
I11111 111111ll111 Ill11 Ill11 IIIII IIIII 111ll Ill11 11111 IIIII 11ll11111111111111

EXTERNAL
INPUT In(#)

US005930781A

United States Patent [19] [i l l Patent Number: 5,930,781
Toomarian et al. [45] Date of Patent: Jul. 27,1999

r e 1 e e e

-HIDDEN SET SH

NETWORKS kl 3 OUTPUT Un(t)

e
e

e e
e

e b9 e e e e

NEURAL NETWORK TRAINING BY
INTEGRATION OF ADJOINT SYSTEMS OF
EQUATIONS FORWARD IN TIME

Inventors: Nikzad Toomarian, Encino; Jacob
Barhen, La Crescenta, both of Calif.

Assignee: The United States of America as
represented by the Administrator of
the National Aeronautics and Space
Administration, Washington, D.C.

Appl. No.: 07/969,868

Filed: Oct. 27, 1992

Int. C1.6 .. G06F 15/18
U.S. C1. ... 706/25; 706116
Field of Search 395123, 24, 25,

4,804,250
4,912,652
4,918,618
4,926,064
4,951,239
4,953,099
4,967,369
4,990,838
5,046,019
5,046,020
5,050,095
5,052,043
5,058,034

395122, 27, 50; 706115-19, 20-23, 25

References Cited

U.S. PATENT DOCUMENTS

211989 Johnson 349117
311990 Wood .. 706125
411990 Tomlinson 706125

811990 Jourjine 706126

911991 Basehore 70611

911991 Gaborski 3821157
1011991 Murphy et al. 706125

OUTPUT SET , SI L-rl

5,075,868 1211991 Andes et al. 706125
5,086,479 211992 Takenaga et al. 3821157
5,093,899 311992 Hiraiwa 706125
5,105,468 411992 Guyon et al. 395122
5,276,770 111994 Castelaz 395123
5,283,855 211994 Motomura et al. 395123

Primary Examiner-Tariq R. Hafiz
Attorney, Agent, or Firm-John H. Kusmiss

[571 ABSTRACT

A method and apparatus for supervised neural learning of
time dependent trajectories exploits the concepts of adjoint
operators to enable computation of the gradient of an
objective functional with respect to the various parameters
of the network architecture in a highly efficient manner.
Specifically, it combines the advantage of dramatic reduc-
tions in computational complexity inherent in adjoint meth-
ods with the ability to solve two adjoint systems of equations
together forward in time. Not only is a large amount of
computation and storage saved, but the handling of real-time
applications becomes also possible. The invention has been
applied it to two examples of representative complexity
which have recently been analyzed in the open literature and
demonstrated that a circular trajectory can be learned in
approximately 200 iterations compared to the 12000
reported in the literature. A figure eight trajectory was
achieved in under 500 iterations compared to 20000 previ-
ously required. The trajectories computed using our new
method are much closer to the target trajectories than was
reported in previous studies.

20 Claims, 4 Drawing Sheets

Microfiche Appendix Included
(1 Microfiche, 26 Pages)

U S . Patent Jul. 27,1999 Sheet 1 of 4

I
v,

e

0

a

0

t I

0

0

e

5,930,781

U S . Patent

-
Jul. 27,1999

SET s*= dF/d i i ,V(t=O)=O -200

Sheet 2 of 4

t f -7-
STORE (y> S,p&

t o

5,930,781

-210
STORE w(tf) 220

I
L I I

1 I
I

230 w r 240
I 235

I I

- 255

',""

FIG. 2 - 280
)I SUBTRACT FROM -3ac,(7)

I

285
290 T-T+AT ,-

+ t- t o STORE -;P. (T + A T) r

U S . Patent

0.6

0.0 '

-0.6
-0

0.6

0.0

-0.6

Jul. 27,1999

3 0.0 0.6

FIG. 3

I
1

-0.6 0.0 0.6

FIG. 5

Sheet 3 of 4

0.6

0.0

-0.C
-0

QL
0
[kL
QL
W

4

3

2

1

5,930,781

6 0.0 0

FIG. 4

0'

6

0 200 400 600 800
LEARNING ITERATIONS

FIG. 6

U S . Patent Jul. 27,1999 Sheet 4 of 4 5,930,781

0.0

0.6 I

- -

0.6

0.0

-0.6

-0.6 I-

- -

J I I

0.0 - -

CASE 1
CASE 2
CASE 3

- ---

.
I I

I
I

-

-0.6 1-1
-0.6 0.0 0.6 -0.6 0.0 0.6

FIG. 7’

5

4

1

0

FIG. 8

0 200 400 600 800 1000 FIG. 9 LEARNING ITERAnONS

FIG. 10

5,930,781
1 2

NEURAL NETWORK TRAINING BY
INTEGRATION OF ADJOINT SYSTEMS OF

EQUATIONS FORWARD IN TIME

Origin of the Invention

gation”. In D. E. Rumelhart, J. L. McCleland and the PDP
Research Group, Parallel Distributed Processing: Explora-
tion in the Microstructure of Cognition, Vol. 1, Foundations,
Cambridge: MIT PressiBradford Books.

Sato, M. (1990). “A real time learning algorithm for
recurrent analon neural networks”. Biolocical Cvbernetics.

BACKGROUND OF THE INVENTION 5

The invention described herein was made in the perfor-
mance of work under a NASA contract, and is subject to the
provisions of Public Law 96517 (35 USC 202) in which the
contractor has elected not to retain title.
Microfiche Appendix

A computer program (microfiche, 26 pages) embodying
the invention is listed in the microfiche appendix filed with
this specification. The microfiche appendix contains mate-
rial which is subject to copyright protection. The copyright

62 (3), 237-24:.
Toomarian, N., Wacholder, E., and Kaizerman, S. (1987).

“Sensitivity analysis of two-phase flow problems”. Nuclear
Science and Engineering, 99 (l), 53-81. Toomarian, N. and
Barhen, J. (1991). “Adjoint operators and non-adiabatic
algorithms in neural networks”. Applied Mathematical
Letters, 4 (2), 69-73.

Werbos, P. J. (1990). “Backpropagation through time:
what it does and how to do it”, Proceeding of the ZEEE, 87

”

(1 n).
owner has no objection to the facsimile reproduction by
anyone of the Patent d a ~ m e n t or the Patent disclosure, as it
appears in the Patent and Trademark Office patent file or
records, but otherwise reserves all copyrights whatsoever.
Technical Field

The invention relates to methods for training neural
networks and in particular to neural network training meth-
ods using adjoint systems of equations corresponding to the
forward sensitivity equations of the neural network.

‘-&1iamS, R, J,, and zipser, D, (1988). “ ~ l ~ ~ ~ ~ i ~ ~ algo-
rithm for continually running fully recurrent neural net-
works”. Technical Report ICs Report 8805, UCSD, La Jolla,
Calif. 92093.

Williams, R. J., and Zipser, D. (1989). “A learning algo-
rithm for continually running fully recurrent neural
networks”, Neural Computation, 1 (2), 270-280.

Zak, M. (1989). “Terminal attractors in neural networks”.
Neural Networks, 2 (4), 259-274.

20

Background Art 2s 1. INTRODUCTION
The following publications represent the state of the art in Recently, there has been a tremendous interest in devel-

neural network training techniques, and are referred to in the oping learning algorithms capable of modeling time-
specification below by author name and year: dependent phenomena (Grossberg, 1987; Hirsh, 1989). In

Barhen, J,, ~ ~ ~ ~ ~ ~ i ~ ~ , N, and Gulati, s, (1900~) “Adjoint particular, considerable attention has been devoted to cap-
operator algorithms for faster learning and dynamical neural 30 turing the dynamics embedded in observed temporal
networks”. In David S. Touretzky (Ed.), Advances in Neural sequences (e+?, Narendra, 1990; Parlos et al.9 1991).
Information processing Systems, vel, 2, 498-508, sari In general, the neural architectures under consideration
Mateo, Calif.: Morgan Kaufmann. may be classified into two categories:

Barhen, J., Toomarian, N. and Gulati, S. (1990b). “Appli- Feedforward networks, in which back propagation
cation of adjoint operators to neural learning”. Applied 3s through time (Werbos, 1990) can be implemented. This
Mathematical Letters, 3 (3), 13-18. architecture has been extensively analyzed, and is

Cacuci, D. G. (1981). “Sensitivity theory for nonlinear widely used in simple applications due, in particular, to
systems”. Journal Math. Phys., 22 (12), 2794-2802. the straightforward nature of its formalism.

Grossberg, S. (1987). The Adaptive brain. Vol. 2, North- Recurrent networks, also referred to as feedback or fully
Holland. 40 connected networks, which are currently receiving

Hirsch, M. W. (1989) “Convergent activation dynamics in increased attention. A key advantage of recurrent net-
continuous time networks”. Neural Networks, 2 (5), works lies in their ability to use information about past
331-349. events for current computations. Thus, they can provide

Maudlin, P. J., Parks, C. V. and Weber C. F. (1980). time-dependent outputs for both time-dependent as
“Thermal-hydraulic differential sensitivity theory”. Ameri- 4s well as time-independent inputs.
can Society of Mechanical Engineering paper WNHT-56. One may argue that, for many real world applications, the

Narendra, K. S. and Parthasarathy, K. (1990). “Identifi- feedforward networks suffice. Furthermore, recurrent net-
cation and control of dynamical systems using neural net- work can, in principle, be unfolded into a multilayer feed-
works”. ZEEE tramaction on Neural Networks, 1 (l), 4-27. forward network (Rumelhart et al. 1986). Adetailed analysis

Oblow, E. M. (1978). “Sensitivity theory for reactor SO of the merits and demerits of these two architectures is
thermal-hydraulic problems”. Nuclear Science and beyond the scope of this paper. Here, we will focus only on
Engineering, 68, 322-357. recurrent networks.

Parlos, A. G., et. al. (1991). “Dynamic learning in recur- The problem of temporal learning can typically be for-
rent neural networks for nonlinear system identification”, mulated as a minimization, over an arbitrary but finite time
preprint ss interval, of an appropriate error functional. The gradients of

Pearlmutter, B. A. (1989). “Learning state space trajec- the functional with respect to the various parameters of the
tories in recurrent neural networks”. Neural Computation, 1 neural architecture, e.g., synaptic weights, neural gains, etc.
(2), 263-269. are essential elements of the minimization process and, in

Pearlmutter, B. A. (1990). “Dynamic recurrent neural the past, major efforts have been devoted to the efficacy of
networks”. Technical Report CMU-CS-90-196, School of 60 their computation. Calculating the gradients of a system’s
Computer Science, Carnegie Mellon University, Pittsburgh, output with respect to different parameters of the system is,
Pa. Pineada, F. (1990). “Time dependent adaptive neural in general, of relevance to several disciplines. Hence, a
networks”.In David S. Touretzky (Ed.), Advances in Neural variety of methods have been proposed in the literature for
Information Processing Systems. Vol. 2, 710-718, San computing such gradients. A recent survey of techniques
Mateo, Calif.: Morgan Kaufmann. 65 which have been considered specifically for temporal learn-

Rumelhart, D. E., Hinton, G. E. and Williams, R. J. ing can be found in Pearlmutter (1990). We will briefly
(1986). “Learning internal representations by error propa- mention only those which are relevant to our work.

5,930,781
3 4

Sat0 (1990) proposed, at the conceptual level, an algo-
rithm based upon Lagrange multipliers. However, his algo-
rithm has not yet been validated by numerical simulations,
nor has its computational complexity been analyzed. Will-
iams and Zipser (1989) presented a scheme in which the s
gradients of an error functional with respect to network
parameters are calculated by direct differentiation of the
neural activation dynamics. This approach is computation-
ally very expensive and scales poorly to large systems, The

capacity required, which scales as o(N~), where N denotes
the size of the network.

Pearlmutter (1989), on the other hand, described a varia-
tional method which yields a set of linear ordinary differ-
entia1 equations for backpropagating the error through the IS tion.
system. These equations, however, need to be solved back- FIG. 6 is a graph of the error as a function of the number
wards in time, and require temporal storage of variables of learning iterations for each of the cases illustrated in
from the network activation dynamics, thereby reducing the FIG.’s 3-5.
attractiveness of the algorithm. Recently, Toomarian and results of
Barhen (1991) suggested a framework which, in contradis- 20 a neural network learning a figure-eight motion using the
tinction to Pearlmutter’s formalism, enables the error propa- invention,
gation system of equations to be solved forward in time, FIG. 10 is a graph of the error as a function of the number concomitantly with the neural activation dynamics. A draw- of learning iterations for each of the cases illustrated in back of this novel approach came from the fact that their
equations had to be analyzed in terms of distributions, which zs
precluded straightforward numerical implementation.
Finally, Pineda (1990) proposed combining the existence of
disparate time scales with a heuristic gradient

mate gradient evaluation technique, however, placed severe 30 system whose temporal evolution is governed by the fol-
limits on the applicability of his method.

plying the sum by a learning rate and subtracting the product
thereof from a current neuron parameter vector to produce
an updated neuron parameter vector.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram of a recurrent neural network

FIG. 2 is a block diagram illustrating architecture which

training in neural network by integration of adjoint systems
of equations forward in time.

FIG. 3, 4 and 5 illustrate different simulation results of a
neural network learning a circular motion using the inven-

employed in carring out the invention.

inherent advantage of the scheme is the small storage 10 Performs the Process embodying the Present invention for

 FIG,'^ 7, 8 and 9 illustrate different

FIG.’s 7-9.

DETAILED DESCRIPTION OF THE
INVENTION

computation. 2, TEMPORAL LEARNING FRAMEWORK
The adiabatic assumptions and approxi- We formalize a neural network as an adaptive dynamical

lowing set of coupled nonlinear differential equations:
SUMMARY OF THE INVENTION

(1) The invention trains a neural network using a method for
calculating the gradients of an error functional with respect 35
to the system’s parameters, which builds upon advances in
nonlinear sensitivity theory (Oblow 1978, Cacuci 1981). In
particular, it exploits the concept of adjoint operators to where u, the Output Of the nth neuron (%(O> being
reduce the computational costs. TWO novel systems of the initial state), and T,, denotes the strength of the synaptic
equations for error propagation (i.e., the adjoint equations), 40 from the m-th to the mth neuron. The constants k,
are at the heart of the computat~ona~ framework, These characterize the decay of neuron activities. The sigmoidal
equations are solved simultaneously (i.e., forward in time) functions the with gain
with the network dynamics. The computational complexity given by Y,; typically, g,(y,Xbtan h(y,X). In Order to imp1e-
of the algorithm scales as O(N3) per time step, the storage merit a mapping f r o m a n
requirements are minimal i.e., of the order of O(N2), while 45 N~-dimensional hut space to an No-dimensiona1 Output
comp~~cat~on arising from the presence of distributions in space, the neural network is topographically partitioned into
our earlier framwork are avoided. In the remainder of this three mutually exclusive regions. As shown in FIG. 1, the
specification, the terms sensitivity and gradient will be used partition refers to a set Of hut s ~ , a set Of Output

0, + Knun = g, [yn[c Tnmum + In]] r > 0

interchangeably.
The method of the invention trains a neural network so

that a output state vector thereof obeys a set of
forward sensitivity equations over a finite repeatable learn-
ing period, the method including setting the

neurons So, and a set of “hidden” neurons S,. Note that this
architecture is not formulated in terms of “layers”, and that
each neuron may be connected to all others including itself.

Let i(t) (in the the Overhead bar denote a
output vector) be an vector Of target tempora1

state vector to zero at the beginning of the learning period, patterns, with zero in the input and
defining first and auxiliary adjoint systems of equations 5s Output sets Only. When trajectories, rather than mappings,
governing an adjoint function and an auxiliary adjoint
function, respectively, of the neural network and corre-
spending to the forward sensitivity equations, setting the
adjoint function to at the beginning of the learning
period and integrating the adjoint system of equations for- 60
ward in time over the learning period to produce a first term
of an indirect effect of a sensitivity gradient of the neural
network, setting the auxiliary adjoint function to zero at the
end of the learning period and integrating the auxiliary
adjoint system of equations forward in time over the learn- 65
ing period to produce a remaining term of the indirect effect,
computing a sum of the first and remaining terms, multi-

are considered, as we shall see in the sequel, components in
the hut set may vanish. Hence, the time-dependent

encodes component-
contribution of the target temporal pattern via the expression

hut term in Eq. (l), i.e.,

a,@) i f n E S, (2)

0 i f n E S H U S O
In (r) =

To proceed formally with the development of a temporal
learning algorithm, we consider an approach based upon the
minimization of an error functional, E, defined over the

5,930,781
6 5

learning period or time interval [to, tf] by the following
expression

where the error component, e,(t), represents the difference
between the desired and actual value of the output neurons,
1.e.. 10

(4)

1s

In our model, the internal dynamical parameters of inter-
est are the strengths of the synaptic interconnections, T,,,
the characteristic decay constants, k,, and the gain
parameters, y,. They can be represented as a neuron param- 2o
eter vector of M [M=N2+2N] components

p={Tll, . . . , TN N, kl, . . . , kN, . . . , y N I (5)

We will assume that elements of i are statistically indepen- 2~
dent. Furthermore, we will also assume that, for a specific
choice of parameters and set of initial conditions, a unique
solution of Eq. (1) exists. Hence, the state variables u (which
may be referred to as the neuron output state vector) are an
implicit function of the parameters 6. In the rest of this 30

paper, we will denote the pth element of the vector by pp
(where the neuron parameter index p = l , . . . , M).

Traditionally, learning algorithms are constructed by
invoking Lyapunov stability arguments, i.e., by requiring
that the error functional be monotonically decreasing during 3s
learning time, z. This translates into

One can always choose, with a learning rate q > O

(7) 45

which implements learning in terms of an inherently local
minimization procedure. Attention should be paid to the fact so
that Eqs. (1) and (7) may operate on different time scales
(i.e., the neural network behavior time t of Equation 1 and
the neural adaptation or learning time z of Equations 6 and
7), with parameter adaptation occurring at a slower pace.
Integrating the dynamical system, Eq. (7), over the interval ss
[z, -c+Az], one obtains,

60

Equation (8) implies that, in order to update a system
parameter pp, one must evaluate the “sensitivity” (i.e., the
gradient) of E, Eq. (3), with respect to pp in the interval [z,
-c+Az]. Furthermore, using Eq. (3) and observing that the 6s
time integral and derivative with respect to pp commute, one
can write

This sensitivity expression has two parts. The first term in
the Right Hand Side (RHS) of Eq. (9) is called the “direct
effect”, and

corresponds to the explicit dependence of the error func-
tional on the system parameters. The second term in the RHS
of Eq. (9) is referred to as the “indirect effect”, and corre-
sponds to the implicit relationship between the error func-
tional and the system parameters via u. In our learning
formalism, the error functional, as defined by Eq. (3), does
not depend explicitly on the system parameters; therefore,
the “direct effect” vanishes, i.e.,

Since F is shown analytically (viz. Eqs. (3) and (4)),
computation of dF/& is straightforward. Indeed

Thus, to enable evaluation of the error gradient using Eq.
(9), the “indirect effect” matrix &/ai should, in principle, be
computed. In the sequel, we shall see that this is rather
expensive from an algorithmic (i.e., computational
complexity) perspective, but that an attractive alternative,
based on the concept of adjoint operators, exists. First,
however, we introduce the notion of teacher forcing.
3. TEACHER FORCING

A novel neural network “teacher forcing” training method
is described in co-pending patent application Ser. No.
071908,677 filed Jun. 29, 1992 by the inventors herein and
entitled “Fast Temporal Neural Learning Using Teacher
Forcing”. As indicated in FIG. 2C of the above-referenced
co-pending application, the parameters of the network are
updated based upon the error accumulated over the length of
the trajectory or learning period. This method is employed in
numerical simulations of the present invention described in
detail below. The present invention may be combined with
such teacher forcing if desired, or the present invention may
be practised without teacher forcing. In order to incorporate
this teacher forcing into the neural learning formalism
presented earlier, the time-dependent input to the neural
activation dynamics, Eq. (l), i.e., I,(t) as given by Eq. (2),
is modified to read:

At this state, h and fl are assumed to be positive constants.
The purpose of the term [a,(t)]’-P is to insure that I,(t) has
the same dimension as a,(t) and u,(t). Zak (1989) has
demonstrated that in general, for fl=(2i+1)/(2j+l), icj and i
and j strictly positive integers, an expression of the form
[a,-u,lP induces a terminal attractor phenomenon for the
dynamics described in Eq. (1). Generally, fl=7/9for the
numerical simulations reported below in this specification.

When learning is successfully completed, [i.e., e,(t)=O]
teacher forcing will vanish, and the network will revert to

5,930,781
7

the conventional dynamics given by Eqs. (1) and (2). As
described in the above-referenced co-pending application,
we suggest that h be modulated in time as a function of the
error functional, according to

h(T)=l-e-E(T) (1%

The above expression should be understood as indicating
that, while h varies on the learning time scale, it remains at
essentially constant levels during the iterative passes over
the interval [to, tf].
4. GRADIENT COMPUTNION ALGORITHMS

The efficient computation of system response sensitivities
(e.g., error functional gradients) with respect to all param-
eters of a network’s architecture plays a critically important
role in neural learning. In this section, we will first review
two of the best currently available methods for computing
these sensitivities, including an explicit approach for calcu-
lating the matrix &/ai, and an alternative approach, based
upon the concept of adjoint operators, which involves error
back propagation through time. This will be followed by the
details of a new method, which enables an efficient compu-
tation of the sensitivities by solving two systems of adjoint
equations forward in time.
4.1 State-of-the-art Methods
4.1.1 DIRECT APPROACH

Let us differentiate the activation dynamics, Eq. (l),
including the teacher forcing, Eq. (l l) , with respect to p,.
We observe that the time derivative and partial derivative
with respect to p, commute. Using the shorthand notation d(
. . .)/dp,=(. . .),82 we obtain a set of equations to be referred
to in the sequel as “Forward Sensitivity Equations” (FSEs):

in which

In the above expressions, gl, represents the derivative of g,
with respect to its arguments, 6 denotes the Kronecker
symbol and S,, is defined as a nonhomogeneous “source”.
The source term contains all explicit derivatives of the
neural activation dynamics, Eq. (l), with respect to the
system parameters, p,. Hence, it is parameter dependent and
its size is (NxM). The initial conditions of the activation
dynamics, Eq. (l), are excluded from the vector of system
parameters p. Thus, the initial conditions of the FSEs will be
taken as zero. Their solution will provide the matrix dG/dp
needed for computing the “indirect effect” contribution to
the sensitivity of the error functional, as specified by Eq. (9).
This algorithm is, essentially, similar to the scheme pro-
posed by Williams and Zipser (1989). Computation of the
gradients using the forward sensitivity formalism would
require solving Eq. (13) M times, since the source term, S,,,
explicitly depends on p,. This system has N equations, each
of which requires multiplication and summation over N
neurons. Hence, the computational complexity, measured in
terms of multiply-accumulates, scales like N2 per system
parameter, per time step. Let us assume, furthermore, that
the interval [to, tf] is discretized into L time steps. Then, the

8
total number of multiply-accumulates scales like N4L.
Clearly, such a scheme exhibits expensive scaling
properties, and would not be very practical for large net-
works. On the other hand, since the FSEs are solved forward

5 in time, along with the neural dynamics, the method also has
inherent advantages. In particular, there is no need for a large
amount of memory. Since u,, has N3+2N2 components, the
storage requirement scales as o(N~).
4.1.2 INDIRECT APPROACH

In order to reduce the computational complexity associ-
ated with the above technique for evaluating the “indirect
effect” term in Eq. (9), an alternative approach can be
considered. It is based upon the concept of adjoint operators,
and eliminates the need to compute explicitly G,,. The
critical feature of this approach is that a single vector of
adjoint functions, v, is obtained, by solving an
N-dimensional system of equations once, not M times as
previously. This vector contains all the information required
for computing the sensitivities of the error functional,

2o dE/dp,, with respect to all parameters, p The necessary and
P’. sufficient conditions for constructing adjoint equations are

discussed in Cacuci (1981). Adjoint equations can be
derived in a number of manners, including variational,
perturbation theoretic, differential and functional analytic

2s techniques. Details of derivations, based upon the differen-
tial approach, for example, can be found in Toomarian
(1987) and Maudlin et al. (1980).

It can be shown that an Adjoint System of Equations
3o (ASEs) pertaining to the FSEs, Eq. (13), can be formally

lo

-

written as

3s

where the superscript “T” denotes transposition of the ASE
matrix Am, and the indices n and m range from 1 to N. In
order to specify Eq. (16) in closed mathematical form, we

4o must define the source term, S*,, and the initial conditions
for the system. (An initial condition may apply to the
beginning of the learning period or the end of the learning
period.) Both should be independent of G , and its deriva-
tives. As we will see in the sequel, a judicious choice of the

4s source term, S*,, and of the initial conditions for the ASEs,
Eq. (16), forms the cornerstone of the indirect methods.
Generally, the source term, S*,,js selected in such a way, as
to make its inner product with u, identical to the “indirect
effect” contributions to the sensitivities of the error func-
tional. Selection of the time (initial or final) at which the
initial conditions are specified will, on the other hand,
dictate the direction in time in which the ASEs should be
integrated. For instance, if the set of initial condition is
specified at to, the ASEs will be integrated forward in time.

ss On the other hand, if the initial conditions are given at tp the
ASEs must be integrated backward in time. In the remainder
of section 4.1, we will derive and discuss the advantages and
disadvantages of two algorithms, which integrate the ASEs
backward and forward in time, respectively.

so . . .

6o a-Integration of the ASEs backward in time
In order to construct an expression which can be used to

eliminate the dependence of the “indirect effect” term of the
sensitivities on G,, we have to form the inner product of the
vectors s* and G,. This is done by multiplying the FSEs, Eq.

6s (13), by vT, and the ASEs, Eq. (16), by G,,:, and by
subtracting the two resulting equations. Then, integrating
over the time interval [to, $1, yields the bilinear form:

5,930,781
9

In the above equation S, denotes the inhomogeneous source
term of the FSEs, Eq. (15), and [. . . 1, denotes the value of
the expression in brackets evaluated at time t. By identifying

S*,=dF/du, (184

the second integral in the RHS of Eq. (17) is seen to become
identical to the “indirect effect” term in Eq. (9). Incorporat-
ing the initial conditions of Eq. (13) into Eq. (17), we obtain:

How can we eliminate the undesirable presence of u, from
the RHS of Eq. (19)? The clear choice is

v(t=t,)=O (18b)
-

resulting in the fundamental identity

Since the ASEs, (Eqs. 16, and IS), and S, (which is known
by definition) are independent of G,, the RHS of Eq. (20) is
independent of up. Hence, by solving the ASEs once only,
the “indirect effect” is evaluated via the RHS of Eq. (20) for
all system parameters, i. Thus, the above identity provides
the basis for a computationally efficient algorithm for evalu-
ating the gradient of the error functional. It is important to
notice that since the initial conditions, Eq. (18b), for the
ASEs, were given at trajectory end time, i.e., at t=tf, Eq. (16),
is integrated backward in time, i.e., from t=tf to t=t,.

We note that the above paradigm results in equations
similar to those obtained by Pearlmutter (1989) using a
variational approach. Both algorithms require that th neural
activation dynamics, Eq. (l) , be first solved forward in time
(to provide quantities such as AmT,

a F

au’
-

-
S,) followed by a solution of the ASEs, Eq. (16), integrated
backward in time. During the backward integration, the
product of the vector V and matrix S, is calculated and also
integrated from t=tf to t=t,. The result of this integration
provides the “indirect effect” contribution to the gradients of
the error functional.

Since un(t) and vn(t) can be obtained at the cost of N
multiply-accumulates per time step, and there are N equa-
tions (neurons) per network, the complexity of this approach
scales like N2L. Thus, the principal advantage of adjoint
methods lies in the dramatic reduction of computational
costs (e.g., at least O(N2) for an N-neuron network).
However, a major drawback to date has come from the
necessity to store quantities such as g’, S* and S,p at each
time step. Hence, the memory requirements for this method
scale as N2L. Note also that the actual evaluation of the RHS
of Eq. (9) requires N2L multiply-accumulates, independent
whether the FSEs or ASEs are used.
b-Integration of the ASEs forward in time

10
Is it possible to overcome the rather severe memory

limitations of the adjoint method, while keeping its compu-
tational benefits? We notice that Eq. (16) is linear in the
variables 7. Therefore, it is, in principle, possible to obtain

s identical contributions to Eq. (9) with an alternative choice
for adjoint source and initial conditions. Indeed, let us select:

10
and

15 where 6(t-tf) is the Dirac distribution. Inserting Eqs. (21)
into Eq. (17) and recalling that, by definition of 6

we obtain

This expression is identical to Eq. (20). Therefore, most
items discussed in connection with this equation will hold.

30 However, v is now the solution of the ASEs defined by Eqs.
(16) and (21). In contradistinction to the previous approach,
the initial conditions for the ASEs are given hereat t=t,, Eq.
(21b). Therefore, the ASEs can be integrated forward in
time, concomitantly with the neural activation dynamics.

35 Potentially, storage requirements are reduced by a large
amount, since the quantities S* and g’ are now immediately
used at each time step to calculate v and its product with the
known matrix S,. Hence, the memory required scales only
as O(N2). The computational complexity of this method also

40 scales as O(N2L). Apotential drawback, however, lies in the
fact that Eq. (16) now contains, from Eq. (21a), the Dirac
distribution, 6(t-tf), operating directly on the adjoint
functions, v. This precludes straightforward (stable) numeri-
cal or VLSI implementation of such a scheme.

45 4.2 The New Approach
At this stage, we introduce a new paradigm which will

enable us to evolve the adjoint dynamics, Eq. (16) forward
in time, but without the difficulties associated with the above
formalism. Consider, again, the bilinear form, Eq. (17),
associated with the FSEs, Eq. (13), and the ASEs, Eq. (16).
Let us select

55

This is similar to the choice made earlier, when discussing
the integration of the ASEs backward in time. The second
integral in the RHS of Eq. (17) will again be identical to the
“indirect effect” contribution to the sensitivity of the error

6o functional, Eq. (9). But, in contradistinction to Eq. (18b), we
now select as initial conditions:

V(t=O)=O (24b)

65 This will allow us to integrate the resulting ASEs, i.e., Eqs.
(16) and (24), forward in time. Combining Eqs. (9), (17) and
(24), we obtain the following expression:

5,930,781
11 12

5
The first term in the RHS of E ~ , (25) can be computed by
using the values o fv (16)
and (24) forward in time, The main difficulty resides with the
evaluation of the second term in the RHS of Eq. (25), i.e.,
[v5&], To compute it, we now introduce an auxiliary 10 equation One can
adjoint system, formally similar to Eq. (16):

where, superscript 1 implies that the numerical values of the
quantities of interest at time step 1 are used and At denotes
the size of the integration time step. Here, [ATI1 denotes the
ASE matrix evaluated at the time step 1. From the above

show that

from the solution of

Fl=B'.B'-l . . . B1BOT(to)=B'!T(t0) (32)

-i, + A:~G = ,?n r > o (26) where
rn

15 B'=I+A~[AT~(z=o,I, . . . , L-I) (33)

By choosing

S=l7(t)S(t-t,)

the last term of Eq. (27) reduced to
quantity of interest. If we furthermore select

Z(t,,=O

2s
Algorithmically, the computation of [75&], can be

described as follows. At each time step 1, the values of the
matrices B('-'), and s,:, are calculated using Eqs. (14, 15
and 33). The needed value of B('-')! is computed by multi-

which is the 3o plying the stored value of B('-')! by B('-'). The result is not
only stored for the next iteration, but also used to calculate
the product of B('-')! by s,' which, in turn, is added up. The
initial conditions $to) can easily be found at time tt, i.e., at
iteration step L, by solving the system of linear algebraic

(28a)

(28b)

and take into account the initial value of G,p, Eq. (27) yields 35 equations:

B(L-l)!Z(t,)=;(tf) (35)
(29)

To summarize, in this new method the computation of the
gradients of the error functional (i.e., Eq. (9)), involves two

40 stages, corresponding to the two terms in the RHS of Eq.
(25). The first term is calculated from the adjoint functions,
7, obtained by integrating Eqs. (16) and (24) forward in time
along with the neural activation dynamics, E ~ , (1). The
corresponding computationa~ comp~exity is o(N~L), The

45 second term is calculated via Eqs. (34-35), and involves two
steps: a) kernel propagation, Eq. (34), which requires mul-
tiplication of two matrices B' and B('-')! at each time step;
hence, its computational complexity scales as N3L; b) solu-
tion of the linear algebraic system (35) with computational

SO complexity of O(N'). Thus, the overall computational com-
plexity of this approach is O(N3L). Notice, however, that
here the storage needed is minimal and equal to O(N').

An architecture for performing the foregoing process is
illustrated in the block diagram of FIG. 2. Each block in FIG.

ss 2 may be thought of as a separate dedicated processor,
In Principle, although the entire process is implementable with a single

processor using the program of Appendix A. Referring to
from the FIG. 2, the first step is to set the source term to the partial
vector .(to), from Eq. (30b), with ?(tf)=O. derivative of the error functional F with respect to the neuron

In the problem under consideration, however, the ASE 60 output state vector and to set the adjoint function at the
matrix A in Eq. (26) is time dependent, (viz Eq. (14)). Thus, beginning of the learning period to zero (block 200). Then,
it is practical to integrate numerically the auxiliary adjoint the adjoint system of equations (Equation 16) is integrated
equations. Usually, the same numerical scheme used for Eqs. forward in time (block 205) to produce the first of two
(1) and (16) should be adopted. For illustrative purposes components of the indirect effect of the sensitivity gradient
only, we limit the discussion in the sequel to a first order 65 of equation (9) (block210 of FIG. 2) and the adjoint function
finite differences approximation, i.e., we rewrite Eqs. (26, evaluated at the end of the learning period (block 215). The
28) as next process includes blocks 220 through 265 of FIG. 2 and

Note that, even though we selected z(tf>=o, we are still
interested in solving the auxiliary adjoint system, Eqs. (26)
and (28), forward in time. Thus, the critical issue is how to
- select initial condition (i.e., ?(to)), that would result in
z(t,>=O.

Let us first provide a simple qualitative illustration of how
this problem can be approached. We assume, for the
moment, that the matrix A in Eq. (26) is time independent.
The formal solution of Eqs. (26) and (28) can then be written
as:

; (t) = e A r e (t 0) t < t f

;@=eAr(;-'>;(to)-;(tf)

(3'W

(30b)

Eq. (30a), the RHS Of Eq. (29) can be
At time tf, where v<tf) is known

the
in terms Of

Of Eqs. (16) and (24), One can

5,930,781
13

corresponds to an integration of the auxiliary adjoint system
of equations (Equation 26) forward in time and is performed
contemporaneously with the integration step of block 205.
In block 220, the integration of the auxiliary ASE’s over the
learning period is divided into L time steps and the time step
index 1 is set to zero (block 225). At each time step, the
propagation kernel B is computed (block 230) and the time
step index is incremented (block 235). The kernels are
propagated at each time step by multiplying the current
kernel by the product of the kernels of all previous time steps
at block 240 and multipled by the derivative of the source
term with respect to neuron parameters (block 245) and the
result is summed over all time steps (block 250). The result
of block 240 corresponding to the final time step is taken in
block 250 for use in solving the system of Equation (35).
This solution is indicated in FIG. 2 as a multiplication (block
260) of the inverse of the propagation kernel of block 255 by
the adjoint function at the end of the learning period (of
block 215). However, it is understood that well-known
iterative methods may be employed in solving the system of
Equation 35 rather than inversing the propagation kernel.
Finally, the results of blocks 250 and 260 are multiplied
together (block 265) to produce the remaining component of
the indirect effect of the sensitivity gradient of Equation
(19). This remaining component (i.e., the product of block
265) is added at block 270 to the first component of the
indirect effect (from block 210), the resulting sum is mul-
tiplied by the learning rate (block 275) and subtracted from
the current parameter vector (block 280) to produce an
updated parameter vector (block 285). Then, the time t is
reset and the learning time T is incremented (block 290) and
the entire process repeated.

As a final remark, we wish to consider a further
approximation, based upon the requirement of small At. The
matrices B‘, Eq. (33), become then diagonally dominant, and
B‘! can be approximated at each time step 1 by

B1’ = I + A t z A i (36)
1

This implies that the computation a1 complexity of the
proposed method could be further reduced to O(N2L) for
certain class of trajectories. At this stage such an approxi-
mation is merely an idea which has to be sustained via
simulations.
5. Numerical Simulations

The new learning paradigm, presented in the preceding
section, has been applied to the problem of learning two
trajectories: a circle and a figure eight. Results referring to
these problems can be found in the literature (Pearlmutter
1989), and they offer sufficient complexity for illustrating
the computational efficiency of our proposed formalism.

The network that was trained to produce these trajectories
involved 6 fully connected neurons, with no input, 4 hidden
and 2 output units. An additional “bias” neuron was also
included. In our simulations, the dynamical systems were
integrated using a first order finite difference approximation.
The sigmoidal nonlinearity was modeled by a hyperbolic
tangent. Throughout, the decay constants K,, the neural
gains y,, and h were set to one. Furthermore, fl was selected
to be 719. For the learning dynamics , AT was set to 6.3 and
q to 0.015873. The two output units were required to
oscillate according to

a,(t)=A sin wt (364

a,(t)=A cos wt (36b)

14
for the circular trajectory, and, according to

a,(t)=A sin wt (374

a,(t)=A sin 2 wt (37b)

for the figure eight trajectory. Furthermore, we took A=0.5
and o = l . Initial conditions were defined at t,=O. Plotting a5
versus a6 produces the “desired” trajectory. Since the period
of the above oscillations is 2x, t72x time units are needed

i o to cover one cycle. We selected At=0.1, to cover one cycle
in approximately 63 time steps.
5.1 Circular Trajectory

In order to determine the capability and effectiveness of
the algorithm, three cases were examined. As initial

is conditions, the values of u, were assumed to be uniform
random numbers between -0.01 and 0.01 for the simulation
studies referred in the sequel as “Case - 1” and “Case - 2”.
For Case - 3, we set u, equal to zero, except u6 which was
set to 0.5. The synaptic interconnections were initialized to

20 uniform random values between -0.1 and +0.1 for all three
experiments.

5

CASE - 1
The training was performed over t76.5 time units (i.e., 65

time intervals). A maximum number of 500 iterations was
2s allowed. The results shown in FIG. 3 were obtained by

starting the network with the same initial conditions, u,(O),
as used for training, the learned values of the synaptic
interconnections, T,,, and with no teacher forcing (h=O). As
we can see, it takes about 2 cycles until the network reaches

30 a consistent trajectory. Despite the fact that the system’s
output was plotted for more than 15 cycles, only the first 2
cycles can be distinguished. FIG. 6 demonstrates that most
of the learning occurred during the first 300 interations.
CASE - 2

35 Here, we decided to increase the length of the trajectory
gradually. A maximum number of 800 learning iterations
was now allowed. The length of the training trajectory was
65 time intervals for the first 100 iterations, and increased
every 100 iterations by 10 time intervals. Therefore, it was

40 expected that the error functional would increase whenever
the length of the trajectory was increased. This was indeed
observed, as may be seen from the learning graph, shown in
FIG. 6. The output of the trained network is illustrated in
FIG. 4. Here again, from 15 recall cycles, only the first two

45 (needed to reach the steady orbit) are distinguishable and the
rest overlap. Training using greater trajectory lengths
yielded a recall circle much closer to the desired one than in
the previous case. From FIG. 6, one can see that the last 500
iterations did not enhance dramatically the performance of

SO the network. Thus, for practical purposes, one may stop the
training after the first 300 iterations.
CASE - 3

The selection of appropriate initial conditions for u, plays
an important role in the effectiveness of the learning. Here,

ss all initial values of u, were selected to be exactly zero except
the last unit, where u6=0.5 was chosen. This correspond to
an initial point on the circle. The length of the trajectory was
increased successively, as in the previous case. In spite of the
fact that we allowed the system to perform up to 800

60 iterations, the learning was essentially completed in about
200 iterations, as shown in FIG. 6. The results of the
network’s recall are presented in FIG. 5, which shows an
excellent match.
5.2 Figure Eight Trajectory

For this problem, the synaptic interconnections were
initialized to uniform random values between -1 and 30 1.
As initial conditions, the values of u, were assumed to be

65

5,930,781
15 16

uniform random numbers between -0.01 and 0.01. The
following three situations were examined.
CASE - 4

The training was performed over t76.5 time units (i.e., 65
time intervals). A maximum number of 1000 iterations was 5
allowed. The results shown in FIG. 7 were obtained by
starting the network with the same initial conditions, u,(O),
as used for training, the learned values of the synaptic
interconnections, T,,, and with no teacher forcing (h=O). As
we can see, it takes about 3 cycles until the network reaches 10
a consistent trajectory. Despite the fact that the system’s
output was plotted for more than 15 cycles, only the first 3
cycles can be distinguished.
CASE - 5

setting said adjoint function to zero at the beginning of
said learning period and integrating said adjoint system
of equations forward in time over said learning period
to produce a first term of an indirect effect of a
sensitivity gradient of said neural network;

setting said auxiliary adjoint function to zero at the end of
said learning period and integrating said auxiliary
adjoint system of equations forward in time over said
learning period to produce a remaining term of said
indirect effect;

computing a sum of said first and remaining terms, and
multiplying said sum by a learning rate; and

subtracting the product thereof from a current neuron
parameter vector to produce an updated neuron param-
eter vector. Here, we again decided to increase the length of the 1s

was now allowed, The length of the training trajectory was equations governs an adjoint function of said network rela-
65 time intervals for the first iterations, and was tive to a time dependent adjoint matrix of said network and

a source function of said network over said learning period, increased every 100 iterations by 5 time intervals. Therefore, and wherein said integrating said adjoint system of equa-
it was again expected that the objective functional would 20 tions produces an integral Over said learning period of the
increase whenever the length of the trajectory was increased. adjoint function,s transpose multiplied by a derivative of
This was indeed observed, as may be seen from the learning said Source function with respect to neuron parameters of
graph, shown in FIG. 10. The output of the trained network said network,
is illustrated in FIG. 8. Here again, from 15 recall cycles, 3. The method of claim 2 wherein said integrating said

distinguishable, and the rest overlap. As a direct result of computing a propagation kernel for each tirne step of said
training using greater trajectory lengths, orbits much closer learning period from the product of said adjoint matrix
to the desired one than in the previous case were obtained. of the current time step and an integrating time step
CASE - 6 size;

multiplying each kernel by the source function evaluated
similar to CASE - 5, but with the distinction that h was at the current time step and accumulating a sum of
modulated according to Eq. (12). The results of the net- products therefrom; and
work’s recall are presented in FIG. 9, and demonstrate a multiplying the sum of products by a function of (a) the
dramatic improvement with respect to the previous two product of all kernels of previous time steps and (b) the
cases. adjoint function evaluated at a final time step to pro-

It is important to keep in mind the following observations duce a final product.
with regard to the simulation results: 4. The method of claim 3 where said computing said

1) For the circular trajectory, h was kept constant through- multiplying to Produce an updated neuron Parameter matrix
out the simulations and not modulated according to Eq. (12). comprises computing a sum of said final Product and said
As we can see from FIG. 6, in cases 1 and 2, the error 40 multiplying said sum by a learning rate and sub-
functional was not reduced to zero. Hence, a discrepancy in tracting the thereof from a current neuron parameter

during the learning and recall stages occurred. This was a said network comprises

trajectory gradually, A maximum number of 1000 iterations 2. The method Of wherein said adjoint system Of

only the first three (needed to reach the steady orbit) are 2s auxiliary adjoint system of equations comprises:

The learning in this case was performed under conditions 30

35

the functional form of the neural activation dynamics used

probable cause for the poor performance of the network. In
case 3, however, the error functional was reduced to zero. 45 Of said network, said method further comprising:
Therefore, the teacher forcing effect vanished by the end of setting outputs of said output neurons to values derived
the learning. from a desired output training vector to perform teacher

2) For the figure eight trajectory, the differences between forcing.
cases 5 and 6 lies in the modulation of h, (i.e., the amplitude 6. A method of training a neural network in accordance
of the teacher forcing). Even though in both cases the error 50 with an adjoint system of equations governing an adjoint
functional was reduced to a negligible level, the effect of the function of said network relative to a time dependent adjoint
teacher forcing in 5 was not comp~ete~y eliminated Over matrix of said network and a source function of said network
the entire length of the trajectory. This points toward the fact Over a finite learning Period, said method comprising:
that modulation of h not only reduces the number of integrating said adjoint system of equations forward in
iterations but also provides higher quality results. time over said learning period to produce said adjoint

While the invention has been described detail by specific function evaluated at the end of said learning period
reference to preferred embodiments, it is understood that and to produce an integral over said learning period of
variations and modifications thereof may be made without the adjoint function’s transpose multiplied by a deriva-
departing from the true spirit and scope of the invention. tive of said source function with respect to neuron

computing a propagation kernel for each time step of said
learning period from the product of said adjoint matrix
of the current time step and an integration time step

multiplying each kernel by the source function evaluated
at the current time step and accumulating a sum of
products therefrom;

vector to produce an updated neuron parameter vector.

an Output layer Of Output
5 . The method Of

coup1ed to Other

55

What is claimed is: 60 parameters of said network;
1. A method of training a neural network so that a neuron

output state vector thereof obeys a set of forward sensitivity
equations over a finite learning period, said method com-
prising: size;

defining first and auxiliary adjoint systems of equations 65
governing an adjoint function and an auxiliary adjoint
function, respectively, of said neural network;

5,930,781
17 18

multiplying the sum of products by a function of (a) the
product of all kernels of previous time steps and (b) the
adjoint function evaluated at a final time step to pro-
duce a final product;

computing a sum of said final product and said integral, 5 produce an updated neuron parameter vector.
and multiplying said sum by a learning rate; and

subtracting the result thereof from a current neuron
Parameter vector to Produce an updated neuron Param-
eter vector.

7. The method of claim 6 said neural network comprises lo

parameter matrix comprises means for computing a sum of
said final product and said integral, means for multiplying
said sum by a learning rate and means for subtracting the
result thereof from a current neuron parameter vector to

12. Apparatus for training a neural network in accordance
with an adjoint system of equations governing an adjoint
function of said network, a time dependent adjoint matrix of
said network and a source function of said network over a
finite learning period, said apparatus comprising:

for integrating said adjoint system of equations
forward in time over said learning period to produce
said adjoint function evaluated at the end of said
learning period and to produce an integral over said
learning period of the adjoint function's transpose
multiplied by a derivative of said source function with
respect to neuron parameters of said network;

for a Propagation for each time
step of said learning period from the product of said
adjoint matrix of the current time step and an integra-

means for multiplying each kernel by the source function
evaluated at the current time step and accumulating a
sum of products therefrom;

means for multiplying the sum of products by a function
of (a) the product of all kernels of previous time steps
and (b) the adjoint function evaluated at a final time
step to produce a final product;

means for computing a sum of said final product and said
integral, and multiplying said sum by a learning rate;
and

subtracting the result thereof from a current neuron
parameter vector to produce an updated neuron param-
eter vector.

13. A method of training a neural network in successive

variable in time rapidly relative to said successive learning
periods, in which a neuron parameter vector of said network

an output layer of output neurons coupled to other neurons
of said network, said method further comprising:

setting outputs of said output neurons to values derived
from a desired output training vector at the beginning 15
of said learning period to perform teacher forcing.

8. Apparatus for training a neural network so that a neuron
output state vector thereof obeys a set of forward sensitivity
equations over a finite learning period, said apparatus com-
prising:

means for setting said neuron output state vector to zero
at the beginning of said learning period;

means for defining first and auxiliary adjoint systems of
equations governing an adjoint function and an auxil-
iarY adjoint function, respectively, of said neural net- 25
work;

means for setting said adjoint function to zero at the
beginning of said learning period and integrating said
adjoint system of equations forward in time over said
learning period to produce a first term of an indirect 30
effect of a sensitivity gradient of said neural network;

means for setting said auxiliary adjoint function to zero at
the end of said learning period and integrating said
auxiliary adjoint system of equations forward in time

of said indirect effect;

20 tion time step size;

Over said learning period to produce a remaining term 35 learning periods to respond to an hut vector which is

for a sum Of said first and remaining
terms, and multiplying said sum by a learning rate; and

is modified at the end of each learning period by combining
it with an indirect effect function comprising a gradient of an

subtracting the Product thereof from a current neuron 4o error functional with respect to said neuron parameter
vector, said error functional comprising a difference between
a neuron output state vector and a target output state vector
which is variable in time rapidly relative to said successive

of equations governs an adjoint function of said network training periods, said network being characterized by a
relative to a time dependent adjoint matrix of said network 45 matrix of coupling coefficients defining coupling between
and a source function of said network over said learning respective neurons of said network, said method comprising
period, and wherein said means for integrating said adjoint the following steps carried out during each one of said
system of equations produces an integral over said learning learning periods:
period of the adjoint function's transpose multiplied by a defining first and second equations governing,
derivative of said source function with respect to neuron so respectively, first and second variables, terms of each of
parameters of said network. said equations comprising a product of the respective

10. The apparatus of claim 9 wherein said means for variable and a coupling term comprising said matrix of
integrating said auxiliary adjoint system of equations com- coupling coefficients, a derivative of the respective
prises:

Parameter vector to Produce an updated neuron Param-
eter vector.

9. The apparatus of claim 8 wherein said adjoint system

means for computing a propagation kernel for each time 55
step of said learning period from the product of said
adjoint matrix of the current time step and an integra-
tion time step size;

means for multiplying each kernel by the source function
evaluated at the current time step and accumulating a 60
sum of products therefrom; and

means for multiplying the sum of products by a function
of (a) the product of all kernels of previous time steps
and (b) the adjoint function evaluated at a final time

11. The apparatus of claim 10 wherein said means for
computing and multiplying to produce an updated neuron

step to produce a final product. 65

- -
variable with respect to time and a source term which,
in said first equation, comprises a gradient of said error
functional with respect to said neuron output state
vector;

setting said first and second variables to zero at the
beginning and end, respectively, of said learning
period;

integrating said first equation forward in time from the
beginning to the end of said one learning period to
produce a first term of said indirect effect function and
integrating said second equation forward in time from
the beginning to the end of said one learning period to
produce a second term of said indirect effect function;
and

5,930,781
19 20

computing a sum of said first and second terms, and respective neurons of said network, said method comprising
the following steps carried out during each one of said multiplying said sum by a learning rate; and

combining the product thereof with a current version of
said neuron parameter vector to produce a revised
version of said neuron parameter vector at the end of
said one learning period.

14. The method of claim 13 wherein said combining step
comprises subtracting said product from said current version
of said neuron parameter vector.

15. The method of claim 13 wherein in said second
equation said source term is equal to said variable of said
first equation at the end of said learning period.

16. The method of claim 13 wherein the step of integrat-
ing said second equation forward in time comprises:

dividing said learning period into plural time steps and at
each time step:
(A) computing a propagation kernel of the current time

step from a product of said coupling term of the
current time step and a time interval of said plural
time steps;

(B) multiplying the kernel of the current time step by
the source term of said second equation of the
current time step and accumulating a sum of prod-
ucts therefrom; and

(C) multiplying said sum of products by a function of
(a) the products of the kernels of the preceding time
steps and (b) the variable of said first equation.

17. The method of claim 16 wherein in step (C) (b), said
variable of said first equation has been evaluated at the final
one of said time steps.

1C

S

10

1s

20

2s

30

:arning periods:
defining an equation governing a variable, terms of said of

said equation comprising a product of the variable and
a coupling term comprising said matrix of coupling
coefficients, a derivative of the variable with respect to
time and a source term which comprises a gradient of
said error functional with respect to said neuron output
state vector;

setting said first variable to zero at the beginning of said
learning period;

integrating said equation forward in time from the begin-
ning to the end of said one learning period to produce
a first term of said indirect effect function;

dividing said learning period into plural time steps and at
each time step:
(A) computing a propagation kernel of the current time

step from a product of said coupling term of the
current time step and a time interval of said plural
time steps;

(B) multiplying the kernel of the current time step by an
other source term of the current time step and
accumulating a sum of products therefrom;

(C) multiplying said sum of products by a function of
(a) the products of the kernels of the preceding time
steps and (b) said variable; and

computing a sum of said first and second terms, and
multiplying said sum by a learning rate; and

18. A method of training a neural network in successive
learning periods to respond to an input vector which is
variable in time rapidly relative to said successive learning
periods, in which a neuron parameter vector of said network
is modified at the end of each learning period by combining 3s
it with an indirect effect function comprising a gradient of an
error functional with respect to said neuron parameter
vector, said error functional comprising a difference between
a neuron output state vector and a target output state vector
which is variable i time rapidly relative to said successive 40 sion of said neuron parameter vector.
training periods, said network being characterized by a

combining the product thereof with a current version of
said neuron parameter vector to produce a revised
version of said neuron parameter vector at the end of
said one learning period.

19. The method of claim 18 wherein the step (C) (b), said
variable has been evaluated at the final one of said time
steps.

20. The method of claim 18 wherein said combining step
comprises substracting said product from said current ver-

matrix of coupling coefficients defining coupling between * * * * *

