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Abstract

An approach for eliminating unnecessary portions of a volume when producing a direct volume render-

ing is described. This reduction in volume size sacrifices some image quality in the interest of rendering

speed. Since volume visualization is often used as an exploratory visualization technique, it is important

to reduce rendering times, so the user can effectively explore the volume. The methods presented can

speed up rendering by factors of 2 to 3 with minor image degradation.

A family of decimation algorithms to reduce the number of primitives in the volume without altering

the volume's grid in any way is introduced. This allows the decimation to be computed rapidly, making

it easier to change decimation levels on the fly. Further, because very little extra space is required, this

method is suitable for the very large volumes that are becoming common. The method is also grid-

independent, so it is suitable for multiple overlapping curvilinear and unstructured, as well as regular,

grids. The decimation process can proceed automatically, or can be guided by the user so that important

regions of the volume are decimated less than unimportant regions.

A formal error measure is described based on a three-dimensional analog of the Radon transform.

Decimation methods are evaluated based on this metric and on direct comparison with reference images.

Keywords: Computer Graphics, Scientific Visualization, Direct Volume Rendering, Decimation, Level-

of-detail, Irregular Grids.

1 Introduction

Direct volume rendering is an attractive visualization technique because it can convey a lot of information

in a single image. This is done by mapping the data values directly to color and opacity. Direct volume

rendering is ideal for initial explorations of new data sets because it requires minimal knowledge of the

data values to produce meaningful images. However, rendering an image is computationally expensive,

particularly when the data is not on a regular grid. Large data sets are becoming very common due to the

rapid increase in CPU speed, and the increasing affordability of 3D data acquisition techniques. The data

calculation can be done off-line, but the visualization demands interactivity. Although many advances have

been made in direct volume rendering in the last several years, interactivity is possible only with small data

sets, and often only if they are on regular grids. Work in computation fluid dynamics, such as NASA's study

of the space shuttle, is done on multiple overlapping curvilinear grids or large unstructured grids. Even with

state-of-the-art hardware and algorithms, direct volume rendering of these data sets is far from interactive.

A solution to this problem is to use partial data sets for interactive exploration, and then switch to the

complete data set when more details are necessary. This paper presents a process whereby the original, large



data set can be rapidly decimated for faster rendering, producing images with few visual artifacts. Since

large data sets can be hundreds of megabytes, it is vital that this method introduce a minimal amount of

new data. This means that the data cannot be re-sampled, or re-gridded. Since the data set is not altered in

memory, there is no penalty for switching back and forth from decimated to non-decimated volumes. This

paper is organized as follows:

• Background in volume rendering and decimation is discussed in section 2.

• We present a method of rendering decimated grids without re-meshing or re-gridding. This requires

a direct volume renderer that can handle arbitrary grids. To achieve this, we deal exclusively with

polygons instead of cells, using a volume rendering approach described previously [WVGTG96]. This

polygon-based rendering technique and the general decimation algorithm are described in sections 3

and 3.1.

• In section 3.2, we present several methods of guiding the decimation. The decimation can be generated

automatically, but it is often advantageous to allow the user to indicate important data values to help

guide the decimation.

• We also present an image-based method for quantifying the error introduced in the volume at any

given level of detail. This is covered in section 4.

• Experimental results are discussed in section 5.

2 Background and Related Work

We will first briefly discuss direct volume rendering. Next, we will survey the literature on decimation,

covering surface decimation techniques first, and then discussing the volume-related work.

2.1 Volume Rendering

Early approaches for direct volume rendering used ray-casting, cell projection, and splatting [FDFH90].

Most research has addressed only rectilinear (regular) grids, and most previously reported acceleration and

optimization techniques apply only to such grids. New methods such as Fourier transforms [Lev92, Ma193],

shear-warp transforms ILL94], and 3D texture maps [CCF94] suffer this limitation.

However, many applications create non-rectilinear volume data sets, such as computational fluid dynamics

(CFD), finite element analysis (FEM), and atmospheric and oceanographic measurements. Such data is often

found on curvilinear grids (where a computational regular grid is warped to fit around objects of interest),

and unstructured grids (where data points are connected to form tetrahedral or other polyhedral cells).

Sometimes non-tetrahedral cells are broken into tetrahedra to simplify processing; however, this can lead

to artifacts and increases the number of primitives that the renderer has to handle. Multiple, overlapping,

and intersecting grids may be used to sample space around very complex shapes [BCFM+89]. Our research

concentrates on rendering such irregular data.

A number of algorithms have been developed for irregular grids. Ray-casting general irregular grids is

complicated and slow, though it does parallelize beautifully [Gar90, Cha92, Use93, Ma95]. Cell projection

and splatting have been used for irregular grids in software [MHC90, Gie92, Koy92, Wi192, GP93, MHK95,

SMK96] and hardware [ST90, VGW93, YRL+96]. Instead of projecting cells, several algorithms have been

developed which project faces [Luc92, Cha93, WVGTG96].



2.2 Surface Decimation

While there has not been a lot of work in the decimation of volumes, there have been many papers addressing

the issue of decimation of surface meshes. There are several applications which typically create very large

surface meshes, such as those that generate isosurfaces from large volumes or acquire surfaces from real-world

objects via 3D scanning.

Surface simplification techniques take a surface mesh comprised of a large number of polygons, and

attempt to build a new model with fewer polygons, whose surface deviates as little as possible from the

original. Some methods require the surface to be re-sampled, so that the new model does not include

vertices from the old. Most methods also require re-meshing, so the new connections are not a subset of the

old.

The simplest type of surface to decimate is the height field. This is essentially only a 2D problem.

Garland and Heckbert present an overview of these techniques [GH95], most of which center around creating

a Delauney triangularization of the data at various error levels. More recently, work in this area has involved

generating the display in real-time and maintaining continuity between different levels of detail [LKR+96].

When dealing with an arbitrary surface, the problem becomes more complicated because the surface

cannot be easily parameterized in a 2D world space. DeHaumer and Zyda proposed two solutions: either

start with a coarse grid, and incrementally refine it until a criterion is met (adaptive subdivision), or start

with the finest data, and group small polygons into larger ones (polygon growth) [DZ91]. Later algorithms

have built on these two fundamental concepts.

Turk presented a method called re-tiling [Tur92]. Re-tiling re-samples the surface uniformly, and adds

new vertices to the original mesh. The old vertices are then removed one by one, making local adjustments

to preserve the topology of the surface. Other algorithms have been presented which are also based on the

incremental removal of vertices, followed by a re-triangulation [SZL92, KT96]. Some recent vertex-removal

algorithms have focused on more sophisticated error control [CCMS96, KLS96]. Other methods group planar

polygons, and replace them with fewer, larger, polygons [HH93, RB93], or remove polygons by iteratively

collapsing edges [HDD+93, Hop96]. Recent edge-collapsing algorithms have addressed edge selection, and

allow the mesh to be non-uniformly decimated [AS96, RR96, XV96]. Another way to achieve non-uniform

decimation is by using simplification envelopes [CVM+96]. An envelope consists of an inner and outer

surface, and the simplification is constrained to fall between these two surfaces. Volumetric methods can

also be employed by voxelizing the original mesh into a multi-resolution hierarchy, and extracting iso-surfaces

of varying complexity [HHVW96, SFYC96].

A very different approach to providing many different levels of detail from a complex model is a theoret-

ically sound framework for multi-resolution models [EDD+95, CPD+96]. A multi-resolution model consists

of a simple base mesh, which is triangulated, and a series of local wavelet coefficents, which capture the

details of the original mesh at various resolutions.

2.3 Volume Decimation

The surface methods are designed to reproduce the geometry of the surface as faithfully as possible. For

volume rendering, it is not necessary to preserve the geometry of the volume, since the geometry is not

readily perceived in the final image. However, we still wish to produce an image which is as close to the

original as possible using fewer cells. Since the running time of most visualization techniques is dependent

oil the number of cells in the volume, this translates directly to improved performance.

Cignoni et al. have presented a method for deriving multiple resolutions of a scattered volume data

set [CDFM+94]. The scattered data is visualized by first tetrahedralizing it, and then applying standard

visualization techniques for tetrahedral data sets. The multi-resolution model is built by constructing a



seriesof tetrahedralizationsbasedondecreasingtolerancevalues.Thefirst tetrahedralizationis built using
a smallsubsetof thevertices,whichpermitsapproximationofall theotherverticeswithinacertainerror
bound.Thenexttetrahedralizationisbuiltfromthepreviousbyaddingverticesuntil thenewerrorcriterion
ismet.A disadvantageof thismethodis theneedto re-gridthevolumebyaddingedgesnotpresentin the
originalvolume.

Ofcourse,insteadofdecimatingthevolumebeforeit isrendered,somerenderingtechniquesintrinsically
allowformultiplelevelsofdetail.Volumerenderingalgorithmswhichareslice-basedallowtheuserto define
thenumberof slicesused(forinstance[YRL+96])andcanbeseenasa limitedformof multi-resolution
rendering.Wecanalsoachievemultiplelevelsofdetailbymodelingthedataitselfina hierarchicalfashion
[LH91,WVG94,WVGTG96].Hierarchicaldatamodelsallowstandardvolumerenderingmethodsto work
onvolumesof differentsizes.Buildinghierarchiesismosteffectivefor regulargrids,sincethehierarchical
decompositioncaneasilyfollowcellboundaries.However,therenderedimagestypicallyhaveartifactsdue
to thediscontinuitieswhicharisebecausedifferentpartsof thevolumearerenderedat differentlevelsof
hierarchy.Usinghierarchiesalsoaddsasignificantmemoryoverhead.

3 Polygon-Based Volume Rendering and Decimation

For rendering decimated volumes, we use a direct volume rendering system which is based on a generalized

software scan conversion of polygons, rather than the more conventional ray-casting, projection, or splatting

of cells [WVGTG96]. This difference is motivated by the fact that any cell type can be decomposed into a set

of bounding polygons. This method also solves two key problems which are important to this work. First, it

is able to render overlapping cells which occur in multi-grid data sets. Second, it is able to handle grids which

are not made up of simple cell types. The scan conversion algorithm generalizes traditional polygon scan-line

methods in that it renders semi-transparent regions of space between polygons, as well as opaque surfaces.

This method requires no graphics hardware, and produces excellent quality images. For more details on the

rendering algorithm, and comparisons to other methods, see [WVGTG96]. The rendering time is based on

the number of polygons in the volume, after culling out those which don't lie in the viewing frustum and

those smaller than one pixel. To achieve faster rendering times, we need to further reduce the number of

polygons used to render the image.
Because the renderer sees only polygons, it is completely independent of grid type. We exploit this

advantage when building simplified models. The decimation process is not constrained to produce only

simple hexahedral or tetrahedral cells. This is important since, when decimating polygons, we cannot afford

to re-grid the volume to maintain simple cell types. Thus, the decimation process turns a grid made of

all hexahedra or tetrahedra into a hybrid grid with many-sided cells, and some polygons which are not a

part of any cell. Given a volume of polygons, we identify those that are not needed to render the volume.

For instance, if all the polygons in a sub-volume map to the exact same color, then clearly the internal

polygons are not needed for rendering. We only need the polygons that form the border (outer surface) of

that sub-volume.

3.1 The Decimation Process

The basic decimation process proceeds as follows. We examine the whole volume at the vertex level, attempt-

ing to identify important vertices. Un-important vertices can be decimated. If a vertex is decimated, all

polygons which include this vertex are decimated as well. Thus, vertex decimation is equivalent to polygon

decimation, in our algorithm.



Ourinitial attemptat thisdecimationprocesswasstrictlylocal.Weexaminedtheregioncomprisedof
avertexandits neighbors.Wewereableto assignanerrormetricbasedonthelinearityof thisregion.If
thelocalregionwasverylinearin all directions,thentheregioncouldberepresentedwithouttheinterior
vertex,or thepolygonsassociatedwithit. Indeed,thismethoddid workwelllocally,but globallyit ledto
manyproblems.Theworstproblemwastheappearanceofholesin imagesof thevolume.A holeappeared
wherea longstringof verticesalongtheviewwereall decimateddueto their locallinearity.Therewere
alsobadartifactswhenstrongnon-linearitiesin thetransferfunction(particularlyaroundthefree-stream
in CFDvolumes)causedcertainsmallareasto allowtheircolorto bleedverynoticeablyintotheotherwise
clearportionof thevolume.Figure2showsanexampleoftheseproblems.

To solvetheseproblems,weproposea decimationmethodbasedondividingup thedatarangeinto
severalsub-ranges.Therearecertainboundariesin thevolumewhichmustbemaintainedforanintelligent
visualization.In a CFDvolume,theboundarybetweentile free-streamandotherdatavaluesis oneof
these.In medicaldata,afewexamplesaretheboundarybetweenbone,differenttypesof tissue,andair.
Ourdecimationmethodpreservestheseboundariesasaccuratelyaspossible,andonlydecimatestheregions
betweenthem.

Thefirst stepin thedecimationprocessis tobreakupthedatarangeintoseveralsub-ranges,orbuckets.
Eachvertexis thenmappedintoonebucket.Thebucketboundariesrepresentthecriticalvaluesin the
datawhichcontributeto theboundariesof interestingfeaturesin therenderedimage.Henceadjacent
verticeswhichlie onoppositesidesof thesebucketboundariesareveryimportant.Theotherverticescan
bedecimatedfromthevolumewithoutlosingtoomuchinformation.Thebucketboundariescanbeplaced
in severalways,andwewill discussseveralmethodsin thenextsection.

Thenextstepistotraversethevolumeexaminingeachvertexanditsneighbors.In aregularorcurvilinear
datasetseveralnotionsof "neighbor"arepossible.Forthisworkweconsidereachvertextohave26neighbors
foundby incrementingthe(i,j, k) location of the vertex by +1 in each direction. For tetrahedral grids, an

explicit list of neighbors must be generated for each vertex.

If the vertex maps to the same bucket as all of its neighbors, then it will be decimated. Since buckets are

placed to indicate regions of related data values, and which map to similar colors, our heuristic is to throw

the vertex away hoping that the neighbors will do a sufficient job of representing the region.

After the decimation pass has occurred and all vertices have been examined, each decimated region

consists of a set of connected vertices that map to the same bucket, none of which is adjacent to a vertex

in a different bucket. The only vertices left active in the volume are those which are adjacent to vertices

in buckets different from the one they are in. These vertices should represent the important boundaries in

the volume. We also ensure that the vertices on the exterior boundary of any grid are retained. These are

necessary to identify the region of space which is inside the volume.

In our implementation, we simply keep a boolean array indicating which polygons are in the volume. To

reduce even this memory overhead, the polygon list could be sorted so the decimated vertices are listed first,

and an offset could be kept to indicate where the active, or un-decimated, vertices begin.

3.2 Bucket Placement

We explored five automatic strategies for bucket placement: uniform by range, uniform by histogram, his-

togram curvature, histogram features, and transfer function. It is also possible for the user to guide the

placement of the buckets interactively. Raw histograms consist of 256 equal-width buckets spanning the

range of the data. Figure 1 shows raw histograms for three different CFD volumes. However, all methods

that use "histogram" actually use a histogram that has been smoothed by a Gaussian filter of standard

deviation 2.82.



1. Uniform by Range: The simplest strategy places a user-specified number of buckets at equal intervals

over the data range of the volume. More buckets typically lead to less decimation. This method

sometimes works well, but often generates artifacts due to imprecise bucket placement. Also, when

the user changes the number of buckets by one, all but the first and last buckets move. Since the

decimation is very sensitive to bucket boundaries, moving the buckets in this manner can lead to

un-intuitive changes in the decimation of the volume.

2. Uniform by Histogram: Our second strategy is equally simple. Instead of placing buckets uniformly,

based on the range of data, we place them uniformly based on the frequency of data, as judged by

the smoothed histogram. Smoothing the histogram lowers extreme peaks (such as the free stream of

aeronautical simulations), and allows the buckets to be spread more evenly.

If based on the raw histogram, the approximately same number of vertices are found in each bucket.

It is very hard to get substantial decimation rates using this strategy, since many buckets tend to get

placed where there is a lot of data. While this protects important data ranges from being decimated,

it also prevents most of the vertices from being decimated. Inferior performance on raw histograms

motivated the use of smoothing.

3. Histogram Curvature: This strategy places the bucket boundaries based on the magnitudes of the

second derivatives of the smoothed histogram. Bucket boundaries are thus placed in regions of high

curvature. A typical histogram will have several flat areas, separated by steep spikes or valleys. These

spikes and valleys often represent interesting features in the volume. We would like to place a bucket

boundary on each side of such spikes and valleys to preserve the boundaries between this feature and

other parts of the volume. If hi represents the histogram value at i, this method places buckets where

l(hi_l - 2hi + h_+l)] is largest. The number of buckets can be chosen by the user. This strategy

has fewer artifacts than the previous two strategies, but it often places more buckets than are ideally

necessary. In particular, it often places boundaries not only on both sides of spikes and valleys, but

along these features as well. Again, smoothing the histogram can eliminate noise which can produce

high curvatures in the histogram, but which doesn't really represent a feature in the data.

4. Histogram Feature: This strategy analyzes the smoothed histogram and attempts to find the features

discussed above. Once these features are found, a good strategy would be to place a bucket boundary

on either side, and avoid placing a bucket in the middle of the feature. The strategy proceeds as follows.

First, the histogram is scanned to identify the point with the highest curvature magnitude. This is

the center of a feature. We then scan both left and right, looking for the next peak in the curvature

of opposite sign, on opposite sides of the feature. A bucket boundary is placed at both of these data

values. We then begin the search again, excluding any features already found, or any histogram entries

which already have bucket boundaries. This can proceed to place as many buckets as the user likes.

5. Transfer Function: This strategy addresses the problem with previous strategies that they do not

take the transfer function into account. The boundaries that are perceived in the final images are largely

the result of the transfer function, and not simply the underlying data. Transfer functions are often

used to produce sharp ctlanges in hue, even when the data is smoothly varying, to perceive surfaces

and subtle variations in the data. Our rendering system uses a piecewise linear transfer function. A

control point in the transfer function usually indicates a change in the hue at the corresponding data

value. We can generate a very good set of buckets for the decimation process by simply placing a

bucket boundary at each control point. Figure 3 shows a typical histogram and transfer function, and

illustrates where the buckets would be placed. The transfer function also often has more detail in
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Figure 1: Histograms of three CFD volumes.

regions of high interest, so this method places more buckets in these regions as well. This method of

generating buckets can produce images which are practically identical to images rendered using the

non-decimated volume.

The user can often increase the percentage of polygons decimated by using a subset of the bucket bound-

aries generated automatically. This is particularly true of the histogram feature and the transfer ]unction

strategies. If the user knows what data values correspond to important features, he can help the histogram

feature method by choosing which features to use. When using the transfer function strategy, it is often wise

to reduce the complexity of the transfer function, so fewer buckets are used. It should be noted, however,

that reducing the number of bucket boundaries may increase the number of artifacts that appear in the final

images.

4 Image-Based Error Metric

While volume rendering does not display the geometry of the volume, it does display the light field associated

with it. If we are to decimate volumes successfully for direct volume rendering, we must be able to analyze

the effect of decimation on the light field produced by the volume.

The notion of a light field was introduced as an image-based rendering architecture [LH96, GGSC96].

Levoy and Hanrahan defined an object's light field as a 4D function of position and direction in regions of

free space. This function describes the light emitted by the object. A single rendered image is a 2D slice of

this 4D function. Therefore, an appropriate sampling of rendered images can be used as an approximation

of this light field. To give us a metric on how the decimation process has effected the visualization of the

dataset, we want to compare the light field produced by the decimated volume with the light field produced

by the original volume.

We represent the light field with 32 "x-ray" images, two per viewpoint, taken at regular spacing on the

hemisphere surrounding one side the volume. Image resolution was 500 by 500 pixels. The x-ray images are

generated using a linear gray-scale transfer function with zero opacity. Thus the image from the spherically

opposing viewpoint is identical, and need not be computed. The absence of opacity allows us to integrate

the density (or other field function) through the volume, producing an approximate 3D analog of the Radon

transformation [Ma193, CCF94, LH96].



Method Blunt Fin Lockheed Fighter Space Shuttle

Uniform by Range 0.089

Uniform by Histogram 0.117

Histogram Curvature 0.062

0.058

0.056 0.061

0.O42 0.04O

0.O48 O.0O4

0.065 0.031Histogram Features
Transfer Function 0.074 0.071 0.022

Table 1: Errors computed using the image-based error metric, as discussed in section 4. All data sets were

decimated approximately 45 62%.

For our CFD data, we had to generate two images per viewpoint using separate linear gray-scale transfer

functions: one to show the data below free-stream, and the other to show the data above free-stream. If a

single gray-scale ramp were used, the free-stream data would obliterate any interesting features.

The sixteen views are generated by tessellating a sphere into 60 congruent triangles [VGK96], and using

the vertices of the triangles as the viewing directions. A ray from each vertex through the center of the

sphere indicates a viewing direction. This method considers both an icosahedron, which has twelve vertices,

and its dual figure, the dodecahedron, which has 20 vertices, for a total of 32 vertices. Figure 4 shows the

vertices of these dual polyhedra, and figure 5 shows the 16 views of the data above free stream in the blunt

fin (section 5).

To evaluate the error of decimation in one direction, the decimated version of the image is compared with

the undecimated version, and pixel by pixel differences (with gray level scaled from 0 to 1.0) are computed.

Since the two images were generated from precisely the same view, using the same rendering software, we

do not need to worry about registering the images. The sum-of-squares of these differences is accumulated

and averaged. For averaging purposes, pixels that were black in both images of the pair are discarded (i.e.,

do not contribute to the number of "observations").

After comparing the 32 image pairs, we have a set of 32 error values. In this paper we present the square

root of the average of these values, which corresponds to the standard deviation, as a global error measure.

This treatment of the errors is preliminary, and requires further study. Possible alternatives would weight

larger errors more heavily, with the extreme example being to use the maximum pixel error as the measure

for the whole dataset.

5 Experimental Results

We examined the results of the decimation algorithm on three volumes, and compared the images gener-

ated by several methods. We used the following CFD volumes: the blunt fin [HB85], a single curvilinear grid

of 40,960 data points; the Space Shuttle launch vehicle [BCFM+89], consisting of nine curvilinear grids with

941,159 data points; and the Lockheed fighter (courtesy of John Batina of NASA Langley Research Center),

an unstructured tetrahedral grid consisting of 13,382 data points and 70,125 tetrahedra. Comparable results

were observed on CT data, but are not described fllrther.

Table 1 shows the error generated using different bucket methods (see section 4). All methods were

adjusted to produced volumes that were about 45 62% decimated. No method is the winner in all cases,

and many of the errors are closely clustered. Errors over 0.10 seem to predict substantial artifacts in the

images. In particular, the decimation method used for Figure 2, which was discussed in section 3.1, has an

error value of 0.203. In practice we have found the uniform by histogram and histogram curvature methods

8



I] Blunt Fin II Lockheed Fighter Space Shuttle
No Decimation:

polygons total 173,752 290,096 1,524,791

CPU seconds 73.2 228.6 328.8

Transfer Function strategy:

polygons retained 68,029 160,358 726,969

decimation 61% 44% 52%

CPU seconds 26.5 101.6 148.6

speedup 2.8 2.3 2.2

Histogram Feature strategy:

polygons retained 67,956

decimation

CPU seconds

speedup

182,559 550,764

61% 37% 64%

25.4 116.6 125.3

2.9 2.0 2.6

Table 2: This table shows the decimation and rendering speedup obtained using the two more successful

decimation methods, transfer function and histogram features, on three CFD volumes. The images corre-

sponding to these numbers are figures 6, 8, and 10. All times are based on a 150-MHz R4400 processor.

Polygon counts refer to polygons processed for these images, not those in the whole volume.

hard to control. However, the histogram features method is intuitive and easy to control, so it was selected

as the data-based method for image production.

The image-based error metric gives us an indication of how well the decimated volume represents the

underlying data. However, the transfer function strategy makes its decimation choices based on a certain

transfer function. These choices may not reflect the underlying data as well as other methods, yet still give

superior results when the data is visualized with the same transfer function. For this reason, the transfer

flmction is capable of producing actual color images with much less error than the image-based error metric

suggests.

Figures 6 11 show decimated and un-decimated images using the histogram features and the transfer

fimction strategies. Table 2 shows the decimation and speedup obtained for figures 6, 8, and 10. The

decimated volumes can generally be drawn 2 to 3 times faster than un-decimated volumes, and generally are

very close to the original images. Figures 7, 9, and 11 provide closeups of interesting regions in the volumes.

The decimation rate for the closeup images in nearly identical to the decimation rate in the entire volume,

so the decimation algorithms are removing polygons fairly equally from the entire volume.

As expected, the blunt fin proved to be an easy volume to decimate. We obtained decimation rates of

over 60 percent with almost no artifacts visible. The images of the Lockheed fighter also have few artifacts,

but the decimation rates are lower, close to 40 percent. This may be because the fighter volume has many

more complex boundaries than the bhmt fin. The small white dots on the images of the decimated fighter

are the fighter's opaque surface showing through the volume, and hiding volume polygons. The fighter's

surface geometry was not considered in the decimation calculation.

The Space Shuttle proved to be a difficult image to decimate without artifacts, due to the very large and

very thin cone of air just slightly above free stream, which surrounds the shuttle. The histogram curvature

strategy (no image shown) gave unusually good results by focusing exclusively on the border between the

fi-ee-stream and neighboring data values, and ignoring other features (see table 1). As one can see in figure 10,

9



boththehistogramfeaturesandtransferfunctionstrategiesproducesomeartifactsonthelargegreensurface.
However,alltheimportantfeaturesinthevolumearestillreadilyvisible,andtheimagesstill carrythesame
informationastheun-decimatedimage.

Thedecimationalgorithmtook0.85secondsfor the bluntfin, 4.26secondsfor the fighter,and26.6
secondsforthespaceshuttledatasets,usinga 150-MHzR4400processor.Ascanbeseenfromtable2, these
timesareonlyafractionofthetimeit takesto renderthefinalimages.

6 Conclusion and Future Work

We need to better understand the elements in a volume that play an active role in the final image. Only

a stronger understanding of these roles will help us produce substantially faster, perhaps real-time, volume

rendering architectures for large irregular grids.
This work has shown that one can indeed remove over 50 percent of the polygons in a volume, and

not readily tell the difference in the final images. However, the decimation process is very sensitive to the

preservation of important boundary surfaces in the volume. It is hard to get decimation rates much larger

than 50 percent by our methods, and still preserve image quality, because important surfaces tend to get

violated. We have shown that by identifying the key changes in color, we can remove those portions of the

volume which lie in between the transition points without substantial loss in the image quality in several

data sets. However, more study is needed before we can tell whether this is a general phenomenon.
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Figure 2: This figure illustrates several problems with our original error metric, which did not preserve the

important boundaries in the data. The image on the left is a decimated version of the image on the right.

The decimated image is comprised of approximately 140,000 polygons, while the un-decimated image has

approximately 280,000 polygons.
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Figure 3: This figure show a typical transfer function. The red, green, blue and cyan lines represent the

red, green, blue and opacity portions of the transfer function. The vertical magenta lines illustrate the

bucket boundaries which were obtained from the transfer function. The histogram is shown in gray in the

background.

14



Figure 4: This figure shows a sphere tessellated into 32 viewing directions. The light vertices are from an

icosahedron and the dark vertices are from its dual dodecahedron.

Figure 5: This figure show the 16 (condensed) views of the data above free stream in the blunt fin. These

are the views used by the image-based error metric.
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important boundaries in the data. Tile image on the left is a decimated version of the image oil the right.
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approximately 280,000 polygons.
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bucket boundaries which were obtained from the transfer function. The histogram is shown in gray in the
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Figure 4: This figure shows a sphere tessellated into 32 viewing directions. The light vertices are fronl an
icosahedron and the dark vertices are from its dual dodecahedron.

Figure 5: This figure show the 16 (condensed) views of tile data above free stream ill tile bhmt fit_. These

are the views used by the image-ba_sed error metric.
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Figure6: Thisfigureshowsthe blunt fin volume, both with and without decimation. The top image is
the un-decimated volume. Tile middle image is decimated using the transfer rime't ion strategy, obtaining

a decimation of 61_,, and a speedup of 2.8. The bottom image is decimated using the histogram feature

strategy, and obtained a 61% decimation and a 2.9 times speedup.
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Figure7: Thisfigureshowsa closeup of blunt fin volume. The top vohlme is not decimated, and the bottom

two were generated using the same decimation as ill figure 6.
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Figure8: Thisfigureshowsthe Lockheed fighter volume. The top image is without decimat.ion. The transfer

function st,rategy was used on the bottom-left image to obtain a speedup of 2.3 times and a decimation of

,t4%. The bottom-right image used tile histogram feature strategy and obtained a speedup of only 2 times,

and a decimal, ion of only 37_,.
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Figure9: Thisfigureshowsacloseupof theLockheed fighter volume. The top volume is not decimated, and

tile bot, tom two were generated using tile same decimalion a.s ill figure 8.
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Figure10:ThisfigureshowstheSpace Shuttle volume. The top image is not decimated. The second image

used the transfer function strategy and obtained a speedup of 2.2 times and a decimation of 52_. The third

image used the histogram feature strategy and obtained a speedup of 2.6 times and a decimation of 64_,.

22



Figure11: Thisfigureisacloseupofthe,5'paceShuttle volume in perspective, showing ihe nose of the space

shuttle along with various other objects, each with their own grid. The top volume is not decimated, and

the bottoln two were generated using the same decimation as ill figure 10.
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