FOREWORD

In accordance with the NASA Space Act of 1958, the MSFC has provided for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof.

Since July 1, 1960, when the George C. Marshall Space Flight Center was organized, the reporting of scientific and engineering information has been considered a prime responsibility of the Center. Our credo has been that "research and development work is valuable, but only if its results can be communicated and made understandable to others."

The N number shown for the reports listed is assigned by the Center for AeroSpace Information (CASI), Hanover, MD, indicating that the material is unclassified and unlimited and is available for public use. These publications can be purchased from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161. The N number should be cited when ordering.
GEORGE C. MARSHALL SPACE FLIGHT CENTER
Marshall Space Flight Center, Alabama

FY 1998 SCIENTIFIC AND TECHNICAL REPORTS
ARTICLES, PAPERS, AND PRESENTATIONS

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA TECHNICAL MEMORANDA</td>
<td>1</td>
</tr>
<tr>
<td>NASA TECHNICAL PUBLICATIONS</td>
<td>7</td>
</tr>
<tr>
<td>MSFC CONFERENCE PUBLICATIONS</td>
<td>11</td>
</tr>
<tr>
<td>NASA CONTRACTOR REPORTS</td>
<td>12</td>
</tr>
<tr>
<td>MSFC PAPERS CLEARED FOR PRESENTATION</td>
<td>15</td>
</tr>
<tr>
<td>INDEX</td>
<td>59</td>
</tr>
</tbody>
</table>
Investigation of the Springback Associated With Composite Material Component Fabrication (MSFC Center Director’s Discretionary Fund Final Report, Project No. 94–09). M.A. Benzie. Materials and Processes Laboratory.

The objective of this research project was to examine processing and design parameters in the fabrication of composite components to obtain a better understanding and attempt to minimize springback associated with composite materials. To accomplish this, both processing and design parameters were included in a Taguchi-designed experiment. Composite angled panels were fabricated, by hand layup techniques, and the fabricated panels were inspected for springback effects. This experiment yielded several significant results. The confirmation experiment validated the reproducibility of the factorial effects, error recognized, and experiment as reliable. The material used in the design of tooling needs to be a major consideration when fabricating composite components, as expected. The factors dealing with resin flow, however, raise several potentially serious material and design questions. These questions must be dealt with up front in order to minimize springback: viscosity of the resin, vacuum bagging of the part for cure, and the curing method selected. These factors directly affect design, material selection, and processing methods.

Low velocity dropweight impact tests were conducted on carbon/epoxy laminates under various boundary conditions. The composite plates were 8-ply (+45, 0, −45, 90)s laminates supported in a clamped-clamped/free-free configuration with varying amounts of in-plane load, Nx, applied. Specimens were impacted at energies of 3.4, 4.5, and 6 Joules (2.5, 3.3, and 4.4 ft-lb). The amount of damage induced into the specimen was evaluated using instrumented impact techniques, x-ray inspection, and cross-sectional photomicroscopy. Some static indentation tests were performed to examine the impact events utilized in this study were of a quasi-static nature and also to gain insight into the shape of the deformed surface at various impact load combinations. Load-displacement curves from these tests were compared to those of the impact tests, as was damage determined from x-ray inspection. The finite element technique was used to model the impact event and determine the stress field within the laminae.

Results showed that for a given impact energy level, more damage was induced into the specimen as the external in-plane load, Nx, was increased. The majority of damage observed consisted of back face splitting of the matrix parallel to the fibers in that ply, associated with delaminations emanating from these splits. The analysis showed qualitatively the results of impact conditions on maximum load of impact, maximum transverse deflection, and first failure mode and location.

As a research facility for microgravity science, the International Space Station (ISS) will be used for numerous investigations such as protein crystal growth, combustion, and fluid mechanics experiments which require a quiescent acceleration environment across a broad spectrum of frequencies. These experiments are most sensitive to low-frequency accelerations and can tolerate much higher accelerations at higher frequency. However, the anticipated acceleration environment on ISS significantly exceeds the required acceleration level. The ubiquity and difficulty in characterization of the disturbance sources precludes source isolation, requiring vibration isolation to attenuate the anticipated disturbances to an acceptable level. This memorandum reports the results of research in active control methods for microgravity vibration isolation.
The International Space Station (ISS) incorporated elements designed and developed by an international consortium led by the United States (U.S.), and by Russia. For this cooperative effort to succeed, it is crucial that the designs and methods of design of the other partners are understood sufficiently to ensure compatibility. Environmental Control and Life Support (ECLS) is one system in which functions are performed independently on the Russian Segment (RS) and on the U.S./international segments. This document describes, in two volumes, the design and operation of the ECLS Systems (ECLSS) on board the ISS. Volume I is divided into three chapters. Chapter I is a general overview of the ISS, describing the configuration, general requirements, and distribution of systems as related to the ECLSS, and includes discussion of the design philosophies of the partners and methods of verification of equipment. Chapter II describes the U.S. ECLSS and technologies in greater detail. Chapter III described the ECLSS in the European Attached Pressurized Module (APM), Japanese Experiment Module (JEM), and Italian Mini-Pressurized Logistics Module (MPLM). Volume I1 describes the Russian ECLSS and technologies in greater detail. These documents present thorough, yet concise, descriptions of the ISS ECLSS.

A test program to determine the tribological properties of several self-lubricating composites was performed. Testing was done using an LFW-I Friction and Wear machine. Each material was tested at four load levels (66 N, 133 N, 266 N, and 400 N) under ambient conditions. The coefficient of friction and wear rate was determined for each material, and a relative ranking of the composites was made.

Many spacecraft systems have ambitious objectives that place stringent requirements on control systems. Achievable performance is often limited because of difficulty of obtaining accurate models for flexible space structures. To achieve sufficiently high performance to accomplish mission objectives may require the ability to refine the control design model based on closed-loop test data and tune the controller based on the refined model. A control system design procedure is developed based on mixed H_2/H_∞ optimization to synthesize a set of controllers explicitly trading between nominal
performance and robust stability. A homotopy algorithm is presented which generates a trajectory of gains that may be implemented to determine maximum achievable performance for a given model error bound. Examples show that a better balance between robustness and performance is obtained using the mixed H_2/H_{∞} design method than either H_2 or mu-synthesis control design. A second contribution is a new procedure for closed-loop system identification which refines parameters of a control design model in a canonical realization. Examples demonstrate convergence of the parameter estimation and improved performance realized by using the refined model for controller redesign. These developments result in an effective mechanism for achieving high-performance control of flexible space structures.

Conditions under which molten metal detachments might occur in a space welding environment are analyzed. A weld pool detachment parameter specifying conditions for pool detachment by impact is derived and corroborated by experimental evidence. Impact detachment for the pool is unlikely. Impact detachment for a drop of metal on the end of the weld wire may be possible under extreme conditions. Other potential causes of molten metal detachment considered, vaporization pressure forces and wire flickout from the pool, did not appear to present significant detachment threats.

This technical memorandum reports on the mirror material properties that were compiled by NASA Marshall Space Flight Center (MSFC) from April 1996 to June 1997 for preliminary design of the Next Generation Space Telescope (NGST) study. The NGST study began in February 1996, when the Program Development Directorate at NASA MSFC studied the feasibility of the NGST and developed the prephase A program for it. After finishing some initial studies and concepts development work on the NGST, MSFC’s Program Development Directorate handed this work to the Observatory Projects Office at MSFC and then to NASA Goddard Space Flight Center (GSFC). This technical memorandum was written by MSFC’s Preliminary Design Office and Materials and Processes Laboratory for the NGST Optical Telescope Assembly (OTA) team, in support of NASA GSFC. It contains material properties for 9 mirror substrate materials, using information from at least 6 industrial suppliers, 16 textbooks, 44 technical papers, and 130 technical abstracts.

To satisfy RBCC rocket thruster requirements of high performance and a minimum amount of free hydrogen at plume boundary, a new impinging injector element using gaseous hydrogen and gaseous oxygen as the propellants has been designed. Analysis has shown that this injector design has potential to provide a high specific impulse (Isp) while minimizing the amount of free hydrogen that is available to be burned with incoming secondary flow. Past studies and test programs have shown that gas/gas-impinging elements typically result in high injector face temperatures due to combustion occurring close to the face. Since this design is new, there is no hot fire experience with this element. Objectives of this test program were to gain experience and hot fire test data on this new rocket thruster element design and injector faceplate pattern.

Twenty-two hot fire tests were run with maximum mixture ratio (MR) and chamber pressure (P_c) obtained at 7.25 and 1,822 psia, respectively. Posttest scanning microscope (SEM) images show only slight faceplate erosion during testing. This injector element design performed well and can be operated at design conditions: (1) P_c of 2,000 psia and MR of 7.0 and (2) P_c of 1,000 psia and MR of 5.0.

The Fiscal Year 1997 Annual Report describes key elements of the NASA Microgravity Research Program. The Program’s goals, approach taken to achieve those goals, and program resources are summarized. A review of the Program’s status at the end of FY97 and highlights of the ground- and flight-based research are provided.
To calculate structural loads of in-line launch vehicles for preliminary design, a very useful computer program is VLOADS 1.4. This software may also be used to calculate structural loads for upper stages and planetary transfer vehicles. Launch vehicle inputs such as aerodynamic coefficients, mass properties, propellants, engine thrusts, and performance data are compiled and analyzed by VLOADS to produce distributed shear loads, bending moments, axial forces, and vehicle line loads as a function of X-station along the vehicle’s length. Interface loads, if any, and translational accelerations are also computed. The major strength of the software is that it enables quick turnaround analysis of structural loads for launch vehicles during the preliminary design stage of its development. This represents a significant improvement over the alternative—the time-consuming and expensive chore of developing finite element models. VLOADS was developed as a Visual BASIC macro in a Microsoft Excel 5.0 workbook on a Macintosh. VLOADS has also been implemented on a PC computer using Microsoft Excel 7.0a for Windows 95. VLOADS was developed in 1996, and the current version was released to COSMIC, NASA’s Software Technology Transfer Center, in 1997. The program is a copyrighted work with all copyright vested in NASA.

Probabilistic method is not a universally accepted approach for the design and analysis of aerospace structures. The validity of this approach must be demonstrated to encourage its acceptance as a viable design and analysis tool to estimate structural reliability. The objective of this study is to develop a well characterized finite population of similar aerospace structures that can be used to (1) validate probabilistic codes, (2) demonstrate the basic principles behind probabilistic methods, (3) formulate general guidelines for characterization of material drivers (such as elastic modulus) when limited data is available, and (4) investigate how the drivers affect the results of sensitivity analysis at the component/failure mode level.
TECHNICAL MEMORANDUM

TM—1998–208533

This paper provides information for trajectory designers and mission planners to determine Earth-Mars and Mars-Earth mission opportunities for the years 2004–2024. These studies were performed in support of a human Mars mission scenario that will consist of two cargo launches followed by a piloted mission during the next opportunity approximately 2 years later. “Porkchop” plots defining all of these mission opportunities are provided which include departure energy, departure excess speed, departure declination, arrival excess speed, and arrival declinations for the mission space surrounding each opportunity. These plots are intended to be directly applicable for the human Mars mission scenario described briefly herein. In addition, specific trajectories and several alternate trajectories are recommended for each cargo and piloted opportunity. Finally, additional studies were performed to evaluate the effect of various thrust-to-weight ratios on gravity losses and total time-of-flight tradeoff, and the resultant propellant savings and are briefly summarized.

TM—1998–208534

This document lists the significant publications and presentations of the Space Sciences Laboratory during the period January 1–December 31, 1997. Entries in the main part of the document are categorized according to NASA Reports (arranged by report number), Open Literature, and Presentations (arranged alphabetically by title). Also included for completeness is an Appendix (arranged by page number) listing preprints issued by the Laboratory during this reporting period. Some of the preprints have not been published; those already published are so indicated. Most of the articles listed under Open Literature have appeared in refereed professional journals, books, monographs, or conference proceedings. Although many published abstracts are eventually expanded into full papers for publication in scientific and technical journals, they are often sufficiently comprehensive to include the significant results of the research reported. Therefore, published abstracts are listed separately in a subsection under Open Literature. Questions or requests for additional information about the entries in this report should be directed to Gregory S. Wilson (ES01: 544–7579) or to one of the authors. The organizational code of the cognizant SSL branch or office is given at the end of each entry.

TM—1998–208538

International Space Station Electrodynamic Tether Reboost Study. L. Johnson and M. Herrmann. Program Development Directorate.

The International Space Station (ISS) will require periodic reboost due to atmospheric aerodynamic drag. This is nominally achieved through the use of thruster firings by the attached Progress M spacecraft. Many Progress flights to the ISS are required annually. Electrodynamic tethers provide an attractive alternative in that they can provide periodic reboost or continuous drag cancellation using no consumables, propellant, or conventional propulsion elements. The system could also serve as an emergency backup reboost system used only in the event resupply and reboost are delayed for some reason.

TM—1998–208539

Wastewater and urine generated on the International Space Station will be processed to recover pure water using vapor compression distillation (VCD). To verify the long-term reliability and performance of the VCD Urine Processor Assembly (UPA), life testing was performed at the Marshall Space Flight Center (MSFC) from January 1993 to April 1996. Two UPA’s, the VCD-5 and VCD-5A, were tested for 204 days and 665 days, respectively. The compressor gears and the distillation centrifuge drive belt were found to have operating lives of approximately 4,800 hours, equivalent to 3.9 years of operation on ISS for a crew of three at an average processing rate of 1.76 kg/h (3.87 lb/h). Precise alignment of the flex-splines of the fluids and purge pump motor drives is essential to avoid premature failure after about 400 hours of operation. Results indicate that, with some design and procedural modifications and suitable quality control, the required performance and operational life can be met with the VCD/UPS.
A detailed structural dynamic analysis of the Pratt & Whitney high-pressure fuel pump first-stage turbine blades has been performed to identify the cause of the tip cracking found in the turbomachinery in November 1997. The analysis was also used to help evaluate potential fixes for the problem. Many of the methods available in structural dynamics were applied, including modal displacement and stress analysis, frequency and transient response to tip loading from the first-stage blade outer gas seals (BOGS), fourier analysis, and shock spectra analysis of the transient response. The primary findings were that the BOGS tip loading is impulsive in nature, thereby exciting many modes of the blade that exhibit high stress at the tip cracking location. Therefore, a proposed BOGS count change would not help the situation because a clearly identifiable resonance situation does not exist. The recommendations for the resolution of the problem are to maintain the existing BOGS count, eliminate the stress concentration in the blade due to its geometric design, and reduce the applied load on the blade by adding shiplaps in the BOGS.

This document reports the one year science results for the important and highly successful Second United States Microgravity Laboratory (USML–2). The USML–2 mission consisted of a pressurized Space lab module where the crew performed experiments. The mission also included a Glovebox where the crew performed additional experiments for the investigators. Together, about 36 major scientific experiments were performed, advancing the state of knowledge in fields such as fluid physics, solidification of metals, alloys, and semiconductors, combustion, and the growth of protein crystals. The results demonstrate the range of quality science that can be conducted utilizing orbital laboratories in microgravity and provide a look forward to a highly productive Space Station era.

This document presents formal NASA technical reports, papers published in technical journals, and presentations by MSFC personnel in FY97. It also includes papers of MSFC contractors.

After being announced in STAR, all of the NASA series reports may be obtained from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

The information in this report may be of value to the scientific and engineering community in determining what information has been published and what is available.

The Rodon model-based diagnosis shell was applied to a breadboard test-bed, modeling an automated power distribution system. The constraint-based modeling paradigm and diagnostic algorithm were found to adequately represent the selected set of test scenarios.
TP—97–206238 November 1997
Inherent Conservatism in Deterministic Quasi-Static Structural Analysis. V. Verderaime. Structures and Dynamics Laboratory. 19980006779N

The cause of the long-suspected excessive conservatism in the prevailing structural deterministic safety factor has been identified as an inherent violation of the error propagation laws when reducing statistical data to deterministic values and then combining them algebraically through successive structural computational processes. These errors are restricted to the applied stress computations, and because mean and variations of the tolerance limit format are added, the errors are positive, serially cumulative, and excessively conservative. Reliability methods circumvent these errors and provide more efficient and uniform safe structures. The document is a tutorial on the deficiencies and nature of the current safety factor and of its improvement and transition to absolute reliability.

TP—97–206239 November 1997
The Corrosion Protection of Magnesium Alloy AZ31B. M.D. Danford, M.J. Mendrek, M.L. Mitchell, and P.D. Torres. Materials and Processes Laboratory. 19980006782N

Corrosion rates for bare and coated Magnesium alloy AZ31B have been measured. Two Coatings, Dow-23™ and Tagnite™ have been tested by electrochemical methods and their effectiveness determined. Electrochemical methods employed were the scanning reference electrode technique (SRET), the polarization resistance technique (PR) and the electrochemical impedance spectroscopy technique (EIS). In addition, general corrosion and stress corrosion methods were employed to examine the effectiveness of the above coatings in 90 percent humidity. Results from these studies are presented.

TP—97–206311 November 1997
SEDS Tether M/OD Damage Analyses. K.B. Hayashida, J.H. Robinson, and S.A. Hill. Structures and Dynamics Laboratory. 19980006778N

The Small Expandable Deployer System (SEDS) was designed to deploy an endmass at the end of a 20-km-long tether which acts as an upper stage rocket, and the threats from the meteoroid and orbital debris (M/OD) particle environments on SEDS components are important issues for the safety and success of any SEDS mission. However, the possibility of severing the tether due to M/OD particle impacts is an even more serious concern, since the SEDS tether has a relatively large exposed area to the M/OD environments although its diameter is quite small. The threats from the M/OD environments became a very important issue for the third SEDS mission, since the project office proposed using the shuttle orbiter as a launch platform instead of the second stage of a Delta II expendable rocket, which was used for the first two SEDS mission.

A series of hypervelocity impact tests were performed at the Johnson Space Center and Arnold Engineering Development Center to help determine the critical particle sizes required to sever the tether. The computer hydrodynamic code or hydrocode called CTH, developed by the Sandia National Laboratories, was also used to simulate the damage on the SEDS tether caused by both the orbital debris and test particle impacts. The CTH hydrocode simulation results provided the much needed information to help determine the critical particle sizes required to sever the tether. The M/OD particle sizes required to sever the tether were estimated to be less than 0.1 cm in diameter from these studies, and these size particles are more abundant in low-Earth orbit than larger size particles. Finally, the authors performed the M/OD damage analyses for the three SEDS missions: i.e., SEDS—1, -2, and -3 missions, by using the information obtained from the hypervelocity impact test and hydrocode simulations results.

Corrosion Studies of 2195 Al-Li Alloy and 2219 Al Alloy with Differing Surface Treatments. M.D. Danford and M.J. Mendrek. Materials and Processes Laboratory. 19980019510N

Corrosion studies of 2195 Al-Li and 2219 Al alloys have been conducted using the scanning reference electrode technique (SRET) and the polarization resistance (PR) technique. The SRET was used to study corrosion mechanisms, while corrosion rate measurements were studied with the PR technique. Plates of Al₂O₃ blasted, soda blasted and conversion coated 2219 Al were coated with Deft primer and the corrosion rates studied with the EIS technique. Results from all of these studies are presented.

TP—1998–206959 March 1998
The projected traffic to geostationary earth orbit (GEO) is expected to increase over the next few decades. At the same time, the cost of delivering payloads from the Earth's surface to low earth orbit (LEO) is projected to decrease, thanks in part to the Reusable Launch Vehicle (RLV). A comparable reduction in the cost of delivering payloads from LEO to GEO is sought. The use of in-space tethers, eliminating the requirement for traditional chemical upper stages and thereby reducing the launch mass, has been identified as such an alternative.

Spinning tethers are excellent kinetic energy storage devices for providing the large delta vee's required for LEO to GEO transfer. A single-stage system for transferring payloads from LEO to GEO was proposed some years ago. The study results presented here contain the first detailed analyses of this proposal, its extension to a two-stage system, and the likely implementation of the operational system.

Probability and Statistics in Aerospace Engineering. M.H. Rheinfurth and L.W. Howell. Systems Analysis and Integration Laboratory. 19980045313N

This monograph was prepared to give the practicing engineer a clear understanding of probability and statistics with special consideration to problems frequently encountered in aerospace engineering. It is conceived to be both a desktop reference and a refresher for aerospace engineers in government and industry. It could also be used as a supplement to standard texts for in-house training courses on the subject.

A Study of Friction Stir Welded 2195 Al-Li Alloy by the Scanning Reference Electrode Technique. M.D. Danford and M.J. Mendrek. Materials and Processes Laboratory. 19980046577N

A study of the corrosion of friction stir welded 2195 Al-Li alloy has been carried out using the scanning reference electrode technique (SRET). The results are compared to those obtained from a study of heterogeneously welded samples.

TP—1998–207686 April 1998

The corrosion and stress corrosion cracking (SCC) characteristics of annealed and hardened 440C stainless steel were evaluated in high humidity and 3.5-percent NaCl solution. Corrosion testing consisted of an evaluation of flat plates, with and without grease, in high humidity, as well as electrochemical testing in 3.5-percent NaCl. Stress corrosion testing consisted of conventional constant strain, smooth bar testing in high humidity in addition to two relatively new techniques under evaluation at MSFC. These techniques involve either incremental or constant rate increases in the load applied to a precracked SE(B) specimen, monitoring the crack-opening-displacement response for indications of crack growth. The electrochemical corrosion testing demonstrated an order of magnitude greater general corrosion rate in the annealed 440C. All techniques for stress corrosion testing showed substantially better SCC resistance in the annealed material. The efficacy of the new techniques for stress corrosion testing was demonstrated both by the savings in time and the ability to better quantify SCC data.

Application of Rapid Prototyping Methods to High-Speed Wind Tunnel Testing (MSFC Center Director's Discretionary Fund Final Report, Project No. 96–21). A.M. Springer. Structures and Dynamics Laboratory. 19980201248 N

This study was undertaken in MSFC's 14-Inch Trisonic Wind Tunnel to determine if rapid prototyping methods could be used in the design and manufacturing of high speed wind tunnel models in direct testing applications, and if these methods would reduce model design/fabrication time and cost while providing models of high enough fidelity to provide adequate aerodynamic data, and of sufficient strength to survive the test environment. Rapid prototyping methods utilized to construct wind tunnel models in a wing-body-tail configuration were: fused deposition method using both ABS plastic and PEEK as building materials, stereolithography using the photopolymer SL–5170, selective laser sintering using glass reinforced nylon, and laminated object manufacturing using plastic reinforced with glass and "paper."

This study revealed good agreement between the SLA model, the metal model with an FDM–ABS nose, and SLA nose, and the metal model for most operating conditions, while the FDM–ABS data diverged at higher loading conditions. Data from the initial SLS model showed poor agreement due to problems in post-processing, resulting in a different configuration. A second SLS model was tested and showed relatively good agreement.
It can be concluded that rapid prototyping models show promise in preliminary aerodynamic development studies at subsonic, transonic, and supersonic speeds.

Electrodynamic Tether Propulsion and Power Generation at Jupiter. D.L. Gallagher, L. Johnson, J. Moore,* Program Development Directorate, SRS Technologies,* and F. Bagenal.** University of Colorado.** 19980203952N

The results of a study performed to evaluate the feasibility and merits of using an electrodynamic tether for propulsion and power generation for a spacecraft in the Jovian system are presented. The environment of the Jovian system has properties which are particularly favorable for utilization of an electrodynamic tether. Specifically, the planet has a strong magnetic field and the mass of the planet dictates high orbital velocities which, when combined with the planet’s rapid rotation rate, can produce very large relative velocities between the magnetic field and the spacecraft. In a circular orbit close to the planet, tether propulsive forces are found to be as high as 50 N and power levels as high as 1 MW.

An Assessment of the Technology of Automated Rendezvous and Capture in Space. M.E. Polites, Astrionics Laboratory. 19980219470N

This paper presents the results of a study performed to assess the technology of automated rendezvous and capture (AR&C) in space. The outline of the paper is as follows. First, the history of manual and automated rendezvous and capture and rendezvous and dock is presented. Next, the need for AR&C in space is established. Then, today’s technology and ongoing technology efforts related to AR&C in space are reviewed. In light of these, AR&C systems are proposed that meet NASA’s future needs, but can be developed in a reasonable amount of time with a reasonable amount of money. Technology plans for developing these systems are presented; cost and schedule are included.

Reusable Rocket Engine Operability Modeling and Analysis. R.L. Christenson and D.R. Komar. Propulsion Laboratory. 19980218686N

This paper described the methodology, model, input data, and analysis results of a reusable launch vehicle engine operability study conducted with the goal of supporting design from an operations perspective. Paralleling performance analyses in schedule and method, this requires the use of metrics in a validated operations model useful for design, sensitivity, and trade studies. Operations analysis in this view is one of several design functions.

An operations concept was developed given an engine concept and the predicted operations and maintenance processes incorporated into simulation models. Historical operations data at a level of detail suitable to model objectives were collected, analyzed, and formatted for use with the models, the simulations were run, and results collected and presented. The input data used included scheduled and unscheduled timeline and resource information collected into a Space Transportation System (STS) Space Shuttle Main Engine (SSME) historical launch operations database. Results reflect upon the importance not only of reliable hardware but upon operations and corrective maintenance process improvements.

During the rise from sunspot minimum to maximum, the observed value of smoothed monthly mean sunspot number at maximum RM is found to correlate with increasing strength against the current value of smoothed monthly mean sunspot number R(t), where \(t \) is the elapsed time in months from minimum. On the basis of the modern era sunspot cycles (i.e., cycles 10–22), the inferred linear correlation is found to be statistically important (i.e., at the 95-percent level of confidence) from about 11 mo past minimum and statistically very important (i.e., at the 99-percent level of confidence) from about 15 mo past minimum; ignoring cycle 19, the largest cycle of the modern era, the inferred linear correlation is found to be statistically important from cycle onset. On the basis of \(R(t) \), estimates of RM can be gauged usually to within about ±30 percent during the first 2 yr and to within about ±20 percent (or better) after the first 2 hr of a cycle’s onset. For cycle 23, because controversy exists regarding the placement of its minimum (i.e., its onset), being either May 1996 or perhaps August 1996 (or shortly thereafter), estimates of its RM are divergent, being lower (more like a mean size cycle) when using the earlier epoch of minimum

9
and higher (above average in size) when using the later-occurring minimum. For smoothed monthly mean sunspot number through October 1997 (t = 17 or 14 mo, respectively), having a provisional value of 32.0, the earlier minimum date projects an RM of 110.3 ± 33.1, while the later minimum date projects one of 137.2 ± 41.2. The projection is slowly decreasing in size using the earlier onset date, while it is slowly increasing in size using the later onset date.

Volcanism, Cold Temperature, and Paucity of Sunspot Observing Days (1818–1858): A Connection?

R.M. Wilson. Space Sciences Laboratory.

During the interval of 1818–1858, several curious decreases in the number of sunspot observing days per year are noted in the observing record of Samuel Heinrich Schwabe, the discoverer of the sunspot cycle, and in the reconstructed record of Rudolf Wolf, the founder of the now familiar relative sunspot number. These decreases appear to be nonrandom in nature and often extended for 1–3 yr (or more). Comparison of these decreases with equivalent annual mean temperature (both annual means and 4-yr moving averages), as recorded at Armagh Observatory (Northern Ireland), indicates that the temperature during the years of decreased number of observing days trended downward near the start of each decrease and upward (suggesting some sort of recovery) just before the end of each decrease. The drop in equivalent annual mean temperature associated with each decrease, as determined from the moving averages, measured about 0.1–0.7 °C. The decreases in number of observing days are found to be closely related to the occurrences of large, cataclysmic volcanic eruptions in the tropics or northern hemisphere. In particular, the interval of increasing number of observing days at the beginning of the record (i.e., 1818–1819) may be related to the improving atmospheric conditions in Europe following the 1815 eruption of Tambora (Indonesia; 8°S), which previously has been linked to "the year without a summer" (in 1816) and which is the strongest eruption in recent history, while the decreases associated with the years of 1824, 1837, and 1847 may be linked, respectively, to the large, cataclysmic volcanic eruptions of Galunggung (Indonesia; 7°S) in 1822, Cosiguina (Nicaragua) in 1835, and, perhaps, Hekla (Iceland; 64°N) in 1845. Surprisingly, the number of observing days per year, as recorded specifically by Schwabe (from Dessau, Germany), is found to be linearly correlated against the yearly mean temperature at Armagh Observatory (r = 0.5 at the 2 percent level of significance); thus, years of fewer sunspot observing days in the historical record seem to indicate years of probable cooler climate, while years of many sunspot observing days seem to indicate years of probable warmer climate (and vice versa). Presuming this relationship to be real, one infers that the observed decrease in the number of observing days near 1830 (i.e., during "the lost record years" of 1825 to 1833) provides a strong indication that temperatures at Armagh (and, perhaps, most of Europe, as well) were correspondingly cooler. If true, then, the inferred cooling may have resulted from the eruption of Kliuchevskoi (Russia; 56°N) 1829.
Volume One of the General Public Space Travel and Tourism Workshop is a summary of the findings of the participants. This document provides an overview of the infrastructure requirements, policy and regulation needs, and potential near term activities.

Volume II contains the detailed findings of the multi-day workshop conducted at Georgetown University, Washington, DC.

This is a compilation of 25 papers presented at a tether technical interchange meeting in Huntsville, AL, on September 9–10, 1997. After each presentation, a technical discussion was held to clarify and expand the salient points. A wide range of subjects was covered including tether dynamics, electrodynamics, space power generation, plasma physics, ionospheric physics, towing tethers, tethered reentry schemes, and future tether missions.

This document reports the results and analyses presented at the Life and Microgravity Spacelab (LMS) One Year Science Review meeting. The science conference was held in Montreal, Canada, on August 20–21, 1997, and was hosted by the Canadian Space Agency. The LMS payload flew on the Space Shuttle Columbia (STS–78) from June 20–July 7, 1996. The LMS investigations were performed in a pressurized Spacelab module and the Shuttle middeck. Forty scientific experiments were performed in fields such as fluid physics, solidification of metals, alloys, and semiconductors, the growth of protein crystals, and animal, human, and plant life sciences. The results demonstrate the range of quality science that can be conducted utilizing orbital laboratories in microgravity.
NASA CONTRACTOR REPORTS

CR—97–205192 July 1997

CR—97–205193 November 1996

CR—97–205194 January 1995

CR—97–205195 June 1997

CR—97–205196 June 1997

CR—97–205197 April 1997

CR—97–205198 December 1997

CR—97–205199 April 1998

CR—97–205200 June 1997

CR—97–205201 May 1997

CR—97–205202 April 1998

CR—97–205203 November 1997

CR—97–205204 November 1997

CR—97–205205 October 1996
Research Reports—1996 NASA/ASEE Summer Faculty Fellowship Program. NGT8–52819. University of Alabama, Tuscaloosa, and University of Alabama in Huntsville.

CR—97–207400 March 1998

CR—97–207893 May 1997

CR—97–207894 May 1997

CR—97–207895 May 1997

CR—1998—207898 April 1998

Acceptance Data Package
A–Engineering Drawings and Associated Lists
B–Acceptance Data Package
C–Qualification Test Report
D–Strength Analysis

Development of Tailorable Electrically Conductive Thermal Control Material Systems. IIT Research Institute.

Space Environment Effects: Low-Altitude Trapped Radiation Model. The Boeing Company.

Research Reports—1997 NASA/ASEE Summer Faculty Fellowship Program. University of Alabama in Huntsville and University of Alabama, Tuscaloosa.
ABDELDAYEM, H.A.
FRAZIER, D.O.
Paley, M.S.
ABDELDAYEM, H.A.
FRAZIER, D.O.
PENN, B.G.
SMITH, D.D.
BANKS, C.E.
ABDELDAYEM, H.A.
Paley, M.S.
WITHEROW, W.
FRAZIER, D.O.
ABDELDAYEM, H.A.
PALEY, M.S.
WITHEROW, W.
FRAZIER, D.O.
ADAMS, M.L.
HAGYARD, M.J.
WEST, E.A.
ADAMS, M.L.
SEVER, T.L.
BERO, E.
ADAMS, M.L.

Excited State and Reverse Saturable Absorption in Polydiacetylene Using Z-Scan Technique. For publication in Optics Communication Journal, Philadelphia, PA.

The Sun in Time. For presentation at NSTA, Birmingham, AL, November 20, 1998.
ALHORN, D.C.
An Overview of Microgravity Vibration Isolation Technology with Information About the g-LIMIT Project. For presentation at International Space University, Cleveland, OH, July 28, 1998.

ALSHIBLI, K.A.

ANDERSON, B.J.

ANGELOPOULOS, V.

ANTAR, B.N.

ANTAR, B.N.
OBSERVATIONS OF ACCRETING PULSARS.

BJORKMAN, G.
Lockheed Martin

CHO, A.
Reynolds Metals

RUSSSELL, C.K.
EH23

ZIMMERMAN, F.R.
EH23

BOCCIPPIO, D.J.
HR20

WONG, C.
MIT

WILLIAMS, E.R.
MIT

BOLDI, B.
MIT

CHRISTIAN, H.J.
HR20

GOODMAN, S.J.
HR20

BOLDI, B.
HR20

HODANISH, S.
HR20

SHARP, D.
HR20

WILLIAMS, E.
HR20

GOODMAN, S.J.
HR20

RAGHAVAN, R.
HR20

MATLIN, A.
HR20

WEBER, M.
HR20

BOROWSKI, O.
HR20

HOWELL, B.F.
HR20

SEVER, T.L.
HR20

BRIDGE, K.Y.
ES76

SMITH, C.K., II
Lilly Research Labs

YOUNG, R.B.
ES76

BRIDGE, K.Y.
ES71

YOUNG, R.B.
ES71

VAUGHN, J.R.
ES71

Beta-Adrenergic Receptor Population is Up-Regulated in Chicken Skeletal Muscle Cells Treated with Forskolin. For presentation at American Society for Gravitational and Space Biology, Houston, TX, October 26, 1998.
BRIGGS, M.S. ES84
PENDLETON, G.N. ES84
KIPPEL, R.M.
BRAINERD, J.J.
HURLEY, K.
CONNAUGHTON, V.
MEEGAN, C.A. ES84

BRITTNACHER, M.J. ES83
GERMANY, G.A. ES83
FILLINGIM, M.O. ES83
PARKS, G.K. ES83
SPANN, J.F., JR. ES83

BRITTNACHER, M.J. ES83
ELSEN, R.K. ES83
PARKS, G.K. ES83
FILLINGIM, M.O. ES83
CHUA, D. ES83
GERMANY, G.A. ES83
LUMMERZHEIM, D. ES83
SPANN, J.F., JR. ES83

BRITTNACHER, M.J. ES83
ELSEN, R.K. ES83
PARKS, G.K. ES83
FILLINGIM, M.O. ES83
CHUA, D. ES83
GERMANY, G.A. ES83
LUMMERZHEIM, D. ES83
SPANN, J.F., JR. ES83

BRITTNACHER, M.J. ES83
FILLINGIM, M.O. ES83
ELSEN, R.K. ES83
PARKS, G.K. ES83
GERMANY, G.A. ES83
SPANN, J.F., JR. ES83

BRITTNACHER, M.J. ES83
PARKS, G.K. ES83
CHUA, D. ES83
ELSEN, R. ES83
FILLINGIM, M.O. ES83
GERMANY, G.A. ES83
SPANN, J.F., JR. ES83

BRITTNACHER, M.J. ES83
SPANN, J.F., JR. ES83
PARKS, G.K. ES83
GERMANY, G.A. ES83

Auroral Observations by the Polar Ultraviolet Imager UVI. For publication in Advances in Space Research, 1998.

BRITTNACHER, M.J. ES83
PARKS, G.K. ES83
FILLINGIM, M.O. ES83
ELSEN, R. ES83
CHUA, D. ES83
GERMANY, G.A. ES83
SPANN, J.F., JR. ES83

BRITTNACHER, M.J. ES83
ELSEN, R. ES83
PARKS, G.K. ES83
FILLINGIM, M.O. ES83
CHUA, D. ES83
GERMANY, G.A. ES83
LUMMERZHEIM, D. ES83
SPANN, J.F., JR. ES83

BRITTNACHER, M.J. ES83
GERMANY, G.A. ES83
FILLINGIM, M.O. ES83
PARKS, G.K. ES83
SPANN, J.F., JR. ES83

BROWN, A.M. ES23
FERRI, A.A. Georgia Tech

BUNE, A.V. ES75
GILLIES, D.C. ES75
LEHOCZKY, S.L. ES75

BUNE, A.V. ES75
GILLIES, D.C. ES75
LEHOCZKY, S.L. ES75

BURDINE, R. EB52

BURDINE, R. EB52

CAMPBELL, J.W. PS02

CARRUTH, M.R., JR. EH11
WILKES, D.R. AZ Technology
ZWIENER, J.M. EH11
NAUMOV, S. Russian Space
KAMENETZKY, R.R. EH11

CARRUTH, M.R., JR. EH11
CLIFTON, K.S. EH11
VANHOOSER, M.T. EH11

CARRUTH, M.R., JR. EH11
COX, J.A. EH52
McGEE, K.A. EH52

CHAKRABARTY, D. USRA
BILDSTEN, L.
GRUNSFELD, J.M.
KOH, D.T.
PRINCE, T.A.
VAUGHAN, B.A.
FINGER, M.H.
SCOTT, D.M.
WILSON, R.B.

CHAKRABARTY, D. USRA
BILDSTEN, L.
GRUNSFELD, J.M.
KOH, D.T.
PRINCE, T.A.
VAUGHAN, B.A.
WILSON, R.B.

CHANDLER, K.O. ED73
ANDERSON, J.B. ED73
COLEMAN, A.D. ED73
DRISKILL, T.C. ED73

CHANDLER, M.O. ES83
MOORE, T.E. ES83
MOZER, F.S. University of California
RUSSELL, C.T. UCLA

CHANDLER, M.O. ES83
MOORE, T.E. ES83
FUSELIER, S. ES83
LOCKWOOD, M.K. ES83

CHANDLER, M.O. ES83
CRAVEN, P.D. ES83

CIIls During the May 98 CMEs. For presentation at Rutherford Appleton Lab, Oxfordshire, England, September 23, 1998.

CHANG, F.-C. UAH
JEDLOVEC, G.J. HR20
SUGGS, R.J. HR20
GUILLORY, A.R. HR20

CHATTOPADHYAY, K. Fisk University
FETH, S. Fisk University
CHEN, H. Fisk University
BURGER, A. Fisk University
SU, C.-H. ES75

Characterization of Semi-Insulating CdTe Crystals

CHRISTL, M. ES84

Data Analysis for the Scintillating Optical Fiber Calorimeter (SOFCAL). For presentation at SCIFI '97, Scintillating and Fiber Detectors Conference, South Bend, IN, November 2–6, 1997.

CHRISTY, J.R. UAH
SPENCER, R.W. HR01
BRASWELL, W.D. Nichols Research Corp.

CHUA, D. ES83
BRITTNACHER, M.J. ES83
PARKS, G.K. ES83
GERMANY, G.A. ES83
SPANN, J.E, JR. ES83

CLARK, T. EL23

CLAUER, C.R. ES83
BAKER, J.B. ES83
RIDLEY, A.J. ES83
SITAR, R.I. ES83
PAPITASHVILI, V.O. ES83
CUMNOCK, J.A. ES83
SPANN, J.E, JR. ES83
BRITTNACHER, M.J. ES83
PARKS, G.K. ES83

CLINTON, R.G., JR. EH31
LEVINE, S.R. LeRC

Key Issues for Aerospace Applications of Ceramic Matrix Composites. For presentation at Pacific Coast Regional Meeting of the American Ceramic Society, Irvine, CA, October 22–24, 1998.
COLBORN, B.L. ES84
DIETZ, K.L. ES84
RAMSEY, B.D. ES84
WEISSKOPF, M.C. ES84

COMFORT, R.H. ES83
MOORE, T.E. ES83
CRAVEN, P.D. ES83
POLLOCK, C.J. ES83
MOZER, F.S. ES83
WILLIAMSON, W.T. ES83
Spacecraft Potential Control by PSI on the Polar Spacecraft. For publication in Journal of Spacecraft and Rockets.

COMFORT, R.H. ES83
RICHARDS, P.G. ES83
LIAO, J.-H. ES83
CRAVEN, P.D. ES83

CONNAUGHTON, V. ES84
PREECE, R.D. ES84
PENDLETON, G.N. ES84
GRB 970616. For publication in IAU Circular 6683, Cambridge, MA.

CONNAUGHTON, V. ES81
AKERLOF, C.W. ES81
BARTHELMY, S.D. ES81
BILLER, S. ES81
BOYLE, P. ES81
BUCKLEY, J. ES81
CARTER-LEWIS, D.A. ES81
FISHERMAN, G.J. ES81
MEEGAN, C.A. ES81
ET AL.

COOKE, W.J., JR. Computer Sciences
ANDERSON, B.J. EL23

COOPER, K.G. EH32

COOPER, K.G. EH32

COORAY, A.R. University of Chicago
GREGO, L. University of Chicago
HOLZAPFEL, W.L. University of Chicago
JOY, M. ES84
CARLSTROM, J.E. University of Chicago

COSTES, N.C. ES71
TURE, S. ES71

CRAVEN, P.D. ES83

CRAWFORD, K. EB33
WALLACE, S. EB33
GAMBLE, A. EB33

CRAWFORD, K. EB33
PINKLETON, D. Boeing

CRAWFORD, L. University of Toledo
KARR, L. ES76
PUSEY, M.L. ES76
Tetragonal Lysozyme Interactions Studied by Site Directed Mutagenesis. For presentation at 7th International Conference on the Crystallization of Biological Macromolecules, Granada, Spain, May 3, 1998.

CRISWELL, D.R. University of Houston
CURREN, P.A. ES75

CRISWELL, D.R. ES75
CURREN, P.A. University of Houston

DELAY, T. EH33
SMITH, B.H. EH33
ELY, K. Lockheed Martin
MACARTHUR, D. Lockheed Martin

DIETERS, S.W. ES84
WOODS, P. ES84
KOUVELIOU, C. USRA
VAN PARADIS, J.

DISCHINGER, H.C., JR. EO66
LOUGHEAD, T.E. EO66

DOLD, P. University of Freiburg
CROLL, A. University of Freiburg
SCHWEIZER, M. University of Freiburg
KAISER, T. University of Freiburg
SZOFRAN, F.R. ES75
NAKAMURA, S. NEC Lab, Japan
HIBIYA, T. NEC Lab, Japan
BENZ, K.W. University of Freiburg
The Role of Marangoni Convection for the FZ-Growth of Silicon. For presentation at 49th IAF Congress, Melbourne, Australia, September 28–October 2, 1998.

DUGAL-WHITEHEAD, N. EB01
Artificial Intelligence and Spacecraft Power Systems. For presentation at University of Memphis Physics Department Colloquium, Memphis, TN, November 5, 1997.

DUGAL-WHITEHEAD, N. EB01
GALLAHER, M.W. ED13

DUMBACHER, D.L. RA20

DUNN, M.C. EO66
HUTCHINSON, S.L. EO66

EDWARDS, D.L. EH12
ZWIENER, J.M. EH12
WERTZ, G.E. EH12
VAUGHN, J.A. EH12
KAMENETZKY, R.R. EH12
FINCKENOR, M.M. EH12
MESHISHNEK, M.J. The Aerospace Corporation

ELLIOTT, H.A. UAH
COMFORT, R.H. UAH
CRAYON, P.D. ES83
CHANDLER, M.O. ES83
MOORE, T.E. GSFC
<table>
<thead>
<tr>
<th>Authors</th>
<th>Affiliation</th>
<th>Conference/Meeting Date/Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Craven, P.D.</td>
<td>ES83</td>
<td>ELSNER, R.F.</td>
</tr>
<tr>
<td>Comfort, R.H.</td>
<td>UAH</td>
<td>O'DELL, S.L.</td>
</tr>
<tr>
<td>Chandler, M.O.</td>
<td>ES83</td>
<td>RAMSEY, B.D.</td>
</tr>
<tr>
<td>Moore, T.E.</td>
<td>GSFC</td>
<td>TENNANT, A.F.</td>
</tr>
<tr>
<td>Russell, C.T.</td>
<td>University of CA</td>
<td>WEISSKOPF, M.C.</td>
</tr>
<tr>
<td>Ruohoniemi, J.M.</td>
<td>Johns Hopkins University</td>
<td>KOLODZIEJCZAK, J.J.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SWARTZ, D.A.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENGELHAUPT, D.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GARMIRE, G.P.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ET AL.</td>
</tr>
<tr>
<td>EKSLER, R.K.</td>
<td>ES83</td>
<td>ELSNER, R.F.</td>
</tr>
<tr>
<td>Wingler, R.M.</td>
<td>ES83</td>
<td>O'DELL, S.L.</td>
</tr>
<tr>
<td>Spann, J.F., Jr.</td>
<td>ES83</td>
<td>RAMSEY, B.D.</td>
</tr>
<tr>
<td>Germany, G.A.</td>
<td>ES83</td>
<td>TENNANT, A.F.</td>
</tr>
<tr>
<td>Brittnacher, M.J.</td>
<td>ES83</td>
<td>WEISSKOPF, M.C.</td>
</tr>
<tr>
<td>Parks, G.K.</td>
<td>ES83</td>
<td>KOLODZIEJCZAK, J.J.</td>
</tr>
<tr>
<td>Germany, G.A.</td>
<td>ES83</td>
<td>SWARTZ, D.A.</td>
</tr>
<tr>
<td>Spann, J.F., Jr.</td>
<td>ES83</td>
<td>ENGELHAUPT, D.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GARMIRE, G.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ET AL.</td>
</tr>
<tr>
<td>EKSLER, R.K.</td>
<td>ES83</td>
<td>EMMITT, G.D.</td>
</tr>
<tr>
<td>Wingler, R.M.</td>
<td>ES83</td>
<td>Simpson Weather</td>
</tr>
<tr>
<td>Brittnacher, M.J.</td>
<td>ES83</td>
<td>MILLER, T.L.</td>
</tr>
<tr>
<td>Germany, G.A.</td>
<td>ES83</td>
<td>EMRICH, W.J., JR.</td>
</tr>
<tr>
<td>Spann, J.F., Jr.</td>
<td>ES83</td>
<td>PS01</td>
</tr>
<tr>
<td>EKSLER, R.K.</td>
<td>ES83</td>
<td>EVANS, S.W.</td>
</tr>
<tr>
<td>Wingler, R.M.</td>
<td>ES83</td>
<td>ED13</td>
</tr>
</tbody>
</table>
EWING, F. USRA
WILSON, L. East TN St. University
NADARAJAH, A. University of Toledo
PUSEY, M.L. ES76

FENG, X. American GNC Corp.
LIN, C.-F. American GNC Corp.
YU, T.-J. American GNC Corp.
WHORTON, M.S. ED12

FILLINGIM, M.O. ES83
BRITTNACHER, M.J. ES83
ELSEN, R.K. ES83
PARKS, G.K. ES83
GERMANY, G.A. ES83
SPANN, J.F., JR. ES83

FINGER, M.H. USRA
BILDSTEN, L. University of California, Berkeley
CHAKRABARTY, D. MIT
PRINCE, T.A. CA Institute of Tech
SCOTT, D.M. USRA
WILSON, C.A. ES84
WILSON, R.B. ES84
ZHANG, S.N. USRA

FINGER, M.H. USRA
DIETERS, S.W. UAH
WILSON, R.B. ES84

MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

FONTE, P. LIP/Coimbra University
PESKOV, V. National Research
RAMSEY, B.D. ES84

FORD, E.C. Columbia University
KAARET, P. Columbia University
CHEN, K. Columbia University
TAVANI, M. Columbia University
BARRET, D. Harvard Smithsonian
BLOSER, P. Harvard Smithsonian
GRINDLAY, J. Harvard Smithsonian
HARMON, B.A. ES84
PACIESAS, W.S. UAH
ZHANG, S.N. USRA

FORSYTHE, E.L. ES84
PUSEY, M.L. ES76
Crystallization of Chicken Egg White Lysozyme from Sulfate Salts. For presentation at 7th International Conference on Crystallization of Biological Macromolecules, Granada, Spain, May 3, 1998.

FORSYTHE, E.L. ES84
SNELL, E.H. ES76
MALONE, C.C. ES76
PUSEY, M.L. ES76

FORSYTHE, E.L. ES84
NADARAJAH, A. University of Toledo
PUSEY, M.L. ES76

FOUNTAIN, W.F. ES84

FRAGOMENI, J.M. University of Alabama
NUNES, A.C., JR. EH01

FRAZIER, D.O. ES01
PENN, B.G. ES01
SMITH, D.D. ES01
WITHEROW, W.K. ES01
PALEY, M.S. ES01
ABDELDAYEM, H.A. ES01

GALAMA, T.J. ES81
DE BRUYN, A.G. ES81
VAN PARADIS, J. ES81
HANLON, L. ES81
GROOT, P.J. ES81
VAN DER KLIS, M. ES81
STROM, R. ES81
SPOELSTRA, T. ES81
FISHMAN, G.J. ES81
ET AL.

GALLAGHER, D.L. ES83
JOHNSON, L. PD01
BAGENAL, F. ES83
MOORE, J. ES83

GALLAGHER, D.L. ES83
BAGENAL, F. University of Colorado
MOORE, J. SRS Technologies
JOHNSON, L. PD01
An Overview of Electrodynamic Tether Performance in the Jovian System. For publication in American Institute of Aeronautics and Astronautics.

GALLAGHER, D.L. ES83
FOK, M.C. USRA
FUSELIER, S. Lockheed-Martin
GLADSTONE, G.R. SwRI

25
GREEN, J.L. GSFC
FUNG, S.F. GSFC
PEREZ, J. Auburn University
REIFF, P. Rice University
ROELOF, E.C. Johns Hopkins
WILSON, G. Mission Research Corp.

GALLAGHER, D.L. ES83
CARPENTER, D.L. ES83

GARCIA, R. ED32
WILLIAMS, R.
FEARS, S.

GARCIA, R. ED32

GARY, G.A. ES82
ALEXANDER, D.A.

GERMANY, G.A. ES83
RICHARDS, P.G.
PARKS, G.K.
BRITTNACHER, M.J.
SPANN, J.F., JR.

GERMANY, G.A. ES83
SWIFT, W.
RICHARDS, P.G.
PARKS, G.K.
BRITTNACHER, M.
SPANN, J.F., JR.

GERMANY, G.A. UAH
SWIFT, W.R.
CREUTZBERG, F.
EASTES, R.
RICH, F.
SPANN, J.F., JR.
BRITTNACHER, M.J.
PARKS, G.K.

GARCIA, R. ED32

GARY, G.A. ES82
ALEXANDER, D.A.

GERMANY, G.A. ES83
RICHARDS, P.G.
PARKS, G.K.
BRITTNACHER, M.J.
SPANN, J.F., JR.

GERMANY, G.A. ES83
SWIFT, W.
RICHARDS, P.G.
PARKS, G.K.
BRITTNACHER, M.
SPANN, J.F., JR.

GILLIES, D.C. ES75

GILLIES, D.C. ES75

GILLIES, D.C. ES75

GOODMAN, S.J. HR20
BUECHLER, D. HR20
RAGHAVAN, R. HR20

GOODMAN, S.J. HR20
RAGHAVAN, R. HR20
BUECHLER, D.L. HR20
HODANISH, S. HR20
SHARP, D. HR20
WILLIAMS, E. HR20
BOLDI, B. HR20
MATLIN, A. HR20
WEBER, M. HR20

GORDON, T. Applied Science
RANTANEN, R. ROR Enterprises, Inc.
PIPPIN, G. Boeing
FINCKENOR, M.M. EH15

GRINER, C. DD01
SCHNEIDER, M. EO27

GUILLORY, A.R. HR20
LECUE, J.M. NASA Deep Space
JEDLOVEC, G.J. HR20
WHITWORTH, B.N.

GUILLORY, A.R. HR20
HAGOPIAN, J. EO46
MAXWELL, T. EO46
NAHAY, E. EO46

HAGYARD, M.J. ES82
STARK, B.A. Nichols Research Corp.
VENKATAKRISHNAN, P. Indian Institute of Technology
A Search for Vector Magnetic Field Variations Associated with the M-Class Flares of 1991 June 10 in
HAGYARD, M.J. ES82
STARK, B.A. Nichols Research Corp.
VENKATAKRISHNAN, P. Indian Institute of Technology

HAGYARD, M.J. ES82
PEVTSOV, A.A. ES82
CANFIELD, R.C. ES82

HALE, J.P., II EO66

HALL, C.E. ED13
GALLAHER, M.W. ED13
HENDRIX, N.D. ED13

HAMILTON, G.S. EO66
WILLIAMS, J.C. University of Texas

HANSON, J.M. ED13
COUGHLIN, D.J. ED13
DUKEMAN, G.A. ED13
MULQUEEN, J.A. ED13
MCCARTER, J.W. ED13

HARMON, B.A. ES84
ZHANG, S.N. ES84
ROBINSON, C.R. ES84
PACIESAS, W.S. ES84
BARRET, D. Harvard/CFA
GRINDLAY, J. Harvard/CFA
BLOSER, P. Harvard/CFA
MONNELLY, C. Harvard/CFA

HARMON, B.A. ES84
ROBINSON, C.R. ES84

HARMON, B.A. ES84
FISHMAN, G.J. ES84
PACIESAS, W.S. UAH

HARMON, B.A. ES84
MCCOLLOUGH, M.L. ES84
ZHANG, S.N. ES84
PACIESAS, W.S. ES84

HASTINGS, L. EP42
MARTIN, J. EP42

HATHAWAY, D.H. ES82
HATHAWAY, D.H. ES82

HATHAWAY, D.H. ES82
WILSON, R.M. ES82

HERRMANN, R. ES81
MAGUN, A. ES81
KAUFMANN, P. ES81
CORREIA, E. ES81
COSTA, J.E.R. ES81
MACHADO, M.E. ES81
FISHMAN, G.J. ES81
Evidence for Highly Inhomogeneous mm-Wave Sources During the Impulsive Flare of May 9, 1991. For publication in Astronomy and Astrophysics, 1998.

HIRAHARA, M. UAH
HORWITZ, J.L. UAH
MOORE, T.E. ES83
GERMANY, G.A. ES83
SPANN, J.F. ES83
PETERSON, W.K. ES83
SHELLEY, E.G. ES83
CHANDLER, M.O. ES83
CRAVEN, P.D. ES83
ET AL.
Relationship of Topside Ionospheric Ion Outflows to Auroral Forms and Precipitations, Plasma Waves, and Convection Observed by POLAR. For publication in Journal of Geophysical Research.

HIRAHARA, M. UAH
HORWITZ, J.L. UAH
MOORE, T.E. ES83
CHANDLER, M.O. ES83
GILES, B.L. ES83
CRAVEN, P.D. ES83
POLLOCK, C.L. SwRI

HO, J.X. ES76
SNEILL, E.H. ES76
SISK, R.C. ES76
RUBLE, J.R. ES76
CARDER, D.C. ES76
OWENS, S.M. ES76
GIBSON, W.M. ES76
Stationary Crystal Diffraction with a Monochromatic Convergent X-Ray Source and Application for Macromolecular Crystal Data Collection. For publication in Acta Crystallographica Section D.

HODANISH, S. HR20
SHARP, D. HR20
WILLIAMS, E. HR20
BOLDI, B. HR20
GOODMAN, S.J. HR20
RAGHAVAN, R. HR20
MATLIN, A. HR20
WEBER, M. HR20

HOFFMAN, C.R. Pratt & Whitney
PUGH, R. Pratt & Whitney
SAFIE, F.M. CR10

HOOVER, R.B. ES82
ROZANOV, A.Y. Russian Academy
ZHMUR, S.I. Russian Academy
GORLENKO, V.M. Russian Academy

HOOVER, R.B. ES82
ROZANOV, A.Y. Russian Academy
ZHMUR, S.I. Russian Academy
GORLENKO, V.M. Russian Academy
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOWARD, S.G.</td>
<td>Boeing</td>
<td></td>
</tr>
<tr>
<td>HUTCHENS, C.F.</td>
<td>ED62</td>
<td></td>
</tr>
<tr>
<td>RETHKE, D.W.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWARTLEY, V.L.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HURLEY, K. ES84
BRIGGS, M.S. ES84
KIPPEL, R.M. ES84
KOUVELIOTOU, C. ES84
MEEGAN, C.A. ES84
FISHMAN, G.J. ES84
CLINE, T.L. ES84
BOER, M. ES84

JAAP, J. EO47
MEYER, P.J. EO47
DAVIS, E. EO47

JACKSON, J.L. Micro Craft, Inc.
HOWARD, R.T. EB44
COLE, H.J. EB53

JACOBSON, D. EJ31
CRAIG, L. EJ31
SCHUNK, G. EJ31
SHAPIRO, A. EJ31
CLOYD, D. EJ31
RICKS, E. EJ31
VACARRO, M. EJ31
REDDING, D. JPL
HADAWAY, J. UAH
BELY, P. Space Telescope

JARZEMBSKI, M.A. HR20
SRIVASTAVA, V. USRA
ROTHBERMEL, J. HR20

JEDLOVEC, G.J. HR01
CHANG, F.C. UAH
SUGGS, R.J. HR01
GUILLORY, A.R. HR01

JEDLOVEC, G.J. HR20
ATKINSON, R.J. Lockheed Martin

JEDLOVEC, G.J. HR20
LERNER, J.A. University of Alabama
ATKINSON, R.J. Lockheed Martin

JETT, T.R. EH13
THOM, R.L. EH13

JETT, T.R. ES84
ZHAO, P. ES84
VAN SPEYBROECK, L. ES84
TENNANT, A.F. ES84
SWARTZ, D. ES84
SCHWARTZ, D.A. ES84
PODGORSKI, W.A. ES84
HARRIS, B. ES84
GRAESSLE, D.E. ES84

PUSEY, M.L.
WHITE, E.T. University of Queensland

JUDGE, R.A.
FORSYTHE, E.L.
PUSEY, M.L.
The Effect of Protein Impurities on Lysozyme Crystal Growth. For publication in Biotechnology and Bioengineering Journal, 1998.

JUDGE, R.A.
SNELL, E.H.

JURETZKO, ER. University of Alabama
DHINDAW, B.K. University of Alabama
STEFANESCU, D.M. University of Alabama
SEN, S. USRA
CURRERI, P.A.

JURETZKO, F.R. University of Alabama
CATALINA, A.V. University of Alabama
STEFANESCU, D.M. University of Alabama
DHINDAW, B.K. University of Alabama
SEN, S. USRA
CURRERI, P.A.
MULLINS, J. University of Alabama
Particle Engulfment and Pushing by Solidifying Interfaces LMS Mission Results. For presentation at 1st Pan-Pacific Basin Workshop and 4th International Japan/China Workshop on Microgravity Science, Tokyo, Japan, July 8–11, 1998.

KARPOVA, E.A. NRC/MSFC
PUSEY, M. ES76

KAVAYA, M.J. HR20
EMMITT, G.D. HR20

KAVAYA, M.J. HR20
EMMITT, G.D. Simpson Weather

KELLOGG, E. ES84
SCHWARTZ, D. ES84
VAN SPEYBROECK, L. ES84
WARGELEN, B. ES84
EVANS, I. ES84
EVANS, I. ES84
MCDERMOTT, W.C. ES84
MCKINNON, P. ES84
ZOMBIEK, M. ES84
GAETZ, T. ES84

KELLOGG, E. ES84
SCHWARTZ, D. ES84
VAN SPEYBROECK, L. ES84
WARGELEN, B. ES84
EVANS, I. ES84
EVANS, I. ES84
MCDERMOTT, W.C. ES84
MCKINNON, P. ES84
ZOMBIEK, M. ES84
GAETZ, T. ES84
MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

KEYS, A.S. EB52
JONES, D.K. UAH
FORK, R.L. UAH

KEYS, A.S. EB52
JONES, D.K. UAH
FORK, R.L. UAH

KEYS, A.S. EB52
JONES, D.K. UAH
FORK, R.L. UAH
Ultracompact High-Speed Electro-Optic Switch. For presentation at Optical Society of America Annual Meeting, Baltimore, MD, October 4–9, 1998.

KHAZANOV, G.V. ES83
LIEMOHN, M.W. ES83
KOZYRA, J.U. ES83
MOORE, T.E. ES83

KIPPEN, R.M. UAH/ES84
BRIGGS, M.S. ES84
KOMMERS, J.M. MIT
KOUVELIOTOU, C. USRA/ES84
HURLEY, K. University of California, Berkeley
ROBINSON, C.R. USRA/ES84
VAN PARADIS, J. University of Amsterdam
HARTMANN, D.H. Clemson University
GALAMA, T.J. University of Amsterdam
VREESWJK, P.M. University of Amsterdam

KLOSE, S. Germany
STECKLUM, B. Germany
EISLOFFEL, J. University of Hawaii
NASSIRI, M.A. University of Hawaii
HURLEY, K. University of California, Berkeley
KOLODIEJCZAK, J.J. ES84
AUSTIN, R.A. ES84
ELSNER, R.F. ES84
O'DELL, S.L. ES84
SULKANEN, M.E. ES84
SWARTZ, D.A. ES84
TENNANT, A.F. ES84
WEISSKOPF, M.C. ES84
ZIMSTEIN, G. ES84
ET AL.
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Affiliation</th>
<th>Paper Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>KOMMERS, J.M.</td>
<td>ES84</td>
<td>Possible New Soft Gamma-Ray Repeater. For publication in International Astronomical Union (IAU) Circular 6743, Cambridge, MA.</td>
</tr>
<tr>
<td>VAN PARADIJS, J.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PENDLETON, G.N.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEEGAN, C.A.</td>
<td>ES84</td>
<td></td>
</tr>
<tr>
<td>FISHMAN, G.J.</td>
<td>ES84</td>
<td></td>
</tr>
<tr>
<td>KOS, L.</td>
<td>PD31</td>
<td></td>
</tr>
<tr>
<td>KRIDER, E.P.</td>
<td>HR20</td>
<td></td>
</tr>
<tr>
<td>MURPHY, M.J.</td>
<td>HR20</td>
<td></td>
</tr>
<tr>
<td>KOUVELIOTOU, C.</td>
<td>USRA/ES84</td>
<td></td>
</tr>
<tr>
<td>WOODS, P.</td>
<td>UAH</td>
<td></td>
</tr>
<tr>
<td>KIPPEN, M.</td>
<td>UAH</td>
<td></td>
</tr>
<tr>
<td>FISHER, M.S.</td>
<td>UAH</td>
<td></td>
</tr>
<tr>
<td>BRIGGS, M.S.</td>
<td>UAH</td>
<td></td>
</tr>
<tr>
<td>KOSAK, W.J.</td>
<td>HR20</td>
<td></td>
</tr>
<tr>
<td>BLAKESLEE, R.J.</td>
<td>HR20</td>
<td></td>
</tr>
<tr>
<td>BAILEY, J.C.</td>
<td>Raytheon STX</td>
<td></td>
</tr>
<tr>
<td>KOUVELIOTOU, C.</td>
<td>USRA/ES84</td>
<td></td>
</tr>
<tr>
<td>FISHER, M.S.</td>
<td>UAH</td>
<td></td>
</tr>
<tr>
<td>WOODS, P.</td>
<td>UAH</td>
<td></td>
</tr>
<tr>
<td>KIPPEN, M.</td>
<td>UAH</td>
<td></td>
</tr>
<tr>
<td>SGR 1900+14.</td>
<td>UAH</td>
<td></td>
</tr>
<tr>
<td>SGR 1900+14.</td>
<td>UAH</td>
<td></td>
</tr>
<tr>
<td>KROES, R.L.</td>
<td>ES76</td>
<td></td>
</tr>
<tr>
<td>REISS, D.A.</td>
<td>ES76</td>
<td></td>
</tr>
<tr>
<td>SOLAKIEWICZ, R.J.</td>
<td>Chicago State University</td>
<td></td>
</tr>
<tr>
<td>JEDLOVEC, G.J.</td>
<td>HR01</td>
<td></td>
</tr>
</tbody>
</table>
LEHOCZKY, S.L. ES71

LEON-TORRES, J. University of Alabama
STEFANESCU, D.M. University of Alabama
SEN, S. USRA
CURREN, P.A. ES75

LERNER, J.A. UAH
JEDLOVEC, G.J. HR01
ATKINSON, R.J. Lockheed Martin

LERNER, J.A. UAH
JEDLOVEC, G.J. HR01
ATKINSON, R.J. Lockheed Martin

LERNER, J.A. UAH
JEDLOVEC, G.J. HR01
ATKINSON, R.J. Lockheed Martin

LI, D. NRC/MSFC
ROBINSON, M.B. ES75
RATHZ, T.J. UAH
WILLIAMS, G. UAH

Refilling. For presentation at 6th Huntsville Modeling Workshop, Guntersville, AL, October 26, 1998.

LIETZKE, S.E.
BARNES, C.L. ES76
KUNDROT, C.E. ES76

LIEWER, P.C. JPL
DAVIS, J.M. ES82
DE JONG, E.M. JPL
GARY, G.A. ES82
KLIMCHUK, J.A. Naval Research Lab
REINERT, R.P. Ball Aerospace

LIM, K. Texas A&M University
ADIMURTHY, G. University of Toledo
NADARAJAH, A. University of Toledo
FORSYTHE, E.L. USRA
PUSEY, M.L. ES76

LUVALL, J.C. HR20
QUATTROCHI, D.A. HR20
Thermal Characteristics of Urban Landscapes. For presentation at 23rd Conference on Agricultural and Forest Meteorology, Albuquerque, New Mexico, November 2–6, 1998.

LYLES, G.M. RA10
GRINER, C. DD01
A Status of the Advanced Space Transportation Program from Planning to Action. For presentation at 49th International Astronautical Congress, Melbourne, Australia, September 28–October 2, 1998.

MACLEOD, T.C. EP93
HO, F.D. UAH

MCCALEB, R. AE01
HOLLAND, D.L. AE01

MCCOLLOUGH, M.L. USRA
ROBINSON, C.R. USRA
ZANG, S.N. USRA
HARMON, B.A. ES84
PACIESAS, W.S. UAH
DIETERS, S.W. UAH
HJELLMING, R.M. National Radio Astronomy
RUPEN, M. National Radio Astronomy
MIODUSZEWSKI, A.J. JIVE/National Radio
ET AL.

MCDONALD, J.P. Sverdrup
HEDAYAT, A. Sverdrup
BROWN, T.M. Sverdrup
KNIGHT, K.C. Sverdrup
CHAMPION, R.H., JR.

MCDUFFIE, J.H. UAH
SHITESSEL, Y.B. UAH
HALL, C. ED13
GALLAHER, M.N. ED13
Sliding Mode Control of the X–33 Vehicle in Reentry Mode. For presentation at AIAA GN&C Conference, Boston, MA, August 1998.

MCKAY, D.S. JSC
ROZOVANOV, A.Y. ES82
HOOVER, R.B. ES82
WESTALL, F. JSC

MCMILLAN, V.C. CO30

MCNAMARA, B.J. New Mexico State
HARRISON, T.E. New Mexico State
MASON, P.A. New Mexico State
TEMPLETON, M. New Mexico State
HEIKKIJA, C.W. New Mexico State
BUCKLEY, T. New Mexico State
GALVAN, E. New Mexico State
SILVA, A. New Mexico State
HARMON, B.A. ES66

MEEGAN, C.A. ES84

MEEGAN, C.A. ES84

MENDE, S.B. ES83
FREY, H. ES83
VO, H. ES83
GELLER, S.P. ES83
DOOLITTLE, J.H. ES83
SPANN, J.F., JR. ES83

MEYER, P.J. HR20
GUILLORY, A.R. HR20
ATKINSON, R.J. HR20
JEDLOVEC, G.J. HR20
MILLER, T.L. HR20
LESLIE, F.W. ES71

MILLER, T.L. HR20
KAVAYA, M.J. HR20

MINAMITANI, T. USRA
APPLE, J.A. ES84
AUSTIN, R.A. USRA
DIETZ, K.L. ES84
KOLODZIEJCZAK, J.J. USRA
RAMSEY, B.D. ES84
WEISSKOPF, M.C. ES84

MINOR, J. EL23
BREWER, D.S. NASA Headquarters
Recent Results of NASA’s Space Environments and Effects Program. For presentation at 49th International Astronautical Congress, Melbourne, Australia, September 28–October 2, 1998.

MITROFANOV, I.G. ES84
POZANENKO, A.S. ES84
BRIGGS, M.S. ES84
PACIESAS, W.S. ES84
PENDLETON, G.N. ES84
PREECE, R.D. ES84

MITROFANOV, I.G. ES84
ANFIMOV, D.S. ES84
LITVAK, M.L. ES84
BRIGGS, M.S. ES84
PACIESAS, W.S. ES84
PENDLETON, G.N. ES84
PREECE, R.D. ES84
MEEGAN, C.A. ES84

MONTGOMERY, E.E. PS02
ZELDERS, G.W., JR. Sirus Group
The Case for Aggressive Segmentation of the Primary Mirror of the Next Generation Space Telescope and Future ORIGINS Missions. For presentation at SPIE’s Symposium on Astronomical Telescopes and Instrumentation, Kona, HI, March 23–29, 1998.

MOORE, C.E. ES75
CARDELINO, B.H. Spelman College
FRAZIER, D.O. ES75
NILES, J. Clark Atlanta University
WANG, X.-Q. Clark Atlanta University

MOORE, C.E. ES01
CARDELINO, B.H. ES01
FRAZIER, D.O. ES01
NILES, J. ES01
WANG, X.-Q. ES01
<table>
<thead>
<tr>
<th>Authors</th>
<th>Conference/Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moore, L.E.</td>
<td>Liquid Hydrogen Testing of Silicon Nitride Bearings</td>
</tr>
<tr>
<td>Gibson, H.</td>
<td>for Use in High Speed Turbomachinery.</td>
</tr>
<tr>
<td>Thom, R.L.</td>
<td>For presentation at Aerospace Mechanisms Symposium,</td>
</tr>
<tr>
<td></td>
<td>Kennedy Space Center, FL, May 1998.</td>
</tr>
<tr>
<td>Moore, R.L.</td>
<td>Evidence that the X-Ray Plasma in Microflares is in</td>
</tr>
<tr>
<td>Falconer, D.A.</td>
<td>a Sequence of Subresolution Magnetic Tubes.</td>
</tr>
<tr>
<td>Porter, J.G.</td>
<td>For presentation at 1998 Spring AGU Meeting, Boston,</td>
</tr>
<tr>
<td>Moore, R.L.</td>
<td>Solar Prominence Eruption. For publication in</td>
</tr>
<tr>
<td></td>
<td>Encyclopedia of Astronomy and Astrophysics, Institute</td>
</tr>
<tr>
<td></td>
<td>of Physics, UK, 1998.</td>
</tr>
<tr>
<td>Moore, R.L.</td>
<td>Coronal Heating by Magnetic Explosions.</td>
</tr>
<tr>
<td>Falconer, D.A.</td>
<td>For presentation at SOHO 7 Workshop, Northeast Harbor,</td>
</tr>
<tr>
<td>Suess, S.T.</td>
<td>High Performance Materials Applications to Moon/Mars</td>
</tr>
<tr>
<td></td>
<td>Missions and Bases.</td>
</tr>
<tr>
<td></td>
<td>For publication in Proceed-ings of American Society</td>
</tr>
<tr>
<td></td>
<td>of Civil Engineers Conference, Albuquerque, NM, April</td>
</tr>
<tr>
<td>Myers, W.N.</td>
<td>NASA Technology Benefits Orthotics.</td>
</tr>
<tr>
<td></td>
<td>For publication in BioMechanics Magazine, San</td>
</tr>
<tr>
<td>Nelson, R.W.</td>
<td>High Performance Materials Applications to Moon/Mars</td>
</tr>
<tr>
<td>Bilstden, L.</td>
<td>Missions and Bases.</td>
</tr>
<tr>
<td>Chakrabarty, D.</td>
<td>For publication in Proceedings of American Society of</td>
</tr>
<tr>
<td>Finger, M.H.</td>
<td>Civil Engineers Conference, Albuquerque, NM, April</td>
</tr>
<tr>
<td>Prince, T.A.</td>
<td>Prototype Aerogel Insulation for Melamine-Foam</td>
</tr>
<tr>
<td>Rubin, B.C.</td>
<td>Substitute: Critical Space Station Express Rack</td>
</tr>
<tr>
<td>Scott, D.M.</td>
<td>Technology. For publication in Proceedings of Space</td>
</tr>
<tr>
<td>Wilson, R.B.</td>
<td>Noiever, D.A.</td>
</tr>
<tr>
<td></td>
<td>Sibille, L.</td>
</tr>
<tr>
<td></td>
<td>Smith, D.D.</td>
</tr>
<tr>
<td></td>
<td>Brown, S.C.</td>
</tr>
<tr>
<td></td>
<td>Southern Research</td>
</tr>
<tr>
<td></td>
<td>Cronise, R.J.</td>
</tr>
<tr>
<td></td>
<td>Lowczky, S.L.</td>
</tr>
<tr>
<td></td>
<td>Lehotzky, S.L.</td>
</tr>
<tr>
<td></td>
<td>crochety, S.L.</td>
</tr>
<tr>
<td></td>
<td>Ethan, S.</td>
</tr>
<tr>
<td></td>
<td>Koczor, R.</td>
</tr>
<tr>
<td></td>
<td>Noever, D.A.</td>
</tr>
<tr>
<td></td>
<td>Sibille, L.</td>
</tr>
<tr>
<td></td>
<td>Smith, D.D.</td>
</tr>
<tr>
<td></td>
<td>Cronise, R.J.</td>
</tr>
<tr>
<td></td>
<td>Prototype Aerogel Insulation for Melamine-Foam</td>
</tr>
<tr>
<td></td>
<td>Substitute: Critical Space Station Express Rack</td>
</tr>
<tr>
<td></td>
<td>Technology. For publication in Proceedings of Space</td>
</tr>
<tr>
<td></td>
<td>Congress 98, Cocoa Beach, FL, April 30, 1998.</td>
</tr>
</tbody>
</table>
NOEVER, D.A. ES76
SMITH, D.D. ES76
SIBILLE, L. USRA
BROWN, S.C. Southern Research
CRONISE, R.J. ES76
LEHOCZKY, S.L. ES76

NOEVER, D.A. ES76
Computational Microbial Morphometry and NASA Astrobiology Initiatives. For presentation at International Conference on Pattern Formation and Developing Biology, Dundee, Scotland, September 20, 1998.

NOVAK, H.L. USBI
HALL, P.B. EH14

NUNES, A.C., JR. EH23
ZAIDI, A.A. Wichita State University
RAVI, T.S. Wichita State University
TALIA, J.E. Wichita State University

OBER, D.M. ES83
THOMSEN, M.F. Los Alamos National Lab
GALLAGHER, D.L. ES83
MCCOMAS, D.J. Los Alamos National Lab

OBER, D.M. UAH
HORWITZ, J.L. UAH
GALLAGHER, D.L. ES83

Convection of Plasmaspheric Plasma into the Outer Magnetosphere and Boundary Layer Region: Initial Results. For publication in ISTP Monograph AGU, August 1998.

OBRIKO, V. FORMICHEV, V. KHASHILADZE, A.F. ZHITNIK, I.
SLEMZIN, V. HATHAWAY, D.H. WU, S.T.

PACIESAS, W.S. ES84
FISHMAN, G.J. ES84

PACIESAS, W.S. UAH
MEEGAN, C.A. ES84
PENDLETON, G.N. UAH
BRIGGS, M.S. UAH
KOUVELIOTOU, C. USRA
KOSHUT, T.M. USRA
LESTRADE, J.P. Mississippi State
 MCCOLLOUGH, M.L. USRA
BRAINERD, J.I. UAH
ET AL.

PALEY, M.S. USRA
FRAZIER, D.O. ES76
SMITH, D.D. ES76
WITHROW, W.K. ES76
ABDELDAKEM, H.A. USRA
WOLFE, D.B. Rice University

PALOSZ, W. ES75

PARHI, S. ES82
SUSS, S.T. ES82
SULKANEN, M. ES82

Can Kelvin-Helmholtz Instabilities of Jet-Like Structures and Plumes Cause Solar Wind Fluctuations at
MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

PARKS, G.K. ES83
BRITTNACHER, M.J. ES83
CHEN, L. ES83

SUZUKI, S. ES83
MCCARTHY, M. ES83

SULKANEN, M. ES83
GERMANY, G.A. ES83
SPANN, J.F., JR. ES83

Parhi, S. ES82
Suess, S.T. ES82
Sulkananen, M.E. ES82

PARKS, G.K. ES83
BRITTNACHER, M.J. ES83
CHEN, L. ES83

SULKANEN, M.E. ES83
CHEN, L. ES83
CHUA, D. ES83

PARKS, G.K. ES83
BRITTNACHER, M.J. ES83
CHEN, L. ES83

WILLIAMS, G.G. ES81
ABLES, E. ES81
BAND, D.L. ES81
BARTHELME, S.D. ES81
BIONTA, R.M. ES81
BUTTERWORTH, P.S. ES81
CLINE, T.L. ES81
FERGUSSON, D.H. ES81
ET AL.
Understanding Substorms from the Auroral Ionosphere to the Distant Plasma Sheet. For presentation at 32nd COSPAR—Advances in Auroral Plasma Physics, Nagoya, Japan, July 12–19, 1998.

PARK, H.S. ES81
ABLES, E. ES81
BAND, D.L. ES81
BARTHELME, S.D. ES81
BIONTA, R.M. ES81
BUTTERWORTH, P.S. ES81
CLINE, T.L. ES81
FERGUSSON, D.H. ES81
ET AL.

PARK, H.S. ES81
ABLES, E. ES81
BAND, D.L. ES81
BARTHELME, S.D. ES81
BIONTA, R.M. ES81
BUTTERWORTH, P.S. ES81
CLINE, T.L. ES81
FERGUSSON, D.H. ES81
ET AL.

PARK, H.S. ES81
ABLES, E. ES81
BAND, D.L. ES81
BARTHELME, S.D. ES81
BIONTA, R.M. ES81
BUTTERWORTH, P.S. ES81
CLINE, T.L. ES81
FERGUSSON, D.H. ES81
ET AL.
Observations of Substorms From the Auroral Ionosphere to the Distant Plasma Sheet. For presentation at Fourth International Conference on Substorms, Lake Hamana, Japan, March 9–13, 1998.
PARNELL, T.A. ES84 BRIGGS, M.S. ES81
WATTS, J.W., JR. ES84 PREECE, R.D. ES81
ARMSTRONG, T.W. SAIC MALLOZZI, R.S. ES81
PARSONS, A.M. GSFC GEHRELS, N. GSFC
PACIESAS, W.S. UAH HARMON, B.A. ES84
FISHMAN, G.J. ES84 WILSON, C.A. ES84
ZHANG, S.N. USRA PENDLETON, G.N. UAH
PATNAUDE, D. Smithsonian PEASE, D. Smithsonian
DONNELLY, H. Smithsonian JUDA, M. Smithsonian
JONES, C. Smithsonian MURRAY, S. Smithsonian
ZOMBECK, M. Smithsonian SWARTZ, D. USRA
ELSNER, R.F. ES84 ET AL.
PEARSON, J.B. EP63 PERRY, J.L. ED62
WATSON, M.D. EP63 CURTIS, R.E. Boeing
PETRUZZO, J.J., III ES84
PEARSON, S.D. EL23 ELSNER, R.F. ES84
HARDAGE, D.M. EL23 JOY, M.K. ES84
O’DELL, S.L. ES84
PENDLETON, G.N. ES81 WEISSKOPF, M.C. ES84
PACIESAS, W.S. ES81 Grazing Incidence Nickel Replicated Optics for Hard X-Ray Telescopes. For presentation at Structure and
Evolution of the Universe Technology Working Group Meeting, Greenbelt, MD, April 1, 1997.

PHANORD, D.D. University of Wisconsin
KOSHAK, W.J. HR20
SOLAKIEWICZ, R.J. Chicago State University
BLAKESLEE, R.J. HR20

POLITES, M.E. ET AL.

POLITES, M.E. ET AL.

POLITES, M.E. ET AL.

POLITES, M.E.

PORTER, J.G.

PORTER, J.G.

FALCONER, D.A.
MOORE, R.L.
HARVEY, K.L.
RABIN, D.M.
SHIMIZU, T. University of Tokyo

POWELL, R.W.
LOCKWOOD, M.K.

OLSON, C. LaRC

Directional Solidification and Characterization of Hg0.89Mn0.11Te. For presentation at 12th International Conference on Crystal Growth, Jerusalem, Israel, July 26–31, 1998.

PRICE, M.W. UAB
SCRIPA, R.N. UAB
LEHOCZKY, S.L. ES75
SZOFRAN, F.R. ES75
SU, C.-H. ES75

Differential Thermal Analysis of Hg(1-x)MnxTe Alloys in the X=0 to 0.3 Range. For publication in Journal of Crystal Growth, 1998.

PRICE, M.W.
SCRIPA, R.N.
LEHOCZKY, S.L.
SZOFRAN, F.R.
SU, C.-H.

Directional Solidification and Characterization of Hg0.89Mn0.11Te. For publication at 12th International Conference on Crystal Growth, Jerusalem, Israel, July 26–31, 1998.

Price, M.W. UAB
SCRIPA, R.N. UAB
LEHOCZKY, S.L. ES75
SZOFRAN, F.R. ES75
SU, C.-H. ES75

Differential Thermal Analysis of Hg(1-x)MnxTe Alloys in the X=0 to 0.3 Range. For presentation at

45

PUSEY, M.L. ES76
SMITH, L. UAH

PUSEY, M.L. ES76

QUATTROCHI, D.A. HR20

QUATTROCHI, D.A. HR20
LAM, N.S. Louisiana State
QIU, H.-L. California State

PODOLIAK, E.

REDMON, J.W. EB52
ENGELHAUPT, D. UAH

RICHMOND, R.C. ES76

RICKS, K.G. EB44
WELLS, B.E. UAH

ROBERTS, B.C. EL23
KNUPP, K.R. UAH
BUECHLER, D.L. UAH

ROBERTSON, F.R. HR01
FITZJARRALD, D. HR01
MCCAUL, E.W. USRA

ROBINSON, M.B. ES75
LI, D. NRC/MSFC
RATHZ, T.J. UAH
WILLIAMS, G. UAH
ROBINSON, M.B. ES75
RATHZ, T.J. UAH
LI, D. NRC
WORKMAN, G.L. UAH
ROBINSON, M.B. ES75
RATHZ, T.J. UAH
LI, D. NRC
WORKMAN, G.L. UAH

ROGERS, J.R. ES71
ROBINSON, M.B. ES71
SAVAGE, L. ES93
SOELLNER, W. Raytheon
HUIE, D. Mevatec

ROGERS, P.R. ED24
BYPNUM, J.E. ED24

RO NER, B.C. ES84
FINGER, M.H. ES84
SCOTT, D.M. ES84
WILSON, R.B. ES84

RUSSELL, C.K. EH23
DING, R.J. EH23

ROSENBAUM, K.M. EP72
ROTHSCHILD, W.J. Boeing
CHRISTENSEN, D.L. Lockheed Martin

SAFIE, F.M. CR10

ROVIRA, M.
SCHMIEDER, B.
DEMOULIN, P.
SIMNETT, G.M.
HAGYARD, M.J.
REICHMANN, E.
TANDBERG-HANSSEN, E.J.

SAHOO, N.K. EB52
SAHOO, N.K. EB52

LIVIO, M. ES81
PETRO, L. ES81
MACCHETTO, F.D. ES81
VAN PARADIJS, J. ES81
KOUVELIOTOU, C. ES81
FISHMAN, G.J. ES81
MEEGAN, C.A. ES81
GROOT, R.J. ES81

SAHU, K.C. ES81
SAHU, K.C. ES81

Sverdrup

Sverdrup
VAN HOOUSER, K. EP74
MARSH, M. EP74

SCHMIDT, G.R. EP61

SCHONBERG, W.P. UAH
WILLIAMSEN, J. ED52

SEN, S. USRA
DHINDAW, B.K. IIT Kharagpur, India
PETERS, P. ES75
CURRERI, P.A. ES75
KAUKLER, W.F. UAH

SEVER, T.L. HR20

SHACKELFORD, B. EP72

SHARPE, D. HR20
WILLIAMS, E. HR20
BOLLI, B. HR20
GOODMAN, S.J. HR20
RAGHAVAN, R. HR20
Observations of Total Lightning Associated with Severe Convection During the Wet Season in Central Florida. For presentation at 19th Conference on Severe Local Storms, Minneapolis, MN, September 14–18, 1998.

SHAW, E.J. PP03
HAMAKER, J.W. PP03
PRINCE, F.A. PP03
GREENBERG, J. Princeton Synergetics

SHAW, E.J. PP03
HAMAKER, J.W. PP03
PRINCE, F.A. PP03

SHAW, E.J. PP03

SHERIF, S.A. University of Florida
LEAR, W.E. University of Florida
STEADHAM, J.M. University of Florida
HUNT, P.L. ED62
HOLLADAY, J.B. ED62

SHTESSEL, Y. UAH
JACKSON, M. ED13
HALL, C. ED13
KRUPP, D. ED13
HENDRIX, N.D. ED13
MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

SHTESSEL, Y.
JACKSON, M.
HALL, C.
KRUPP, D.
HENDRIX, N.D.

SITAR, R.J.
CLAUER, C.R.
BAKER, J.B.
RIDLEY, A.J.
CUMNOCK, J.A.
GERMANY, G.A.
SPANN, J.F., JR.
BRITTNACHER, M.J.
PARKS, G.K.

SLEDD, A.M.
MUELLER, C.W.

SMELTZER, S.S., III
FINCKENOR, J.L.

SMITH, C.C.
IIA, D.
SARKISOV, S.
WILLIAMS, E.K.
POKER, D.B.
HENSLEY, D.K.

SMITH, D.D.
SIBILLE, L.
CRONISE, R.J.
NOEVER, D.A.

Surface Plasmon Resonance Evaluation of Colloidal Metal Aerogel Filters. For publication in Journal of Noncrystalline Solids.

SMITH, D.D.
SIBILLE, L.
CRONISE, R.J.
NOEVER, D.A.

SMITH, D.D.
BENDER, M.W.
BOYD, R.W.

SMITH, L.
PUSEY, M.L.

SNOELL, E.H.
BOGGON, T.J.
FEWSTER, P.F.
SIDDONS, D.P.
STOJANOF, V.
PUSEY, M.L.

SEN, S., USRA
CURREN, P.A., ES75

Particle Engulfment and Pushing by Solidifying Interfaces Part II: Microgravity Experiments and Theoretical Analysis. For publication in Metallurgical Transactions, 1998.

STEVENSON, B.A., ES83
HORWITZ, J.L., ES83
SU, Y.J., ES83
ELLIOTT, H.A., ES83
COMFORT, R.H., ES83
MOORE, T.E., ES83
GILES, B.L., ES83
CRAVEN, P.D., ES83
CHANDLER, M.O., ES83
POLLOCK, C.J., ES83

STROLLBERG, M., ES84
FINGER, M.H., ES84
WILSON, R.B., ES84
SCOTT, D.M., ES84
CRARY, D.J., ES84
PACIESAS, W.S., ES84

SU, C.-H., ES75
FETH, S., Hughes STX Corp.
LEHOCZKY, S.L., ES75

Heat Treatments of ZnSe Starting Materials for Physical Vapor Transport. For publication in Journal of Crystal Growth, Amsterdam, Netherlands.

STONE, N.H., ES83
RAITT, W.J., Utah State University

The TSS–1R Electrodynamic Tether Experiment: Scientific and Technological Results. For presentation at 10th International Conference on Vapor Growth and Epitaxy (ICVGE10), Jerusalem, Israel, July 26–31, 1998.

SU, C.-H., ES75
BREBRICK, R.F., Marquette University
BURGER, A., Fisk University
DUDLEY, M., State University of NY
MATYI, R.J., University of Wisconsin
RAMACHANDRAN, N., USRA
SHA, Y.-G., USRA
VOLZ, M.P., ES75
SHIH, H.-D., Central Research Labs

SU, Y.-J.
HORWITZ, J.L.
MOORE, T.E.
GILES, B.L.
CHANDLER, M.O.
CRAVEN, P.D.
CHANG, S.-W.
SCUDDER, J.

SUESS, S.T.
POLETTO, G.
WANG, A.H.
WU, S.T.
CUSERI, I.

The Geometric Spreading of Coronal Plumes and Coronal Holes. For publication in Solar Physics.

SUESS, S.T.
PARHI, S.
MOORE, R.L.

SUESS, S.T.

SUESS, S.T.
WANG, A.-H.
WU, S.T.
POLETTO, G.
MCCOMAS, D.J.

A Two-Fluid, MHD Coronal Model. For publication in Journal of Geophysical Research—Space Physics, Washington, DC.

SUESS, S.T.

RAMACHANDRAN, N. ES76
Lattice Dynamics of Colloidal Crystals During Photopolymerization of Acrylic Monomer Matrix.

CROLL, A. Universitat, Freiburg
DOLD, P. Universitat, Freiburg
COBB, S.D. ES75
VOLZ, M.P. ES75

MOTAKEF, S. CAPE Simulations, Inc.

SWARTZ, D.A. ES84
ELSNER, R.F. ES84
KOLODZIEJCZAK, J.J. ES84
O'DELL, S.L. ES84
TENNANT, A.F. ES84
SULKANEN, M.E. ES84
WEISSKOPF, M.C. ES84
EDGAR, R.J. ES84

TATARA, J.D. ION Corp.
PERRY, J.L. ED62
FRANKS, G.D. ED62

SWIFT, W.R. ES83
GERMANY, G.A. ES83
RICHARDS, P.G. ES83
PARKS, G.K. ES83
BRITTNACHER, M.J. ES83
SPANN, J.F., JR. ES83

TENNANT, A.F. ES84
WU, K. University of Sydney
O'DELL, S.L. ES84
WEISSKOPF, M.C. ES01

TINKER, M.L. ED23

TINKER, M.L. ED23

TINKER, M.L. ED23

TIPPETT, D.D. UAH
CHILDRESS, R.G. ED53
SWEITZER, M.G. ENI Technologies, Inc.

Downsizing: Is There a “Right” Way? For presenta-

TUCKER, D.S. ES75
ETHRIDGE, E.C. ES75

TUCKER, D.S. ES75
WORKMAN, G.L. UAH
SMITH, G.A. UAH

TUCKER, D.S. ES75
SCRIPA, R.N. UAB
WANG, B. UAB
RIGSBEE, J.M. UAB

TUCKER, P.K. ED32
SHYY, W. University of Florida
SLOAN, J.G. University of Florida

TURNER, J.E. EE61
HUETER, U. RA10

VAN DER HOOFT, F. University of Amsterdam
KOUVELIOTOU, C. USRA/ES84
VAN PARADIJS, J. UAH
PACIESAS, W.S. UAH
LEWIN, W.H.G. MIT
VAN DER KLIS, M. University of Amsterdam

VAN DYKE, M. EP63

VAN PARADIJS, J. ES81
VAN DER HEUVEL, E.P.J. ES81
KOUVELIOTOU, C. ES81
FISHMAN, G.J. ES81
FINGER, M.H. ES81
LEWIN, W.H.G. ES81

VAUGHAN, O.H., JR. HR20
A View of Lightning from the Space Shuttle—Red Sprites and Blue Jets. For presentation at Auburn University, Auburn, AL, November 20, 1997.

VAUGHAN, O.H., JR. HR20
BOECK, W.L. Niagara University

VENTURINI, C.C. UAH
SPANN, J.F., JR. ES83
COMFORT, R.H. UAH
Preliminary Results From a Laboratory Study of Charging Mechanisms in a Dusty Plasma. For

VENTURINI, C.C. UAH
SPANN, J.F., JR. ES83
COMFORT, R.H. UAH

Recent Results From a Laboratory Study of Charging Mechanisms in a Dusty Plasma. For presentation at American Geophysical Union 1998 Fall Meeting, San Francisco, CA, December 6, 1998.

VLASSE, M. ES76

VOLZ, M.P. ES75
SZOFRAN, F.R. ES75
VUJISIC, L. Cape Simulations, Inc.
MOTAKEF, S. Cape Simulations, Inc.

WALKER, J.L. UAH
RUSSELL, S.S. EH13
WORKMAN, G.L. UAH
HILL, E.V.K. Embry-Riddle University

Neural Network/Acoustic Emission Burst Pressure Prediction for Impact Damaged Composite Pressure Vessels. For publication in Materials Evaluation.

WALKER, J.L. UAH
RUSSELL, S.S. EH13
WORKMAN, G.L. UAH

WALLACE, S. EB33
BROWN, T. EB33
FREESTONE, K. EB33

WANG, J.C. Alabama A&M University
LEHOCZKY, S.L. ES71
WATRING, D.A. ES71

WANG, T.-S. ED32

WANG, T.-S. ED32

WANG, T.-S. ED32

WATSON, M.D. EB52
JAYROE, R. EB52

WATSON, M.D. EB52
ABUSHAGUR, M.A.G. UAH
ASHLEY, P.R. U.S. Army Missile
COLE, H.J. EB53

WEISSKOPF, M.C. ES01
O’DELL, S.L. ES01
ELSNER, R.F. ES01

WEISSKOPF, M.C.
ELSNER, R.F.
JOY, M.K.
O’DELL, S.L.

WEISSKOPF, M.C.
ELSNER, R.F.
JOY, M.K.
O’DELL, S.L.

WEISSKOPF, M.C.
O’DELL, S.L.
VAN SPEYBROECK, L.P.

WHITAKER, A.F.
CURRERI, P.A.
SHARPE, J.B.
COLBERG, W.R.
VICKERS, J.H.

WHORTON, M.S.
ALHORN, D.C.

WHORTON, M.S.
CALISE, A.J.
Georgia Institute of Tech.

WILKERSON, G.W.
HUEGELE, V.

WILLIAMS, E.
BOLDI, B.
MATLIN, A.
WEBER, M.
HODANISH, S.
SHARP, D.
GOODMAN, S.J.
RAGHAVAN, R.
BUECHLER, D.L.

WILLIAMS, E.
BOLDI, B.
MATLIN, A.
WEBER, M.
HODANISH, S.
SHARP, D.
GOODMAN, S.J.
RAGHAVAN, R.
BUECHLER, D.L.

WILLIAMS, J.
BLACKLOCK, K.
EVANS, H.
GUAY, T.D.

WILLIAMSEN, J.
ROBINSON, J.
University of Denver

WILSON, C.A. ES84
DIETERS, S.W. UAH
FINGER, M.H. USRA
SCOTT, D.M. USRA
VAN PARADIJS, J. UAH

WILSON, C.A. ES84
FINGER, M.H. USRA
SCOTT, D.M. USRA

WILSON, C.A. ES84
HARMON, B.A. ES84
PACIESAS, W.S. UAH
MCCOLLOUGH, M.L.

WILSON, C.A. ES84
FINGER, M.H. USRA
WILSON, R.B. ES84
SCOTT, D.M. USRA

WILSON, R.M. ES82
SCOTT, D.M. USRA
FINGER, M.H. USRA
WILSON, R.B. ES84

Long-Term Observations of Her X-1 with BATSE. For publication in AIP Conference Proceedings, New York, NY.

WILSON, R.B. ES84
FINGER, M.H. USRA

WILSON, R.M. ES82

Volcanism, Cold Temperature, and Paucity of Sun-
<table>
<thead>
<tr>
<th>Authors</th>
<th>Affiliation</th>
<th>Date</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>WOODS, P.</td>
<td>UAH</td>
<td>ES84</td>
<td>Current Collection in Plasmas by a Static Bare Tether. For presentation at 1997 Fall American Geophysical Union Meeting, San Francisco, CA, December 1997.</td>
</tr>
<tr>
<td>VAN PARADIJS, J.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRIGGS, M.S.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WILSON, C.A.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEAL, K.J.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HARMON, B.A.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FISHMAN, G.J.</td>
<td>ES84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEWIN, W.H.G.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KOMMERS, J.M.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUDDLESTON, M.</td>
<td>Southwest Research</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BURCH, J.L.</td>
<td>Southwest Research</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEMPSEY, D.L.</td>
<td>Southwest Research</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRAVEN, P.D.</td>
<td>ES83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHANDLER, M.O.</td>
<td>ES83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPANN, J.F., JR.</td>
<td>ES83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PETERSON, W.K.</td>
<td>Lockheed-Martin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COLLIN, H.L.</td>
<td>Lockheed-Martin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LENNARTSSON, W.</td>
<td>Lockheed-Martin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>YOUNG, R.B.</td>
<td>ES76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAUGHN, J.R.</td>
<td>ES76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRIDGE, K.Y.</td>
<td>ES76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZHANG, T.X.</td>
<td>UAH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HWANG, K.S.</td>
<td>CSC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WU, S.T.</td>
<td>UAH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STONE, N.H.</td>
<td>ES83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SORENSON, J.</td>
<td>ES83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WRIGHT, K.H.</td>
<td>ES83</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
INDEX

TECHNICAL MEMORANDA

Benfield, M.P... 1
Benzie, M.A... 1
Bhat, B ... 3
Brown, A.M.. 4, 6
Cramer, J.M... 3
Curreli, P.A ... 2
Eldridge, J.T... 1
Fazah, M.M... 3
Ferebee, R.C... 1
Fragomeni, J.M.. 3
George, L.E... 5
Graham, J.B... 4
Harris, D.L.. 2
Herrmann, M.. 5
Hodge, A.J.. 1
Hutcheson, C.. 5
Jett, T.R... 2
Johnson, L... 5
Kos, L.D... 5
Landrum, D.B... 1
Lassiter, J.O... 1
Long, D... 5
Luz, P.L... 3, 4
McCall, K... 6
McCauley, D... 2, 6
Mitchell, D.P.. 1
Nettles, A.T.. 1
Nunes, A.C., Jr... 3
Ortega, R... 4
Price, J.M.. 4
Redmon, J.W., Jr.. 1
Rice, T... 3
Russell, C... 3
Salyer, B.. 5
Scaril, E... 6
Summers, F.G... 5
Thom, R.L... 2
Turner Waits, J.E.. 6
Vanhooser, M.T... 1
Vlasses, M.L... 6
Walker, C.. 2, 6
Whorton, M.S... 1, 2
Wieland, P.O... 2, 5
Woodard, D.. 3, 4

TECHNICAL PUBLICATIONS

Bangham, M.E... 7
Christenson, R.L.. 9
Danford, M.D... 7, 8
Gallagher, D.L... 9
Hathaway, D.H.. 9
Hayashida, K.B.. 7
Hill, S.A... 7
Howell, L.W.. 8
Hurless, B.E.. 8
Johnson, L.. 9
Kumar, D.R... 9
Lorenzini, E... 7
Mendrek, M.J... 7, 8
Mitchell, M.L.. 7
Moore, J... 9
Polites, M.E.. 9
Reichmann, J.E... 9
Rheinfurth, M.H... 8
Robinson, J.H... 7
Springer, A.M... 8
Torres, P.D... 7, 8
Verderame, V... 7
Vestal, L.. 7
Wilson, R.M.. 9, 10

CONFERENCE PUBLICATIONS

Bekey, Ivan... 11
Brewer, J.C... 11
Downey, J.P.. 11
Harrison, J.K.. 11
Mankins, John... 11
O'Neil, Daniel.. 11
Rogers, Tom.. 11
Stallmer, Eric... 11

CONTRACTOR REPORTS

Aeroflex ... 13
Auburn University .. 12
Boeing Information, Space& Defense Systems 14
Boeing North America... 12
Computer Science Corporation............................ 12
Gordon, T .. 27
Gores, M .. 41
Gorlenko, V.M.. 29
Graessle, D.E ... 31
Green, J.L .. 26
Greenberg, J ... 48
Grego, L .. 21
Gregory, D.A ... 17
Grindlay, J ... 25, 28
Griner, C ... 27, 38
Groot, P.J ... 25, 47
Grugel, R.N ... 50
Grunsfeld, J.M ... 19
Guay, T.D .. 56
Guillory, A.R ... 20, 27, 31, 39
Hadaway, J .. 31
Hafner, J .. 46
Hagopian, J ... 27
Hagyard, M.J ... 15, 27, 28, 47, 50
Hale, J.P, II ... 28
Hall, C.E .. 28, 39, 48, 49
Hall, P.B .. 42
Hamaker, J.W .. 48
Hamilton, G.S ... 28
Hanlon, L .. 25
Hanson, J.M ... 28
Hardage, D.M .. 44
Hardesty, R.M ... 47
Harmon, B.A ... 25, 28, 39, 44, 49, 54, 57, 58
Harris, B .. 31, 36
Harrison, T.E ... 39
Hartmann, D.H ... 30, 34
Harvey, K.L ... 45
Hastings, L ... 28
Hathaway, D.H .. 16, 28, 29, 42, 50, 57
Heber, B .. 16
Hedayat, A .. 39
Heikkila, C.W .. 39
Hendrix, N.D ... 28, 48, 49
Hensley, D.K ... 49
Herrmann, M ... 32
Herrmann, R ... 29
Hibiya, T ... 22
Hill ... 55
Hirahara, M ... 29, 30
Hjellming, R.M ... 38, 39
Ho, F.D ... 38
Ho, J.X .. 29
Hodanish, S ... 17, 27, 29, 56
Hoffman, C.R .. 29
Hofmeister, W.H 17
Holladay, J.B ... 48
Holland, D.L ... 38
Holzapfel, W.L .. 21
Hooser, Van, K ... 48
Hoover, R.B .. 29, 30, 39
Hoppe, D .. 30
Horack, J.M .. 30, 44
Horowitz, J.L .. 29, 30, 42, 51, 52
Howard, R.T ... 30, 31
Howard, S.G ... 30
Howell, B.F .. 17
Howell, J.N .. 47
Hudson, H.C ... 58
Hudson, S.T ... 30
Huegele, V .. 56
Hueter, U ... 30, 54
Huie, D .. 47
Humphries, W.R .. 30
Hunt, P.L .. 48
Hurley, K ... 18, 30, 31, 34, 35, 36, 37
Hutchens, C.F ... 30
Hutchinson, S.L .. 22
Hwang, K.S .. 58
Iia, D ... 49
Ise, M.R .. 24
Iyenger, K.V.K ... 26
Jaap, J ... 31
Jackson, J.L .. 31
Jackson, M ... 48, 49
Jacobs, R.S .. 33
Jacobson, D .. 31
Jarzembski, M.A ... 31
Jayroe, R ... 55
Jedlovcek, G.J ... 20, 27, 31, 35, 36, 39, 52
Jerius, D .. 31, 33
Jett, T.R ... 31
Johns, M.R ... 32
Johnson, D.L ... 32
Johnson, L .. 25, 32
Johnson, S.C ... 47
Johnston, A.S .. 32
Johnston, K.J ... 38
Jokipii, J.R .. 16
Jones, C ... 44
Jones, C.S .. 32
Jones, D.K ... 34
Jones, W ... 32
<table>
<thead>
<tr>
<th>Name</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joy, M.K.</td>
<td>21, 32, 44, 52, 56</td>
</tr>
<tr>
<td>Juda, M.</td>
<td>44</td>
</tr>
<tr>
<td>Judge, R.A.</td>
<td>32, 33</td>
</tr>
<tr>
<td>Juretzko, F.R.</td>
<td>33, 50</td>
</tr>
<tr>
<td>Kaaret, P.</td>
<td>25, 49</td>
</tr>
<tr>
<td>Kaiser, T.</td>
<td>22</td>
</tr>
<tr>
<td>Kamenetzky, R.R.</td>
<td>19, 22, 58</td>
</tr>
<tr>
<td>Karpova, E.A.</td>
<td>33</td>
</tr>
<tr>
<td>Karr, L.J.</td>
<td>15, 21</td>
</tr>
<tr>
<td>Kaufmann, P.</td>
<td>29</td>
</tr>
<tr>
<td>Kaukler, W.F.</td>
<td>48</td>
</tr>
<tr>
<td>Kavaya, M.J.</td>
<td>33, 40</td>
</tr>
<tr>
<td>Kellogg, E.</td>
<td>33</td>
</tr>
<tr>
<td>Keys, A.S.</td>
<td>34</td>
</tr>
<tr>
<td>Kharshiladze, A.F.</td>
<td>42</td>
</tr>
<tr>
<td>Khatri, G.</td>
<td>16</td>
</tr>
<tr>
<td>Khazarov, G.V.</td>
<td>34, 37</td>
</tr>
<tr>
<td>Kidder, S.Q.</td>
<td>46</td>
</tr>
<tr>
<td>King, R.F.</td>
<td>24</td>
</tr>
<tr>
<td>Kippen, M.</td>
<td>35</td>
</tr>
<tr>
<td>Kippen, R.M.</td>
<td>18, 30, 31, 34, 44</td>
</tr>
<tr>
<td>Klimchuk, J.A.</td>
<td>38</td>
</tr>
<tr>
<td>Klose, S.</td>
<td>34</td>
</tr>
<tr>
<td>Knight, K.C.</td>
<td>39</td>
</tr>
<tr>
<td>Knupp, K.R.</td>
<td>46</td>
</tr>
<tr>
<td>Kozciur, R.</td>
<td>41</td>
</tr>
<tr>
<td>Koh, D.T.</td>
<td>17, 19, 34, 41</td>
</tr>
<tr>
<td>Kokan, J.</td>
<td>34</td>
</tr>
<tr>
<td>Kolodziejczak, J.J.</td>
<td>23, 32, 34, 40, 53</td>
</tr>
<tr>
<td>Kommers, J.M.</td>
<td>34, 35, 58</td>
</tr>
<tr>
<td>Konnert, J.H.</td>
<td>37</td>
</tr>
<tr>
<td>Kos, L</td>
<td>35</td>
</tr>
<tr>
<td>Koshak, W.J.</td>
<td>35, 45</td>
</tr>
<tr>
<td>Kosht, T.M.</td>
<td>35, 42</td>
</tr>
<tr>
<td>Kouveliotou, C.</td>
<td>22, 30, 31, 34, 35, 36, 37, 42, 47, 54, 58</td>
</tr>
<tr>
<td>Kozyra, J.U.</td>
<td>34, 37</td>
</tr>
<tr>
<td>Krainev, M.B.</td>
<td>16</td>
</tr>
<tr>
<td>Krider, E.P.</td>
<td>35</td>
</tr>
<tr>
<td>Kroes, R.L.</td>
<td>35</td>
</tr>
<tr>
<td>Krupp, D.</td>
<td>48, 49</td>
</tr>
<tr>
<td>Kulkami, S.</td>
<td>37</td>
</tr>
<tr>
<td>Kundrot, C.E.</td>
<td>38</td>
</tr>
<tr>
<td>Lakhtakia, M.</td>
<td>36</td>
</tr>
<tr>
<td>Lam, N.S.</td>
<td>46</td>
</tr>
<tr>
<td>Lapenta, W.M.</td>
<td>35, 36, 52</td>
</tr>
<tr>
<td>Laros, J.G.</td>
<td>30, 36</td>
</tr>
<tr>
<td>Larson, D.E.</td>
<td>16</td>
</tr>
<tr>
<td>Lear, W.E.</td>
<td>48</td>
</tr>
<tr>
<td>Leclair, M.</td>
<td>36</td>
</tr>
<tr>
<td>Lecue, J.M.</td>
<td>27</td>
</tr>
<tr>
<td>Lee, C.K.</td>
<td>26</td>
</tr>
<tr>
<td>Lee, J.A.</td>
<td>36</td>
</tr>
<tr>
<td>Lehoczky, S.L.</td>
<td>19, 36, 41, 42, 45, 51, 55</td>
</tr>
<tr>
<td>Lennartsson, W.</td>
<td>58</td>
</tr>
<tr>
<td>Leon-Torres, J.</td>
<td>36</td>
</tr>
<tr>
<td>Lerner, J.A.</td>
<td>31, 36</td>
</tr>
<tr>
<td>Leslie, F.W.</td>
<td>40</td>
</tr>
<tr>
<td>Lestrade, J.P.</td>
<td>42</td>
</tr>
<tr>
<td>Levine, S.R.</td>
<td>20</td>
</tr>
<tr>
<td>Lewin, W.H.G.</td>
<td>35, 54, 58</td>
</tr>
<tr>
<td>Li, D.</td>
<td>36, 37, 46, 47</td>
</tr>
<tr>
<td>Li, H.</td>
<td>37</td>
</tr>
<tr>
<td>Li, P.</td>
<td>37</td>
</tr>
<tr>
<td>Li, M.</td>
<td>37</td>
</tr>
<tr>
<td>Liao, J.-H.</td>
<td>21</td>
</tr>
<tr>
<td>Liemohn, M.W.</td>
<td>34, 37</td>
</tr>
<tr>
<td>Lietzke, S.E.</td>
<td>38</td>
</tr>
<tr>
<td>Liewer, P.C.</td>
<td>38</td>
</tr>
<tr>
<td>Lim, K.</td>
<td>38</td>
</tr>
<tr>
<td>Lin, C.-F.</td>
<td>24</td>
</tr>
<tr>
<td>Lin, R.P.</td>
<td>16</td>
</tr>
<tr>
<td>Littvak, M.L.</td>
<td>40</td>
</tr>
<tr>
<td>Livio, M.</td>
<td>47</td>
</tr>
<tr>
<td>Lo, C.P.</td>
<td>46</td>
</tr>
<tr>
<td>Lockwood, M.K.</td>
<td>20, 45</td>
</tr>
<tr>
<td>Lollar, L.F.</td>
<td>38</td>
</tr>
<tr>
<td>London, J.R.</td>
<td>38</td>
</tr>
<tr>
<td>Lorenzini, E.</td>
<td>32</td>
</tr>
<tr>
<td>Loughead, T.E.</td>
<td>22</td>
</tr>
<tr>
<td>Lummerzheim, D.</td>
<td>18</td>
</tr>
<tr>
<td>Luvall, J.C.</td>
<td>38, 46</td>
</tr>
<tr>
<td>Lyles, G.M.</td>
<td>38</td>
</tr>
<tr>
<td>Macarthur, D.</td>
<td>22</td>
</tr>
<tr>
<td>Macchetto, F.D.</td>
<td>47</td>
</tr>
<tr>
<td>Machado, M.E.</td>
<td>29</td>
</tr>
<tr>
<td>Macleod, T.C.</td>
<td>38</td>
</tr>
<tr>
<td>Magun, A.</td>
<td>29</td>
</tr>
<tr>
<td>Majumdar, A.</td>
<td>47</td>
</tr>
<tr>
<td>Mallozzi, R.S.</td>
<td>44, 45</td>
</tr>
<tr>
<td>Malone, C.C.</td>
<td>25</td>
</tr>
<tr>
<td>Marsh, M.</td>
<td>48</td>
</tr>
<tr>
<td>Marsh, R.W.</td>
<td>30</td>
</tr>
<tr>
<td>Martin, C.E.</td>
<td>38</td>
</tr>
<tr>
<td>Martin, J.</td>
<td>28</td>
</tr>
<tr>
<td>Martinez-Sanchez, M.</td>
<td>32</td>
</tr>
<tr>
<td>Mason, P.A.</td>
<td>39</td>
</tr>
<tr>
<td>Matlin, A.</td>
<td>17, 27, 29, 48, 56</td>
</tr>
<tr>
<td>Name</td>
<td>Pages</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Nadarajah, A</td>
<td>24, 25, 37, 38</td>
</tr>
<tr>
<td>Myers, W.N</td>
<td>41</td>
</tr>
<tr>
<td>Murray, S.S</td>
<td>33</td>
</tr>
<tr>
<td>Murray, S</td>
<td>44</td>
</tr>
<tr>
<td>Murphy, M.J</td>
<td>35</td>
</tr>
<tr>
<td>Mulqueen, J.A</td>
<td>28</td>
</tr>
<tr>
<td>McCaleb, R</td>
<td>38</td>
</tr>
<tr>
<td>McCarter, J.W</td>
<td>28</td>
</tr>
<tr>
<td>McCarthy, M</td>
<td>43</td>
</tr>
<tr>
<td>McCaul, E.W</td>
<td>46</td>
</tr>
<tr>
<td>McCollough, M.L</td>
<td>28, 36, 38, 39, 42, 44, 57</td>
</tr>
<tr>
<td>McComas, D.J</td>
<td>42, 52</td>
</tr>
<tr>
<td>McDermott, W.C</td>
<td>33</td>
</tr>
<tr>
<td>McDaniel, J.P</td>
<td>39</td>
</tr>
<tr>
<td>McDonald, F.B</td>
<td>16</td>
</tr>
<tr>
<td>McDuffie, J.H</td>
<td>39</td>
</tr>
<tr>
<td>McGee, K.A</td>
<td>19</td>
</tr>
<tr>
<td>McKay, D.S</td>
<td>39</td>
</tr>
<tr>
<td>McKinnon, P</td>
<td>33</td>
</tr>
<tr>
<td>McMillan, V.C</td>
<td>39</td>
</tr>
<tr>
<td>McNamara, B.J</td>
<td>39</td>
</tr>
<tr>
<td>McNider, R.T</td>
<td>35, 36</td>
</tr>
<tr>
<td>Meegan, C.A.</td>
<td>18, 21, 30, 31, 34, 35, 36, 37, 39, 40, 42, 44, 47</td>
</tr>
<tr>
<td>Mende, S.B</td>
<td>39</td>
</tr>
<tr>
<td>Menzies, R.T</td>
<td>47</td>
</tr>
<tr>
<td>Meshishnek, M.J</td>
<td>22</td>
</tr>
<tr>
<td>Meyer, P.J</td>
<td>31, 39</td>
</tr>
<tr>
<td>Miller, T.L</td>
<td>23, 40</td>
</tr>
<tr>
<td>Minamitani, T</td>
<td>40</td>
</tr>
<tr>
<td>Minor, J</td>
<td>40</td>
</tr>
<tr>
<td>Mioduszewski, A.J</td>
<td>39</td>
</tr>
<tr>
<td>Mitrofanov, I.G</td>
<td>40</td>
</tr>
<tr>
<td>Monnelly, C</td>
<td>28</td>
</tr>
<tr>
<td>Montgomery, E.E</td>
<td>40</td>
</tr>
<tr>
<td>Moore, C.E</td>
<td>40</td>
</tr>
<tr>
<td>Moore, J</td>
<td>25</td>
</tr>
<tr>
<td>Moore, L.E</td>
<td>41</td>
</tr>
<tr>
<td>Moore, R.L</td>
<td>41, 45, 52</td>
</tr>
<tr>
<td>Moore, T.E.</td>
<td>20, 21, 22, 23, 29, 30, 34, 51, 52</td>
</tr>
<tr>
<td>Morton, C.M</td>
<td>17</td>
</tr>
<tr>
<td>Motakef, S</td>
<td>26, 36, 53, 55</td>
</tr>
<tr>
<td>Mozer, F.S</td>
<td>16, 20, 21</td>
</tr>
<tr>
<td>Mueller, C.W</td>
<td>49</td>
</tr>
<tr>
<td>Mullins, J</td>
<td>33</td>
</tr>
<tr>
<td>Mulqueen, J.A</td>
<td>28</td>
</tr>
<tr>
<td>Murphy, M.J</td>
<td>35</td>
</tr>
<tr>
<td>Murray, S</td>
<td>44</td>
</tr>
<tr>
<td>Murray, S.S</td>
<td>33</td>
</tr>
<tr>
<td>Myers, W.N</td>
<td>41</td>
</tr>
<tr>
<td>Nadarajah, A</td>
<td>24, 25, 37, 38</td>
</tr>
<tr>
<td>Nahay, E</td>
<td>27</td>
</tr>
<tr>
<td>Nakamura, S</td>
<td>22</td>
</tr>
<tr>
<td>Nassir, M.A</td>
<td>34</td>
</tr>
<tr>
<td>Naumov, S</td>
<td>19</td>
</tr>
<tr>
<td>Nelson, R.W</td>
<td>17, 19, 34, 41</td>
</tr>
<tr>
<td>Nerney, S</td>
<td>52</td>
</tr>
<tr>
<td>Neugebauer, M</td>
<td>52</td>
</tr>
<tr>
<td>Neupert, W.M</td>
<td>16</td>
</tr>
<tr>
<td>Newmark, J</td>
<td>16</td>
</tr>
<tr>
<td>Nguyen, H</td>
<td>41</td>
</tr>
<tr>
<td>Nicolas, D.P</td>
<td>41</td>
</tr>
<tr>
<td>Niles, J</td>
<td>40</td>
</tr>
<tr>
<td>Noeber, D.A</td>
<td>16, 41, 42, 49</td>
</tr>
<tr>
<td>Novak, H.L</td>
<td>42</td>
</tr>
<tr>
<td>Nyan, T.C.</td>
<td>3</td>
</tr>
<tr>
<td>Nunes, A.C., Jr.</td>
<td>25, 42</td>
</tr>
<tr>
<td>Ober, D.M</td>
<td>42</td>
</tr>
<tr>
<td>Obridko, V</td>
<td>42</td>
</tr>
<tr>
<td>O'Dell, S.L</td>
<td>23, 32, 34, 44, 53, 55, 56</td>
</tr>
<tr>
<td>Olivier, L.D</td>
<td>47</td>
</tr>
<tr>
<td>Owens, S.M</td>
<td>29</td>
</tr>
<tr>
<td>Paciesas, W.S.</td>
<td>25, 28, 39, 40, 42, 44, 45, 51, 54, 57</td>
</tr>
<tr>
<td>Paley, M.S.</td>
<td>15, 25, 42</td>
</tr>
<tr>
<td>Palmer, D.M</td>
<td>36</td>
</tr>
<tr>
<td>Palosz, W</td>
<td>42, 51</td>
</tr>
<tr>
<td>Papitashvili, V.O</td>
<td>20</td>
</tr>
<tr>
<td>Parhi, S</td>
<td>42, 43, 52</td>
</tr>
<tr>
<td>Park, H.S</td>
<td>43</td>
</tr>
<tr>
<td>Parks, G.K.</td>
<td>16, 18, 20, 23, 24, 26, 43, 49, 50, 53, 57</td>
</tr>
<tr>
<td>Parnell, T.A</td>
<td>44</td>
</tr>
<tr>
<td>Parsons, A.M.</td>
<td>44</td>
</tr>
<tr>
<td>Patel, S.K</td>
<td>52</td>
</tr>
<tr>
<td>Patnaude, D</td>
<td>44</td>
</tr>
<tr>
<td>Pearson, J.B</td>
<td>44</td>
</tr>
<tr>
<td>Pearson, S.D.</td>
<td>32, 44</td>
</tr>
<tr>
<td>Pease, D</td>
<td>44</td>
</tr>
<tr>
<td>Pendleton, G.N.</td>
<td>18, 21, 35, 40, 42, 44, 45</td>
</tr>
<tr>
<td>Penn, B.G.</td>
<td>15, 25, 52</td>
</tr>
<tr>
<td>Perez, J</td>
<td>26</td>
</tr>
<tr>
<td>Perozzo, M.A.</td>
<td>37</td>
</tr>
<tr>
<td>Perry, J.L.</td>
<td>44, 53</td>
</tr>
<tr>
<td>Peskov, V</td>
<td>24, 25, 44, 46</td>
</tr>
<tr>
<td>Peters, P.</td>
<td>48</td>
</tr>
<tr>
<td>Peterson, W.K.</td>
<td>29, 58</td>
</tr>
<tr>
<td>Petro, L</td>
<td>47</td>
</tr>
<tr>
<td>Petruzzo, J.J., III</td>
<td>32, 44</td>
</tr>
<tr>
<td>Pettito, J.M.</td>
<td>16</td>
</tr>
<tr>
<td>Pevtsov, A.A.</td>
<td>28</td>
</tr>
<tr>
<td>Phan, T.D</td>
<td>16</td>
</tr>
<tr>
<td>Phan, T.D</td>
<td>16</td>
</tr>
<tr>
<td>Phan, T.D</td>
<td>16</td>
</tr>
<tr>
<td>Name</td>
<td>Pages</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Watring, D.A.</td>
<td>55</td>
</tr>
<tr>
<td>Verderame, V</td>
<td>30</td>
</tr>
<tr>
<td>Vickers, J.H.</td>
<td>56</td>
</tr>
<tr>
<td>Vlass, M.</td>
<td>55</td>
</tr>
<tr>
<td>Vo, H.</td>
<td>39</td>
</tr>
<tr>
<td>Volz, M.P.</td>
<td>51, 53, 55</td>
</tr>
<tr>
<td>Vrba, F.</td>
<td>37</td>
</tr>
<tr>
<td>Vreeswijk, P.M.</td>
<td>34</td>
</tr>
<tr>
<td>Vuissic, L.</td>
<td>55</td>
</tr>
<tr>
<td>Walker, J.L.</td>
<td>55</td>
</tr>
<tr>
<td>Walker, J.S.</td>
<td>53</td>
</tr>
<tr>
<td>Wallace, S.</td>
<td>21, 55</td>
</tr>
<tr>
<td>Waltman, E.B.</td>
<td>38</td>
</tr>
<tr>
<td>Wang, A.H.</td>
<td>52</td>
</tr>
<tr>
<td>Wang, B.</td>
<td>54</td>
</tr>
<tr>
<td>Wang, J.C.</td>
<td>55</td>
</tr>
<tr>
<td>Wang, T.-S.</td>
<td>55</td>
</tr>
<tr>
<td>Wang, X.-Q.</td>
<td>40</td>
</tr>
<tr>
<td>Wargelin, B.</td>
<td>33</td>
</tr>
<tr>
<td>Watring, D.A.</td>
<td>55</td>
</tr>
<tr>
<td>Watson, M.D.</td>
<td>44, 55</td>
</tr>
<tr>
<td>Watts, J.W., Jr.</td>
<td>44</td>
</tr>
<tr>
<td>Weber, M.</td>
<td>17, 27, 29, 48, 56</td>
</tr>
<tr>
<td>Weisskopf, M.C.</td>
<td>21, 23, 32, 34, 40, 44, 53, 55, 56</td>
</tr>
<tr>
<td>Wells, B.E.</td>
<td>46</td>
</tr>
<tr>
<td>Wertz, G.E.</td>
<td>22</td>
</tr>
<tr>
<td>West, E.A.</td>
<td>15</td>
</tr>
<tr>
<td>Westall, F.</td>
<td>39</td>
</tr>
<tr>
<td>Whitaker, A.F.</td>
<td>56</td>
</tr>
<tr>
<td>White, E.T.</td>
<td>33</td>
</tr>
<tr>
<td>Whitworth, B.N.</td>
<td>27</td>
</tr>
<tr>
<td>Whorton, M.S.</td>
<td>24, 56</td>
</tr>
<tr>
<td>Wilber, M.</td>
<td>43</td>
</tr>
<tr>
<td>Wilkerson, G.W.</td>
<td>56</td>
</tr>
<tr>
<td>Wilkes, D.R.</td>
<td>19</td>
</tr>
<tr>
<td>Williams, E.</td>
<td>17, 27, 29, 48, 56</td>
</tr>
<tr>
<td>Williams, E.K.</td>
<td>49</td>
</tr>
<tr>
<td>Williams, E.R.</td>
<td>17</td>
</tr>
<tr>
<td>Williams, G.</td>
<td>36, 37, 46</td>
</tr>
<tr>
<td>Williams, G.G.</td>
<td>43</td>
</tr>
<tr>
<td>Williams, J.C.</td>
<td>28</td>
</tr>
<tr>
<td>Williams, R.</td>
<td>26</td>
</tr>
<tr>
<td>Williamson, J.</td>
<td>48, 56</td>
</tr>
<tr>
<td>Williamson, W.T.</td>
<td>21</td>
</tr>
<tr>
<td>Willowby, D.</td>
<td>15</td>
</tr>
<tr>
<td>Wilson, C.A.</td>
<td>17, 24, 28, 44, 57, 58</td>
</tr>
<tr>
<td>Wilson, G.</td>
<td>26</td>
</tr>
<tr>
<td>Wilson, L.</td>
<td>24</td>
</tr>
<tr>
<td>Wilson, R.B.</td>
<td>17, 19, 24, 34, 41, 47, 51, 57</td>
</tr>
</tbody>
</table>
This document presents formal NASA technical reports, papers published in technical journals, and presentations by MSFC personnel in FY98. It also includes papers of MSFC contractors.

After being announced in STAR, all of the NASA series reports may be obtained from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

The information in this report may be of value to the scientific and engineering community in determining what information has been published and what is available.