FY 1998 Scientific and Technical Reports, Articles, Papers, and Presentations

Compiled by
J.E. Turner Waits
Marshall Space Flight Center, Marshall Space Flight Center, Alabama

National Aeronautics and Space Administration

Marshall Space Flight Center

March 1999
FOREWORD

In accordance with the NASA Space Act of 1958, the MSFC has provided for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof.

Since July 1, 1960, when the George C. Marshall Space Flight Center was organized, the reporting of scientific and engineering information has been considered a prime responsibility of the Center. Our credo has been that "research and development work is valuable, but only if its results can be communicated and made understandable to others."

The N number shown for the reports listed is assigned by the Center for AeroSpace Information (CASI), Hanover, MD, indicating that the material is unclassified and unlimited and is available for public use. These publications can be purchased from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161. The N number should be cited when ordering.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA TECHNICAL MEMORANDA</td>
<td>1</td>
</tr>
<tr>
<td>NASA TECHNICAL PUBLICATIONS</td>
<td>7</td>
</tr>
<tr>
<td>MSFC CONFERENCE PUBLICATIONS</td>
<td>11</td>
</tr>
<tr>
<td>NASA CONTRACTOR REPORTS</td>
<td>12</td>
</tr>
<tr>
<td>MSFC PAPERS CLEARED FOR PRESENTATION</td>
<td>15</td>
</tr>
<tr>
<td>INDEX</td>
<td>59</td>
</tr>
</tbody>
</table>
Investigation of the Springback Associated With Composite Material Component Fabrication (MSFC Center Director’s Discretionary Fund Final Report, Project No. 94–09). M.A. Benzie. Materials and Processes Laboratory.

The objective of this research project was to examine processing and design parameters in the fabrication of composite components to obtain a better understanding and attempt to minimize springback associated with composite materials. To accomplish this, both processing and design parameters were included in a Taguchi-designed experiment. Composite angled panels were fabricated, by hand layup techniques, and the fabricated panels were inspected for springback effects. This experiment yielded several significant results. The confirmation experiment validated the reproducibility of the factorial effects, error recognized, and experiment as reliable. The material used in the design of tooling needs to be a major consideration when fabricating composite components, as expected. The factors dealing with resin flow, however, raise several potentially serious material and design questions. These questions must be dealt with up front in order to minimize springback: viscosity of the resin, vacuum bagging of the part for cure, and the curing method selected. These factors directly affect design, material selection, and processing methods.

Low velocity dropweight impact tests were conducted on carbon/epoxy laminates under various boundary conditions. The composite plates were 8-ply (+45.0,−45.90)s laminates supported in a clamped-clamped/free-free configuration with varying amounts of in-plane load, Nx, applied. Specimens were impacted at energies of 3.4, 4.5, and 6 Joules (2.5, 3.3, and 4.4 ft-lb). The amount of damage induced into the specimen was evaluated using instrumented impact techniques, x-ray inspection, and cross-sectional photomicroscopy. Some static indentation tests were performed to examine if the impact events utilized in this study were of a quasi-static nature and also to gain insight into the shape of the deflected surface at various impact load combinations. Load-displacement curves from these tests were compared to those of the impact tests, as was damage determined from x-ray inspection.

The International Space Station (ISS) incorporated elements designed and developed by an international consortium led by the United States (U.S.), and by Russia. For this cooperative effort to succeed, it is crucial that the designs and methods of design of the other partners are understood sufficiently to ensure compatibility. Environmental Control and Life Support (ECLS) is one system in which functions are performed independently on the Russian Segment (RS) and on the U.S./international segments. This document describes, in two volumes, the design and operation of the ECLS Systems (ECLSS) on board the ISS. Volume I is divided into three chapters. Chapter I is a general overview of the ISS, describing the configuration, general requirements, and distribution of systems as related to the ECLSS, and includes discussion of the design philosophies of the partners and methods of verification of equipment. Chapter II describes the U.S. ECLSS and technologies in greater detail. Chapter III described the ECLSS in the European Attached Pressurized Module (APM), Japanese Experiment Module (JEM), and Italian Mini-Pressurized Logistics Module (MPLM). Volume II describes the Russian ECLSS and technologies in greater detail. These documents present thorough, yet concise, descriptions of the ISS ECLSS.

A test program to determine the tribological properties of several self-lubricating composites was performed. Testing was done using an LFW-1 Friction and Wear machine. Each material was tested at four load levels (66 N, 133 N, 266 N, and 400 N) under ambient conditions. The coefficient of friction and wear rate was determined for each material, and a relative ranking of the composites was made.

Measurement of Damping of Composite Materials for Turbomachinery Applications (MSFC Center Director’s Discretionary Fund Final Report, Project No. 94–05). D.L. Harris. Structures and Dynamic Laboratory. 19980137576N

Many spacecraft systems have ambitious objectives that place stringent requirements on control systems. Achievable performance is often limited because of difficulty of obtaining accurate models for flexible space structures. To achieve sufficiently high performance to accomplish mission objectives may require the ability to refine the control design model based on closed-loop test data and tune the controller based on the refined model. A control system design procedure is developed based on mixed H_2/H_∞ optimization to synthesize a set of controllers explicitly trading between nominal
performance and robust stability. A homotopy algorithm is presented which generates a trajectory of gains that may be implemented to determine maximum achievable performance for a given model error bound. Examples show that a better balance between robustness and performance is obtained using the mixed H_∞ design method than either H_∞ or mu-synthesis control design. A second contribution is a new procedure for closed-loop system identification which refines parameters of a control design model in a canonical realization. Examples demonstrate convergence of the parameter estimation and improved performance realized by using the refined model for controller redesign. These developments result in an effective mechanism for achieving high-performance control of flexible space structures.

TM—1998–207979 May 1998

Conditions under which molten metal detachments might occur in a space welding environment are analyzed. A weld pool detachment parameter specifying conditions for pool detachment by impact is derived and corroborated by experimental evidence. Impact detachment for the pool is unlikely. Impact detachment for a drop of metal on the end of the weld wire may be possible under extreme conditions. Other potential causes of molten metal detachment considered, vaporization pressure forces and wire flickout from the pool, did not appear to present significant detachment threats.

TM—1998–208181 May 1998

This technical memorandum reports on the mirror material properties that were compiled by NASA Marshall Space Flight Center (MSFC) from April 1996 to June 1997 for preliminary design of the Next Generation Space Telescope (NGST) study. The NGST study began in February 1996, when the Program Development Directorate at NASA MSFC studied the feasibility of the NGST and developed the prephase A program for it. After finishing some initial studies and concepts development work on the NGST, MSFC’s Program Development Directorate handed this work to the Observatory Projects Office at MSFC and then to NASA Goddard Space Flight Center (GSFC). This technical memorandum was written by MSFC’s Preliminary Design Office and Materials and Processes Laboratory for the NGST Optical Telescope Assembly (OTA) team, in support of NASA GSFC. It contains material properties for 9 mirror substrate materials, using information from at least 6 industrial suppliers, 16 textbooks, 44 technical papers, and 130 technical abstracts.

TM—1998–208194 May 1998

Thruster Injector Faceplate Testing in Support of the Aerojet Rocket-Based Combined Cycle (RBCC) Concept. M.M. Fazah and J.M. Cramer. Propulsion Laboratory. 19980201177N

To satisfy RBCC rocket thruster requirements of high performance and a minimum amount of free hydrogen at plume boundary, a new impinging injector element using gaseous hydrogen and gaseous oxygen as the propellants has been designed. Analysis has shown that this injector design has potential to provide a high specific impulse (Isp) while minimizing the amount of free hydrogen that is available to be burned with incoming secondary flow. Past studies and test programs have shown that gas/gas-impinging elements typically result in high injector face temperatures due to combustion occurring close to the face. Since this design is new, there is no hot fire experience with this element. Objectives of this test program were to gain experience and hot fire test data on this new rocket thruster element design and injector faceplate pattern.

Twenty-two hot fire tests were run with maximum mixture ratio (MR) and chamber pressure (Pc) obtained at 7.25 and 1,822 psia, respectively. Posttest scanning microscope (SEM) images show only slight faceplate erosion during testing. This injector element design performed well and can be operated at design conditions: (1) Pc of 2,000 psia and MR of 7.0 and (2) Pc of 1,000 psia and MR of 5.0.

The Fiscal Year 1997 Annual Report describes key elements of the NASA Microgravity Research Program. The Program’s goals, approach taken to achieve those goals, and program resources are summarized. A review of the Program’s status at the end of FY97 and highlights of the ground- and flight-based research are provided.

To calculate structural loads of in-line launch vehicles for preliminary design, a very useful computer program is VLOADS 1.4. This software may also be used to calculate structural loads for upper stages and planetary transfer vehicles. Launch vehicle inputs such as aerodynamic coefficients, mass properties, propellants, engine thrusts, and performance data are compiled and analyzed by VLOADS to produce distributed shear loads, bending moments, axial forces, and vehicle line loads as a function of X-station along the vehicle’s length. Interface loads, if any, and translational accelerations are also computed. The major strength of the software is that it enables quick turnaround analysis of structural loads for launch vehicles during the preliminary design stage of its development. This represents a significant improvement over the alternative—the time-consuming and expensive chore of developing finite element models. VLOADS was developed as a Visual BASIC macro in a Microsoft Excel 5.0 workbook on a Macintosh. VLOADS has also been implemented on a PC computer using Microsoft Excel 7.0a for Windows 95. VLOADS was developed in 1996, and the current version was released to COSMIC, NASA's Software Technology Transfer Center, in 1997. The program is a copyrighted work with all copyright vested in NASA.

Accounting for variability of structures in analysis has been a topic of considerable research, with one of the primary goals being able to determine quantifiable measures of statistical probability of a desired response variable to replace experience-based “safety factors.” Several problems with the satisfactory application of this research to realistic structures, though, include accurate definition of the input random variables, the large size of finite element models, and accurate generation of the Cumulative Distribution Function (CDF) of the response variable. A new method called “probabilistic dynamic synthesis” (PDS) is presented here that addresses these problems. The PDS method uses dynamic characteristics of substructures measured from modal test as input random variables, which accurately account for the entire random character of the substructure, rather than “primitive” random variables representing material or geometric uncertainties. Using the residual flexibility method of component mode synthesis, these dynamic characteristics are used to generate reduced-size sample models of the substructures, which are then used in a Monte Carlo simulation or in the response surface reliability method to obtain the CDF. Both free and forced analyses have been performed, and the results indicate that the method produces usable and more representative solutions for the design of realistic structures with a substantial savings in computer time.

Probabilistic method is not a universally accepted approach for the design and analysis of aerospace structures. The validity of this approach must be demonstrated to encourage its acceptance as a viable design and analysis tool to estimate structural reliability. The objective of this study is to develop a well characterized finite population of similar aerospace structures that can be used to (1) validate probabilistic codes, (2) demonstrate the basic principles behind probabilistic methods, (3) formulate general guidelines for characterization of material drivers (such as elastic modulus) when limited data is available, and (4) investigate how the drivers affect the results of sensitivity analysis at the component/failure mode level.

The purpose of the 1997 NASA Microgravity Technology Report is to update the Microgravity Research Program's technology development policy and to present and assess current technology related activities and requirements identified within its research and technology disciplines.
TECHNICAL MEMORANDUM

July 1998

This paper provides information for trajectory designers and mission planners to determine Earth-Mars and Mars-Earth mission opportunities for the years 2009–2024. These studies were performed in support of a human Mars mission scenario that will consist of two cargo launches followed by a piloted mission during the next opportunity approximately 2 years later. "Porkchop" plots defining all of these mission opportunities are provided which include departure energy, departure excess speed, departure declination, arrival excess speed, and arrival declinations for the mission space surrounding each opportunity. These plots are intended to be directly applicable for the human Mars mission scenario described briefly herein. In addition, specific trajectories and several alternate trajectories are recommended for each cargo and piloted opportunity. Finally, additional studies were performed to evaluate the effect of various thrust-to-weight ratios on gravity losses and total time-of-flight tradeoff, and the resultant propellant savings and are briefly summarized.

July 1998

This document lists the significant publications and presentations of the Space Sciences Laboratory during the period January 1–December 31, 1997. Entries in the main part of the document are categorized according to NASA Reports (arranged by report number), Open Literature, and Presentations (arranged alphabetically by title). Also included for completeness is an Appendix (arranged by page number) listing preprints issued by the Laboratory during this reporting period. Some of the preprints have not been published; those already published are so indicated. Most of the articles listed under Open Literature have appeared in refereed professional journals, books, monographs, or conference proceedings. Although many published abstracts are eventually expanded into full papers for publication in scientific and technical journals, they are often sufficiently comprehensive to include the significant results of the research reported. Therefore, published abstracts are listed separately in a subsection under Open Literature. Questions or requests for additional information about the entries in this report should be directed to Gregory S. Wilson (ES01: 544–7579) or to one of the authors. The organizational code of the cognizant SSL branch or office is given at the end of each entry.

August 1998

Wastewater and urine generated on the International Space Station will be processed to recover pure water using vapor compression distillation (VCD). To verify the long-term reliability and performance of the VCD Urine Processor Assembly (UPA), life testing was performed at the Marshall Space Flight Center (MSFC) from January 1993 to April 1996. Two UPAs', the VCD-5 and VCD-5A, were tested for 204 days and 665 days, respectively. The compressor gears and the distillation centrifuge drive belt were found to have operating lives of approximately 4,800 hours, equivalent to 3.9 years of operation on ISS for a crew of three at an average processing rate of 1.76 kg/h (3.87 lb/h). Precise alignment of the flex-splines of the fluids and purge pump motor drives is essential to avoid premature failure after about 400 hours of operation. Results indicate that, with some design and procedural modifications and suitable quality control, the required performance and operational life can be met with the VCD/UPS.
Comprehensive Structural Dynamic Analysis of the SSME/AT Fuel Pump First-Stage Turbine Blade.
A.M. Brown.

A detailed structural dynamic analysis of the Pratt & Whitney high-pressure fuel pump first-stage turbine blades has been performed to identify the cause of the tip cracking found in the turbomachinery in November 1997. The analysis was also used to help evaluate potential fixes for the problem. Many of the methods available in structural dynamics were applied, including modal displacement and stress analysis, frequency and transient response to tip loading from the first-stage blade outer gas seals (BOGS), fourier analysis, and shock spectra analysis of the transient response. The primary findings were that the BOGS tip loading is impulsive in nature, thereby exciting many modes of the blade that exhibit high stress at the tip cracking location. Therefore, a proposed BOGS count change would not help the situation because a clearly identifiable resonance situation does not exist. The recommendations for the resolution of the problem are to maintain the existing BOGS count, eliminate the stress concentration in the blade due to its geometric design, and reduce the applied load on the blade by adding shiplaps in the BOGS.

Second United States Microgravity Laboratory. One Year Report, Volume 1.
M. Vlasse, D. McCauley, and C. Walker.

This document reports the one year science results for the important and highly successful Second United States Microgravity Laboratory (USML–2). The USML–2 mission consisted of a pressurized Space lab module where the crew performed experiments. The mission also included a Glovebox where the crew performed additional experiments for the investigators. Together, about 36 major scientific experiments were performed, advancing the state of knowledge in fields such as fluid physics, solidification of metals, alloys, and semiconductors, combustion, and the growth of protein crystals. The results demonstrate the range of quality science that can be conducted utilizing orbital laboratories in microgravity and provide a look forward to a highly productive Space Station era.

Second United States Microgravity Laboratory. One Year Report, Volume 2.
M. Vlasse, D. McCauley, and C. Walker.

This document reports the one year science results for the important and highly successful Second United States Microgravity Laboratory (USML–2). The USML–2 mission consisted of a pressurized Space lab module where the crew performed experiments. The mission also included a Glovebox where the crew performed additional experiments for the investigators. Together, about 36 major scientific experiments were performed, advancing the state of knowledge in fields such as fluid physics, solidification of metals, alloys, and semiconductors, combustion, and the growth of protein crystals. The results demonstrate the range of quality science that can be conducted utilizing orbital laboratories in microgravity and provide a look forward to a highly productive Space Station era.

J.E. Turner Waits, Compiler.

This document presents formal NASA technical reports, papers published in technical journals, and presentations by MSFC personnel in FY97. It also includes papers of MSFC contractors.

After being announced in STAR, all of the NASA series reports may be obtained from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

The information in this report may be of value to the scientific and engineering community in determining what information has been published and what is available.

Model-Based Diagnosis in a Power Distribution Test-Bed. E. Scarl* and K. McCall.

The Rodon model-based diagnosis shell was applied to a breadboard test-bed, modeling an automated power distribution system. The constraint-based modeling paradigm and diagnostic algorithm were found to adequately represent the selected set of test scenarios.
Inherent Conservatism in Deterministic Quasi-Static Structural Analysis. V. Verderaime. Structures and Dynamics Laboratory.

The cause of the long-suspected excessive conservatism in the prevailing structural deterministic safety factor has been identified as an inherent violation of the error propagation laws when reducing statistical data to deterministic values and then combining them algebraically through successive structural computational processes. These errors are restricted to the applied stress computations, and because mean and variations of the tolerance limit format are added, the errors are positive, serially cumulative, and excessively conservative. Reliability methods circumvent these errors and provide more efficient and uniform safe structures. The document is a tutorial on the deficiencies and nature of the current safety factor and of its improvement and transition to absolute reliability.

The Corrosion Protection of Magnesium Alloy AZ31B have been measured. Two Coatings, Dow-23™ and Tagnite™ have been tested by electrochemical methods and their effectiveness determined. Electrochemical methods employed were the scanning reference electrode technique (SRET), the polarization resistance technique (PR) and the electrochemical impedance spectroscopy technique (EIS). In addition, general corrosion and stress corrosion methods were employed to examine the effectiveness of the above coatings in 90 percent humidity. Results from these studies are presented.

The Small Expandable Deployer System (SEDS) was designed to deploy an endmass at the end of a 20-km-long tether which acts as an upper stage rocket, and the threats from the meteoroid and orbital debris (M/OD) particle environments on SEDS components are important issues for the safety and success of any SEDS mission. However, the possibility of severing the tether due to M/OD particle impacts is an even more serious concern, since the SEDS tether has a relatively large exposed area to the M/OD environments although its diameter is quite small. The threats from the M/OD environments became a very important issue for the third SEDS mission, since the project office proposed using the shuttle orbiter as a launch platform instead of the second stage of a Delta II expendable rocket, which was used for the first two SEDS missions.

A series of hypervelocity impact tests were performed at the Johnson Space Center and Arnold Engineering Development Center to help determine the critical particle sizes required to sever the tether. The computer hydrodynamic code or hydrocode called CTH, developed by the Sandia National Laboratories, was also used to simulate the damage on the SEDS tether caused by both the orbital debris and test particle impacts. The CTH hydrocode simulation results provided the much needed information to help determine the critical particle sizes required to sever the tether. The M/OD particle sizes required to sever the tether were estimated to be less than 0.1 cm in diameter from these studies, and these size particles are more abundant in low-Earth orbit than larger size particles. Finally, the authors performed the M/OD damage analyses for the three SEDS missions: i.e., SEDS-1, -2, and -3 missions, by using the information obtained from the hypervelocity impact test and hydrocode simulations results.

Corrosion Studies of 2195 Al-Li Alloy and 2219 Al Alloys have been conducted using the scanning reference electrode technique (SRET) and the polarization resistance (PR) technique. The SRET was used to study corrosion mechanisms, while corrosion rate measurements were studied with the PR technique. Plates of Al₂O₃ blasted, soda blasted and conversion coated 2219 Al were coated with Deft primer and the corrosion rates studied with the EIS technique. Results from all of these studies are presented.

The Small Expandable Deployer System (SEDS) was designed to deploy an endmass at the end of a 20-km-long tether which acts as an upper stage rocket, and the threats from the meteoroid and orbital debris (M/OD) particle environments on SEDS components are important issues for the safety and success of any SEDS mission. However, the possibility of severing the tether due to M/OD particle impacts is an even more serious concern, since the SEDS tether has a relatively large exposed area to the M/OD environments although its diameter is quite small. The threats from the M/OD environments became a very important issue for the third SEDS mission, since the project office proposed using the shuttle orbiter as a launch platform instead of the second stage of a Delta II expendable rocket, which was used for the first two SEDS missions.

A series of hypervelocity impact tests were performed at the Johnson Space Center and Arnold Engineering Development Center to help determine the critical particle sizes required to sever the tether. The computer hydrodynamic code or hydrocode called CTH, developed by the Sandia National Laboratories, was also used to simulate the damage on the SEDS tether caused by both the orbital debris and test particle impacts. The CTH hydrocode simulation results provided the much needed information to help determine the critical particle sizes required to sever the tether. The M/OD particle sizes required to sever the tether were estimated to be less than 0.1 cm in diameter from these studies, and these size particles are more abundant in low-Earth orbit than larger size particles. Finally, the authors performed the M/OD damage analyses for the three SEDS missions: i.e., SEDS-1, -2, and -3 missions, by using the information obtained from the hypervelocity impact test and hydrocode simulations results.

Corrosion Studies of 2195 Al-Li Alloy and 2219 Al Alloys have been conducted using the scanning reference electrode technique (SRET) and the polarization resistance (PR) technique. The SRET was used to study corrosion mechanisms, while corrosion rate measurements were studied with the PR technique. Plates of Al₂O₃ blasted, soda blasted and conversion coated 2219 Al were coated with Deft primer and the corrosion rates studied with the EIS technique. Results from all of these studies are presented.
The projected traffic to geostationary earth orbit (GEO) is expected to increase over the next few decades. At the same time, the cost of delivering payloads from the Earth's surface to low earth orbit (LEO) is projected to decrease, thanks in part to the Reusable Launch Vehicle (RLV). A comparable reduction in the cost of delivering payloads from LEO to GEO is sought. The use of in-space tethers, eliminating the requirement for traditional chemical upper stages and thereby reducing the launch mass, has been identified as such an alternative.

Spinning tethers are excellent kinetic energy storage devices for providing the large delta vee's required for LEO to GEO transfer. A single-stage system for transferring payloads from LEO to GEO was proposed some years ago. The study results presented here contain the first detailed analyses of this proposal, its extension to a two-stage system, and the likely implementation of the operational system.

Probability and Statistics in Aerospace Engineering.
M.H. Rheinfurth and L.W. Howell. Systems Analysis and Integration Laboratory. 19980045313N

This monograph was prepared to give the practicing engineer a clear understanding of probability and statistics with special consideration to problems frequently encountered in aerospace engineering. It is conceived to be both a desktop reference and a refresher for aerospace engineers in government and industry. It could also be used as a supplement to standard texts for in-house training courses on the subject.

A Study of Friction Stir Welded 2195 Al-Li Alloy by the Scanning Reference Electrode Technique.
M.D. Danford and M.J. Mendrek. Materials and Processes Laboratory. 19980046577N

A study of the corrosion of friction stir welded 2195 Al-Li alloy has been carried out using the scanning reference electrode technique (SRET). The results are compared to those obtained from a study of heterogeneously welded samples.

TP—1998–207686 April 1998

The corrosion and stress corrosion cracking (SCC) characteristics of annealed and hardened 440C stainless steel were evaluated in high humidity and 3.5-percent NaCl solution. Corrosion testing consisted of an evaluation of flat plates, with and without grease, in high humidity, as well as electrochemical testing in 3.5-percent NaCl. Stress corrosion testing consisted of conventional constant strain, smooth bar testing in high humidity in addition to two relatively new techniques under evaluation at MSFC. These techniques involve either incremental or constant rate increases in the load applied to a precracked SE(B) specimen, monitoring the crack-opening-displacement response for indications of crack growth. The electrochemical corrosion testing demonstrated an order of magnitude greater general corrosion rate in the annealed 440C. All techniques for stress corrosion testing showed substantially better SCC resistance in the annealed material. The efficacy of the new techniques for stress corrosion testing was demonstrated both by the savings in time and the ability to better quantify SCC data.

Application of Rapid Prototyping Methods to High-Speed Wind Tunnel Testing (MSFC Center Director’s Discretionary Fund Final Report, Project No. 96–21). A.M. Springer. Structures and Dynamics Laboratory. 19980201248 N

This study was undertaken in MSFC’s 14-Inch Trisonic Wind Tunnel to determine if rapid prototyping methods could be used in the design and manufacturing of high speed wind tunnel models in direct testing applications, and if these methods would reduce model design/fabrication time and cost while providing models of high enough fidelity to provide adequate aerodynamic data, and of sufficient strength to survive the test environment. Rapid prototyping methods utilized to construct wind tunnel models in a wing-body-tail configuration were: fused deposition method using both ABS plastic and PEEK as building materials, stereolithography using the photopolymer SL–5170, selective laser sintering using glass reinforced nylon, and laminated object manufacturing using plastic reinforced with glass and “paper.”

This study revealed good agreement between the SLA model, the metal model with an FDM–ABS nose, and SLA nose, and the metal model for most operating conditions, while the FDM–ABS data diverged at higher loading conditions. Data from the initial SLS model showed poor agreement due to problems in post-processing, resulting in a different configuration. A second SLS model was tested and showed relatively good agreement.
It can be concluded that rapid prototyping models show promise in preliminary aerodynamic development studies at subsonic, transonic, and supersonic speeds.

TP—1998–208475
19980203952N

The results of a study performed to evaluate the feasibility and merits of using an electrodynamic tether for propulsion and power generation for a spacecraft in the Jovian system are presented. The environment of the Jovian system has properties which are particularly favorable for utilization of an electrodynamic tether. Specifically, the planet has a strong magnetic field and the mass of the planet dictates high orbital velocities which, when combined with the planet's rapid rotation rate, can produce very large relative velocities between the magnetic field and the spacecraft. In a circular orbit close to the planet, tether propulsion forces are found to be as high as 50 N and power levels as high as 1 MW.

TP—1998–208528
An Assessment of the Technology of Automated Rendezvous and Capture in Space. M.E. Polites. Astrionics Laboratory. 19980219470N

This paper presents the results of a study to assess the technology of automated rendezvous and capture (AR&C) in space. The outline of the paper is as follows. First, the history of manual and automated rendezvous and capture and rendezvous and dock is presented. Next, the need for AR&C in space is established. Then, today's technology and ongoing technology efforts related to AR&C in space are reviewed. In light of these, AR&C systems are proposed that meet NASA's future needs, but can be developed in a reasonable amount of time with a reasonable amount of money. Technology plans for developing these systems are presented: cost and schedule are included.

TP—1998–208530
Reusable Rocket Engine Operability Modeling and Analysis. R.L. Christenson and D.R. Komar. Propulsion Laboratory. 19980218686N

This paper described the methodology, model, input data, and analysis results of a reusable launch vehicle engine operability study conducted with the goal of supporting design from an operations perspective. Parallelizing performance analyses in schedule and method, this requires the use of metrics in a validated operations model useful for design, sensitivity, and trade studies. Operations analysis in this view is one of several design functions.

An operations concept was developed given an engine concept and the predicted operations and maintenance processes incorporated into simulation models. Historical operations data at a level of detail suitable to model objectives were collected, analyzed, and formatted for use with the models, the simulations were run, and results collected and presented. The input data used included scheduled and unscheduled timeline and resource information collected into a Space Transportation System (STS) Space Shuttle Main Engine (SSME) historical launch operations database. Results reflect upon the importance not only of reliable hardware but upon operations and corrective maintenance process improvements.

TP—1998–208591

During the rise from sunspot minimum to maximum, the observed value of smoothed monthly mean sunspot number at maximum RM is found to correlate with increasing strength against the current value of smoothed monthly mean sunspot number R(t), where \(t \) is the elapsed time in months from minimum. On the basis of the modern era sunspot cycles (i.e., cycles 10–22), the inferred linear correlation is found to be statistically important (i.e., at the 95-percent level of confidence) from about 11 mo past minimum and statistically very important (i.e., at the 99-percent level of confidence) from about 15 mo past minimum; ignoring cycle 19, the largest cycle of the modern era, the inferred linear correlation is found to be statistically important from cycle onset. On the basis of \(R(t) \), estimates of RM can be gauged usually to within about ±30 percent during the first 2 yr past minimum and statistically very important (i.e., at the 99-percent level of confidence) from about 15 mo past minimum; ignoring cycle 19, the largest cycle of the modern era, the inferred linear correlation is found to be statistically important from cycle onset. For cycle 23, because controversy exists regarding the placement of its minimum (i.e., its onset), being either May 1996 or perhaps August 1996 (or shortly thereafter), estimates of its RM are divergent, being lower (more like a mean size cycle) when using the earlier epoch of minimum...
and higher (above average in size) when using the later-occurring minimum. For smoothed monthly mean sunspot number through October 1997 (t = 17 or 14 mo, respectively), having a provisional value of 32.0, the earlier minimum date projects an RM of 110.3 ± 33.1, while the later minimum date projects one of 137.2 ± 41.2. The projection is slowly decreasing in size using the earlier onset date, while it is slowly increasing in size using the later onset date.

Volcanism, Cold Temperature, and Paucity of Sunspot Observing Days (1818–1858): A Connection?
R.M. Wilson. Space Sciences Laboratory.

During the interval of 1818–1858, several curious decreases in the number of sunspot observing days per year are noted in the observing record of Samuel Heinrich Schwabe, the discoverer of the sunspot cycle, and in the reconstructed record of Rudolf Wolf, the founder of the now familiar relative sunspot number. These decreases appear to be nonrandom in nature and often extended for 1–3 yr (or more). Comparison of these decreases with equivalent annual mean temperature (both annual means and 4-yr moving averages), as recorded at Armagh Observatory (Northern Ireland), indicates that the temperature during the years of decreased number of observing days trended downward near the start of each decrease and upward (suggesting some sort of recovery) just before the end of each decrease. The drop in equivalent annual mean temperature associated with each decrease, as determined from the moving averages, measured about 0.1–0.7 °C. The decreases in number of observing days are found to be closely related to the occurrences of large, cataclysmic volcanic eruptions in the tropics or northern hemisphere. In particular, the interval of increasing number of observing days at the beginning of the record (i.e., 1818–1819) may be related to the improving atmospheric conditions in Europe following the 1815 eruption of Tambora (Indonesia: 8°S), which previously has been linked to “the year without a summer” (in 1816) and which is the strongest eruption in recent history, while the decreases associated with the years of 1824, 1837, and 1847 may be linked, respectively, to the large, cataclysmic volcanic eruptions of Galunggung (Indonesia: 7°S) in 1822, Cosiguina (Nicaragua) in 1835, and, perhaps, Hekla (Iceland: 64°N) in 1845. Surprisingly, the number of observing days per year, as recorded specifically by Schwabe (from Dessau, Germany), is found to be linearly correlated against the yearly mean temperature at Armagh Observatory (r = 0.5 at the 2 percent level of significance); thus, years of fewer sunspot observing days in the historical record seem to indicate years of probable cooler climate, while years of many sunspot observing days seem to indicate years of probable warmer climate (and vice versa). Presuming this relationship to be real, one infers that the observed decrease in the number of observing days near 1830 (i.e., during “the lost record years” of 1825 to 1833) provides a strong indication that temperatures at Armagh (and, perhaps, most of Europe, as well) were correspondingly cooler. If true, then, the inferred cooling may have resulted from the eruption of Kliuchevskoi (Russia: 56°N) 1829.
Volume One of the General Public Space Travel and Tourism Workshop is a summary of the findings of the participants. This document provides an overview of the infrastructure requirements, policy and regulation needs, and potential near term activities.

Volume II contains the detailed findings of the multi-day workshop conducted at Georgetown University, Washington, DC.

This is a compilation of 25 papers presented at a tether technical interchange meeting in Huntsville, AL, on September 9–10, 1997. After each presentation, a technical discussion was held to clarify and expand the salient points. A wide range of subjects was covered including tether dynamics, electrodynamics, space power generation, plasma physics, ionospheric physics, towing tethers, tethered reentry schemes, and future tether missions.

This document reports the results and analyses presented at the Life and Microgravity Spacelab (LMS) One Year Science Review meeting. The science conference was held in Montreal, Canada, on August 20–21, 1997, and was hosted by the Canadian Space Agency. The LMS payload flew on the Space Shuttle Columbia (STS–78) from June 20–July 7, 1996. The LMS investigations were performed in a pressurized Spacelab module and the Shuttle middeck. Forty scientific experiments were performed in fields such as fluid physics, solidification of metals, alloys, and semiconductors, the growth of protein crystals, and animal, human, and plant life sciences. The results demonstrate the range of quality science that can be conducted utilizing orbital laboratories in microgravity.
CR—97-205192 July 1997

CR—97-205193 November 1996

CR—97-205194 January 1995

CR—97-205195 June 1997

CR—97-205196 June 1997

CR—97-205197 April 1997

Research Reports—1996 NASA/ASEE Summer Faculty Fellowship Program. NGT8–52819. University of Alabama, Tuscaloosa, and University of Alabama in Huntsville.

CR—1998—207896
June 1997

CR—1998—207897
May 1997

CR—1998—207898
April 1998

CR—1998—207899
February 1998

CR—1998—207900
March 1998

CR—1998—207901
May 1998
Acceptance Data Package
A—Engineering Drawings and Associated Lists
B—Acceptance Data Package
C—Qualification Test Report
D—Strength Analysis

CR—1998—207902
May 1998

CR—1998—207946
May 1998

CR—1998—208182
October 1997

CR—1998—208183
May 1998

CR—1998—208184
February 1998

CR—1998—208185
March 1998

CR—1998—208186
May 1998

CR—1998—208187
April 1998

CR—1998—208474
June 1998
Development of Tailorable Electrically Conductive Thermal Control Material Systems. IIT Research Institute.

Space Environment Effects: Low-Altitude Trapped Radiation Model. The Boeing Company.

Research Reports—1997 NASA/ASEE Summer Faculty Fellowship Program. University of Alabama in Huntsville and University of Alabama, Tuscaloosa.
ABDELDAYEM, H.A. USRA
FRAZIER, D.O. ES76
PALEY, M.S. USRA

Excited State and Reverse Saturable Absorption in Polydiacetylene Using Z-Scan Technique. For publication in Optics Communication Journal, Philadelphia, PA.

ABDELDAYEM, H.A. USRA
FRAZIER, D.O. ES76
PENN, B.G. ES76
SMITH, D.D. ES76
BANKS, C.E. ES76

ABDELDAYEM, H.A. ES76
PALEY, M.S. ES76
WITHEROW, W. ES76
FRAZIER, D.O. ES76

ADAMS, M.L. ES82
HAGYARD, M.J. ES82
WEST, E.A. ES82

ADAMS, M.L. ES82
SEVER, T.L. ES82
BERO, E. ES82

ADAMS, M.L. ES82

The Sun in Time. For presentation at NSTA, Birmingham, AL, November 20, 1998.
ALHORN, D.C. EB23
An Overview of Microgravity Vibration Isolation Technology with Information About the g-LIMIT Project. For presentation at International Space University, Cleveland, OH, July 28, 1998.

ALSHIBLI, K.A. ES71
STURE, S. University of Colorado
COSTES, N.C. ES71

ANDERSON, B.J. EL23
COOKE, W.J., JR. Computer Sciences

ANGEL OPOULOS, V. ES83
PHAN, T.D. ES83
LARSON, D.E. ES83
MOZER, F.S. ES83
LIN, R.P. ES83
PARKS, G.K. ES83
BRITTNACHER, M.J. ES83
GERMANY, G.A. ES83
SPANN, J.F., JR. ES83

ANTAR, B.N. University of Tennessee
ETHRIDGE, E.C. ES75

ANTAR, B.N. University of TN Space Institute
ETHRIDGE, E.C. ES75
MAXWELL, D. University of TN Space Institute

ASCHWANDEN, M.J. University of Maryland
NEWMARK, J. GSFC
DELABOUDINIERE, J.-P. GSFC
NEUPERT, W.M. Hughes SXT Corp.
PORTIER-FOZZANI, F. Laboratoire ES82
ZUCKER, A. Inst. Astronomy

AUSTIN, R.E. RA20
RISING, J.J. Lockheed Martin
The X–33 Program, Proving Single Stage to Orbit. For presentation to 49th International Astronautical Congress, Melbourne, Australia, September 28–October 2, 1998.

BACHMANN, K.T. Birmingham-Southern
HATHAWAY, D.H. ES82
KHATRI, G. Birmingham-Southern
PETTITO, J.M. Birmingham-Southern

BALOGH, A. The Blackett Lab, UK
BURGER, R.A. Potchefstroom, US
CUMMINGS, A.C. California Institute of Technology
EVENSON, P. University of Delaware
HEBER, B. Universitat Kiel
JOKIPII, J.R. University of Arizona
KRAINEV, M.B. Russian Academy of Sciences
MCDONALD, F.B. University of Maryland
SUSS, S. ES82
ET AL.

BARRET, C. EP62

BASKARAN, S. Ratheon
RAMACHANDRAN, N. USRA
NOEVER, D. ES76
Probabilistic and Other Neural Nets in Multi-Hole Probe Calibration and Flow Angularity Pattern Rec-
ognition. For presentation at International Conference on Advances in Pattern Recognition, Plymouth, United Kingdom, November 23, 1998.

BAYUZICK, R.J. Vanderbilt University
HOFMEISTER, W.H. Vanderbilt University
MORTON, C.M. Vanderbilt University
ROBINSON, M.B. ES75

Experiments on Nucleation in Different Flow Regimes. For presentation at Microgravity Materials Science Conference, Huntsville, AL, July 14, 1998.

BENDER, M.W. ES76
SMITH, D.D. ES76
XIAO, R. University of Science & Tech., Hong Kong
SARKISOV, S. Alabama A&M University
GREGORY, D.A. UAH
BOYD, R.W. University of Rochester

BILBRO, J.W. EB51

BILBRO, J.W. EB01

BILDSTEN, L. University of California
CHAKRABARTY, D. MIT
CHIU, J. California Institute of Technology
FINGER, M.H. USRA
KOH, D.T. California Institute of Technology
NELSON, R.W. California Institute of Technology
ET AL.
RUBIN, B.C. ES84
WILSON, C.A. ES84
WILSON, R.B. ES84

BJORKMAN, G. Lockheed Martin
CHO, A. Reynolds Metals
RUSSELL, C.K. EH23
ZIMMERMAN, F.R. EH23

Filler Wire Development for 2195 Aluminum-Lithium. For presentation at 1998 Advanced Aero-

BOCCIPPIO, D.J. HR20
WONG, C. MIT
WILLIAMS, E.R. MIT
BOLDI, B. MIT
CHRISTIAN, H.J. HR20
GOODMAN, S.J. HR20

BOLDI, B. HR20
HODANISH, S. HR20
SHARP, D. HR20
WILLIAMS, E. HR20
GOODMAN, S.J. HR20
RAGHAVAN, R. HR20
MATLIN, A. HR20
WEBER, M. HR20

BOROWSKI, O. HR20
HOWELL, B.F. HR20
SEVER, T.L. HR20

BRIDGE, K.Y. ES76
SMITH, C.K., II Lilly Research Labs
YOUNG, R.B. ES76

BRIDGE, K.Y. ES71
YOUNG, R.B. ES71
VAUGHN, J.R. ES71

Beta-Adrenergic Receptor Population is Up-Regulated in Chicken Skeletal Muscle Cells Treated with Forskolin. For presentation at American Society for Gravitational and Space Biology, Houston, TX, October 26, 1998.
BRIGGS, M.S. ES84 BRITTNACHER, M.J. ES83
PENDLETON, G.N. ES84 PARKS, G.K. ES83
KIPPEN, R.M. ES84 CHUA, D. ES83
BRAINERD, J.J. ES84 ELSEN, R. ES83
HURLEY, K. ES84 FILLINGIM, M.O. ES83
CONNAUGHTON, V. ES84 GERMANY, G.A. ES83
MEEGAN, C.A. ES84 SPANN, J.F., JR. ES83

The Error Distribution of BATSE GRB Locations.

BRITTNACHER, M.J. ES83 BRITTNACHER, M.J. ES83
GERMANY, G.A. ES83 PARKS, G.K. ES83
FILLINGIM, M.O. ES83 CHUA, D. ES83
PARKS, G.K. ES83 ELSEN, R. ES83
SPANN, J.F., JR. ES83 FILLINGIM, M.O. ES83

BRITTNACHER, M.J. ES83 BRITTNACHER, M.J. ES83
ELSEN, R.K. ES83 PARKS, G.K. ES83
PARKS, G.K. ES83 CHUA, D. ES83
FILLINGIM, M.O. ES83 GERMANY, G.A. ES83
GERMANY, G.A. ES83 SPANN, J.F., JR. ES83

BRITTNACHER, M.J. ES83 BRITTNACHER, M.J. ES83
ELSEN, R.K. ES83 PARKS, G.K. ES83
PARKS, G.K. ES83 CHUA, D. ES83
FILLINGIM, M.O. ES83 GERMANY, G.A. ES83
GERMANY, G.A. ES83 SPANN, J.F., JR. ES83

BRITTNACHER, M.J. ES83 BRITTNACHER, M.J. ES83
FILLINGIM, M.O. ES83 PARKS, G.K. ES83
ELSEN, R.K. ES83 CHUA, D. ES83
PARKS, G.K. ES83 GERMANY, G.A. ES83
GERMANY, G.A. ES83 SPANN, J.F., JR. ES83

BRITTNACHER, M.J. ES83 BRITTNACHER, M.J. ES83
FILLINGIM, M.O. ES83 PARKS, G.K. ES83
ELSEN, R.K. ES83 CHUA, D. ES83
PARKS, G.K. ES83 GERMANY, G.A. ES83
GERMANY, G.A. ES83 SPANN, J.F., JR. ES83

BROWN, A.M. ES23
FERRI, A.A. Georgia Tech

BUNE, A.V. ES75
GILLIES, D.C. ES75
LEHOCZKY, S.L. ES75

BUNE, A.V. ES75
GILLIES, D.C. ES75
LEHOCZKY, S.L. ES75

BURDINE, R. EB52

BURDINE, R. EB52

CAMPBELL, J.W. PS02

CARRUTH, M.R., JR. EH11
WILKES, D.R. AZ Technology
ZWIENER, J.M. EH11
NAUMOV, S. Russian Space
KAMENETZKY, R.R. EH11

CARRUTH, M.R., JR. EH11
CLIFTON, K.S. EH11
VANHOOSER, M.T. EH11

CARUSO, S.V. EH42
COX, J.A. EH52
McGEE, K.A. EH52

CHAKRABARTY, D. USRA
BILDSTEN, L. GRUNSFELD, J.M.
KOH, D.T. PRINCE, T.A.
VAUGHN, B.A. FINGER, M.H.
SCOTT, D.M. WILSON, R.B.

CHAKRABARTY, D. USRA
BILDSTEN, L. GRUNSFELD, J.M.
KOH, D.T. NELSON, R.W.
PRINCE, T.A. VAUGHAN, B.A.
WILSON, R.B. FINGER, M.H.

CHAMPION, R.H., JR. EP72
DARROW, R.J., JR. Orbital
X–34 Main Propulsion System Design and Opera-

CHRISTL, M. ES84
Data Analysis for the Scintillating Optical Fiber Calorimeter (SOFCAL). For presentation at SCIFI 97, Scintillating and Fiber Detectors Conference, South Bend, IN, November 2-6, 1997.

CHRISTY, J.R. UAH

CHU, D. ES83
BRITTNACHER, M.J. ES83
PARKS, G.K. ES83
GERMANY, G.A. ES83
SPANN, J.E, JR. ES83

CLARK, T. EL23

CLAUSER, C.R. ES83
BAKER, J.B. ES83
RIDDLE, A.J. ES83
SITAR, R.J. ES83
PAPITASHVILI, V.O. ES83
CUMNOCK, J.A. ES83
SPANN, J.F, JR. ES83
BRITTNACHER, M.J. ES83
PARKS, G.K. ES83

CLINTON, R.G., JR. EH31
LEVINE, S.R. LeRC
Key Issues for Aerospace Applications of Ceramic Matrix Composites. For presentation at Pacific Coast Regional Meeting of the American Ceramic Society, Irvine, CA, October 22-24, 1998.
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLBORN, B.L.</td>
<td></td>
<td>ES84</td>
</tr>
<tr>
<td>DIETZ, K.L.</td>
<td></td>
<td>ES84</td>
</tr>
<tr>
<td>RAMSEY, B.D.</td>
<td></td>
<td>ES84</td>
</tr>
<tr>
<td>WEISSKOPF, M.C.</td>
<td></td>
<td>ES84</td>
</tr>
<tr>
<td>COBORN, R.H.</td>
<td></td>
<td>ES83</td>
</tr>
<tr>
<td>MOORE, T.E.</td>
<td></td>
<td>ES83</td>
</tr>
<tr>
<td>CRAVEN, P.D.</td>
<td></td>
<td>ES83</td>
</tr>
<tr>
<td>POLLOOCK, C.J.</td>
<td></td>
<td>ES83</td>
</tr>
<tr>
<td>MOZER, F.S.</td>
<td></td>
<td>ES83</td>
</tr>
<tr>
<td>WILLIAMSON, W.T.</td>
<td></td>
<td>ES83</td>
</tr>
<tr>
<td></td>
<td>Spacecraft Potential Control by PSI on the Polar Spacecraft. For publication in Journal of Spacecraft and Rockets.</td>
<td></td>
</tr>
<tr>
<td>COMFORT, R.H.</td>
<td></td>
<td>ES83</td>
</tr>
<tr>
<td>RICHARDS, P.G.</td>
<td></td>
<td>ES83</td>
</tr>
<tr>
<td>LIAO, J.-H.</td>
<td></td>
<td>ES83</td>
</tr>
<tr>
<td>CRAVEN, P.D.</td>
<td></td>
<td>ES83</td>
</tr>
<tr>
<td>CONNAUGHTON, V.</td>
<td></td>
<td>ES84</td>
</tr>
<tr>
<td>PREECE, R.D.</td>
<td></td>
<td>ES84</td>
</tr>
<tr>
<td>PENDLETON, G.N.</td>
<td></td>
<td>ES84</td>
</tr>
<tr>
<td></td>
<td>GRB 970616. For publication in IAU Circular 6683, Cambridge, MA.</td>
<td></td>
</tr>
<tr>
<td>CONNAUGHTON, V.</td>
<td></td>
<td>ES81</td>
</tr>
<tr>
<td>AKERLOF, C.W.</td>
<td></td>
<td>ES81</td>
</tr>
<tr>
<td>BARTHELMY, S.D.</td>
<td></td>
<td>ES81</td>
</tr>
<tr>
<td>BILLER, S.</td>
<td></td>
<td>ES81</td>
</tr>
<tr>
<td>BOYLE, P.</td>
<td></td>
<td>ES81</td>
</tr>
<tr>
<td>BUCKLEY, J.</td>
<td></td>
<td>ES81</td>
</tr>
<tr>
<td>CARTER-LEWIS, D.A.</td>
<td></td>
<td>ES81</td>
</tr>
<tr>
<td>FISHMAN, G.J.</td>
<td></td>
<td>ES81</td>
</tr>
<tr>
<td>MEEGAN, C.A.</td>
<td></td>
<td>ES81</td>
</tr>
<tr>
<td>ET AL.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COOKE, W.J., JR.</td>
<td>Computer Sciences</td>
<td>EL23</td>
</tr>
<tr>
<td>ANDERSON, B.J.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COOPER, K.G.</td>
<td></td>
<td>EH32</td>
</tr>
<tr>
<td>COORAY, A.R.</td>
<td>University of Chicago</td>
<td></td>
</tr>
<tr>
<td>GREGO, L.</td>
<td>University of Chicago</td>
<td></td>
</tr>
<tr>
<td>HOLZAPFEL, W.L.</td>
<td>University of Chicago</td>
<td></td>
</tr>
<tr>
<td>JOY, M.</td>
<td>ES84</td>
<td></td>
</tr>
<tr>
<td>CARLSTROM, J.E.</td>
<td>University of Chicago</td>
<td></td>
</tr>
<tr>
<td>COSTES, N.C.</td>
<td>ES71</td>
<td></td>
</tr>
<tr>
<td>STURE, S.</td>
<td>ES71</td>
<td></td>
</tr>
<tr>
<td>CRAVEN, P.D.</td>
<td>ES83</td>
<td></td>
</tr>
<tr>
<td>CRAWFORD, K.</td>
<td>EB33</td>
<td></td>
</tr>
<tr>
<td>WALLACE, S.</td>
<td>EB33</td>
<td></td>
</tr>
<tr>
<td>GAMBLE, A.</td>
<td>EB33</td>
<td></td>
</tr>
<tr>
<td>CRAWFORD, K.</td>
<td>EB33</td>
<td></td>
</tr>
<tr>
<td>PINKLETON, D.</td>
<td>Boeing</td>
<td></td>
</tr>
<tr>
<td>CRAWFORD, L.</td>
<td>University of Toledo</td>
<td>ES76</td>
</tr>
<tr>
<td>KARR, L.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PUSEY, M.L. ES76
Tetragonal Lysozyme Interactions Studied by Site Directed Mutagenesis. For presentation at 7th International Conference on the Crystallization of Biological Macromolecules, Granada, Spain, May 3, 1998.

CRISWELL, D.R. University of Houston
CURRENI, P.A. ES75

CURRERI, P.A. ES75
CRISWELL, D.R. University of Houston

DELAY, T. EH33
SMITH, B.H. EH33
ELY, K. Lockheed Martin
MACARTHUR, D. Lockheed Martin

DIETERS, S.W. ES84
WOODS, P. ES84
KOUVELIOTOU, C. USRA
VAN PARADIS, J.

DISCHINGER, H.C., JR. EO66
LOUGHEAD, T.E. EO66

DOLD, P. University of Freiburg
CROLL, A. University of Freiburg
SCHWEIZER, M. University of Freiburg
KAISER, T. University of Freiburg
SZOFRAN, F.R. ES75
NAKAMURA, S. NEC Lab, Japan
HIBIYA, T. NEC Lab, Japan
BENZ, K.W. University of Freiburg

The Role of Marangoni Convection for the FZ-Growth of Silicon. For presentation at 49th IAF Congress, Melbourne, Australia, September 28–October 2, 1998.

DUGAL-WHITEHEAD, N. EB01
Artificial Intelligence and Spacecraft Power Systems. For presentation at University of Memphis Physics Department Colloquium, Memphis, TN, November 5, 1997.

DUKEMAN, G.A. ED13
GALLAHER, M.W. ED13

DUMBACHER, D.L. RA20

DUNN, M.C. EO66
HUTCHINSON, S.L. EO66

EDWARDS, D.L. EH12
ZWIENER, J.M. EH12
WERTZ, G.E. EH12
VAUGHN, J.A. EH12
KAMENETZKY, R.R. EH12
FINCKENOR, M.M. EH12
MESHISHNEK, M.J. The Aerospace Corporation

ELLIOTT, H.A. UAH
COMFORT, R.H. UAH
CRAVEN, P.D. ES83
CHANDLER, M.O. ES83
MOORE, T.E. GSFC

A Substorm Triggered by a Sudden Drop in Dynamic Pressure. For presentation at Fourth International Conference on Substorms, Lake Hamana, Japan, March 9–13, 1998.

EWING, F. USRA
WILSON, L. East TN St. University
NADARAJAH, A. University of Toledo
PUSEY, M.L. ES76

FENG, X. American GNC Corp.
LIN, C.-F. American GNC Corp.
YU, T.-J. American GNC Corp.
WHORTON, M.S. ED12

FILLINGIM, M.O. ES83
BRITTNACHER, M.J. ES83
ELSEN, R.K. ES83
PARKS, G.K. ES83
GERMANY, G.A. ES83
SPANN, J.F., JR. ES83

FINGER, M.H. USRA
BILDSTEN, L. University of California, Berkeley
CHAKRABARTY, D. MIT
PRINCE, T.A. CA Institute of Tech
SCOTT, D.M. USRA
WILSON, C.A. ES84
WILSON, R.B. ES84
ZHANG, S.N. USRA

FINGER, M.H. USRA
DIETERS, S.W. UAH
WILSON, R.B. ES84

FONTE, P. LIP/Coimbra University
PESKOV, V. National Research
RAMSEY, B.D. ES84
Rate and Gain Limitations of MSGC’s and MGC’s
Combined with GEM and Other Preamplification
Structures. For publication in Nuclear Instrumenta-

FORD, E.C. Columbia University
KAARET, P. Columbia University
CHEN, K. Columbia University
TAVANI, M. Columbia University
BARRET, D. Harvard Smithsonian
BLOSER, P. Harvard Smithsonian
GRINDLAY, J. Harvard Smithsonian
HARMON, B.A. ES84
PACIESAS, W.S. UAH
ZHANG, S.N. USRA
Energy Spectra and High Frequency Oscillations in
4U 0614+091. For publication in Astrophysical Jour-

FORSYTHE, E.L. USRA
PUSEY, M.L. ES76
Crystallization of Chicken Egg White Lysozyme from
Sulfate Salts. For presentation at 7th International
Conference on Crystallization of Biological Macro-

FORSYTHE, E.L. USRA
SNELL, E.H. ES76
MALONE, C.C. USRA
PUSEY, M.L. ES76
Crystallization of Chicken Egg White Lysozyme
From Assorted Sulfate Salts. For publication in Jour-

FORSYTHE, E.L. USRA
NADARAJAH, A. University of Toledo
PUSEY, M.L. ES76
Growth of (101) Faces of Tetragonal Lysozyme Crys-
tals: Measured Growth Rate Trends. For publication

FOUNTAIN, W.F. ES84
Chemical Processing and Analysis of “JACEE” Cir-
cumpolar Flights 13 & 14. For presentation at Cosmic Ray JACEE Meeting, Hiroshima, Japan, Decem-

FRAGOMENI, J.M. University of Alabama
NUNES, A.C., JR. EH01
An Assessment of Molten Metal Detachment Haz-
ards During Electron Beam Welding in Space. For
presentation at 19th Southeastern Conference on Theoretical and Applied Mechanics, Deerfield, FL,
May 1998.

FRAZIER, D.O. ES01
PENN, B.G. ES01
SMITH, D.D. ES01
WITHEROW, W.K. ES01
PALEY, M.S. ES01
ABDELDAYEM, H.A. ES01
Microgravity Processing and Photonic Applications
of Organic and Polymeric Materials. For publication
in Chapter 17. “Photonic Polymer Systems” by

GALAMA, T.J. ES81
DE BRUYN, A.G. ES81
VAN PARADIJS, J. ES81
HANLON, L. ES81
GROOT, P.J. ES81
VAN DER KLIS, M. ES81
STROM, R. ES81
SPOELSTRA, T. ES81
FISHMAN, G.J. ES81
ET AL.
Two Variable Radio Sources Near the Position of
GRB 940301. For publication in Astronomy and As-

GALLAGHER, D.L. ES83
JOHNSON, L. PD01
BAGENAL, F. ES83
MOORE, J. ES83
An Overview of Electrodynamic Tether Performance

GALLAGHER, D.L. ES83
BAGENAL, F. University of Colorado
MOORE, J. SRS Technologies
JOHNSON, L. PD01
An Overview of Electrodynamic Tether Performance
in the Jovian System. For publication in American Institute of Aeronautics and Astronautics.
GALLAGHER, D.L.
Carpenter, D.L.

GARCIA, R.
WILLIAMS, R.
Fears, S.

GARCIA, R.

GARY, G.A.
ALEXANDER, D.A.

GERMANY, G.A.
RICHARDS, P.G.
PARKS, G.K.
BRITTNACHER, M.J.
SPANN, J.F., JR.

GERMANY, G.A.
SWIFT, W.
RICHARDS, P.G.
PARKS, G.K.
BRITTNACHER, M.
SPANN, J.F., JR.

GHADDAR, C.K.
Lee, C.K.
MOTAKEF, S.
GILLIES, D.C.

GHOSH, K.K.
Ramsey, B.D.

GHOSH, K.K.
IYENGER, K.V.K.
Ramsey, B.D.
Austin, R.A.
GILLIES, D.C. ES75

GILLIES, D.C. ES75

GILLIES, D.C. ES75

GOODMAN, S.J. HR20
BUECHLER, D. HR20
RAGHAVAN, R. HR20

GOODMAN, S.J. HR20
RAGHAVAN, R. HR20
BUECHLER, D.L. HR20
HODANISH, S. HR20
SHARP, D. HR20
WILLIAMS, E. HR20
BOLDI, B. HR20
MATLIN, A. HR20
WEBER, M. HR20

HAGUPIAN, J. EO46
MAXWELL, T. EO46
NAHAY, E. EO46

HAGYARD, M.J. ES82
STARK, B.A. Nichols Research Corp.
VENKATAKRISHNAN, P. Indian Institute of Technology
A Search for Vector Magnetic Field Variations Associated with the M-Class Flares of 1991 June 10 in

Galactic Superluminal Sources. For presentation at The 3rd INTEGRAL Workshop, Taormina, Sicily, Italy, September 13–18, 1998.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Year</th>
<th>Title</th>
</tr>
</thead>
</table>
HOOVER, R.B. ES82
Evidence for Microfossils in Ancient Rocks and Meteorites. For presentation at Goddard Space Flight Center Lecture, GSFC, MD, October 2, 1998.

HOPPE, D. EH33

HORACK, J.M. ES01
TREISE, D. University of Florida

HORWITZ, J.L. UAH
SU, Y.-J. ES83
MOORE, T.E. ES83
GILES, B.L. ES83
CRAVEN, P.D. ES83
CHANDLER, M.O. ES83
HIRAHARA, M. ES83
POLLOCK, C.J. ES83

HORWITZ, J.L. ES83
SU, Y.-J. ES83
DORS, E.E. ES83
MOORE, T.E. ES83
GILES, B.L. ES83
CHANDLER, M.O. ES83
CRAVEN, P.D. ES83
CHANG, S.-W. ES83
SCUDDER, J. ES83

HOWARD, R.T. EB44
BRYAN, T.C. EB44
BOOK, M.L. EB44

HOWARD, S.G. Boeing
HUTCHENS, C.F. ED62
RETHKE, D.W. Hamilton Standard
SWARTLEY, V.L. Hamilton Standard
MARSH, R.W. Hamilton Standard

HUDDSON, S.T. ED34
COLEMAN, H.W. UAH

HUETER, U. RA10

HUMPHRIES, W.R. ED01
VERDRAIME, V. ED01
Bridging Deterministic and Reliability Quasi-Static Structural Analyses. For publication in Journal of Spacecraft and Rockets.

HURLEY, K. ES81
HARTMANN, D.H. ES81
KOUVELIOTOU, C. ES81
FISHMAN, G.J. ES81
LAROS, J.G. ES81
CLINE, T.L. ES81
BOER, M. ES81

HURLEY, K. ES84
BRIGGS, M.S. ES84
KIPPE, R.M. ES84
KOUVELIOTOU, C. ES84
MEEGAN, C.A. ES84
FISHMAN, G.J. ES84
CLINE, T.L. ES84
BOER, M. ES84
HURLEY, K. ES84 JARZEMBSKI, M.A. HR20
BRIGGS, M.S. ES84 SRIVASTAVA, V. USRA
KIPPEM, R.M. ES84 ROTHERMEL, J. HR20
KOUVELIOTOU, C. ES84 Vertical Aerosol Backscatter Variability From an Air-
MEEGAN, C.A. ES84 borne Focused Continuous Wave CO2 Lidar. For publica-
CLINE, T.L. ES84
BOER, M. ES84

JAAP, J. EO47 JEDLOVEC, G.J. HR01
MEYER, P.J. EO47 CHANG, F.-C. UAH
DAVIS, E. EO47 SUGGS, R.J. HR01

JACKSON, J.L. Micro Craft, Inc.
HOWARD, R.T. EB44
COLE, H.J. EB53

JACOBSON, D. EJ31
CRAIG, L. EJ31
SCHUNK, G. EJ31
SHAPIRO, A. EJ31
CLOYD, D. EJ31
RICKS, E. EJ31
VACARRO, M. EJ31
REDDING, D. JPL
HADAWAY, J. UAH
BELY, P. Space Telescope

JARZEMBSKI, M.A. HR01 JETT, T.R. EH13
SRIVASTAVA, V. USRA THOM, R.L. EH13

Earth Surface Backscatter Using a Focused Continuous Wave 9.1 um Lidar. For publication in Applied Optics: Lasers, Photonics and Environmental Optics.

PUSEY, M.L. ES76
WHITE, E.T. University of Queensland

JUDGE, R.A. ES76
FORSYTHE, E.L. ES76
PUSEY, M.L. ES76
The Effect of Protein Impurities on Lysozyme Crystal Growth. For publication in Biotechnology and Bioengineering Journal, 1998.

JUDGE, R.A. ES76
SNELL, E.H. ES76

JUDGE, R.A. ES76
JACOBS, R.S. UAH
FRAZIER, T. Michigan State
SNELL, E.H. ES76
PUSEY, M.L. ES76

JURETZKO, F.R. University of Alabama
DHINDAW, B.K. University of Alabama
STEFANESCU, D.M. University of Alabama
SEN, S. USRA
CURRERI, P.A. ES75

JURETZKO, F.R. University of Alabama
CATALINA, A.V. University of Alabama
STEFANESCU, D.M. University of Alabama
DHINDAW, B.K. University of Alabama
SEN, S. USRA
CURRERI, P.A. ES75
MULLINS, J. University of Alabama
Particle Engulfment and Pushing by Solidifying Interfaces LMS Mission Results. For presentation at 1st Pan-Pacific Basin Workshop and 4th International Japan/China Workshop on Microgravity Science, Tokyo, Japan, July 8–11, 1998.
KEYS, A.S. EB52
JONES, D.K. UAH
FORK, R.L. UAH

KEYS, A.S. EB52
JONES, D.K. UAH
FORK, R.L. UAH

KEYS, A.S. EB52
JONES, D.K. UAH
FORK, R.L. UAH

Ultracompact High-Speed Electro-Optic Switch. For presentation at Optical Society of America Annual Meeting, Baltimore, MD, October 4–9, 1998.

KHAZANOV, G.V. ES83
LIEMOHN, M.W. ES83
KOZYRA, J.U. ES83
MOORE, T.E. ES83

KIPPER, R.M. UAH/ES84
BRIGGS, M.S. ES84
KOMMERS, J.M. MIT
KOUVELIOTOU, C. USRA/ES84
HURLEY, K. University of California, Berkeley
ROBINSON, C.R. USRA/ES84
VAN PARADIJS, J. University of Amsterdam
HARTMANN, D.H. Clemson University
GALAMA, T.J. University of Amsterdam
VREESWJK, P.M. University of Amsterdam

KLOSE, S. Germany
STECKLUM, B. Germany
EISLOFFEL, J. University of Hawaii
NASSIR, M.A. University of Hawaii
HURLEY, K. University of California, Berkeley

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Institution</th>
<th>Title</th>
<th>Journal/Publication Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kouveliotou, C.</td>
<td>USRA/ES84</td>
<td>The Intensity Distribution of Faint Gamma-Ray Bursts Detected with BATSE</td>
<td>For publication in Astrophyysical Journal, Chicago, IL, 1998.</td>
</tr>
<tr>
<td>Meeegan, C.A.</td>
<td>ES84</td>
<td>The Intensity Distribution of Faint Gamma-Ray Bursts Detected with BATSE</td>
<td>For publication in Astrophyysical Journal, Chicago, IL, 1998.</td>
</tr>
<tr>
<td>Fishman, G.J.</td>
<td>ES84</td>
<td>The Intensity Distribution of Faint Gamma-Ray Bursts Detected with BATSE</td>
<td>For publication in Astrophyysical Journal, Chicago, IL, 1998.</td>
</tr>
</tbody>
</table>

Additional Notes:

- **Internal/External References:**
 - 35
- **Publication Dates:**
 - 1998

Further Reading:

- **Citations:**
 - [MSFC PAPERS CLEARED FOR PRESENTATION](#)
 - Available only from authors. Dates are presentation dates.

Conference Details:

- **STAIF-98**
 - Space Technology and Applications International Forum

Journal Details:

- **Astrophysical Journal**
- **Journal of Geophysical Research—Atmospheres**
- **International Astronomical Union (IAU) Circular**
- **Nature**
- **Mir Glovebox Facility**
- **Research Program Results Symposium**
- **12th Conference on Numerical Weather Prediction**

Location Details:

- **San Francisco, CA**
- **Phoenix, Arizona**
- **Cambridge, MA**
MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

LAPENTA, W.M. HR20
CROSSON, W. USRA
DEMBEK, S. USRA
LAKHTAKIA, M. Pennsylvania State University
The Use of Indirect Estimates of Soil Moisture to Initialize Coupled Models and Its Impact on Short-Term and Seasonal Simulations. For presentation at GCIP Mississippi River Climate Conference, St. Louis, MO, June 8–12, 1998.

LAPENTA, W.M. HR20
SUGGS, R. HR20
MCNIDER, R.T. UAH
JEDLOVEC, G.J. HR20
A Technique for Assimilating GOES—Derived Land Surface Products into Regional Models to Improve the Representation of Land Surface Forcing. For presentation at GCIP Mississippi River Climate Conference, St. Louis, MO, June 8–12, 1998.

LAROS, J.G. ES81
BOYNTON, W.V. ES81
HURLEY, K. ES81
KOUVELIOTOU, C. ES81
MCCOLLOUGH, M.L. ES81
FISHMAN, G.J. ES81
MEEGAN, C.A. ES81
PALMER, D.M. ES81
CLINE, T.L. ES81
ET AL.

LECLAIR, M. Cape Simulations, Inc.
WORLIKAR, A. Cape Simulations, Inc.
MOTAKEF, S. Cape Simulations, Inc.
GILLIES, D.C. ES75

LEE, J.A. EH23

LEHOCZKY, S.L. ES71

LEON-TORRES, J. University of Alabama
STEFANESCU, D.M. University of Alabama
SEN, S. USRA
CURRERI, P.A. ES75

LENNER, J.A. UAH
JEDLOVEC, G.J. HR01
ATKINSON, R.J. Lockheed Martin

LENNER, J.A. UAH
JEDLOVEC, G.J. HR01
ATKINSON, R.J. Lockheed Martin

LENNER, J.A. UAH
JEDLOVEC, G.J. HR01
ATKINSON, R.J. Lockheed Martin

LI, D. NRC/MSFC
ROBINSON, M.B. ES75
RATHZ, T.J. UAH
WILLIAMS, G. UAH
LI, D. NRC/MSFC
ROBINSON, M.B. ES75
RATHZ, T.J. UAH
WILLIAMS, G. UAH

LI, D. NRC/MSFC
ROBINSON, M.B. ES75
RATHZ, T.J. UAH
WILLIAMS, G. UAH

LI, D. NRC/MSFC
ROBINSON, M.B. ES75
RATHZ, T.J. UAH
WILLIAMS, G. UAH

LI, H. University of Toledo
NADARAJAH, A. University of Toledo
KONNERT, J.H. Naval Research Lab
PUSEY, M.L. ES76

LI, M. University of Toledo
NADARAJAH, A. University of Toledo
PUSEY, M.L. ES76

LI, P. ES81
HURLEY, K. ES81
VRBA, F. ES81
KOUVELIOTOU, C. ES81
MEEGAN, C.A. ES81
FISHMAN, G.J. ES81
KULKARNI, S. ES81
FRAIL, D. ES81

LIEMOHN, M.W. ES83
KHAZANOV, G.V. UAH

LIEMOHN, M.W. University of Michigan
CRAVEN, P.D. ES83
KHAZANOV, G.V. University of Alaska

LIEMOHN, M.W. ES83
KOZYRA, J.U.
KHAZANOV, G.V.
CRAVEN, P.D.

Modeling Electric Field Influences on Plasmaspheric
Refilling. For presentation at 6th Huntsville Modeling Workshop, Guntersville, AL, October 26, 1998.

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Institution</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIETZKE, S.E.</td>
<td></td>
<td>ES76</td>
</tr>
<tr>
<td>BARNES, C.L.</td>
<td></td>
<td>ES76</td>
</tr>
<tr>
<td>KUNDROT, C.E.</td>
<td></td>
<td>ES76</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Institution</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIEWER, P.C.</td>
<td>JPL</td>
<td>ES82</td>
</tr>
<tr>
<td>DAVIS, J.M.</td>
<td></td>
<td>ES82</td>
</tr>
<tr>
<td>DE JONG, E.M.</td>
<td>JPL</td>
<td>ES82</td>
</tr>
<tr>
<td>GARY, G.A.</td>
<td>Naval Research Lab</td>
<td>ES82</td>
</tr>
<tr>
<td>KLINCHUK, J.A.</td>
<td>Ball Aerospace</td>
<td>ES82</td>
</tr>
<tr>
<td>REINERT, R.P.</td>
<td></td>
<td>ES82</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Institution</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIM, K.</td>
<td>Texas A&M University</td>
<td>ES76</td>
</tr>
<tr>
<td>ADIMURTHY, G.</td>
<td>University of Toledo</td>
<td>ES76</td>
</tr>
<tr>
<td>NADARAJAH, A.</td>
<td>University of Toledo</td>
<td>ES76</td>
</tr>
<tr>
<td>FORSYTHE, E.L.</td>
<td>USRA</td>
<td>ES76</td>
</tr>
<tr>
<td>PUSEY, M.L.</td>
<td></td>
<td>ES76</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Institution</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIM, K.</td>
<td></td>
<td>ES76</td>
</tr>
<tr>
<td>NADARAJAH, A.</td>
<td></td>
<td>ES76</td>
</tr>
<tr>
<td>FORSYTHE, E.L.</td>
<td></td>
<td>ES76</td>
</tr>
<tr>
<td>PUSEY, M.L.</td>
<td></td>
<td>ES76</td>
</tr>
</tbody>
</table>

Location of Bromide Ions in Tetragonal Lysozyme Crystals. For publication in Acta Crystallographica D, 1998.

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Institution</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOLLAR, L.F.</td>
<td>PD11</td>
<td></td>
</tr>
<tr>
<td>MAUS, L.C.</td>
<td>PD11</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Institution</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>LONDON, J.R., III</td>
<td>RA30</td>
<td></td>
</tr>
<tr>
<td>LYLES, G.M.</td>
<td>RA30</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Institution</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>MACLEOD, T.C.</td>
<td>UAH</td>
<td>ES82</td>
</tr>
<tr>
<td>HO, F.D.</td>
<td></td>
<td>ES82</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Institution</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARTIN, C.E.</td>
<td>ION Corp.</td>
<td>ES82</td>
</tr>
<tr>
<td>SUMMERS, S.M.</td>
<td>ION Corp.</td>
<td>ES82</td>
</tr>
<tr>
<td>ROMAN, M.C.</td>
<td></td>
<td>ES82</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Institution</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCCABLE, R.</td>
<td>AE01</td>
<td></td>
</tr>
<tr>
<td>HOLLAND, D.L.</td>
<td>AE01</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Institution</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCCOLLOUGH, M.L.</td>
<td>USRA</td>
<td></td>
</tr>
<tr>
<td>ROBINSON, C.R.</td>
<td>USRA</td>
<td></td>
</tr>
<tr>
<td>ZHANG, S.N.</td>
<td>USRA</td>
<td></td>
</tr>
<tr>
<td>HARMON, B.A.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HJELLMING, R.M.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WALTMAN, E.B.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOSTER, R.S.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GHIGO, F.D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JOHNSTON, K.J.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

38

MCCOLLOUGH, M.L. USRA
ROBINSON, C.R. USRA
ZHANG, S.N. USRA
HARMON, B.A. ES84
PACIESAS, W.S. UAH
DIETERS, S.W. UAH
HJELLMING, R.M. National Radio Astronomy
RUPEN, M. National Radio Astronomy
MIODUSZEWSKI, A.J. JIVE/National Radio
ET AL.

MCDONALD, J.P. Sverdrup
HEDAYAT, A. Sverdrup
BROWN, T.M. Sverdrup
KNIGHT, K.C. Sverdrup
CHAMPION, R.H., JR.

MCDUFFIE, J.H. UAH
SHTESSEL, Y.B. UAH
HALL, C. ED13
GALLAHER, M.N. ED13
Sliding Mode Control of the X–33 Vehicle in Reentry Mode. For presentation at AIAA GN&C Conference, Boston, MA, August 1998.

MCKAY, D.S. JSC
ROZANOV, A.Y. ES82
HOOVER, R.B. ES82
WESTALL, F. JSC

MCMILLAN, V.C. CO30

MCNAMARA, B.J. New Mexico State
HARRISON, T.E. New Mexico State
MASON, P.A. New Mexico State
TEMPLETON, M. New Mexico State
HEIKKILA, C.W. New Mexico State
BUCKLEY, T. New Mexico State
GALVAN, E. New Mexico State
SILVA, A. New Mexico State
HARMON, B.A. ES66

MEEGAN, C.A. ES84

MEEGAN, C.A. ES84

MENDE, S.B. ES83
FREY, H. ES83
VO, H. ES83
GELLER, S.P. ES83
DOOLITTLE, J.H. ES83
SPANN, J.F,. JR. ES83

MEYER, P.J. HR20
GUILLORY, A.R. HR20
ATKINSON, R.J. HR20
JEDLOVEC, G.J. HR20

MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

MILLER, T.L. HR20
LESLIE, F.W. ES71

MILLER, T.L. HR20
KAVAYA, M.J. HR20
EMMITT, G.D. Simpson Weather

MINAMITANI, T. USRA
APPLE, J.A. ES84
AUSTIN, R.A. USRA
DIETZ, K.L. ES84
KOLODZIEJCZAK, J.J. USRA
RAMSEY, B.D. ES84
WEISSKOPF, M.C. ES84

MINOR, J. EL23
BREWER, D.S. NASA Headquarters
Recent Results of NASA's Space Environments and Effects Program. For presentation at 49th International Astronautical Congress, Melbourne, Australia, September 28–October 2, 1998.

MITROFANOV, I.G. ES84
POZANENKO, A.S. ES84
BRIGGS, M.S. ES84
PACIESAS, W.S. ES84
PREECE, R.D. ES84
PENDLETON, G.N. ES84
MEEGAN, C.A. ES84
MEEGAN, C.A.

MITROFANOV, I.G. ES84
ANFIMOV, D.S. ES84
LITVAK, M.L. ES84
MOORE, C.E. ES01
CARDELINO, B.H. ES01
FRAZIER, D.O. ES01
NILES, J. ES01
WANG, X.-Q. ES01
MOORE, C.E. ES01
CARDELINO, B.H. ES01
FRAZIER, D.O. ES01
NILES, J. ES01
WANG, X.-Q. ES01
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Conference/Event</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Speed Turbomachinery. For presentation</td>
<td></td>
</tr>
<tr>
<td>Gibson, H.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thom, R.L.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moore, R.L.</td>
<td>Evidence that the X-Ray Plasma in Microflares is in a Sequence</td>
<td>19th Annual Meeting of Alabama Imaging and Microscopy Society, Orange Beach, AL,</td>
</tr>
<tr>
<td>Moore, R.L.</td>
<td>Solar Prominence Eruption. For publication in Encyclopedia of</td>
<td>Ninth Advanced Space Propulsion Research Workshop and Conference, Pasadena, CA,</td>
</tr>
<tr>
<td>Falconer, D.A.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porter, J.G.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suess, S.T.</td>
<td>Coronal Heating by Magnetic Explosions. For presentation at SOHO 7</td>
<td>AC Motor Experiments With Bulk YBCO Disks in Rotating Magnetic Fields. For</td>
</tr>
<tr>
<td>Nelson, R.W.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bildsten, L.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chakrabarty, D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finger, M.H.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Koh, D.T.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prince, T.A.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rubin, B.C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scott, D.M.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaughan, B.A.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wilson, R.B.</td>
<td>On the Dramatic Spin-Up/Spin-Down Torque Reversals in Accreting</td>
<td>Critical Space Station Express Rack Technology. For publication in Proceedings of</td>
</tr>
<tr>
<td></td>
<td>1998.</td>
<td></td>
</tr>
<tr>
<td>Nguyen, H.</td>
<td>Thermal Analysis and Testing of Fastrac Gas Generator Design. For</td>
<td></td>
</tr>
<tr>
<td></td>
<td>presentation at 34th AIAA/ASME/SAE Joint Propulsion Conference and</td>
<td></td>
</tr>
<tr>
<td>Nicolas, D.P.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Devaney, J.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gores, M.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dickens, H.</td>
<td>Analysis of a Memory Device Failure. For presentation at 17th Annual</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Meeting of Alabama Imaging and Microscopy Society, Orange Beach, AL,</td>
<td></td>
</tr>
<tr>
<td>Noever, D.</td>
<td>Radio-Frequency Illuminated Superconductive Disks: Reverse Josephson</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Effects and Implications for Precise Measuring of Proposed Gravity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Effects. For presentation at Ninth Advanced Space Propulsion Research</td>
<td></td>
</tr>
<tr>
<td></td>
<td>With Bulk YBCO Disks in Rotating Magnetic Fields. For publication in</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Proceedings of the 1998 AIAA/ASME/SAE/ASEE Joint Propulsion Conference,</td>
<td></td>
</tr>
<tr>
<td>Smith, D.D.</td>
<td>High Performance Materials Applications to Moon/Mars Missions and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bases. For publication in Proceedings of American Society of Civil</td>
<td></td>
</tr>
<tr>
<td>Sibille, L.</td>
<td>Prototype Aerogel Insulation for Melamine-Foam Substitute: Critical</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Space Station Express Rack Technology. For publication in Proceedings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>of Space Congress 98, Cocoa Beach, FL, April 30, 1998.</td>
<td></td>
</tr>
<tr>
<td>Smith, D.D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cronise, R.J.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NOEVER, D.A. ES76
SMITH, D.D. ES76
SIBILLE, L. USRA
BROWN, S.C. Southern Research
CRONISE, R.J. ES76
LEHOCZKY, S.L. ES76

NOEVER, D.A. ES76

Computational Microbial Morphometry and NASA Astrobiology Initiatives. For presentation at International Conference on Pattern Formation and Developing Biology, Dundee, Scotland, September 20, 1998.

NOVAK, H.L. USBI
HALL, P.B. EH14

NUNES, A.C., JR. EH23
ZAIDI, A.A. Wichita State University
RAVI, T.S. Wichita State University
TALIA, J.E. Wichita State University

OBER, D.M. ES83
THOMSEN, M.F. Los Alamos National Lab
GALLAGHER, D.L. ES83
MCCOMAS, D.J. Los Alamos National Lab

OBER, D.M. UAH
HORWITZ, J.L. UAH
GALLAGHER, D.L. ES83

Convection of Plasmaspheric Plasma into the Outer Magnetosphere and Boundary Layer Region: Initial Results. For publication in ISTP Monograph AGU, August 1998.

ORY, W. T.

PACIESAS, W.S. ES84
FISHMAN, G.J. ES84

PACIESAS, W.S. UAH
MEEGAN, C.A. ES84
PENDLETON, G.N. UAH
BRIGGS, M.S. UAH
KOUVELIOTOU, C. USRA
KOSHTU, T.M. USRA
LESTRADE, J.P. Mississippi State
MCCOLLOUGH, M.L. USRA
BRAINERD, J.J. UAH
ET AL.

PALEY, M.S. USRA
FRAZIER, D.O. ES76
SMITH, D.D. ES76
WITHEROW, W.K. ES76
ABDELDALEM, H.A. USRA
WOLFE, D.B. Rice University

PAUL, W. ES75

PARHI, S. ES82
SUSS, S.T. ES82
SULKANEN, M. ES82

Can Kelvin-Helmholtz Instabilities of Jet-Like Structures and Plumes Cause Solar Wind Fluctuations at

PARKS, G.K. ES83
BRITTNACHER, M.J. ES83
CHEN, L. ES83

SUESS, S.T. ES82
MCCARTHY, M. ES83

SULKANEN, M. ES82
GERMANY, G.A. ES83

PARHI, S. ES82
ELSEN, R.K. ES83

SUES, S.T. ES82
FILLINGIM, M.O. ES83

SULKANEN, M. ES82
MCCARTHY, M. ES83

PARKH, S. ES82
SUES, S.T. ES82
SULKANEN, M.E. ES82

PARKS, G.K. ES83
BRITTNACHER, M.J. ES83
CHEN, L. ES83

SUESS, S.T. ES82
MCCARTHY, M. ES83

SULKANEN, M. ES82
GERMANY, G.A. ES83

SPANN, J.F., JR. ES83

PARK, H.S. ES81
ABLES, E. ES81
BAND, D.L. ES81
BARTHELMY, S.D. ES81
BIONTA, R.M. ES81
BUTTERWORTH, P.S. ES81
CLINE, T.L. ET AL. ES81
FERGUSON, D.H. ES81

PARK, H.S. ES81
ABLES, E. ES81
BAND, D.L. ES81
BARTHELMY, S.D. ES81
BIONTA, R.M. ES81
BUTTERWORTH, P.S. ES81
CLINE, T.L. ES81
FERGUSON, D.H. ES81
ET AL. ES81

PARK, H.S. ES81
ABLES, E. ES81
BAND, D.L. ES81
BARTHELMY, S.D. ES81
BIONTA, R.M. ES81
BUTTERWORTH, P.S. ES81
CLINE, T.L. ES81
FERGUSON, D.H. ES81
ET AL. ES81

Observations of Substorms From the Auroral Ionosphere to the Distant Plasma Sheet. For presentation at Fourth International Conference on Substorms, Lake Hamana, Japan, March 9-13, 1998.
PARNELL, T.A. ES84
WATTS, J.W., JR. ES84
ARMSTRONG, T.W. SAIC

PARSONS, A.M. GSFC
GEHRELS, N. GSFC
PACIESAS, W.S. UAH
HARMON, B.A. ES84
FISHMAN, G.J. ES84
WILSON, C.A. ES84
ZHANG, S.N. USRA

PATNAUDE, D. Smithsonian
PEASE, D. Smithsonian
DONNELLY, H. Smithsonian
JUDA, M. Smithsonian
JONES, C. Smithsonian
MURRAY, S. Smithsonian
ZOMBECK, M. Smithsonian
SWARTZ, D. USRA
ELSNER, R.F. ES84
ET AL.

PEARSON, J.B. EP63
WATSON, M.D. EP63

PEARSON, S.D. EL23
HARDAGE, D.M. EL23

PENDLETON, G.N. ES81
PACIESAS, W.S. ES81

PETRUZZO, J.J., III ES84
ELSNER, R.F. ES84
JOY, M.K. ES84
O'DELL, S.L. ES84
WEISSKOPF, M.C. ES84

Grazing Incidence Nickel Replicated Optics for Hard X-Ray Telescopes. For presentation at Structure and

PETRUZZO, J.J., III ES84
ELSNER, R.F. ES84
JOY, M.K. ES84
O'DELL, S.L. ES84
WEISSKOPF, M.C. ES84

Grazing Incidence Nickel Replicated Optics for Hard X-Ray Telescopes. For presentation at Structure and
Evolution of the Universe Technology Working Group Meeting, Greenbelt, MD, April 1, 1997.

POWELL, R.W. LaRC LOCKWOOD, M.K. LaRC

COOK, S.A. RA10 The Road from the NASA Access to Space Study to a Reusable Launch Vehicle. For presentation at 49th International Astronautical Congress, Melbourne, Australia, September 28–October 2, 1998.

PREECE, R.D. ES84 BRIGGS, M.S. ES84 MALLOZZI, R.S. ES84 PENDLETON, G.N. ES84 PACIESAS, W.S. ES84 BAND, D.L. ES84

PRICE, M.W. UAB SCRIPA, R.N. UAB SZOFRAN, F.R. ES75 LEHOCZKY, S.L. ES75 SU, C.-H. ES75

Differential Thermal Analysis of Hg(1-x)MnxTe Alloys in the X=0 to 0.3 Range. For publication in Journal of Crystal Growth, 1998.

PRICE, M.W. UAB SCRIPA, R.N. UAB LEHOCZKY, S.L. ES75 SZOFRAN, F.R. ES75 SU, C.-H. ES75 Directional Solidification and Characterization of Hg0.89Mn0.11Te. For presentation at 12th International Conference on Crystal Growth, Jerusalem, Israel, July 26–31, 1998.

PRICE, M.W. UAB SCRIPA, R.N. UAB LEHOCZKY, S.L. ES75 SZOFRAN, F.R. ES75 SU, C.-H. ES75 Directional Solidification and Characterization of Hg0.89Mn0.11Te. For publication in Journal of Crystal Growth, 1998.

PUSEY, M.L. ES76
SMITH, L. UAH

PUSEY, M.L. ES76

QUATTROCHI, D.A. HR20

QUATTROCHI, D.A. HR20
LAM, N.S. Louisiana State
QIU, H.-L. California State

QUATTROCHI, D.A. HR20
LUVALL, J.C. HR20
ESTES, M.G. HR20
LO, C.P. University of Georgia
KIDDER, S.Q. Colorado State
HAFNER, J. Colorado State
TAHA, H. Lawrence Berkeley
BORNSTEIN, R.D. San Jose State
GILLIES, R.R. Utah State University
GALLO, K.P. NOAA/NESDIS

RAMSEY, B.D. ES84
PESKOV, V. ES84
FONTE, P. Coimbra University

PODOLIAK, E.

REDMON, J.W. EB52
ENGELHAUPT, D. UAH

RICHMOND, R.C. ES76

RICKS, K.G. EB44
WELLS, B.E. UAH

ROBERTS, B.C. EL23
KNUPP, K.R. UAH
BUECHLER, D.L. UAH

ROBERTSON, F.R. HR01
FITZJARRALD, D. HR01
MCCAUL, E.W. USRA

ROBINSON, M.B. ES75
LI, D. NRC/MSFC
RATHZ, T.J. UAH
WILLIAMS, G. UAH
ROBINSON, M.B. ES75
RATHZ, T.J. UAH
LI, D. NRC
WORKMAN, G.L. UAH

ROGERS, J.R. ES71
ROBINSON, M.B. ES71
SAVAGE, L. ES93
SOELLNER, W. Raytheon
HUIE, D. Mevatec

ROGERS, P.R. ED24
BYNUM, J.E. ED24
SHAH, S.R. Lockheed Martin

ROTHERMEL, J. HR01
OLIVIER, L.D. NOAA
BANTA, R.M. NOAA
HARDESTY, R.M. NOAA
HOWELL, J.N. NOAA
CUTTEN, D.R. UAH
JOHNSON, S.C. HR01
MENZIES, R.T. JPL
TRATT, D.M. JPL

Remote Sensing of Multi-Level Wind Fields With High-Energy Airborne Scanning Coherent Doppler Lidar. For publication in Optics Express, Washington, D.C.

ROVIRA, M.
SCHMIEDER, B. Observatoire de Paris
DEMOUNIN, P. Observatoire de Paris
SIMNETT, G.M. University of Birmingham
HAGYARD, M.J. ES01
REICHMANN, E. ES01
TANDBERG-HANSSEN, E.J. ES01

RUBIN, B.C. ES84
FINGER, M.H. ES84
SCOTT, D.M. ES84
WILSON, R.B. ES84

RUSSELL, C.K. EH23
DING, R.J. EH23

RYAN, R.M. EP72
ROTHSCHILD, W.J. Boeing
CHRISTENSEN, D.L. Lockheed Martin

SAFIE, F.M. CR10

SAHU, N.K. EB52
SHAPIRO, A.P. EB52

SAHU, K.C. EB52
LIVIO, M. EB52
PETRO, L. EB52
MACCHETTO, F.D. EB52
KOUVELIOTOU, C. EB52
FISCHMAN, G.J. EB52
MEEGAN, C.A. EB52
GROOT, R. EB52
GALAMA, T.J. EB52

TANDERUP, P. Sverdrup
MAYUMBAR, A. Sverdrup
VAN HOOSER, K.
MARSH, M.

SCHMIDT, G.R.

SCHONBERG, W.P.
WILLIAMSEN, J.

SEN, S.
DHINDAW, B.K.
PETERS, P.
CURREN, P.A.
KAUKLER, W.F.

SEN, S.
KAUKLER, W.F.
CURREN, P.A.

SEVER, T.L.

SHACKELFORD, B.

SHARPS, D.
WILLIAMS, E.
BOLDI, B.
GOODMAN, S.J.
RAGHAVAN, R.
MATLIN, A.
WEBER, M.
Observations of Total Lightning Associated with Severe Convection During the Wet Season in Central Florida. For presentation at 19th Conference on Severe Local Storms, Minneapolis, MN, September 14–18, 1998.

SHAW, E.J.
HAMELER, J.W.
PRINCE, F.A.
GREENBERG, J.

SHAW, E.J.
HAMELER, J.W.
PRINCE, F.A.

SHAW, E.J.

SHERIF, S.A.
LEAR, W.E.
STEADHAM, J.M.
HUNT, P.L.
HOLLADAY, J.B.

SHTESSEL, Y.
JACKSON, M.
HALL, C.
KRUPP, D.
HENDRIX, N.D.
SHTESSEL, Y. UAH
JACKSON, M. ED13
HALL, C. ED13
KRUPP, D. ED13
HENDRIX, N.D. ED13

SMITH, D.D. ES76
SIBILLE, L. USRA
CRONISE, R.J. ES76
NOEVER, D.A. ES76

SITAR, R.J. ES83
CLAUER, C.R. ES83
BAKER, J.B. ES83
RIDLEY, A.J. ES83
CUMNOCK, J.A. ES83
GERMANY, G.A. ES83
SPANN, J.E, JR. ES83
PARKS, G.K. ES83

SLEDD, A.M. JA63
MUELLER, C.W. JA63

SMITH, D.D. ES76
SIBILLE, L. USRA
CRONISE, R.J. ES76
NOEVER, D.A. ES76

SMITH, C.C. EH32
IIA, D. Alabama A&M
SARKISOV, S. Alabama A&M
WILLIAMS, E.K. Alabama A&M
POKER, D.B. Oak Ridge Lab.
HENESLEY, D.K. Oak Ridge Lab.

SNELL, E.H. ES76
BOGGON, T.J. University of Manchester
FEWSTER, P.F. Philips Research Lab.
SIDDONS, D.P. Brookhaven National Lab.
STOJANO, V. ESRF, France
PUSEY, M.L. ES76
Reciprocal Space Mapping of Macromolecular Crystals in the Laboratory. For presentation at 7th International Conference on the Crystallization of Biological Macromolecules, Granada, Spain, May 3, 1998.

SMITH, L. UAH
PUSEY, M.L. ES76

SPANN, J.F., JR. ES83
ABBAS, M.M. ES83

SPRINGER, A.M. EH32
COOPER, K.G. EH32

SPRINGER, A.M. ED34

STARK, B.A. National Research
HAGYARD, M.J. ES82

Quantifying the Complexity of Flaring Active Regions. For presentation at SPD, Bozeman, MO, June 1997.

STARK, B.A. National Research
ADAMS, M.L. ES82
HATHAWAY, D.H. ES82
HAGYARD, M.J. ES82

STEFANESCU, D.M. University of Alabama
GRUGEL, R.N. USRA
CURRERI, P.A. ES75

STEFANESCU, D.M. University of Alabama
JURETZKO, F.R. University of Alabama
DHINDAW, B.K. University of Alabama
CATALINA, A.V. University of Alabama
SEN, S. USRA
CURRERI, P.A. ES75
Particle Engulfment and Pushing by Solidifying Interfaces Part II: Microgravity Experiments and Theoretical Analysis. For publication in Metallurgical Transactions, 1998.

STEVENSON, B.A. ES83
HORWITZ, J.L. ES83
SU, Y.J. ES83
ELLIOTT, H.A. ES83
COMFORT, R.H. ES83
MOORE, T.E. ES83
GILES, B.L. ES83
CRAVEN, P.D. ES83
CHANDLER, M.O. ES83
POLLOCK, C.J. ES83

STONE, N.H. ES83

The Tethered Satellite System: Scientific and Technological Results. For presentation at The International Astronautical Federation Conference, Turin, Italy, October 1997.

STROLLBERG, M. ES84
FINGER, M.H. ES84
WILSON, R.B. ES84

The TSS–1R Electrodynamic Tether Experiment: Scientific and Technological Results. For publication in Advances in Space Research, August/September 1998.

SU, C.-H. ES75
PALOSZ, W. USRA
FETH, S. Hughes STX Corp.
LEHOCZKY, S.L. ES75

Heat Treatments of ZnSe Starting Materials for Physical Vapor Transport. For publication in Journal of Crystal Growth, Amsterdam, Netherlands.

51
<table>
<thead>
<tr>
<th>Authors</th>
<th>Institution</th>
<th>Paper Title</th>
<th>Event/Conference</th>
</tr>
</thead>
</table>
RAMACHANDRAN, N. ES76

SWARTZ, D.A. ES84
ELSNER, R.F. ES84
KOLODZIEJCZAK, J.J. ES84
O'DELL, S.L. ES84
TENNANT, A.F. ES84
SULKANEN, M.E. ES84
WEISSKOPF, M.C. ES84
EDGAR, R.J. ES84

SWIFT, W.R. ES83
GERMANY, G.A. ES83
RICHARDS, P.G. ES83
PARKS, G.K. ES83
BRITTNACHER, M.J. ES83
SPANN, J.F., JR. ES83

SZOFRAN, F.R. ES75
VOLZ, M.P. ES75
COBB, S.D. ES75
MOTAKEF, S. CAPE Simulations, Inc.

SZOFRAN, F.R. ES75
BENZ, K.W. Universitat, Freiburg
CROLL, A. Universitat, Freiburg
DOLD, P. Universitat, Freiburg
COBB, S.D. ES75
VOLZ, M.P. ES75
MOTAKEF, S. CAPE Simulations, Inc.
WALKER, J.S. University of Illinois

CROLL, A. Universitat, Freiburg
DOLD, P. Universitat, Freiburg
COBB, S.D. ES75
VOLZ, M.P. ES75
MOTAKEF, S. CAPE Simulations, Inc.

TUCKER, D.S. ES75
ETHRIDGE, E.C. ES75

TUCKER, D.S. ES75
WORKMAN, G.L. UAH
SMITH, G.A. UAH

TUCKER, D.S. ES75
SCRIPA, R.N. UAB
WANG, B. UAB
RIGSBEE, J.M. UAB

TUCKER, P.K. ED32
SHYY, W. University of Florida
SLOAN, J.G. University of Florida

TURNER, J.E. EE61
HUETER, U. RA10

VAN DER HOOF, F. University of Amsterdam
KOUVELIOTOU, C. USRA/ES84
VAN PARADIJS, J. UAH
PACIESAS, W.S. UAH
LEWIN, W.H.G. MIT
VAN DER KLIS, M. University of Amsterdam
CRARY, D.J. ES84/NRC
FINGER, M.H. USRA/ES84
HARMON, B.A. ES84
ZANG, S.N. USRA/ES84

VAN DER HOOFT, F. University of Amsterdam
KOUVELIOTOU, C. USRA/ES84
VAN PARADIS, J. UAH
PACIESAS, W.S. UAH
LEWIN, W.H.G. MIT
VAN DER KLIS, M. University of Amsterdam
CRARY, D.J. ES84/NRC
FINGER, M.H. USRA/ES84
HARMON, B.A. ES84
ZANG, S.N. USRA/ES84

VAUGHAN, O.H., JR. HR20
BOECK, W.L. Niagara University

VAUGHAN, O.H., JR. HR20
KOUVELIOTOU, C. ES81
FISHMAN, G.J. ES81
FINGER, M.H. ES81
LEWIN, W.H.G. ES81

VAUGHAN, O.H., JR. HR20
KOUVELIOTOU, C. ES81
FISHMAN, G.J. ES81
FINGER, M.H. ES81
LEWIN, W.H.G. ES81

VAUGHAN, O.H., JR. HR20
KOUVELIOTOU, C. ES81
FISHMAN, G.J. ES81
FINGER, M.H. ES81
LEWIN, W.H.G. ES81

VAUGHAN, O.H., JR. HR20
KOUVELIOTOU, C. ES81
FISHMAN, G.J. ES81
FINGER, M.H. ES81
LEWIN, W.H.G. ES81

VENTURINI, C.C. UAH
SPANN, J.F., JR. ES83
COMFORT, R.H. UAH
Recent Results From a Laboratory Study of Charging Mechanisms in a Dusty Plasma. For presentation at American Geophysical Union 1998 Fall Meeting, San Francisco, CA, December 6, 1998.

VLASSE, M. ES76

VOLZ, M.P. ES75
SZOFRAN, F.R. ES75
VUJISIC, L. Cape Simulations, Inc.
MOTAKEF, S. Cape Simulations, Inc.

WALKER, J.L. UAH
RUSSELL, S.S. EH13
WORKMAN, G.L. UAH
HILL, E.V.K. Embry-Riddle University
Neural Network/Acoustic Emission Burst Pressure Prediction for Impact Damaged Composite Pressure Vessels. For publication in Materials Evaluation.

WALKER, J.L. UAH
RUSSELL, S.S. EH13
WORKMAN, G.L. UAH

WALLACE, S. EB33
BROWN, T. EB33
FREESTONE, K. EB33

WANG, J.C. Alabama A&M University
LEHOCZKY, S.L. ES71
WATRING, D.A. ES71

WANG, T.-S. ED32

WANG, T.-S. ED32

WANG, T.-S. ED32

WATSON, M.D. EB52
JAYROE, R. EB52

WATSON, M.D. EB52
ABUSHAGUR, M.A.G. UAH
ASHLEY, P.R. U.S. Army Missile
COLE, H.J. EB53

WEISSKOPF, M.C. ES01
O’DELL, S.L. ES01
ELSNER, R.F. ES01
VAN SPEYBROECK, L.P. Smithsonian
WEISSKOPF, M.C. ES84
ELSNER, R.F. ES84
JOY, M.K. ES84
O'DELL, S.L. ES84

WEISSKOPF, M.C. ES84
ELSNER, R.F. ES84
JOY, M.K. ES84
O'DELL, S.L. ES84

WEISSKOPF, M.C. ES84
O'DELL, S.L. ES84
VAN SPEYBROECK, L.P. ES84

WHITAKER, A.F. EH01
CURREN, P.A. EH01
SHARPE, J.B. Lockheed Martin
COLBERG, W.R. Lockheed Martin
VICKERS, J.H. Lockheed Martin

WHORTON, M.S. EB23
ALHORN, D.C. EB23

WHORTON, M.S. EB12
CALISE, A.J. Georgia Institute of Tech.

WILKERSON, G.W. Micro Craft, Inc.
HUEGELE, V. EB52

WILLIAMS, E. HR20
BOLDI, B. HR20
MATLIN, A. HR20
WEBER, M. HR20
HODANISH, S. HR20
SHARP, D. HR20
GOODMAN, S.J. HR20
RAGHAVAN, R. HR20
BUECHLER, D.L. HR20

WILLIAMS, E. MIT
BOLDI, B. MIT
MATLIN, A. MIT
WEBER, M. MIT
HODANISH, S. National Weather Service
SHARP, D. National Weather Service
GOODMAN, S.J. HR20
RAGHAVAN, R. HR20
BUECHLER, D.L. HR20

WILLIAMSEN, J. ED52

WILLIAMSEN, J. Sverdrup
BLACKLOCK, K. Sverdrup
EVANS, H. Sverdrup
GUAY, T.D. Sverdrup

WILLIAMSEN, J. University of Denver
ROBINSON, J. ED52

WILSON, C.A. ES84
DIETERS, S.W. UAH
FINGER, M.H. USRA
SCOTT, D.M. USRA
VAN PARADIJS, J. UAH

WILSON, C.A. ES84
FINGER, M.H. USRA

WILSON, C.A. ES84
HARMON, B.A. ES84
PACIESAS, W.S. UAH
MCCOLLOUGH, M.L.

WILSON, C.A. ES84
FINGER, M.H. USRA
WILSON, R.B. ES84
SCOTT, D.M. ES84

WILSON, R.B. ES84
SCOTT, D.M. USRA
FINGER, M.H. USRA
Long-Term Observations of Her X-1 with BATSE. For publication in AIP Conference Proceedings, New York, NY.

WILSON, R.B. ES84
FINGER, M.H. USRA

WILSON, R.M. ES82

WILSON, R.M. ES82

WILSON, R.M. ES82
HATHAWAY, D.H. ES82
REICHMANN, E.J. ES82

WILSON, R.M. ES82

WILSON, R.M. ES82

WILSON, R.M. ES82

WINGLEE, R. University of Wash., Seattle
ELSEN, R.K. University of Wash., Seattle
BRITTNACHER, M. University of Wash., Seattle
PARKS, G.K. University of Wash., Seattle
SPANN, J.F., JR. ES83
GERMANY, G.A. UAH

WITHEROW, W.K. ES76
MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

WOODS, P. ES84
KOUVELOIOTOU, C. USRA/ES84
VAN PARADIJS, J.
BRIGGS, M.S.
WILSON, C.A.
DEAL, K.J.
HARMON, B.A.
FISHMAN, G.J. ES84
LEWIN, W.H.G.
KOMMERS, J.M.

WOODS, P.M. UAH
KOUVELOIOTOU, C. USRA
FISHMAN, G.J. ES84

WUEST, M. Southwest Research
HUDDLESTON, M. Southwest Research
BURCH, J.L. Southwest Research
DEMPSEY, D.L. Southwest Research
CRAVEN, P.D. ES83
CHANDLER, M.O. ES83
SPANN, J.F., JR. ES83
PETERSON, W.K. Lockheed-Martin
COLLIN, H.L. Lockheed-Martin
LENNARTSSON, W. Lockheed-Martin

YOUNG, R.B. ES76
VAUGHN, J.R. ES76
BRIDGE, K.Y. ES76
SMITH, C.K., II Lilly Research Labs

ZANG, T.X. UAH
HWANG, K.S. CSC
WU, S.T. UAH
STONE, N.H. ES83
SORENSEN, J. ES83
WRIGHT, K.H. ES83

Current Collection in Plasmas by a Static Bare Tether. For presentation at 1997 Fall American Geophysical Union Meeting, San Francisco, CA, December 1997.

ZWIENER, J.M. EH12
KAMENETZKY, R.R. EH12
VAUGHN, J.A. EH12
FINCKENOR, M.M. EH12

INDEX

TECHNICAL MEMORANDA

<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benfield, M.P.</td>
<td>1</td>
</tr>
<tr>
<td>Benzie, M.A.</td>
<td>1</td>
</tr>
<tr>
<td>Bhat, B.</td>
<td>3</td>
</tr>
<tr>
<td>Brown, A.M.</td>
<td>4, 6</td>
</tr>
<tr>
<td>Cramer, J.M.</td>
<td>3</td>
</tr>
<tr>
<td>Curreri, P.A.</td>
<td>2</td>
</tr>
<tr>
<td>Eldridge, J.T.</td>
<td>1</td>
</tr>
<tr>
<td>Fazah, M.M.</td>
<td>3</td>
</tr>
<tr>
<td>Ferebee, R.C.</td>
<td>1</td>
</tr>
<tr>
<td>Fragomeni, J.M.</td>
<td>3</td>
</tr>
<tr>
<td>George, L.E.</td>
<td>5</td>
</tr>
<tr>
<td>Graham, J.B.</td>
<td>4</td>
</tr>
<tr>
<td>Harris, D.L.</td>
<td>2</td>
</tr>
<tr>
<td>Herrmann, M.</td>
<td>5</td>
</tr>
<tr>
<td>Hodge, A.J.</td>
<td>1</td>
</tr>
<tr>
<td>Hutchens, C.</td>
<td>5</td>
</tr>
<tr>
<td>Jett, T.R.</td>
<td>2</td>
</tr>
<tr>
<td>Johnson, L.</td>
<td>5</td>
</tr>
<tr>
<td>Kos, L.D.</td>
<td>5</td>
</tr>
<tr>
<td>Landrum, D.B.</td>
<td>1</td>
</tr>
<tr>
<td>Lassiter, J.O.</td>
<td>1</td>
</tr>
<tr>
<td>Long, D.</td>
<td>5</td>
</tr>
<tr>
<td>Luz, P.L.</td>
<td>3, 4</td>
</tr>
<tr>
<td>McCall, K.</td>
<td>6</td>
</tr>
<tr>
<td>McCauley, D.</td>
<td>2, 6</td>
</tr>
<tr>
<td>Mitchell, D.P.</td>
<td>1</td>
</tr>
<tr>
<td>Nettles, A.T.</td>
<td>1</td>
</tr>
<tr>
<td>Nunes, A.C., Jr.</td>
<td>3</td>
</tr>
<tr>
<td>Ortega, R.</td>
<td>4</td>
</tr>
<tr>
<td>Price, J.M.</td>
<td>4</td>
</tr>
<tr>
<td>Redmon, J.W., Jr.</td>
<td>1</td>
</tr>
<tr>
<td>Rice, T.</td>
<td>3</td>
</tr>
<tr>
<td>Russell, C.</td>
<td>3</td>
</tr>
<tr>
<td>Salyer, B.</td>
<td>5</td>
</tr>
<tr>
<td>Scarl, E.</td>
<td>6</td>
</tr>
<tr>
<td>Summers, F.G.</td>
<td>5</td>
</tr>
<tr>
<td>Thom, R.L.</td>
<td>2</td>
</tr>
<tr>
<td>Turner Waits, J.E.</td>
<td>6</td>
</tr>
<tr>
<td>Vanhooser, M.T.</td>
<td>1</td>
</tr>
<tr>
<td>Vlasse, M.L.</td>
<td>6</td>
</tr>
<tr>
<td>Walker, C.</td>
<td>2, 6</td>
</tr>
<tr>
<td>Whorton, M.S.</td>
<td>1, 2</td>
</tr>
<tr>
<td>Wieland, P.O.</td>
<td>2, 5</td>
</tr>
<tr>
<td>Woodard, D.</td>
<td>3, 4</td>
</tr>
</tbody>
</table>

TECHNICAL PUBLICATIONS

<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bangham, M.E.</td>
<td>7</td>
</tr>
<tr>
<td>Christenson, R.L.</td>
<td>9</td>
</tr>
<tr>
<td>Danford, M.D.</td>
<td>7, 8</td>
</tr>
<tr>
<td>Gallagher, D.L.</td>
<td>9</td>
</tr>
<tr>
<td>Hathaway, D.H.</td>
<td>9</td>
</tr>
<tr>
<td>Hayashida, K.B.</td>
<td>7</td>
</tr>
<tr>
<td>Hill, S.A.</td>
<td>7</td>
</tr>
<tr>
<td>Howell, L.W.</td>
<td>8</td>
</tr>
<tr>
<td>Hurless, B.E.</td>
<td>8</td>
</tr>
<tr>
<td>Johnson, L.</td>
<td>9</td>
</tr>
<tr>
<td>Komar, D.R.</td>
<td>9</td>
</tr>
<tr>
<td>Lorenzini, E.</td>
<td>7</td>
</tr>
<tr>
<td>Mendrek, M.J.</td>
<td>7, 8</td>
</tr>
<tr>
<td>Mitchell, M.L.</td>
<td>7</td>
</tr>
<tr>
<td>Moore, J.</td>
<td>9</td>
</tr>
<tr>
<td>Polites, M.E.</td>
<td>9</td>
</tr>
<tr>
<td>Reichmann, J.E.</td>
<td>9</td>
</tr>
<tr>
<td>Rheinfurth, M.H.</td>
<td>8</td>
</tr>
<tr>
<td>Robinson, J.H.</td>
<td>7</td>
</tr>
<tr>
<td>Springer, A.M.</td>
<td>8</td>
</tr>
<tr>
<td>Torres, P.D.</td>
<td>7, 8</td>
</tr>
<tr>
<td>Verderaime, V.</td>
<td>7</td>
</tr>
<tr>
<td>Vestal, L.</td>
<td>7</td>
</tr>
<tr>
<td>Wilson, R.M.</td>
<td>9, 10</td>
</tr>
</tbody>
</table>

CONFERENCE PUBLICATIONS

<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bekey, Ivan</td>
<td>11</td>
</tr>
<tr>
<td>Brewer, J.C.</td>
<td>11</td>
</tr>
<tr>
<td>Downey, J.P.</td>
<td>11</td>
</tr>
<tr>
<td>Harrison, J.K.</td>
<td>11</td>
</tr>
<tr>
<td>Mankins, John</td>
<td>11</td>
</tr>
<tr>
<td>O'Neil, Daniel</td>
<td>11</td>
</tr>
<tr>
<td>Rogers, Tom</td>
<td>11</td>
</tr>
<tr>
<td>Stallmer, Eric</td>
<td>11</td>
</tr>
</tbody>
</table>

CONTRACTOR REPORTS

<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aeroflex</td>
<td>13</td>
</tr>
<tr>
<td>Auburn University</td>
<td>12</td>
</tr>
<tr>
<td>Boeing Information, Space &</td>
<td>14</td>
</tr>
<tr>
<td>Defense Systems</td>
<td></td>
</tr>
<tr>
<td>Boeing North America</td>
<td>12</td>
</tr>
<tr>
<td>Computer Science Corporation</td>
<td>12</td>
</tr>
</tbody>
</table>
PAPERS CLEARED FOR PRESENTATION

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbas, M.M.</td>
<td>50</td>
</tr>
<tr>
<td>Abdeldayem, H.A.</td>
<td>15, 25, 42</td>
</tr>
<tr>
<td>Ables, E.</td>
<td>43</td>
</tr>
<tr>
<td>Abushagur, M.A.G.</td>
<td>55</td>
</tr>
<tr>
<td>Adams, M.L.</td>
<td>15, 50</td>
</tr>
<tr>
<td>Adimurthy, G.</td>
<td>38</td>
</tr>
<tr>
<td>Agina, S.</td>
<td>15</td>
</tr>
<tr>
<td>Akerlof, C.W.</td>
<td>21</td>
</tr>
<tr>
<td>Alexander, D.A.</td>
<td>15, 26</td>
</tr>
<tr>
<td>Alexandre, K.L.</td>
<td>44</td>
</tr>
<tr>
<td>Alhorn, D.C.</td>
<td>16, 56</td>
</tr>
<tr>
<td>Alshibli, K.A.</td>
<td>16</td>
</tr>
<tr>
<td>Anderson, B.J.</td>
<td>16, 21</td>
</tr>
<tr>
<td>Anderson, J.B.</td>
<td>20</td>
</tr>
<tr>
<td>Anfinov, D.S.</td>
<td>40</td>
</tr>
<tr>
<td>Angelopoulos, V.</td>
<td>16</td>
</tr>
<tr>
<td>Antar, B.N.</td>
<td>16</td>
</tr>
<tr>
<td>Apple, J.A.</td>
<td>40</td>
</tr>
<tr>
<td>Armstrong, T.W.</td>
<td>44</td>
</tr>
<tr>
<td>Aschwanden, M.J.</td>
<td>16</td>
</tr>
<tr>
<td>Ashley, P.R.</td>
<td>55</td>
</tr>
<tr>
<td>Atkinson, R.J.</td>
<td>31, 36, 39</td>
</tr>
<tr>
<td>Austin, R.A.</td>
<td>26, 34, 40</td>
</tr>
<tr>
<td>Austin, R.E.</td>
<td>16</td>
</tr>
<tr>
<td>Bachmann, K.T.</td>
<td>16</td>
</tr>
<tr>
<td>Bachtel, F.</td>
<td>38</td>
</tr>
<tr>
<td>Bagenal, F.</td>
<td>25</td>
</tr>
<tr>
<td>Bailey, J.C.</td>
<td>35</td>
</tr>
<tr>
<td>Baird, J.K.</td>
<td>32</td>
</tr>
<tr>
<td>Baker, J.B.</td>
<td>20, 49</td>
</tr>
<tr>
<td>Ballance, J.</td>
<td>32</td>
</tr>
<tr>
<td>Balogh, A.</td>
<td>16</td>
</tr>
<tr>
<td>Band, D.L.</td>
<td>43, 45</td>
</tr>
<tr>
<td>Bank, D.L.</td>
<td>44</td>
</tr>
<tr>
<td>Banks, C.E.</td>
<td>15</td>
</tr>
<tr>
<td>Banta, R.M.</td>
<td>47</td>
</tr>
<tr>
<td>Barnes, C.L.</td>
<td>38</td>
</tr>
<tr>
<td>Barret, C.</td>
<td>16</td>
</tr>
<tr>
<td>Barret, D.</td>
<td>25, 28</td>
</tr>
<tr>
<td>Barthelmy, S.D.</td>
<td>21, 43</td>
</tr>
<tr>
<td>Baskaran, S.</td>
<td>16</td>
</tr>
<tr>
<td>Bathelmy, S.D.</td>
<td>34</td>
</tr>
<tr>
<td>Batts, G.W.</td>
<td>32</td>
</tr>
<tr>
<td>Bayuzick, R.J.</td>
<td>17</td>
</tr>
<tr>
<td>Bely, P.</td>
<td>31</td>
</tr>
<tr>
<td>Bender, M.W.</td>
<td>17, 49</td>
</tr>
<tr>
<td>Benz, K.W.</td>
<td>22, 53</td>
</tr>
<tr>
<td>Bero, E.</td>
<td>15</td>
</tr>
<tr>
<td>Bilbro, J.W.</td>
<td>17, 32</td>
</tr>
<tr>
<td>Bildsten, L.</td>
<td>17, 19, 24, 34, 41</td>
</tr>
<tr>
<td>Biller, S.</td>
<td>21</td>
</tr>
<tr>
<td>Bionta, R.</td>
<td>43</td>
</tr>
<tr>
<td>Bjorkman, G.</td>
<td>17</td>
</tr>
<tr>
<td>Blacklock, K.</td>
<td>56</td>
</tr>
<tr>
<td>Blakeslee, R.J.</td>
<td>35, 45</td>
</tr>
<tr>
<td>Bloser, P.</td>
<td>25, 28</td>
</tr>
<tr>
<td>Boccioppio, D.J.</td>
<td>17</td>
</tr>
<tr>
<td>Boeck, W.L.</td>
<td>54</td>
</tr>
<tr>
<td>Boer, M.</td>
<td>30, 31</td>
</tr>
<tr>
<td>Boggan, T.J.</td>
<td>49</td>
</tr>
<tr>
<td>Bogle, D.</td>
<td>15</td>
</tr>
<tr>
<td>Boldi, B.</td>
<td>17, 27, 29, 48, 56</td>
</tr>
<tr>
<td>Book, M.L.</td>
<td>30</td>
</tr>
<tr>
<td>Bornstein, R.D.</td>
<td>46</td>
</tr>
<tr>
<td>Borowski, O.</td>
<td>17</td>
</tr>
<tr>
<td>Boyd, R.W.</td>
<td>17, 49</td>
</tr>
<tr>
<td>Boyle, P.</td>
<td>21</td>
</tr>
<tr>
<td>Boynton, W.V.</td>
<td>36</td>
</tr>
<tr>
<td>Brainerd, J.J.</td>
<td>18, 42</td>
</tr>
<tr>
<td>Braswell, W.D.</td>
<td>20</td>
</tr>
<tr>
<td>Brebrick, R.F.</td>
<td>51</td>
</tr>
<tr>
<td>Brewer, D.S.</td>
<td>40</td>
</tr>
<tr>
<td>Bridge, K.Y.</td>
<td>17, 58</td>
</tr>
<tr>
<td>Briggs, M.S.</td>
<td>18, 30, 31, 34, 35, 40, 42, 44, 45, 58</td>
</tr>
<tr>
<td>Brittnacher, M.J.</td>
<td>16, 18, 20, 23, 24, 26, 43, 49, 50, 53, 57</td>
</tr>
<tr>
<td>Brown, A.M.</td>
<td>19</td>
</tr>
<tr>
<td>Brown, S.C.</td>
<td>41, 42</td>
</tr>
<tr>
<td>Brown, T.</td>
<td>55</td>
</tr>
<tr>
<td>Name</td>
<td>Pages</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Brown, T.M.</td>
<td>39</td>
</tr>
<tr>
<td>Bryan, T.C.</td>
<td>30</td>
</tr>
<tr>
<td>Buckley, J.</td>
<td>21</td>
</tr>
<tr>
<td>Buckley, T.</td>
<td>39</td>
</tr>
<tr>
<td>Buechler, D.L.</td>
<td>27, 46, 56</td>
</tr>
<tr>
<td>Bune, A.V.</td>
<td>19</td>
</tr>
<tr>
<td>Burch, J.L.</td>
<td>58</td>
</tr>
<tr>
<td>Burdine, R.</td>
<td>19</td>
</tr>
<tr>
<td>Burger, A.</td>
<td>20, 51</td>
</tr>
<tr>
<td>Burger, R.A.</td>
<td>16</td>
</tr>
<tr>
<td>Butterworth, P.S.</td>
<td>43</td>
</tr>
<tr>
<td>Bynum, J.E.</td>
<td>47</td>
</tr>
<tr>
<td>Calise, A.J.</td>
<td>56</td>
</tr>
<tr>
<td>Campbell, J.W.</td>
<td>19</td>
</tr>
<tr>
<td>Canfield, R.C.</td>
<td>28</td>
</tr>
<tr>
<td>Cardelino, B.H.</td>
<td>40</td>
</tr>
<tr>
<td>Carlstrom, J.E.</td>
<td>21</td>
</tr>
<tr>
<td>Carpenter, D.L.</td>
<td>26</td>
</tr>
<tr>
<td>Carruth, M.R., Jr.</td>
<td>19</td>
</tr>
<tr>
<td>Carter, D.C.</td>
<td>29</td>
</tr>
<tr>
<td>Carter-Lewis, D.A.</td>
<td>21</td>
</tr>
<tr>
<td>Caruso, S.V.</td>
<td>19</td>
</tr>
<tr>
<td>Catalina, A.V.</td>
<td>33, 50</td>
</tr>
<tr>
<td>Chakraborty, D.</td>
<td>17, 19, 24, 34, 41</td>
</tr>
<tr>
<td>Champion, R.H., Jr.</td>
<td>19, 39</td>
</tr>
<tr>
<td>Chandler, K.O.</td>
<td>20</td>
</tr>
<tr>
<td>Chandler, M.O.</td>
<td>20, 22, 23, 29, 30, 51, 52, 58</td>
</tr>
<tr>
<td>Chang, F.-C.</td>
<td>20, 31</td>
</tr>
<tr>
<td>Chang, S.-W.</td>
<td>30, 52</td>
</tr>
<tr>
<td>Chattopadhyay, K.</td>
<td>20</td>
</tr>
<tr>
<td>Chen, H.</td>
<td>20</td>
</tr>
<tr>
<td>Chen, K.</td>
<td>25</td>
</tr>
<tr>
<td>Chen, L.</td>
<td>43</td>
</tr>
<tr>
<td>Chenevret, D.J.</td>
<td>24</td>
</tr>
<tr>
<td>Childress, R.G.</td>
<td>53</td>
</tr>
<tr>
<td>Chiu, J.</td>
<td>17</td>
</tr>
<tr>
<td>Cho, A.</td>
<td>17</td>
</tr>
<tr>
<td>Christensen, D.L.</td>
<td>47</td>
</tr>
<tr>
<td>Christi, M.</td>
<td>20</td>
</tr>
<tr>
<td>Christian, H.J.</td>
<td>17</td>
</tr>
<tr>
<td>Christy, J.R.</td>
<td>20</td>
</tr>
<tr>
<td>Chua, D.</td>
<td>18, 20, 43</td>
</tr>
<tr>
<td>Clark, T.</td>
<td>20</td>
</tr>
<tr>
<td>Clauer, C.R.</td>
<td>20, 49</td>
</tr>
<tr>
<td>Clifton, K.S.</td>
<td>19</td>
</tr>
<tr>
<td>Cline, T.L.</td>
<td>30, 31, 36, 43</td>
</tr>
<tr>
<td>Clinton, R.G., Jr.</td>
<td>20</td>
</tr>
<tr>
<td>Cloyd, D.</td>
<td>31</td>
</tr>
<tr>
<td>Cobb, S.D.</td>
<td>53</td>
</tr>
<tr>
<td>Name</td>
<td>Pages</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Phanord, D.D.</td>
<td>45</td>
</tr>
<tr>
<td>Pinkleton, D.</td>
<td>21, 40, 44, 45</td>
</tr>
<tr>
<td>Pippin, G.</td>
<td>27</td>
</tr>
<tr>
<td>Podgorski, W.A.</td>
<td>31</td>
</tr>
<tr>
<td>Podoljak, E.</td>
<td>46</td>
</tr>
<tr>
<td>Poker, D.B.</td>
<td>49</td>
</tr>
<tr>
<td>Poletto, G.</td>
<td>52</td>
</tr>
<tr>
<td>Polites, M.E.</td>
<td>45</td>
</tr>
<tr>
<td>Pollock, C.J.</td>
<td>31, 33, 37, 38, 46, 51</td>
</tr>
<tr>
<td>Pollock, C.L.</td>
<td>29</td>
</tr>
<tr>
<td>Polosz, W.</td>
<td>42</td>
</tr>
<tr>
<td>Porter, J.G.</td>
<td>41, 45</td>
</tr>
<tr>
<td>Portier-Fozzani, F.</td>
<td>16</td>
</tr>
<tr>
<td>Powell, R.W.</td>
<td>45</td>
</tr>
<tr>
<td>Pozanenko, A.S.</td>
<td>40</td>
</tr>
<tr>
<td>Preece, R.D.</td>
<td>21, 40, 44, 45</td>
</tr>
<tr>
<td>Price, M.W.</td>
<td>45</td>
</tr>
<tr>
<td>Prince, F.A.</td>
<td>48</td>
</tr>
<tr>
<td>Prince, T.A.</td>
<td>19, 24, 34, 41</td>
</tr>
<tr>
<td>Pugh, R.</td>
<td>29</td>
</tr>
<tr>
<td>Pusey, M.L.</td>
<td>15, 22, 24, 25, 26, 32, 33, 37, 38, 46, 49</td>
</tr>
<tr>
<td>Qiu, H.-L.</td>
<td>46</td>
</tr>
<tr>
<td>Quattrocchi, D.A.</td>
<td>38, 46</td>
</tr>
<tr>
<td>Rabin, D.M.</td>
<td>45</td>
</tr>
<tr>
<td>Raghavan, R.</td>
<td>17, 27, 29, 48, 56</td>
</tr>
<tr>
<td>Raitt, W.J.</td>
<td>51</td>
</tr>
<tr>
<td>Ramachandran, N.</td>
<td>16, 27, 51, 53</td>
</tr>
<tr>
<td>Ramsey, B.D.</td>
<td>21, 23, 24, 25, 26, 40, 44, 46</td>
</tr>
<tr>
<td>Ranganath, H.</td>
<td>26</td>
</tr>
<tr>
<td>Rantanen, R.</td>
<td>27</td>
</tr>
<tr>
<td>Rathz, T.J.</td>
<td>36, 37, 46, 47</td>
</tr>
<tr>
<td>Ravi, T.S.</td>
<td>42</td>
</tr>
<tr>
<td>Redding, D.</td>
<td>31</td>
</tr>
<tr>
<td>Redmon, J.W.</td>
<td>46</td>
</tr>
<tr>
<td>Reichmann, E.J.</td>
<td>47, 57</td>
</tr>
<tr>
<td>Reiff, P.</td>
<td>26</td>
</tr>
<tr>
<td>Reinert, R.P.</td>
<td>38</td>
</tr>
<tr>
<td>Reiss, D.A.</td>
<td>35</td>
</tr>
<tr>
<td>Rethke, D.W.</td>
<td>30</td>
</tr>
<tr>
<td>Rich, F.</td>
<td>26</td>
</tr>
<tr>
<td>Richards, P.G.</td>
<td>21, 26, 53</td>
</tr>
<tr>
<td>Richmond, R.C.</td>
<td>46</td>
</tr>
<tr>
<td>Ricks, E.</td>
<td>31</td>
</tr>
<tr>
<td>Ricks, K.G.</td>
<td>46</td>
</tr>
<tr>
<td>Ridley, A.J.</td>
<td>20, 49</td>
</tr>
<tr>
<td>Rigsbee, J.M.</td>
<td>54</td>
</tr>
<tr>
<td>Rising, J.J.</td>
<td>16</td>
</tr>
<tr>
<td>Roberts, B.C.</td>
<td>46</td>
</tr>
<tr>
<td>Robertson, F.R.</td>
<td>35, 46</td>
</tr>
<tr>
<td>Robertson, R.</td>
<td>41</td>
</tr>
<tr>
<td>Robinson, C.R.</td>
<td>28, 34, 38, 39</td>
</tr>
<tr>
<td>Robinson, J.</td>
<td>56</td>
</tr>
<tr>
<td>Robinson, M.B.</td>
<td>17, 36, 37, 46, 47</td>
</tr>
<tr>
<td>Roelof, E.C.</td>
<td>26</td>
</tr>
<tr>
<td>Rogers, J.R.</td>
<td>47</td>
</tr>
<tr>
<td>Rogers, P.R.</td>
<td>47</td>
</tr>
<tr>
<td>Roman, M.C.</td>
<td>38</td>
</tr>
<tr>
<td>Rothermel, J.</td>
<td>31, 47</td>
</tr>
<tr>
<td>Rothschild, W.J.</td>
<td>47</td>
</tr>
<tr>
<td>Rovira, M.</td>
<td>47</td>
</tr>
<tr>
<td>Rozanov, A.Y.</td>
<td>29, 39</td>
</tr>
<tr>
<td>Rubin, B.C.</td>
<td>17, 34, 41, 47</td>
</tr>
<tr>
<td>Ruble, J.R.</td>
<td>29</td>
</tr>
<tr>
<td>Ruggiero, L.L.</td>
<td>44</td>
</tr>
<tr>
<td>Ruohonieni, J.M.</td>
<td>23</td>
</tr>
<tr>
<td>Rupen, M.</td>
<td>39</td>
</tr>
<tr>
<td>Russell, C.K.</td>
<td>17, 47</td>
</tr>
<tr>
<td>Russell, C.T.</td>
<td>20, 23</td>
</tr>
<tr>
<td>Russell, S.S.</td>
<td>55</td>
</tr>
<tr>
<td>Ryan, R.M.</td>
<td>47</td>
</tr>
<tr>
<td>Ryder, M.</td>
<td>32</td>
</tr>
<tr>
<td>Safie, F.M.</td>
<td>29, 47</td>
</tr>
<tr>
<td>Sahoo, N.K.</td>
<td>47</td>
</tr>
<tr>
<td>Sahu, K.C.</td>
<td>47</td>
</tr>
<tr>
<td>Sammartin, J.</td>
<td>32</td>
</tr>
<tr>
<td>Sarkisov, S.</td>
<td>17, 49</td>
</tr>
<tr>
<td>Savage, L.</td>
<td>47</td>
</tr>
<tr>
<td>Schallhorn, P.</td>
<td>47</td>
</tr>
<tr>
<td>Schmidt, G.R.</td>
<td>48</td>
</tr>
<tr>
<td>Schmieder, B.</td>
<td>47</td>
</tr>
<tr>
<td>Schneider, M.</td>
<td>27</td>
</tr>
<tr>
<td>Schonberg, W.P.</td>
<td>48</td>
</tr>
<tr>
<td>Schunk, G.</td>
<td>31</td>
</tr>
<tr>
<td>Schwartz, D.A.</td>
<td>31, 33</td>
</tr>
<tr>
<td>Schweizer, M.</td>
<td>22</td>
</tr>
<tr>
<td>Scott, D.M.</td>
<td>19, 24, 41, 47, 51, 57</td>
</tr>
<tr>
<td>Scripa, R.N.</td>
<td>45, 54</td>
</tr>
<tr>
<td>Scudder, J.</td>
<td>30, 52</td>
</tr>
<tr>
<td>Sen, S.</td>
<td>33, 36, 48, 51</td>
</tr>
<tr>
<td>Sever, T.L.</td>
<td>15, 17, 48</td>
</tr>
<tr>
<td>Sha, Y.-G.</td>
<td>51</td>
</tr>
<tr>
<td>Shackelford, B.</td>
<td>48</td>
</tr>
<tr>
<td>Shah, S.R.</td>
<td>47</td>
</tr>
<tr>
<td>Shapiro, A.</td>
<td>31</td>
</tr>
<tr>
<td>Shapiro, A.P.</td>
<td>47</td>
</tr>
<tr>
<td>Sharp, D.</td>
<td>17, 27, 29, 48, 56</td>
</tr>
<tr>
<td>Sharpe, J.B.</td>
<td>56</td>
</tr>
<tr>
<td>Shaw, E.J.</td>
<td>48</td>
</tr>
<tr>
<td>Name</td>
<td>Page Numbers</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Sture, S.</td>
<td>16, 21</td>
</tr>
<tr>
<td>Strom, R.</td>
<td>25</td>
</tr>
<tr>
<td>Stroilberg, M.</td>
<td>51</td>
</tr>
<tr>
<td>Strohmayer, T.</td>
<td>35</td>
</tr>
<tr>
<td>Stone, N.H.</td>
<td>51, 58</td>
</tr>
<tr>
<td>Stollberg, M.</td>
<td>44</td>
</tr>
<tr>
<td>Strom, R.</td>
<td>25</td>
</tr>
<tr>
<td>Sture, S.</td>
<td>16, 21</td>
</tr>
<tr>
<td>Sutter, S.</td>
<td>49</td>
</tr>
<tr>
<td>Siddons, D.P.</td>
<td>49</td>
</tr>
<tr>
<td>Silva, A.</td>
<td>39</td>
</tr>
<tr>
<td>Simnett, G.M.</td>
<td>47, 52</td>
</tr>
<tr>
<td>Sisk, R.C.</td>
<td>29</td>
</tr>
<tr>
<td>Sitar, R.J.</td>
<td>20, 49</td>
</tr>
<tr>
<td>Sledd, A.M.</td>
<td>49</td>
</tr>
<tr>
<td>Slemzin, V.</td>
<td>42</td>
</tr>
<tr>
<td>Sloan, J.G.</td>
<td>54</td>
</tr>
<tr>
<td>Smeltzer, S.S., III</td>
<td>49</td>
</tr>
<tr>
<td>Smith, B.H.</td>
<td>22</td>
</tr>
<tr>
<td>Smith, C.C.</td>
<td>49</td>
</tr>
<tr>
<td>Smith, C.K., II</td>
<td>17, 58</td>
</tr>
<tr>
<td>Smith, D.D.</td>
<td>15, 17, 25, 41, 42, 49</td>
</tr>
<tr>
<td>Smith, G.A.</td>
<td>54</td>
</tr>
<tr>
<td>Smith, I.</td>
<td>35</td>
</tr>
<tr>
<td>Smith, L.</td>
<td>15, 46, 49</td>
</tr>
<tr>
<td>Snell, E.H.</td>
<td>25, 29, 33, 49</td>
</tr>
<tr>
<td>Soellner, W.</td>
<td>47</td>
</tr>
<tr>
<td>Soffitta, P.</td>
<td>49</td>
</tr>
<tr>
<td>Solakiewicz, R.J.</td>
<td>35, 45</td>
</tr>
<tr>
<td>Sorenson, J.</td>
<td>58</td>
</tr>
<tr>
<td>Spann, J.F., Jr.</td>
<td>16, 18, 20, 23, 24, 26, 29, 39, 43, 49, 50, 53, 54, 55, 57, 58</td>
</tr>
<tr>
<td>Spencer, R.W.</td>
<td>20</td>
</tr>
<tr>
<td>Spoelstra, T.</td>
<td>25</td>
</tr>
<tr>
<td>Springer, A.M.</td>
<td>50</td>
</tr>
<tr>
<td>Spurrier, M.</td>
<td>24</td>
</tr>
<tr>
<td>Srivastava, V.</td>
<td>31</td>
</tr>
<tr>
<td>Stanley, T.T.</td>
<td>15</td>
</tr>
<tr>
<td>Stark, B.A.</td>
<td>27, 28, 50</td>
</tr>
<tr>
<td>Steadham, J.M.</td>
<td>48</td>
</tr>
<tr>
<td>Stecklum, G.</td>
<td>34</td>
</tr>
<tr>
<td>Stefanescu, D.M.</td>
<td>33, 36, 50</td>
</tr>
<tr>
<td>Stevenson, B.A.</td>
<td>51</td>
</tr>
<tr>
<td>Stojanof, V.</td>
<td>49</td>
</tr>
<tr>
<td>Stollberg, M.</td>
<td>44</td>
</tr>
<tr>
<td>Stone, N.H.</td>
<td>51, 58</td>
</tr>
<tr>
<td>Strohmayer, T.</td>
<td>35</td>
</tr>
<tr>
<td>Strollberg, M.</td>
<td>51</td>
</tr>
<tr>
<td>Strom, R.</td>
<td>25</td>
</tr>
<tr>
<td>Su, C.-H.</td>
<td>20, 34, 45, 51</td>
</tr>
<tr>
<td>Su, Y.-J.</td>
<td>30, 51, 52</td>
</tr>
<tr>
<td>Suess, S.T.</td>
<td>16, 41, 42, 43, 52</td>
</tr>
<tr>
<td>Suggs, R.J.</td>
<td>20, 31, 35, 36, 52</td>
</tr>
<tr>
<td>Sulkaneet, M.E.</td>
<td>34, 42, 43, 52, 53</td>
</tr>
<tr>
<td>Summers, S.M.</td>
<td>38</td>
</tr>
<tr>
<td>Suunkara, H.B.</td>
<td>52</td>
</tr>
<tr>
<td>Swift, V.L.</td>
<td>30</td>
</tr>
<tr>
<td>Swartz, D.A.</td>
<td>23, 31, 34, 44, 53</td>
</tr>
<tr>
<td>Sweitzer, M.G.</td>
<td>53</td>
</tr>
<tr>
<td>Swift, W.</td>
<td>26</td>
</tr>
<tr>
<td>Swift, W.R.</td>
<td>26, 53</td>
</tr>
<tr>
<td>Szofran, F.R.</td>
<td>22, 45, 53, 55</td>
</tr>
<tr>
<td>Tata, H.</td>
<td>46</td>
</tr>
<tr>
<td>Tandberg-Hansen, E.J.</td>
<td>47</td>
</tr>
<tr>
<td>Talia, J.E.</td>
<td>42</td>
</tr>
<tr>
<td>Tatara, J.D.</td>
<td>53</td>
</tr>
<tr>
<td>Tavani, M.</td>
<td>25, 49</td>
</tr>
<tr>
<td>Templeton, M.</td>
<td>39</td>
</tr>
<tr>
<td>Tennant, A.F.</td>
<td>23, 31, 34, 53</td>
</tr>
<tr>
<td>Thom, R.L.</td>
<td>31, 41</td>
</tr>
<tr>
<td>Thompson, B.J.</td>
<td>15</td>
</tr>
<tr>
<td>Thomsen, M.F.</td>
<td>42</td>
</tr>
<tr>
<td>Tinker, M.L.</td>
<td>53</td>
</tr>
<tr>
<td>Tippett, D.D.</td>
<td>53</td>
</tr>
<tr>
<td>Tomsick, J.A.</td>
<td>49</td>
</tr>
<tr>
<td>Tratt, D.M.</td>
<td>47</td>
</tr>
<tr>
<td>Treise, D.</td>
<td>30</td>
</tr>
<tr>
<td>Tucker, D.S.</td>
<td>54</td>
</tr>
<tr>
<td>Tucker, P.K.</td>
<td>54</td>
</tr>
<tr>
<td>Turner, J.E.</td>
<td>54</td>
</tr>
<tr>
<td>Tyler, T.R.</td>
<td>32</td>
</tr>
<tr>
<td>Vacarro, M.</td>
<td>31</td>
</tr>
<tr>
<td>Van den Heuvel, E.P.J.</td>
<td>54</td>
</tr>
<tr>
<td>Van der Hooft, F.</td>
<td>54</td>
</tr>
<tr>
<td>Van der Klis, M.</td>
<td>25, 54</td>
</tr>
<tr>
<td>Van Dyke, M.</td>
<td>54</td>
</tr>
<tr>
<td>Vanhooser, K.</td>
<td>48</td>
</tr>
<tr>
<td>Vanhooser, M.T.</td>
<td>19</td>
</tr>
<tr>
<td>Van Paradijs, J.</td>
<td>22, 25, 34, 35, 47, 54, 57, 58</td>
</tr>
<tr>
<td>Van Speybroeck, L.P.</td>
<td>31, 33, 55, 56</td>
</tr>
<tr>
<td>Vas, I.</td>
<td>32</td>
</tr>
<tr>
<td>Vaughan, B.A.</td>
<td>19, 34, 41</td>
</tr>
<tr>
<td>Vaughan, O.H., Jr.</td>
<td>54</td>
</tr>
<tr>
<td>Vaughan, W.W.</td>
<td>32</td>
</tr>
<tr>
<td>Vaughn, J.A.</td>
<td>22, 58</td>
</tr>
<tr>
<td>Venable, R.A.</td>
<td>32</td>
</tr>
<tr>
<td>Venkataramanan, P.</td>
<td>27, 28</td>
</tr>
</tbody>
</table>
This document presents formal NASA technical reports, papers published in technical journals, and presentations by MSFC personnel in FY98. It also includes papers of MSFC contractors. After being announced in STAR, all of the NASA series reports may be obtained from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

The information in this report may be of value to the scientific and engineering community in determining what information has been published and what is available.