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Part I

Introduction



From the first airplanes steered by handles, wheels, and pedals to today's

advanced aircraft, there has been a century of revolutionary inventions, all of

them contributing to flight quality. The stability and controllability of aircraft

as they appear to a pilot are called flying or handling qualities. Many years after

the first airplanes flew, flying qualities were identified and ranked from desirable

to unsatisfactory. Later on engineers developed design methods to satisfy these

practical criteria.

CONDUIT, which stands for Control Designer's Unified Interface, is a mod-

ern software package that provides a methodology for optimization of flight con-

trol systems in order to improve the flying qualities.

CONDUIT is dependent on an the optimization engine called CONSOL-

OPTCAD (C-O)[1]. C-O performs multicriterion parametric optimization. It

was developed at the Institute for Systems Research (ISR) at the University of

Maryland at College Park. C°O was successfully tested on a variety of control

problems before it was tested on the design of a rotorcraft flight control system

for the UH-60A helicopter in hover based on the ADOCS controller structure

[3]. The optimization-based computational system, C-O, requires a particular

control system description as a MATLAB file and possesses the ability to modify

the vector of design parameters in an attempt to satisfy performance objectives

and constraints specified by the designer, in a C-type file.

After the first optimization attempts on the UH°60A control system, an early

interface system, named GIFCORCODE (Graphical Interface for CONSOL-

OPTCAD for Rotorcraft Controller Design) [7] was created. This interface

allowed the designer to push buttons in order to command the optimization

engine, instead of typing keywords in the C-O language. Posing the problem



still required code writing.

After that a big step followed, transforming GIFCORCODE into CONDUIT,

[2]. CONDUIT eliminates the code writing, by providing (a) a SIMULINK

window to design the block diagram, (b) a large library from which to choose

the handling qualities specifications, (c) a "specmaker" facility to create new

performance specifications as well as (d) a complete methodology to analyze and

test the design. Using CONDUIT any control system problem related to aircraft

can be posed just by using the mouse to click on menus and drag objects from

libraries. Furthermore, the program provides the designer, after each iteration

of C-O, with a very efficient picture of all performance criteria plus supporting

plots for each individual criterion, a plot showing the evolution of the design

parameters, and a specifications-evolution plot. To benefit from hardware speed

and advanced visualization characteristics, CONDUIT was developed on the

Silicon Graphics IRIX operating system.

CONDUIT has been used to analyze and design:

• a flight control system for the RASCAL UH-60A helicopter in hover having

the ADOCS control structure [3]

• a flight control system for the RASCAL UH-60A in forward flight at 80

knots [4]

• a longitudinal control system for the X-29A Forward-Swept Wing Fly-by-

Wire Demonstrator

• a roll channel control system for the XV-15 Tiltrotor aircraft in forward

flight mode
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• a longitudinal/vertical control system for the Kaman SH-2 rotorcraft in

hover

• a lateral/directional control system for the Boeing KC-135 Jet Transport

• a longitudinal control system for the Grumman F-14 aircraft

• an antenna control system

In March 1998 CONDUIT was released to US aircraft and helicopter compa-

nies, where it is being used in the design of a number of practical aircraft control

systems.



Part II

Background



Computer-Aided Control System Design A reasonable way to design a

control system for a complex largesystem isby using an optimization technique

requiring two phases. In the firstphase the designer formulates the problem.

Such a formulation normally consistsof an appropriate system structure,a set

of objectives,and reasonable initialvalues for the adjustable design parameters.

During the second phase, an optimization package is used to obtain the best

values of the design parameters. The second phase is interactive,allowing the

designer to explore the design tradeoffs.

Aircraft and helicoptercontrol systems are complex and designing such sys-

tems usually requires balancing competing objectives.Moreover the process of

optimizing the performance ofthe controlsystem for aircraftand helicoptershas

to be repeated tens (or even hundreds) of times corresponding to the changes in

the system that occur at differentflightconditions.

CONDUIT performs computer-aided control system design using thisopti-

mization technique and ituses C-O[I] as the optimization engine. It isalso true

that many hypothetical designs may be considered--both for the aircraftand

the controller.

Specifications for Helicopters and Aircraft Control systems are present in

almost allmodern aircraftand helicoptersin order to 1) enhance aircraftmission

capability,2) improve handling qualities,and 3) decrease pilotworkload.

Control law design can only be performed satisfactorilyifa set of design

requirements or performance criteriaisavailable.In the case of control systems

for piloted aircraftgenerally applicablequantitative design criteriaare difficult

to obtain because the ultimate test of handling qualitiesis the pilot'sjudge-
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ment. A pilot's opinion of the flying qualities of an aircraft is influenced by

the ergonomic design of the cockpit controls, the visibility from the cockpit,

the weather conditions, the mission requirements, and physical and emotional

factors. The variability introduced by all these factors can be reduced by aver-

aging test results over many flights and pilots. A systematic approach to flying

qualities evaluation is available through pilot opinion rating scales such as the

Cooper-Harper scale [19]. Once a rating scale has been established it is possible

to begin correlating the pilot opinion rating with the properties of the aircraft

dynamic model, and hence derive some analytical specifications that will guar-

antee good flying qualities.

The acceptability of flying qualities is quantified in terms of "Levels" that

are defined for each specific mission task, using the Cooper-Harper scale. The

Cooper-Harper scale consists of pilot ratings from 1 to 10, where 1 indicates

"excellent, highly desirable" and 10 means "major deficiencies and lost control

during some portion of the required operation". Based on this scale "Levels" are

defined as follows: Level 1 indicates pilot ratings between 1 and 3 1/2, Level 2

between 3 1/2 and 6 1/2, and Level 3 between 6 1/2 and 8 1/2. Each Level value

represents a minimum condition necessary to meet that "Level" of acceptability.

Level 1 indicates that aircraft characteristics are "good, may be some negligible

deficiencies" [19], Level 2 shows "moderately objectionable deficiencies" [19],

and Level 3 shows "major deficiencies" [19] . An aircraft that exhibits Level

1 flying qualities throughout its flight envelope is fully satisfactory. Some real

aircraft exhibit some Level 2 flying qualities. Any Level 3 flying qualities are

unsatisfactory.
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Chapter 1

CONDUIT

The objective of the software package CONDUIT is to act as a designer's assis-

tant/associate for the analysis, testing, and optimization of flight control systems

in order to improve the flying qualities. In aircraft design, the design specifica-

tions (and constraints) are often competing and CONDUIT helps the designer

to perform the trade-offs among them.

CONDUIT is built on top of the MATLAB/SIMULINK system modeling and

analysis environment and the C-O computer-aided, optimization-based para-

metric design software package. It includes a graphical block diagram editor,

a graphical spec editor, a spec library, an editor for the initialization file and

multiple layers of supporting analysis plots. This avoids the manipulation of

MATLAB "m" files or C-O C-type files. The user only has to select and drag

and the system automatically updates the relevant scheme, spec or plot.

CONDUIT has two modes of operation: setup and run.

1.1 Setup Mode in CONDUIT

The setup of a problem in CONDUIT consists of three parts:



1. First the designerhas to define (or import) into SIMULINK a simulation

of the aircraft and the controller. The real aircraft control systemconsists

of many controller loops, all of them controlling the high-order, nonlinear

aircraft dynamics. Usually people do not use the nonlinear dynamics in

design becauseit is too complex and needsspecial software for simula-

tion. Instead they use linearizeddynamics. CONDUIT usesSIMULINK

for simulation, so that the block diagramcan include nonlinearities in the

dynamics. The fact that somenonlinearities, especiallysaturations and

dead-zones,are important to aircraft control system design is one moti-

vation for the CONDUIT design approach. Designsbased'on a purely

linear model of the controlled aircraft that ignoresaturation, delays, and

dead-zonemay be overly optimistic.

There usually exist several models for the samesystem, corresponding

to particular flight conditions (speed: hover, low speed,forward flight or

mission tasks: precision tasks, aggressivetask, etc.). For a thorough ex-

amination of the problem, the control systemsof all thesemodelsshould

be investigated and optimized.

The control law model must include the designparameterssuchas gains

and time constants,as well asthe inputs and outputs of the system. The

inputs are usedto al_plytest input signals. The outputs are usedto eval-

uate systemresponses.

2. The next step for the designer is to define the set of design specifications.

To help the designer, there are five graphical libraries comprising over 50

specifications in CONDUIT. These are organized into the following sub-
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libraries:

• Generic Specifications

• Fixed-Wing Longitudinal

• Fixed-Wing Lateral/Directional

• Rotor Hover Low Speed

• STOVL (Short Take-Off/Vertical Landing)

Most of the specificationsbelong to someaeronautical designstandards:

rotorcraft specificationsbelongto ADS-33D [19]and aircraft specifications

belong to MIL-STD-1797 [20] and Mil STD 9490.

The designeronly has to select the appropriate designspecification from

the availablelibraries, drag them into the HQ Window (Handling Qualities

Window), and configurethe simulation appropriately for eachspecification

using the HQ Editor (Handling Qualities Editor).

All the specsare createdusing the samecolor map: the Level 1 region is

blue; the Level 2 region is magenta;the Level 3 region is red. The splines

that define the boundaries between levelscan be graphically altered to

designnew specifications.

To "wire" a specificationto the SIMULINK simulation model the designer

has to use the graphical "HQ editor" . Here, the userdeclareseachspeci-

fication to belongto one of the following five classes:l) hard constraint, 2)

soft constraint, 3) objective, 4) summedobjective, or 5) checkonly. Those

specificationsthat are declaredto be "summed objective" are treated as

soft constraints until the design reachesLevel 1. Then, all the summed
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objective specsare added together and treated as a single objective. At

this stage, an improvement in any componentof the summed objective

improvesthe design'sperformance.The selectionof the specificationclass

definesthe problem for the C-O optimization process. In aircraft design,

examplesof choosingthe specificationsare the following: stability specifi-

cations arehard constraints;most of the other specificationsaresoft con-

straints (bandwidth and time delay (frequency-domainpoint spec),quick-

ness(time-domain point spec),attitude hold (time-domain envelopespec),

interaxis coupling (time-domain point specand envelopespec)); crossover

frequency, actuator energy, and actuator saturation are usually perfor-

manceobjectives.

The input and output port connectionsfor eachspecificationare indicated

in an information box in the speceditor.

In casethe designerneedsto add a specificationthat is missingfrom the

library he can create it and add it to the library with the "specmaker"

facility.

3. The designermust alsoset up a small initialization file to defineproblem-

dependent constantssuch as the simulation time-step, the performance

precision,denotedby epsilonF,and the test input signals.

In the following paragraphssomedetails regarding the problem setup will

be presented. "Stability specification" and "Gain margin and phase margin

specifications" refer to the specsthat must be included in the HQ Window in

order to insurea stablesystem. "Simulation time-step" and "Gradient step-size"

refer to someoptions that needto be specifiedin the initialization file.
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1.1.1 Stability Specifications

Stability criteria are the most important specifications for aircraft control sys-

tem design and therefore are the very first selected in the performance chart.

The "Generic Specifications" section of the CONDUIT spec library contains two

specs designated to evaluate the system stability: EigLcGl(eigenvalue test) and

StbMgGl(gain and phase margin test). Usually these two specs should be used

together. Using only the eigenvalue test, it is not possible to determine the clas-

sical stability margins that define robust stability. However, the eigenvalues are

a definitive test of closed-loop stability. In contrast, the classical gain and phase

margins are insufficient to determine stability. In part this is because they apply

only to specific loops, rather than the complete closed-loop system. This is also

due to errors in MATLAB. MATLAB computes gain and phase margin based

on a Bode diagram without first checking the stability. This makes it possible

that unstable systems appear to have good gain and phase margin, as in the

following example.

Example 1: Take the system in Figure 1.1. Checking in MATLAB:

> > [g, p] = bode(num, den, logspace(-1, 5, 1000))

>> margin(g, p, logspace(-1, 5, 1000))

The MATLAB function "margin" shows gm=14.18 and pm--45.05, as shown in

Figure 1.2, which are good stability margins. The poles of the closed-loop system

are:

-10.5415, -0.7551+2.2655i, -0.7551-2.2655i and 0.0516, so the system is unstable.

The Nyquist plot constructed for this system, with the contour modified to take

a small detour around the pole, at s=0, is shown in Figure 1.3. It is apparent

that the polar plot of the open-loop system encircles the -l+j0 point once as

12
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Figure 1.1: Example of unstable closed-loop system for which MATLAB indi-

cates good stability margins

200
Gm=,14.18 dB, (w,. 4.882) Pm=45.05 deg. (w=1.952.)

0

_3_200

--400 i , i , i ,
104 10o 10a 10" 108

FmClU_=/(rl(i_Dc)

0

-90--180 -

-270 "

,'_ i , a ,
10-2 10o 102

Frequency (rid/_c)

i
10 'l 106

Figure 1.2: Gain margin and phase margin for the system in Fig. 1.1 evaluated

by the MATLAB function "margin"
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Figure 1.3: Nyquist plot for the system of Fig. 1.1

varies from -oc to +oc and thus this closed-loop system is unstable.

The solution to eliminate the instability is to use the eigenvalue test. It is

recommended to use EigLcG1 and StbMgG1 both as hard constraints, to be

evaluated and optimized in Phase 1.

1.1.2 Gain Margin and Phase Margin Specification

There are some stable systems that have both a gain margin increase and a gain

reduction margin, i.e. both the gain increase and gain decrease must be limited.

CONDUIT allows one value for the gain margin, so in this case it will take the

smallest absolute value of the two of them as the gain margin. This means that

the system can increase or decrease by that gain margin and still remain stable.

Example 2:

The antenna problem, part III, chapter 3, has two gain margins for the following

14



parameters,called the nominal point:

dpp_l = 1.08000e + 02

dpp..2 = 5.40300e + 01

dpp_3 = 2.62000e + 03

dppA -- 1.57100e + 03

dpp_5 = 1.41370e + 00

dpp_6 = 4.00000e + 00

dpp_7 = 5.00000e + 02

dpp_8 -- 5.00132e + 03

dpp_9 = 7.54000e + 02

dpp_10 = 2.00000e - 01

dpp_l 1 = 6.67500e - 01

This system is stable, having all poles in the left half plane. Figure 1.4, Figure

1.5, and Figure 1.6 show that the system is conditionally stable. The polar plot

of the open-loop transfer function cuts the real axis at -0.4636 and at -48.4172.

This shows that the

gain can increase by 1/0.4638 (20*log10(1/0.4638)dB = 6.67dB) and the

gain can reduce by 48.4172 (20*log10(1/48.4172)dB = -33.7dB)

before instability occurs and defines both a gain increase margin and a gain

reduction margin. Figure 1.7 shows the gain reduction margin.

For this case CONDUIT will take max(abs(6.67),abs(-33.7))dB--6.67dB as

the gain margin. CONDUIT uses its own "margin" function that fixes the prob-

lems with MATLAB's "margin" function. MATLAB's "margin" function doesn't

show all the gain margins and phase margins.

1.1.3 Simulation Time-Step

The real aircraft control system consists of many digital controller loops, with

the inner controller loops faster than the outer controller loops, all of them

controlling the high order, nonlinear aircraft dynamics. Designers prefer to work

with continuous systems because they are easily understandable. Simulations,

15
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such as those produced by SIMULINK, run faster using discrete systems. Then

there is a choice to use in simulation:

1. Use a continuous model and continuous controller

This has the advantage of fidelity to the real aircraft - aircraft fly in con-

tinuous time. Also, most designers have more experience with continuous-

time systems and better intuition. Lastly, the specifications are based on

continuous-time behavior.

However, the simulation of continuous-time systems is relatively slow.

Moreover, the actual implementation of the controllers is in discrete time.

2. Use a continuous model and digital controllers, each with its own sample

rate

This has the advantage of very accurate results because of the use of real-

istic digital controllers, but slow simulation.

3. Use a continuous model and continuous controllers, discretized at a single

sample rate

This has the advantage of choice 1 as well as a relatively fast simulation.

The disadvantage is that the solution obtained is less accurate. However,

it is easy to obtain sufficient accuracy by appropriate choice of the step

size.

CONDUIT uses the third option. The designer has to provide a continuous

model and continuous controllers for the block diagram. The designer must also

choose a sampling interval T, for the simulation. The value of T is placed in the

initialization file. Some general rules of choosing T are:

18



1. An absolutelowerboundfor the samplerate (l/T) is statedby the Shannon

sampling theorem [12]. If it is desiredthat the closed-loopsystemhave a

certain bandwidth, saywb, then the sample rate must be at least twice this

required closed-loop bandwidth.

2. If white noise disturbances are the dominant source of error in the system,

then the sample rate should be faster. Theoretically, all real signals have

spectral content at all frequencies so there is always information lost due

to sampling. By [12], testing the RMS (root mean squared) value of the

steady-state value of the covariance of one output, _, for the same

design and design parameters, but different sample rates, shows that for

good random disturbance attenuation a sampling interval of T -
10w b

would be a good choice. The relative errors grow quickly when sampling

slower than this multiple, whereas very little can be gained by sampling

faster. Thus,

7r 7r

10w--"--b< T < -- (1.1)U)b

1 be 20 times bigger than theCONDUIT proposes that the sample rate

fastest mode of the closed-loop system, determined from the eigenvalues of the

closed-loop system. Usually the fastest mode for aircraft lies between 2Hz and

10Hz, so the sampling interval, T, is between .005 secs and .25 secs.

The optimal controllers computed by CONDUIT are based on a discretized

version of the aircraft and its controller. The discretization uses sampling interval

T. the controller actually used by CONDUIT is shown in the dtest.m block

diagram in CONDUIT.

The designer should be aware that for different values of T in the initialization

file, CONDUIT can provide slightly different controllers.
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1.1.4 Gradient Step-Size

C-O evaluates the gradients of the optimization specs at every iteration during

the optimization process. The increment used to compute gradients in theoretical

problems for which the data is perfectly accurate, is

ppdelta = max(rteps • max(1.eO, fabs(x[i])), pdeltal) (1.2)

where x[i] is the parameter perturbed in computing the gradient, labs is the

absolute value, rteps is the square root of machine precision, pdeltal is an arbi-

trary constant step, usually 0. This formula shows that the gradient step-size is

usually rteps • fabs(x[i]). It is rteps if x[i] is smaller than 1 and it is pdeltal if

the user chooses a bigger step.

For real problems, such as those optimized by CONDUIT, the increment used

is

_/epsilonF • max(1.eO, f abs(x[i]) ) (1.3)

where epsilonF is chosen by the designer and represents the precision of the

optimization specs (C-O allows different epsilonF between specs). This way the

gradient step-size is usually x/epsilonF • fabs(x[i]) and it is x/epsilonF if x[i] is

smaller than 1. The advantage of using _/epsilonF. fabs(x[i]) instead of pdeltal

is that this bigger step is proportional to the parameter, not a constant value.

Moreover it can be set up from the initialization file. The current implementation

of CONDUIT, to simplify the designer's job, allows only one epsilonF for all

the specs. The designer has to set the value in the initialization file. The default

value is 0.0002 and was chosen following a set of tests on aircraft optimization
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problems [24]. Note that this is substantially larger than the increment usedin

theoretical problem.

1.1.5 Creating new specs with the "Specmaker"

The "Specmaker" facility gives flexibility to the designer to create and use any

performance criterion he wants in CONDUIT. There are 5 types of specs that

can be added to CONDUIT [25].

• time point

• frequency point

• time line

• frequency line

• LOES (lower-order equivalent system)

For time point and frequency point specs the performance criterion must

consist of 2 lines that separate the 3 levels of performance. For time line and

frequency line specs the performance criterion must consist of 2 envelopes ( closed

curves) that encircle the Level 1 and Level 2 regions, respectively. Outside both

envelopes is Level 3. Examples are given in the following chapters.

Specs based on lower order equivalent systems (LOES specs) are common in

aricraft control. The basic idea is as follows. Given a time or frequency response

plot obtained either experimentally or from a detailed high-order simulation.

Approximate this given response by the response of a lower-order and much

simpler system. The lower order system is characterized by a relatively small

number of parameters. These parameters are chosen to minimize some precise
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measureof the differencebetween the lower order model and the real system.

The actual specification is given in terms of the lower order model.

1.2 Run Mode in CONDUIT

Once the problem is set up the second phase, design tuning, follows. During

this phase the designer cannot change the simulation model, performance speci-

fications, or initialization file. But he can change the current design parameters,

evaluate the specifications for every set of design parameters, and use the analy-

sis functions of the system. And CONDUIT will run C-O to optimize the design

parameters.

A distance algorithm in CONDUIT translates the location of the design point

(in case there is a simple specification) or the location of the worst design point

(in case there is a functional specification) on each of the graphical specification

criteria to a numerical rating. All of C-O's "good-bad" factors are scaled - the

scaled good values become 1 and the scaled bad values become 2. A rating of

"1" for the scaled design point indicates that it lies on the Level 1/2 border. A

rating of "2" indicates that the design point lies on the Level 2/3 border. These

numerical ratings are used by C-O to tune the design and they appear in the

Pcomb (Constraint Table). CONDUIT feeds the specifications in the form of

the "problem description file" to C-O.

C-O implements multicriterion parametric optimization. It uses FSQP (Fea-

sible Sequential Quadratic Programming) [1] to solve the following general opti-

mization problem:

min obj?(x) Vi (1.4)
X
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subject to" soft (x) < 0 vj

hard_(x) _< 0 Vk

hard_boundl(x) _< 0 Vl

where obj,, soft_, hard_ are the scaled values of objectives, soft constraints, hard

constraints (except hard bounds), respectively and where hard_boundl represents

hard bounds, an important special case of hard constraints.

• An objective is a specification of a quantity that should be optimized (mini-

mized or maximized). Typically, multiple competing objectives are present.

• A hard constraint is a specification of a quantity that must achieve a spec-

ified threshold. A design for which a hard constraint is not satisfied cannot

be satisfactory.

• A soft constraint is a specification of a quantity that should achieve, or at

least approach, a specified threshold, i.e., should be optimized as long as

this threshold is not achieved.

• A hard bound is a constraint of the form a < dpi <_ b, where a,b are

constants and dpi is the ith design parameter.

C-O uses the min/max optimization criterion:

min (maxl<i<maifi(x)), 0 < a_, az real (1.5)
xEfl

where fi (x) is the ith specification and the c_i are user-specified weighting coeffi-

cients. The advantage of this formulation is that the optimal value of x can be
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placed anywhere in the region of the parameter spacebounded by the minima

of the individual criteria by appropriate choiceof the a_.

The optimization process is divided into three different phases.

Phase 1:

Not all hard constraints are satisfied. Equation 1.4 takes the form

min maxk hard_ (x) ( 1.6)

subject to: hard_boundl(x) < 0 Vl (1.7)

Phase 2:

All hard constraints are satisfied (have values _< 1). Not all objectives and

soft constraints are Level 1. Equation 1.4 takes the form

min maxij{obj[(x), soft_ (x) } (1.8)

subject to" hard[,(x) _< 0 Vk (1.9)

hard_boundl(x) _< 0 Vl (1.10)

Phase 3:

All hard constraints and soft constraints are satisfied and all objectives are

Level 1. Equation 1.4 takes the form

min maxiobj[(x) (1.11)
Z

subject to: sofq(x) < 0 vj (1.12)

hard_(x) < 0 Vk (1.13)

hard_boundi(x) < 0 Vl (1.14)
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The activeobjective (constraint), i.e. the oneC-O is working on, is displayed

in the title of the Pcomb chart in C-O and hasa name according to the opti-

mization phase. In Phase1 it is named MAX_HARD, in Phase2 it is named

MAX_COST_SOFT, and in phase3 it is namedMAX_COST. The value of the

displayedactiveobjective (constraint) is scaledsothat 1showsthe Level1/2 bor-

der and 2 showsthe Level 2/3 border. MAX_HARD and MAX_COST_SOFT

are always positive, becausethe active constraint is Level 3 or Level 2, while

MAX_COST is alwaysnegativebecausethe activeobjective is Level 1.

25



Part III

Specific Work
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Chapter 2

F- 14 Problem

2.1 Stability and Control Augmentation Sys-

tems

Most modern commercial and military aircraft have Stability and Control Aug-

mentation Systems (SCAS) in order to meet the flying qualities requirements.

SCAS decrease the pilot workload by controlling the position and angular rate

of the aircraft to match the values of pilot input references. The system also

reduces the coupling that normally exists between different pilot inputs. The

SCAS outputs add to the pilot's. SCAS outputs move only the control surfaces

and not the cockpit controls. Automatic pilots, which replace the human pilot

when they are in use, are expected to move the cockpit controls.

In the case of high-performance military aircraft, where the pilot may have to

maneuver the aircraft to its performance limits and simultaneously perform tasks

such as precision tracking of targets, specialized control augmentation systems

are needed in addition to the stability augmentation systems [13].

A pitch-axis control augmentation system is a specialized SCAS and it is
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used in severalmodesof operation corresponding to the aircraft type and the

required performance.

For a fighter aircraft, where high maneuverability or "agility" counts the

most, the suitable controlled variable for the pitch axis is normal acceleration

(or load factor) on the aircraft. This is the component of acceleration measured

by an accelerometer in the negative direction of the aircraft z-axis [14]. It is

directly relevant to performing a maximum-rate turn and must be controllable

up to the structural limits of the airframe, or the pilot's physical limits.

A second common mode of operation for a pitch-axis control augmentation

system is as a pitch-rate command system. Control of pitch rate is used when a

situation requires precision tracking of a target and is also preferred for approach

and landing.

These two modes are contradictory. A control system that has a good normal

acceleration step response may have a pitch-rate response with a very large

overshoot, and conversely, a reduction in the pitch-rate overshoot may lead to a

sluggish normal acceleration response. For fighter aircraft air-combat modes a

pitch-rate overshoot is required for good gross acquisition of targets and a dead-

beat pitch-rate response is required for good fine tracking. Sometimes the two

control schemes are blended together to give the pilot control over pitch rate at

low speed and normal acceleration at high speed.

There exists also a third mode of operation, and this is as an attitude (or

angle-of-attack) command system. This is the one used for the Grumman F-14

aircraft and will be presented in the following sections.
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2.2 Description

In one functional mode, the F-14 uses an angle-of-attack command system for

the pitch-axis control augmentation system.

The F-14 problem is to design a system which controls the pitch response

to pilot stick commands. The controller performance is tested for speed, angle-

of-attack tracking when following an a-command, and for disturbance rejection.

The stability, the magnitude of the tail rate, the derivative of the normal accel-

eration, and the shape of the pitch rate are also controlled.

The problem is derived from a master's thesis example [5]. Some transfor-

mations changed the block diagram into an equivalent one, Figure 2.1, that

matches the Grumman F-14 Benchmark Control Problem formulations [8], [9],

[10]. These transformations are:

The pitch-rate lead filter was changed from _ to
s-dp-1 s+dp_l "

1 1

The stick prefilter was changed from _ to dp_7_+l"

1 1

The a-sensor low-pass filter was filter changed from _ to dp_a,+_"

where

dpl _ negative of the pitch-rate lead filter pole location.

dp: -- negative of the pitch-rate lead filter zero location.

dpa -- negative of the inverse of the a-sensor low-pass filter pole location.

dp7 -- negative of the inverse of the stick prefilter pole location.

The controller gains were changed from

u = (reference • dp_6 - feedback)

u = (reference feedback)dp_6.
dp_6

(2.1)

(2.2)
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This implies that dp_6, appears in the forward path multiplying the output of

the stick prefilter but has no effect on the pitch-rate and m-feedback gains where

dp4 = pitch-rate feedback gain

@5 = c_-feedback gain

@6 - gain of the filtered command signal

dps = common integral gain

White noise filtered through the Dryden wind gust model was added. For

optimization the EigLcG1, RMSlspc and BnwPiL2 specs were added. The spec-

ifications are shown in Figure 2.6.

The system has to have the form of Figure 2.1, where parameters dp_l through

dp_8 are to be selected to meet the performance objectives and constraints listed

in section 2.4. Selecting the gains dp_l through dp_8 to yield good closed-loop

response to a step input at input 1 and white noise at input 2 corresponds to a

multi-input multi-output design problem.

2.3 Block Diagram

Figure 2.1, Figure 2.2, and Figure 2.3 show the block diagram of a pitch-axis con-

trol augmentation system. The aircraft dynamics represent those of the Grum-

man Aerospace F-14 flying at 35,000 ft in level flight at a velocity of 690 ft/sec.

The model is linearized, time invariant and continuous time.

The components of the model are:

• short-period longitudinal aircraft dynamics

• tail surface actuator
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Figure 2.1: Grumman F-14 pitch-axis control system
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Figure 2.2: Alpha response model
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Figure 2.3: Dryden wind gust model
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• control system,consistingof a stick prefilter, anerror integrator, pitch-rate

lead filter, and an angle-of-attack filter

• Dryden wind-gust model

An error integrator hasbeenincluded to make the control system Type 1, thus

ensuring that the aircraft will hold a zero angle-of-attack trajectory when no

pressureis applied to the control stick. The Dryden Model filters white noiseto

form the vertical gust velocity, wgust, which is then filtered further to give the

angular rate gust component, qguu.

The fixed parameter values shown in Figure 2.1 are:

Tail Servo

T_ = 0.05sec

Aircraft Dynamics

Z,_ = -63.9979_

M6 = -6.8847_

Uo = 689.4 f__t
$e£

M_ = -0.00592 ft_6ec

= -0.6385 

Mq= -0.6571 

a Response Model

= 0.707

w0 = 2.49_--_¢

Grumman also supplied values for the design parameters dp_l through dp_8.

These were the results of their quadratic-based optimization system, CASCADE.

34



Thesevaluesof:

0 rad@_1 = 4.14400e + 0s--_

@_2 = 2.97100e + 00 _---_-_
s_

@_3 = 3.95900e - 01sec

dpA = 8.15600e - 01

@_5 = 6.77000e - 01

dp_6 = -1.74600e + O0

@_7 = 1.00000e - Olsec

@_8 = -3.86400e + O0

were used as the initial values for the independent design parameters @_1

through @_8.

2.4 Performance Objectives and Constraints

The second major component, after the system to be controlled and the con-

troller structure, of a control system design problem is the set of specifications.

CONDUIT provides a very large collection of aircraft control system specifica-

tions in its on-line specs catalog. All the specifications are illustrated in Fig.

2.6.

Specifications are described in an abbreviated fashion. The purpose of the

spec is given general terms. This is followed by the CONDUIT description of

the spec, written in bold text and followed by the word, "code." The following

lines are written in pseudo-code, with comments. The first line after the header

indicates whether the spec applies to the open-loop or closed-loop system. This

same line specifies the inputs and outputs used in computing the spec. The

next line, in the absence of comments, designates the spec as on objective, hard

constraint or soft constraint. This line also indicates the range of frequencies or

times over which the spec is evaluated. The last line gives the goal the spec is

intended to achieve. Pictures of all the specs can be found in Fig. 2.6.
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Performance Objective

This specification, when used as a performance objective, generally tries to

make the closed-loop bandwidth larger and the time delay smaller.

1. The pitch bandwidth specification requires a lower limit for pitch attitude

bandwidth and an upper limit for time delay. Aircraft maneuvers are

classified in different flight phase categories, corresponding to the required

speed of the maneuvers, precision of the tracking, precision of the flight-

path control [20]. This spec applies to all categories so it is specified as

Categories A&D.

BnwPiL2 code:

closed-loop, input 1 (the pilot pitch command), output 7 (a (pitch re-

sponse)).

objective, w • [0.1, 20] Hz

maximize bandwidth and minimize time delay

Constraints

1. The first stability criterion of the total feedback system (i.e., with both

feedback paths active) requires nonpositive eigenvalues:

EigLcG1 code:

closed-loop, from any input to any output

[a,b,c,d]=closed loop model, unstab equals sum of positive eig(a) if there

are some positive eigenvalues or unstab equals max of negative eig(a) if all

eigenvalues are negative

hard constraint

minimize unstab : Level 1/2 = 0.001, Level 2/3 = 0.002
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2. The second stability criterion of the system is:

gain margin _> 6 [dB]

phase margin _> 45 [deg]

StbMgG1 code"

open-loop, input 3 broken-loop input, output 6 broken-loop output

hard constraint, w • [0.1,100] Hz

maximize gain: Level 1/2 = 6 [dS], Level 2/3 = 4 [dB]

maximize phase: Level 1/2 = 45 [deg], Level 2/3 = 35 [deg]

3. The angle of attack, a [deg], response to a pilot-step input of 2.0 [deg] is

required to match that of a given critically damped second order system.

The resulting difference is to be minimized with an acceptable value being

0.2 [deg]. Because the system is linear this is equivalent to acceptable

design for a error less than 10%, satisfactory design for a error less than

5%.

aerrspc code:

closed-loop, input 1 the pilot pitch command, output 2, q--pitch rate

soft constraint, t • [0.1, 3] sec

minimize c_ error, Level 1/2 = [-0.05 0.05], Level 2/3 = [-0.1 0.1]

4. The maximum velocity of the tail surface deflection servo must be less

than 25.0 [deg/sec] for the 2.0 [deg] pilot-step input. Because the system

is linear, this is equivalent to satisfactory design for ratio between tail rate

and command less than 12.5%.

tailspc code:

closed-loop, input 1 the pilot pitch command, output 1 the tail rate
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soft constraint, t E [0.05, 3] sac

minimize tail rate, Level 1/2 = [-12.5 12.5], Level 2/3 -- [-15 15]

5. The rate of change of acceleration (i.e. jerk) experienced by the pilot in

the vertical direction must be greater than zero during the response to the

pilot-step input. The normal acceleration is defined as

normal acceleration = U0 * q + L • Cl- &, where U0 appears in Figure 2.1,

at aircraft dynamics, q is the pitch rate, q is the derivative of the pitch

rate, & is the output from Sum6 in Figure 2.1, and L = 22.8 [ft]. The

derivative of normal acceleration is obtained from the normal acceleration

by a multiplication by 10s in the block diagram. The derivative of normal

acceleration is scaled by the acceleration due to gravity, go = 32.2_--_t2.

For this spec two signals were considered, Signal 1 corresponding to an

input of 2 [deg] and Signal 2 corresponding to an input of 5.72 [deg].

This constraint must be positive, but the value does not matter. Thus

a saturation was introduced in the block diagram, with limits =i=l. If the

value is smaller than °1, the spec will show -1, which is Level 3. If the value

is bigger than 1, the spec will show 1 and is Level 1. If the saturation were

omitted then the envelope spec would need an expanded range for Level

1, and this would decrease the readability of the spec.

jerkspc code:

closed-loop, input 1 pilot pitch command, output 4 the jerk (_,a =

acceleration) experienced by the pilot

soft constraint, t E [0.1, 1.5] sac

maximize jerk, Level 1/2 -- [0 1] [1/see], Level 2/3 = [-0.2 1.1] [1/sea],

saturation [-1, 1]
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6. The pitch rate (q) [rad/sec] responseto stick inputs [rad] is required to fit

the lower-ordersystem [6]:

K(1.7s + 1)e -Ts

s 2 + 2_wos + Wo2
(2.3)

within the bounds of

2.122 < Wo <: 3.5214

0.5 < _" < 0.707

7"<0.1

for 0.2 _< w < 20

Because K is unconstrained, this requirement constrains only the transient

response. Equation 2.3 and the associated bounds can be translated into

an equivalent gain and phase requirement.

The gain requirement is:

min
_/1 + (1.7w) _ gain

< -- <max

_/(1- (_)_)_+ (2¢_): - dcgai_- _o,_

V/1 + (1.7w) 2

_/(1 - ,_o(__)2)_,, + (2_)_
(2.4)

for 0.2 < w _< 20

The minimum is attained for Wo - 2.122 and ¢" - 0.707. The maximum is

attained for wo = 3.5214 and _ -- 0.5. Equation 2.4 is equivalent to

_/I + (l.7w) 2

k/( 1 - ,2.122,/,,, '_2)2 + (2,0.7072__22)2

_/I + (1.7w)2
w 2

V/(1 _ ( _.._.__)2_23.52,4/ + (2 * 0.5_)

(2.5)

for 0.2 _< w < 20
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The phase requirement (time delay) is:

min (arctan 1.7w - arctan
{adO 1_ _7"

¢0
2¢'--

_O0
max(arctan 1.7w - arctan
_,o,¢,_ 1 - (--)2

_ao

rw)_0[deg] _< ¢ _<

rw) _r0 [deg]

(2.6)

for 0.2 < oo< 20

The minimum is attained for w0 = 2.122, _ = 0.707, and r --- 0.1. The

maximum is attained for w0 = 3.5214, { -- 0.5, and r = 0. Equation 2.6 is

equivalent to

(arctan 1.7w - arctan

to
2 * 0.707_

2.122
- 0.1 • w) :zl-l[deg]

2

1-(_)

(arctan 1.7w - arctan

_o

2 • 0.53.5214 )360. -
- _ "_-r[ deg]

1-(_)

<0<

(2.7)

for 0.2 < _o < 20

Another form of this requirement is the "YF-17" frequency-response crite-

rion [16]. It shows the matching of the high order system (HOS) pitch rate

to stick input with some gain and phase curves. This criterion includes a

constraint for the dcgain. Figures 2.4 and 2.5 show a comparison between

( dcgain*LOS ) and "YF-17" criterion. For our scheme dcgain=0.5697 at

the nominal point. Therefore gain and phase curves of

(1.7s + 1)e -_s and "YF-17". will be compared.
0.5697 • s2 2_s

w-"_+_+lwo
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Figure 2.4: Comparison between YF-17 criterion and analytic curve of dc-

gain*LOS. This is the gain spec. The YF-17 Level 1 region is indicated in black.
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5O
YF-17 Phase Cdterion (pitch axis)
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Figure 2.5: Comparison between YF-17 criterion and analytic curve of dc-

gain*LOS. This is the phase spec. The YF-17 Level 1 region is indicated in

black.
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The theoretical criterion, which considers the gain and phase limits for the

pitch rate (divided by dcgain), will be used in the optimization. The prac-

tical criterion "YF-17" will be shown as "check only" in the performance

chart, without any role in optimization. The dcgain option for gain is set

to 20"1og10(0.5697)=-4.8871 [dS].

YFGAspc and YFPHspc code:

closed-loop, input 1 pilot pitch command, output 3 pitch rate

soft constraint, w E [0.2, 20] Hz

7. RMS g's at the pilot caused by turbulence have to be minimized. Distur-

bance rejection is an important aspect of any control system, so there is

a soft constraint which takes care of errors due to random disturbances.

Berman and Grail [13] suggest that the sample rate selection for aircraft

autopilots should be done based on its effect on disturbance rejection and

discuss an application of digital design and sample rate determination to

pitch-plane control of the Grumman V/STOL Design 607A.

Disturbances enter a system with various characteristics ranging from steps

to white noise. For purposes of determination of sample rate, the higher

frequency random disturbances are the most influential; therefore, we will

concentrate on their effect. In other words, disturbances that are fast

compared to the plant and the sample rate will be compared. That is,

where the noise can be considered to be white.

In case the control system uses a good continuous controller, the magnitude

of the error response represents a lower bound on the magnitude of the

error response that can be hoped for when implementing the controller
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digitally. Somedegradation from the continuousdesignoccursbecauseof

the sampling. In order to analyze the degradationof the digital controller

as compared to the continuous controller, it is important to consider the

effect of the noise consistently,with both the continuous and the digital

controllers.

Supposethe systemis continuous and representedby

± = Ax + Bw (2.8)

where system matrices A and B describe a closed-loop system including a

continuous controller and w = [wlw2...Wn] w is the noise. Denote the power

spectral density of w as P_p_ (alternatively referred to as the "white-noise

intensity" or "mean-square spectral density"). Then the covariance matrix

of w is E[w(t)wW(t + _-)] = Rwpsd(_(T).

This assumes that the disturbance w(t) is white noise, which means that

w(t) and w(s) are uncorrelated for all t # s.

Typically, if there is more than one process noise component (i > 1),

one has no information on the cross-correlation of the noise elements and

therefore Rwpsd is selected as a diagonal matrix.

The steady state value of the covariance matrix of x is given by the Lya-

punov equation

AX + XA w + BP_psd BT = 0 (2.9)

The solution to this equation, X=E[x(t)xT(t)]) represents the amplitude

of the random response of the state due to the excitation from w. X

can be used to establish a baseline against which controllers are com-
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pared. For this particular problem the root mean square (RMS) value,

computed asthe squareroot of the steadystate valueof the covarianceof

y, v/(E[Cx(t)xT(t)CT]) = _/(CXC T) will be used. y is a scalar because one

particular output is considered, e.g. pilot g's. And Rwpsd is assumed to be

1.

The maximum RMS(root mean squared) must be less than 0.04 [8,9].

RMSlspc code:

closed-loop, input 2 white noise input to the Dryden wind gust model,

output 5 pitch acceleration (g's)

soft constraint

minimize RMS, Level 1/2 = 0.04, Level 2/3 = 0.1 where

X = lyap(A, S(:, 2) • S(:,2) T)

gVar = C(5, :) * X • C(5, :)T

RMS = _

It is also necessary to evaluate X when the system has a digital controller

for the identical excitation applied to the plant. Suppose the discrete

equivalent system is

x(k + I) = Adx(k) + Bdw(k) (2.10)

where the process noise w(k) is a random sequence with zero mean, that

is, E[w(k)] = 0, and has no time correlation or is "white noise",

E[w(i)wT(j)] = 0 if i _ j, and has covariances or "noise levels" defined by

E[w(k)w w (k)] = Rw. The desired result, called the discrete Lyapunov equa-

tion, is

AdXA T + G = X (2.11)
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where G- fWAd(T)Bl_psdBWAW(T)dT. If T, the sampling interval, is

much shorter than all system time constants, that is, Ad -_ I and Bd ----BT,

,,_ n.R,,,_nW BdP_B w [12]. In or-then the integral is approximately G -- _,d w _d _-

der to evaluate the effect of sample rate on the performance of a controller

in the presence of white plant disturbances, first Eq.2.9 should be evaluated

to find the baseline covariance X and then Eq.2.11 should be repeatedly

evaluated with varying sample rates to establish the degradation versus

sampling. The RMS value is the quantity that is typically measured. In

the discrete case, for the F-14 particular problem, the RMS value is com-

puted in MATLAB as follows:

X = dlyap(Ad, Bd(:, 2), Bd(:, 2)T/T)

gVar = Cd(5, :) * X • Cd(5, :)W

RMS =

Taking relatively fast sampling (twenty times the fastest frequency mode),

the RMS value is almost the same for both the continuous and digitized

system, so that either one can be used, in RMS computation. In case that

dt=l/50 and nominal design parameters are used rmScontinuous ---- 0.0367244

and

rmSdiscrete -- 0.0367230.

2.5 Setup of the Initialization File

Looking at the closed-loop eigenvalues at the nominal starting point, the fastest

r_d and thepair of eigenvalues is -9.84 -4- 9.57j, giving the largest w = 13.72 7_,

largest u -- 2.18 Hz. The sampling rate is chosen to be 50 samples per second.

46



epsilonF was set at 0.0002 (the default value) and 0 (machine precision), and

tests were made for both values.

The input signals InpSigl and InpSig2 are step signals, corresponding to 2

and 5.72 [deg]respectively.

2.6 Optimization

The F-14 optimization starting at two different initial points will be presented:

a satisfactory starting point found by Grumman using their quadratic-based

optimization system CASCADE, called the nominal point, and an arbitrarily

chosen point, called the trivial point given below:

dp_l = 1 @_5 = 1

@_2 -- 1 @_6 ----1

@_3= 1 @_7= 1

@_4 -- 1 @_8 = -1

In both cases CONDUIT was able to improve the performance and to deliver a

satisfactory result. The optimization results using two values for epsilonF are

shown in Table 2.1.

The optimal point achieved when the optimization started in the nominal

point and used epsilonF -- 0 was:

dp_l = 4.14184e + 00

@_2= 2.97359e + 00

@_3 = 3.93938e - 01

dpA= 8.22272e - 01

@_5 = 6.77324e - O1

@_6= -1.74871e + O0

@_7 = 5.28613e - 02

@-8= -3.86422e + O0
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Table 2.1: Comparison betweenthe optimal points obtained by CONDUIT for

the F-14 problem

Starting point Optimal using Optimal using

epsilonF=0 epsilonF-0.0002

Nominal MAX_COST MAX_COST MAX_COST

-0.503495 -1.2329 -0.955191

Trivial MAX _COST_SOFT MAX_COST.SOFT MAX _COST_SOFT

19.6509 0.0779831 0.376201

The optimal point achieved when the optimization started in the nominal

point and used epsilonF -- 0.0002 was:

dp_l = 4.19590e + 00

dp.2 = 3.03156e + 00

dp_3 = 4.25392e - 01

dp_4 = 8.41695e - 01

dp_5 = 6.84997e - 01

dp_6 = -1.69662e + 00

dp_7 = 8.74300e - 02

dp_8 = -3.87025e + 00

The largest percentage variation between these two optimal points is 65% for

dp_7, and the largest variation is 0.0580 for dp_2. These solutions are close one

to another.

The optimal point achieved when the optimization started in the trivial point

and used epsilonF -- 0 was:

dp_l -- 8.00974e - 01

dp.2 = 1.34126e + 00

dp_3 = 1.30245e + 00

dp_4 = 5.26028e - 01

dp_5 = 4.72042e - 01

dp_6 --7--3.33092e + 00

dp_7 = 2.20404e - 01

dp_8 = -1.45150e + 00
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The optimal point achievedwhenthe optimization started in the trivial point

and usedepsilonF - 0.0002was:

dp_l = 9.57795e - Ol

dp_2= 9.82241e - Ol

dp_3= 8.40876e - Ol

dp_4= 5.56358e - 01

dp_5 = 7.17266e - 01

dp_6= -1.70196e + O0

dp-7 = 4.88951e - 02

dp_8 = -1.07892e + O0

The largest percentage variation between these two optimal points is 350%

for dp_7, and the largest variation is 1.6290 for dp_6.

It can be seen in Table 2.1 that for the F-14 problem the results were better

when epsilonF-0 was used. The performance is presented in Figures 2.6-2.10,

In Figure 2.7 it can be seen that the objective function, pitch bandwidth and

time delay were improved at the expense of the tail rate soft constraint, which

was pushed to its border. The speed of the airplane response cannot increase

more, because this would violate the limit for the tail rate. Note that the YF-17

spec is check only. Thus, CONDUIT ignores the fact that the phase portion of

the spec is at Level 3.

In Figure 2.8 it can be seen that the objective was improved at the expense

of the attitude tracking soft constraint (Alpha error), which was pushed to its

limit. The previous comment on the YF-17 spec applies here as well.

In Figure ?? it can be seen that at the optimal point all objectives and con-

straints are Level 1 excepting two of them (Alpha error and Gain Requirement)

which exceed insignificantly the Level 1/2 border. Notice particularly that the

theoretical model-folloqcing spec is satisfied. It is this spec that was used, not

the YF-17, which is check only.
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Chapter 3

Antenna Problem

3.1 Description

Usually a controller for an antenna is tested for tracking errors when following

a command and for servo errors due to disturbances. The tracking and distur-

bance rejection properties have to be traded off. The feedback loop is effective

in suppressing the perturbation, but has weaker tracking properties. On the

other hand the feedforward controller has good tracking properties, confirmed

by both simulations and field measurements, but its ability to compensate the

perturbations is insufficient. When comparing the properties of feedback and

feedforward, one can conclude that by combining the two it is possible to im-

prove both tracking and disturbance rejection properties.

This problem is derived from a master's thesis example, [5]. The problem is

to design a servomechanism for controlling the line-of-sight (LOS) of an airborne

electro-optical device about a particular axis of rotation. The controller's most

critical function is to isolate the LOS from perturbations induced by aircraft

angular motions. So, only the feedback loop that assures perturbation rejection
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will be discussedin the following. Aircraft angular motions producedisturbance

torques which must be nullified by the servomechanism'storque motor. The

torque motor is driven from feedbackelementsmountedon the controlled device.

Theseelements,a rate-measuringgyroscope,and an angular accelerometerare

inertial in character and hencemeasureLOS in an absolutesense.

Unlike the F-14 problem, the concernof this designis not the precisionwith

which the system respondsto command inputs. Rather, the goal here is to

designa systemwhoseresponseto disturbanceinputs is minimized. The reader

may find other instructive contrasts to the F-14 problem:

1. As is typical in the servomechanisms field, where design via the time do-

main methods of modern control theory has never really taken hold, the

design criteria are specified completely in the frequency domain.

2. Because higher frequencies are of interest here, more so than in the F-14

problem, the design must consider dynamic characteristics of the actuator,

mechanical structure, and feedback transducers themselves. These become

part of the system "plant". These issues are also important in aircraft

SCAS and would be included in a more realistic SCAS design problem.

3. Because of the above and the corresponding increase in the complexity

of the specified form of the controller, the state dimension of the control

system is significantly higher.

4. Because the magnitude of the design parameters covers a much larger

range, the problem is normalized by use of the "variation" specification, a

feature of C-0 [1, pl.6] that is not presently implemented in CONDUIT.
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3.2 Block Diagram

Figure 3.1 is the block diagram of an antenna control system.

The components of the model are:

• antenna dynamics

• power amplifier and torque motor

• angular accelerometer and accelerometer filter

• rate gyroscope and gyroscope filter

• control system, consisting of a lead-integrator, quadratic low-pass filter

and quadratic lead-lag for the rate loop and lead-integrator and quadratic

lag-lead for the acceleration loop

The fixed parameter values of the plant shown in Figure 3.1 are:

km - 0.801 oz,i_.__v_,power amplificator and motor gain
Y

fm -- 796 Hz motor electrical bandwidth

J - 0.11 oz*in*s 2 gimbal inertia

fr -- 160 Hz gimbal resonance frequency

far = 122 Hz gimbal anti-resonance frequency

Zr - 0.015 gimbal structural zeta

V

asf = 0.291 _ accelerometer scale factor

fabw = 350 Hz accelerometer bandwidth

faf - 500 Hz accelerometer filter bandwidth

rsf = 2.263 v gyro scale factor
$

frbw - 75 Hz gyro natural frequency
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zrt = 0.7 gyro zeta

_- gyro filter gaingrfb = 10 v

frf = 482 Hz gyro filter bandwidth

There are eleven parameters that have to be chosen to meet the desired spec-

ifications:

kl = rate-loop integral gain

fl = negative of rate-loop lead pole

f2 = rate-loop second-order filter bandwidth

f3 = rate-loop second-order lead-lag filter lag frequency

f4 = negative of the acceleration-loop lead pole

f5 = acceleration-loop second-order lag-lead lag frequency

zl = rate-loop second-order lead-lag filter

z2 = acceleration-loop second-order lag

al = rate-loop second-order lead-lap filter

a2 = acceleration-loop second-order lag-lead filter

In order to simplify the block diagram the design parameters used by CON-

DUIT are formed from the previously listed parameters as indicated below:

dpp_l = k 1

dpp_2 = 2 • pi • f 1

dpp_3 = 2 • pi • f2

dpp A = 2 • pi • f3

dpp_5 = 2 • z l

dpp_6 = al 2

dpp_7 = k2
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dpp_8 = 2 * pi * ]4

dpp_9 = 2 * pi * f5

dpp_lO = 2 * z2

dpp_ll = a22

For this problem the design parameters are required to be positive. This insures

stability and minimum phase for the lead-lag compensator in the rate loop and

for the lag-lead compensator in the acceleration loop.

3.3 Performance Objectives and Constraints

The second part of the formulation of the control problem is the selection of

the specifications. The specifications are the same as those in [5] except that

two specs have been added. The specs have been rewritten in the appropriate

form for CONDUIT. All the speciications are summarized below. They are all

illustrated in Fig. 3.2.

Objectives

1. The objective is to minimize the motion of the LOS in response to a distur-

bance torque input. This minimization is to be achieved over a disturbance

frequency range from 0.1 Hz to 1000 Hz. The "good" and "bad" values for

this quantity are 60 and 120 microradians/oz • in, respectively.

torqspc code:

closed loop, input 1 disturbance torque, output 1 LOS motion

objective, w E [10 -1, 103] Hz

minimize, Level 1/2 [-60 microradians= 60][ _ ], Level 2/3 = [-80 120][raicr°radians]••oz*in J
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Constraints

1. Stability criterion of the total feedback system (i.e., with both feedback

paths active) is "all eigenvalues negative".

EigLcG1 code:

closed loop, from any input to any output

[a,b,c,d]=closed-loop model, unstab equals sum of positive eig(a) if there

are some positive eigenvalues or unstab equals max of negative eig(a) if all

eigenvalues are negative

hard constraint

minimize unstab : Level 1/2 = 0.001, Level 2/3 = 0.002

2. Stability margins of the feedback system are:

gain margin _> 6 [db]

phase margin :> 45 [deg]

StbMgG1 code:

open loop, input 3 broken-loop input, output 4 broken-loop output

hard constraint, w E [0.1,500] Hz

maximize gain: Level 1/2 = 6 [dB], Level 2/3 = 4 [dS]

maximize phase: Level 1/2 --- 45 [deg], Level 2/3 -- 35 [deg]

3. Stability margin of the rate feedback loop must be insured by limiting the

upper bound of the closed-loop gain.

RaGMspc code:

closed loop, input 2 gyro noise input, output 2 closed-loop rate gain

soft constraint, co E [10 °, 103] Hz

minimize, Level 1/2 - [0 1.4], Level 2/3 - [-0.5 1.8]
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4. Stability margin of the accelerationfeedbackloop must be insuredby lim-

iting the upper bound of the closed-loopgain.

AcGMspc code:

closedloop, input 1 disturbance torque, output 3 closed-loopacceleration

gain

soft constraint, w E [10, 104] Hz

minimize, Level 1/2 = [0 1.4], Level 2/3 = [-0.5 1.8]

5. Two constraints are also included which are related to the simulation and

not system performance itself. These involve the form of the two second-

order compensators, one within the rate loop and the other within the

acceleration loop.

The intent of the first such constraint is to insure a lead-lag form for the

rate loop compensator. This requires the constraint that al > 1.

RComspc code:

soft constraint

maximize dpp_6 - al 2, Level 1/2 = 1.01, Level 2/3 -= 1

6. The intent of the acceleration loop constraint is to compensate for the

structural anti-resonant-resonant characteristics of the gimbal. As such,

the second-order filter must be of a lag-lead form which is insured by

applying the constraint _2 > 1. For optimization it is better to use a

smooth performance criterion. After several trials it was determined that,

instead of using _ > 1, it is better to use 0 < a22 < 1, or 0 < dpp_l 1 < 1.

Denoting dp_ll as dpp_ll, the parameter is maintained positive. The

upper limit is required by this spec.
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Acmlspc code:

soft constraint

minimize dpp_11, Level 1/2 = 0.99, Level 2/3 = 1

3.4 Setup of the Initialization File

The performance chart of this problem does not contain time analysis, only

frequency analysis. Thus linear simulation will not be performed and there is no

need to specify dt. This problem is too fast (the fastest mode is 796 Hz for the

nominal starting point) to be practically simulated in time.

epsilonF was set at 0.0002 (the default value) and 0 (machine precision), and

tests were made for both values.

3.5 Optimization

For the antenna problem two starting points were considered. An acceptable

starting point, called the nominal point, and an unacceptable starting point,
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called the trivial point. The nominal point is definedby:

kl = 108 _-

fl

f2

f3

zl

al

k2

f4

f5

z2

a2

or equivalently approximately:

dpp_l -- 1.08000e ÷ 02

dpp_2 -- 5.40300e ÷ 01

dpp_3 = 2.62000e + 03

dpp_4 --- 1.57100e _- 03

dpp_5 - 1.41370e ÷ O0

dpp_6 = 4.00000e ÷ O0

V

= 8.6Hz

= 417 Hz

= 250 Hz

= 0.707 Hz

= 2

= 500 _-
V

= 796 Hz

= 120 Hz

= 0.1

- 0.817 Hz

dpp_7 = 5.00000e + 02

dpp_8 = 5.00132e + 03

dpp_9 = 7.54000e + 02

dpp_lO - 2.00000e - 01

dpp_ll - 6.67500e - 01
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and the trivial point by:

f3

zl

al

k2

f4

f5

z2

a2

or equivalently approximately:

dpp_l = 5.00000e + 01

dpp_2 = 3.14150e + 01

dpp_3 = 6.28300e + 02

dpp_4 = 6.28300e + 02

dpp_5 = 1.00000e + 00

dpp_6 = 2.25000e + 00

kl = 50 -_
Y

fl = 5.0 Hz

f2 = 100 Hz

= 100 Hz

= 0.50 Hz

= 1.5

= 200 z
V

= 200 Hz

= 100 Hz

= 0.50

= 0.667 Hz

dpp_7 = 2.00000e + 02

dpp_8 = 1.25660e + 03

dpp_9 = 6.28300e + 02

dpp_10 = 1.00000e + 00

dpp_ll = 4.44900e - 01

The optimization results are in Table 3.1. The optimal point achieved when the
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Table 3.1: Comparisonbetweenthe optimal points obtained by CONDUIT for

the antenna problem

Starting point Optimal using Optimal using

epsilonF=0 epsilonF=0.0002

Nominal MAX_COST_SOFT MAX_COST_SOFT MAX_COST_SOFT

0.201512 0.0132284 0.0138598

Trivial MAX. HARD MAX_COST_SOFT MAX_COST_SOFT

1.42554 2.26952 1.9644

optimization started in the nominal point and used epsilonF = 0 was:

dpp_l -- 1.08002e ÷ 02

dpp_2 -- 5.40251e + 01

dpp_3 = 2.62000e + 03

dpp_4 = 1.57100e ÷ 03

dpp_5 = 1.32943e ÷ 00

dpp_6 -- 3.98639e ÷ 00

dpp_7 = 5.00002e + 02

dpp_8 = 5.00132e + 03

dpp_9 = 7.54000e + 02

dpp_10 = 6.23329e - 02

dpp_ll = 6.20870e - 01

The optimal point achieved when the optimization started in the nominal point

and used epsilonF = 0.0002 was:

dpp_l = 1.08027e + 02

dpp_2 -- 5.39746e + 01

dpp_3 --- 2.62000e ÷ 03

dpp_4 -- 1.57100e ÷ 03

dpp_5 -- 1.30668e + 00

dpp_6 = 4.06439e ÷ 00

dpp_7 --- 5.00014e + 02

dpp_8 = 5.00132e + 03

dpp_9 = 7.54001e + 02

dpp_10 = 4.88735e - 02

dpp_ll -- 6.83348e - 01
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The largest percentagevariation betweenthese two optimal points is 21% for

dp_10,and the largest variation is 0.0780for dp_6.

The optimal point achievedwhen the optimization started in the trivial point

and usedepsilonF = 0 was:

dpp_l -- 5.02402e + 01

dpp_2 = 3.07500e + 01

dpp_3 = 6.28322e + 02

dpp_4 = 6.28306e + 02

dpp_5 = 6.93597e - 01

dpp_6 = 5.25785e + 00

dpp_7 = 2.00232e + 02

dpp_8 = 1.25660e + 03

dpp_9 = 6.28299e + 02

dpp_lO = 4.65478e - 01

dpp_ll = 1.01263e + 00

The optimal point achieved when the optimization started in the trivial point

and used epsilonF = 0.0002 was:

dpp_l = 5.18130e + 01

dpp_2 = 2.57491e + 01

dpp_3 = 6.28449e + 02

dpp_4 = 6.28578e + 02

dpp_5 = 5.85324e - 01

dpp_6 = 4.92225e + 00

dpp_7 = 2.02086e + 02

dpp_8 = 1.25658e + 03

dpp_9 = 6.28298e + 02

dpp_10 = 7.90417e - 01

dpp_l 1 = 1.00956e + 00

The largest percentage variation between these two optimal points is 69% for

dp_10, and the largest variation is 5 for dp_2.

It can be seen in Table 3.1 that for this problem the performance is better for

the optimization using epsilonF=0.0002.

The performance for the problem starting in the nominal point and optimized

with epsilonF--0.0002 is presented in Figure 3.2 and Figure 3.3. By inspecting

Figure 3.2 it can be seen that there is only one spec, AcGMspc, which does not
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satisfy Level 1 at the starting point and it is improved through optimization,

Figure 3.3.

The performancefor the problem starting in the trivial point and optimized

with epsilonF--0.0002is presentedin the Figure 3.4and Figure 3.5. By inspect-

ing Figure 3.4 and Figure 3.5 it canbe seenthat the stability margins improved

from the Level 3 (red zone)to the Level 1 (blue zone). The improved point has

gain margin-6 and phasemargin=45.5, beingnear the border of Level 1/2. The

gain in stability wasobtained at the expenseof a soft constraint, Acmlspc, that

couldn't be satisfied. Optimization changedthe unacceptable initial point to

an acceptableoptimal point. The unsatisfiedspec,Acmlspc, is not important,

becauseit is an artificial specthat requiresthe compensatorin the acceleration

loop to be lag-lead. Optimization showedthat for theseparametersa lead-lag

works better.

3.6 Optimization Attempts

As a cautionary note, one has to be very careful with the constraints.

Originally'the antenna problem didn't contain the EigLcG1 and StbMgG1

specs, and was optimized using a simplified performance chart containing only

five specifications: RaGMspc, AcGMspc, RComspc.m, Acmlspc, torqspc. Fig-

ure 3.6 and Figure 3.7 show the results of this optimization attempt. It can

be seen that even though the system is stable at the starting point, it is driven

to instability. This is obviously unsatisfactory, regardless of the values of the

specifications actually included in the problem formulation.

In addition to introducing the stability specs, another improvement done for
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this problem was the restriction that all designparametersbe positive. Oth-

erwise they can becomenegative, resulting in unstable or nonminimum phase

compensators.
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Chapter 4

Sensitivity

CONDUIT provides an optimal set of design parameters, 0, with respect to

the given specifications. But the remaining question is if the controller model

proposed by the designer is good enough. In a controller design problem, the

sensitivity issue occurs in several ways:

1. performance sensitivity to plant parameter changes

2. performance sensitivity to controller parameter changes

3. parameter sensitivity to small changes in the constraints

An analogous sensitivity question arises in maximum likelihood estimation

(MLE). Effective tools for analyzing sensitivity in the MLE situation are well

known [16]. These tools have been implemented in a software package for aircraft

identification and extensively tested and used [23].

The main focus of the work described here was on the extension of the MLE

ideas and methods to CONDUIT and the control design problem.
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4.1 The Different Forms of Sensitivity

4.1.1 Performance sensitivity to plant parameter changes

Changes in the plant parameters are very much like disturbance signals and

are generally addressed by insisting on robust controllers. Thus, the sensitivity

of the design to changes in plant parameters is covered by the specifications,

especially those relating to stability margins.

4.1.2 Performance sensitivity to controller

parameter changes

Min max optimization is trying to minimize the maximum objective (constraint)

at every iteration. This function is called MAX_ACTIVE in C-O. The MAX_ACTIVE

function, called MAX.HARD (see section 1.2) in phase 1, MAX_COST_SOFT

in phase 2, or MAX_COST in phase 3, is the function that is actually being

minimized. The possible situations when optimization stops are presented in

Figures 4.1-4.8. Note that, in these figures, specifications are indicated by thin

lines while the active spec (MAX_ACTIVE) is indicated by a heavy line.

• One or some hard constraints cannot be satisfied, and the optimization

stops in Phase 1, Figure 4.1 and Figure 4.2. For these cases, the sensitivity

computation is unnecessary, because a feasible set of parameters and an

optimal point do not exist.

• All hard constraints are satisfied, one or more soft constraints cannot be

satisfied, and the optimization stops in Phase 2, Figures 4.3-4.5.
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It is alsopossiblethat the optimization stopsin Phase2 whenan objective

competeswith a soft constraint. But in this situation the optimization

problem is not well formulated and it is better to changethat objective so

it is satisfied. This way the objective will allow the soft constraint to be

improved first, and then, in Phase3, the objectivewill be improved to its

best value.

In Figure 4.5 it can be seenthat in the regionwherethe

hard constraint > 1, (4.1)

MAX_ACTIVE equals the hard constraint even if there is a larger soft

constraint.

When the minimum is in Phase 2 the optimization is considered acceptable.

• When all hard and soft constraints are met, the optimization stops in Phase

3, as shown in Figures 4.6, 4.7, and 4.8.

Figure 4.8 shows a situation where the constraints are met (< 1), in the

region surrounding 0; MAX.ACTIVE equals the objective even if there is a

constraint with a larger value. This case, in which the optimization pushes

a constraint to its border by minimizing an objective is the most common

case.

When the minimum is in Phase 3 the optimization is considered satisfac-

tory.
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These minimum points can be characterized by considering the local geome-

try in two classes:

A) When the minimum occurs at a point similar to those shown in Figures

4.3 and 4.6, it is equivalent to the solution to an unconstrained optimization

problem. MAX_ACTIVE has:

• Gradient zero on all design parameter axes at the optimal point

• Hessian positive semidefinite at the optimal point

and J, the function used in sensitivity computation, equals MAX_ACTIVE.

B) When the minimum looks as in Figures 4.4, 4.5, 4.7, and 4.8

MAX_ACTIVE has:

• Gradient discontinuous on at least one design parameter axis

• Hessian undefined.

The sensitivity test implementation includes the gradient computation of all

optimization specs and of J, at the optimal point. In case the gradient of J

is zero, then the optimal point is case A) and insensitivities, correlations, and

Cram_r-Rao bounds can be computed as in section 4.2. In case the gradient of

J is discontinuous, then section 4.3 applies.

4.1.3 Parameter sensitivity to small changes in the con-

straints

The sensitivity of the optimal solution to small modifications in the constraints

is an important aspect of practical applications. The sensitivity theorem will be

presented in section 4.4.
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4.2

4.2.1

Sensitivity Tools for Use When the Gradi-

ent of MAX_ACTIVE is zero at the optimal

point

Insensitivity Ellipsoid

• Estimation

In estimation theory, the confidence region of an estimator is often evalu-

ated using the probability density function of the estimate, p$(O), i.e. the

probability that the estimated 0 is actually 0. If the maximum likelihood

estimation technique is used to estimate a parameter vector 0, this prob-

ability density function is approximately Gaussian, unbiased, and with

covariance matrix equal to M(0t)-l:

po(O) -_ [(2_r)"lM(0,)-l[ ]-l/2 exp{-_(O - Ot)r i(ot)(O - O,) } (4.2)

where M is the Fischer information matrix:

M(Ot) - E{[Vo, lnp(ZlOt)l[V_, lnp(ZlO,)lOt]} _- -E{V_, lnp(ZlO,)lO,}

(4.3)

where Z represents the observations and 0t denotes the true value of 0 [17].

The equation

(0- o,)ru(o_)(O -- Or) -- Constant (4.4)

describes isometric surfaces (ellipsoids) centered at 0t, with the same value

for the probability density. For Constant equal one, the volume integral

over the interior of the ellipsoid is 63.2% and is equal to the probability

that 0 lies within the ellipsoid. From the practical point of view Ot is not
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availableand the aboveellipsoidcannot bedrawn. This problem ishandled

by reversingthe roles of 8t and _, because M(_) can approximate M(St).

(8 - O)TM(_)(O - _) = 1

The ellipsoid defined by

(4.5)

is called the uncertainty ellipsoid. For maximum likelihood estimation,

if the negative log likelihood function J is:

1 N

J(8) = { _"_[2e(t,)- z(t,)] TR-'[So(ti) - z(t_)] (4.6)
/=1

the information matrix can be closely approximated by

N

H - __vesT(t_)R-'VTsa(t,) (4.7)
i=l

z is the observation vector, 5 is the predicted value of z if 8--t_, R is the

covariance matrix, N is the number of measurements of z. The H-matrix

is identical to the dominant term of the Hessian matrix V_J(8).

* Optimization

The estimation problem is to find the model parameters, 8, that minimize

the negative log likelihood function J. This function expresses the difference

between the predicted output based on t_ and the measured output.

The optimization problem is to find the controller parameters, _, that

minimize the MAX_ACTIVE function, denoted also by J. This function

expresses the difference between the predicted performance based on t_

and the desired performance. MAX_ACTIVE is called MAX_HARD in

Phase 1, MAX_COST_SOFT in Phase 2, or MAX_COST in Phase 3 of the

optimization. Because there is no probability in the optimization case

M(t_) - V_J(_). (4.8)
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For caseA) MAX_ACTIVE can be expandedabout/gt as follows:

J(O) = g(ot) + _(0 - ot)Tv_J(Ot)(O - Or) + 0((0 - 0t) a) (4.9)

at represents the parameters that achieve the best performance and 0 the

optimal parameters as determined computationally. Suppose that J(0)-

J(Ot) is less than some constant. This situation is referred to as a sub-

optimal solution. This can be sufficient where the exact optimum is not

required, but performance is required to be within a specified range of the

optimum. If higher order terms are ignored, this condition becomes

½(0- Ot)Tv_J(Ot)(O- Or) <_ Constant and can be approximately as before

Ot - o)Tv_J(O)(Ot - O) <_ Constant

with

(4.10)

This ellipsoid is essentially the same as the uncertainty ellipsoid if the con-

1
stant is chosen to be 5' But because it is described using MAX_ACTIVE

and not the negative log likelihood, we named it the insensitivity ellip-

soid.

In the CONDUIT optimization problem the fit error, V_J(0), often cannot

be approximated by H. If MAX_ACTIVE were computed as the sum of er-

rors of performance functions then the Hessian of MAX_ACTIVE could be

approximated by the sum of square gradients of all the optimization specs.

But MAX_ACTIVE is computed as the max error of performance func-

tions and shows the behavior of only one performance function at a time,

without any influence of the others. Thus the Hessian of MAX_ACTIVE

generally shows the curvature of only one performance function at a time.

Using the squared gradient of MAX_ACTIVE to approximate the Hessian
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frequently results in a singular matrix so the estimation theory approxi-

mation cannot be applied. These limitations do not apply if an objective

is formed by summing a collection of specs. It is recommendedthat the

summedobjective be usedin CONDUIT.

Moreover,if M is approximated with the sum of squaredgradientsor the

sum of Hessiansof all optimization specs,then there is not certitude that

M is positive semidefinite. The specsare randomly convex, concaveor

neither at the optimal point. But the Hessian of J is positive semidefinite,

as will be shown in section 4.2.5.

The insensitivity ellipsoid can be thought of as the result of minimizing

the MAX.ACTIVE. This minimization is a form of a sensitivity analysis

based on the principle that two values of _ cannot be reliably distinguished

unless they result in sufficient differences in the MAX_ACTIVE function.

Figure 4.9 shows the insensitivity ellipsoid in the case of two unknowns.

The interior of the insensitivity ellipse is shaded. Most of the concepts

discussed below can be illustrated by using such a two-dimensional ellipse.

Optimization problems solved with CONDUIT have typically more than

10 parameters; that is, the ellipsoid is more than 10 dimensional. Because

it is hard to visualize the information on the ellipsoid, there are three other

formats for displaying it: insensitivity, correlation, and Cram_r-Rao bound

[23].
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4.2.2 Insensitivity

Insensitivity is a measure of how much one parameter can be changed from the

achieved optimal value without causing the performance to degrade by more than

a given amount. To simplify the computation, J is approximated by its Hessian

(second order approximation), M, at the optimal point. This way, instead of

recomputing J for parameter changes, only two more evaluations in addition to

the optimal point evaluation are needed.

An expression for the insensitivity can be obtained from the equation for the

insensitivity ellipsoid, Equation 4.10. Investigate changes in 0 along the direction

of the ith parameter, that is 9- 0 = aei, where ei is a unit vector in the direction

of the ith parameter and a is an arbitrary scalar. To stay inside the ellipsoid,

the following must be true:

o_2eTMei _< 1 (4.11)

Since eTMei = Mii __ 0 because M is positive semidefinite (see section 4.2.5),

then

Iod< (Mii) -1/2 (4.12)

The maximum magnitude of c_ is given by the equality, which occurs at the inter-

section of the ei axis with the ellipsoid. This value is defined as the insensitivity

with respect to 0i. Figure 4.10 illustrates the geometric interpretation of the

insensitivity for a problem with two unknowns. For convenience, the origin has

been redefined to be the center of the ellipse, which is the maximum likelihood

estimate. The insensitivities of 01 and 0_ are labeled as I1 and/2.

Remark 1. The insensitivity is a reasonable measure of accuracy only when a

single parameter is being estimated, because it ignores any effect of correlation

between parameters. When several parameters are estimated, the error band is
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a result of both insensitivity and correlations. Insensitivity gives only the lower

bound for the error band, but correlation effects tend to increase the error band

so much that the insensitivity is virtually useless as an indicator of accuracy.

Remark 2. In order to compare insensitivities of different parameters to each

other, they must be scaled with the parameter values h
0i"

4.2.3 Cram6r-Rao Bound

The Cram_r-Rao bound is also based on the insensitivity ellipsoid [17]. The

standard deviation of the ith parameter is y/(M-1)ii. For maximum likelihood

estimates, the Cram_r-Rao inequality gives the approximation H -1 for the co-

variance matrix and the quantity _ is called the Cram_r-Rao bound. In

this thesis J is different from maximum likelihood estimation and the Cram_r-

Rao bound will be defined to be equal to the standard deviation. The Cram_r-

Rao bounds and insensitivities are closely related. While the insensitivity is

the conditional standard deviation of the parameter estimate, given that all the

other parameters are known, the Cram_r-Rao bound is the unconditional stan-

dard deviation. The insensitivity is _-1 and the Cram_r-Rao bound is

_/(M-1)ii. The geometric relationship between these quantities is the following.

The insensitivity is the solution to the following optimization problem: maximize

10i- 0i] while staying within the insensitivity ellipsoid and holding all of the other

parameters fixed. The Cram_r-Rao bound is the solution to the same problem

without holding the other parameters fixed. The removal of the restrictions on

the optimization is directly analogous to removing the statistical conditioning.

A two-dimensional plot of the geometric relationship between the two measures

is shown in Figure 4.10. The insensitivities of 01 and 02 are labeled I1 and/2,

91



while the Cram_r-Rao boundsare labeledCR1 and CR2.

The proof of the affirmation that the Cram_r-Rao bound is the solution to

the optimization problem above comes from the next theorem.

Theorem 4.1 Given a fixed vector y and a positive definite symmetric matrix

M, then the maximum of xTy, subject to the constraint that xTMx < 1, is given

M-I

by _/yTM-ly and the maximum is obtained for x - _.

Apply this theorem to the insensitivity ellipsoid, where y is e_, a unit vector

along the axis of the ith parameter, and x is 0 - _}. The maximum of 0i - _J, =

(O- O)rei is

_/eTM-'ei = _/(M-1)ii (4.13)

and this is CR/, the Cram_r-Rao bound. CR/is the largest projection on the 8,

axis of the vectors with origin in 0 and arrow on the ellipsoid. It is caused by

the vector :

O- O- M-'ei (4.14)

_/(M-1),i

This projection shows the largest error that can occur for 8z without affecting per-

formance. This largest error for 8i is unperceived only if all the other parameters

have particular values, so that together they form the vector 8 - 0 = M-le'

Remark 1. In order to compare Cramdr-Rao bounds of different parameters

to each other, they must be scaled with the parameter values, g-_R.

Remark 2. To see the correlations that may cause a big Cram6r-Rao bound,

CR/, the vector 0- 0 that has this projection on 8i must be decomposed in the

vector space formed by all insensitivities vectors:I1 * el, • .. In * en, where ei is

a unit vector along the axis of the ith parameter. This is equivalent to have an
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ellipsoid that cuts all axesat 1, all insensitivities being 1. Figure 4.11showsthe

projections pl, ... Pn.

0-0--

so that

M-lei

T-IM-I(:'i) (4.16)[al a2 ... a.]r = =

where M -1 (:, i) denotes the ith column of M -1 and T = diag[I1, I2,... In]. The

large components of (_cP_ show the parameters that are correlated with 0i. In

this case the table showing the correlations is not symmetrical.

We can compare the projections of the vector 0- t_ in the vector space

CR1 * el, ... CP_ * en, where el is a unit vector along the axis of the ith pa-

rameter. This is equivalent to having an ellipsoid that can be enclosed in an

n-dimensional hypercube with all sides 2, all CP_ being 1. Then the correlation

table is symmetrical, with all diagonal elements equal to 1. Both scalings (with

insensitivities and with Cram_r-Rao bounds) are equally good, and the first one

is presented in the example in subsection 4.2.8.

4.2.4 Eigenvalues and Eigenvectors

The parameter correlation can be seen also by studying the eigenvalues and

eigenvectors of M, normalized to have unity diagonal elements. The unnormal-

ized M matrix is of very little use in studying correlation, because scaling effects

tend to dominate. The normalization is done by dividing every row i and column

by y/-M-(i, i). The resulting ellipsoid will intersect every axis at 1, havingi the

insensitivity of all parameters equal 1.
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If A1, A2, ... An are the eigenvalues of the normalized M matrix, then the

diagonals of the ellipsoid are 27_-7. Small eigenvalues of the normalized M matrix

indicate correlations among the parameters with significant components in the

corresponding eigenvectors.

Eigenvalues and eigenvectors values of the Hessian of MAX_ACTIVE are

interpreted in the context of parameter correlation in an example at the end of

subsection 4.2.8.

4.2.5 Positive Semidefiniteness

In order to compute the Cram6r-Rao bounds, a positive definite M is necessary.

The question is if the Hessian of MAX_ACTIVE is always positive. The answer

is usually yes, but under certain circumstances it could also be zero.

As can be seen in Figure A), the Hessian is positive definite. It is also pos-

sible that MAX_ACTIVE reached a minimum in some direction, but does not

change at all in some other directions.

If MAX_ACTIVE is completely insensitive in a direction that coincides with a

parameter axis, then the insensitivity ellipsoid is degenerate on that parameter

axis, Figure 4.12. Therefore the Hessian is singular, insensitivity is infinite for

that parameter and the Cram6r-Rao bounds are also infinite. This may happen

because that parameter does not change locally, an acceptable behavior, or glob-

ally, in which case it should be eliminated.

If MAX_ACTIVE is completely insensitive in a direction that does not coin-

cide with a parameter axis, then the insensitivity ellipsoid is degenerate in that

direction, but still cuts the axes, Figure 4.13. Therefore the Hessian is also sin-

gular, insensitivities are finite, and the Cram6r-Rao bounds are infinite. This
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showscorrelation, and one of the parametersinvolved in the correlation should

be eliminated.

4.2.6 Hessian Formulae

To compute the Hessian one can use, among others, the following three methods:

• Method one (faster):

Hessjk(f,h) _ ½
f f(x i + h, mk+ h) - 2f(xj,xk) -+ f(x_ - h, xk -- h)

h 2

_f(x: + h, xk) - 2f(x:,xk) + f(x i -- h, xk)
h _

f(x ,x, + h)- 2f(x ; k)h+ f( J'xk- h)J
(4.17)

For this method one needs in general N 2 + N function evaluations, where

N is the number of the parameters. First the diagonal terms are evaluated

using 2 • N function evaluations and then the upper diagonal elements

needs only N 2 - N function evaluations.

The truncation error for off-diagonal elements is

h2 [2 04 04_(x_, xk) + 3 04L Oz_j_.k(z_,zk)+ 2_(Z,,Zk)]+

Higher order terms

(4.18)

The truncation error for diagonal elements is

+ Higher order terms

The roundoff error for off-diagonal elements is

12elf

2h 2

(4.19)

(4.20)

The roundoff error for diagonal elements is

4elf

h 2
(4.21)
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• Method two (slower):

HeSSjk(f,h)_ [f(xj + h,xk + h)_hJ(X_ + h,xk - h)l
(4.22)I. J

[f(xl - h, zk + h)4h2- f(z$ - h, zk - h)]

For this method one needs in general 2 • N 2 function evaluations, where

N is the number of the parameters.

The truncation error for off-diagonal elements is

[ _f (xj,xk)]+Higherorderterms (4.23)h2 _f (zj,xk) + OxjOx_6 Ox3_x_

The truncation error for diagonal elements is

-._ + Higher order terms (4.24)

The roundoff error for off-diagonal elements is

4elf (4.25)
4h 2

The roundoff error for diagonal elements is

4_If

h 2
(4.26)

• Method three:

Hessjk (f, hi, hk) f(x$ + h$,xk + hk) - f(x_ + h_,xk - hk)]4hjhk J

t[f(xJ -- h_, xk + hk)4hjhk-f(x_ - h_, xk - hk)]

(4.27)

where hj = h • max(l, abs(xj)).

For this method one needs in general 2 • N 2 function evaluations, where

N is the number of the parameters.
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The truncation error is

Oz3Ozk (zj, zk) + h2 04f (x d,xk)] + Higher order terms (4.28)60z_Oz_

h for the Hessian equations is computed in subsection 4.2.7.

Comparing the first two methods, it can be seen that for h of the order

of machine precision, they are almost equivalent. In the CONDUIT case, h is

bigger because the performance accuracy is lower. A good choice for h will be

seen in the next subsection. For a bigger h, the second method for computing

the Hessian is more accurate than the first one. Both the truncation error

and the roundoff error are smaller for the second case. The truncation error

84

of method one includes the term _(xj,xk). This term is usually bigger

84 84
than _(xd,xk ) or _(xj,x_) because it contains lower-order partials in

any parameter. In case that the third order partials are zero, this term may

still exist. The strength of the second method consists in its symmetry. Both

the first and the second method were coded and tested. The second method is

recommended and used in the example presented in subsection 4.2.8.

4.2.7 Results on Accuracy of Hessian Computation

There are two sources of error in Hessian equations: truncation error and round-

off error [18].

• The roundoff error: With h exactly representable, one has a roundoff

error in method 2:

4eff (4.29)
er _ 4h----T

where eI is the fractional accuracy with which f is computed.
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• The truncation error:

h _ [04f(xj, xk)
_t ,_ T L OzjOz_

o'f(xj,
+ J + °(h4) (4.30)

To minimize er + et, e,. = et. Therefore the optimal choice for h is

h = = (_i)l/4xc (4.31)

where xc ,_ (f/f'"')1/4 is the "curvature scale" of the function f, or "character-

istic scale" over which it changes. In the absence of any other information, one

often assumes x_ = x (except near x = 0).

In the CONDUIT case h = (0.0002) (1/4) = 0.1189.

Remark 1. In order to have eI = 0.0002 precision for specs they have to be read

from the Pcomb chart with at least 4 significant digits instead of 2, and we made

this modification in pcomb.c.

4.2.8 Example

An example of the case where the gradient of MAX_ACTIVE is zero is the opti-

mal point found for the F-14 problem, starting at the trivial point and optimizing

with epsilonF = 0.0002. The Pcomb chart shows that the optimal point is the

local minimum of the spec aerrspc, which does not compete with any other spec,

as can be seen in Figure 4.14:

The sensitivity analysis was done for this point, using the second method for

the Hessian computation and step h=0.1189. The results found are displayed in

Figures 4.15, 4.16, and 4.17.
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Figure 4.14: Grumman F-14, performance display in the Pcomb chart
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The largest Cram_r-Rao bound corresponds to dp_7 and this is a consequence

of a large insensitivity of the performance to this parameter. For the F-14

problem this does not necessarily mean that dp_7 is unimportant, but there is

no spec to drive the parameter in this phase of the CONDUIT design run. dp_7

is the time constant in the stick prefilter and it is tuned to reject the noise added

to the pilot command. Because in this simulation there is no noise added to

the cockpit, performance is insensitive to dp_7. Sometimes a parameter appears

insensitive because the solution is very robust in that parameter at the optimal

point.

A much more reliable result is the correlation result. Figure 4.17 shows the

correlation of design parameters having Cram_r-Rao bounds larger than 20%.

Every shown column corresponds to such a parameter and shows the correlations

of this parameter with all the other design parameters. For this particular case

dp_3, dp_6, dp_7, and dp_8 have Cramdr-Rao bounds larger than 20% and they

are analyzed for correlation. As was explained, dp_7 has Cram_r-Rao bound large

as a consequence of its insensitivity. But the others are sensitive parameters and

their large Cram_r-Rao bounds are a consequence of their correlations. Figure

4.17 shows that :

- dp_3 is correlated to dp_8

- dp_6 is correlated to dp_7 and dp_8

- dp_8 is correlated to dp_6, dp_3 and dp_7.

This suggests that the elimination of dp_8 may be a good approach, dp_8 is the

integrator gain and dpA and dp_5 can do its job.

For the same optimal point we computed the eigenvalues and the eigenvec-

tors of the scaled Hessian of the MAX_ACTIVE. The eigenvalues are shown
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Figure 4.18: Grumman F-14, Hessian's eigenvalues in the optimal point

in Figure 4.18 The corresponding eigenvectors are displayed in Table 4.1. The

eigenvalues plot shows that the largest eigenvalues are the seventh and eight,

corresponding to dp_7 and dp_8. In the eigenvectors Table 4.1, every column is

an eigenvector corresponding to a dp and shows the correlation of the dp with

all the others. Note that dp_7 is highly correlated to dp_6 and that dp_8 is cor-

related to all dp's but dp_7. These results are in accordance with the results of

the Cram6r-Rao ellipsoid.
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Tablq 4.1: Grumman F-14, Hessian's eigenvectors in the optimal point

1

vector

0.5401

-0.3502

-0.4322

0.3676

0.4760

-0.0445

0.1874

-0.0020

2 3

vector vector

-0.2344 0.1045

0.1593 -0.1088

-0.5166 0.1063

0.0898 0.7463

-0.3160 -0.5830

-0.2497 0.0209

0.3423 -0.2363

-0.6044 0.1132

4

vector

0.6348

0.7643

0.0336

-0.0468

-0.0851

0.0013

-0.0159

-0.0454

5

vector

-0.1139

0.1073

0.5737

0.3785

0.3545

0.2438

0.2613

-0.4997

6

vector

-0.0877

0.1112

0.2556

0.1420

0.0379

-0.6692

0.5206

0.4174

7

vector

0.1197

-0.1182

-0.0098

-0.1344

-0.3376

0.5790

0.6723

0.2289

8

vector

-0.4522

0.4670

-0.3733

0.3408

0.2922

0.3045

-0.0192

0.3788

4.3 Gradient of MAX_ACTIVE is discontinu-

ous at the optimal point

Consider the case of the constrained minimization problem

minimize f(x)

subject to h(x) = 0 (4.32)

g(x) < o

/:

X*.

the optimization stopped in Phase 1 or Phase 2, when not all hard and soft

constraints are satisfied, then the following discussion does not apply. It is true

only for optimal points that satisfy all the constraints.

If the optimal point x* is found in case B), the gradient of MAX_ACTIVE

R" -+ R,h : R" --_ R_,g : R _ --+ R p, all C 1, and the optimal point

In case that there are more objectives, f(x) is the maximum of them. If
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is discontinuous, but the gradients of the objective and constraints satisfy the

Kuhn-Tucker Conditions [21][22].

Definition 4.1 [21] Let x* be a point satisfying the constraints

h(x') = O, g(x*) < 0 (4.33)

and let J be the set of indices j for which gj(x*) = O. Then x* is said to be

a regular point of the constraints 4.33 if the gradient vectors Vh,(x*), Vgj(x*),

1 < i < m, j E J are linearly independent.

Theorem 4.2 (Kuhn-Tucker Conditions) [21] Let x* be a local minimizer

for the problem 4.32 and suppose x* is a regular point for the constraints. Then

there is a vector A E P_ and a vector p E R_ with Iz > 0 such that

Vf(x*) + AVh(x*) + pVg(x*) = 0 (4.34)

#g(x*) = 0 (4.35)

h(x*) =0 (4.36)

The Kuhn-Tucker Conditions still hold when the regularity conditions for x*

are replaced by a weaker condition, i.e. the Kuhn-Tucker constraint qualification

(KTCQ) satisfied at x* [22]:

coTC(x',gl) = {h I < Vgj(x*),h ><_ 0 Vj • J(x*)}(= S(x'))

where the tangent cone is defined by:

TC(x,D) = {h • R" I 3o(),_ > 0 s.t.

vt • (0,t-I,  0as t - 0,t > 0}

x + th + o(t) • f2
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and _ is definedby Equation 4.35and Equation 4.36, co(X) is the union of all

convex combination of finite subsets of X, and S(x*) is called the set of "first-

order feasible " direction [22].

By inspecting Equation 4.34 for the very simple and frequent case when at

the optimal point the objective pushes one constraint to its border,

Vf(x*) + #jVgj(x*) = O, j E J(x*)

it can be seen that the scalar product of the two normalized gradients is #j = -1.

In this case the other components of #, corresponding to non-active constraints,

are zero. Analyzing the normalized gradients of the objectives and constraints

at the optimal point, the active constraints can be recognized.

In case that there are more active constraints at the optimal point, their gradients

satisfy Equation 4.34, but it is harder to identify them among all the active

and non-active gradients. When the analytical formulae for the objectives and

constraints are known the solution of the system can be found by defining various

combinations of active constrains, solving the system of n+p+m equations with

n+p+m unknowns, and checking the signs of the resulting Lagrange multipliers.

#j must be positive or zero.

Second-Order Conditions exist also for problem 4.32 at the optimal point.

Theorem 4.3 (Second-Order Necessary Conditions) [21] [22] Suppose

the functions f, g, h E C 2 and that x* is a regular point of the constraints 4.33.

If x* is a local minimizer for problem 4.32, then there is a _ E R m, # E R p,

# > 0 such that Equations .4.34 and 4.35 hold and such that

02L . ,
< t,_x2(X ,)_,#)t >> 0 (4.37)
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on the tangent subspace of the active constraints at x*, with

L(x, A,#) = f(x) + Ah(x*) + #g(x')

These conditions reveal the existence of a positive semidefinite Hessian on the

tangent subspace:

Oh

Vte {_xx(X*) t - 0, < Vgj(x'),t >= 0 Vj e J(x*)} (4.38)

Testing if the Hessian of the Lagrangian L can be used instead of the Hessian

of MAX_.ACTIVE in computation of the Cramdr-Rao bounds, insensitivities,

and correlations, in a constrained optimal point, remains a suggestion for future

work.

4.4 Parameter sensitivity to

constraints

small changes in

A sensitivity theorem exists to make sure that in the usual cases (functions are

C 2) if an optimal solution satisfying all the constraints exists, then after small

variations of the constraints an optimal solution continues to exist.

Theorem 4.4 [21] [22] Let f, g, h E C 2 and consider the family of problems

minimize f(x)

subject to h(x) = c (4.39)

g(z) < d

Suppose that for c=O, d=O, there is a local minimizer x* that is a regular point

and that, together with the associated Lagrange multipliers, A, _ >_ O, satisfies the
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second-order sufficiency conditions for a strict local minimum. Assume further

that no active inequality constraint is degenerate. Then for every (c, d) E R m+p

in a region containing (0,0) there is a solution x(c,d), depending continuously

on (c,d), such that x(O, O) = x*, and such that x(c,d) is a local minimum point

of 4.39. Furthermore,

vd(x(o, o)) =

Vd(X(O, 0)) ---- --_

(4.40)

(4.41)
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Part IV

Conclusions and Suggestions for

Future Work
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In this report, two multivariable control system designproblems were ana-

lyzed and optimized using CONDUIT. This sectionwill summarizethe conclu-

sions that are drawn from the results presentedin Chapter III and then suggest

possiblepaths of continued research.

First we must emphasizethat CONDUIT is an invaluable tool for aircraft

control systemdesigndesign,that allowsa quick analysisand designof different

control problems. Every changein the designcan be executedinstantaneously

becausethere is no needfor codewriting.

Although the two discussedproblemsare very different, they were satisfac-

torily optimized. The systemin the F-14 problem is a rather slow system and

was analyzed especially in the time domain, while the system in the antenna

problem is fast and wasanalyzedonly in the frequencydomain.

Beforestarting the optimization processthe modelsand the specificationshad

to be changedas follows:

• F-14 problem: the block diagram was improved by adding a wind gust

model and the performance chart was supplemented with three specs -

Bandwidth & Time delay, RMS g's at the pilot caused by turbulence, and

the eigenvalues test

• Antenna problem: stability was insured by adding an eigenvalues test spec

and stability margins spec, and by requiring positive design parameters.

The value of the discretization sample rate for the time simulation, the value

of the gradient step-size, and different initialization points were tested. The

sensitivity issues were addressed. The performance sensitivity to controller pa-

rameters changes was detailed and parameter insensitivity and correlation were
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derived asan approximation of the estimation theory. Thesewereillustrated for

an optimal point achievedfor the F-14 problem.

Someproblemsstill remain open and should be addressedin future works:

• How can changesin the sample rate affect the optimal designand how

sensitive is the optimal design to them ?

• Why does the optimal point vary slightly when starting the optimization

in different points close to each other ?

• Is it possible to use the gradients or the Lagrangian instead of the Hessian

of J in the constrained optimal point to compute Cramdr-Rao bounds,

insensitivities, and correlations of the parameters ?
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