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Design of a Novel Gaseous Hydrogen-
-~ Oxygen Rocket Injector Element

 PURPOSE: To Find a Viable Design for a Rocket
Gas-Gas Injector that Mixes Fuel & Oxidizer
Thoroughly and Quickly

« METHOD: Use CFD Analyses with Reacting Flow to
Evaluate Design Options for Mixing, Temperature
Distribution, and Combustion Efficiency

« RESULT: Found a Design that is an Improvement
Over Designs Derived from Liquid Systems and is
Far, Far Better than Traditional Shear-Coax
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Application

 NASA Advanced Reusable Transport (ART) Program

» Aerojet Rocket-Based Combined Cycle (RBCC)
Engine Uses Rockets Combined with Ram and
Scram Cycles to Achieve Single-Stage to Orbit

 Many Small Hydrogen-Oxygen Thrusters in Base
Area of Engine Struts Provide Initial Thrust to Mach
- 2+ and Acceleration from Mach 8-10 to Orbit
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NASA/Aerojet RBCC Engine Concept

Rocket Detail —,

Strutjet Engine
Rocket Modules
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Requirements

e Full-Scale Rocket Provides ~4000 LBF Thrust with 90
Elements

 Sub-Scale Rocket Provides ~140 LBF Thrust with 18
Elements at 40% Scale

* Must Operate at Pc = 2000 PSIA, Mixture Ratio
(Oxidizer / Fuel Mass Ratio) =7

« Mixing and Combustion Should be Completed as
Quickly as Possible

 Injector has to Survive Many Duty Cycles, Extended
Operation
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Typical Sub-Scale Injector Face

D=0.5iIn
A =0.196 in?

Injector Element
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Major Features of Investigation

e 3D Simulations with Fluent/UNS 4.1 and 4.2

e Standard k-epsilon Turbulence Model (initially walls
were not an important consideration)

 Chemistry Modeled Using PDF (Probability Density
Function) Approach

8 Different Geometries with Gas-only Simulations

* 1 Model of Solid Injector Face with Propellant
Manifolds and Conjugate Heat Transfer
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PDF Temperatures vs. Mixture Fraction
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PDF Species vs Mixture Fraction
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Gas-only Results

* Generally, Combustion is 95-98% Complete Within
1/2 Inch of Injector Face (Except for Coax Design)

* Coax Simulation was 2D, both Steady-State and
Time-Dependent

 Combustion Results Similar for Steady-State and
Time-Dependent Solutions

* Model #7 Selected for Further Analysis Based on
Combustion Efficiency and Gas Temperatures Near
Face
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Description of Models

« MR =7, 0.02 Ibm/sec/injector O,, .00287
Ibm/sec/injector H,

« Varied Injector Orifice Sizes, Impingement Angles,
Geometries

* Generally, Modeled Small Part of One Injector
Element as Allowed by Symmetry for Distance of 0.5
inch Downstream of Face

» Used Unstructured Tetrahedral Meshes with Pyramid
Cells at Wall Boundaries to Resolve Boundary Layers
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CFD Gas-only Models & Results
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Needed to Predict Face Temperatures of
Selected Design (#7, Pentad)

 [njector Face Fabricated Using Aerojet Platelet
Technology from Zirconium-Copper Alloy

» Begins to Lose Mechanical Strength at 1300 °R
 Melts at 2436 °R (Liquidus Temperature)
» Solidifies at 2256 °R (Solidus Temperature)

* Density, Heat Capacity, and Conductivity Taken from
Fluent/UNS Database for Pure Copper

» Customer Expressed Strong Misgivings About
Survival of Injector Face - Predicted Face
Temperatures of 1940 to 2140 °R
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Pentad Gas Temperatures (°R)
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Pentad Propellant Pathlines
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Pentad Solid Temperatures (°R)
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Manifold Surface Temperatures (°R)
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Pentad Surface Temperatures (°R)

Tl Rear View
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Fluent/UNS Predicts Survival

1 BTU/sec = 1055 Watts
e One Element Absorbs ~0.15 BTU/sec

« Peak Heat Flux into Face is ~90 BTU/sec-in?,
Average is ~15 BTU/sec-in?

« Peak Heat Flux into Propellants is ~15 BTU/sec-in?,
Average is ~3 BTU/sec-in?

* Predicted Face Temperatures of 900-950 °R
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Pentad Heat Flux (BTU/sec-in2)
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Heat Flux to Propellants (BTU/sec-in2)
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Testing Confirms Survival of Element

Element Was Fabricated

Tested at Aerojet for ~5 Seconds at Approximately
1500 PSIA |

Tested at NASA for ~60 Seconds at Varying
Pressures and MR’s

Size of Element Made Detailed Measurements of
Temperatures and Fluxes Impossible

Deposits on Face Determined to be Stainless Steel
(probably from O, supply)

Edges Are Sharp, No Measurable Erosion
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Pentad Uni-Element (pre-test)
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Pentad Uni-Element (post-test)

ocket Based Combined Cycle - Aeroje
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Fluent L

SEM Images of Pentad (post-test)
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Conclusions

 CFD Analyses Were an Essential Part of the Design
Process

 CFD Provided Database for Understanding Mixing
and Combustion Phenomenology of H,/O, System at
High Pressure

« CFD with Conjugate Heat Transfer Predicted Survival
of Injector Face

 Element Has Been Incorporated into Working Sub-
Scale Thrusters and RBCC Engine

« Six Thrusters Have Accumulated About 800 Starts
and 3900 Seconds of Operation Without Failure
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