FY 1998 Scientific and Technical Reports, Articles, Papers, and Presentations

Compiled by
J.E. Turner Waits
Marshall Space Flight Center, Marshall Space Flight Center, Alabama
FOREWORD

In accordance with the NASA Space Act of 1958, the MSFC has provided for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof.

Since July 1, 1960, when the George C. Marshall Space Flight Center was organized, the reporting of scientific and engineering information has been considered a prime responsibility of the Center. Our credo has been that "research and development work is valuable, but only if its results can be communicated and made understandable to others."

The N number shown for the reports listed is assigned by the Center for AeroSpace Information (CASI), Hanover, MD, indicating that the material is unclassified and unlimited and is available for public use. These publications can be purchased from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161. The N number should be cited when ordering.
FY 1998 Scientific and Technical Reports
Articles, Papers, and Presentations

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA Technical Memoranda</td>
<td>1</td>
</tr>
<tr>
<td>NASA Technical Publications</td>
<td>7</td>
</tr>
<tr>
<td>MSFC Conference Publications</td>
<td>11</td>
</tr>
<tr>
<td>NASA Contractor Reports</td>
<td>12</td>
</tr>
<tr>
<td>MSFC Papers Cleared for Presentation</td>
<td>15</td>
</tr>
<tr>
<td>Index</td>
<td>59</td>
</tr>
</tbody>
</table>
The objective of this research project was to examine processing and design parameters in the fabrication of composite components to obtain a better understanding and attempt to minimize springback associated with composite materials. To accomplish this, both processing and design parameters were included in a Taguchi-designed experiment. Composite angled panels were fabricated, by hand layup techniques, and the fabricated panels were inspected for springback effects. This experiment yielded several significant results. The confirmation experiment validated the reproducibility of the factorial effects, error recognized, and experiment as reliable. The material used in the design of tooling needs to be a major consideration when fabricating composite components, as expected. The factors dealing with resin flow, however, raise several potentially serious material and design questions. These questions must be dealt with up front in order to minimize springback: viscosity of the resin, vacuum bagging of the part for cure, and the curing method selected. These factors directly affect design, material selection, and processing methods.

Low velocity dropweight impact tests were conducted on carbon/epoxy laminates under various boundary conditions. The composite plates were 8-ply (+45, 0, -45, 90)s laminates supported in a clamped-clamped/free-free configuration with varying amounts of in-plane load, Nx, applied. Specimens were impacted at energies of 3.4, 4.5, and 6 Joules (2.5, 3.3, and 4.4 ft-lb). The amount of damage induced into the specimen was evaluated using instrumented impact techniques, x-ray inspection, and cross-sectional photomicroscopy. Some static indentation tests were performed to examine if the impact events utilized in this study were of a quasi-static nature and also to gain insight into the shape of the deflected surface at various impact load combinations. Load-displacement curves from these tests were compared to those of the impact tests, as was damage determined from x-ray inspection.

The finite element technique was used to model the impact event and determine the stress field within the laminate.

Results showed that for a given impact energy level, more damage was induced into the specimen as the external in-plane load, Nx, was increased. The majority of damage observed consisted of back face splitting of the matrix parallel to the fibers in that ply, associated with delaminations emanating from these splits. The analysis showed qualitatively the results of impact conditions on maximum load of impact, maximum transverse deflection, and first failure mode and location.

The International Space Welding Experiment is a joint project between the E.O. Paton Welding Institute of Kiev, Ukraine and the George C. Marshall Space Flight Center in Huntsville, Alabama. When an international partner is involved in a project, differences in design and testing philosophy can become a factor in the development of the hardware. This report addresses selected issues that arose during the ISWE hardware development as well as the solutions the ISWE team made.

As a research facility for microgravity science, the International Space Station (ISS) will be used for numerous investigations such as protein crystal growth, combustion, and fluid mechanics experiments which require a quiescent acceleration environment across a broad spectrum of frequencies. These experiments are most sensitive to low-frequency accelerations and can tolerate much higher accelerations at higher frequency. However, the anticipated acceleration environment on ISS significantly exceeds the required acceleration level. The ubiquity and difficulty in characterization of the disturbance sources precludes source isolation, requiring vibration isolation to attenuate the anticipated disturbances to an acceptable level. This memorandum reports the results of research in active control methods for microgravity vibration isolation.
Living Together in Space: The Design and Operation of the Life Support Systems on the International Space Station, VOL I. EO. Wieland. Structures and Dynamics Laboratory. 19980037427N

The International Space Station (ISS) incorporated elements designed and developed by an international consortium led by the United States (U.S.), and by Russia. For this cooperative effort to succeed, it is crucial that the designs and methods of design of the other partners are understood sufficiently to ensure compatibility. Environmental Control and Life Support (ECLS) is one system in which functions are performed independently on the Russian Segment (RS) and on the U.S./international segments. This document describes, in two volumes, the design and operation of the ECLS Systems (ECLSS) on board the ISS. Volume I is divided into three chapters. Chapter I is a general overview of the ISS, describing the configuration, general requirements, and distribution of systems as related to the ECLSS, and includes discussion of the design philosophies of the partners and methods of verification of equipment. Chapter II describes the U.S. ECLSS and technologies in greater detail. Chapter III described the ECLSS in the European Attached Pressurized Module (APM), Japanese Experiment Module (JEM), and Italian Mini-Pressurized Logistics Module (MPLM). Volume I1 describes the Russian ECLSS and technologies in greater detail. These documents present thorough, yet concise, descriptions of the ISS ECLSS.

A test program to determine the tribological properties of several self-lubricating composites was performed. Testing was done using an LFW-1 Friction and Wear machine. Each material was tested at four load levels (66 N, 133 N, 266 N, and 400 N) under ambient conditions. The coefficient of friction and wear rate was determined for each material, and a relative ranking of the composites was made.

Measurement of Damping of Composite Materials for Turbomachinery Applications (MSFC Center Director’s Discretionary Fund Final Report, Project No. 94–05). D.L. Harris. Structures and Dynamic Laboratory.

The scientific community has felt that ceramic matrix composite (CMC) materials possess more material damping than the superalloys used in the production of rocket engine turbomachinery turbine-end components. The purpose of this NASA/MSFC study is to quantify the damping in CMC's as compared to a typical superalloy, Inconel 718. It was observed through testing of beam coupons and disk specimens that the CMC's do indeed possess more material damping than the baseline alloy Inconel 718.

High Performance, Robust Control of Flexible Space Structures (MSFC Center Director’s Discretionary Fund Final Report, Project No. 96–23). M.S. Whorton. Structures and Dynamics Laboratory. 19980137576N

Many spacecraft systems have ambitious objectives that place stringent requirements on control systems. Achievable performance is often limited because of difficulty of obtaining accurate models for flexible space structures. To achieve sufficiently high performance to accomplish mission objectives may require the ability to refine the control design model based on closed-loop test data and tune the controller based on the refined model. A control system design procedure is developed based on mixed $H_2/H_{∞}$ optimization to synthesize a set of controllers explicitly trading between nominal
performance and robust stability. A homotopy algorithm is presented which generates a trajectory of gains that may be implemented to determine maximum achievable performance for a given model error bound. Examples show that a better balance between robustness and performance is obtained using the mixed H_∞/H_∞ design method than either H_∞ or mu-synthesis control design. A second contribution is a new procedure for closed-loop system identification which refines parameters of a control design model in a canonical realization. Examples demonstrate convergence of the parameter estimation and improved performance realized by using the refined model for controller redesign. These developments result in an effective mechanism for achieving high-performance control of flexible space structures.

TM—1998–207979 May 1998

Conditions under which molten metal detachments might occur in a space welding environment are analyzed. A weld pool detachment parameter specifying conditions for pool detachment by impact is derived and corroborated by experimental evidence. Impact detachment for the pool is unlikely. Impact detachment for a drop of metal on the end of the weld wire may be possible under extreme conditions. Other potential causes of molten metal detachment considered, vaporization pressure forces and wire flickout from the pool, did not appear to present significant detachment threats.

TM—1998–208181 May 1998

This technical memorandum reports on the mirror material properties that were compiled by NASA Marshall Space Flight Center (MSFC) from April 1996 to June 1997 for preliminary design of the Next Generation Space Telescope (NGST) study. The NGST study began in February 1996, when the Program Development Directorate at NASA MSFC studied the feasibility of the NGST and developed the prephase A program for it. After finishing some initial studies and concepts development work on the NGST, MSFC’s Program Development Directorate handed this work to the

Observatory Projects Office at MSFC and then to NASA Goddard Space Flight Center (GSFC). This technical memorandum was written by MSFC’s Preliminary Design Office and Materials and Processes Laboratory for the NGST Optical Telescope Assembly (OTA) team, in support of NASA GSFC. It contains material properties for 9 mirror substrate materials, using information from at least 6 industrial suppliers, 16 textbooks, 44 technical papers, and 130 technical abstracts.

TM—1998–208194 May 1998

To satisfy RBCC rocket thruster requirements of high performance and a minimum amount of free hydrogen at plume boundary, a new impinging injector element using gaseous hydrogen and gaseous oxygen as the propellants has been designed. Analysis has shown that this injector design has potential to provide a high specific impulse (I_{sp}) while minimizing the amount of free hydrogen that is available to be burned with incoming secondary flow. Past studies and test programs have shown that gas/gas-impinging elements typically result in high injector face temperatures due to combustion occurring close to the face. Since this design is new, there is no hot fire experience with this element. Objectives of this test program were to gain experience and hot fire test data on this new rocket thruster element design and injector faceplate pattern.

Twenty-two hot fire tests were run with maximum mixture ratio (MR) and chamber pressure (Pc) obtained at 7.25 and 1,822 psia, respectively. Posttest scanning microscope (SEM) images show only slight faceplate erosion during testing. This injector element design performed well and can be operated at design conditions: (1) Pc of 2,000 psia and MR of 7.0 and (2) Pc of 1,000 psia of 1,000 psia and MR of 5.0.

The Fiscal Year 1997 Annual Report describes key elements of the NASA Microgravity Research Program. The Program’s goals, approach taken to achieve those goals, and program resources are summarized. A review of the Program’s status at the end of FY97 and highlights of the ground- and flight-based research are provided.
To calculate structural loads of in-line launch vehicles for preliminary design, a very useful computer program is VLOADS 1.4. This software may also be used to calculate structural loads for upper stages and planetary transfer vehicles. Launch vehicle inputs such as aerodynamic coefficients, mass properties, propellants, engine thrusts, and performance data are compiled and analyzed by VLOADS to produce distributed shear loads, bending moments, axial forces, and vehicle line loads as a function of X-station along the vehicle's length. Interface loads, if any, and translational accelerations are also computed. The major strength of the software is that it enables quick turnaround analysis of structural loads for launch vehicles during the preliminary design stage of its development. This represents a significant improvement over the alternative—the time-consuming and expensive chore of developing finite element models. VLOADS was developed as a Visual BASIC macro in a Microsoft Excel 5.0 workbook on a Macintosh. VLOADS has also been implemented on a PC computer using Microsoft Excel 7.0a for Windows 95. VLOADS was developed in 1996, and the current version was released to COSMIC, NASA's Software Technology Transfer Center, in 1997. The program is a copyrighted work with all copyright vested in NASA.

Probabilistic method is not a universally accepted approach for the design and analysis of aerospace structures. The validity of this approach must be demonstrated to encourage its acceptance as a viable design and analysis tool to estimate structural reliability. The objective of this study is to develop a well characterized finite population of similar aerospace structures that can be used to (1) validate probabilistic codes, (2) demonstrate the basic principles behind probabilistic methods, (3) formulate general guidelines for characterization of material drivers (such as elastic modulus) when limited data is available, and (4) investigate how the drivers affect the results of sensitivity analysis at the component/failure mode level.
TECHNICAL MEMORANDUM

This paper provides information for trajectory designers and mission planners to determine Earth-Mars and Mars-Earth mission opportunities for the years 2009–2024. These studies were performed in support of a human Mars mission scenario that will consist of two cargo launches followed by a piloted mission during the next opportunity approximately 2 years later. "Porkchop" plots defining all of these mission opportunities are provided which include departure energy, departure excess speed, departure declination arrival excess speed, and arrival declinations for the mission space surrounding each opportunity. These plots are intended to be directly applicable for the human Mars mission scenario described briefly herein. In addition, specific trajectories and several alternate trajectories are recommended for each cargo and piloted opportunity. Finally, additional studies were performed to evaluate the effect of various thrust-to-weight ratios on gravity losses and total time-of-flight tradeoff, and the resultant propellant savings and are briefly summarized.

This document lists the significant publications and presentations of the Space Sciences Laboratory during the period January 1–December 31, 1997. Entries in the main part of the document are categorized according to NASA Reports (arranged by report number), Open Literature, and Presentations (arranged alphabetically by title). Also included for completeness is an Appendix (arranged by page number) listing preprints issued by the Laboratory during this reporting period. Some of the preprints have not been published; those already published are so indicated. Most of the articles listed under Open Literature have appeared in refereed professional journals, books, monographs, or conference proceedings. Although many published abstracts are eventually expanded into full papers for publication in scientific and technical journals, they are often sufficiently comprehensive to include the significant results of the research reported. Therefore, published abstracts are listed separately in a subsection under Open Literature. Questions or requests for additional information about the entries in this report should be directed to Gregory S. Wilson (ES01: 544–7579) or to one of the authors. The organizational code of the cognizant SSL branch or office is given at the end of each entry.

International Space Station Electrodynamic Tether Reboost Study. L. Johnson and M. Herrmann. Program Development Directorate.

The International Space Station (ISS) will require periodic reboost due to atmospheric aerodynamic drag. This is nominally achieved through the use of thruster firings by the attached Progress M spacecraft. Many Progress flights to the ISS are required annually. Electrodynamic tethers provide an attractive alternative in that they can provide periodic reboost or continuous drag cancellation using no consumables, propellant, or conventional propulsion elements. The system could also serve as an emergency backup reboost system used only in the event resupply and reboost are delayed for some reason.

Wastewater and urine generated on the International Space Station will be processed to recover pure water using vapor compression distillation (VCD). To verify the long-term reliability and performance of the VCD Urine Processor Assembly (UPA), life testing was performed at the Marshall Space Flight Center (MSFC) from January 1993 to April 1996. Two UPA’s, the VCD-5 and VCD-5A, were tested for 204 days and 665 days, respectively. The compressor gears and the distillation centrifuge drive belt were found to have operating lives of approximately 4,800 hours, equivalent to 3.9 years of operation on ISS for a crew of three at an average processing rate of 1.76 kg/h (3.87 lb/h). Precise alignment of the flex-splines of the fluids and purge pump motor drives is essential to avoid premature failure after about 400 hours of operation. Results indicate that, with some design and procedural modifications and suitable quality control, the required performance and operational life can be met with the VCD/UPS.
A detailed structural dynamic analysis of the Pratt & Whitney high-pressure fuel pump first-stage turbine blades has been performed to identify the cause of the tip cracking found in the turbomachinery in November 1997. The analysis was also used to help evaluate potential fixes for the problem. Many of the methods available in structural dynamics were applied, including modal displacement and stress analysis, frequency and transient response to tip loading from the first-stage blade outer gas seals (BOGS), Fourier analysis, and shock spectra analysis of the transient response. The primary findings were that the BOGS tip loading is impulsive in nature, thereby exciting many modes of the blade that exhibit high stress at the tip cracking location. Therefore, a proposed BOGS count change would not help the situation because a clearly identifiable resonance situation does not exist. The recommendations for the resolution of the problem are to maintain the existing BOGS count, eliminate the stress concentration in the blade due to its geometric design, and reduce the applied load on the blade by adding shiplaps in the BOGS.

This document reports the one year science results for the important and highly successful Second United States Microgravity Laboratory (USML–2). The USML–2 mission consisted of a pressurized Space lab module where the crew performed experiments. The mission also included a Glovebox where the crew performed additional experiments for the investigators. Together, about 36 major scientific experiments were performed, advancing the state of knowledge in fields such as fluid physics, solidification of metals, alloys, and semiconductors, combustion, and the growth of protein crystals. The results demonstrate the range of quality science that can be conducted utilizing orbital laboratories in microgravity and provide a look forward to a highly productive Space Station era.

This document presents formal NASA technical reports, papers published in technical journals, and presentations by MSFC personnel in FY97. It also includes papers of MSFC contractors.

The Rodon model-based diagnosis shell was applied to a breadboard test-bed, modeling an automated power distribution system. The constraint-based modeling paradigm and diagnostic algorithm were found to adequately represent the selected set of test scenarios.
Inherent Conservatism in Deterministic Quasi-Static Structural Analysis. V. Verderaime. Structures and Dynamics Laboratory.

The cause of the long-suspected excessive conservatism in the prevailing structural deterministic safety factor has been identified as an inherent violation of the error propagation laws when reducing statistical data to deterministic values and then combining them algebraically through successive structural computational processes. These errors are restricted to the applied stress computations, and because mean and variations of the tolerance limit format are added, the errors are positive, serially cumulative, and excessively conservative. Reliability methods circumvent these errors and provide more efficient and uniform safe structures. The document is a tutorial on the deficiencies and nature of the current safety factor and of its improvement and transition to absolute reliability.

The Corrosion Protection of Magnesium Alloy AZ31B have been measured. Two Coatings, Dow-Dow-23™ and Tagnite,™ have been tested by electrochemical methods and their effectiveness determined. Electrochemical methods employed were the scanning reference electrode technique (SRET), the polarization resistance technique (PR) and the electrochemical impedance spectroscopy technique (EIS). In addition, general corrosion and stress corrosion methods were employed to examine the effectiveness of the above coatings in 90 percent humidity. Results from these studies are presented.

Corrosion studies of 2195 Al-Li and 2219 Al alloys have been conducted using the scanning reference electrode technique (SRET) and the polarization resistance (PR) technique. Plates of Al2O3 blasted, soda blasted and conversion coated 2219 Al were coated with Deft primer and the corrosion rates studied with the EIS technique. Results from all of these studies are presented.

The Small Expandable Deployer System (SEDS) was designed to deploy an endmass at the end of a 20-km-long tether which acts as an upper stage rocket, and the threats from the meteoroid and orbital debris (M/OD) particle environments on SEDS components are important issues for the safety and success of any SEDS mission. However, the possibility of severing the tether due to M/OD particle impacts is an even more serious concern, since the SEDS tether has a relatively large exposed area to the M/OD environments although its diameter is quite small. The threats from the M/OD environments became a very important issue for the third SEDS mission, since the project office proposed using the shuttle orbiter as a launch platform instead of the second stage of a Delta II expendable rocket, which was used for the first two SEDS missions.

A series of hypervelocity impact tests were performed at the Johnson Space Center and Arnold Engineering Development Center to help determine the critical particle sizes required to sever the tether. The computer hydrodynamic code or hydrocode called CTH, developed by the Sandia National Laboratories, was also used to simulate the damage on the SEDS tether caused by both the orbital debris and test particle impacts. The CTH hydrocode simulation results provided the much needed information to help determine the critical particle sizes required to sever the tether. The M/OD particle sizes required to sever the tether were estimated to be less than 0.1 cm in diameter from these studies, and these size particles are more abundant in low-Earth orbit than larger size particles. Finally, the authors performed the M/OD damage analyses for the three SEDS missions: i.e., SEDS-1, -2, and -3 missions, by using the information obtained from the hypervelocity impact test and hydrocode simulations results.

Corrosion studies of 2195 Al-Li and 2219 Al alloys have been conducted using the scanning reference electrode technique (SRET) and the polarization resistance (PR) technique. The SRET was used to study corrosion mechanisms, while corrosion rate measurements were studied with the PR technique. Plates of Al2O3 blasted, soda blasted and conversion coated 2219 Al were coated with Deft primer and the corrosion rates studied with the EIS technique. Results from all of these studies are presented.
The projected traffic to geostationary earth orbit (GEO) is expected to increase over the next few decades. At the same time, the cost of delivering payloads from the Earth’s surface to low earth orbit (LEO) is projected to decrease, thanks in part to the Reusable Launch Vehicle (RLV). A comparable reduction in the cost of delivering payloads from LEO to GEO is sought. The use of in-space tethers, eliminating the requirement for traditional chemical upper stages and thereby reducing the launch mass, has been identified as such an alternative.

Spinning tethers are excellent kinetic energy storage devices for providing the large delta vees required for LEO to GEO transfer. A single-stage system for transferring payloads from LEO to GEO was proposed some years ago. The study results presented here contain the first detailed analyses of this proposal, its extension to a two-stage system, and the likely implementation of the operational system.

Probability and Statistics in Aerospace Engineering. M.H. Rheinfurth and L.W. Howell. Systems Analysis and Integration Laboratory. 19980045313N

This monograph was prepared to give the practicing engineer a clear understanding of probability and statistics with special consideration to problems frequently encountered in aerospace engineering. It is conceived to be both a desktop reference and a refresher for aerospace engineers in government and industry. It could also be used as a supplement to standard texts for in-house training courses on the subject.

A Study of Friction Stir Welded 2195 Al-Li Alloy by the Scanning Reference Electrode Technique. M.D. Danford and M.J. Mendrek. Materials and Processes Laboratory. 19980046577N

A study of the corrosion of friction stir welded 2195 Al-Li alloy has been carried out using the scanning reference electrode technique (SRET). The results are compared to those obtained from a study of heterogeneously welded samples.

TP—1998–207686 April 1998

The corrosion and stress corrosion cracking (SCC) characteristics of annealed and hardened 440C stainless steel were evaluated in high humidity and 3.5-percent NaCl solution. Corrosion testing consisted of an evaluation of flat plates, with and without grease, in high humidity, as well as electrochemical testing in 3.5-percent NaCl. Stress corrosion testing consisted of conventional constant strain, smooth bar testing in high humidity in addition to two relatively new techniques under evaluation at MSFC. These techniques involve either incremental or constant rate increases in the load applied to a precracked SE(B) specimen, monitoring the crack-opening-displacement response for indications of crack growth. The electrochemical corrosion testing demonstrated an order of magnitude greater general corrosion rate in the annealed 440C. All techniques for stress corrosion testing showed substantially better SCC resistance in the annealed material. The efficacy of the new techniques for stress corrosion testing was demonstrated both by the savings in time and the ability to better quantify SCC data.

Application of Rapid Prototyping Methods to High-Speed Wind Tunnel Testing (MSFC Center Director’s Discretionary Fund Final Report, Project No. 96–21). A.M. Springer. Structures and Dynamics Laboratory. 19980201248 N

This study was undertaken in MSFC’s 14-Inch Trisonic Wind Tunnel to determine if rapid prototyping methods could be used in the design and manufacturing of high speed wind tunnel models in direct testing applications, and if these methods would reduce model design/fabrication time and cost while providing models of high enough fidelity to provide adequate aerodynamic data, and of sufficient strength to survive the test environment. Rapid prototyping methods utilized to construct wind tunnel models in a wing-body-tail configuration were: fused deposition method using both ABS plastic and PEEK as building materials, stereolithography using the photopolymer SL–5170, selective laser sintering using glass reinforced nylon, and laminated object manufacturing using plastic reinforced with glass and “paper.”

This study revealed good agreement between the SLA model, the metal model with an FDM–ABS nose, and SLA nose, and the metal model for most operating conditions, while the FDM–ABS data diverged at higher loading conditions. Data from the initial SLS model showed poor agreement due to problems in post-processing, resulting in a different configuration. A second SLS model was tested and showed relatively good agreement.
It can be concluded that rapid prototyping models show promise in preliminary aerodynamic development studies at subsonic, transonic, and supersonic speeds.

TP—1998–208475
June 1998

19980203952N

The results of a study performed to evaluate the feasibility and merits of using an electrodynamic tether for propulsion and power generation for a spacecraft in the Jovian system are presented. The environment of the Jovian system has properties which are particularly favorable for utilization of an electrodynamic tether. Specifically, the planet has a strong magnetic field and the mass of the planet dictates high orbital velocities which, when combined with the planet's rapid rotation rate, can produce very large relative velocities between the magnetic field and the spacecraft. In a circular orbit close to the planet, tether propulsive forces are found to be as high as 50 N and power levels as high as 1 MW.

TP—1998–208528
July 1998
An Assessment of the Technology of Automated Rendezvous and Capture in Space. M.E. Polites, Astrionics Laboratory. 19980219470N

This paper presents the results of a study to assess the technology of automated rendezvous and capture (AR&C) in space. The outline of the paper is as follows. First, the history of manual and automated rendezvous and capture and rendezvous and dock is presented. Next, the need for AR&C in space is established. Then, today's technology and ongoing technology efforts related to AR&C in space are reviewed. In light of these, AR&C systems are proposed that meet NASA's future needs, but can be developed in a reasonable amount of time with a reasonable amount of money. Technology plans for developing these systems are presented; cost and schedule are included.

TP—1998–208530
July 1998
Reusable Rocket Engine Operability Modeling and Analysis. R.L. Christenson and D.R. Komar, Propulsion Laboratory. 19980218686N

This paper described the methodology, model, input data, and analysis results of a reusable launch vehicle engine operability study conducted with the goal of supporting design from an operations perspective. Paralleling performance analyses in schedule and method, this requires the use of metrics in a validated operations model useful for design, sensitivity, and trade studies. Operations analysis in this view is one of several design functions.

An operations concept was developed given an engine concept and the predicted operations and maintenance processes incorporated into simulation models. Historical operations data at a level of detail suitable to model objectives were collected, analyzed, and formatted for use with the models, the simulations were run, and results collected and presented. The input data used included scheduled and unscheduled timeline and resource information collected into a Space Transportation System (STS) Space Shuttle Main Engine (SSME) historical launch operations database. Results reflect upon the importance not only of reliable hardware but upon operations and corrective maintenance process improvements.

TP—1998–208591
August 1998
On the Correlation Between Maximum Amplitude and Smoothed Monthly Mean Sunspot Number During the Rise of the Cycle (From t=0–48 Months Past Sunspot Minimum), R.M. Wilson, D.H. Hathaway, and E.J. Reichmann, Space Sciences Laboratory.

During the rise from sunspot minimum to maximum, the observed value of smoothed monthly mean sunspot number at maximum RM is found to correlate with increasing strength against the current value of smoothed monthly mean sunspot number R(t), where t is the elapsed time in months from minimum. On the basis of the modern era sunspot cycles (i.e., cycles 10–22), the inferred linear correlation is found to be statistically important (i.e., at the 95-percent level of confidence) from about 11 mo past minimum and statistically very important (i.e., at the 99-percent level of confidence) from about 15 mo past minimum: ignoring cycle 19, the largest cycle of the modern era, the inferred linear correlation is found to be statistically important from cycle onset. On the basis of R(t), estimates of RM can be gauged usually to within about ±30 percent during the first 2 yr and to within about ±20 percent (or better) after the first 2 hr of a cycle's onset. For cycle 23, because controversy exists regarding the placement of its minimum (i.e., its onset), being either May 1996 or perhaps August 1996 (or shortly thereafter), estimates of its RM are divergent, being lower (more like a mean size cycle) when using the earlier epoch of minimum
and higher (above average in size) when using the later-
occuring minimum. For smoothed monthly mean
sunspot number through October 1997 (t = 17 or 14 mo,
respectively), having a provisional value of 32.0, the
earlier minimum date projects an RM of 110.3 ± 33.1,
while the later minimum date projects one of
137.2 ± 41.2. The projection is slowly decreasing in size
using the earlier onset date, while it is slowly increasing
in size using the later onset date.

Volcanism, Cold Temperature, and Paucity of Sun-
spot Observing Days (1818–1858): A Connection?
R.M. Wilson. Space Sciences Laboratory.

During the interval of 1818–1858, several curious
decreases in the number of sunspot observing days per
year are noted in the observing record of Samuel Heinrich
Schwabe, the discoverer of the sunspot cycle, and in the
reconstructed record of Rudolf Wolf, the founder of the
now familiar relative sunspot number. These decreases
appear to be nonrandom in nature and often extended
for 1–3 yr (or more). Comparison of these decreases with
equivalent annual mean temperature (both annual means
and 4-yr moving averages), as recorded at Armagh Ob-
servatory (Northern Ireland), indicates that the tempera-
ture during the years of decreased number of observing
days trended downward near the start of each decrease
and upward (suggesting some sort of recovery) just be-
fore the end of each decrease. The drop in equivalent
annual mean temperature associated with each decrease,
as determined from the moving averages, measured about
0.1–0.7 °C. The decreases in number of observing days
are found to be closely related to the occurrences of large,
cataclysmic volcanic eruptions in the tropics or northern
hemisphere. In particular, the interval of increasing num-
er of observing days at the beginning of the record (i.e.,
1818–1819) may be related to the improving atmospheric
conditions in Europe following the 1815 eruption of
Tambora (Indonesia: 8°S), which previously has been
linked to "the year without a summer" (in 1816) and
which is the strongest eruption in recent history, while
the decreases associated with the years of 1824, 1837,
and 1847 may be linked, respectively, to the large, cata-
clysmic volcanic eruptions of Galunggung (Indonesia;
7°S) in 1822, Cosigüina (Nicaragua) in 1835, and, per-
haps, Hekla (Iceland: 64°N) in 1845. Surprisingly, the
number of observing days per year, as recorded specifi-
cally by Schwabe (from Dessau, Germany), is found to
be linearly correlated against the yearly mean tempera-
ture at Armagh Observatory (r = 0.5 at the 2 percent level
of significance); thus, years of fewer sunspot observing
days in the historical record seem to indicate years of
probable cooler climate, while years of many sunspot
observing days seem to indicate years of probable warmer
climate (and vice versa). Presuming this relationship to
be real, one infers that the observed decrease in the num-
ber of observing days near 1830 (i.e., during "the lost
record years" of 1825 to 1833) provides a strong indication
that temperatures at Armagh (and, perhaps, most of
Europe, as well) were correspondingly cooler. If true,
then, the inferred cooling may have resulted from the
eruption of Kliuchevskoi (Russia; 56°N) 1829.
Volume One of the General Public Space Travel and Tourism Workshop is a summary of the findings of the participants. This document provides an overview of the infrastructure requirements, policy and regulation needs, and potential near term activities.

Volume II contains the detailed findings of the multi-day workshop conducted at Georgetown University, Washington, DC.

This is a compilation of 25 papers presented at a tether technical interchange meeting in Huntsville, AL, on September 9–10, 1997. After each presentation, a technical discussion was held to clarify and expand the salient points. A wide range of subjects was covered including tether dynamics, electrodynamics, space power generation, plasma physics, ionospheric physics, towing tethers, tethered reentry schemes, and future tether missions.

This document reports the results and analyses presented at the Life and Microgravity Spacelab (LMS) One Year Science Review meeting. The science conference was held in Montreal, Canada, on August 20–21, 1997, and was hosted by the Canadian Space Agency. The LMS payload flew on the Space Shuttle Columbia (STS-78) from June 20–July 7, 1996. The LMS investigations were performed in a pressurized Spacelab module and the Shuttle middeck. Forty scientific experiments were performed in fields such as fluid physics, solidification of metals, alloys, and semiconductors, the growth of protein crystals, and animal, human, and plant life sciences. The results demonstrate the range of quality science that can be conducted utilizing orbital laboratories in microgravity.
CR—97-205192

CR—97-205193

CR—97-205194

CR—97-205195

CR—97-205196

CR—97-205197

CR—97-205198

CR—97-205199

CR—97-205200

CR—98-205201

CR—98-205202

CR—98-205203

CR—98-205204

CR—98-205205

Research Reports—1996 NASA/ASEE Summer Faculty Fellowship Program. NGT8-52819. University of Alabama, Tuscaloosa, and University of Alabama in Huntsville. 19980206153N

CR—98-207400

Electrical Bonding: A Survey of Requirements, Methods, and Specifications. Computer Sciences Corp. 19980201283N

CR—98-207893

CR—98-207894

CR—98-207895

CR—1998—207896
June 1997

CR—1998—207897
May 1997

CR—1998—207898
April 1998

CR—1998—207899
February 1998

CR—1998—207900
March 1998

CR—1998—207901
May 1998
Acceptance Data Package
A—Engineering Drawings and Associated Lists
B—Acceptance Data Package
C—Qualification Test Report
D—Strength Analysis

CR—1998—207902
May 1998

CR—1998—207946
May 1998

CR—1998—208182
October 1997

CR—1998—208183
May 1998

CR—1998—208184
February 1998

CR—1998—208185
March 1998

CR—1998—208186
May 1998

CR—1998—208187
April 1998

CR—1998—208474
June 1998
Development of Tailorable Electrically Conductive Thermal Control Material Systems. IIT Research Institute.

19980201847N
19980200837N
19980213230N
19980218160N

Space Environment Effects: Low-Altitude Trapped Radiation Model. The Boeing Company.

Research Reports—1997 NASA/ASEE Summer Faculty Fellowship Program. University of Alabama in Huntsville and University of Alabama, Tuscaloosa.
<table>
<thead>
<tr>
<th>Authors</th>
<th>Institution</th>
<th>Title</th>
<th>Conference/Meeting</th>
<th>Publication Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABDELDAYEM, H.A.</td>
<td>USRA</td>
<td>Excited State and Reverse Saturable Absorption in Polydiacetylene Using Z-Scan Technique.</td>
<td>For publication in Optics Communication Journal, Philadelphia, PA.</td>
<td></td>
</tr>
<tr>
<td>FRAZIER, D.O.</td>
<td>ES76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PALEY, M.S.</td>
<td>USRA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMITH, D.D.</td>
<td>ES76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGENA, S.</td>
<td>University College</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMITH, L.</td>
<td>UAH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KARR, L.J.</td>
<td>ES76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUSEY, M.L.</td>
<td>ES76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALENDER, D.</td>
<td>Lockheed Martin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THOMPSON, B.J.</td>
<td>Space Applications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALEXANDER, D.</td>
<td>UAH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEPAOLA, A.</td>
<td>Gulf Coast Seafood Lab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YOUNG, R.B.</td>
<td>ES76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAGYARD, M.J.</td>
<td>ES82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEST, E.A.</td>
<td>ES82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALEXANDER, D.</td>
<td>UAH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDGE, T.M.</td>
<td>EB12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WILLOWBY, D.</td>
<td>EB12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEPAOLA, A.</td>
<td>Gulf Coast Seafood Lab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEVER, T.L.</td>
<td>ES82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BERO, E.</td>
<td>ES82</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ALHORN, D.C. EB23
An Overview of Microgravity Vibration Isolation Technology with Information About the g-LIMIT Project. For presentation at International Space University, Cleveland, OH, July 28, 1998.

ALSHIBLI, K.A. ES71
STURE, S. University of Colorado
COSTES, N.C. ES71

ANDERSON, B.J. EL23
COOKE, W.J., JR. Computer Sciences
Calculation of Area Loss Due to Meteoroid Penetration. For presentation at AIAA Leonid Meteoroid Storm and Satellite Threat Conference, Manhattan Beach, CA, April 28–29, 1998.

ANGELOPOULOS, V. ES83
PHAN, T.D. ES83
LARSON, D.E. ES83
MOZER, F.S. ES83
LIN, R.P. ES83
PARKS, G.K. ES83
BRITTNACHER, M.J. ES83
GERMANY, G.A. ES83
SPANN, J.F., JR. ES83

ANTAR, B.N. University of Tennessee
ETHRIDGE, E.C. ES75

ANTAR, B.N. University of TN Space Institute
ETHRIDGE, E.C. ES75
MAXWELL, D. University of TN Space Institute

ASCHWANDEN, M.J. University of Maryland
NEWMARK, J. GSFC
DELABOUDINIERE, J.-P. GSFC
NEUPERT, W.M. Hughes SXT Corp.
PORTIER-FOZZANI, F. Laboratoire ES82
GARY, G.A. Inst. Astronomy
ZUCKER, A.

AUSTIN, R.E. RA20
RISING, J.J. Lockheed Martin
The X-33 Program, Proving Single Stage to Orbit. For presentation to 49th International Astronautical Congress, Melbourne, Australia, September 28–October 2, 1998.

BACHMANN, K.T. Birmingham-Southern
HATHAWAY, D.H. ES82
KHATRI, G. Birmingham-Southern
PETTITO, J.M. Birmingham-Southern

BALOGH, A. The Blackett Lab, UK
BURGER, R.A. Potchefstroom, US
CUMMINGS, A.C. California Institute of Technology
EVENSON, P. University of Delaware
HEBER, B. Universitat Kiel
JOKIPII, J.R. University of Arizona
KRAINEV, M.B. Russian Academy of Sciences
MCDONALD, F.B. University of Maryland
SUESS, S. ES82
ET AL.

BARRET, C. EP62

BASKARAN, S. Ratheon
RAMACHANDRAN, N. USRA
NOEVER, D. ES76
Probabilistic and Other Neural Nets in Multi-Hole Probe Calibration and Flow Angularity Pattern R-
recognized. For presentation at International Conference on Advances in Pattern Recognition, Plymouth, United Kingdom, November 23, 1998.

BAYUZICK, R.J. Vanderbilt University
HOFMEISTER, W.H. Vanderbilt University
MORTON, C.M. Vanderbilt University
ROBINSON, M.B. ES75

Experiments on Nucleation in Different Flow Regimes. For presentation at Microgravity Materials Science Conference, Huntsville, AL, July 14, 1998.

BENDER, M.W. ES76
SMITH, D.D. ES76
XIAO, R. University of Science & Tech., Hong Kong
SARKISOV, S. Alabama A&M University
GREGORY, D.A. UAH
BOYD, R.W. University of Rochester

BILBRO, J.W. EB51

BILBRO, J.W. EB01

BILDSTEN, L. University of California
CHAKRABARTY, D. MIT
CHIU, J. California Institute of Technology
FINGER, M.H. USRA
KOH, D.T. California Institute of Technology
NELSON, R.W. California Institute of Technology
ET AL.
RUBIN, B.C. ES84
WILSON, C.A. ES84
WILSON, R.B. ES84

BJORKMAN, G. Lockheed Martin
CHO, A. Reynolds Metals
RUSSELL, C.K. EH23
ZIMMERMAN, F.R. EH23

Filler Wire Development for 2195 Aluminum-Lithium. For presentation at 1998 Advanced Aero-

BOCCIPPIO, D.J. HR20
WONG, C. HR20
WILLIAMS, E.R. MIT
BOLDI, B. MIT
CHRISTIAN, H.J. HR20
GOODMAN, S.J. HR20

BOLDI, B. HR20
HODANISH, S. HR20
SHARP, D. HR20
WILLIAMS, E. HR20
GOODMAN, S.J. HR20
RAGHAVAN, R. HR20
MATLIN, A. HR20
WEBER, M. HR20

BOROWSKI, O. HR20
HOWELL, B.F. HR20
SEVER, T.L. HR20

BRIDGE, K.Y. ES71
SMITH, C.K., II Lilly Research Labs
YOUNG, R.B. ES76

BRIDGE, K.Y. ES71
YOUNG, R.B. ES71
VAUGHN, J.R. ES71

Beta-Adrenergic Receptor Population is Up-Regulated in Chicken Skeletal Muscle Cells Treated with Forskolin. For presentation at American Society for Gravitational and Space Biology, Houston, TX, October 26, 1998.
BRIGGS, M.S. ES84
PENDLETON, G.N. ES84
KIPPEL, R.M.
BRAINERD, J.J.
HURLEY, K.
CONNAUGHTON, V.
MEEGAN, C.A. ES84

The Error Distribution of BATSE GRB Locations.

BRITTNACHER, M.J. ES83
GERMANY, G.A. ES83
FILLINGIM, M.O. ES83
PARKS, G.K. ES83
SPANN, J.F., JR. ES83

BRITTNACHER, M.J. ES83
ELSEN, R.K. ES83
PARKS, G.K. ES83
FILLINGIM, M.O. ES83
CHUA, D. ES83
GERMANY, G.A. ES83
LUMMERZHEIM, D. ES83
SPANN, J.F., JR. ES83

BRITTNACHER, M.J. ES83
FILLINGIM, M.O. ES83
ELSEN, R.K. ES83
PARKS, G.K. ES83
SPANN, J.F., JR. ES83
GERMANY, G.A. ES83

BRITTNACHER, M.J. ES83
FILLINGIM, M.O. ES83
ELSEN, R.K. ES83
PARKS, G.K. ES83
GERMANY, G.A. ES83
SPANN, J.F., JR. ES83

BRITTNACHER, M.J. ES83
PARKS, G.K. ES83
CHUA, D. ES83
ELSEN, R. ES83
FILLINGIM, M.O. ES83
GERMANY, G.A. ES83
SPANN, J.F., JR. ES83

BRITTNACHER, M.J. ES83
ELSEN, R. ES83
PARKS, G.K. ES83
FILLINGIM, M.O. ES83
CHUA, D. ES83
GERMANY, G.A. ES83
LUMMERZHEIM, D. ES83
SPANN, J.F., JR. ES83

BRITTNACHER, M.J. ES83
GERMANY, G.A. ES83
FILLINGIM, M.O. ES83
PARKS, G.K. ES83
SPANN, J.F., JR. ES83

BROWN, A.M. ES23
FERRI, A.A. Georgia Tech

BUNE, A.V. ES75
GILLIES, D.C. ES75
LEHOCZKY, S.L. ES75

BUNE, A.V. ES75
GILLIES, D.C. ES75
LEHOCZKY, S.L. ES75

BURDINE, R. EB52

CHAKRABARTY, D. USRA
BILDSTEN, L.
GRUNSFELD, J.M.
KOH, D.T.
PRINCE, T.A.
VAUGHN, B.A.
FINGER, M.H.
SCOTT, D.M.
WILSON, R.B.

CAMPBELL, J.W. PS02

CARRUTH, M.R., JR. EH11
WILKES, D.R. AZ Technology
ZWIENER, J.M. EH11
NAUMOV, S. Russian Space
KAMENETZKY, R.R. EH11

CARRUTH, M.R., JR. EH11
CLIFTON, K.S. EH11
VANHOOSER, M.T. EH11

CARUSO, S.V. EH42
COX, J.A. EH52
McGEE, K.A. EH52

CARRUTH, M.R., JR. EH11
BILDSTEN, L.
GRUNSFELD, J.M.
KOH, D.T.
PRINCE, T.A.
VAUGHAN, B.A.
WILSON, R.B.

CHAMPION, R.H., JR. EP72
DARROW, R.J., JR. Orbital
X–34 Main Propulsion System Design and Opera-

CHRISTL, M.

Data Analysis for the Scintillating Optical Fiber Calorimeter (SOFCAL). For presentation at SCIFI 97, Scintillating and Fiber Detectors Conference, South Bend, IN, November 2-6, 1997.

CHRISTY, J.R.

CHUAI, D.

BRITTNACHER, M.J.

PARKS, G.K.

GERMANY, G.A.

SPANN, J.E, JR.

CLARK, T.

CLAUER, C.R.

BAKER, J.B.

RIDLEY, A.J.

SITAR, R.J.

PAPITASHVILI, V.O.

CUMNOCK, J.A.

SPANN, J.E, JR.

BRITTNACHER, M.J.

PARKS, G.K.

CLINTON, R.G., JR.

LEVINE, S.R.

Key Issues for Aerospace Applications of Ceramic Matrix Composites. For presentation at Pacific Coast Regional Meeting of the American Ceramic Society, Irvine, CA, October 22-24, 1998.
MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

COLBORN, B.L. ES84
DIETZ, K.L. ES84
RAMSEY, B.D. ES84
WEISSKOPF, M.C. ES84

COMFORT, R.H. ES83
MOORE, T.E. ES83
CRAVEN, P.D. ES83
POLLOCK, C.J. ES83
MOZER, F.S. ES83
WILLIAMSON, W.T. ES83
Spacecraft Potential Control by PSI on the Polar Spacecraft. For publication in Journal of Spacecraft and Rockets.

COMFORT, R.H. ES83
RICHARDS, P.G. ES83
LIAO, J.-H. ES83
CRAVEN, P.D. ES83

CONNAUGHTON, V. ES84
PREECE, R.D. ES84
PENDLETON, G.N. ES84
GRB 970616. For publication in IAU Circular 6683, Cambridge, MA.

CONNAUGHTON, V. ES81
AKERLOF, C.W. ES81
BARTHELMY, S.D. ES81
BILLER, S. ES81
BOYLE, P. ES81
BUCKLEY, J. ES81
CARTER-LEWIS, D.A. ES81
FISHMAN, G.J. ES81
MEEGAN, C.A. ES81
ET AL.

CRAWD, W.J., JR.
ANDERSON, B.J. EL23
Estimates of Leonid Storm Probabilities and Fluxes

COOPER, K.G. EH32

COOPER, K.G. EH32

COORAY, A.R. University of Chicago
GREGO, L. University of Chicago
HOLZAPFEL, W.L. University of Chicago
JOY, M. ES84
CARLSTROM, J.E. University of Chicago

COSTES, N.C. ES71
TURE, S. ES71

CRAVEN, P.D. ES83

CRAWFORD, K. EB33
WALLACE, S. EB33
GAMB, A. EB33

CRAWFORD, K. EB33
INKLETON, D. Boeing
PUSEY, M.L. ES76
Tetragonal Lysozyme Interactions Studied by Site Directed Mutagenesis. For presentation at 7th International Conference on the Crystallization of Biological Macromolecules, Granada, Spain, May 3, 1998.

CRISWELL, D.R. University of Houston
CURRELL, P.A. ES75

CURRELL, P.A. ES75
CRISWELL, D.R. University of Houston

DELAY, T. EH33
SMITH, B.H. EH33
ELY, K. Lockheed Martin
MACARTHUR, D. Lockheed Martin

DIETERS, S.W. ES84
WOODS, P. ES84
KOUVELIOTOU, C. USRA

DISCHINGER, H.C., JR. EO66
LOUGHEAD, T.E. EO66

DOLD, P. University of Freiburg
CROLL, A. University of Freiburg
SCHWEIZER, M. University of Freiburg
KAISER, T. University of Freiburg
SZOFRAN, F.R. ES75
NAKAMURA, S. NEC Lab, Japan
HIBIYA, T. NEC Lab, Japan
BENZ, K.W. University of Freiburg
The Role of Marangoni Convection for the FZ-Growth of Silicon. For presentation at 49th IAF Congress, Melbourne, Australia, September 28–October 2, 1998.

DUGAL-WHITEHEAD, N. EB01
Artificial Intelligence and Spacecraft Power Systems. For presentation at University of Memphis Physics Department Colloquium, Memphis, TN, November 5, 1997.

DUKEMAN, G.A. ED13
GALLAHER, M.W. ED13

DUMBACHER, D.L. RA20

DUNN, M.C. EO66
HUTCHINSON, S.L. EO66

EDWARDS, D.L. EH12
ZWIENER, J.M. EH12
WERTZ, G.E. EH12
VAUGHN, J.A. EH12
KAMENETZKY, R.R. EH12
FINCKENOR, M.M. EH12
MESHISHNEK, M.J. The Aerospace Corporation

ELLIOTT, H.A. UAH
COMFORT, R.H. UAH
CRAVEN, P.D. ES83
CHANDLER, M.O. ES83
MOORE, T.E. GSFC
ELLIOIT, H.A.
CRAVEN, P.D.
COMFORT, R.H.
CHANDLER, M.O.
MOORE, T.E.
RUSSLEL, C.T.
RUOHONIEMI, J.M.
ELL|OTT, H.A.
CRAVEN, P.D.
COMFORT, R.H.
CHANDLER, M.O.
MOORE, T.E.
RUOHONIEMI, J.M.
UAH
ES83
University of CA
Johns Hopkins University

ELSNER, R.K.
WINGLEE, R.M.
SPANN, J.E., JR.
GERMANY, G.A.
BRITTNACHER, M.J.
PARKS, G.K.

ELSNER, R.K.
WINGLEE, R.M.
BRITTNACHER, M.J.
PARKS, G.K.
GERMANY, G.A.
SPANN, J.F., JR.

ELSNER, R.K.
FILLINGIM, M.O.
BRITTNACHER, M.J.
PARKS, G.K.
GERMANY, G.A.
SPANN, J.F., JR.

ELSNER, R.K.
WINGLEE, R.M.
BRITTNACHER, M.J.
PARKS, G.K.
GERMANY, G.A.
SPANN, J.F., JR.
A Substorm Triggered by a Sudden Drop in Dynamic Pressure. For presentation at Fourth International Conference on Substorms, Lake Hamana, Japan, March 9–13, 1998.

ELSNER, R.F.
O’DELL, S.L.
RAMSEY, B.D.
TENNANT, A.F.
WEISSKOPF, M.C.
KOLODZIEJCZAK, J.J.
SWARTZ, D.A.
ENGELHAUPT, D.
GARMIRE, G.P.
ET AL.

ELSNER, R.F.
O’DELL, S.L.
RAMSEY, B.D.
TENNANT, A.F.
WEISSKOPF, M.C.
KOLODZIEJCZAK, J.J.
SWARTZ, D.A.
ENGELHAUPT, D.
GARMIRE, G.
ET AL.

EMMITT, G.D.
Simpson Weather MILLER, T.L.
HR20

EMRICH, W.J., JR.
PS01

EVANS, S.W.
ED13
EWING, F. USRA
WILSON, L. East TN St. University
NADARAJAH, A. University of Toledo
PUSEY, M.L. ES76

FENG, X. American GNC Corp.
LIN, C.-F. American GNC Corp.
YU, T.-J. American GNC Corp.
WHORTON, M.S. ED12

FILLINGIM, M.O. ES83
BRITTNACHER, M.J. ES83
ELSEN, R.K. ES83
PARKS, G.K. ES83
GERMANY, G.A. ES83
SPANN, J.F., JR. ES83

FINCKENOR, J.L. ED52
SPURRIER, M. ED24

FINGER, M.H. USRA
BILDSTEN, L. University of California, Berkeley
CHAKRABARTY, D. MIT
PRINCE, T.A. CA Institute of Tech
SCOTT, D.M. USRA
WILSON, C.A. ES84
WILSON, R.B. ES84
ZHANG, S.N. USRA

FINGER, M.H. USRA
DIETERS, S.W. UAH
WILSON, R.B. ES84

FISHER, M.F. EP72
KING, R.F. Stennis Space Center
CHENEVERT, D.J. Stennis Space Center

FISHER, M.F. EP72
ISE, M.R. EP72

FISHER, M.E EP72
THEO, M.R. EP72

FISHMAN, G.J. ES81

FISHMAN, G.J. ES81
The GLAST Mission: Using Scintillating Fibers as Both the Tracker and the Calorimeter. For presentation at SCIFI 97—Conference, South Bend, IN, November 2, 1997.

FISHMAN, G.J. ES81

FISHMAN, G.J. ES81

FISHMAN, G.J. ES01
Long-Term Variability and Transient Behavior of Some Galactic Hard X-Ray Sources as Observed with BATSE. For presentation at 3rd INTEGRAL Workshop, Taormina, Sicily, Italy, September 14–18, 1998.

FONTE, P. LIP/Coimbra University
PESKOV, V. ES84
RAMSEY, B.D. ES84
FONTE, P. LIP/Coimbra University
PESKOV, V. National Research
RAMSEY, B.D. ES84

FORD, E.C. Columbia University
KAARET, P. Columbia University
CHEN, K. Columbia University
TAVANI, M. Columbia University
BARRET, D. Harvard Smithsonian
BLOSER, P. Harvard Smithsonian
GRINDLAY, J. Harvard Smithsonian
HARMON, B.A. ES84
PACIESAS, W.S. UAH
ZHANG, S.N. USRA

FORSYTHE, E.L. USRA
PUSEY, M.L. ES76
Crystallization of Chicken Egg White Lysozyme from Sulfate Salts. For presentation at 7th International Conference on Crystallization of Biological Macromolecules, Granada, Spain, May 3, 1998.

FORSYTHE, E.L. USRA
SNELL, E.H. ES76
MALONE, C.C. USRA
PUSEY, M.L. ES76

FORSYTHE, E.L. USRA
NADARAJAH, A. University of Toledo
PUSEY, M.L. ES76

FOUNTAIN, W.F. ES84

FRAGOMENI, J.M. University of Alabama
NUNES, A.C., JR. EH01

FRAZIER, D.O. ES01
PENN, B.G. ES01
SMITH, D.D. ES01
WITHEROW, W.K. ES01
PALEY, M.S. ES01
ABDELDAYEM, H.A. ES01

GALAMA, T.J. ES81
DE BRUYN, A.G. ES81
VAN PARADIJS, J. ES81
HANLON, L. ES81
GROOT, P.J. ES81
VAN DER KLIS, M. ES81
STROM, R. ES81
SPOELSTRA, T. ES81
FISHMAN, G.J. ES81
ET AL.

GALLAGHER, D.L. ES83
JOHNSON, L. PD01
BAGENAL, F. ES83
MOORE, J. ES83

GALLAGHER, D.L. ES83
BAGENAL, F. University of Colorado
MOORE, J. SRS Technologies
JOHNSON, L. PD01
An Overview of Electrodynamic Tether Performance in the Jovian System. For publication in American Institute of Aeronautics and Astronautics.

GALLAGHER, D.L. ES83
FOK, M.-C. USRA
FUSELIER, S. Lockheed-Martin
GLADSTONE, G.R. SwRI
GREEN, J.L. GSFC
FUNG, S.F. GSFC
PEREZ, J. Auburn University
REIFF, P. Rice University
ROELOF, E.C. Johns Hopkins
WILSON, G. Mission Research Corp.

GALLAGHER, D.L. ES83
CARPENTER, D.L. ES83

GARCIA, R. ED32
WILLIAMS, R. ED32
FEARS, S. ED32

GARCIA, R. ED32

GARY, G.A. ES82
ALEXANDER, D.A. ES82

GERMANY, G.A. ES83
RICHARDS, P.G. ES83
PARKS, G.K. ES83
BRITTNACHER, M.J. ES83

GHADDAR, C.K. Cape Simulations, Inc.
RAMSEY, B.D. ES84

GHOSH, K.K. NSA/NRC/MSFC
RAMSEY, B.D. ES84

GILLIES, D.C. ES75

GILLIES, D.C. ES75

GILLIES, D.C. ES75

GOODMAN, S.J. HR20
BUECHLER, D. HR20
RAGHAVAN, R. HR20

GOODMAN, S.J. HR20
RAGHAVAN, R. HR20
BUECHLER, D.L. HR20
HODANISH, S. HR20
SHARP, D. HR20
WILLIAMS, E. HR20
BOLDI, B. HR20
MATLIN, A. HR20
WEBER, M. HR20

GORDON, T. Applied Science
RANTANEN, R. ROR Enterprises, Inc.
PIPPIN, G. Boeing
FINCKENOR, M.M. EH15

GRINER, C. DD01
SCHNEIDER, M. EO27

GUILLORY, A.R. HR20
LECUE, J.M. HR20
JEDLOVEC, G.J. HR20
WHITWORTH, B.N. HR20

GUILLORY, A.R. HR20
LECUE, J.M. NASA Deep Space
JEDLOVEC, G.J. HR20
WHITWORTH, B.N. UAH

HAGOPIAN, J. EO46
MAXWELL, T. EO46
NAHAY, E. EO46
NASA/MIR Phase 1: A Lesson in Long Duration Mission Planning and Operations. For presentation at Space Ops 98, Fifth International Symposium on Space Mission Operations and Ground Data Systems, Tokyo, Japan, June 1–5, 1998.

HAGYARD, M.J. ES82
STARK, B.A. Nichols Research Corp.
VENKATAKRISHNAN, P. Indian Institute of Technology
A Search for Vector Magnetic Field Variations Associated with the M-Class Flares of 1991 June 10 in

HAGYARD, M.J. ES82
STARK, B.A. Nichols Research Corp.
VENKATAKRISHNAN, P. Indian Institute of Technology

HAGYARD, M.J. ES82
PEVTSOV, A.A. ES82
CANFIELD, R.C. ES82

HALE, J.P., II EO66

HALL, C.E. ED13
GALLAHER, M.W. ED13
HENDRIX, N.D. ED13

HAMILTON, G.S. EO66
WILLIAMS, J.C. University of Texas

HANSON, J.M. ED13
COUGHLIN, D.J. ED13
DUKEMAN, G.A. ED13
MULQUEEN, J.A. ED13
MCCARTER, J.W. ED13

HARMON, B.A. ED84
ZHANG, S.N. ED84
ROBINSON, C.R. ED84
PACIESAS, W.S. ED84
BARRET, D. Harvard/CFA
GRINDLAY, J. Harvard/CFA
BLOSER, P. Harvard/CFA
MONNELLY, C. Harvard/CFA

HARMON, B.A. ED84
ROBINSON, C.R. ED84

HARMON, B.A. ED84
FISHMAN, G.J. ED84
PACIESAS, W.S. UAH

HARMON, B.A. ED84
MCCOLLOUGH, M.L. ED84
ZHANG, S.N. ED84
PACIESAS, W.S. ED84

HASTINGS, L. EP42
MARTIN, J. EP42

HATHAWAY, D.H. ES82

HATHAWAY, D.H. ES82 HO, J.X. ES76
A Search for Giant Convection Cells on the Sun. For SNEILL, E.H. ES76
presentation at 1998 Spring AGU Meeting, Boston, SISK, R.C. ES76
RUBLE, J.R. ES76
CARTER, D.C. ES76
OWENS, S.M. ES76
GIBSON, W.M. ES76

HATHAWAY, D.H. ES82 WILSON, R.M. ES82
Comment on “The predicted size of cycle 23 based Stationary Crystal Diffraction with a Monochromatic
on the interred three-cycle quasi-periodicity of the Convergent X-Ray Source and Application for Mac-
planetary index Ap” by H.S. Ahluwalia. For pub-romolecular Crystal Data Collection. For publication
lication in Journal of Geophysical Research (Space Phys-
in Acta Crystallographica Section D.

HERRMANN, R. ES81 MAGUN, A. ES81
KAUFMANN, P. ES81 CORREIA, E. ES81
COSTA, I.E.R. ES81 MACHADO, M.E. ES81
FISHMAN, G.J. ES81 Evidence for Highly Inhomogeneous mm-Wave
ET AL. ES81 Sources During the Impulsive Flare of May 9, 1991.
HODANISH, S. HR20 SHARP, D. HR20
HORWITZ, J.L. HR20 WILLIAMS, E. HR20
MOORE, T.E. ES81 BOLDI, B. HR20
GERMANY, G.A. ES81 GOODMAN, S.J. HR20
SPANN, J.F. ES81 RAGHAVAN, R. HR20
PETERTSON, W.K. ES81 MATLIN, A. HR20
SHELLEY, E.G. ES81 WEBER, M. HR20
CHANDLER, M.O. ES81
CRAVEN, P.D. ES81
ET AL.
Relationship of Topside Ionospheric Ion Outflows to Comparisons Between Total Lightning Data,
Auroral Forms and Precipitations, Plasma Waves, and Mesocyclone Strength, and Storm Damage Asso-
Convection Observed by POLAR. For publication ciated with the Florida Tornado Outbreak of February 23,
in Journal of Geophysical Research. 1998. For presentation at 19th Conference on Severe
HIRAHARA, M. UAH HOFFMAN, C.R. Pratt & Whitney
HIRWITZ, J.L. UAH PUGH, R. Pratt & Whitney
MOORE, T.E. ES81 SAFIE, F.M. CR10
GERMANY, G.A. ES81
SPANN, J.F. ES81
PETERTSON, W.K. ES81
SHELLEY, E.G. ES81
CHANDLER, M.O. ES81
CRAVEN, P.D. ES81
ET AL.
Methods and Techniques for Risk Prediction of Space Shuttle Upgrades. For presentation at AIAA Confer-
HOOVER, R.B. ES82 ROZANOV, A.Y. Russian Academy
ZHUMUR, S.I. Russian Academy
GORLENKO, V.M. Russian Academy
Further Evidence of Microfossils in Carbonaceous
Meteorites. For presentation at SPIE’s International
HIRAHARA, M. UAH
HIRWITZ, J.L. UAH
MOORE, T.E. ES81
CHANDLER, M.O. ES81
GILES, B.L. ES81
CRAVEN, P.D. ES81
POLLOCK, C.L. SwRI
POLAR Observations of Properties of H+ and O+ Conics in the Cusp Near -5300 km Altitude. For pub-
Evidence of Microfossils in Carbonaceous Chondrites. For publication in Proceedings for SPIE’s Inter-
HOOVER, R.B. ES82
Evidence for Microfossils in Ancient Rocks and Meteorites. For presentation at Goddard Space Flight Center Lecture, GSFC, MD, October 2, 1998.

HOPPE, D. EH33

HORACK, J.M. ES01
TREISE, D. University of Florida

HORWITZ, J.L. UAH
SU, Y.-J. ES83
MOORE, T.E. ES83
GILES, B.L. ES83
CRAVEN, P.D. ES83
CHANDLER, M.O. ES83
HIRAHARA, M. ES83
POLLOCK, C.J. ES83

HORWITZ, J.L. ES83
SU, Y.-J. ES83
DORS, E.E. ES83
MOORE, T.E. ES83
GILES, B.L. ES83
CHANDLER, M.O. ES83
CRAVEN, P.D. ES83
CHANG, S.-W. ES83
SCUDDER, J. ES83

HOWARD, R.T. EB44
BRYAN, T.C. EB44
BOOK, M.L. EB44

HOWARD, S.G. Boeing
HUTCHENS, C.F. ED62
RETHKE, D.W. Hamilton Standard
SWARTLEY, V.L. Hamilton Standard
MARSH, R.W. Hamilton Standard

HUDDSON, S.T. ED34
COLEMAN, H.W. UAH

HUETER, U. RA10

HUMPHRIES, W.R. ED01
VERDERAIME, V. ED01
Bridging Deterministic and Reliability Quasi-Static Structural Analyses. For publication in Journal of Spacecraft and Rockets.

HURLEY, K. ES81
HARTMANN, D.H. ES81
KOUVELIOTOU, C. ES81
FISHMAN, G.J. ES81
LAROS, J.G. ES81
CLINE, T.L. ES81
BOER, M. ES81

HURLEY, K. ES84
BRIGGS, M.S. ES84
KIPPEN, R.M. ES84
KOUVELIOTOU, C. ES84
MEEGAN, C.A. ES84
FISHMAN, G.J. ES84
CLINE, T.L. ES84
BOER, M. ES84
MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

HURLEY, K. ES84
BRIGGS, M.S. ES84
KIPPEN, R.M. ES84
KOUVELIOTOU, C. ES84
MEEGAN, C.A. ES84
FISHMAN, G.J. ES84
CLINE, T.L. ES84
BOER, M. ES84
JARZEMBSKI, M.A. HR20
SRIVASTAVA, V. USRA
ROTHEMERL, J. HR20
JARZEMBSKI, M.A. HR01
SRIVASTAVA, V. USRA
JEDLOVEC, G.J. HR01
CHANG, F.-C. UAH
JEDLOVEC, G.J. HR01
GUILLORY, A.R. HR01

JAAP, J. EO47
MEYER, P.J. EO47
DAVIS, E. EO47

JACKSON, J.L. Micro Craft, Inc.
HOWARD, R.T. EB44
COLE, H.J. EB53

JACOBSON, D. EJ31
CRAIG, L. EJ31
SCHUNK, G. EJ31
SHAPIRO, A. EJ31
CLOYD, D. EJ31
RICKS, E. EJ31
VACARRO, M. EJ31
REDDING, D. JPL
HADAWAY, J. UAH
BELY, P. Space Telescope

JARZEMBSKI, M.A. HR01
SRIVASTAVA, V. USRA
JETT, T.R. EH13
THOM, R.L. EH13

PUSEY, M.L. ES76
WHITE, E.T. University of Queensland

JUDGE, R.A. ES76
FORSYTHE, E.L. ES76
PUSEY, M.L. ES76
The Effect of Protein Impurities on Lysozyme Crystal Growth. For publication in Biotechnology and Bioengineering Journal, 1998.

JUDGE, R.A. ES76
SNELL, E.H. ES76

JUDGE, R.A. ES76
JACOBS, R.S. UAH
FRAZIER, T. Michigan State
SNELL, E.H. ES76
PUSEY, M.L. ES76

JURETZKO, E.R. University of Alabama
DHINDAW, B.K. University of Alabama
STEFANESCU, D.M. University of Alabama
SEN, S. USRA
CURRERI, P.A. ES75

JURETZKO, F.R. University of Alabama
CATALINA, A.V. University of Alabama
STEFANESCU, D.M. University of Alabama
DHINDAW, B.K. University of Alabama
SEN, S. USRA
CURRERI, P.A. ES75
MULLINS, I. University of Alabama
Particle Engulfment and Pushing by Solidifying Interfaces LMS Mission Results. For presentation at 1st Pan-Pacific Basin Workshop and 4th International Japan/China Workshop on Microgravity Science, Tokyo, Japan, July 8–11, 1998.
KEYS, A.S. EB52
JONES, D.K. UAH
FORK, R.L. UAH

KEYS, A.S. EB52
JONES, D.K. UAH
FORK, R.L. UAH

KEYS, A.S. EB52
JONES, D.K. UAH
FORK, R.L. UAH

Ultracompact High-Speed Electro-Optic Switch. For presentation at Optical Society of America Annual Meeting, Baltimore, MD, October 4–9, 1998.

KHAZANOV, G.V. ES83
LIEMOHN, M.W. ES83
KOZYRA, J.U. ES83
MOORE, T.E. ES83

KIPPER, R.M. UAH/ES84
BRIGGS, M.S. ES84
KOMMERS, J.M. MIT
KOVELIOTOU, C. USRA/ES84
HURLEY, K. University of California, Berkeley
ROBINSON, C.R. USRA/ES84

KLOSE, S. Germany
STECKLUM, B. Germany
EISLOFFEL, J. University of Hawaii
NASSIR, M.A. University of Hawaii
HURLEY, K. University of California, Berkeley

MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

LAPENTA, W.M. HR20
CROSSON, W. USRA
DEMBEK, S. USRA
LAKHTAKIA, M. Pennsylvania State University
The Use of Indirect Estimates of Soil Moisture to Initialize Coupled Models and Its Impact on Short-Term and Seasonal Simulations. For presentation at GCIP Mississippi River Climate Conference, St. Louis, MO, June 8–12, 1998.

LAPENTA, W.M. HR20
SUGGS, R. HR20
MCNIDER, R.T. UAH
JEDLOVEC, G.J HR20
A Technique for Assimilating GOES—Derived Land Surface Products into Regional Models to Improve the Representation of Land Surface Forcing. For presentation at GCIP Mississippi River Climate Conference, St. Louis, MO, June 8–12, 1998.

LAROS, J.G. ES81
BOYNTON, W.V. ES81
HURLEY, K. ES81
KOUVELIOTOU, C. ES81
MCCOLLOUGH, M.L. ES81
FISHMAN, G.J. ES81
MEEGAN, C.A. ES81
PALMER, D.M. ES81
CLINE, T.L. ES81
ET AL.

LECLAIR, M. Cape Simulations, Inc.
WORLIKAR, A. Cape Simulations, Inc.
MOTAKEF, S. Cape Simulations, Inc.
GILLIES, D.C. ES75

LEE, J.A. EH23

LEHOCZKY, S.L. ES71

LEON-TORRES, J. University of Alabama
STEFANESCU, D.M. University of Alabama
SEN, S. USRA
CURRERI, P.A. ES75

LERNER, J.A. UAH
JEDLOVEC, G.J. HR01
ATKINSON, R.J. Lockheed Martin

LERNER, J.A. UAH
JEDLOVEC, G.J. HR01
ATKINSON, R.J. Lockheed Martin

LERNER, J.A. UAH
JEDLOVEC, G.J. HR01
ATKINSON, R.J. Lockheed Martin

LI, D. NRC/MSFC
ROBINSON, M.B. ES75
RATHZ, T.J. UAH
WILLIAMS, G. UAH
LI, D. NRC/MSFC
ROBINSON, M.B. ES75
RATHZ, T.J. UAH
WILLIAMS, G. UAH

LI, D. NRC/MSFC
ROBINSON, M.B. ES75
RATHZ, T.J. UAH
WILLIAMS, G. UAH

LI, D. NRC/MSFC
ROBINSON, M.B. ES75
RATHZ, T.J. UAH
WILLIAMS, G. UAH

LI, H. University of Toledo
NADARAJAH, A. University of Toledo
KONNERT, J.H. Naval Research Lab
PUSEY, M.L. ES76

LI, H. University of Toledo
NADARAJAH, A. University of Toledo
KONNERT, J.H. Naval Research Lab
PUSEY, M.L. ES76

LI, H. University of Toledo
NADARAJAH, A. University of Toledo
KONNERT, J.H. Naval Research Lab
PUSEY, M.L. ES76

LI, M. University of Toledo
NADARAJAH, A. University of Toledo
PUSEY, M.L. ES76

LI, M. University of Toledo
KHAZANOV, G.V. UAH
Refilling. For presentation at 6th Huntsville Modeling Workshop, Guntersville, AL, October 26, 1998.

LIETZKE, S.E.
BARNES, C.L. ES76
KUNDROT, C.E. ES76

LIEWER, P.C. JPL
DAVIS, J.M. ES82
DE JONG, E.M. JPL
GARY, G.A. ES82
KLIMCHUK, J.A. Naval Research Lab
REINERT, R.P. Ball Aerospace

LIM, K. Texas A&M University
ADIMURTHY, G. University of Toledo
NADARAJAH, A. University of Toledo
FORSYTHE, E.L. USRA
PUSEY, M.L. ES76

LUVALL, J.C. HR20
QUATTROCHI, D.A. HR20
Thermal Characteristics of Urban Landscapes. For presentation at 23rd Conference on Agricultural and Forest Meteorology, Albuquerque, New Mexico, November 2–6, 1998.

LYLES, G.M. RA10
GRINER, C. DD01
A Status of the Advanced Space Transportation Program from Planning to Action. For presentation at 49th International Astronautical Congress, Melbourne, Australia, September 28–October 2, 1998.

MACLEOD, T.C. EP93
HO, F.D. UAH

MCCALEB, R. AE01
HOLLAND, D.L. AE01

MCCOLLOUGH, M.L. USRA
ROBINSON, C.R. USRA
ZHANG, S.N. USRA
HARMON, B.A. ES84
PACIESAS, W.S. UAH
DIETERS, S.W. UAH
HJELLMING, R.M. National Radio Astronomy
RUPEN, M. National Radio Astronomy
MIODUSZEWSKI, A.J. JIVE/National Radio
ET AL.

MCDONALD, J.P. Sverdrup
HEDAYAT, A. Sverdrup
BROWN, T.M. Sverdrup
KNIGHT, K.C. Sverdrup
CHAMPION, R.H., JR.

MCDUFFIE, J.H. UAH
SHTESSEL, Y.B. UAH
HALL, C. ED13
GALLAHER, M.N. ED13

Sliding Mode Control of the X–33 Vehicle in Reentry Mode. For presentation at AIAA GN&C Conference, Boston, MA, August 1998.

MCKAY, D.S. JSC
ROZANOVA, A.Y. ES82
HOOVER, R.B. ES82
WESTALL, F. JSC

MCMILLAN, V.C. CO30

MCNAMARA, B.J. New Mexico State
HARRISON, T.E. New Mexico State
MASON, P.A. New Mexico State
TEMPLETON, M. New Mexico State
HEIKKILA, C.W. New Mexico State
BUCKLEY, T. New Mexico State
GALVAN, E. New Mexico State
SILVA, A. New Mexico State
HARMON, B.A. ES66

MEEGAN, C.A. ES84

MEEGAN, C.A. ES84

MENDE, S.B. ES83
FREY, H. ES83
VO, H. ES83
GELLER, S.P. ES83
DOOLITTLE, J.H. ES83
SPANN, J.F., JR. ES83

MEYER, P.J. HR20
GUILLORY, A.R. HR20
ATKINSON, R.J. HR20
JEDLOVEC, G.J. HR20

MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

MILLER, T.L.
LESLIE, F.W.

MITTOFANOV, I.G.
ANFIMOV, D.S.
LITVAK, M.L.

MILLER, T.L.
KAVAYA, M.J.
EMMITT, G.D.

MINAMITANI, T.
APPLE, J.A.
AUSTIN, R.A.
DIEITZ, K.L.
KOLODZIEJCZAK, J.J.
RAMSEY, B.D.
WEISSKOPF, M.C.

MITTOFANOV, I.G.
POZANENKO, A.S.
BRIGGS, M.S.
PACIESAS, W.S.
PENDLETON, G.N.
PREECE, R.D.

MOORE, C.E.
CARDELINO, B.H.
FRAZIER, D.O.
NILES, J.
WANG, X.-Q.

MOORE, C.E.
CARDELINO, B.H.
FRAZIER, D.O.
NILES, J.
WANG, X.-Q.

MOORE, R.L. ES82 Evidence that the X-Ray Plasma in Microflares is in a Sequence of Subresolution Magnetic Tubes. For presentation at 1998 Spring AGU Meeting, Boston, MA, May 26, 1998.

NICOLAS, D.P. EB13 DEVANEY, J. Hi-Rel Laboratories

GORES, M. Hi-Rel Laboratories

DICKEN, H. DM Data, Inc.

NOEVER, D. ES76

KOCZOR, R. ES76

NOEVER, D. ES76

SMITH, D.D. ES76

SIBILLE, L. USRA

BROWN, S.C. Southern Research

CRONISE, R.J. ES76

LEHOCZKY, S.L. ES76

NOEVER, D.A. ES76

SMITH, D.D. ES76

SIBILLE, L. USRA

BROWN, S.C. Southern Research

CRONISE, R.J. ES76

<table>
<thead>
<tr>
<th>Authors</th>
<th>Affiliation</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PALOSZ, W.</td>
<td>ES75</td>
<td>Convection of Plasmaspheric Plasma into the Outer Magnetosphere and Boundary Layer Region: Initial Results. For publication in ISTP Monograph AGU, August 1998.</td>
</tr>
</tbody>
</table>
PARHI, S. ES82
SUESS, S.T. ES82
SULKANEN, M. ES82

PARKS, G.K. ES83
BRITTNACHER, M.J. ES83
CHEN, L. ES83
ELSEN, R.K. ES83
MCCARTHY, M. ES83
GERMAN, G.A. ES83
SPANN, J.F., JR. ES83

PARKS, G.K. ES83
BRITTNACHER, M.J. ES83
CHEN, L. ES83
CHUA, D. ES83
ELSEN, R.K. ES83
FILLINGIM, M.O. ES83
MCCARTHY, M. ES83
SPANN, J.F., JR. ES83
WILBER, M. ES83

Understanding Substorms from the Auroral Ionosphere to the Distant Plasma Sheet. For presentation at 32nd COSPAR—Advances in Auroral Plasma Physics, Nagoya, Japan, July 12–19, 1998.

PARK, H.S. ES81
WILLIAMS, G.G. ES81
ABLES, E. ES81
BAND, D.L. ES81
BARTHELMY, S.D. ES81
BIONTA, R.M. ES81
BUTTERWORTH, P.S. ES81
CLINE, T.L. ES81
FERGUSON, D.H. ES81
ET AL.

PARKS, G,K. ES83
BRITTNACHER, M.J. ES83
CHEN, L. ES83
ELSEN, R. ES83
MCCARTHY, M. ES83
GERMAN, G.A. ES83
SPANN, J.F., JR. ES83

Observations of Substorms From the Auroral Ionosphere to the Distant Plasma Sheet. For presentation at Fourth International Conference on Substorms, Lake Hamana, Japan, March 9–13, 1998.

PARK, H.S. ES81
ABLES, E. ES81
BAND, D.L. ES81
BARTHELMY, S.D. ES81
BIONTA, R.M. ES81
BUTTERWORTH, P.S. ES81
CLINE, T.L. ES81
FERGUSON, D.H. ES81
ET AL.

MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

PARNELL, T.A. ES84 BRIGGS, M.S. ES81
WATTS, J.W., JR. ES84 PREECE, R.D. ES81
ARMSTRONG, T.W. SAIC MALLOZZI, R.S. ES81
 MEEGAN, C.A. ES81
 HORACK, J.M. ES81
 FISHMAN, G.J. ES81
 BANK, D.L. ES81
 ET AL.

PARSONS, A.M. GSFC The Identification of Two Different Spectral Types
GEHRELS, N. GSFC of Pulses in Gamma-Ray Bursts. For publication in
HARMON, B.A. ES84 PARSONS, J.B. EP63
FISHMAN, G.J. ES84 WATSON, M.D. EP63
WILSON, C.A. ES84 Analytical Study of the Relationship Between an
ZHANG, S.N. USRA Absorber Cavity and Solar Fresnel Concentrator. For
 presentation at ASME Solar Space Applications

PATNAUDE, D. Smithsonian PERRY, L.L. ED62
PEASE, D. Smithsonian CURTIS, R.E. Boeing
DONNELLY, H. Smithsonian ALEXANDRE, K.L. Boeing
JUDA, M. Smithsonian RUGGIERO, L.L. Boeing
JONES, C. Smithsonian SHTESSEL, N. Boeing
MURRAY, S. Smithsonian
ZOMBECK, M. Smithsonian
SWARTZ, D. USRA
ELSNER, R.F. ES84
ET AL.

PEARSON, J.B. EP63
WATSON, M.D. EP63

PEARSON, S.D. EL23
HARDAGE, D.M. EL23

PENDLETON, G.N. ES81
PACIESAS, W.S. ES81

Grazing Incidence Nickel Replicated Optics for Hard X-Ray Telescopes. For presentation at Structure and
Evolution of the Universe Technology Working Group Meeting, Greenbelt, MD, April 1, 1997.

PHANORD, D.D. University of Wisconsin
KOSHAK, W.J. HR20
SOLAKIEWICZ, R.J. Chicago State University
BLAKESLEE, R.J. HR20

POLITES, M.E. EB01
ET AL.

POLITES, M.E. EB01
ET AL.

POLITES, M.E. EB01
ET AL.

POLITES, M.E. EB01

PORTER, J.G. ES82

PORTER, J.G. ES82
FALCONER, D.A. ES82
MOORE, R.L. ES82
HARVEY, K.L. SPRC
RABIN, D.M. NSO
SHIMIZU, T. University of Tokyo

POWELL, R.W. LaRC
LOCKWOOD, M.K. LaRC

COOK, S.A. RA10
The Road from the NASA Access to Space Study to a Reusable Launch Vehicle. For presentation at 49th International Astronautical Congress, Melbourne, Australia, September 28–October 2, 1998.

PREECE, R.D. ES84
BRIGGS, M.S. ES84
MALLOZZI, R.S. ES84
PENDLETON, G.N. ES84
PACIESAS, W.S. ES84
BAND, D.L. ES84

PRICE, M.W. UAB
SCRIPA, R.N. UAB
ZOFRAN, F.R. ES75
LEHOCZKY, S.L. ES75
SU, C.-H. ES75

Directional Solidification and Characterization of Hg0.89Mn0.11Te. For publication in Journal of Crystal Growth, 1998.

PRICE, M.W. UAB
SCRIPA, R.N. UAB
ZOFRAN, F.R. ES75
LEHOCZKY, S.L. ES75
SU, C.-H. ES75

Directional Solidification and Characterization of Hg0.89Mn0.11Te. For presentation at 12th International Conference on Crystal Growth, Jerusalem, Israel, July 26–31, 1998.

PRICE, M.W. UAB
SCRIPA, R.N. UAB
ZOFRAN, F.R. ES75
LEHOCZKY, S.L. ES75
SU, C.-H. ES75

Differential Thermal Analysis of Hg(1-x)MnxTe Alloys in the X=0 to 0.3 Range. For presentation at

PUSEY, M.L. ES76
SMITH, L. UAH

PUSEY, M.L. ES76

QUATTROCHI, D.A. HR20

QUATTROCHI, D.A. HR20
LAM, N.S. Louisiana State
QIU, H.-L. California State

QUATTROCHI, D.A. HR20
LUVALL, J.C. HR20
ESTES, M.G. HR20
LO, C.P. University of Georgia
KIDDER, S.Q. Colorado State
HAFNER, J. Colorado State
TAHA, H. Lawrence Berkeley
BORNSTEIN, R.D. San Jose State
GILLIES, R.R. Utah State University
GALLO, K.P. NOAA/NESDIS

RAMSEY, B.D. ES84
PESKOV, V. ES84
FONTE, P. Coimbra University

PODOLIAK, E.

REDMON, J.W. EB52
ENGELHAUPT, D. UAH

RICHMOND, R.C. ES76

RICKS, K.G. EB44
WELLS, B.E. UAH

ROBERTS, B.C. EL23
KNUPP, K.R. UAH
BUECHLER, D.L. UAH

ROBERTSON, F.R. HR01
FITZJARRALD, D. HR01
MCCAUL, E.W. USRA

ROBINSON, M.B. ES75
LI, D. NRC/MSFC
RATHZ, T.J. UAH
WILLIAMS, G. UAH
ROBINSON, M.B. ES75 RUBIN, B.C. ES84
RATHZ, T.J. UAH FINGER, M.H. ES84
LI, D. NRC SCOTT, D.M. ES84
WORKMAN, G.L. UAH WILSON, R.B. ES84

ROGERS, J.R. ES71 ROBINSON, M.B. ES71 SAVAGE, L. ES93 SOELLNER, W. Raytheon
HUIE, D. Mevatec

ROGERS, PR. ED24 BYNUM, J.E. ED24 SHAH, S.R. Lockheed Martin

Remote Sensing of Multi-Level Wind Fields With High-Energy Airborne Scanning Coherent Doppler Lidar. For publication in Optics Express, Washington, D.C.

ROVIRA, M. SCHMIEDER, B. Observatoire de Paris DEMOULIN, P. Observatoire de Paris SIMNETT, G.M. University of Birmingham
HAGYARD, M.J. ES01 REICHHMANN, E. ES01 TANDBERG-HANSSEN, E.J. ES01

RUSSELL, C.K. EH23 DING, R.J. EH23

RUSSELL, C.K. EH23 ROTHSCILDE, W.J. Boeing CHRISTENSEN, D.L. Lockheed Martin

SAFIE, F.M. CR10 SAHOO, N.K. EB52 SHAPIRO, A.P. EB52

SCHALLHORN, P. Sverdrup MAJUMDAR, A. Sverdrup
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Institution</th>
<th>Title</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARSH, M.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WILLIAMSEN, J.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEN, S.</td>
<td>USRA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DHINDAW, B.K.</td>
<td>IIT Kharagpur, India</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PETERS, P.</td>
<td>ES75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CURRELLI, P.A.</td>
<td>ES75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHERIE, S.A.</td>
<td>University of Florida</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEAR, W.E.</td>
<td>University of Florida</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEADHAM, J.M.</td>
<td>University of Florida</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUNT, E.L.</td>
<td>ED62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHARP, D.</td>
<td>HR20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WILLIAMS, E.</td>
<td>HR20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOLDI, B.</td>
<td>HR20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GOODMAN, S.J.</td>
<td>HR20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAGHAVAN, R.</td>
<td>HR20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATLIN, A.</td>
<td>HR20</td>
<td>Observations of Total Lightning Associated with Severe Convection During the Wet Season in Central Florida.</td>
<td>For presentation at 19th Conference on Severe Local Storms, Minneapolis, MN, September 14–18, 1998.</td>
</tr>
<tr>
<td>WEBER, M.</td>
<td>HR20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHAW, E.J.</td>
<td>PP03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAMAKER, J.W.</td>
<td>PP03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRINCE, F.A.</td>
<td>PP03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GREENBERG, J.</td>
<td>Princeton Synergetics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHAW, E.J.</td>
<td>PP03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAMAKER, J.W.</td>
<td>PP03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRINCE, F.A.</td>
<td>PP03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEVER, T.L.</td>
<td>HR20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHAW, E.J.</td>
<td>PP03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAMAKER, J.W.</td>
<td>PP03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRINCE, F.A.</td>
<td>PP03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHERIF, S.A.</td>
<td>University of Florida</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEAR, W.E.</td>
<td>University of Florida</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEADHAM, J.M.</td>
<td>University of Florida</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUNT, P.L.</td>
<td>ED62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOLLADAY, J.B.</td>
<td>ED62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHTEESSEL, Y.</td>
<td>UAH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JACKSON, M.</td>
<td>ED13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HALL, C.</td>
<td>ED13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KRUPP, D.</td>
<td>ED13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HENDRIX, N.D.</td>
<td>ED13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SHTESSEL, Y. UAH Metal Aerogel Filters. For publication in Journal of Noncrystalline Solids.
JACKSON, M. ED13
HALL, C. ED13
KRUPP, D. ED13
HENDRIX, N.D. ED13

SITAR, R.J. ES83
CLAUER, C.R. ES83
BAKER, J.B. ES83
RIDLEY, A.J. ES83
CUMNOCK, J.A. ES83
GERMANY, G.A. ES83
SPANN, J.E. ES83
BRITTNACHER, M.J. ES83
PARKS, G.K. ES83

SLEDD, A.M. JA63
MUELLER, C.W. JA63

SMELTZER, S.S., III ED52
FINCKENOR, J.L. ED62

SMITH, C.C. EH32
IIA, D. Alabama A&M
SARKISOV, S. Alabama A&M
WILLIAMS, E.K. Alabama A&M
POKER, D.B. Oak Ridge Lab.
HENSELEY, D.K. Oak Ridge Lab.

SMITH, D.D. ES76
SIBILLE, L. USRA
CRONISE, R.J. ES76
NOEVER, D.A. ES76

Surface Plasmon Resonance Evaluation of Colloidal

Quantifying the Complexity of Flaring Active Regions. For presentation at SPD, Bozeman, MO, June 1997.

SEN, S. USRA
CURRERI, P.A. ES75
Particle Engulfment and Pushing by Solidifying Interfaces Part II: Microgravity Experiments and Theoretical Analysis. For publication in Metallurgical Transactions, 1998.

STEVENSON, B.A. ES83
HORWITZ, J.L. ES83
SU, Y.J. ES83
ELLIOIT, H.A. ES83
COMFORT, R.H. ES83
MOORE, T.E. ES83
GILES, B.L. ES83
CRAVEN, P.D. ES83
CHANDLER, M.O. ES83
POLLOCK, C.J. ES83

STONE, N.H. ES83
The Tethered Satellite System: Scientific and Technological Results. For presentation at The International Astronautical Federation Conference, Turin, Italy, October 1997.

STONE, N.H. ES83
RAITT, W.J. Utah State University
The TSS–1R Electrodynamic Tether Experiment: Scientific and Technological Results. For presentation at COSPAR, Japan, July 18, 1998.

The TSS–1R Electrodynamic Tether Experiment: Scientific and Technological Results. For publication in Advances in Space Research, August/September 1998.

STROLLBERG, M.
FINGER, M.H. ES84
WILSON, R.B. ES84
SCOTT, D.M. ES84
CRARY, D.J. ES84
PACIESAS, W.S. ES84

SU, C.-H. ES75
FETH, S. Hughes STX Corp.
LEHOCZKY, S.L. ES75

Heat Treatments of ZnSe Starting Materials for Physical Vapor Transport. For publication in Journal of Crystal Growth, Amsterdam, Netherlands.

SU, C.-H. ES75
RAITT, W.J. Utah State University
The TSS–1R Electrodynamic Tether Experiment: Scientific and Technological Results. For presentation at 10th International Conference on Vapor Growth and Epitaxy (ICVG10), Jerusalem, Israel, July 26–31, 1998.

SU, C.-H. ES75
BREBRICK, R.F. Marquette University
BURGER, A. Fisk University
DUDLEY, M. State University of NY
MATYI, R.J. University of Wisconsin
RAMACHANDRAN, N. USRA
SHA, Y.-G. USRA
VOLZ, M.P. ES75
SHIH, H.-D. Central Research Labs

SU, Y.-J. UAH
HORWITZ, J.L. UAH
MOORE, T.E. ES83
GILES, B.L. ES83
CHANDLER, M.O. ES83
CRAVEN, P.D. ES83
CHANG, S.-W. UAH
SCUDDER, J. UAH

SUESS, S.T. ES82
POLETTO, G. ES82
WANG, A.H. ES82
WU, S.T. ES82
CUSERI, I. ES82
The Geometric Spreading of Coronal Plumes and Coronal Holes. For publication in Solar Physics.

SUESS, S.T. ES82

SUESS, S.T. ES82
PARHI, S. ES82
MOORE, R.L. ES82

SUESS, S.T. ES82

SUESS, S.T. ES82
WANG, A.-H. UAH
WU, S.T. UAH
POLETTO, G. Osservatorio Astrofisico
MCCOMAS, D.J. Los Alamos National Lab.
A Two-Fluid, MHD Coronal Model. For publication in Journal of Geophysical Research—Space Physics, Washington, DC.

SUESS, S.T. ES82

SUUNKARA, H.B. ES76
PENN, B.G. ES76
FRAZIER, D.O. ES76

SUESS, S.T. ES82
POLETTO, G. ES82
SIMNETT, G.M. ES82
CORTI, G. ES82
NEUGEBAUER, M. ES82
GOLDSTEIN, B.E. ES82

SUGGS, R.J. ES82
JEDLOVEC, G.J. ES82
LAPOINTE, W.M. ES82

SULKUNEN, M.E. ES84
JOY, M.K. ES84
PATEL, S.K. UAH
RAMACHANDRAN, N. ES76

SWARTZ, D.A. ES84
ELSNER, R.F. ES84
KOLODZIEJCZAK, J.J. ES84
O'DELL, S.L. ES84
TENNANT, A.F. ES84
SULKANEN, M.E. ES84
WEISSKOPF, M.C. ES84
EDGAR, R.J. ES84

SWIFT, W.R. ES83
GERMANY, G.A. ES83
RICHARDS, P.G. ES83
PARKS, G.K. ES83
BRITTNACHER, M.J. ES83
SPANN, J.F., JR. ES83

SZOFRAN, F.R. ES75
VOLZ, M.P. ES75
COBB, S.D. ES75
MOTAKEF, S. CAPE Simulations, Inc.

SZOFRAN, F.R. ES75
BENZ, K.W. Universitat, Freiburg
CROLL, A. Universitat, Freiburg
DOLD, P. Universitat, Freiburg
COBB, S.D. ES75
VOLZ, M.P. ES75
MOTAKEF, S. CAPE Simulations, Inc.
WALKER, J.S. University of Illinois

CROLL, A. Universitat, Freiburg
DOLD, P. Universitat, Freiburg
COBB, S.D. ES75
VOLZ, M.P. ES75
MOTAKEF, S. CAPE Simulations, Inc.

TATARA, J.D. ION Corp.
WEISSKOPF, M.C. ES01

TINKER, M.L. ED23

TINKER, M.L. ED23

TINKER, M.L. ED23

TIPPETT, D.D. UAH
Downsizing: Is There a “Right” Way? For presenta-

TUCKER, D.S. ES75
ETHRIDGE, E.C. ES75

TUCKER, D.S. ES75
WORKMAN, G.L. UAH
SMITH, G.A. UAH

TUCKER, D.S. ES75
SCRIPA, R.N. UAB
WANG, B. UAB
RIGSBEE, J.M. UAB

TUCKER, P.K. ED32
SHYY, W. University of Florida
SLOAN, J.G. University of Florida

TURNER, J.E. EE61
HUETER, U. RA10

VAN DER HOOFT, F. University of Amsterdam
KOUVELIOTOU, C. USRA/ES84
VAN PARADIJS, J. UAH
PACIESAS, W.S. UAH
LEWIN, W.H.G. MIT
VAN DER KLIS, M. University of Amsterdam
HARMON, B.A. ES84
ZHANG, S.N. USRA/ES84

VAN DER HOOFT, F. University of Amsterdam
KOUVELIOTOU, C. USRA/ES84
VAN PARADIJS, J. UAH
PACIESAS, W.S. UAH
LEWIN, W.H.G. MIT
VAN DER KLIS, M. University of Amsterdam
HARMON, B.A. ES84
ZHANG, S.N. USRA/ES84

VAN Dyke, M. EP63

VAN PARADIJS, J. ES81
VAN DEN HEUVEL, E.P.J. ES81
KOUVELIOTOU, C. ES81
FISHERMAN, G.J. ES81
FINGER, M.H. ES81
LEWIN, W.H.G. ES81

VAUGHAN, O.H., JR. HR20
A View of Lightning from the Space Shuttle—Red Sprites and Blue Jets. For presentation at Auburn University, Auburn, AL, November 20, 1997.

VAUGHAN, O.H., JR. HR20
BOECK, W.L. Niagara University

VENTURINI, C.C. UAH
SPANN, J.F., JR. ES83
COMFORT, R.H. UAH
Preliminary Results From a Laboratory Study of Charging Mechanisms in a Dusty Plasma. For

VENTURINI, C.C. UAH
SPANN, J.F., JR. ES83
COMFORT, R.H. UAH
Recent Results From a Laboratory Study of Charging Mechanisms in a Dusty Plasma. For presentation at American Geophysical Union 1998 Fall Meeting, San Francisco, CA, December 6, 1998.

VLASSE, M. ES76

VOLZ, M.P. ES75
SZOFRAN, F.R. ES75
VUJISIC, L. Cape Simulations, Inc.
MOTAKEF, S. Cape Simulations, Inc.

WALKER, J.L. UAH
RUSSELL, S.S. EH13
WORKMAN, G.L. UAH
HILL, E.V.K. Embry-Riddle University
Neural Network/Acoustic Emission Burst Pressure Prediction for Impact Damaged Composite Pressure Vessels. For publication in Materials Evaluation.

WALKER, J.L. UAH
RUSSELL, S.S. EH13
WORKMAN, G.L. UAH

WALLACE, S. EB33
BROWN, T. EB33
FREESTONE, K. EB33

WANG, J.C. Alabama A&M University
LEHOCZKY, S.L. ES71
WATRING, D.A. ES71

WANG, T.-S. ED32

WANG, T.-S. ED32

WANG, T.-S. ED32

WATSON, M.D. EB52
JAYROE, R. EB52

WATSON, M.D. EB52
ABUSHAGUR, M.A.G. UAH
ASHLEY, P.R. U.S. Army Missile
COLE, H.J. EB53

WEISSKOPF, M.C. ES01
O’DELL, S.L. ES01
ELSNER, R.F. ES01
VAN SPEYBROECK, L.P. Smithsonian
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weisskopf, M.C.</td>
<td>1984</td>
</tr>
<tr>
<td>Elsner, R.F.</td>
<td>1984</td>
</tr>
<tr>
<td>Joy, M.K.</td>
<td>1984</td>
</tr>
<tr>
<td>O'Dell, S.L.</td>
<td>1984</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weisskopf, M.C.</td>
<td>1984</td>
</tr>
<tr>
<td>Elsner, R.F.</td>
<td>1984</td>
</tr>
<tr>
<td>Joy, M.K.</td>
<td>1984</td>
</tr>
<tr>
<td>O'Dell, S.L.</td>
<td>1984</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whitaker, A.F.</td>
<td>1998</td>
</tr>
<tr>
<td>Curreri, P.A.</td>
<td>1998</td>
</tr>
<tr>
<td>Sharpe, J.B.</td>
<td>Lockheed Martin</td>
</tr>
<tr>
<td>Colberg, W.R.</td>
<td></td>
</tr>
<tr>
<td>Vickers, J.H.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whorton, M.S.</td>
<td>1998</td>
</tr>
<tr>
<td>Alhorn, D.C.</td>
<td>1998</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whorton, M.S.</td>
<td>1998</td>
</tr>
<tr>
<td>Calise, A.J.</td>
<td>Georgia Institute of Tech.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilterson, G.W.</td>
<td>Micro Craft, Inc.</td>
</tr>
<tr>
<td>Huegele, V.</td>
<td>EB23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vanderspank, J.P.</td>
<td>1998</td>
</tr>
<tr>
<td>Raghavan, R.</td>
<td>HR20</td>
</tr>
</tbody>
</table>

WILSON, C.A. ES84
DIETERS, S.W. UAH
FINGER, M.H. USRA
SCOTT, D.M. USRA
VAN PARADIJS, J. UAH

WILSON, C.A. ES84
FINGER, M.H. USRA
SCOTT, D.M. USRA

WILSON, C.A. ES84
HARMON, B.A. ES84
PACIESAS, W.S. UAH
MCOLLOUGH, M.L.

WILSON, C.A. ES84
FINGER, M.H. ES84
WILSON, R.B. ES84
SCOTT, D.M. ES84

WILSON, R.B. ES84
SCOTT, D.M. USRA
FINGER, M.H. USRA
Long-Term Observations of Her X-1 with BATSE. For publication in AIP Conference Proceedings, New York, NY.

WILSON, R.B. ES84
FINGER, M.H. USRA

WILSON, R.M. ES82

WILSON, R.M. ES82

WILSON, R.M. ES82
HATHAWAY, D.H. ES82
REICHMANN, E.J. ES82

WILSON, R.M. ES82

WILSON, R.M. ES82

WILSON, R.M. ES82

WINGLEE, R. University of Wash., Seattle
ELSEN, R.K. University of Wash., Seattle
BRITTNACHER, M. University of Wash., Seattle
PARKS, G.K. University of Wash., Seattle
SPANN, J.F., JR. ES83
GERMANY, G.A. UAH

WITHEROW, W.K. ES76
WOODS, P. ES84
KOUVELIOTOU, C. USRA/ES84
VAN PARADIJS, J.
BRIGGS, M.S.
WILSON, C.A.
DEAL, K.J.
HARMON, B.A.
FISHMAN, G.J. ES84
LEWIN, W.H.G.
KOMMERS, J.M.

WOODS, P.M. UAH
KOUVELIOTOU, C. USRA
FISHMAN, G.J. ES84

WUEST, M. Southwest Research
HUDDLESTON, M. Southwest Research
BURCH, J.L. Southwest Research
DEMPSEY, D.L. Southwest Research
CRAVEN, P.D. ES83
CHANDLER, M.O. ES83
SPANN, J.F., JR. ES83
PETERSON, W.K. Lockheed-Martin
COLLINS, H.L. Lockheed-Martin
LENARTSSON, W. Lockheed-Martin

YOUNG, R.B. ES76
VAUGHN, J.R. ES76
BRIDGE, K.Y. ES76
SMITH, C.K., II Lilly Research Labs

ZHANG, T.X. UAH
HWANG, K.S. CSC
WU, S.T. UAH
STONE, N.H. ES83
SORENSEN, J. ES83
WRIGHT, K.H. ES83
TECHNICAL MEMORANDA

Benfield, M.P. ... 1
Benzie, M.A .. 1
Bhat, B. .. 3
Brown, A.M ... 4, 6
Cramer, J.M. .. 3
Curreli, P.A .. 2
Eldridge, J.T. ... 1
Fazah, M.M. ... 3
Ferebee, R.C. ... 1
Fragomeni, J.M. ... 3
George, L.E .. 5
Graham, J.B .. 4
Harris, D.L. .. 2
Herrmann, M. ... 5
Hodge, A.J .. 1
Hutchens, C. ... 5
Jett, T.R. ... 2
Johnson, I. .. 5
Kos, L.D. ... 5
Landrum, D.B .. 1
Lassiter, J.O. ... 1
Long, D. .. 5
Luz, P.L. ... 3, 4
McCay, K. ... 6
McCauley, D. .. 2, 6
Mitchell, D.P. .. 1
Nettles, A.T. .. 1
Nunes, A.C., Jr .. 3
Ortega, R ... 4
Price, J.M .. 4
Redmon, J.W., Jr .. 1
Rice, T. ... 3
Russell, C. ... 3
Salyer, B. ... 5
Scarl, E. ... 6
Summers, F.G. .. 5
Thom, R.L. .. 2
Turner Waits, J.E .. 6
Vanhooser, M.T .. 1
Vlasse, M.L. ... 6
Walker, C. ... 2, 6
Whorton, M.S. ... 1, 2
Wieland, P.O .. 2, 5
Woodard, D. .. 3, 4

TECHNICAL PUBLICATIONS

Bangham, M.E ... 7
Christenson, R.L. ... 9
Danford, M.D. .. 7, 8
Gallagher, D.L. ... 9
Hathaway, D.H. ... 9
Hayashida, K.B. .. 7
Hill, S.A. ... 7
Howell, L.W. .. 8
Hurless, B.E. ... 8
Johnson, L. .. 9
Komar, D.R. ... 9
Lorenzini, E .. 7
Mendrek, M.J. .. 7, 8
Mitchell, M.L. .. 7
Moore, J ... 9
Polites, M.E. ... 9
Reichmann, J.E. .. 9
Rheinfurth, M.H. ... 8
Robinson, J.H. ... 7
Springer, A.M. ... 8
Torres, P.D. ... 7, 8
Verderama, V. .. 7
Vestal, L. .. 7
Wilson, R.M. .. 9, 10

CONFERENCE PUBLICATIONS

Bekey, Ivan .. 11
Brewer, J.C. ... 11
Downey, J.P. .. 11
Harrison, J.K. .. 11
Mankins, John .. 11
O'Neil, Daniel ... 11
Rogers, Tom .. 11
Stallmer, Eric .. 11

CONTRACTOR REPORTS

Aeroflex .. 13
Auburn University .. 12
Boeing Information, Space& Defense Systems 14
Boeing North America ... 12
Computer Science Corporation 12
ERC, Incorporated .. 12
Georgia Tech Research Inst 14
IIT, M.S. Research Institute 13
Pennsylvania State University 13
Physitron, Inc .. 13
Sciences, Computer Corp 12
SECA, Inc .. 12
Simpson Weather Associates, Inc 13
Southwest Research Institute 13
The Boeing Company .. 14
Thiokol .. 13
University of Alabama in Birmingham 12, 13, 14
University of Alabama in Huntsville 12, 13, 14
University of Alabama, Tuscaloosa 12, 14
Weather, Simpson Associates 13

PAPERS CLEARED FOR PRESENTATION

Abbas, M.M ... 50
Abdeldayem, H.A .. 15, 25, 42
Ables, E. .. 43
Abushagur, M.A.G ... 55
Adams, M.L. ... 15, 50
Adimurthy, G ... 38
Agena, S. .. 15
Akerlof, C.W. ... 21
Alexander, D.A .. 15, 26
Alexandre, K.L ... 44
Alhorn, D.C. ... 16, 56
Alishibli, K.A. ... 16
Anderson, B.J. .. 16, 21
Anderson, J.B. .. 20
Anfimov, D.S ... 40
Angelopoulos, V .. 16
Antar, B.N. ... 16
Apple, J.A. .. 40
Armstrong, T.W. ... 44
Aschwanden, M.J ... 16
Ashley, P.R. ... 55
Atkinson, R.J. .. 31, 36, 39
Austin, R.A. ... 26, 34, 40
Austin, R.E. ... 16
Bachmann, K.T .. 16
Bachtel, F. .. 38
Bagenal, F. .. 25
Bailey, J.C. .. 35
Baird, J.K. ... 32
Baker, J.B. .. 20, 49
Ballance, J .. 32
Balogh, A. .. 16
Band, D.L. ... 43, 45
Bank, D.L. .. 44
Banks, C.E. .. 15
Banta, R.M. .. 47
Barnes, C.L. .. 38
Barret, C. .. 16
Barret, D. .. 25, 28
Barthelmy, S.D. .. 21, 43
Baskaran, S. .. 16
Bathelmy, S.D. ... 34
Batts, G.W. .. 32
Bayuzick, R.J. ... 17
Bely, P. ... 31
Bender, M.W. ... 17, 49
Benz, K.W. .. 22, 53
Bero, E. ... 15
Bilbro, J.W. .. 17, 32
Billstein, L. .. 17, 19, 24, 34, 41
Biller, S. ... 21
Bionta, R. ... 43
Bjorkman, G. .. 17
Blacklock, K. .. 56
Blakeslee, R.J. .. 35, 45
Bloser, P. ... 25, 28
Boccippio, D.J. ... 17
Boeck, W.L. .. 54
Boer, M. ... 30, 31
Boggon, T.J. .. 49
Bogle, D. .. 15
Boldi, B. .. 17, 27, 29, 48, 56
Book, M.L. ... 30
Bornstein, R.D. ... 46
Borowski, O. .. 17
Boyd, R.W. ... 17, 49
Boyle, P. ... 21
Boyton, W.V. ... 36
Brainerd, J.J. ... 18, 42
Braswell, W.D. ... 20
Brebrick, R.F. ... 51
Brewer, D.S. ... 40
Bridge, K.Y. .. 17, 58
Briggs, M.S. ... 18, 30, 31, 34, 35, 40, 42, 44, 45, 58
Brittnacher, M.J. .. 16, 18, 20, 23, 24, 26, 43, 49, 50, 53, 57
Brown, A.M. ... 19
Brown, S.C. ... 41, 42
Brown, T. .. 55
Dhindaw, B.K .. 33, 48, 50
Dicken, H .. 41
Dieters, S.W .. 22, 24, 35, 39, 57
Dietz, K.L .. 21, 40
Ding, R.J .. 47
Disching, H.C., Jr .. 22
Dold, P .. 22, 53
Donnelly, H .. 44
Doolittle, J.H ... 39
Dors, E.E .. 30
Driskill, T.C .. 20
Dudley, M .. 51
Dugal-Whitehead, N ... 22
Dukeman, G.A .. 22, 28
Dumbacher, D.L .. 22
Dunn, M.C ... 22
Dyke, Van, M .. 54
Eastes, R .. 26
Edgar, R.J ... 33, 53
Edge, T.M ... 15
Edwards, D.L ... 22
Eisloffel, J .. 34
Elliott, H.A ... 22, 23, 51
Elsen, R.K .. 18, 23, 24, 26, 43, 50, 57
Elsner, R.F ... 23, 32, 34, 44, 53, 55, 56
Ely, K ... 22
Emmitt, G.D .. 23, 33, 40
Emrich, W.J., Jr ... 23
Engelhaupt, D ... 23, 46
Estes, B ... 32
Estes, M.G .. 46
Estes, R.D .. 32
Ethridge, E.C .. 16, 54
Evans, H ... 56
Evans, I ... 33
Evans, S.W .. 23
Everson, P .. 16
Ewing, F ... 24
Falconer, D.A ... 41, 45
Fears, S ... 26
Feng, X ... 24
Ferguson, D.H .. 43
Ferri, A.A .. 19
Feth, S ... 20, 51
Fewster, P.F .. 49
Fillingim, M.O ... 18, 23, 24, 43, 50
Finckenor, J.L ... 24, 49
Finckenor, M.M ... 22, 27, 58
Finger, M.H ... 17, 19, 24, 34, 41, 47, 51, 54, 57
Fisher, M.F .. 24
Fishman, G.J .. 21, 24, 25, 28, 29, 30, 31, 34, 35, 36, 37, 42, 43, 44, 47, 54, 58
Fitzjarraid, D .. 46
Fok, M.-C ... 25
Fonte, P .. 24, 25, 44, 46
Ford, E.C ... 25, 49
Fork, R.L ... 34
Formichev, V .. 42
Forsythe, E.L .. 25, 32, 33, 38
Foster, R.S ... 38
Fountain, W.F ... 25
Fragomeni, J.M .. 25
Frail, D ... 37
Franks, G.D .. 53
Frazier, D.O ... 15, 25, 40, 42, 52
Frazier, T ... 33
Freeman, M ... 33
Freestone, K .. 55
Frey, H ... 39
Fung, S.F ... 26
Fuselier, S ... 20, 25
Gaetz, T .. 33
Galama, T.J ... 25, 34, 47
Gallagher, D.L .. 25, 26, 42
Gallaher, M.W ... 22, 28, 39
Gallo, K.P ... 46
Galovan, E ... 39
Gamble, A ... 21
Garcia, R .. 26
Garmire, G.P .. 23
Gary, G.A ... 15, 16, 26, 38, 52
Gehrels, N ... 44
Geller, S.P ... 39
Gerhardt, R ... 34
Germany, G.A ... 16, 18, 20, 23, 24, 26, 29, 43, 49, 50, 53, 57
Ghaddar, C.K ... 26
Ghigo, F.D ... 38
Ghosh, K.K ... 26
Gibson, H ... 41
Gibson, W.M ... 29
Gilchrist, B ... 32
Giles, B.L ... 29, 30, 51, 52
Gillies, D.C ... 19, 26, 27, 36
Gillies, R.R ... 46
Gladstone, G.R ... 25
Goldstein, B.E ... 52
Goodman, S.J ... 17, 27, 29, 48, 56
Phanord, D.D ... 45
Pinkleton, D ... 21
Pippin, G ... 27
Podgorski, W.A ... 31
Podolsiak, E ... 46
Poker, D.B ... 49
Poletto, G ... 52
Polites, M.E ... 45
Pollock, C.J . .. 21, 30, 51
Pollock, C.L ... 29
Polosz, W ... 42
Porter, J.G ... 41, 45
Portier-Fozzani, F ... 16
Powell, R.W ... 45
Pozanenko, A.S ... 40
Preece, R.D ... 21, 40, 44, 45
Price, M.W ... 45
Prince, F.A ... 48
Prince, T.A ... 19, 24, 34, 41
Pugh, R ... 29
Pusey, M.L ... 15, 22, 24, 25, 32, 33, 37, 38, 46, 49
Qiu, H.-L ... 46
Quattrochi, D.A ... 38, 46
Rabin, D.M ... 45
Raghavan, R ... 17, 27, 29, 48, 56
Raitt, W.J ... 51
Ramachandran, N .. 16, 27, 51, 53
Ramsey, B.D ... 21, 23, 24, 25, 26, 40, 44, 46
Ranganath, H ... 26
Rantanen, R .. 27
Rathz, T.J ... 36, 37, 46, 47
Ravi, T.S ... 42
Redding, D ... 31
Redmon, J.W ... 46
Reichmann, E.J ... 47, 57
Reiff, P ... 26
Reinert, R.P ... 38
Reiss, D.A ... 35
Rethke, D.W ... 30
Rich, F ... 26
Richards, P.G ... 21, 26, 53
Richmond, R.C ... 46
Ricks, E ... 31
Ricks, K.G ... 46
Ridley, A.J ... 20, 49
Rigsbee, J.M ... 54
Rising, J.J ... 16
Roberts, B.C ... 46
Robertson, F.R ... 35, 46
Robertson, R ... 41
Robinson, C.R ... 28, 34, 38, 39
Robinson, J ... 56
Robinson, M.B ... 17, 36, 37, 46, 47
Roelof, E.C ... 26
Rogers, J.R ... 47
Rogers, P.R ... 47
Roman, M.C ... 38
Rothermel, J ... 31, 47
Rothschild, W.J ... 47
Rovira, M ... 47
Rozanov, A.Y ... 29, 39
Rubic, B.C ... 17, 34, 41, 47
Ruble, J.R ... 29
Ruggiero, L.L ... 44
Ruohoniemi, J.M .. 23
Rupen, M ... 39
Russell, C.K ... 17, 47
Russell, C.T ... 20, 23
Russell, S.S ... 55
Ryan, R.M ... 47
Ryder, M ... 32
Safie, F.M ... 29, 47
Sahoo, N.K ... 47
Sahu, K.C ... 47
Sanmartin, J ... 32
Sarkisov, S ... 17, 49
Savage, L ... 47
Schallhorn, P ... 47
Schmidt, G.R ... 48
Schmieder, B ... 47
Schneider, M ... 27
Schonberg, W.P .. 48
Schunk, G ... 31
Schwartz, D.A .. 31, 33
Schweizer, M ... 22
Scott, D.M ... 19, 24, 41, 47, 51, 57
Scripa, R.N ... 45, 54
Scudder, J ... 30, 52
Sen, S ... 33, 36, 48, 51
Sever, T.L ... 15, 17, 48
Sha, Y.-G ... 51
Shackelford, B ... 48
Shah, S.R ... 47
Shapiro, A ... 31
Shapiro, A.P ... 47
Sharp, D ... 17, 27, 29, 48, 56
Sharpe, J.B ... 56
Shaw, E.J ... 48
This document presents formal NASA technical reports, papers published in technical journals, and presentations by MSFC personnel in FY98. It also includes papers of MSFC contractors.

After being announced in STAR, all of the NASA series reports may be obtained from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

The information in this report may be of value to the scientific and engineering community in determining what information has been published and what is available.