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‘ABSTRACT

An approach to large-eddy simulation (LES) is developed
whose subgrid-scale model incorporates filtering in the time
domain, in contrast to conventional approaches, which ex-
ploit spatial filtering. The method is demonstrated in the
simulation of a heated, compressible, axis; etric jet, and
results are compared with those obtained from fully resolved
direct numerical simulation. The present approach was, in
fact, motivated by the jet-flow problem and the desire to ma-
nipulate the flow by localized (point) sources for the purposes
of noise suppression. Time-domain filtering appears to be
more consistent with the modeling of point sources; more-
‘over, tine-domain filtering may resolve some fundamental in-
consistencies associated with conventional space-filtered LES
-approaches.

1 INTRODUCTION

By definition, direct numerical simulation (DNS) is' the nu-
merical solution of the Navier-Stokes equations without re-
course to empirical models. In concept, the fluid motions are
resolved down to the Kolmogorov length scale, at which ed-
dies succumb to viscous dissipation. Consequently, for high
Reynolds number flow, the computational requirements of
fuli’;' redolved DNS are staggering. '

In contrast, in large-eddy simulation (LES), the large scales
of motion are resolved in space and time on a suitable compu-
tational grid; however, the effects of the subgrid-scale motions
on the evolution of the large scales are modeled. Relative to
DNS, LES is conducted on relatively coariaﬁgnds at reason-
able utational expense. In practice, involves filter-
ing t ﬁavier—Stok&s equations in space or time or both. The
filtered equations of motion contain subgrid-scale (residual)
stress terms whose effects must be modeled.

e

porally or spatially evolving. The distinction between tem-
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poral and spatial approaches is muddied by most applica-
tions of LES. In particular, nearly all ¢urrent LES approaches,
whether temporal or spatial, exploit spatial ﬁlter‘gg; In‘their
review paper, Moin and Jimenez (1993) state: “Historically,
temporal filtering has not been used,” one presames ‘for 1
sons of cometational efficiency. However, because the roles
time are fandamentally interchanged in tempo-
ral vs. spatial simulations, we suﬁ%t that spatial filtering
is more appropriate for temporal , and conversely, tem-
poral ﬁlt,erin%is more appropriate for :?atial LES. Indeed,
time-domain filtering may remove some of the conceptual and
practical inconsistencies that have been observed bgefracti-
tioners of LES, a few of which are discussed briefly below.

First, as intimated by Germago (1992), LES can be viewed
a8 lying somewhere near the middle of a spectrum of numer-
ical solution techniques with DNS at oné¢ end and Reynolds-
averaged Navier-Stokes (RANS) at the other end. ‘In our opin-
ion, this point of view is most self-consistent if thme-domain
filtering is exploited in LES as it is in RANS. Second, ‘Moin

_and Jimenez (1993) observe that ‘the operations of filtering
-and differentiation ‘do not comimitte on a non-uniform 'mesh.

Consequently, most subgrid-scale’ models inadvertently im-
pose different levels of dissipation in different regions of the
computational domain, a problem made worse on the highly
stretched grids associated with complicated geometries. This
problem should be circumvented by temporal filtering in con-
junction with uniform time increments. Third, again accord-
ing to Moin and Jimenez (1993): “In LES, it is highly de-
sirable for the filter width to be si’?iﬁcantly larger than the
computational mesh to separate the numerical and model-
ing errors. Practical considerations, however, usually require
the filter width and mesh to be of the same order. In this

. case, there does not appear to be a necessity for higher than

second otder numerical methods for LES.” In contrast, for
the present temporally filtered approach, the filter width is
typically an order of ma?nitude larger than the time step.
Fourth, it may be desirable in spatial DNS or LES of certain

“physical problems (e.g., jet flow) to allow for time-dependent

" Both'’ d LES can be classified f s tetn- _ loc
Both NS an can be classified fundamentally as tem- for'the purposes of control. For example, such sources could

ocalized (point) sources as a means of manipulating the flow
be used to introduce local disturbances to enhance or inhibit
mixing. Dakhoul and Bedford {1986) suggest that spatial fil-
tering is fundamentally inconsistent with the introduction of
point sources, whereas temporal filtering of a point source is



well defined.

Whereas Dakhoul and Bedford (1986) and. Aldama (1 990)
propose and develop space-time filters for LES; the author is
unaware of any purely time-filtered approach. In the next few
sections, we develop and demonstrate a spatial LES concept
based on filtering in the time domain, and we apply ‘the ap-
proach to the investigation of large coherent- structures (CS)
in a heated subsonic axisymmetric jet. For several reasons,
the jet-flow problem is well suited to the particular LES ap-
proach. First, free shear layers, jets, and wakes, whos

streamwise veloclty profiles are ectiom\l, are invjacidly un- ,

stable to disturbances of a broad s '
wavelengths). As a consequence, DNS of three-dimensional
3D) unbounded shear flows is presentl:
of y fine grid resolution reqmred and some-saort.
of subgrid-scale dissipation is virtually a necessity. Second,
the problem is of immediate practical interest to the field of
computa.uonal aeroacoustics (CAA). Specifically, it is gener-
ally believed that, for supersonic jets, most of the noise origi-
nates from the CS rather than from the small-scale turbulence

. B (1088
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walls are present, weamfort h!in:thediﬁcultiﬁ
experienced by many subgnd-scale models in the vicinity of
solid boundaries

In the next sgcﬁon, time-domain ﬁ!tenngss dmcussed in

general andapmtotypecausa.ldxgx‘ialﬁkerﬁ joped. The
overning equations for DNS are discuss iSectior 3,a.nd
tghe uli‘ﬁmm@d!ﬁedforLESBasém,_ Sptation
e:LS;-}ZHu (“says whO") of Spex
ers (1088). The preseat madel differs from |
mthat;}_; loits. ral:ratherthan, The
eyt e d"ﬁ“‘f‘dm‘.*‘m‘ e Cachah
to the solution o —e@& ons
ﬁmpmm ot L (1905), i addsessd b s«-
uoném Results of LES for the a:usmmatncs-et

in Section 6 and are compared. wtth woll-:esolved
DNS tesults Finally, some brief conclusions are offered in
Section 7. .

2 GAUSAL FILTERING

deomﬁltmfallhtoexth&oﬂwoumﬁm causal
or acausal. For application to LES, ondy causal filtering is re-
alisahl&; By:definition, causal temporal filters exploit present
and past:iaformation only, the future heingnmsiblé Con
‘sequently, in this section, we consider prototypical
and discrete causal filters. Aoont.muonsﬁlmis ﬁor
conceptual purposes; an ana.logous dmcrete filter is m:plo:ted
in pra.ctme.

A ax;;&aixi}.‘ A

theaimdovet the interval A, the temporal wi
follows: n

3(t, ) = % /‘ 3 s(r)dr

macﬁaihmw»f

' quency' .

The input to 1 ls she raw signal s(t), and the output é
the continuous , denoted by 3(¢, A). From ele-
mentary mg property of the filter defined
by Eq. 11is rea.dily derlved
3(t,0) =

lim 3(¢,4) = s(¢) @)

In general, 3 :,& § If A represents some moderately large tem-
poral wmdow then filtering s(t) via Eq. 1 will tend to remove

: oscillations of high frequency relative to A while preservmg

low-frequency oscillations, which defines a “low-pass” time-
domain Hlter.

EA A RS: Let us
the contihuous ) su that s; = s(t,), where t; = iAt,
and At is the (oonsta.nt time interval between samples. Typ-
ically, for applications to LES, A should be an order of mag-
nitude larger than At. The a.pproxxmatlon of Eq. 1 by a linear
quadrature rule results in its discrete analog

m
5= zpjsi—j

=0

where the filter coefficients p;-are determined to give the fil-
ter certain desirable properties (e.g:, low-pass characteristics,
stability; and high-order accuracy at low frequencies). Follow-
ifg Press et al. (1986), we generalize the linear digital filter

digitize

@

‘given in Eq. 3 to allow the use of previously filtered data.

ecifically, suppose

3; Zp,ai—, + Z QkBi~k (4)

Rl
Tbeﬁlw'ef 7'-;;4,-& “nonrecursisze” fog=0 for all kand
“recursive” if, for ‘at least one k, g # 0, in which case the

current value of the filtered quantxty is a linear combination
of previous unfiltered and filtered values.

FREQUENCY RESPONSE: It is instructive to examine

the frequency response of the filter associated’ with Eq. 4.
From Press et al. (1986), the transfer function, which quan-
tifies the frequency response, is given by

E j =0 pjc'-un
HQ) = 3 q”_,m (5)
:where t=v=1,0 = w*At" is the dimensionless uency,
w* = 27 f* is the dimensional circular frequency, and f* is the
dimensional physical frequency. (Throughout this work, we
denote dimensional quantities by asterisks.) In til::
to- & tat

frequency response of & recursive filter is rela
polynomial function in-the complex variable- ‘1/¢, where

¢ =" Thus, recursive filters are to nonrecursive filters what
- compact-difierence operators are to standard’ finite-difference

operators. The tational polynomial form of the t Br func-
tion allows sle latitude in sh:fcing the ﬁaqaenéy:e—
sponse. Fig. 7 compares’ ‘the modulus of the trd “function
a pro _typlcal low-pasa digital recursive filter with that of
ideslized “spectral cutoff” filter, for a nominal cutoff fre-
"Note that, for the spectral cutoff filter, ¥ = 3,
which, as we have mentioned previously, is not true in gen-
eral. The transfer function of the digital filter can be made
to more closely approximate the spectral ideal at the expense
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of including more and more history (i.e., by using larger and
larger values of m and n.)

...For the purposes of time-filtered LES; the design con-
straints;for the discrete filter are: 1) stability for all ;; 2)
H(0) =,1;.3) high-order accuracy; 4) |H(Q?)| =0 for Q > Q;

md 5) a8 little storage reguired as possible. For reasons
to be addressed fully in a subsequent paper, one is lead to
the fortunate if surprising conclusion that second-order fil-
ters: are' optimal: for the present application to LES. First,
pcond-order causal filters require relatively little storage for
Histo#y."Second, to -aveid mixing the truncation errors of the
filter afl numerical’method, one should invoke a filter with
16" higher order ‘than’ that 'of the time-advancement scheme.
Thus, & seconnd-order filter is compatible with the present
third-order time advaxcement scheme (see Section 5). Third,
and ‘a subtle point, it can be shown that second-order filtering
is considtent with the underlying subgrid-scale model (Pruett,
1996b). ‘Consequently, for our purposes, we have followed the
design procedures outlined in the digital signal filtering text
by Strum and Kirk (1988). Formally, our prototype filter is a
second-order, impulse-invariant, digital Butterworth low-pass
filter, for which m = # = 2, and pg = 0. Technically, But-
terworth filters are “all-pole” filters, whose transfer functions
are maximally flat in the vicinity of the origin. Unfortunately,
however, the transfer functions of Butterworth filters do not
vanish identically for large values of . In practice, this is
not a problem as will be shown subsequently. The nominal
cutoff frequency for our prototype filter is 2, = 1.0, for which

|H(QL)P? =0.5.

A suitable generalization from the prototype filter to a
tunable-cutoff low-pass filter is made by incorporating a pa-
rameter R., defined as the ratio of the actual and prototypical
cutoff frequencies, namely

0, At
Rc—ﬁz_K (6)

Note that R. — 0 for the discrete filter is analogousto A — oo
for the ‘continuocus filter of Eq. 1. Conversely, as R. = 00,
A — 0,in which case 3(¢, A} — ¢(2) by the propertyof Eq. 2.
Fig. 7 shows.the frequency response of the present filter for
R, = .125, a value typical for the curreat time-filtered LES
approach. Note that high-frequency oscillations are virtually
eliminated by the present filter, as desired. o

3 GOVERNING EQUATIONS

We first specify the governing equations for DNS and then
present the governing system as modified for LES. =

DNS::As a basis on which to evaluate various LES solutions,
we require a well-resolved DNS solution for the axisymmetric-
jet problem. For a compressible fluid, it is appropriate to
define a fluid state vector {p,p,T,u,v,w]T comprised of the
density p, pressure p, temperature T and velocity components
u, v, and w. The governing equations for the axisymmetric-
jet problem are adapted from those presented in Pruett et al.
(1995) for a body-fitted coordinate system # = [z, 4, 2]T on
an axigymmetric body, where z as the arc length along the
body, 4 is the azimuthal-angle, z is the coordinate normal to
the body, r = R+ zcos ¢ is the radial coordinate, R(x) is the
body radius, and ¢{z) is the angle of the surface tangent to
the body. For the jet-flow application, R = ¢ = 0, in which

case the coordinate system degenerates to = = r with z as the
axial coordinate, whereby u and w become the axial and ra-
dial velocities, fespectively. Because R = 0, the equations are
geometrically singular along the jet axis. For the continuity
equation, the singularity is removed by applying L’Hopital’s
rule along the axis (z = 0). The singularity is not problematic
for the momentum and energy equations because axial bound-
ary conditions replace the governing equations along the axis.
Specifically, considerations of symmetry require that the az-
imuthal velocity (v) vanish everywhere and that

or & Domlamem b
a—zza—'::w:() (z:O) (7)

MM&QA%M%&EL If the compress-
ible Navier-Stokes equations (CNSE) are filtered in- the time
domain according to Eq. 1, the resulting:equation system is
formally identical to that of Eqs. (15), (16), and (34) of Er-
lebacher et al. (1992), where ovetbars and tildes distinguish
conventionally filtered and Favre-filtered quantities, respec-
tively. In general, the use of Favré-filtered ?densi y-weighted)
variables reduces the complexity of the filtered CNSE. Specif-
ically, for example, the Favre-filtered axial velocity is defined
P e vt

a=§ (or i =) ®)

Other Favre-filtered quantities are defined analogously. For
the filtered equations, the fluid state vector is comprised
of a mixture of conventionally and Favre-filtered quantities,
namely [p,p,T,,5,%]T. The filtered governing equations
contain residual stresses not present in the original equations,
which are decomposed into Leonard.stress, cross-stress, and
Reynolds-stress terms denoted by L, C, and R, respectively,
following the notation of Erlebacher et al. (1992). Of these,
C and R must be modeled; L'can be computed. . .

Several candidate subgrid-scale models are available; how-
ever, for our present purpose, we adapt the SEZHu model
gpeziale et. al, 1988) as adapted by Erlebacher et al. (1992).

veral considerations favor this selection. First, te: demon-
strate the time-filtered ‘approach, the filtering process must
participate in the model, rather than simply: servingas a con-
ceptual framework as it does in sothe models (e.g.,-Smagorin-
sky). Second, -although present results that a dy-
namic model (Germano et al., 1991) is desirable, we wanted
initially to avoid some of the pitfalls of dynamic subgrid-scale
models, particularly, the need to stmooth the computed model
constants. Finally, the SEZHu model 1s ‘extremely well docu-
mented in Erlebacher et al. (1992). =

- Formally, our implementation of the SEZHu model is vir-
tually identical to that of Erlebacher et al. (1992), except,
of course, that the filter is temporal. In tensor notation, the
dimensionless filtered equations, with the modeled terms de-
noted by underlines, are S

wip=pf ()
0p | O(Pis) _ ‘
Bt + 82;, | =0 (10)
o 8 it a - - = S 3
) ——(%1:-*—) + 9%, {kau; + pldrty — u,,u,)] =
op 0

-5 + 5 (e + #D)5u] (11)
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-(r- I)§D+ [(n.,-i-_z)gf] 7 1)3 (172)

+ oGt - o) =

where

8’&5 C y
D= w9
is the resolved-scale dilatation,
~ 1
St = 2(&w — §D6“) (14)

Oy is the kronecker delta, and &, is the resolved-ecale strain-
rate tensor, namely:
- _ 1 8‘!'&;, * Qi
eu = 2 | 8y + 835] (15)

For brevity, the physical viscosity and thermal conductivity 7

are denoted, respectively, as

b= s
" Re ' M’RePr

where Re, Pr, and M uetkedamenswnless Reynoids
Prandtl, and Mach numbers, respactively. Similarly, the eddy
viscosity and the eddy thermal conduesivity are given by .

pr = oz’zm"’ ; Kp=- M‘;‘; ~an

where [ is a length scale to be déned shortly, Prr is the
turbulent Prandtl number, v is the ratio of specific heats,

and = SMSM : (18)

Whereas the underlined terms on the nght«hmd sides of the
fo equations model R, the underlined terms on the

eft-han axda which are pro) -référred to as the resolved
stresses, are oomput.:ble by filtering the resolved fields. For
the present subgrid-scale model, the resolved stresses model
the sum L + C

In the o SEZHu subgrid—scale model (Spezm[e et al,
1988), th olds stresses were split into deviatoric an
motropic arts, which were modeled s y. In the more

detailed pap;cgf Erg:::gheée et al.
present appr is dl.se?ard
on-the rationale that its eontnbution aho d be small for tur-
bulent Mach numbers M; < 0.6 (a constraint satisfied by most
compressible flows). Several other subtleties of the i

tation of the model are not immediately apparent upon the
study of Erlebacher et al. (1992). First the viscous-stress
terms of the filtered momentum equatlons, and the dissipa-
tion function ® and thermal-stress terms of the filtered en-
ergy equation, formally involve conventionally filtered rather
than Favre-filtered quantities. Becguse these quantities are

1 2), on which the

unavailable, however, they are approximated by their Favre-
filtered equivalents. Second, terms that arise from subgrid- -

scale fluctuations of u, and x, a.:eneglected Third, the re-
solved stresses are computed using 7 rather than p, the latter
of which is unavailable. These approximations should be con-
sidered as additional modeling errors.

three constants. Followmg

(16)

HTOR{
‘(0 041?&3 »The a:&’ment preaiure mﬂg physical expenment

'peratura, and density, have been- normahzed by U7, T?, and

Equatio

Erlebacher et al. (1992), we-use
Prr = 0.5 and C, = 0.012. It remains to determine [, which,
for the original SEZHu model, is & characteriitic length scale
related to s aﬁ?ﬁ ‘grid resolution, Specifically, Eriebacher et
al. (1 ngg thatl—chuaptxmﬁ(mtiieaenseofpre-
sérving the Galflean invariance of certain terms of the model)
for ¢ = 2, where Az is the nymd computationai gﬁéf‘

Here, w&mustdetermme Mdomhechoweofthetmm-
ralscaleA(e:ga‘emleatly,Rc » for which purposes we appeal
to results from the area of h ynamic stability. From lin-
ear stability theory, we know that jets, wakes, and free shear

layers are dispersive; i.e., waves of different frequencies prop-

d agate. at - mto ‘velocities. However, ‘ﬁsturbanm of
moderate equencies P at a velocity approx-
imately that% , the a.veragr?:ﬁ‘g he jet and ambient ve-
locities, Accordi we define Az* as the characteristic size

?f an hzddy assocmted th.h a disturbance of cutoff frequency
> that s

Az® = %;:!= 2WURC§V At* (19)

F‘mﬂy, we note that the CNSE are recovered from the
governing equations in the limit as A — 0.

‘4 TEST CASE

The numerical test case was chosen to approximately replicate
an acoustics experiment that is being conducted at NASA
Research Center. Specifically, we investigate a heated

Langley
subsonic. (M = 0.8) etexm ated
h‘m(méﬁlj , %‘,MWMt quiescent a;

Mach num-
;etr&ﬁmasR = 0.5 in.

te (2160 pif.). However, this

gh & Re s number for a DNS computa-
tlon of reasonable expense; consequently, the computational
experiment assumes an ambient pressure 10 percent that of
the physical experiment; that is,. 216 psf,-whith results in
Re = 10153 based on the jet conditions and the nominal jet

ed radius. Inthe physical experiment, the ambient air was quies-
‘cent. 'However, comp onal fi

s with unbounded
shear layers typically encounter numerical difficulties (as did

‘the present work) whenever the ambient stream ig perfectly

ot al.,.1984). . Consequently, it is cus-

quiescent (Tan
.tomary for the ettommieeﬂemn%streamwuha
.velocity of a fed: percent of the jet

velocity. For the present

problem, we use an ambient to jet velocity (U) . ratxo of 10

percent. We further amme that the jet is &ﬂly expanded, in

which case, in the abser aniy disturbances, the pressure
is constant both radiafly andaadally S

- n the governing eqéatidns aud in the results to follow, all
been norn ed by R‘ and the velocities, tem-

jr 45
pj, respectively. Pressure is normalized by pjU;2.

n 17 requires Vﬁmﬁf‘
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5 NUMERICAL METHODOLOGY

Spatial DNS and LES can be viewed as three-step processes.
‘First, ‘an 'u;a)erturbed time-independent base state is ob-
‘¥ained, ‘usually by boundary-layer techniques. Second, the
“base stute is subjected to either random or temporally peri-
-adi¢ perturbations, which are typically imposed at or near the
computational inflow boundary. The structure of these dis-
“turbances is'commonly obtained from linear stability theory,
“or mote récently, from parabolized stability equation (PSE)
“methodology. ‘Third, the spatial evolution of the prop;,fa.ﬁng
“disturbances Is computed g solution of the complete Navier-
“Stokeq bquations, with (LES) or without (DNS) subgrid-scale
‘models: We discuss in turn each of these steps in the context
“of i;he"tﬂ!prrent problem. -

1 COMPUTATION OF THE BASE STATE: The applica-
.tion of standard fully implicit boundary-layer techniques to
-the axldymmetric jet revealed an unanticipated computational
-difficulty; namely, the Jacobian matrix associated with the
.iteration procedure was extremely ill-conditioned and the it-
.eration;did not converge. The computational problem ariges
from a=xeversal of sign.in the transverse velocity experienced
by interpal boundary-layer flows such as jets, wakes, and free
ar layers.: To circumvent this numerical difficulty, a semi-
.implici¢ boundary-layer technique was developed, which is-is
.documented in Pruett (1896a). The interested.reader is re-
.farred to this paper for details. Also to avoid numerical diffi-
-cultiesgthe internal shear layer is given finite thickness at the
lip of the jet. The boundary-layer solution can be viewed as
.an unstable equilibrium state of the CNSE. ;

MPOSITION QF THE DISTURBANCES: The nature of
instabilities is different for wall-bounded and free-shear flows.
“Specifigally, wall-bounded flows are subject to viscous insta-
bilities, for which typically only a relatively narrow band of
frequencies are unstable. In contrast, free-shear layers, jets,
and wakes are subject to inviscid instabilities over a broad
.range of frequencies. Relative to viscous instabilities, inviscid
instabilities experience rapid growth rates. Thus, for simulat-
-ing instability waves in wall-bounded flows, it is essential that
-the imposed disturbances be consistent with eigenfunctions

-obtained from stability theory; otherwise, one introduces spa- -
-tial transients that may corrupt the particular instability :of
-interest. On the other hand, one ¢an be somewhat cavalier.in

-imposing disturbances in free-shear flows because of the flow’s
tendency to rapidly organize arbitrary disturbances into the
dominant eigenmodes. Consequently, following Mankbadi et
al. {1994), at the inflow boundary, we impose a temporally
.periodic fluctuation comprised of a few harmonics of specified
_frequencies, but whose structure is not derived from stabi

theory.. At present, we impose the disturbance only thra

the streamwise velocity. Specifically, at the inflow boundary
T=2T S

@)

u(t, 20,2) = UB(zo,Z) + E‘U'(t, z)
w(t,z) = &(2)[sin(wyt) + cos(0.5wst)] - (21)
#(z) = exp[—(2(z-1))"] 22)

where the subscript B denotes the base state, the prime de-
notes a fluctuating quantity, and the subscript f denotesthe |,
fundamental frequency. The function ¢(z) is used to shape

the disturbance profile so that the disturbance is largest near

- the edge of the jet but essentially vanishes along the jet axis
-and at the far-field boundary. Numerical experimentation re-

veals the most rapid development of the jet for wy = =, which

-ral:integration has been replaced

‘followed by one second-order Adams-Bashforth

_ propagaté out of the domain.

corresponds to a Strouhal number (St = f;R;/U;) of 0.5,

in keeping with the observations of Mankbadi et al. (1994).
Following the early computational investigation of free-shear
layers by Riley anid Metcalfe (1980), we include: anout-of-
phase subharmonic component to enhance pairing of adjacent
vortices. At present, we use a forcing amplitude of e = 0.005,
which is ramped up slowly (over a time interval of one pe-
riod of oscillation at the fundarnental frequency) to minimize
temporal transients. : | »

: ND LES METHODOLOGIES: For both the DNS
and LES, we adapt the 5h-0rd%1;g§meripﬂ schemie of Pruett
et al. (1995), to which the reader is referred for details.
Briefly, this algorithm exploits fully explicit time advance-
ment, high-order compact-difference methods (Lele, 1992)
for aperiodic spatial dimensions, and spectral collocation
methods for periodic spatial dimensions. ‘Specifically, for
the present axisymmetric-jet application, we use fourth- and
sixth-order compact difference schemes in the axial and ra-
dial dimensions, respectively. The azimythal dimension, of
course, does not come into play for the axisymmetric case.
The method of Pruett et al. (1995) uses a variable step for
time advancement in the context of a three-stage, low-stor.
Runge-Kutta (RK3) scheme. However, the present LES appli-
cation, which involves temporal filtering, requires a constant
time step. Consequently, the ori %&Kﬂ&t& tempo-

# fixed-length, multiple-
step, third-order Adams-Bashforth {AB3) technique. An ad-
ditional motivation for replacing the RK3 method was that it
was not immediately clear to the author how temporal filter-
ing would interact with time advancement whenever multiple
stages per time step were involved, the fear being the pos-
sibility of numerical instability. ‘The storage requirement for
the algorithm with AB3 time advancement is about 150 per-
cent that of the original algorithm with RK3. ‘ In general,
multiple-step methods are not self starting. The AB3 inte-

ration is started initially with a single first-order Eulet step
the perturbation is ramped slowly to full amplitude, and the

‘initial state is in (near) equilibrium, the initial loss of tempo-

ral accuracy is inconsequential.
For both the DNS and the LES; the symmetry conditions

&w;,en by Eq. 7 are imposed along the jet axis.” At the in-

houndary, for the present: axisymmetric-jet: problem, the

Hiow is @verywhere subsonic, and one characteristic points up-
.atream. Consequently, not all flow variables can be specified.

Currently, we specify v, w, T, and the incoming Riemann in-
variants. At the far-field boundary (z = zmax), we adapt

‘the non-reflecting boundary conditions of Thompson (1987)

‘o thodifled by Pruett et al.’(1995). At the outflow boundary,
‘we &xploit a buffer-domain approach (Streett and M‘acaraeg,
- 1989/1990). Near the outflow boundary, a buffer zohe of fi-
“nite width is constructed in which both the base state and

the governing equations are modified to énsure that all waves

. Finally, we note that the préoént LES al rit&n is; one of

: few to incolgorate high-order numerical methods, another be-

ing that of El-Hady and coworkers (5}.

. ; On the same grid, an
LES computation with the present algorithm requires not
quite twice the computational effort as DNS approxi-

"mately 2.5 times the storage for 3D flows (twice the stor-

e for two-dimensional or axisymmetric flows). Most of the
ditional memory is relegated to storage of the time histo-



ries of quantities assoclated With the time-filtered Epproach.
One must keep in mind; however, -that, by definition;: LES
allows ¢d Egutatiem on- coarser grids than DNS; H: for the
present L rithm, for example, the grid resélhusion rela-
tive to DNS could be reduced. by a factor of thredia-exch of
the three spatial dimensions and time, then storage fequire-
ments would be diminished by a factor of ztetymn,
and processor time would diminish by a |

mately 40. Thus, measures of efficiency in LES muat eansiéer
not only nominal storage -and operation counts, but also the
ﬁ:)tenna.l ‘grid-cc factor, which could oono&u!sa!{ be

gl;gl for temporaiiy ﬂiiered LES than fot convention

proaches.

6 RESULTS

For the DNS and LES results presented below the computa-
tional domain was

0<z<€2 ; 0<z<5:

The length of the domain was sufficient’ toa.lk:wm salri
the adjacent vortices shed at the edge of the jet. The
percent of the axial extent of the domain lies'in :
main; results within the buffer domain should be disregar

as unphysical. For convenience in presenting repults; we- de-
fine tp, the time in periods of oscillation at thve ﬁmdamenta.l
disturbance frequency.

DNS: The DNS. resnlt.&me obtained on the oomgamm&al
domain defined above at:an extremely fine spatial grid s
lution of 1280 x 512 and a temporal resoluti &
per (fundamental) disturbance period. To amva at
olution, computations were made on successively f
beginning from a coarse.grid of 256 x 128. For eac]
olution, an estimate of the tamporal resolution

stability was made based on stability analyses of model ac vec- -

tion and diffusion equations. All computatxons except for that
on the finest grid eventually “blew up” due to numeri
bilities associated with unresolved scales. In contrast, Fig. 7
shows instantaneous contours of constant density at tp =18
for the fully resolved tation. On the:finest grid, the
DNS computation required in excess of 20 CPU hours on a
Cray C90. Gonsequently, calculations at a higher Reynolds
number would have been impraacmcal given the oomput&tioﬁl
resources available.

The present fine-grid DNS repraents one of the,lanltaceu
rate and highly refined computations of an unl shear
layer of which we are a , another being that of Colonius et
a.l (1995), and Fig, 7 aff rds considerable detail. It is inter-
esting to note a striking correlation between the contours of
constant.density and tlmse of constant vorticify, (wot shown
due to space limitations). Both quantxtxes cleacly.show the
roll-up of the shear layer at the jet’s edge into a vortex street
and the subsequent - of adjacent vortices, phenomena
common to unbounded shear flows. A similar qomparisou of
vorticity and pressure contours is also most revéaling. Not.un-
expectedly, the centers of low pressure correspen__predaely
with the centers of the large vortices.- As en

merge, the individual pressure lows are replaced by la;sfr
and stronger low pressnre regions. High pressure regious lie
between adjacent vortices.

LES: For LES of jet flow, the trick is to ﬁnd an appro-
priate amount of eddy viscosity. If the LES subgrid-scale

model is insuficiesitly ‘issipative, the computation will Bléw *
up. On the other hand, if the model is excessively dissipative,
the instabilities that result in- .vortex shedding and pairing
are sup or diminished. It appears possible, however,
that an intermediate amount of dissipation will preserve the
e-scale. featiires of the flow while preventing numerical.in-

ssociated . with, unresolved scales. In particular,
Figs, 7 and 7 presen

d g;me st o LB - Se
sxty and- Tespectively, 'Om an compu-
ation . 1 grid resolution of 432 x 182, coarser.by a
threemea.chdu:actmnthantheD S
mi 102413! The time is ip 058 and
'ﬂmout;enm tlme&tepsperpen
explicit time-advancement schemes t ca‘li{dzgeld

roximately, say, an order of magnitude larger than
. Herd, wenged A/At = % 0.125).:At this
QU nc;(, the maximum eddy vnscosn‘.y was gpproxi-
ies the maximum physical viscosity. Whereas

jon required 20 CPU hours, the 432 %192
; quired two-CPU hours.- {Calculations on
5 ﬁd'»ﬂ%&xlzs -for which the computation
eveasnﬁyfhflewup,mqumdoni a matter of minutes.) Rel-

over-resolution 1n time, practicality demands a
that is
the ttme

atlve to t . vesults of- Fis 7, the shear-layer:roll-up
dthemoderateb mmm
utstim*-’m starded, but not revented quéntly;
W@Wy resolved could serve as a compu-
tational-platlofiii for the investigation of jet noise. - To this
end and fellowing Colonius et al. [3], we extract the com-

pressible dilatation from the numencal solution; Theé instati-
taneous dilatation field at- tp = 18 of the moderately-¥esolved
LES compnta&an is shown m Fig. 7. It would appear that,
in terms of B ] arge vortex-appears:as an
acoustic quadupo Thﬁe Tesults suggest that signi
acoustic tadiation is aasoclated with the large-scale vortices,
in contrast to the view expressed by Tam (1995) for subsonic
Jets .

Fbr the pﬂnnt work in , our primary obJectwe has
been to demonstrate-the ty and practicality of time-
filtered spatial LES. As one poshible measure of success; we
exﬁzine the resolved subgrid-scale stresses computed by the
mbgid-acale model, the principal componeat-of

ated in Fig: 7. For an LES computation, the
magnitude of thit Fesolved stresses can be viewed as a mea-
sure of ill resolution; or equivalently, as identifying the re-
gouswm additional dissipation is needed to prevent numer-
. For the present time-filtered approach, these
terms are deﬁned, Judgmg by the apparent smocthhess of
the contours in the figure. In summary, these results suggest
that a time-filtered dynamic subgrid-scale model could be de-
veloped. We suspect that dynamic modeling (Germano et al.,
1991) would improve the present results by limiting the eddy
viscosity only to regions where it is needed. For this-reason,
the dynamic approach is dudged to be more appropriate for
transitional ﬁows, as was demonstrated for compressible flow,
for example, in the work of El-Hady et al. (1993).

~In closing, we comment that computations of 2D or ax-
isymmetric ded shear flows are both less and more
difficult than mntaﬁw of 3D flows. Although the total
compu : are lower for simulations in 2D,
theresolm::é&edfarthmtwodtmwm may well be
‘than for:the same two dimensions of a 3D simulation.

e reason:is that, in 3D, the third dimension providesa path
for relief of Reyno lds stresses that cannot be relieved in 2D.
Complete vahdatlon of the present time-filtered LES concept




—~a

and its application to aeroacoustics ultimately will require the
consideration of fully 3D flows.

{
7 CONCLUSIONS

. Tit;-he-domain filtering for the residual-stress models of
LES is a viable concept that should be investigated fur-

ther. 'Preliminary iresults suﬁest that time-domain fil-
mgﬁ sy have significant advantages relative to con-
i éﬁ space-filtered approaches.

o The current baseline LES algorithm is one of a very few
LES algorithms to exploit high-order numerical methods.

o The present subgrid-scale model, which involves time-

+ + domgain filtering, might be improved for application to

4. transitional flows hy recasting it in a dynamic-model con-
- i.-text: (Germano et al., 1991).

o The present approach to LES appears to be applicable
to aeroacoustics, as had been hoped.

e A thorough validation of the time-filtered LES approach
and its usefulness to aeroacoustics will require LES of
fully 3D flows.
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Figure 1. Transfer function of prototype second-order
causal filter compared with spectral-cutoff transfer func-

tion.
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f‘&;ue 2. Contours of constant deasity obtained from

-resolved (1280 x 512) DNS calculation at tp = 18.

Flow is left to right. Jet centerline is along lower bound-

ary of figure. Contour levels denote variations of 0.82 <
2.

p < 2.15. Buffer domain shown.
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Figure 3. Contours of constant density obtained at tp =

18 from LES of 432 x 192 grid resolution. Maximum eddy
visc is 8 times. that of physical viscosity. Relative
to DNS, vortex roll-up and pairing events are retarded
but not prevented. Contour levels denote variations of
0.95 < p £ 2.13. Buffer domain shown.
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Figiire 4. Contours of constant pressure obtained from
LES calculation of resolution 432 x 192 at tp = 18. Con-

tour levels denote variations of 0.87 < p < 1.26. Buffer
domain. shown.
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Figure 5. Isolevels of dilatation D obtained at tp = 18

from LES of 432 x 192 grid resolution. Contour levels
denote variations of —0.10 < D < 0.13. Buffer domain
not shown. .
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Figure 6. Principal component of resolved stresses ob-

~ tained at tp = 18 from LES of 432 x 192 grid resolu-
“tion. Contour levels denote variations from —4.2 x 10~°
“to 3.3 x'10=%, Buffer domain shown.




