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Abstract

The measurement of atmospheric water vapor is very important for

understanding the Earth's climate and water cycle. The lidar atmo-

spheric sensing experiment (LASE) is an instrument designed and

operated by the Langley Research Center for high precision water

vapor measurements. The design details of a new water vapor lidar

detection system that improves the measurement sensitivity of the

LASE instrument by a factor of 10 are discussed. The new system

consists of an advanced, very low noise, avalanche photodiode (APD)

and a state-of-the-art signal processing circuit. The new low-power

system is also compact and lighm'eight so that it would be suitable for

space flight and unpiloted atmospheric vehicles (UAV) applications.

The whole system is contained on one small printed circuit board
(9 x 15 cm2). The detection system is mounted at the focal plane of a

lidar receiver telescope, and the digital output is read by a personal

computer with a digital data acquisition card.

1. Introduction

Water vapor is a very important molecular species in the atmosphere. Although it is located prima-

rily in the troposphere, its distribution is highly variable in both time and position. Its measurement is

important for the following three main reasons (ref. 1):

1. The knowledge of the atmospheric water vapor distribution is essential for achieving a full

understanding of the Earth's water cycle

2. Water vapor is the predominant greenhouse gas and plays a major role in the global climate

system

. Water vapor distribution has a direct impact on some natural disasters, such as hurricanes; water
vapor has been found to be the main energy source for hurricanes and water vapor measurement

can aid in estimating hurricane strength and direction (ref. 2)

Aircraft-based lidar systems are increasingly being used to measure troposphere water vapor pro-

files. Aircraft lidars using the differential absorption lidar (DIAL) technique can accurately measure

water vapor densities throughout the troposphere (ref. 3). Future lidar systems are being proposed to be

deployed from space platforms where continuous global profiles of water vapor can be obtained across

the lower atmosphere on a daily basis for several years. Such an accumulation of water vapor data will
allow for these issues to be addressed in a manner not available before.

The lidar atmospheric sensing experiment (LASE) is an instrument, designed and operated by the

Langley Research Center, for remote water vapor profile measurements in the troposphere from the
NASA ER-2 aircraft, which is based at the Ames Research Center (ref. 4). The LASE instrument mea-

sures with an accuracy of better than 6 percent or 0.01 g/kg, whichever is greater (ref. 5). Although

LASE is the most capable water vapor DIAL system in the world, its detection system uses a CAMAC

(computer automated measurement and control) crate which is massive and consumes much power.



Thistypeof detectionsystemisunsuitablefor spaceapplications,whichrequiresmallsize,low mass,
andlowpower.(Seerefs.4,5,and6.)

In thispaper,a newadvancedwatervaporDIAL detectionsystemis described.Thissystemis
placedononecardwhichcontainsanadvancedverylownoiseavalanchephotodiode(APD)detector.
State-of-the-artelectronicsareconsideredandincludesaturationprotectionamplifiers,a 14-bitdigi-
tizer,anda microcontrollerfor on-linedataprocessing.Thenewsystemis interfacedto a remote
computerto storethedata(ref.7).

1.1. DIAL Technique

Light detection and ranging (lidar) is an active remote sensing technique which uses a pulsed laser

and a colocated receiver to measure the density of atmospheric gases and aerosols as a function of

range. In the DIAL technique, two laser pulses at slightly different wavelengths are transmitted into the

atmosphere. The transmitted laser pulse is subjected to scattering, absorption, and reflection because of

the molecules and particles in the atmosphere; therefore, the light backscattered to a telescope receiver

contains some information about this medium which can be evaluated with the lidar equation. By look-

ing at the lidar signals in terms of the received power P(r) when the transmitted laser pulse has an initial

optical power Po, the backscattered received power from a range r is given by (ref. 3)

P(r) = P°C'CAq_(r)expf-2Ir[cyn(r)+k(r)]drt2r2 0 (1)

where c is the speed of light, "cis the laser pulse duration, A is the receiver area, 11 is the receiver effi-

ciency, [3(r) is the atmospheric volume backscatter coefficient, (y is the absorption cross section of the

molecular species of interest, n(r) is the number density profile of the gas, and k(r) is the atmospheric

extinction coefficient resulting from all other attenuation processes.

Generally, the absorption profile of a gas is a unique function of the wavelength. According to this

principle, the DIAL technique is used to distinguish and monitor different atmospheric gases including

water vapor. In a water vapor DIAL system, two laser pulses are transmitted to the atmosphere. The

wavelength of the first pulse is adjusted to the peak of a water vapor absorption line and is called the on-

line pulse, whereas the other pulse wavelength is adjusted to a wavelength which corresponds to no

absorption and is called the off-line pulse as shown conceptually in figure 1. Because the two wave-

lengths are so close, the scattering by atmospheric molecules and particles is essentially equal for both

wavelengths, and the difference in the attenuation with range of return signals is entirely caused by the

absorption by the water vapor molecules. Thus the ratio of the backscatter signal at the two wavelengths

as a function of range can be used to calculate the water vapor concentration profile. (See refs. 3, 8,

and 9.)

If the wavelength difference between the on-line and the off-line signals is less than or equal to

0.1 nm, it can be assumed that [3on(r) = [3off(r ) and kon(r) = koff(r), and we can solve equation (1) for the

number density profile of water vapor to obtain

1
n(r) = In

2(r2 - r l)((Yon - (Yoff)

-Poff(r2) Pon(rl)"

Poff(rl) Pon(r2 )
(2)
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Figure 1. DIAL on-line and off-line wavelengths relative to water vapor absorption line.

where (r 2 - rl) is the range cell for the average concentration, ((Yon - (Yoff) is the differential absorp-
tion cross section for the two wavelengths, Pon is the power received from range r for the on-line wave-

length, and Poff is the power received from range r for the off-line wavelength. One can then convert the

number density profile to a mass mixing ratio by dividing the gas number density by the ambient atmo-

spheric number density. (See refs. 3, 8, and 9.)

Based on this information, the DIAL detection system must be capable of measuring the backscat-

tered on- and oft-line lidar returns accurately; this drives the DIAL receiver design considerations and

specifications which include the following:

1. The system must have a wide dynamic range to handle the different intensities of the backscat-
tered radiation

2. It must have low noise to reduce the minimum detectable signal level to extend the measurement

range

3. It must have a sufficient bandwidth to resolve the retum pulses

4. For accurate measurements, it must be very linear with minimum phase shift in the operating
bandwidth

5. It must be capable of capturing both the on- and off-line signals sequentially with high resolution

6. It must be capable of operating at 10 to 30 Hz repetition rate

7. It must be compact and have low mass and low power consumption



1.2. DIAL Detection System Development

The main goal of this research effort is to increase the signal to noise ratio of the water vapor DIAL

detection system by a factor of 10 compared with the LASE instrument (ref. 4). Also designing it to a

compact size suitable for mounting directly on the receiver telescope is required. On the other hand, the

output data must be compatible with a simple computer interface. These goals are achievable by using

state-of-the-art electronic components and a newly evaluated very low noise APD detector and by con-

structing a 10-MHz waveform digitizer which will be placed as close as possible to this detector on the
same card.

The new DIAL receiver system is shown schematically in figure 2. The design allows the placement

of both analog and digital circuits on one small size, lightweight electronic card which includes detec-

tion and digitization sections. This scheme has the advantage of transmitting digital data, which will be

stored and analyzed by a personal computer. Therefore, analog signals do not have to be transmitted for

long distances, which will reduce the system noise pickup. (See ref. 7.)

The system design is optimized for wavelengths of 820 and 940 nm. In the optical system, a tele-

scope is used to collect and focus the lidar return signal into a small area that is compatible with the

detector sensitive area. An APD package is used for the light detection. The APD output signal then

goes to an analog circuit for signal conditioning, which includes signal clipping, amplification, and

filtering. In addition, this stage provides the detector with a stable bias voltage and temperature control.

The analog signal then goes to a digital circuit to be digitized, processed, and temporarily stored.

This circuit is compatible with a parallel input/output computer interface for final data storage and dis-

play, and it provides monitoring for the detector high-voltage bias and temperature. The card is supplied

with +5 V and +12 V power and a 10-MHz clock signal for the digitization. Each part of the new DIAL

detection system is discussed in detail in the following sections.

2. Avalanche Photodiode Detector

Generally, APD detectors are an ideal choice for water vapor DIAL detection systems because of

their high quantum efficiency of close to 90 percent over the wavelength operating range, which is
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Figure 2. Schematic diagram of new DIAL receiver system.



unmatched by other detectors such as photomultiplier tubes. Also, it is a very fast device with intemal

gain, unmatched by silicon p-i-n detectors; it has low noise in the range of a few fW/Hzl/2; it has excel-

lent linearity with respect to incident light intensity, which is desirable for instrument calibration and

data processing. The APD has a relatively low bias voltage (in the range of hundreds of volts) and is

compact, lightweight, mechanically ragged, and reliable, which makes it suitable for an aircraft or

space-flight detection system. (See refs. 10, 11, and 12.)

Several experiments were carried out to characterize and test a group of APD detectors representa-
tive of different manufacturers and with different structures to choose one of them for the new water

vapor DIAL detection system (ref. 10). As a result of these measurements, the EG&G C30649E SLIK

(super low ionization factor _; (with _; being defined as ratio of ionization probability of holes to that of

electrons)) APD was chosen as the system optical detector. Table 1 summarizes the characterization

results for both the EG&G C30955E RTS (reach through structure), currently used in LASE, and the

SLIK APD's, both at their rated bias voltage and 23°C. The noise equivalent power (NEP) of the new

detector is 8.6 percent of the current detector. This NEP improvement might be because of the smaller

area of the new detector; therefore, the figure of merit (D*) of both detectors is given. The results show

that with the new detector, D* has improved by a factor of 5 over the current detector; this indicates that

the SLIK structure has a lower noise content than the RTS structure irrespective of its area. (See

ref. 10.)

Table 1. Characterization Results for SLIK and RTS Detectors at 820 nm and Room Temperature (23°C)

[From ref. 7]

Active area, Rated bias, Responsivity, NEP, D*,
Model mm 2 V A/W fVV-/Hz 1/2 cm-Hzl/2]W

EG&G C30955E RTS 1.69 317 75.6 22.2 5.99 x 1012

EG&G C30649E SLIK 0.24 336 43.8 1.9 3.05 x 1013

The RTS APD is a device designed to have two separate field regions. The first is a wide region

(about 30 gm) with a relatively low field (20 kV/cm) in which the incident photons are absorbed and the

charge carriers are drifted. The second region is a narrow, high field region in which the electron multi-

plication takes place resulting in internal gain. The relatively new SLIK or super low _; structure resem-

bles, to some extent, the RTS structure. The electric field profile is shown in figure 3 for both devices.

For the SLIK structure, the field profile is designed to achieve the lowest possible value of effective _;

for a given device thickness. This is obtained by ensuring that the electric field is high enough to give

some multiplication everywhere in the device, with the field gradually increasing to reach a maximum

near the deepest point of the device, where practically no hole current exists. This design results in an

effective _; of 0.002, which indicates low noise content, and a breakdown voltage of 400 V for about

25 gm device depth. (See ref. 11.)

Other advantages of this APD package are its own built-in transimpedance amplifier (TIA), which

enables it to directly generate a voltage signal proportional to the detected light intensity. Figure 4

shows a block diagram of the SLIK APD package. On the other hand, the APD active surface is placed

on a thermoelectric cooler (TEC), with a thermistor located as close as possible to control and stabilize

its temperature for constant responsivity operation. The feedback resistor of the TIA is also placed on

the TEC to reduce the Johnson noise which reduces the amplifier total noise. The APD package spectral

response is shown in figure 5 for the device rated bias voltage at room temperature (25°C) and 0°C.

Appendix A gives the complete information for this detector package.
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3. Analog Circuit

In the text, the various parts of the system are referred to by their letter designations (e.g., L1, U1,

R21); for the particular component used for the part, see appendix B. The analog circuit, shown in

figure 6, is designed to control the operation of the APD package and to condition its output signal. The

laser return signal is focused onto the 0.5-mm-diameter spot, which is compatible with the APD sensi-
tive area.

The APD output signal is applied to the signal conditioning stage, which consists of three substages.

In an actual DIAL application, the transmitted laser pulses might hit a large amount of water vapor or

aerosol layer, such as clouds; this would result in high levels of backscattered light which overloads the

system. These overload signals are a major problem since they saturate the detector and cause
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Figure 6. Block diagram of analog circuit.

Analog
signal

"hanging" of the digitizer, which leads to loss of some data words. The clipping circuit is used to protect

the digitizer by clipping these overload signals to a predefined level. For normal signals, the clipping

circuit acts as a voltage follower amplifier. The APD overload is prevented by using a current limiting

resistor R in figure 6.

Following this stage is a summer and buffer amplifier, designed to apply an additional gain to the

detected signal to achieve a 2-V maximum peak-to-peak value, which is compatible with the digitizer.

Also it adds a marker and dither signals to the detected signal. The marker signal is used to mark the

beginning of the useful data, whereas the dither is used to add a low level sinusoidal signal for better



digitization performance (ref. 7). On the other hand, these inputs can apply a dc signal to eliminate high

background signals. Because of its near ideal characteristics, an operational amplifier (op amp) was

used in these stages. The op amp choice was made after characterizing a group of them to minimize

their effect on the detected signal in terms of noise, linearity, and offset voltage. Finally, the signal was

applied to a Bessel filter with a 2.5-MHz cutoff frequency. This filter will limit the system bandwidth in

order to reduce the high-frequency noise and restrict the signal frequency with respect to the digitizing

frequency according to Nyquist criterion.

Since the APD responsivity is a strong function of its voltage bias and temperature, two propor-

tional integral (PI) controllers were used. The first is a voltage controller which can be adjusted manu-

ally to apply a constant bias to the APD ranging from a maximum value of 2.5 percent under the

breakdown voltage to a minimum value of 13.1 percent lower than its rated bias which is measured with

an open circuit. The second is a temperature controller with a fixed set point. This controller is used to

cool the detector with respect to the ambient temperature. (See ref. 7.)

3.1. Power and Reference Voltages

The detection card uses _+5and _+12 V power applied by using J3, a 9-pin D connector, as shown in

the circuit diagram in figure 7(a). Each supply is filtered separately by using noise suppression line

filters L1, L2, L4, and L5, with the power ground separated from the circuit ground by using jumpers

JP1 and JP2 to prevent ground loops. The +5 V is filtered once again by using L16 to ensure a proper

separation between the analog and the digital circuits. L3 and L6 are chip ferrite bead inductors for

ground noise reduction. The filtering of the power lines was done to ensure power voltage stability by
reducing any voltage ripples. (See ref. 13.)

As discussed later, the detection card also uses +5- and -1.5-V reference voltages. As shown in fig-

ure 7(b), the +5-V reference is obtained from U1, the reference generator, whereas a dual op amp is

used in the inverting configuration in U2 with a gain of 0.3 to obtain the -1.5-V reference. The 1-gF

capacitor C2 is used to eliminate high-frequency noise at its output by limiting the inverter bandwidth.

(See refs. 14 and 15.)

3.2. Signal Conditioning

Signal conditioning is the most critical stage in the whole detection system since any noise contribu-

tion from this stage to the detected signal directly affects the useful data. Figure 8 shows the circuit dia-

gram of this stage. Op amp U7 is a clipping op amp which has been carefully chosen to solve the

hanging problem. U7 operates as a voltage follower for the detected signal provided that the signal lies

within the clipping limits. The upper clipping limit is set to 2.5 V with R24 and R25. This limit is cho-

sen only for the op amp stability and has no influence on the output because the detected signal coming

from the APD package is always negative with a maximum theoretical value of zero. The lower clipping

limit is set by the -1.5-V reference voltage. R26 acts as the load resistance for the op amp as recom-

mended by the manufacturer. The output of the clipping op amp is then applied to U8, which is a gain

and summer amplifier. Using this op amp, the signal gain is set to 3 by using R27 and R26. The summa-

tion of the marker and the dither inputs to the detected signal is obtained by using R28 and R29, respec-

tively. (See refs. 16 and 17.)

The final output is then filtered by using U9 which is a 3-pole, 2.5-MHz, low pass Bessel filter.

The Bessel filter was selected because of its excellent performance regarding the phase shift for real-

time data. R30 and R31 act as a terminating resistance for maximum power transfer condition. To check

the output signal from this stage, the voltage across R31 can be accessed by an external connector. Also,
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this connector can be used to inject an external voltage to the digitizer according to the JP3 and JP4

jumpers settings. (See ref. 18.)

3.3. APD Voltage Controller

As shown in figure 9, the APD voltage bias is supplied from U4, the high-voltage module. The con-

trol of the high voltage was obtained with U3, a dual op amp, with one acting as the proportional con-

troller set to a gain of 4 by using R3 and R4 and the other as the integral controller set to an RC time

constant of 0.04 s by using R5 and C5. D1 is used to ensure positive control voltage to U4. R7 is a

potentiometer used to set the APD high voltage between 292 and 365 V. The output high voltage is

applied to a low pass filter formed by R8 and C8 to eliminate any bias ripples. In addition, R8 limits the

APD current as a secondary overload protection, and C9 supplies it with instantaneous in-rush current.

A potential divider formed by R9 through R13 is used as the voltage feedback to the controller. Voltage

monitoring is obtained after the proportional controller with a voltage reading VBM is related to the

high-voltage bias Vbias by

Vbias

VBM- 14.91 20 (3)

The bias monitor reading can be obtained directly from an external connector or digitally by the micro-

controller. (See refs. 14 and 19.)
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Figure 9. APD voltage bias controller circuit diagram.

3.4. APD Temperature Controller

As mentioned earlier, the APD package was supplied with a built-in TEC cooler and a thermistor.

The temperature status of the detector is sensed by the thermistor by placing it in an arm of a Wheat-

stone bridge formed by R15, R16, R17, and R18 as shown in the circuit diagram of figure 10. The value

of R18 will determine the balance condition of the bridge and therefore set the detector temperature.

Because the thermistor resistance R T is given by

RT= 104 exp[3940( 1 2_8)1 (4)

+12 V

R14 C10

2k 1 gF

Ik---
R15

33k

.1 _ D2

1N751

q

R16 q

33k q

q

q

7

R17

33k

R18

TBD

_+12 V +5 V
R19 :1200k

,_ R32

" 1 , 2.5,10W

__ @6 7

A

I AD706 R20 )
10k Q1

TIP110

: )_)Temperature Monitor N _' --//|X'_TEC

B _Temperalure Monitor
AD706

Figure 10. APD temperature controller circuit diagram.
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and the bridge balance condition is

R15 RT

R16 R17 + R18
-1 (5)

therefore, the temperature setting, in Kelvin, is given by

r

'n/R 8+33x 03/ 04
3940 + 2-_ (6)

Equation (6) indicates that the minimum temperature setting is selected by R17 and is equal to 0.3°C

with R18 short-circuited. Temperatures lower than this value usually cause problems due to freezing of

water vapor on the detector window. Zener diode D2 is used to supply the bridge by its zener voltage Vz

which is equal to 5.1 V. The zener current limit is set by R14.

The bridge balance is sensed by an instrumentation amplifier formed by U5, with one op amp acting

as a voltage follower for the temperature monitor and the other acting as both the proportional integral

controller with RC time constant of 0.02 s set by R19 and C10. The controller output is applied to a

potentiometer R20 to set the TEC current by controlling the collector emitter current of the Darlington

transistor Q1. R32 is a 10-W resistor used to set the maximum TEC current to 2 A according to its spec-

ification (appendix A). The temperature monitor voltage reading VTM will be given in terms of the zener
voltage by

R17+R18
VTM R17 + R18 +RT Vz

(7)

After starting the circuit when the detector temperature reaches its steady state value the monitor volt-

age will be simply given by

1
VTM = _ V Z (8)

Similarly, this voltage can be read directly by using an output connector or digitally by the microcon-

troller. (See refs. 14 and 20.)

4. Digital Circuit

The digital circuit was designed mainly to operate as a waveform digitizer and also to perform some

simple data processing such as averaging DIAL lidar return signals and monitoring the detection system

performance. Figure 11 shows a schematic diagram of the main components of the digital circuit. The

waveform digitizer is used to convert the analog lidar signal from the detector to a digital format. The

dual port RAM is used for temporary data storage and also isolates the 10-MHz digitizer frequency

from the 16-MHz microcontroller frequency.

12



Clock .1. Trigger input,_ I
input .16 bit _ 8 bit

_analog-to-digital dual port 16-bit, 16-MHz 2 x 9 bit, 8k

Analog I converter static RAM _ microcontroller FIFO I To computer
signal' ' interface

Figure 11. Schematic diagram for digital circuit.

Approximately 400 ps before the DIAL laser fires, a trigger pulse is generated and is used as a pre-

cursor that informs other systems that the laser is about to fire. This pulse is sensed by the microcontrol-

ler, and this acts to synchronize the detection system with the laser transmitter. A 10-Hz maximum laser

firing frequency is assumed in this design, although a higher repetition rate could be accommodated.

Also, the microcontroller is used for on-line signal processing, which includes data averaging and

housekeeping.

Finally, the first-in-first-out (FIFO) memory is used to output the final data to the recording system.

Again, the FIFO separates the 16-MHz microcontroller operating frequency from the output reading fre-

quency which could be any value up to 20 MHz. The output digital data are compatible with a simple

input-output personal computer interface. (See ref. 7.)

4.1. Data Sampling and Storage Circuit

The conditioned analog signal was applied to U16, a 14-bit, 10-MHz analog-to-digital converter

(ADC), as shown in figure 12. (See appendix C.) The input digitizer range was set to be from 0 to 2 V.

Note that the maximum allowable output signal from the detector is given by

2 ADC upper limit = 2 x --2 = -1.33 V (9)
Signal conditioning gain -3

and the clipping op amp U7 lower limit was set to -1.5 V; this limit ensures the linearity of the signal

conditioning stage by avoiding the nonlinear knee between the linear and clip regions in the op amp

input-output characteristics.

As shown in the circuit diagram of figure 12, a 10-MHz clock (CLK) was externally applied to the

ADC. Therefore, it continuously digitizes the analog signal during each clock cycle. The digitized data

was buffered using U17 and U18 and stored in a certain memory location in U19, a 16-bit, 16k, dual

port RAM. The data storage location or address was set by a 13-bit counter formed by cascading three

4-bit binary counters U10, Ull, and U12 and U13, a JK flip flop. The counter and the RAM share the

same 10-MHz clock in order to synchronize them with the ADC. Connecting the most significant bit

(MSB) of the left RAM address to the supply enables the counter only to access its upper half while the

lower half of the RAM is kept for data averaging proposes. Thus the maximum real-time window for

the digitized data can be obtained by

Data time window = Storage space _ 16 x 1024/2

Clock _equency 10 × 106
- 819.2 ps (10)

which is enough to record both the on- and off-line signal returns.
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Figure 12. Circuit diagram of data collect and store section.

The counter operation is fully controlled by the microcontroller. At the beginning of the circuit

operation, the microcontroller sends a clear signal to the counter resetting its output to the left address

2 0 0 0 H equivalent to the right address C0 0 0 H which is the first storage location in the RAM. The ADC

output is continuously stored in this location until the trigger signal is received.

When the microcontroller senses the trigger signal, it sends a start count or "counter enable" signal

to the counter causing it to address successive memory locations in the RAM in order to store the useful

data. After scanning half the memory, when the counter reaches its maximum count of 1 FFFI-t, which is

equivalent to memory in the address of 3FFFI-t, an "end-of-count" signal is sent back to the microcon-

troller indicating the end of the time window record. Therefore, the useful data are available to the

microcontroller in the address range from C0 0 0 H to FF FF H as shown in the memory map in figure 13.

(See refs. 21, 22, and 23.)

4.2. Microcontroller

The 16-MHz microcontroller, U23, is shown in figure 14. The memory map of the microcontroller

and the RAM is shown in figure 13. The microcontroller address and data are shared on the same bus.

Therefore, U21 and U22 are used for address latching. The microcontroller address is decoded by using

U20B to access the right address of the RAM, U26A to access the FIFO, and U26B to access the dip

switch. The memory section, starting with the nibble 7, is reserved to access the FIFO as discussed in

section 4.3. The memory section, starting with the nibble 6, was reserved for the control word, set by
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0000H 8000H

7FFFH
FIFO

7000H

6FFFH

Control word
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NOT USED

00FFH

Register file
O000H

Figure 13. System memory map.

onboard 8-bit dip switches S1. The "not used" address range from 4 0 0 OH to 5FFFH can be used for

system upgrades to the microcontroller.

After the counter end-of-count signal is detected by the microcontroller, it starts to transfer and add

the data from the upper half of the RAM to the lower half for averaging. By the end of each averaging

cycle, the data are transferred to the FIFO waiting to be transferred another time to the reading device.

The dip switch output is buffered using U24, and this was used to give the microcontroller a control

word to indicate the averaging times required, with a maximum of 4 averages, and the record length

which could be 1, 2, 4, or 8k corresponding to 102.4, 204.8, 409.6, or 819.2 gs, respectively. For record

length less than 8k, the ADC data still are stored in 8k and the first 4k, 2k, or lk are considered and the

rest of the data are neglected.

One advantage of the selected microcontroller is its built-in 8-channel 10-bit ADC. Two of these

channels are reserved for the detector bias voltage and temperature monitor readings. Finally, serial

communication is allowed between the microcontroller and the computer via J2, a 9-pin D-connector

for further simple commands or checking transfers. (See refs. 23, 24, and 25.)

4.3. Output Stage

Figure 15 shows the circuit diagram of the output stage of the digital card. The FIFO is formed by a

parallel connection of U27 and U28 which are 8k, 9-bit FIFO's to form an 18-bit word to handle the

16-bit data. The output data were buffered by using U29 and U30 and then applied to U31, U32, U33,
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Figure 14. Microcontroller connection circuit.

and U34 which are 4-channel, TTL compatible optical isolators. These isolators are used to isolate the

circuit and the reading device grounds. Finally, the data were read with J1, a SCXI connector. The FIFO

operations are controlled by the microcontroller, whereas the FIFO read is controlled by the reading

device. In order to check the correct sequence of data handling, the empty flags of both FIFO's are read

by the microcontroller. Any unequal state of these flags indicates a FIFO failure or data crash.

After the microcontroller sends the complete data set to the FIFO, it sends a "FIFO ready" signal to

the reading device to synchronize it with the system. Both the FIFO ready and FIFO read signals are

also optically isolated by U37, which are dual separate channel optocouplers, once again to separate the

grounds. Finally, the microcontroller controls the FIFO reset signal in order to reset the FIFO before the

first writing operation. (See refs. 26, 27, and 28.)
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Figure 15. Schematic diagram of output stage.

5. Design Operational Testing

The described system was built on one 312-gin, 15 × 9 cm 2 printed circuit board by using surface

mount technology. This was very challenging because of the sensitivity of the different elements to the

board layout because accurate analog signals were subjected to different pick-up noise sources from the

high switching frequency digital signals. Therefore, the board layout was carefully designed to separate
the analog and digital circuits on the two board sides with complete ground isolation between them.

Furthermore, the whole detection system is optically isolated from any external instrument such as the

clock generator, trigger input, and computer. The only electrical connection between the detection sys-

tem and any external device is through the power supplies. That connection was taken care of by proper

filtering and isolating the power grounds from the circuit grounds. The estimated power consumption of

the card is 21.1 W (appendix D). In this section, we discuss the operational testing of the final board.

5.1. Analog Circuit Testing

The testing of the analog circuit started by checking the operation of the APD voltage controller.

The output high voltage was observed to be very stable, with about a 2-ms settling time. After checking

the temperature controller at a room temperature of 22°C, it was observed that setting the APD
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temperature to a low value of 0.6°C required forced cooling to stabilize its operation. This points out the

design requirement of an APD heat sink to stabilize its operation. The controller settling time in this

case was about 30 sec with a steady state TEC current of 0.5 A.

Testing of the signal conditioning stage indicates its linearity with input signals in the digitizer

range. Above this range, clipping starts and the stage becomes nonlinear as shown in figure 16.

The noise equivalent power contribution of this stage to the detected signal was estimated to be

4.8 fW/Hz 1/2 which is added to the detector NEP of 1.9 fW/Hz 1/2. With a system bandwidth of

2.5 MHz, this gives a total NEP of 10.6 pW, which is equivalent to the minimum detectable signal level

as shown in figure 17. Setting this NEP to be equivalent to two digitizer counts defines the total gain of

the signal conditioning stage and the maximum detectable signal level. This gives a total dynamic range

for the detection system of about 8000. For wider dynamic range a multichannel detection system needs
to be used.

5.2. Digital Circuit Testing

The digital circuit was built by using the same design discussed previously. A 12-bit digitizer was

used instead of the 14-bit digitizer and an Intel VLSiCE-96 emulator was used to simulate the micro-

controller chip as shown in figure 18. An advantage of using the emulator was to check several operat-

ing programs by using a personal computer to test the different system parts without burning a new

microcontroller chip each time.
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Figure 16. Linearity check of signal conditioning stage. Normalized gain = (Vout/Vin)/(Mean gain);

Mean gain = 1.5; Gain nonlinearity = 1.5 percent.
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The operational testing of the digital circuit proceeded as follows:

1. Checking microcontroller ability to read the 8-bit dip switches with different switches settings

2. Checking microcontroller communication with serial ports for both read and write operations

3. Checking microcontroller communication with RAM for both read and write operations

4. Checking microcontroller write operation to the FIFO

5. Checking the digitizer operation

6. Checking the 13-bit counter operation and the digitizer data storage in the RAM

7. Checking the FIFO data read operation

Figure 19 shows the experimental setup for checking the operation of the whole detection system.

The final data are read and stored in a personal computer by using a National Instruments

PCI-DIO-32HS digital input-output interface card. The lidar return signal was simulated by a laser

diode output, at a 788-nm wavelength. Figure 20 shows the plot of a simulated lidar return impulse with

no averaging.
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Figure 19. Experimental setup for detection system operational testing.
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Figure 20. Detection system output for simulated lidar return signal.

6. Concluding Remarks

The complete design of a water vapor DIAL detection system with an advanced avalanche photo-

diode (APD) detector and state-of-the-art electronics was discussed. The system design mainly consists

of an analog circuit and a digital circuit. The analog circuit consists of an APD detector package, includ-

ing a built-in thermoelectric cooler and a transimpedance amplifier, and a signal conditioning stage.

Also it contains bias voltage and temperature controllers for stabilizing the APD operation. The digital

circuit consists of a 14-bit, analog-to-digital converter for converting the detected analog signal into a

digital format and a microcontroller for signal processing. The main goals of the design were to mini-

mize the system noise, power consumption, mass, and volume to make it small enough to be placed on

the receiver telescope and to make it compatible with a personal computer for future unpiloted atmo-

spheric vehicle or space applications. The operation of the detection system was tested by a simulated

lidar return signal and results show good system performance regarding the 8333 dynamic range,

21.1 W power consumption, and 250k words/s data transfer rate.

This design can be generalized for measuring atmospheric species other than water vapor by using

the DIAL technique. Because of its compactness and low power consumption, it can also be used in

space-based systems for continuous global atmospheric monitoring of water vapor and other species

such as aerosols, CH3, CFx, NO, NO 2.
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Appendix A

EG&G C30649E Detector Package

The manufacturer's test data sheet is shown in the following table:

Description

Positive bias current

Negative bias current

Output offset voltage

APD breakdown voltage

APD operating voltage

APD dark current

Spectral noise peak

Condition

Vr, dark, 25°C

Vr, dark, 25°C

Vr, dark, 25°C

Ihv = 2 _tA, dark, 25°C

Resp = 50 MV/W, 25°C

Vr, dark, 25°C

Minimum

11

-1.5

325

Data

18

7.1

0.19

356

349

Vr, dark, 25°C

300

150

Maximum

22

15

0.5

500

480

35

150

Noise equivalent power

APD operating voltage

APD dark current

Spectral noise peak

Noise equivalent power

Bandwidth

Vr, dark, 25°C

Resp = 50 MV/W, 0°C

Vr, dark, 0°C

290

0.003

336

Vr, dark, 0°C

Vr, dark, 0°C

Ihv = 2 [aA, dark, 25°C 10

140

0.003

11

0.006

470

15

150

0.006

Units

mA

mA

V

V

V

nA

nv/,ffi- 

pW/,fH-z

V

nA

pW/,,/-_

MHz

Tests were done at +5 V on amplifier with 50-_ AC coupled.

Test wavelength = 820 nm.
Serial number 147.

The pin layout is shown in figure A1.

1. +5-V power supply
2. TEC

3. TEC

4. Thermistor

5. Thermistor

6. Ground case

7. High voltage
8. Ground

9. Output

10. +5-V power supply

11. -5-V power supply (up to -12 V)
12. Ground

Figure A 1. Pin layout.
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The detector package circuit is shown in figure A2.

Thermal
I Substrate

D

[ / RT
10k

I
I

C6 [ 1020

I
-

 oj,,
05mm

APD SLIK

01

1000 pF

[Z>---

I 003nF [_

I
I 05

I
nF

I
I
I
I
I

r, ,OnF;5ov %k
HSNS 003 R7

lk

C4

10 nF

_---I', - -

Figure A2. Detector package circuit.

R6

lk

R8

10

Q4

2N4957

Characteristics of the detector package are given as follows:

Detector sensitive area (measured), mm 2 ......................................... 0.24

Transimpedance amplifier feedback resistance, k_ .................................. 560

Detector maximum power loss, MW ............................................... 50

TEC maximum current, A ...................................................... 1.8

TEC rated current at 0°C, A .................................................... 0.5

TEC area, mm 2 ........................................................ 3.96 x 3.96

Thermistor resistance R T .................................. 104 exp F3940( 1_ _ 218)1
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Appendix B

Detection Card Components

The detection card components are given in the following table:

Part Component

U1 AD586BR

U2,U3,U5 AD706AR

U4 521-5-M

U6 C30649E

U7 AD8036AR

U8 AD8041AR

U9 B3LL31-25-P/P

U10,U11,U12 74F191SC

U13 TC74AC 112FN

U 14 TC74VHC20FT

U26 TC74VHC21FT

U 15 TC74VHCT00AFT

U 16 AD9240AS

U17,U18,U29,U30 TC74VHCT541AFT

U 19 IDT7026L20J

U20 TC74VHC04FT

U21,U22,U24 TC74VHC573FT

U23 N87C196KB-16

U27,U28 IDT7205L15J

U31,U32,U33,U34 HCPL-6650

U37 HCPL-6630

U38 HCPL-2430#300

U25 766-163-R(lk)

U35,U36 766-163-R(270)

D 1,D3,D4,D5,D6, LL4148DICT

D7

D2 BZX84C5V1DICT

Q1 TIPll0

L1,L2,L4,L5,L16 NFM46P11C155

Number

of parts

per
board

1

3

1

1

1

1

1

3

1

1

1

1

1

4

1

1

3

1

2

4

1

1

1

Description Manufacturer

+5-V reference voltage Analog Devices, Inc.

Dual operational amplifiers Analog Devices, Inc.

High-voltage power supply Analog Modules, Inc.

Avalanche Photodiode EG&G, Inc.

Clipping amplifier Analog Devices, Inc.

Buffer and summer amplifier Analog Devices, Inc.

Output filter K&L Microwave, Inc.

4 bit counter Fairchild Semiconductor Corp.

Dual JK flip flop Toshiba Corp.

Dual, 4 input NAND gates Toshiba Corp.

Dual, 4 input AND gates Toshiba Corp.

Quad, 2 input NAND gates Toshiba Corp.

14 bit, 10 MHz ADC Analog Devices, Inc.

Octal buffers, 3 state output Toshiba Corp.

16k, 16 bit dual port RAM Integrated Device Technology

Hex inverters Toshiba Corp.

8 bit, address latch Toshiba Corp.

Microcontroller Intel Corp.

8k, 9 bit, FIFO Integrated Device Technology

4 channel optocoupler Hewlett-Packard Co.

2 channel optocoupler Hewlett-Packard Co.

2 channel optocoupler Hewlett-Packard Co.

lk, 2%, 160 mW, resistor CTS Corp.

network

270, 2%, 160 mW, resistor CTS Corp.

network

Diode, 1N4148 Vishay Intertechnology, Inc.

5.1 V, zener diode, 1N751 Vishay Intertechnology, Inc.

Darlington transistor Texas Instruments, Inc.

Noise suppression line filter Murata Electronics
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Part Component

L3,L6,L7,L8,L9, BLM41A151S

L10,L11,L12,L13,

L14,L15

C8 1812Y104JXE

C2,C10,C5,C5a VJ1812Y105JXXMB

C39,C40 PCC472BCT

C38 PCS 1226CT

C36,C37 PCC200CCT

C9 PCC220JCT

C14,C17,C21,C23, PCS3106CT

C25,C29,C3u23

PCC 1034BCTCu31,Cu32,Cu33,

CU34,Clu37,

C2u37,Clu19,

C2u19,C3u19,

C lu23

C 1,C3,C4,C6,C7,

C11,C12,C13,C15,

C16,C18,C19,C20,

C22,C24,C26,C27,

C28,C30,C31,C32,

C33,C34,C35,

Cu10,Ca35,Cul 1,

Cul2,Cul3,Cul4,

Cul5,Cul7,Cul8,

Cu20,Cu21,Cu22,

Cu24,Cu26,Cu27,

Cu28,Cu29,Cu30,

C2u23

PCC104BCT

R32 895-0205

R33,Ra33 P33ECT

R21,R30,R31,R41, P50FCT

R42

R26 TNPWl206100B

R22 P130FCT

R23 P140FCT

R35,R36,R44,R45 P270ECT

R27,R28,R29 TNPW1206301B

Number

of parts

per
board

11

4

42

2

1

1

4

3

Description Manufacturer

Chip ferrite bead inductors Murata Electronics

0.1 gF, 500 V, 5% ceramic Vishay Intertechnology, Inc.

capacitor

1 gF, 25 V, 5% ceramic Vishay Intertechnology, Inc.

capacitor

5 nF, 50 V, 10% ceramic Panasonic

capacitor

22 gF, 6.3 V tantalum Panasonic

capacitor

20 pF, 50 V, 5% ceramic Panasonic

capacitor

22 pF, 3 kV, 5% ceramic Panasonic

capacitor

10 pF, 16 V tantalum Panasonic

capacitor

Panasonic0.01 pF, 50 V, 10% ceramic

bypass, coupling capacitor

0.1 pF, 50 V, 10% ceramic

bypass, coupling capacitor

Panasonic

5 f2, 10 W, 1% resistor Vishay Intertechnology, Inc.,

Dale

33 f2, 5% resistor Panasonic

50 f2 (49.9), 1%, 1206 Panasonic

100 f2, 1%, 1206 Vishay Intertechnology, Inc.

130 f2, 1% resistor Panasonic

140 f2, 1% resistor Panasonic

270 f2, 5% resistor Panasonic

300 f2 (301), 1%, 1206 Vishay Intertechnology, Inc.
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Part Component

R6 P499FCT

R40,R43 P620ECT

R 14,R34 P2KZCT

R2 P3KZCT

R1,R8,R24,R23 P10KZCT

R 13 P22KZCT

R17,R15,R16,R37 P33KZCT

R3 P49.9KFCT

R12 P82KZCT

R4,R5,R 19 P200KFCT

R9,R10,R11

R18,R38,R39

R7,R20 SM4W 103

JP1,JP2,JP3,JP4 SPE1211

J1 777600-01

J2 AFR09G

J3 AMR09G

S1 CT2198MST

$2 P8087SCT

Y1 XC550CT

SK-PLCC68-S01

Number

of parts

per
board

1

2

2

1

4

1

4

1

1

3

3

Description Manufacturer

500 _ (499), 1% resistor Panasonic

620 D, 5% resistor Panasonic

2 kD, 0.1%, 0850 Panasonic

3 kD, 0.1%, 0850 Panasonic

10 kD, 0.1%, 0850 Panasonic

22 kD, 0.1%, 0850 Panasonic

33 kD, 0.1%, 0850 Panasonic

50 k_ (49.9k), 1%, 1206 Panasonic

82 kD, 0.1%, 0850 Panasonic

200 kD, 1% resistor Panasonic

2.55 M_

TBD

10 kD, POT, 10% Philips Electronics

Jumpers Specialty Electronics, Inc.

68 pin, SCSI connector AMP

9 pin D connector (Female) AMP

9 pin D connector (Male) AMP

8 pin, dip switches CTS Corp.

Push button switch Panasonic

16 MHz crystal oscillator ECS, Inc.

68 pin, PLCC socket Ironwood Electronics, Inc.
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Appendix C

Auxiliary Circuits

C1. Analog-to-Digital Converter Setting

The AD9240 is a 10M sample per second, 14-bit ADC. It has an on chip low noise sample, and hold

amplifier and a programmable voltage reference. Figure C1 shows the associated programming circuit

in our application. C32, C33, C34, C35, and Ca35 are 0.1 bypass capacitors between each supply and its

corresponding ground pin. The AD9240 maximum conversion rate can be controlled by R34. VI NA and

VINB are two analog inputs for either a differential input mode or single ended mode. By connecting

VINB to VREF and SENSE via R33, the second mode is selected, with a common mode at 1 V with a

2-V input range. The chip intemal reference, which appears on CAPT and CAPB, is used in this con-

nection. C28, C29, C30, and C31 form the recommended decoupling network to ensure a stable refer-

ence. This device provides the only connection between the analog and the digital grounds.

Ra33
33

Signal >_"_'_
R34

0.1 p.F 2k

+5 V +5 VD

C30

36
39

42

R33
32

DRVDD
AVDD
AVDD
DVDD
BIAS
NC
NC
NC
NC
NC
VINA
CAPT
CAPB
CML
VlNB
VREF
SENSE
REFCOM
DRVSS
DVSS
AVSS

C29 _+
10p.F_- "_ --------C28

0.1 p.F

C31 0.1 p.F AVSS CLK ]

,_111 _F :' _ AD9240 U20A

/
CLK>_

74LS04

Figure C1. Analog-to-digital converter circuit.

No 3_r_
NC 26
NC 25--'_ IT 0

OTR 24 BIT 1
BIT 1 23 BIT 2
BIT 2 22 BIT 3
BIT 3 21 BIT 4
BIT 4 20 BIT 5
BIT5 19 BIT6
BIT6 18 BIT7
BIT7 17 BIT8
BIT8 16 BIT9
BIT9 15 BIT10

BIT10 14 BIT11
BIT11 13 BIT12
BIT12 12 BIT13
BIT13 11 BIT14
BIT 14

NC
NC 8
NC

C2. Microcontroller Analog-to-Digital Converter

The 16-MHz, 87C196KB microcontroller has an intemal, 8-channel, 10-bit ADC. Two of these

channels are used for APD bias and temperature monitoring. Figure C2 shows the interface circuit

between the monitor signal and the microcontroller input pin. Diodes D4 and D5 provide a voltage

overload protection to the device. R44 and C39 are low pass filter for high-frequency noise elimination.
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+5 V

Monitor In })

D4
1N4148

D5

1 N4148

K
R44
270

T
C39

0.005 p.F

Figure C2. Microcontroller ADC interface per channel.

_)_) Monitor Out

C3. Microcontroller Reset

At the beginning of the circuit operation, the microcontroller must be reset, before it can perform

any function. This is done by applying a low input to the RESET pin of the microcontroller chip.

Figure C3 shows the reset circuit to perform this operation. $2 is a push button switch, with normally

open state. At steady state, the capacitor C38 will charge to a voltage equal to the supply voltage and the

RESET pin will be high. Closing $2 will discharge the capacitor, leading to apply the required low

pulse to reset the device. Diode D3 is used to ensure that the capacitor voltage is less than the supply.

+5 VD

1

D3
1N4148

$2

Reset

R37
33k

C38

22 p.F

Figure C3. Microcontroller reset circuit.

"_)RESET
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C4. Chip Power Supply Bypassing

Generally, bypass or coupling capacitors are used with every supply pin of any device. It is used to

supply the device with inrush currents required at switching instants. Figure C4 shows the used power

supply bypassing for an op amp for both the positive and the negative supplies. Inductors Lxl and Lx2

are used for smoothing the device bias current. Cx3 and Cxl are 0. l%tF ceramic capacitors. As a layout

restriction, these capacitors must be located less than 0.3 cm away from the supply pin. Cx2 and Cx4 are

10-_tF electrolyte capacitors. For all devices other than op amps, 0.1%tF capacitors are only in use to

couple every supply pin to the ground.

Input 1

Input 2

Lx2

_i_ v
I _ _ BLM41A151S

L
Cx3 _ Cx4
0.1 p.F 10 p.F

[_"_ 6 _Output

I+_Uxx

Op Amp

Lxl

i v
BLM41A151S

Cx2

10 p.F

Figure C4. Op amp connection to bias power supplies.

C5. Clock and Trigger Isolation

U38, HCPL-2430, is a dual channel, TTL compatible optocoupler. It is used to optically isolate the

clock and the trigger inputs as shown in figure C5. Resistors R41 and R42 are 50-f2 termination resis-

tors. R40 and R43 are used to limit light emitting diode current.
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Clock1

Clock2

Trigger1

Trigger2

R40
625

'.

R41
5O

I I--R42

50 R43

_ 22_

U38

+ Vcc
- OP1

+ OP2
- GND

HCPL-2430

+5 VD

8 Y
7

Figure C5. External clock and trigger isolation circuit.

3O



Appendix D

Detection Card Power Consumption

The steady state maximum power consumption of the individual components of the detection sys-

tem is as follows:

Reference voltage

Total power

P U1 500.00 mW
P U2 650.00 mW
P R1 2.50 mW
P R2 0.75 mW

P1 1153.25 mW

Signal conditioning

Total power

P U6 250.00 mW
P U7 900.00 mW
P U8 900.00 mW
P R21 45.00 mW
P R24 0.70 mW
P R25 0.70 mW
P R26 22.50 mW
P R27 67.50 mW
P R28 67.50 mW
P R29 67.50 mW
P R30 101.30 mW
P R31 101.30 mW

P2 2524.00 mW

Voltage controller

Total power

P U3 650.00 mW
P U4 480.00 mW
P R3 0.50 mW
P R4 2.00 mW
P R5 2.00 mW
P R6 50.00 mW
P R7 2.50 mW
P R8 0.10 mW
P R9-11 20.70 mW
P R12 0.20 mW
P R13 0.10 mW

P3 1208.10 mW

Temperature controller

Total power

Total power

P U5 650.00 mW
P R14 24.50 mW
P D2 16.70 mW
P R15 0.40 mW
P R16 0.40 mW
P R17 0.40 mW
P R19 0.20 mW
P R20 14.40 mW
P RT 0.40 mW

mW
P4 707.40 mW

mW
P R32 625.00 mW
P Q 1 1875.00 mW
P TEC 124.00 mW

P5 2625.00 mW
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Datacollectandstore

PU10 100.00 mW
PU11 100.00 mW
PU12 100.00 mW
PU13 180.00 mW
PU14 180.00 mW
PU15 180.00 mW
PU16 285.00 mW
PU17 180.00 mW
PU18 180.00 mW

TotalpowerP6 1485.00 mW

Microcontrollercircuit

PU19 750.00 mW
PU20 180.00 mW
PU21 180.00 mW
PU22 180.00 mW
PU23 1500.00 mW
PU24 180.00 mW
PU25 181.80 mW
PU26 180.00 mW

TotalpowerP7 3331.80 mW

Outputstage
PU27 770.00 mW
PU28 770.00 mW
PU29 180.00 mW
PU30 180.00 mW
PU31 800.00 mW
PU32 800.00 mW
PU33 800.00 mW
PU34 800.00 mW
PU35 800.00 mW
PU36 800.00 mW
PU37 400.00 mW
PU38 700.00 mW
PR40 10.00 mW
PR41 125.00 mW
PR42 125.00 mW
PR43 10.00 mW

TotalpowerP8 8070.00 mW

Totalpowerfor analogcircuitfrom_+5-Vsupply= P2+P5

= 2524.00+ 2625.00= 5149.00mW

Totalpowerfor analogcircuitfrom_+12-Vsupply= P1+ P3+ P4

= 1153.25+ 1208.10+707.40= 3068.75mW

Totalpowerfor analogcircuit= P1+P2+ P3+ P4+ P5

= 5149.00+ 3068.75= 8217.75mW
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Total power for digital circuit from +5-V supply = P6 + P7 + P8

= 1485.00 + 3331.80 + 8070.00 = 12886.80 mW

Total power for the card = P1 + P2 + P3 + P4 + P5 + P6 + P7 + P8

= 8217.75 + 12886.80 = 21104.55 mW
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