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Summary

The Rich-burn/Quick–mix/Lean-burn (RQL) combustor concept has been proposed to mini-
mize the formation of nitrogen oxides (NOx) in gas turbine systems. The success of this com-
bustor strategy is dependent upon the efficiency of the mixing section bridging the fuel-rich and
fuel-lean stages. Note that although these results were obtained from an experiment designed to
study an RQL mixer, the link between mixing and NOx signatures is considerably broader than
this application, in that the need to understand this link exists in most advanced combustors. The
experiment reported herein was designed to study the effects of inlet air temperature on NOx

formation in a mixing section. The results indicate that NOx emission is increased for all pre-
heated cases compared to non-preheated cases. When comparing the various mixing modules,
the affect of jet penetration is important, as this determines where NOx concentrations peak, and
affects overall NOx production. Although jet air comprises 70 percent of the total airflow, the
impact that jet air preheat has on overall NOx emissions is small compared to preheating both
main and jet air flow.

Nomenclature

DR jet-to-mainstream density ratio
d orifice axial height, or round hole diameter
favg average planar jet mixture fraction derived from carbon mass fraction
fvar planar jet mixture fraction variance
J jet-to-mainstream momentum-flux ratio = (ρV2)jets/(ρU2)main

MR jet-to-mainstream mass-flow ratio
n number of round holes in quick-mix module
R radius of the quick-mix module
r radial distance from the module center
Tjet average jet air temperature
Tmain average mainstream temperature
U mainstream velocity
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US spatial unmixedness
V jet velocity
Vref reference velocity
x axial distance from leading edge of orifice
Y mass fraction of carbon
φ equivalence ratio = (fuel/air)local/(fuel/air)stoichiometric

Introduction

Many processes involved in the injection of fuel and in the control of exhaust temperature
rely on jet mixing with a crossflow of gas to mix fluid streams. One particular application in
which jet mixing in a confined crossflow plays a fundamental role is the Rich-burn/Quick-
mix/Lean-burn (RQL) combustor. The success of this combustor in producing lower emissions
than conventional gas turbine combustors depends on the efficiency of the mixing section
bridging the fuel-rich and fuel-lean stages of combustion. In this combustor design, the jets of air
introduced into the quick-mix section should mix with the fuel-rich reacting crossflow as quickly
as possible to bring the reaction to an overall fuel-lean equivalence ratio. It is hypothesized that
rapid and spatially distributed mixing must occur in order to prevent the formation of hot pockets
(consisting either of closer to stoichiometric species concentrations, higher temperatures, or
both) which in turn drive pollutant formation.

Previous studies (refs. 1 and 2) involved the construction of a facility, and reported results for
reacting tests in cylindrical crossflow configurations at atmospheric pressure. The current study
expands upon this initial work by elevating the inlet air temperatures, testing various mixing
module designs and studying the species concentrations, with particular interest in NOx

formation.

Background

Numerous studies on the jet in crossflow problem have yielded insight on such flow field
characteristics as the jet structure and penetration, the development of vortices, the jet entrain-
ment of crossflow fluid, and the flow field distributions resulting from jet mixing. An extensive
listing of documented jet-in-crossflow studies performed in the past few decades can be found in
references 3 to 6. Note that many of the studies cited in these summaries are of a single jet in an
unbounded crossflow or are otherwise inappropriate for direct application. Although the single
jet is a key component in combustor flow fields, these flows are usually confined, and interaction
between jets is critical. Also, because the references listed in references 3 to 6 are extensive, only
those papers from which specific material is mentioned will be cited in this paper.

In previous studies (refs. 5 and 6), nonreacting experiments and modeling were often used as
convenient tools to explore the mixing of air jets into the fuel-rich cross stream. The primary
goal of these studies was to determine orifice configurations that lead to optimal mixing within a
specified duct length. In a cylindrical duct geometry, experimental surveys of the effect of the
jet-to-crossflow momentum-flux ratio and the shape, orientation, and number of orifices on
mixing were performed in order to gain a mechanistic understanding of jet penetration and mix-
ing dynamics (ref. 7). A systematic optimization scheme using a design of experiments statistical
approach was applied to the experimental data to determine the round hole configurations
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leading to optimal mixing at various momentum-flux ratios. For jet-to-mainstream momentum-
flux ratios of 36 and 70, the number of round holes leading to optimal mixing were identified as
10 and 15, respectively (ref. 8).

While extensive nonreacting confined jet mixing work has been performed (see refs. 3 to 6),
research into reacting flows has been limited. Tests on multiple jet mixing in reacting flows have
been performed on model gas turbine combustors of a can-type, or cylindrical duct geometry. In
many of these experiments (refs. 9 to 13), the model gas turbine combustors contained two sets
of holes for primary and dilution air mixing typical of conventional combustors, as opposed to
the single stage quick mixing scheme. These studies were also concerned with varying operating
conditions such as fuel injection (ref. 9), air preheat (ref. 10), fuel-air ratio (ref. 11), or the
momentum-flux ratio of the primary jets (ref. 12). In one study, a geometric parameterization
was pursued, but was related to varying the positions of the rows of the primary and dilution jets
rather than with changing the orifice configurations (ref. 12). An experiment performed on a
model RQL combustor operating at various pressures and inlet temperatures did yield NOx emis-
sions measurements for a 20 round hole mixing section (ref. 13). The results from this RQL
study also emphasized that the optimization of the quick-mixing section was integral to lowering
the total NOx emissions from the RQL combustor. On the whole, these reacting tests varied
operating parameters in order to affect the distributions of emissions and temperature.

Archival journal publications of NO formation in the RQL concept have been few (refs. 13
and 14), however, the results of these studies have shown that momentum flux ratio and orifice
configuration as being the leading factors in NOx formation.

Initial reacting flow experiments studied by the authors included the flowfield of a row of
jets mixing with rich reacting gases confined to a cylindrical crossflow (refs. 1 and 2). The work
presented here expands upon the reacting flow investigation by using the diagnostic and analysis
techniques developed in the previous study. The objective for this study is to examine orifice
configurations that demonstrated optimal mixing in previous tests, and vary the inlet tempera-
tures to measure the impact this change has on species concentrations.

Experiment

Facility

The experimental facility used consisted of a premixing zone, a fuel-rich combustion zone,
and a jet-mixing section as shown in figure 1. In the premixing zone propane gas is mixed with
air upstream of the ignition point. Fuel-rich combustion occurs downstream of the quarl in a zone
stabilized by a swirl-induced recirculation zone. To dissipate the swirl in the flow and to intro-
duce a uniform nonswirling flow into the jet-mixing section, the fuel-rich product was passed
through an oxide-bonded silicon carbide (OBSiC) ceramic foam matrix (Hi-Tech Ceramics) with
a rated porosity of 10 pores/in.

The jet mixing section was comprised of a modular quartz section to which jet air is supplied
from a surrounding plenum. The plenum was fed by four equally-spaced, air ports located toward
the base of the plenum. A high-temperature steel flow-straightener installed in the plenum con-
ditioned and equally distributed, the jet air entering the mixing module.

To supply the necessary heated air, two recirculating heaters were utilized. The main-air line
and jet-air line were heated by a 20 and 25 kW heater, respectively. Each heater is capable of
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supplying the required maximum of 260 °C (500 °F) air preheat temperature at the desired
flowrates.

The quartz modules which comprised the jet mixing section were 280 mm (11 in.) in length,
with inner and outer wall diameters of 80 mm (3.15 in.) and 85 mm (3.35 in.). The row of ori-
fices was positioned with its centerline 115 mm (4.5 in.) downstream from the module entrance.
An alumina-silica blend of ceramic fiber paper provides sealing between the quartz module and
the stainless steel mating surfaces to form the air plenum for the jets. Modules tested were 8, 12,
14, and 22-orifice configurations.

Measurements

The purpose of the present investigation was to examine the impact of air preheat on species
concentrations of O2, CO2, CO, HC and NOx. Species concentrations are obtained downstream of
the jet air injection plane.

Species concentration data were obtained in a sector grid for the plane at x/R = 1 (plane 5 in
refs. 1 and 2) for each module. The x/R = 1 plane is measured from the leading edge of the
orifices.

Each planar grid consisted of 16 points spread over a region that includes two orifices
(fig. 2(b)). The points include one point located at the center, and five points along each of the
arc lengths at r/R = 1/3, 2/3, and 1. The points along each arc are distributed such that two points
are aligned with the center of the orifices and three are aligned with the midpoint between orifice
centers for all cases.

Species concentration measurements are obtained by sampling through a water-cooled
stainless-steel probe by routing the sample through a heated line connected to the emission ana-
lyzers. Water was condensed from the gas before the sample is analyzed by chemiluminesence
for NO (nondispersed infrared) NDIR analysis for CO, and CO2, paramagnetic analysis for O2,
and flame ionization detection (FID) for total hydrocarbons.

Experimental Conditions

The experiments were performed for a jet-to-mainstream momentum-flux ratio (J) of 57 and
a mass-flow ratio (MR) of 2.5. The total effective area of the mixing module orifices is 9 cm2

(1.4 in.2). The ratio of the total effective jet area to cross-sectional area is 0.18. The rich equiva-
lence ratio and overall equivalence ratio are 1.66 and 0.45, respectively. The operating pressure
for the system is one atmosphere.

Various levels of preheat were applied to both the jet and main airflows. Inlet temperature
operating conditions for the experiment are noted in table I. The results show comparisons be-
tween non-preheated air, preheated jet air only, and preheated jet and main air cases.

Analyses

The jet mixture fraction was derived from conserved scalar calculations of the mass fraction
of carbon. As a step toward obtaining the carbon mass fraction at each datum point, the wet mole
fraction was calculated from the dry species concentration measurements. The wet mole frac-
tions were obtained by solving a system of eight linear equations for the measured dry species
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concentrations of CO, CO2, O2, and unburned HC (assumed to be comprised mainly of unburned
C3H8), as well as for C2H4, H2, N2, and H2O (ref. 15). The inclusion of C2H4, which is a prevalent
intermediate species produced from the combustion of C3H8 (ref. 16) was necessary in order to
form a closed set of equations. The calculated unburned hydrocarbon species C3H8 and C2H4

contributed, at most, to 1.4 percent of the overall wet mole fraction at each point. The concentra-
tion of H2, a primary species of combustion produced under fuel-rich reactions, was assumed to
be 65 percent of the concentration of CO (ref. 15). N2 was assumed to make up the rest of the gas
concentration in the sample.

Results and Discussion

The NOx data are presented in the following sequence: (1) the effect of air preheat showing a
comparison of NOx emissions for each test condition, and (2) a comparison of the experimental
configurations (i.e., the various mixing modules) for each preheat test condition. The former will
show the general trends observed with all of the modules tested, and the latter will illustrate the
contrast between the mixing modules for a given test condition.

Effect of Preheat

The effect of heating the inlet air on the measured NOx values is illustrated in figure 3. Non-
preheated air data was collected as a baseline to determine the effect air preheat has on NOx, and
to repeat the (unpublished) experiments of MYL in 1997 to ensure experimental repeatability.
Mainstream measurements s of CO and CO2, 11 and 5 percent respectively, were virtually
unaffected by preheat, and were consistent with equilibrium values. NOx measurements were
also consistent with equilibrium calculations and were 2 ppmv without preheat, and 13 ppmv for
500 °F preheat. Due to the dilution through the mixing section, one would expect a NOx concen-
tration of only 4 ppmv at the exit for mainstream preheat if no NOx were formed in the mixer.

Most notable of the comparison between the preheated jet air case, and the preheated main
and jet air case of figure 3, is the small impact of preheated jet air on NOx. The jet air comprises
over 70 percent of the total airflow, but preheating jet air results in relatively small increases in
NOx emissions compared to the main and jet preheated air case.

Figure 4 presents the corresponding NOx distribution plots. These plots also show the effect
that jet penetration has on determining the locations for peak NOx formation. Both the linear and
contour plots indicate peak NOx formations occurring near the orifices of the module (in the
wakes of the jets).

The distributions of equivalence ratio are given in figure 5. Note that preheat has very little
effect on jet penetration, and that the equivalence ratio distributions (refs. 12 and 13) better
reflect the mixing than do to the NOx distributions, as the latter are similar for each module.

To account more accurately for the overall effect of preheated air on NOx formation for a
given case, area weighted averages were calculated. The overall effect of preheating only jet air,
and both main and jet air preheat on the production of NOx is shown in figure 6. This figure
shows clearly that the affect of jet air preheat, with a NOx value of 16 ppmv (for the 14 hole
module), is relatively smaller than that of the main and jet air preheat case, with a NOx value of
24 ppmv.
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Round Hole Module Comparisons

Overall Combustion Performance.—Figures 7 to 9 present the concentrations of O2, CO,
CO2 and hydrocarbons for the four modules that were tested (8, 12, 14, and 22 round hole mod-
ules) for no preheat (fig. 7), jet air preheat (fig. 8), and jet and main preheated air (fig. 9) condi-
tions. The corresponding distribution plots are shown in figures 10 to 12. In each case, the trends
are very similar and the differences that do exist are a result of jet penetration for that particular
module (see also fig. 5). The penetration of the jets for the 12 and 14 hole module cases is
observed to be different than that of the 22 hole module case as indicated by the flatness, or
smoothness, of the data. Similar measurements were observed for the non-preheat air condition
and the jet air preheat condition with relatively small differences in the major species concentra-
tions as shown in figures 7 to 12.

Jet Air Preheat.—Previous studies indicated optimal mixing configurations for round hole
modules (refs. 1 and 2). The current work compares the various modules for given experimental
conditions (nonpreheat, jet air preheat, and main and jet air preheat) to determine which modules
produce lower NOx emissions. The data presented in figures 13(a) to (c) were obtained for the jet
air preheat experimental condition and shows that the various modules have similar overall NOx

performance. Similar spatial distributions of NOx are observed for each module with the excep-
tion of the center region where the 14 round hole module shows slightly higher NOx emissions.
This difference is illustrated in the area weighted average chart (fig. 13(c)) with the 14 round
hole module producing slightly higher NOx than the 12 and 22 round hole module cases. It
should be noted that the differences are only 2 to 4 ppmv.

Main & Jet Air Preheat.—The results of the main and jet air preheat experimental condi-
tions are similar to the jet air preheat results. The data for each module, figures 14(a) and (b),
follow almost identical paths with the exception of the 22 round hole module. In this case, the
NOx seems to be a little less near the center region. This may be due to the fact that the 22 round
hole module is considered a very overpenetrating mixing module, and thus may have lower NOx

formation in this region.
 The overall effect of main and jet air preheat experimental conditions is presented in figure

14 showing a slightly different trend than the jet air preheat case. The data indicates that the 12
round hole module has highest NOx concentrations compared to the 14 and 22 round hole mod-
ules. As with the jet air preheat cases the difference between the largest and smallest overall NOx

emissions is only 3.5 ppmv.

Summary and Conclusions

An experiment was performed to expand upon earlier work by incorporating preheated inlet
air, and examining the effect it has on NOx production. The following was revealed in the ex-
periment:

• Jet penetration determines where NOx concentrations peak and affects overall NOx

production.
• Jet air comprises over 70 percent of the total airflow, however the impact of preheating jet air

alone on overall NOx emissions is small compared to preheating both main and jet air. This is
likely due increased sensitivity of NOx kinetics to increases in the fuel rich zone temperatures
leading to increased production of fixed nitrogen species.
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• Overall NOx concentration varies little with mixing configuration. However, there is a trade-
off with CO production especially for under-penetrating configurations such as the 22 round
hole module.

These results show that preheating both main and jet air increases NOx significantly more than
preheating only the jet air. Also, the four mixing strategies investigated showed a small differ-
ence in overall NOx concentration although these configurations ranged from those giving under-
to overpenetrating jets.
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TABLE I.—OPERATING CONDITIONS
Description Inlet air temperature, °C

(°F)
Nonpreheated air 22 (72)

Jet air preheat 260 (500)
Main and jet air preheat 260 (500)
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Figure 1. Schematic of Experimental Rich Product Generator with Quartz RQL module.

QUARL

IGNITER

PROPANE

CERAMIC
FOAM

STEEL WOOL

AIR

SWIRLER

QUARTZ
MODULE

PERFORATED
DISK

JET-MIXING
SECTION

FUEL-RICH
COMBUSTION

ZONE

PREMIXING
ZONE



NASA/TM—1999-209431 10

Figure 2. Measurement Locations
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Figure 3. NOX Measurement Plots
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Non-Preheat Jet Preheat       Main & Jet Preheat
8 Round Hole Module

Non-Preheat Jet Preheat       Main & Jet Preheat
12 Round Hole Module

Non-Preheat Jet Preheat       Main & Jet Preheat
14 Round Hole Module

Non-Preheat Jet Preheat       Main & Jet Preheat
22 Round Hole Module

Figure 4. NOX Distribution Plots for Non-Preheated, Jet Air Preheat, and Main & Jet Air Preheat Conditions
for the four modules tested
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       8 Round Hole Module         12 Round Hole Module

        14 Round Hole Module          22 Round Hole Module

Figure 5. Non-Preheat Case Equivalence Ratio Distribution Plots
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Figure 6. Area Weighted Planar Average NOX Data

Figure 7. Species Concentrations for Non-Preheat
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Figure 8. Species Concentration for Jet Air Preheat

Figure 9. Species Concentrations for Main & Jet Air Preheat
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14 Round Hole Module

 22 Round Hole Module

Figure 10.  Species Concentration Distribution Plots for Non-Preheated Air
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14 Round Hole Module

22 Round Hole Module

Figure 11. Species Concentration Distribution Plots for Jet Preheated Air
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14 Round Hole Module

 22 Round Hole Module

Figure 12. Species Concentration Distribution Plots for Main &Jet Preheat
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Measured Data

Distribution Plots

Area Weighted Planar Averages
Figure 13. NOX Comparison for Jet Air Preheat
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Measured Data

Distribution Plots

Area weighted Planar Averages
Figure 14 NOX Comparison for Main &Jet Air Preheat
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