09(10)
100 ........ 1.10(13)
75 ......... 1.11(1,5)

50 ......... 1.11(20)
25 ......... 1.17(,50)

0.999(12) 0.999(11) 1.000(12) 1.000(11) 1.000(12)
0.998(17) 0.998(15) 1.001(17) 1.000(1.5) 1.000(17)

0.994(24) 0.996(22) 1.002(24) 0.999(22) 1.000(24)
0.987(39) 0.992(34) 1.007(39} 0.999(3.5) 1.oo3(39)
o.981(45) 0.989(39) 1.oo8(43) o.998(41) 1.oo3(44)

o.971(56) 0.984(47) 1.o13(54) o.996(51) 1.oo5(.55)
0.940(79) o.909(67) 1.o2.5(77) 0.992(80) 1.oo9(81)
0.92(10) 0.952(84) 1.04(10) 0.99(10) 1.01(11)
0.91(13) 0.93(10) 1.06(12) 0.99(13) 1.02(13)
0.89(14) 0.92(12) 1.07(14) 0.99(15) 1.03(15)
0.87(17) 0.89(14) I.I0(18) 0.99(19) 1.04(19)

0.84(24) 0.82(19) 1.18(26) 1.05(40) 1.07(28)
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TABLE2.
Fh'sultsof the Levenberg-Marquardtmethodwith "2freeparameters(_,N) for :/ statistics:X_, k_, X_

10000...... i.oo2(11)
5000 ....... 1.004(15)
2500 ....... 1.007(23)
1000 ....... 1.019(37)
750 ........ 1.025(45)

........ 1.o4o(58)
250 ........ 1.071(82)

150 ........ 1.09(10)
lO0 ........ 1.10(13)
75 ......... 1.11(15)

50 ......... 1.11(2o)
25 ......... 1.12(35)

0.999(12) 1.000(11) 1.000(12) 1.000(12) 1.000(11)

0.998(17) 1.000(15) 1.000(17) 1.000(15) 1.000(17)
0.994(24) 0.997(22) 1.000(24) 0.999(22) 1.000(24)
0.987(39) 0.995(34) 1.000(38) 0.999(35) 1.003(39)
0.981(45) 0.995(38) 1.000(43) 0.998(41) 1.003(44)
0.971(56) 0.995(46) 1.000(54) 0.996(51) 1.005(55)

0.946(79) 0.994(67) 1.000(76) 0.992(80) 1.009(81)
0.92(10) 0.986(91) 0.994(97) 0.99(10) 1.01(11)
0.91(13) 0.96(12) 1.00(12) 0.99(13) 1.02(13)
0.89(14) 0.93(13) 1.00(14) 0.99(15) 1.03(15)

0.87(17) 0.90(14) 0.99(17) 0.99(19) 1.04(19)
0.84(24) 0.88(17) 0.99(23) 1.01(29) 1.07(28)
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TABLE 3.

Results of 1 owell s method with 1 free parameter (9) for 3 statistics: _N,2 ._2, \"r2

10000 ...... 1.002(11)
5000 ....... 1.003(15)
2500 ....... 1.007(23)
1000 ....... 1.019(ar)

0.999(11) 1.000(11)

0.998(15) 1.000(15)

0.996(22) 0.999(22)

0.992(34) 0.999(35)

750 ........ 1.025(45) 0.989(39) 0.998(41)

500 ........ 1.040(58) 0.984(47) 0.996(51)

25o ........ 1.070(82) 0,969(67) o.992(8o)
150 ........ 1.09(11) 0.952(84) 0.99(10)

100 ........ 1.10(13) 0.93(10) 0.99(13)

75 ......... 1.11(15) 0.92(12) 1.00(15)

50 ......... 1.10(19) 0,89(14) 1.00(18)

25 ......... 1.06(31) 0.82(19) 1.03(27)
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TABLE 4.

Results of the Levenberg-Marquardt method with 1 free parameter (?) for 3 statistics: X_, ,\'3, X_

3calc/'/ "fcalc/'f _calc/'f

10000 ...... 1.002(11)

5000 ....... 1.004(15)

2500 ....... 1.007(23)

1000 ....... 1.019(37)

750 ........ 1.025(45)

500 ........ 1.040(58)

250 ........ 1.070(82)

150 ........ 1.09(10)

100 ........ 1,10(13)

75 .................

50 .................

25 ......... 1.06(31)

1.000(11) 1.000(11)

1.000(15) 1.000(15)

0.999(22) 0.999(22)

0.994(34) 0.999(35)

0.992(39) 0.998(41)

0.990(48) 0.996(51)

0.988(68) 0.992(80)

0.988(87) 0.99(10)

0.99(11) 0.99(13)

0.99(12) 1.00(15)

0.99(16) 1.00(18)

0.99(22) 1.03(27)
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TABLE 5.

Results of Powell's method with 1 free parameter (3) for 2 statistics: \_, Cash's C

N \_ Cash's C

%.-,,,ct:,

10o00 ...... 1.000(11)
.5000 ....... 1.000(15)
2500 ....... 1.000(22)

1000 ....... 1.000(34)

750 ........ 1.000(39)

,500 ........ 1.000(4S)

2,50 ........ 0.999(68)

150 ........ 0.999(88)

100 ........ 1.00(11)

7,5 ......... 1.oo(12)
,50 ......... 1.00(16)

2,5 ......... 1.00(22)

1.000(11)

1.ooo(1,5)
1.000(22)

1.ooo(34)
1.000(39)

1ooo(48)
0.999(68)

0.999(88)

1.00(11)

1.00(12)

1.00(16)

1.00(22)
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TABLE 6.

Results of the Levenberg-Xlarquardt method with [ free parameter (h) for the \_ statistic

10000 ...... 1,000[ll)

5000 ....... 1.000(15)
2500 ....... 1.000(22)
1000 ....... 1.000{34)

7_o ........ 1.ooo(39)
500 ........ 1.ooo(48)
250 ........ 0.999(68)

150 ........ 0.999(88)

_oo ........ _.oo(11)
75 ......... i.oo(12)
50 ......... 1.00(1(})

25 ......... 1.oo(22)


