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This paper provides a survey of shape parameterization techniques for multidisciplinary
optimization and highlights some emerging ideas. The survey focuses on the suitability of
available techniques for complex configurations, with suitability criteria based on the effi-
ciency, effectiveness, ease of implementation, and availability of analytical sensitivities for

geometry and grids. The paper also contains a section on field grid regeneration, grid defor-
mation, and sensitivity analysis techniques.
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n number of design variables
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Introduction

'MAGINE that you have been asked to perform multi-
.disciplinary shape optimization (MSO) for a complete

aircraft model during the preliminary design phase. Dur-

ing this phase, the focus is on the mathematical model-

ing, with sufficient accuracy, of the outside skin of an

aircraft. After this phase, the geometry is frozen, and

any change could be costly.

Generally, multidisciplinary design optimization

(MDO) should exploit the synergism of the primary,

mutually interacting phenomena to improve the design.

The MDO applications commonly involve sizing, topol-

ogy, and shape optimization. Sizing optimization is used

to find the optimum cross-sectional area for bars and

trusses and thickness for plate and shell elements. Sizing

optimization is a matured technology and is available in

most commercial computational structural mechanics

(CSM) tools. Topology optimization is a technique for

determining the optimal material distribution, which

could suggest the optimum layout of the structure.

Shape optimization finds the optimum shape for a given

structural layout. Obviously, the selection of shape

parameterization technique has enormous impact on

the formulation and implementation of the optimization

problem. This paper reviews and evaluates the available

shape parameterization techniques.

Over the past several decades, single discipline shape

optimization has been successfully applied to two-

dimensional and simple three-dimensional configura-

tions. 1'2 In recent years, there has been a growing

interest in the application of MSO to complex three-

dimensional configurations. 3 The MSO for a complete

airplane configuration is a challenging task, especially if

the MSO application is based on high-fidelity analysis

tools. The analysis models, also referred to as grids or

meshes, are based on some or all of the airplane compo-

nents.

The aerodynamic analysis uses the detailed definition

of the skin shape, also referred to as the outer mold
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Fig. 1 Internal components of a wing.

line, whereas the CSM tools use all components. Gener-

ally, the structural model only requires a relatively coarse
grid, but it must handle very complex internal and ex-

ternal geometries. In contrast, the computational fluid

dynamics (CFD) field grid is very fine, but it only needs
to model the external geometry. The MSO of an air-

plane must treat not only the externM geometry (i.e.,

wing skin, fuselage, flaps, nacelles, and pylons), but also
the internal structural elements such as spars, ribs, and

fuel tanks (see Fig. 1). The treatment of internal struc-

tural elements is especially important for detailed finite

element (FE) analysis.
For a high-fidelity MSO application to be successful,

the parameterization model must yield a compact and

effective set of design variables so the solution time would
be feasible. For more details, readers are referred to an

overview paper by this author 4 on geometry modeling

and grid generation for design and optimization.

Multidisciplinary Shape Parameterization

The complexity of geometry models is increasing for

today's preliminary design applications. It is not un-

usual for a computer-aided design (CAD) model to use
over twenty thousand curves and surfaces to represent

an aircraft. This level of complexity underscores the
importance of automation. With any multidisciplinary

application come the problems of consistent and accu-

rate shape parameterization.

The shape parameterization must be compatible with
and adaptable to various analysis tools ranging from

low-fidelity tools, such as linear aerodynamics and equiv-

alent laminated plate structures, to high-fidelity tools,
such as nonlinear CFD and detailed CSM. For a mul-

tidisciplinary problem, the application must also use a

consistent parameterization across all disciplines. An
MDO application requires a common geometry data set

that can be manipulated and shared among various dis-
ciplines.

In addition, an accurate sensitivity derivative analysis

is required for gradient-based optimization. The sensi-
tivity derivatives are defined as the partial derivatives of

the geometry model or grid-point coordinates with re-

spect to a design variable. The sensitivity derivatives of

a response, f, with respect to the design variable vector,
_, can be written as

:_.10_ LOR, J Lb-_J L--_--J (1)

where/_S is the field (volume) grid,/_s is the surface grid,

and Rg is the geometry. In some of the CSM literature,
the sensitivity derivatives are referred to as the design
velocity field.

The first term on the right-hand side of Eq.(1) rep-
resents the sensitivity derivatives of the response with
respect to the field grid point coordinates. For a de-

tailed discussion, readers are referred to Refs. 1,2, 5 for

CSM and to Refs. 6-8 for CFD disciplines. Newman et
al. 6 have provided an overview of the recent advances in

steady aerodynamic shape-design sensitivity derivative

analysis and optimization based on advanced CFD. The

second term on the right-hand side of Eq.(1) is vector of
the field grid-point sensitivity derivatives with respect to

the surface grid points. The sensitivity derivative vector

must be provided by the field grid generator, but few
grid generation tools have the capability to provide the

analytical grid-point sensitivity derivatives? The third

term on the right-hand side of Eq.(1) denotes the sur-
face grid sensitivity derivatives with respect to the shape

design variables, which must be provided by the surface

grid generation tools. The fourth term on the right-hand
side of Eq.(1) signifies the geometry sensitivity deriva-

tives with respect to the design variable vectors; this

must be provided by the geometry construction tools.
Figure 2 shows a high-speed civil transport with seven

planform design variables. Figure 3 shows errors in-

volved in using a central-difference approximation for

shape sensitivity derivative calculations for the high-
speed civil transport shown in Fig. 2. This error behavior

is typical of finite-difference approximations to sensi-
tivities. For larger step sizes, the truncation error is

predominant, and for smaller step sizes, the round-off er-

ror is predominant. There is an optimal step size where
the error is minimum. This optimal step size is differ-

ent for each design variable, and it would also vary for
each optimization cycle. As a result, it is difficult to

estimate the error involved in finite-difference approxi-
mation of sensitivity derivatives. If the source codes are

written in FORTRAN or C, and are available, they can
be differentiated with automatic tools* such ADIFOR 1°
or ADIC. li

An important ingredient of shape optimization is the
availability of a model parameterized with respect to

*Argonne National Laboratory maintains a www site with
information on automatic differentiation tools <http://www-
unix.mcs.anl.gov/autodiff>
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Fig. 3 Error in using central-difference approxima-
tion for shape sensitivity derivatives calculations.

the airplane shape parameters such as planform, twist,

shear, camber, and thickness. The parameterization
techniques are divided into the following categories: ba-

sis vector, domain element, partial differential equation,

discrete, polynomial and spline, CAD-based, analytical,

free form deformation (FFD), and modified FFD. Read-
ers are referred to reports by Haftka and GrandhP and
Ding 2 for surveys of shape optimization and parameter-

ization up to 1981. The present focus is on some recent

developments in the area of shape parameterization for

complex models and their suitability for MSO applica-
tions. The suitability criteria are based on the efficiency,

effectiveness, ease of implementation, and availability of
analytical sensitivities for geometry and grid models.

Basis Vector Approach

Pickett et ai.12 proposed a technique that combines

the second through fourth terms of Eq.(1) into a set of

basis vectors. The shape changes can be expressed as

= + F_, s,O, (2)
i

where k is the design shape, _ is the baseline shape, _ is

the design variable vector, and Ui is design perturbation

based on several proposed shapes. Assuming that the
reduced basis is constant throughout the optimization

cycle, this technique is a good approach and is avail-
able in most commercial CSM codes. 13-16 However, it is

difficult to generate a set of consistent basis vectors for
multiple disciplines. As a result, this method can be ap-

plied only to problems involving a single discipline with

relatively simple geometry changes.

Domain Element Approach

The domain element approach is based on linking a

set of grid points to a macro element , domain element,
that controls the shape of the model. Figure 4a shows

a domain element with four nodes (A-D) for the base-
line model. As the nodes of the domain element move

(A'-D'), the grid points belonging to the domain will

move as well (see Fig. 4b). The movement is based on

an inverse mapping between the grid points and the do-
main element, and the parametric coordinates of the grid

points with respect to the domain element are kept fixed
through the optimization cycles. TM The domain element

technique is available for shape optimization in some

commercial software. 16 This method is useful only for

problems with relatively simple geometry changes.

Partial Differential Equation Approach

Bloor and Wilson 17 presented an efficient and com-

pact method for parameterizing the surface geometry of
an aircraft. The method views the surface generation as

a boundary-value problem and produces surfaces as the

solutions to elliptic partial differential equations (PDE).
Bloor and Wilson showed that it was possible to rep-

resent an aircraft geometry in terms of a small set of
design variables. Smith et al. TM extended the PDE ap-

proach to a class of airplane configurations. Included

in this definition were surface grids, volume grids, and

grid sensitivity derivatives for CFD. The general airplane
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Fig. 5 Airfoil designed by a set of points.

configuration had wing, fuselage, vertical tail, horizon-
tal tails, and canard components. Grid sensitivity was

obtained by applying the automatic differentiation tool
ADIFOR. 1°

Using the PDE approach to parameterize an exist-

ing complex model is time-consuming and costly. Also,
because this method can only parameterize the surface

geometry, it is not suitable for the MSO applications
that must model the internal structural elements such

as spars, ribs, and fuel tanks. As a result, this method

is suitable for problems involving a single discipline with

relatively simple external geometry changes.

Discrete Approach

The discrete approach is based on using the coor-

dinates of the boundary points (see Fig. 5) as design

variables (e.g., Refs. 19,20). This approach is easy to im-
plement, and the geometry changes are limited only by

the number of design variables. However, it is difficult to
maintain a smooth geometry, and the optimization solu-

tion may be impractical to manufacture, as pointed out
by BrMbant and Fleury? 1 To control smoothness, one

could use multipoint constraints and dynamic adjust-

ment of lower and upper bounds on the design variables.

For a model with a large number of grid points, the num-

ber of design variables often becomes very large, which

leads to high cost and a difficult optimization problem
to solve.

The natural design approach is a variation of the
discrete approach that uses a set of fictitious loads as

design variables (e.g., Ref. 22). These fictitious loads

are applied to the boundary points, and the resulting
displacements, or natural shape functions, are added

to the baseline grid to obtain a new shape. Conse-

quently, the relationship between changes in design vari-
ables and grid-point locations is established through a
finite element analysis. Zhang and Belegundu 23 pro-

vided a systematic approach for generating the sensi-
tivity derivatives and several criteria to determine their

effectiveness. The typical drawback of the natural design

variable method is the indirect relationship between de-

sign variables and grid-point locations.
For an MDO application, grid requirements are dif-

ferent for each discipline. So, each discipline has a
different grid and a different parameterized model. Con-

sequently, using the discrete parameterization approach

for an MDO application will result in an inconsistent
parameterization.

The most attractive feature of the discrete approach

is the ability to use an existing grid for optimization.
The model complexity has little or no bearing on the

parameterization process. It is possible to have a strong

local control on shape changes by restricting the changes

to a small area. When the shape design variables are
the grid-point coordinates, the grid sensitivity derivative

analysis is trivial to calculate; the third and fourth terms

in Eq.(1) can be combined to form an identity matrix.

Polynomial and Spline Approaches

Use of polynomial and spline representations for shape

parameterization can obviously reduce the total number

of design variables. For example, Fig. 6 shows an air-
foil definition with only nine control points. Braibant
and Fleury 21 showed that Bezier and B-spline curves are

well suited for shape optimization. A polynomial can

describe a curve in a very compact form with a small

set of design variables. Automatically taken into ac-

count are the additional optimization constraints most
often needed to avoid unrealistic design when the shape

variables are the grid-point coordinates. The analytical

sensitivity derivatives with respect to the design variable

vector can be computed efficiently and accurately.
For example, a curve can be described as the polyno-

mial

n-1

 g(u) = (3)
i=0

where n is the number of design variables, and u is the

parameter coordinate along the curve. The 6{ is a set
of coefficient vectors corresponding to three-dimensional

coordinates, and the components of these vectors can

be used as design variables. The sensitivity derivatives

of geometry,/_g, with respect to ci is u i. The polyno-
mial representation in Eq.(3) is in the power basis form,

and the _i coefficient vectors convey very little geometric
insight about the shape. Also, the power basis form is

prone to round-off error if there is a large variation in the

magnitude of the coefficients. Nevertheless, the polyno-
mial form is a powerful and compact representation for

shape optimization of simple curves (e.g., Refs. 24, 25).

The Bezier representation is another mathematical

form for representing curves and surfaces. For example,
a Bezier curve can be described by

n

i=1

(4)

where n is the number of control points (design vari-

ables), and the Bi,p(u) are degree p Bernstein polyno-
mials. The/5/ are the control points (forming a control

polygon), and they are typically used as design variables.
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Fig. 6 Airfoil designed by a set of control points.

Readers are referred to Farin 26 for further discussions

on the properties of Bezier form. The Bezier form is

a far better representation than the power basis, even

though mathematically equivalent. The control points

are more closely related to the curve position. In fact,

the cofitrol points approximate the curve. Also, the
computation of Bernstein polynomials is a recursive al-

gorithm, de Casteljau algorithm, 26 which minimizes the
round-off error. The convex hull of the Bezier control

polygon contains the curve. This property is very use-

ful, especially in defining the geometric constraints. The

first and the last control points are located exactly at the
beginning and the end of the curve, respectively. The

sensitivity derivative of geometry, /_g, with respect to

Pi is Bi,p (u), the Bernstein polynomial functions. These
functions are independent of the Bezier control points

(i.e., design variables); therefore, the sensitivity deriva-

tives stay fixed during the optimization cycles.
The Bezier form is an effective and accurate repre-

sentation for shape optimization of simple curves (e.g.,

Ref. 27). However, complex curves require a high-degree
Bezier form. As the degree of a Bezier curve increases,

so does the round-off error. Also, it is very inefficient

to compute a high-degree Bezier curve. To use Bezier
representation for a complex curve, one can use several

low-degree Bezier segments to cover the entire curve.

The resulting composite curve is referred to as a spline

or, more accurately, a B-spline. A multisegmented B-
spline curve can be described by

 g(u) = P gi,p(u) (5)
i=1

where Pi are the B-spline control points, p is the de-

gree, and Ni,v(u) is the /-th B-spline basis function of
degree p. In addition to the desirable properties of the
Bezier representation, the low-degree B-spline form can

represent complex curves efficiently and accurately. The

sensitivity derivatives of geometry, /_g, with respect to
P_ is N_,p(u), the B-spline basis function. Similar to

a Bezier form, the sensitivity derivatives of a B-spline

curve stay fixed during the optimization cycles.
There are some limited applications in the literature

that are based on polynomial and spline representations.

Cosentino and Holt 2s optimized a transonic wing config-
uration by using a cubic spline representation for two-

dimensional airfoils that define a wing geometry. Then,

they used the position of the spline control points--in

particular those points that affect the wing region wetted
by supersonic flow--as design variables to be optimized.

In a design case study on the Lockheed C-141B aircraft,

they reduced the number of design variables from 120 to
12 by using the cubic spline technique. In recent years,
Schramm and Pilkey 29 used a B-spline representation

to perform structural shape optimization for the torsion

problem with direct integration and B-splines. Simi-

larly, Anderson and Venkatakrishnan a° used B-splines

for aerodynamics design optimization with an unstruc-
tured grid CFD code.

The only drawback of the regular B-spline represen-

tation is its inability to represent implicit conic sections

accurately. However, a special form of B-spline, nonuni-

form rational B-spline (NURBS), can represent most
parametric and implicit curves and surfaces without loss
of accuracy? 6 NURBS can represent quadric primitives

(e.g., cylinders, cones) as well as free-form geometry. 26

There are some implicit surfaces (e.g., helix and heli-
coidal) 31 that cannot be directly converted to NURBS,

but these surfaces are not common in most aerospace

applications. A NURBS curve is defined as

n

E P,
= (6)n

E Ni,p(u)Wi
i=1

where the Pi are the control points, Wi are the weights,

and the Ni,p are degree p B-spline basis functions.
Similar to the Bezier form, the sensitivity derivatives

of a NURBS with respect to the control points are
fixed during the optimization cycles. However, if the

weights are selected as design variables, the sensitiv-

ity derivatives will be a function of the weight design
variables. Schramm et al. 32 have successfully used the

two-dimensional NURBS representations for shape opti-
mization.

Despite recent progress, it is still difficult to parame-
terize and construct complex, three-dimensional models
based solely on polynomial and spline representations.

Complex shapes require a large number of control points,

and optimization is prone to creating irregular 21 or
wavy 33 geometry. Nevertheless, these techniques are well

suited for two-dimensional or simple three-dimensional
models.

CAD-Based Approach

Use ofCAD systems forgeometry modeling could po-

tentiallysavedevelopment time foran MDO application.

For a more detailedaccountofthe roleofCAD inMD0,

readers are referred to Ref. 4. Most solid modeling CAD

systems use either a boundary representation (B-Rep)
or a constructive solid geometry method to represent a
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physical, solid object. 34 Based on a complete mathe-

matical definition of a solid, it is possible to create a

complete geometry that is suitable for detailed CFD and
CSM codes.

Feature-based solid modeling (FBSM) CAD systems 35
are capable of creating dimension-driven objects. These

systems use Boolean operations such as intersection and

union of simple features. Examples of simple features

include holes, slots (or cuts), bosses (or protrusions), fil-
lets, chamfers, sweep, and shell. Today's CAD systems

allow designers to work in a three-dimensional space

while using topologically complete geometry (solid mod-
els) that can be modified by altering the dimensions of
the features from which it was created. The most im-

portant capability of FBSM is the ability to capture the
design intent. The FBSM tools have made design modi-

fication much easier and faster. The developers of FBSM

CAD systems have put the "design" back in CAD. Be-

cause FBSM CAD tools enable today's design engineers
to create a new, complete, and parametric model for a
configuration, these tools are being incorporated into the

design environment.

Even though use of parametric modeling in design
would make the FBSM tools ideal for optimization, exist-

ing FBSM tools are not capable of calculating sensitivity
derivatives analytically. Townsend et al?6 discussed

issues involved in using a CAD system for an MDO

application. They identified the analytical sensitivity
derivative calculations as a one of the important inte-
gration issues. Blair and Reich 37 presented a vision to

integrate an FBSM CAD system with full associativ-

ity into a virtual design environment. Within such an

environment, however, calculations of the analytical sen-
sitivity derivatives of geometry with respect to the design
variables could prove to be difficult.

It is possible to relate some design variables to the
NURBS control points. 38 Then the analytical sensitivity

derivatives can be calculated outside the CAD system.

For some limited cases, the analytical shape sensitivity
derivatives can be calculated based on a CAD model; 3s
however, this method will not work under all circum-

stances. One difficulty is that, for some perturbation of
some dimensions, the topology of the CAD part may be
changed.

Another way to calculate the sensitivity derivatives is

to use finite differences, as long as the perturbed geom-
etry has the same topology as the unperturbed geome-
try. Both methods--the analytical and finite-difference
approximations--have their difficulties and limitations.

He et al.39 presented a procedure for integrating CAD
and CAE systems to support geometry- and detailed-
analysis-based optimization. The sensitivity derivatives

were calculated by a finite-difference approximation.

So, it is not a trivial matter to incorporate FBSM CAD

systems into a design optimization, and it is even more

difficult to use them for an MDO application. Also, it is

still a challenging task to parameterize an existing model
that is not parametric.

Analytical Approach

Hicks and Henne 4° introduced a compact formulation
for parameterization of airfoil sections. The formulation

was based on adding shape functions (analytical func-
tions) linearly to the baseline shape. The contribution

of each parameter is determined by the value of the par-

ticipating coefficients (design variables) associated with
that function. All participating coefficients are initially

set to zero, so the first computation gives the baseline ge-
ometry. The shape functions are smooth functions based

on a set of previous airfoil designs. Elliott and Peraire 2s
and Hager et al. 41 used a formulation similar to that of

Hicks and Henne, but a different set of shape functions.
This method is very effective for wing parameterization,

but it is difficult to generalize it for a complex geometry.

Free Form Deformation Approach

The field of soft object animation (SOA) in computer

graphics 42 provides algorithms for morphing images 43
and deforming models. 44,45 These algorithms are pow-

erful tools for modifying shapes: they use a high-level

shape deformation, as opposed to manipulation of lower

level geometric entities. The deformation algorithms are
suitable for deforming models represented by either a

set of polygons or a set of parametric curves and sur-
faces. The SOA algorithms treat the model as rubber

that can be twisted, bent, tapered, compressed, or ex-

panded, while retaining its topology. This is ideal for
parameterizing airplane models that have external skin

as well as internal components (e.g., see Fig. 1). The

SOA algorithms relate the grid-point coordinates of an
analysis model to a number of design variables. Conse-

quently, the SOA algorithms can serve as the basis for

an efficient shape parameterization technique.
Barr 44 presented a deformation approach in the con-

text of physically based modeling. This approach uses
physical simulation to obtain realistic shape and motions

and is based on operations such as translation, rotation,
and scaling. With this algorithm, the deformation is

achieved by moving the grid points of a polygon model

or the control points of a parametric curve and surface.
Sederberg and Parry 4s presented another approach for

deformation, based on the FFD algorithm, that oper-

ates on the whole space regardless of the representation
of the deformed objects embedded in the space. The al-

gorithm allows a user to manipulate the control points
of trivariate Bezier volumes. Coquillart 46 extended a

Bezier parallelepiped to a nonparallelepiped cubic Bezier
volume.

Lamousin and Waggenspack 47 modified FFD to in-
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clude NURBS definition and multiple blocks to model

complex shapes. The modified technique has been used

for design and optimization by Yeh and Vance 4s and

Perry and Balling. 49 Yeh and Vance 4s developed an ap-

plication based on NURBS where the user can change
the shape of a virtual object and examine the effect the

shape change has on the displacement of the structural
deformation and stress distribution throughout the ob-

ject. Perry et al. 5° successfully used FFD algorithm for

the optimization of an automobile air conditioning duct
system.

Hsu et al. 51 presented a method to directly manipulate

the object, which creates a more intuitive and trans-

parent environment for FFD. Borrel and Rappoport 52

presented a simple, constrained deformation that allows

the user to define a set of constraint points, giving a
desired displacement and radius of influence for each.
Each constraint point determines a local B-spline basis

function centered at the constraint point, falling to zero

for points beyond the radius. This technique directly
influences the final shape of the deformed object.

Multidisciplinary Aero/Struc Shape Optimization
Using Deformation (MASSOUD) Approach

Creation of CFD and CSM grids is time-consuming

and costly for a full airplane model: it takes several
months to develop detailed CSM and CFD grids based

on a CAD model. To fit into the product development

cycle times, the MSO must rely on the parameterization
of the analysis grids, for which the FFD algorithm is

ideal. The disadvantage of FFD is that the design vari-

ables may have no physical significance for the design
engineers. This drawback makes it difficult to select an

effective and compact set of design variables. This au-

thor developed a set of modifications to the original SOA
algorithms to alleviate this and other drawbacks; the

modified algorithm set is referred to as MASSOUD. 53

MASSOUD is a novel parameterization approach for
complex shapes suitable for a multidisciplinary design

optimization application. The approach consists of three
basic concepts: 1) parameterizing the shape perturba-

tions rather than the geometry itself, 2) utilizing SOA

algorithms used in computer graphics, and 3) relating
the deformation to aerodynamics shape design variables

such as thickness, camber, twist, shear, and planform.

The MASSOUD formulation is independent of grid

topology, and that makes it suitable for a variety of

analysis codes such as CFD and CSM. The analytical
sensitivity derivatives are available for use in a gradient-

based optimization. This algorithm is suitable for low-
fidelity (e.g., linear aerodynamics and equivalent lami-

nated plate structures) and high-fidelity analysis tools

(e.g., nonlinear CFD and detailed FE modeling). The
report by this author 53 contains the implementation

details of parameterizing for planform, twist, dihedral,

thickness, and camber. The results presented were for a

multidisciplinary optimization application consisting of
nonlinear CFD, detailed CSM, performance, and a sim-

ple propulsion module.

Typically, the optimization starts with an existing

wing design, and the goal is to improve the wing perfor-
mance by using numerical optimization. The geometry

changes (perturbations) between the initial and opti-
mized wings are very small, 2s,4° but the difference in

wing performance can be substantial. By parameteriz-

ing the shape perturbations instead of the shape itself,

MASSOUD reduces the number of shape design vari-

ables. Throughout the optimization cycles, the surface
grid can be updated as

= e + (7)

where _ is the baseline grid, k is the deformed (per-

turbed) grid, 0 is the change (perturbation), and _ is
the design variable vector. It takes far fewer design vari-
ables to parameterize the shape perturbation 0 than to

parameterize _ itself.

The MASSOUD algorithm has been used for param-
eterizing a simple wing, a blended wing body, and

several high-speed civil transport configurations. The
algorithm has been successfully implemented for aero-

dynamic shape optimization with analytical sensitivity

derivatives with structured grid s4 and unstructured grid
CFD 5_ codes. In addition to ease of use and imple-

mentation, MASSOUD has the following benefits: 1)

parameterization is consistent, 2) the analytical sensi-

tivity derivatives are available, 3) complex existing grids
can be parameterized, 4) there is a strong local control,

5) smoothness can be controlled, and 6) few design vari-
ables are required.

Summary of Multidisciplinary Shape Parameterization

Figure 7 presents a summary and rating of the nine
approaches surveyed in this paper. There are three rat-

ings: t) good (thumb-up), 2) fair (neutral), and 3) poor
(thumb-down). The summary uses ten criteria that are

important for multidisciplinary applications of complex,
three-dimensional configurations.

* Consistent: Is the parameterization consistent

across multiple disciplines?

• Airplane shape design variables: Are the design

variables directly related to the airplane shape de-

sign variables such as camber, thickness, twist,
shear, and planform?

• Compact: Does the parameterization provide a

compact set of design variables?
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Fig.7 Comparisons ofparameterization approaches.

* Smooth: Does the shape perturbationmaintain a

smooth geometry?

* Local control:Is there any localcontrolon shape

changes?

• Analyticalsensitivity:Isitfeasibleto calculatethe

sensitivityanalytically?

• Grid deformation: Does the parameterizationallow

the grid to be deformed?

• Setup time: Can a shape optimization application
be set up quickly?

• Existing grid: Does the parameterization allow the
existing grid to be reused?

* CAD: Is there a direct connection to the CAD sys-
tem?

Field Grid Movement and

Sensitivity Derivatives

The parameterization techniques are used to move the

grid points and geometry of the design surfaces. The
next step is to propagate the changes and sensitivity

into the field. The field sensitivity derivatives can either

be calculated analytically or approximated with finite

differences. As discussed before, there is some error in-

volved in the finite-difference approximation that could
slow the optimization.

For a CFD calculation, the field (volume) grid may
contain several million grid points. There are two basic

techniques to propagate the surface grid-point move-

ments into the field: 1) grid regeneration and 2) grid
deformation.

Structured Field Grid Movement

Most structured grid regeneration and deformation

techniques are based on transfinite interpolation (TFI).
Gaitonde and Fiddes s6 used a regenerating grid tech-

nique based on using TFI with exponential blending
functions. The choice of blending functions has a consid-
erable influence on the quality and robustness of the field

grid. Soni s7 proposed a set of blending functions based

on arc length that is extremely effective and robust for

grid regeneration and deformation. His algorithm has

been incorporated in most commercial structured grid
generation packages.

Jones and Samareh 9 presented an algorithm for grid
regeneration and deformation based on Soni's blend-

ing functions, and they also provided analytical sensi-
tivity derivatives by using an automatic differentiation

tool, "ADIC". tt The method is suitable for a general,

multiblock, three-dimensional volume grid deformation.
The idea of volume grid deformation was also used by

Hartwich and Agrawal. ss They introduced two new

techniques: 1) the use of the "slave/master" concept to
semiautomate the process and 2) the use of a Gaussian

distribution function to preserve the integrity of grids
in the presence of multiple body surfaces. Reuther et

al. s used a modified TFI approach with blending func-

tions based on arc length, and they used finite-difference
approximation to compute the sensitivity derivatives for
the field grid.

Leatham and Chappells9 used the Laplacian tech-

nique,commonly used for unstructured grid deforma-

tion,formoving structuredgrids.They have been suc-

cessfulindeformingstructuredgridswith thistechnique.

Unstructured Field Grid Movement

For unstructuredgridswith largegeometricalchanges,

Botkins° proposed to regeneratea completely new grid

at the beginning of each optimizationcycle. However,

for gradientcalculationsmany small changes must be

made, and itwould be too costlyto regeneratethe grid

foreach designvariableperturbation.Botkin has intro-

duced a localregriddingprocedure that operates only

on the specificedges and facesassociatedwith the de-

signvariablesbeing perturbed.Similarly,Kodiyalam et

al.61used a gridregenerationtechnique based on the as-

sumption that the solidmodel topology staysfixedfor

smallperturbations.The solidmodel topology contains
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the number of grid points, edges, and faces. Any change

in the topology will cause the model regeneration to fail.
To avoid such as failure, a set of constraints must be sat-

isfied among design variables, in addition to constraints
on their bounds.

For a dynamic aeroelastic case with unstructured

grids, Batina 62 presented a grid deformation algorithm

that models grid edges with springs. The spring stiffness
for a given edge j-k is taken to be inversely proportional

to the element edge length as

1

km- let -  kl (8)

The grid movement is computed through predictor and

corrector steps. The predictor step is based on an exist-
ing solution from the previous cycle, and the corrector

step uses several Jacobi iterations of the static equilib-

rium equations by using

0 n+l __ _ km 0n

Ekm (9)

where the sum is over all edges of the elements. This is
similar to a Laplace operator, which has a diffusive be-

havior. In contrast to its use for dynamic aeroelasticity,
the previous optimization cycle may not provide a good

initial guess to be used by the corrector step.
Zhang and Belegundu 23 proposed a similar algorithm

to handle large grid movement. The equation for grid

update is similar to Batina's 6_ approach,

/_new )-_km/_°ld where km 81JI (10)
- ' =--9--'

J is the cell Jacobian defined within cell parametric co-
ordinates, and V is the cell volume.

Crumpton and Giles 63 found the spring analogy to

be inadequate and ineffective for large grid perturba-

tions. They proposed a technique based on using the
heat transfer equation

_ 1
V.{kmV(0)}=0 where km max(V,e)' (11)

V is the cell volume, and e is a small positive number

needed to avoid a division by zero. This technique is sim-
ilar to the spring analogy, s2 except that it uses the cell

volume for kin. The coefficient km is relatively large for

small cells. Therefore these small cells, which are usually

near the surface of the body, tend to undergo rigid body
motion. This rigid body movement avoids rapid varia-
tions in 0, thus eliminating the possibility of small cells

having very large changes in volume, which could lead

to negative cell volumes. Crumpton and Giles 63 used
an underrelaxed Jacobi iteration, with the nonlinear km

evaluated at the previous iteration.

Summary

The results of this study are summarized in Fig. 7.
Traditional shape parameterization techniques are not

suitable for application to multidisciplinary shape opti-

mization for complex, three-dimensional configurations.
At first look the CAD approach appears to be ideal,

but there are some unresolved issues, such as analytical

sensitivity, that require more research. In the interim,

the MASSOUD approach will be useful. Ideally, the
CAD and MASSOUD approaches can be combined to

form a powerful parameterization tool for multidisci-
ptinary shape optimization application. This combined

approach will 1) be automated, 2) provide consistent

geometry across all disciplines, 3) provide analytical sen-

sitivity derivatives, 4) fit into the product development
cycle times, and 5) have a direct connection to the CAD

systems used for design.
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