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SUMMARY

Superposition techniques are used to calculate the rate of heat

transfer from a flat plate to a turbulent incompressible boundary layer

for several cases of variable surface temperature. The predictions of

a number of these calculations are compared with experimental heat-

transfer rates_ and good agreement is obtained. A simple computing

procedure for determining the heat-transfer rates from surfaces with

arbitrary wall-temperature distributions is presented and illustrated

by two examples. The inverse problem of determining the temperature

distribution from an arbitrarily prescribed heat flux is also treated_
both experimentally and analytically.

INTRODUCTION

This report is the third in a series of four covering a three-year

investigation of heat transfer to the turbulent incompressible boundary

layer with arbitrary wall-temperature variation (ref. I). I In the first

report the experimental apparatus is described_ and the results of ex-

periments with constant wall temperature are given (ref. 3). The second

report presents the results of experiments and analyses for a step wall-

temperature distribution (ref. 4). In the present report the step-

function analysis is used as a basis for predicting heat-transfer rates

for several cases of variable wall temperature; and the predictions are

compared with experimental data. A simple method for handling arbitrary-

wall-temperature problems analytically is also presented. The fourth

report presents an analysis of the effect of transition point on heat

transfer in the turbulent boundary layer and compares the results with
experiments (ref. 5).

iThis nonisothermal heat-transfer work is summarized briefly in
reference 2.
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Because of the linearity of the boundary-layer energy equation, the

heat-transfer characteristics for a step wall-temperature distribution

may be superimposed to determine heat-transfer rates for arbitrary-wall-

temperature situations. This fact has been pointed out by Klein and

Tribus (ref. 6) and by Rubesin (ref. 7). The superposition results in

integrals that must be evaluated at each point where the heat-transfer

rate is desired. The integrations are easily performed if the wall-

temperature variation is relatively simple, such as linear, parabolic,

and so forth_ but numerical methods are required for mot@ complex cases.

One approximate method for treating variable-wall-temperature problems

is to express the wall-temperature distribution by a finite number of

steps. However, this results in infinite heat-transfer rates at the

steps and thus does not yield meaningful results in the region near the

discontinuities. A better method, short of exact integration, is to ap-

proximate the temperature distribution by a finite number of linear seg-

ments or "ramps." Since this approximation is continuous, the heat-

transfer rates are everywhere finite, and good results can be obtained

with relatively few ramp segments. This technique is described in the

present report, and the results compare favorably with experiments.

The inverse problem, wherein the heat-transfer rates are specified

and the temperature distribution is to be determined, can also be handled

by superposition of steps or ramps. This problem is also discussed in

the present report.

This investigation was carried out at Stanford University under the

sponsorship and with the financial assistance of the National Advisory
Committee for Aeronautics.
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kernel function for prescribed heat flux

function for prescribed heat-flux problem, i Br(i/9_lO/9)

r(1/9)r(8/9)
local heat-transfer coefficient, q"/At, Btu/(hr)(sq ft)(oF)

local heat-transfer coefficient at x due to a step temperature

at

thermal conductivity, Btu/(hr)(ft)(OF)

location of step, ft

slope of ramp, °F/ft or Btu/(hr)(cu ft)

Prandtl number_ #Cp/k

heat flux, Btu/(hr)(sq ft)

effective q", Btu/(hr)(sq ft)

Reynolds number based on x, Gx/_

i - (a/x)9/10 or i - (Z/x) 9/I0

function for prescribed temperature problem_

local Stanton number, h/Gcp

local Stanton number for constant heat input

local Stanton number for isothermal plate

absolute plate temperature_ OR

absolute free-stream temperature_ oR

temperature, OF

tw - tCO, OF

effective _t, OF

mean temperature of heated strip, OF



_t m

t w

t_

u_

w(x)

X

Y

Z

B(a,b)

Br(a,b)

r(a)

P

_O

tm - t_, OF

plate temperature, oF

free-stream temperature, oF

free-stream velocity, ft/sec

load distribut ion

distance from leading edge, ft

distance from plate, ft

variable of integration

beta function, _0 za-l(l - z)b-I dz

r a-l( I _ )b-i
beta function, z z dz

gamma function, e-Zz a-I dz = (a-l):

viscosity,

variable of integration

density, Ib/cu ft

beam deflection, in.

beam influence coefficient, in./ib

QUALITATIVE EFFECTS OF VARIABLE WALL TEMPERATURE

Until quite recently, practically all investigations of boundary-

layer heat transfer treated the special case of constant surface temper-

ature. Although the assumption of constant temperature greatly simpli-

fies analysis, many important systems involve heat transfer from non-

isothermal surfaces, and failure to consider the effects of the noniso-

thermality can often lead to serious errors in calculated heat-transfer

rates. Recent efforts have provided methods for treating the noniso-

thermal problem, and the calculation of heat-transfer rates is now es-
sentially mathematical.
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Before investigating the details of calculation of heat-transfer

rates from nonisothermal surfaces, it is desirable to obtain a qualita-

tive understanding of the way nonisothermality might be expected to in-

fluence the heat transfer. This can be best achieved by examining the

"history" of the boundary layer and considering the qualitative effect

of events upstream on the temperature profile in the boundary layer.

While these remarks apply to a heated plate_ they may readily be extended
to a cooled plate.

If the plate is at constant temperature_ the temperature profiles

at different points on the plate will have the same general shape and

will appear as shown in sketch (a). The slope at the wall will be pro-
portional to the heat-transfer rate.

Y

r
(Y) I

t_ t_%

(a)

If the plate temperature increases in the flow direction_ the tempera-

ture profiles will tend to be more drawn out_ as indicated in sketch (b).

The gradient at the wall will therefore be steeper_ and the heat-transfer

coefficient will be greater than if the plate were at constant
temperature.

Y_

I

J

i

(b)
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If_ on the other hand, the wall temperature decreases in the flow direc-

tion_ the profiles will tend to be less drawn out_ as shown in sketch

(c). The gradient at the wall will therefore be less, and the heat-
transfer coefficient less than if the plate were at constant temperature.

Y

Lyl I

Cc)

In fact_ it is conceivable that, if the wall temperature decreased fast

enough_ the profile could be so distorted that the heat-transfer rate

would be zero at some point_ even with a finite over-all temperature dif-

ference. In such a case the temperature profile would appear as follows:

yJ

t(y) ii

l twt i
(d)

t
v

Moreover_ decreasing the wall temperature even faster could result in a

complete reversal of the profile near the wall (sketch (e)), in which

case the heat transfer would be negative_ with a positive over-all tem-

perature difference.
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It is also possible that decreasing the temperature difference even

faster could lead to finite negative heat transfer with a zero tempera-
ture difference:

Y

t(y)

Jq

t_=t W

._t

(f)

It is evident from these considerations that the nonisothermality

may have a profound influence on the shape of the temperature profiles

in the boundary layer and consequently may greatly influence the heat

transfer. Moreover, it is clear that the "history" of the boundary layer

is of great importance. It should also be noted that the heat-transfer

rate need not always be "in phase" with the wall-temperature variation.

In general, however, the following is true (if tw> t_):

(i) A decreasing temperature difference leads to heat-transfer rates

that are lower than those for an isothermal plate.

(2) An increasing temperature difference leads to heat-transfer

rates that are higher than those for an isothermal plate.

With the effects of thermal history well in mind, the calculation of

heat transfer from nonisothermal surfaces becomes purely a mathematical
matter.
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THEORYANDANALYSIS

Review of Theory

The methods for determining heat transfer from nonisothermal sur-
faces are similar to the methods used in determining the deflection of
beams subject to arbitrary load distributions. The energy equation of
the boundary layer is linear in the fluid temperature if fluid properties
are assumed to be constant. This allows superposition techniques to be
employed. Rubesin (ref. 7) has shown that the heat-transfer rate for an
arbitrary wall-temperature variation can be determined by superimposing
a number of "step wall-temperature distributions_" so that summation of
the steps yields the actual variable temperature distribution_ and the
heat-transfer rate at any point is equal to the sum of the heat-transfer
rates attributable to all "steps" upstream of the point in question.
This idea of superposition is illustrated in figure i, where the super-
position of temperature steps is compared with the superposition of point
loads used in beam-deflection problems. It is evident that a satisfac-
tory solution for a step wall-temperature distribution is required before
any attempt can be made to handle the variable-temperature problem_ and
such a solution for turbulent incompressible flow over a flat plate with
a step wall-temperature distribution is presented in reference 4.

It is convenient at this point to introduce somenew notation.
Since the temperature distribution along the heated plate may be thought
of as a function of the distance from the leading edge x, one may write

At = At(x)

On the other hand, the temperature distribution can always be represented

by some algebraic expression involving x_ and this expression may be a

function of several parameters. Then one might prefer to denote the tem-

perature difference more completely by

At = At(al_a2,a3,

where the ai are the parameters in the functional description of the

temperature difference. They might be the coefficients in a power series

expansion_ the locations of discontinuities, or some other parameters.

Hereafter the parameters will always be listed before the important vari-

able, which in this case is x. If only one symbol appears in the paren-

theses, it will refer to the important variablej and the fact that the

function depends on the parameters aI to an is to be understood.

Thus_ for a step wall-temperature distribution, the heat-transfer coef-

ficient may be written as h(Zjx), where Z is the location of the dis-

continuity, or merely as h(x)_ where it is to be understood from the

context that the coefficient refers to the step distribution case.
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It is also convenient to compare the local rate of heat transfer

from a plate having variable wall temperature with the rate that will

occur if the surface temperature is constant at its local value from the

start of the plate. For this purpose it is convenient to denote the

local Stanton number for an isothermal plate by St T. The isothermal

Stanton number is a function of x only and does not depend on any of

the parameters characterizing the nonisothermal problem. The notation

StT(x ) will sometimes be used to emphasize this point. The isothermal

Stanton number may be taken from any suitable expression for the Stanton

number for heat transfer from a plate at constant temperature. For ex-

ample, for heat transfer to a gas in the turbulent incompressible bound-

ary layer, the isothermal Stanton number may be determined from

-O. AStT(x) = 0.0296Pr-0._Rex0.2 w (l)

Reference 3 shows that this relation is satisfactory for gases in the

Reynolds number range i0 5 < Re x < 10 7. In using equation (i), the

fluid properties in the Stanton, Prandtl, and Reynolds numbers are eval-

uated at the free-stream static temperature; the factor (Tw/T_) -0"4

provides the temperature-dependent fluid-property correction.

The step wall-temperature distribution case; which is the entire

basis for superposition in arbitrary-wall-temperature problems, is

treated in reference 4. The step wall-temperature distribution may be
written as

Reference 4 shows that the corresponding heat-transfer rate may be repre-

sented by

StT(x) ..... x > Z (2)

The heat-transfer coefficient for the step case is therefore

: (2a)

Following the methods of Klein and Tribus (ref. 6), one can superimpose
an infinite number of small steps. This results in heat-transfer rates



I0

from the nonisothermal surface given by the following integral
expression:

q"(x) = h(_x) dtw(/[)
0

(3)

Here the kernel function h(_,x) is, from equation (Za),

Note that the terms GcpStT(x ) may all be brought outside the integral

in equation (S), since the integration is performed over the variable _.

It should be noted that the integral of (S) must be taken in the

"Stieltjes" sense (ref. 8) rather than in the ordinary "Riemann" or

"area" sense. This must be done because the prescribed wall temperature

may have a finite discontinuity_ so that dtw is undefined at some

point. The Stieltjes integral may_ however_ be expressed as the sum of

an ordinary or Reimann integral and a term that accounts for the effect

of the finite discontinuities. The integral of equation (S) may be

written as (ref. 8)

/___=x /___=x dtw( _ )
0 -0

(Riemann)(Stielt jes )

N

+ _ h(Zn;X)Itw(Z+)- tw(Zn) ]

n=l

where [tw(Zn+) - tw(Zn) ] denotes the temperature rise across the nth

discontinuity in the wall temperature. The use of equation (3) will be

illustrated later by several examples.

Equation (3) is useful if the wall-temperature distribution is pre-

scribed and the heat flux is to be calculated. An equally important

problem is the case in which the heat flux is given and the wall temper-

ature is to be found. Again following Klein and Tribus (ref. 6)_ the

wall temperature may be determined from

at( ) : (6)
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where

- (9/lO)(l/x) (v)

Because of the nature of the integrand of equation (6), the integration

can always be performed in the usual "Riemann" sense. The us_ of equa-

tion (6) in problems where the heat flux is prescribed will be illus-

trated later by examples.

Functions of Interest

In the solution of various arbitrary-wall-temperature problems,

integrals are frequently encountered that cannot be integrated in closed

form, but they are well known and may be determined from tables. Of

particular interest here is the beta function, defined by (ref. 9)

I _ 7.B(a,b)- za-l(1 )b-1dz (Sa)

The beta function is a function of two arguments; a and b, and is not

tabulated as such. It is; however, related to gamma functions by the
relation (ref. 9)

(Sb)

The gamma function is another integral but is a function of one argument

only, and tables of this function are available (e.g., ref. i0). Note

that B(a,b) = B(b,a).

More properly; the beta function defined previously is referred to

as the complete beta function. The incomplete beta function is also of

interest; and it is defined by

_0 _ r
Br(a;b) = za-l(1- z)b-1 dz

Note that the complete beta function is Bl(a;b ). The incomplete beta

function is tabulated; but not for arguments of interest in nonisothermal

boundary-layer calculations. A number of incomplete beta functions of

interest in turbulent heat-transfer analysis have been determined as a

part of the current work. These functions are given in table I and

are plotted in figure _. In addition, the reader is referred to refer-

ence ii for similar tabulations of incomplete beta functions for both

laminar and turbulent flow over a flat plate. In calculating the
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integrals use was made of the symmetry property of the incomplete beta

function (ref. 12)

Br(a,b ) = Bl(a,b ) - Bl_r(b,a ) (8d)

and the relation of the incomplete beta function to the hypergeometric
function (ref. 12)

ra F(a,l-b;l+a;r)Br(a,b) = _- (8e)

where the hypergeometric function is a well-known series. An IBM 650

computer was used to calculate the hypergeometric functions and the in-
complete beta functions.

Some Special Nonisothermal Heat-Transfer Calculations

To illustrate the methods of superposition previously discussed_

several examples of variable wall temperature and variable heat flux

have been worked out in detail. These examples illustrate not only the

methods of calculation_ but also several interesting aspects of noniso-

thermal heat transfer. The results of these calculations are summarized
in table II.

Constant heat input. - The temperature distribution along a flat

plate at constant heat input may be determined from the theory of

variable-wall-temperature heat transfer. The temperature distribution

is, from equations (6) and (7),

_=X

At (X) = !o(i/9)r(S/9)GcpStT(x) -(__) 9/1 d(_) (9a)

Setting z : i- ((/x) 9/I0 reduces (9a) to

,, i

qo O/ z-S/9(1- z) 1/9 dz (9b)At(x) = P(1/9)P(8/9)GcpStT(x )

The integral of (gb) is recognized as a complete beta function; and
therefore

Ii B If
qo (1/9,10/9) qo

nt(x)= = o.9 87 GcpSt T
(iOa)
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Putting (lOa) into dimensionless form gives

StH

st-7 --l O43 (lObl

where StH denotes the local Stanton number for constant heat input°

This indicates that the local heat-transfer coefficient for constant

heat input is 4.3 percent greater than that for constant wall tempera-
ture at any given location on the plate.

Ramp wall temperature. - Consider the "ramp" wall-temperature dis-
tribution as shown in sketch (g):

0 X--_-

(g)

The wall temperature is given by _t(x) = mx, where m is the slope of

the wall temperature, dAt/dx. Substituting in equation (3),

q"(x) = GcpStT(x)m _=x Ii (_)9/i01-i/9
=0

(ll)

By letting z : 1 - (_/x)9/lO

beta function and leads to
the integral of (ii) reduces to a complete

q"(_): a%st_(_)_x(lO/9)B(8/9,10/9)

: 1.154mxGcpStT(x)

(12)

Since mx is simply the local temperature difference, equation (12) may
be written as

St

st-7: 1.134 (12_)



Hence, the heat-transfer rate is 13._ percent greater than would be pre-

dicted from the equation for a constant-temperature plate.

Step-ramp wall temperature. - Consider the wall-temperature distri-
bution indicated in sketch (h):

At

0

(h)
x

The heat-transfer rate for this wall-temperature distribution may be de-

termined by superimposing the heat-transfer rates for a step at the lead-

ing edge and a ramp from the leading edge. Thus, from equations (4) and
Cl?),

q" (x) = GcpSt_t 0 + i.13&GcpSt_x (is)

which may be written as

St _ l.lS4 + At0/mx

stT 1 + At0/m 

Note that_ as At0/mx approaches zero, the Stanton number for the com-

bined step-ramp temperature distribution approaches that of the simple

ramp (eq. (12a)), and as At0/mx becomes very large, the Stanton number

approaches that of the isothermal plate. This is the expected limiting
behavior.

The step-ramp example illustrates several interesting features of

nonisothermal heat transfer that were mentioned earlier. For example,

if the temperature difference increases with x(m > 0), the heat-transfer

rates will be higher than the isothermal rates. On the other hand, a

decreasing temperature difference (m < 0) leads to lower heat transfer;

in fact_ zero heat transfer may be obtained at some point with a finite

temperature difference_ and finite heat transfer at some point with a

zero temperature difference. Physically, these situations arise because

the energy and consequently the temperature in the boundary layer depend

strongly upon the "history" of the layer. For example_ if the
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temperature difference decreases (the plate being heated), the fluid

near the wall is hotter than it would have been if the plate temperature
had been constant at its local value from the start. This means that

the temperature gradient at the wall is less, and consequently the heat

transfer is lower_ than the isothermal values.

Delayed ram_ wall temperature. - Another case of special interest

is that where the temperature difference is zero over part of the plate

and then varies linearly, as shown in sketch (i):

At

0 a x

(i)

The temperature difference is given by

At=0 x<a

At = m(x - a) x > a

Again using equation (3),

i  9/lo]-l/9
(is)

Letting z = i - (_/x) 9/I0, the integral of equation (i5) reduces to an

incomplete beta function. This leads to the following result:

q"(x)=lO9aCpSt (X) r(8/9'l°/9) (16)

where r = 1 - (a/x) 9/10. This result is of utility in approximate so-

lutions of variable-temperature problems, as is shown later.

Constant temperature followed by adiabatic wall. - Consider the

case where the front part of the plate is held at constant temperature

and the remainder of the plate is insulated; so that the heat transfer
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is zero. The wall temperature is shown in sketch (j):

At

I At
I

ay/// / / / / /

(J)

/r X

This case is of interest in the de-icing of aircraft wings, where the

leading edge can be heated and the warm boundary layer used to melt the

ice from the aft portion of the wing. Similar techniques would be use-

ful in the cooling of high-speed aircraft and missiles.

This problem must be treated as a "specified heat input" problem.

The heat flux over the isothermal portion can be computed from the defi-

nition of StT:

q"(_) = GcpStT(_)At 0 x < a (17)

The heat input is zero for x > a. Then, using the fact that StT(_)

varies as _-0.2 the temperature of the adiabatic wall may be determined

from equation (6) as

x>a

By letting z : (_/x)9/10 the integral of (18) can be reduced to an

incomplete beta function, leading to

(18)

At Bs(8/9,1/9)
At 0 - F(8/9)P(I/9) (19)

where s : (a/x)9/10 It should be noted that there is no way to deter-

mine the "adiabatic decay temperature" (At) from the isothermal heat-

transfer equation, and that nonisothermal theory is essential in the

solution of this problem.



Step heat input. - Consider a step heat input as indicated in
sketch (k):

17

,I

q"

0 ._ _-x

(k)

The wall-temperature distribution rate may be determined from equation
(6) as follows:

(9/lo)q_ I _ 9/1 -8/9
-Vx

Bylettingz = 1 - (_/x)9/lo,equation(_Oa)integratestogive

(20a)

where

_t(x):

r = i - (Vx) 9/10.

<_r(1/9,=0/9)

r(1/9)r(8/9)_CpSt_(_)
(2Oh)

Delayed ram_ heat input. - Consider a flat plate subjected to a

"delayed ramp" heat input, as shown in sketch (Z):

qI!

0 a x

(t)

The temperature distribution for this specified-heat-input problem can

be determined using equation (6), which leads to
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which, by appropriate substitution_ reduces to

= mx _ a B
At(x) F(i/9)P¢8/9)GcpStT [Br(119,2019) (_) _0-1_,_o1_)] (Zl)

where r : 1 - (a/x)91l°. m is result is also of interest in the approxi-

mate treatment of variable-heat-flux problems_ as is described later.

Approximate Methods for Handling Problems of

Variable Wall Temperature and Heat Flux

In many cases the prescribed wall-temperature distribution or heat

flux will be such that the integrals resulting from the superpos it ion

methods cannot readily be evaluated in closed form. In such cases a

long and tedious numerical integration is required for each point at

which the heat transfer is to be calculated. It is evident that a suit-

able approximate technique for rapid calculations would be extremely

useful. One possible method is to superimpose a finite number of steps

to approximate the wall-temperature or heat-flux distribution. However,
this leads to infinite heat-transfer rates at the discontinuities. A

more satisfactory method is to superimpose a number of "ramps" to approx-

imate the temperature or heat-flux distribution. Generally, a relatively

few ramps can be used to obtain an excellent approximation to any type

of prescribed distribution. Furthermore, since no discontinuities in

temperature occur, no infinities in the heat-transfer rates will be ob-

tained when ramps are used. The method of superposition of a number of

delayed ramps is indicated by figure S. Note that each ramp extends in-

definitely downstream from the point of its origin. Any discontinuities

in the prescribed distribution can be accounted for by adding a step, as

is indicated by figure S. Numerical examples of this method are worked

out and compared with experiment later.

The method indicated is similar to that described recently in ref-

erence 13, in which some integrals of interest in laminar and turbulent

variable-temperature problems are computed and a concise computation pro-

cedure is presented. Computations are given for the result of both Rubesin

(ref. 7) and Seban (ref. 14), the latter of which is similar to the result

of the present investigation. The present scheme has the advantage that



19

{:

2

!

j

the computing equations have been put in a form where loss of significant

figures due to subtraction of numbers of the same order of magnitude is

minimized. Moreover, the present method allows steps to be used in addi-

tion to ramps, while in the method of reference 13 the distribution must

be approximated entirely by ramps. Moreover, reference 13 treats only

problems of prescribed wall temperature_ while the present work allows

calculation of both prescribed temperature-distribution and prescribed
heat-flux problems.

The approximation of the temperature or heat-flux distribution by

ramps and steps may be represented mathematically by the expression

N J
At(x) -- - + bj
q" (x) n=l j=l

(22)

Here mn is the slope of the nth ramp and has the •dimensi°ns of °F/ft

(or Btu/(hr)(cu ft)), and an is its starting point_ bj is the height

of the jth step and has the dimensions OF (or Btu/(hr)(sq ft)); N and

J are the number of ramps and steps_ respectively_ which begin upstream

of the given location x. Differentiation of equation (22) shows that

the slope of the approximate distribution at any point is the sum of the

slopes of all ramps starting upstream of that point. Thus, if M(x) is

the slope of the curve of temperature against distance at the point x,

N

dT
(x) = M(x) = _ (23)

n:l

Equation (23) allows calculation of the slopes of the component ramps.

The step height bj is simply the rise across the step and may be cal-

culated by a single subtraction. Thus, once the "break points" have

been selected_ ramps and steps may be drawn in and their parameters
evaluated by a small amount of arithmetic.

Prescribed temperature-difference problems. - If the temperature

difference is represented as the sum of a number of ramps and steps,

the heat-transfer rate is simply the sum of the heat-transfer rates due

to the component ramps and steps. Therefore_ from equations (16) and

N

q"(x) = (10/9)GcpStT(x)x E mnBrn(8/9'10/9)
n=l

+ GcpStT(x) bj [1- (!O-)9/l°]-1/9
\x/ 3

j:z
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where Zj is the location of the jth step, and rn = i - (an/X)9/I0.

For calculation purposes, it is convenient to rewrite equation (24) in a

different form. In order to do this, two new functions are defined:

(2s)

and

(26)

Then, by using equation (22), equation (24) becomes

q"(x)= aopStT@)[nt( )
n=l j=i

(27)

This form of the computing equation has the advantage that the loss of
significant figures due to subtraction of numbers of the same order of

magnitude is relatively small. It also allows direct comparison with

what would be predicted from the isothermal-plate relation (eq. (2)),
namely

= GcpStT(x)At(x ) (2s)

The effect of the nonisothermality is then concentrated entirely in the

summation terms. In order to simplify the form; an "effective tempera-
ture difference" At _ can be defined as

At*(x) = At(x) +_x mnA + bjS (29)

This allows equation (27) to be written as

q"(x) = GcpStT(x)At _ (50)

The relations developed allow rapid calculation of heat-transfer

rates in prescribed wall-temperature-difference problems. The computing

functions, A and S_ are tabulated in table III and shown in figure 4.

An example of calculation of the heat-transfer rate for a prescribed

temperature distribution is presented later.

Prescribed heat-flux problems. - Prescribed heat-flux problems may

be handled in the same manner as prescribed temperature-difference
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problems, making use of the solution for a delayed ramp heat flux (22).

Denoting qn(X) as the heat flux due to the nth ramp and q_(x) as

that due to the jth step heat input, equation (6) may be written as

'Ig(_,x _) + "(_
=0 j=O qj

Exchanging the order of integration and summation gives

N _=x

_tC_l: _ f _(_,xl_(_l_+
n=O _:0

(31)

J _=x

_i ° g(_,x)q](_)_ (52)
j=O =

But the integrals of (Z2)are merely those for single ramps and stepsj
therefore, from (20) and (22),

At(x) = p(1/9)P(S_9)GcpStTt Nn_=mnxIBrn(1/9,2019)

J l+ _ baB_a(llg,lolg)
j=O

(53)

where rn -- 1 - ¢_/x)9/lo, and ra -- 1 - (Zj/x)9/lO. _,quation(33) may
be put in a more useful form for computation by introducing two new
funct ions:

_{_1_,_.oi_)-(_)_r(_l_,_oi_)

and

(_) Br(l/9'lO/9): l - I'(119)_(819) (3s)

Then, using equation (2R), equation (33) may be written as

At(x) : _[ (36)
aOpStmcx)

where
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N J

n=l j =i

and q* represents an "effective heat-transfer rate_" in which the ef-
fects of the nonisothermality are all concentrated in the summation
terms. Equations (56) and (37) may be used to calculate temperature dif-
ferences in prescribed heat-flux problems. A numerical example of the
use of equation (57) is included later with experimental verification.
The functions D and H are tabulated in table IV and shown by figure 5.

RESULTSANDDISCUSSION

Comparison of Theory and Experiment

Experiments have been performed for several cases of variable wall
temperature and heat flux. The test apparatus consisted of a large
heated plate with an active flow length of about 5 feet built up with 24
individually heated strips. Within control limitations_ any desired wall-
temperature or heat-flux distribution could be obtained. The plate was
tested in the 7-foot-diameter free-jet Guggenheimwind tunnel at Stanford
University. Air velocities up to 150 feet per second were employed.
This apparatus is described in detail in reference 3.

The data from these tests have been compared with predictions ob-
tained from nonisothermal theory. In all of these prediqtions_ the iso-
thermal Stanton number StT was computed from the relation

StTPr 0"4 = 0.0296Rex 0"2{Tw] -0"4 (ss)

In using this relation_ all fluid properties are evaluated at the free-

stream static temperature, and the factor (Tw/T_)-0"4 is a temperature-

dependent fluid-properties correction. For comparison_ predictions of

the behavior of the nonisothermal surfaces have been made employing both

the step-function analysis presented in reference 4 and an earlier anal-

ysis due to Rubesin (ref. 7).

Constant heat input. - Four test runs were made in which the heat

flux was held constant. These data are tabulated in table V(a) and are

shown on figure 6. The data are compared with the isothermal-plate cor-

relation (eq. (58)!_ the constant-heat-input predictions of the present

analysis (eq. (lOb))_ and the constant-heat-input prediction of Rubesin

(ref. 7). Since the Stanton number for a surface with constant heat
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input is only about 4 percent greater than that for constant wall tem-

perature_ the experimental uncertainty largely masks the predicted dif-

ference. At the start of the plate the data appear to be closer to the

constant-temperature correlation_ this is because the strips are long

relative to the flow length_ and each strip is essentially at constant

temperature. Farther downstream_ where the strip length is small com-

pared with the flow length 3 the data agree very well with the constant-

heat- input predict ion 3

StHPrO.4 = O.0507Rex0.2 (_w) -0"_ (39)

The prediction of Rubesin (St_St T = 1.06) appears to be slightly high

over the entire test range.

Double-step wall temperature. - One test run was made for which the

wall-temperature distribution was a "double step," a discontinuity in the

wall temperature occurring in the center of the plate. These data are

tabulated in table V(b) and shown in figure 7. Over the first portion of

the plate, where the plate is at constant temperature_ the predictions of

the present analysis and of Rubesin (ref. 7) are identical. After the

discontinuity, Rubesin's analysis is high, while the prediction of the

present analysis is quite good. The predicted heat-transfer rates were

determined by adding the rates due to the step at the leading edge to
those due to the step downstream.

Step-ramp wall temperature. - One test run was made in which the

wall temperature was varied linearly from the leading edge. Because of

control limitations, it was necessary to have a small step in the wall

temperature at the leading edge. The data from this run are tabulated

in table V(c) and shown in figure 8. The linearity of the wall tempera-

ture was quite good. The heat-transfer data are compared with the pre-

dictions from the present analysis, with the result of Rubesin (ref. 7),
and with what would be obtained from use of the uncorrected isothermal-

plate correlation (eq. (58)), employing the local temperature difference.

The predictions of the present analysis, which were determined from equa-
tion (13), agree very well with the experimental values. The heat-flux

predictions based on the analysis of Rubesin are high, while the iso-

thermal relation (38)predicts heat fluxes that are slightly low. How-

ever, the ramp obtainable with the experimental apparatus was not very

steep_ and thus the effect of the nonisothermality is not as great as

might be obtained (see eq. (14)). In fact, use of the isothermal equa-

tion (38) and the local temperature differences gives results that may

well be satisfactory as first approximations for engineering design
calculations.

Constant temperature followed by adiabatic wall. - One test run was

made in which the forward part of the plate was held at constant tempera-

ture and the power was turned off on the last 12 strips. The data from
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this run are tabulated in table V(d) and shown by figure 9. In this ex-
ample_ the hot air flowing over the unheated portion of the plate warms
the plate_ and the result of interest is the wall-temperature distribu-
tion downstream of the discontinuity in heat flux. This situation is of
interest in the de-icing of wings_ where the leading edge may be heated
and the hot air used to melt the ice from the after portion of the wing.
Similar techniques are of interest in the cooling of missiles_ where the
front of the missile is cooled and the cold boundary layer is used to
cool the rearward sections. The data are compared with the temperatures
predicted by the present analysis (eq. (19)) and a similar equation ob-
tained from the Rubesin analysis (ref. 7). Again the Rubesin prediction
is high_ while the agreement between the data and the present analysis
is quite good. The measured temperatures are expected to lie slightly
higher than the predictions because of conduction in the test plate.
This conduction effect is greatest just downstream of the discontinuity
in heat flux_ and agreement of the data with the predicted temperature
distribution is poorest in this region. The over-all agreement of the
data with predictions is considered quite satisfactory.

Double-pulse heat input. - One test run was made with a double or

step heat-flux distribution. The data from this run are tabulated in

table V(e) and shown by figure i0. Because of conduction in the plate_

it was not possible to obtain sharp discontinuities in the heat flux_ as

the data indicate. In making the predictions for the wall temperature_

the actual nonperfect pulses were approximated by perfect pulses_ so that

the total heat transfer was the s_. The approximate pulses are indi-

cated in figure i0

The predicted temperatures were determined by superposition of three

steps of heat input_ using the step heat-input results (eq. (20)). The

agreement between the predicted and experimental temperatures is excel-

lent_ except near the ends of the pulses. The over-all agreement is con-

sidered quite satisfactory.

Irregular wall temperature. - One test run was made in which an ex-

tremely irregular wall-temperature distribution was maintained in the

plate. The data from this run are tabulated in table V(f) and shown in

figure ll(a).

The experimental heat-transfer rates are compared with heat-transfer

rates predicted from the approximate methods described earlier. Figure

ll(b) shows how the wall-temperature distribution was approximated by

seven ramps and one step. Again the predicted heat-transfer rates are

in excellent agreement with the predictions of the approximate method.

The data for strip 2 are low_ probably because the flow was not fully

turbulent over this strip. The heat-transfer rate predicted by use of

the isothermal-plate relation (38) is in considerable error_ especially
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where the wall temperature is changing rapidly. However, the values are
of the same order of magnitude, and it can therefore be concluded that
the isothermal equation may be used to obtain a first estimate of the
heat transfer from nonisothermal surfaces.

This sameexample has also been treated as a "prescribed-heat-flux"
problem, using the approximate methods described earlier. Figure 12(a)
shows how the heat flux was approximated by five steps and six ramps.
Figure 12(b) shows the temperature differences computed by the approxi-
mte methods compared with the experimental temperatures. The agreement
near the leading edge is not too good_ but this can be attributed to the
approximations made on the heat-flux distribution, and to the fact that
here the flow may not have been fully turbulent. Farther downstream,
the predicted and experimental temperatures agree very well. The pre-
dictions made from the isothermal equation (58) are in considerable er-
ror_ especially where the heat flux is changing rapidly. They are, how-
ever, of the same order of magnitude, and thus it appears that the iso-
thermal equation can also be used to obtain a first approximation to the
temperature difference in a prescribed heat-flux problem.

Determination of Heat-Transfer Rates by Approximate Methods

In order to illustrate the approximate methods for handling pre-
scribed wall-temperature problems_ the "irregular" example described in
the preceding section will be worked out in detail. The test data for
this run are shown in figure ii. The prescribed temperature difference
will be approximated by seven ramps and one Step_ as is indicated by
figure ll(a).

The first step is to determine the location and slopes of the ramps.
The "break points" for the ramps and the temperature difference for the
step will be taken as indicated in the following table_ where n denotes
the number of the ramp starting at an:

n

1
2
5

4
5
6
7

end

an, at(an),

ft OF

0 _.0

.70 20.2

1.20 11.4

1.82 7.6

5.10 18.4

5.50 24.6

4.00 16.7
4.80 15.2
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The slope of each component ramp may be determined readily_ since the

slope of the approximate temperature distribution at any point is simply

the sum of the slopes of all ramps starting upstream. Therefore_ for
the first ramp_

20.2 - 4.0
mi = 0.70 - 0 = 23.14 °F/ft

To find the slope of the second ramp_

11.4 - 20.2
ml + m2 = 1.20 - 0.70 = -17.60 OF/ft

m 2 = -17.60 - 23.14 = -40.74 °F/ft

Similarly, for the third ramp_

7.6 - 11.4
ml + m2 + m3 = 1.82 - 1.20 = -6.13 °F/ft

m3 = -6.13 + 40.74 - 23.14 = 11.47 °F/ft

For the fourth ramp_

+ (-6.18)= 18.4 - 7.6

3.10 - 1.82
: 8.44 °F/ft

m4 = 14.57 °F/ft

For the fifth ramp,

mS + 8.44 :
24.6 - 18.4

5.50 - 5.10 = 15.50 °F/ft

m S = 7.06 °F/ft

For the sixth ramp_

m 6 + 15.50 :
16.7 - 24.6

4.00 - 5.50 = -15.80 °F/ft

m6 = 51.50 °F/ft

Finally_ for the seventh ramp,
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m7 + (-15.80) :
13.2 - 16.7

4.80 - 4.00 : -zi.57 °F/ft

m7 : 11.43 OF/ft

In addition to the seven ramps; the superposition involves a step of

4.0 ° F at the leading edge, where ZI = 0. Summarizing_

n

i

2

$

4

5

6

7

Ramps

an_ mn_

ft °F/ft

0 23.14

.70 -40.74

1.20 11.47

1.82 14.57

3.10 7.06

3.50 -31.30

4.00 i1.43

i

Steps

Zj, bj,

ft OF

0 4.0

At this point a check should be made. For 4.00 < x < 4.80 feet,
the temperature distribution should be given by

_t(x) = 4.O + 23.14(x - O) - 40.74(x - 0.70) + 11.47(x - 1.20)

+ 14.87(x - 1.82) + 7.06(x - 3.10) - 31.30(x - 3.50) + ll.43(x - 4.00)

By substituting x = 4.80 feet_ the temperature at the "end" may be cal-
culated from this relation as

At(4.80) = 4.0 + 111.07 - 166.95 + 41.29 + 43.42 + 12.00

-40.69 + 9.14 = 13.3 ° F

This agrees with the value that exists at x = 4.80 feet, and therefore

the calculated ramp slopes close with the proper value, providing a
check.

The calculation of the heat-transfer rates can best be handled by

tabular computation. For example_ the calculation of the heat-transfer

rate at x = 5.5 feet is as follows:

First; tabulate the parameters of interest. From the data,
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x-- 5.5ft

G = 52,400 ib/(hr)(sq ft)

= o.o_59 lb/(_)(ft)

cp = o.2_ Btu/(lb)(oF)

At = 24.6 ° F

Pr = 0.70

T_ = 528 o R

Tw = 553 ° R

Next, in a tabular manner, calculate the sums appearing in equation (27):

n an an/X A(an/X) ran A(an/x)m n

I 0 0

2 .70 .2O0

5 1.20 .545

& 1.82 .520

5 5.10 .886

j zj

1 0

0.155

.130

.124

.112

.055

25.14

-40.74

11.47

14.57

7.06

3.12

-5.50

i .42

1.65

.57

_-].A(a.n/x.)mr. = 1.24 °F/ft

Zj/x s(zj/x) bj s(zj/x)bj

0 0 4.O 0

_S(Zj/x)bj= 0° F

Note that only the ramps and steps starting upstream of x are used in

these calculations. The functions A and S are determined from fig-

ure 4, which may be replotted from the values in table III. The "effec-

tive" temperature in equation (29) is therefore

At_ = At(x) + x_]mnA(an/x) +][_bjS(7.j/x)

= 24.6 + 5.5(1.24) + 0

= 28.9 ° F

The Reynolds number is

Re x : Ox/Iz = (52,500)(5.5)/0.0459

: 2.58x106

The isothermal Stanton number St T may be determined from equation (58)

as
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stT = 0.0296(2.s8xzo6)-0.2(0. v)-.0.4(ss3/s2s)-0.4

= 0.00176

Finally, the heat-transfer rate may be calculated from equation (30) as

q"(3.s) = (32,3oo)(o.24)(o.ooz76)(28.9)

= 594 Btu/(hr)(sq ft)

Similar calculations may be repeated at any point for which the heat-

transfer rate is to be predicted. In making the predictions for this

example, heat-transfer rates were calculated at the six 'break points,"

the "end" (4.80 ft), and at x = 0.4 foot. The total calculating time

was slightly less than i hour.

Determination of Wall Temperatures by Approximate Methods

In order to illustrate the approximate methods described earlier

for handling prescribed heat-flux problems, the "irregular" example de-

scribed earlier will be worked out in detail, assuming the heat flux is

known and the wall temperature is to be calculated. The data from this

run are shown in figure 12. The prescribed heat flux will be approxi-

mated by six ramps and five steps, as is indicated by figure 12(a). It

will be assumed that the heat-transfer rate was constant from the lead-

ing edge, having a value equal to that measured for the second strip.

This assumption will introduce some error at the start_ but the boundary

layer on the first strip is probably laminar or transitional, and thus a

more accurate calculation is not possible.

The first step is to evaluate the parameters in the step-ramp ap-

proximation. The heat-flux discontinuities will occurmidway between

data points; at these points the two adjacent strips are separated by a

thin insulator. The discontinuity and break-point locations are as

follows:

IT
X, q (X),

ft Btu/(hr) (sq ft)

0-

O+

.46-
• 46+

.90-

.90+
1.10-

1.10+
1.70
2.16-

2.16+
3.00
3.50

3.88
4.80

0

162.5

162.5

372.5

372.5

235.0

235.0

175.0

I10.0

ii0.0

152.5
280.0
400.0

245.0
130.0
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First_ the height of each step is calculated as follows:

bI - 162.5 - 0 = 162.5 Btu/(hr)(sq ft)

b2 : 372.5- 162.5-- 210.0 Btu/(_r)(sq ft)

b 3 : 23_.0- 372.5-- -137._ _tu/(hr)(sq ft)

b4: = 175.0 - 255.0 : -60.0 Btu/(hr)(sq ft)

b_= 152.5- ii0.0= 4:?.5Btu/(hr)(sqft)

The slope of each ramp is calculated from equation (25):

mI = (IIO.O-175.o)/(1.7o-i.io)

= -i08.5 Btu/(hr)(cu ft)

m 2 + (-108.5) = (ii0.0 - ii0.0)/(2.16 - 1.70) = 0

m2 : +108.5 Btu/(hr)(cu ft)

m5 + 0 = (280.0 - 152.S)/(5.00 - 2.16) = 151.8

m s = 151.8 Btu/(hr)(cu ft)

m4: + 151.8 : (4:00.0 - 280.0)/(5.50 - 5.00) = 24:0.0

m4:: 88.2Btu/(_)(ou ft)

m5 + 24:0.0 = (24:5.0 - 4:00.0)/(5.88 - 5.50) = -4:07.9

m5 = -64:7.9Btu/(_)(c_ ft)

m6 + (-4:07.9): (150.0- 24:5.0)/(4:.80- 5.88): -125.0

m6 : 282.9Btu/(m_)(cuft)

ZI = 0 ft

Z2 = 0.4:6 ft

Z5 = 0.90 ft

Z4: = I.i0 ft

_5 = 2.16 ft
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The foregoing calculations may be summarized as follows:

L

!4

Oh

Ramps

n an_ 1Riq _

ft Btu/(hr) (cu ft )

i i.i0

2 1.70

3 2.16

4 3.00

5 3.50

6 3.88

-108.3

108.3

151.8

88.2

-647.9

282.9

Steps

j Zj, bj, _

ft Btu/(hr) (sq ft)

i

2

3

4

5

0

.46

.90
i. i0

2.16

162.5

210.0

-137.5

-60.0

42.5

At this point_ it is desirable to make a check. At x = 4.80 feet, the
heat flux is given by

q"(x) = 162.5 + 210.0 - 137.5 - 60.0 + 42.5 - 108.3(4.80 - 1.10)

+ 108.3(4.80- 1.70) + 151.8(4.80- 2.16)

+ 88.2(4.80- 3.00)- 64v.9(4.80-5.50)+ 282.9(4.80- 3.88)

= 150.0Btu/(hr)(sqft)

This result agrees with the value of q" at the "end_" and thus it ap-

pears that no errors have been made in determining the b and m.

The calculation for the temperature difference at various points on

the plate can be handled in a tabular manner. To illustrate the method_

the calculation for the temperature difference at x = 3.5 feet follows.

First_ tabulate the parameters of interest. From the experimental
data,

x= 3.5ft

G = 32_400 ib/(hr)(sq ft)

Cp = 0.24 Btu/(ib)(°F)

Pr = 0.70

= o.o4s9ib/(_)(ft) q" = 400 Btu/(hr) (sq ft)

Next, in a tabular manner, calculate the sums appearing in equation (37):
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Steps

j _j zj/x H(Zj/x) bj bjH(Zj/x)

I 0

!2 .46

3 .90

4 i.i0

5 2.16

0

• 131

.257

.514

.617

0.041
.055

.070
.080
.135

162.5

210.0

-157.5

-60.0

42.5

6.66

11.55
-9.65
-4.80

5.65

_bjH(_j/x)--9.45,

Btu/(hr)(sq ft)

_o
£o

Ramps

n an an/X D(an/X) mn mnD(an/X )

i i. I0

2 1.70

5 2.16

4 5.O0

0.514

.486

.617

.857

0.116

.i00

.085

.043

-108.5

108• 5

151.8

88.2

-12.56

i0.85

12.90

5.79

_-_jmnD(an/X) = 14.96

x _-]mnD(an/X) = 52.56 Btu/(hr)(sq ft)

Therefore, the effective heat flux q* is

q* = 400.0 - 52.56 - 9.45

= 338.2 Btu/(hr)(sq ft)

The Reynolds number is

_ex= ax/. : (52,500)(5.5)/0.0459

= 2.58X106

The isothermal Stanton number St T may be determined from equation (58).

However, since the temperature is not known, the fluid-properties correc-

tion factor (Tw/T)-0"4 cannot be evaluated. This is, however, a small

correction, which may be neglected without serious error. Thus,

st_: 0.0296(2.58xz06)-0.2(0.7)-°.4

: 0.00179
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Finally, the temperature difference may be calculated from equation (36):

At(3.5) = 338.2/(32,500)(0.2_)(0.00179)

= 24._ ° F

Similar calculations may be repeated at each point for which the tempera-

ture difference is desired. One must be careful, however_ at the steps.

Just upstream of a step (x = Z]), the step should not be included in the

+) the step must becalculation. But just downstream of the step (x = Zj ,

included, or else the computations would indicate a discontinuity in the

wall temperature. Note that use of the isothermal equation (38) to pre-

dict the temperature leads to considerable error in heat flux at the

steps where this relation indicated a discontinuity in the wall tempera-

ture. However_ the isothermal equation is useful for an order-of-

magnitude check on. the calculations.

!

SUMMARY OF RESULTS

The good agreement between predicted and measured values of both

heat-transfer rates and temperature distributions for the variety of

situations shown is believed to substantiate the present theory for non-

isothermal surfaces entirely adequately. Consequently_ theory should be

sufficiently accurate to predict heat transfer from nonisothermal sur-

faces in virtually any similar type of situation.

The results also show that the usual correlation for the heat-

transfer rates, that in the solution for the isothermal surface, is in

fair agreement with the data in all cases except where rapid changes in

wall temperature or heat flux occur. Hence_ in many cases the simpler

isothermal equations can be used to obtain a first approximation for the

heat-transfer rates (or temperature differences), even though the surface

is not isothermal.

In cases where rapid changes in wall temperature occur, where a

fraction of the surface is adiabatic_ or where high accuracy is required_

the nonisothermal theory should be used. In these situations, the ap-

proximate methods presented herein provide a simple_ rapid computation

method of good accuracy for the prediction of the temperature distribu-

tion or heat-transfer rates for any arbitrarily prescribed conditions.

Stanford University_

Stanford_ Calif._ October 22, 1957.
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TABLE I. - INCOMPLETE BETA FUNCTIONS FOR TURBULENT

NONISOTI_RMAL HEAT TRANSFER

IBr(a_ b) =_0 r za-l(!- z)b-I dzI

If

0

.i

.2

.5

.6

.5

.6

.7

.8

.9

1.0

Br(8/9,1/9) Br(8/9,10/9 Br(1/9,10/9) Br(1/9,20/9)

0

.1518

.2968

.6657

0

•1665

.2661

.5792

0
6.9606

7.5087
7.8667

O
6.8857
7.5665

7.5898
.6109

•7971

1.0151

1.28S5

1.6612

2.2089

9.1855

.6865

.5886

.6866

.7797

.8682

.9505
1.0206

8.0886
8.2796

8.6:557
8.5666
8.6772
8.7702
8.8659

7.7616

7.8601

7.9066
7.9656

7.9696
7.9809
7.9859

r

0
.0t
.02

.05

.04
.05
.06

.07

.08

.09

.10

B (1/9,8/9) B (1/9,10/9) Br(1/9,20/9)

0
5.5960

5.8286
6.0979
6.2967

6.¢555
6.5885
6.7029
6.8059
6.8965

6.9766

0

5.5968
5.8260
6.0958

6.2910

0

5°5887

5•8151

6°0755

6.2651

6.6682
6.5796

6.6925
6.7916
6.8802
6.96O6

6.6125

6.5557

6.6606

6.7516

6.8119

6.8857



o_
o_ T_A_T,P,II. SUMMARY OF TURBULENT NONISOTEERMAL HEAT-TRANSFER

SOLUTIONS FOR A FLAT PLATE

SPECIFICATION TEMPERATURE HEAT FLUX
ARBITRARY TEMPERATURE

l[=X

&t_ At = &+(x) q"= GCp StTf[I- (_/x)e/lO]-'ledAt(}'

0 _ X _=0

ARBITRARY HEAT FLUX

P'X

CONSTANT TEMPERATURE

STEP TEMPERATURE

&] t I ;b
_X

RAMP TEMPERATURE

0 _X

CONSTANT TEMPERATURE-
ADIABATIC WALL

_fr_r._rlrrrl X

CONSTANT HEAT INPUT

STEP HEAT INPUT

q'9

ol i I
rfr,-fl i _

RAMP HEAT INPUT

J X

q"t _J

O!z .... a,./,__J m -x

SI"T= 0.0296 PF-0"4 Rex °'z

[_=X

_t =O.0975/XGcpStTf!_ - ( |/X)9/lO]-8/gq"(_} d)

at: b

AI"= 0 x<o

At: m(x-a) x_>a

&t : b x<o

/1+ : 0.1084 b Bs(8/9,1/9} x__a

At : 0.959 b
GcpSt T

At : 0 X<_.

0.959 b Br(I/sJo/9)

GcpSI,T B I (1/9,10/9)

&t : 0 X40

AI" O. 1084 mx r Br 0/9,2019) -(a/x)Br(i/9,1o/9)1

Go pS'¢T L x_a
J

,:,- (o,,I:11',°= I - (/-/X

q": q"(X)

q": GcpSf T b

ii
q =0 X<_,

q": ecpSlTb[t- (7,/x)911°] ''l/e x_-_,

q" : 0 x< o

q": I.III mx GcpS_ T Br(S/9jo/9) x>_o

ii
q=b

q" :0 X < Z

i|

q :b X>._

q": 0 X(,a

ii
q : re(x-a) X_>o

s =(o,/x) 9/1°
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TABLE III. - FUNCTIONS FOR PRESCRIBED

TEMPERATURE CALCULATIONS

0

•i .155

.2 .150

.5 .126

.A .121

•5 .115

•6 .105

.7 .i00

.8 o07A

•9 .050

1.0 0

A(a/x)

0.155 0

.i

.2

.5

.A

.5

.6

.7

.8

.9

1.0

0

.015

.050

•OA7

•066

•089

.116

o152

•208

.500

_C

TABLE IV. - FUNCTIONS FOR PRESCRIBED

14EAT-FLUX CALCULATIONS

a/x

0 0.155

.i .150

.2 .124

.5 .I17

.4 .I09

o5 .099

.6 .087

.7 .072

.8 .056

.9 .053

1.0 0

0

.i

.2

.5

o4

.5

.6

.7

.8

.9

1.0

0.041

•050

.056

.078

.092

.Ii0

•150

•158

•194

.256

1.000
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2
3

4

5
6

7
8

9
I0

II

12
13

14
15

16

17
18

19

2O
21

22
23

2

3

4

5

6
7

8

9

I0
II

12
13

14

15
16

17

18

19
2O

21
22

25

TABLE V. - EXPERIMENTAL HEAT-TRANSFER DATA

(a) Constant heat input

G_

ib

(hr)(sq ft)

x lO -3

q"_

Btu

(hr)(sq ft)

34.0
34.0

34.1

34.1
34.2

34.1
34.1

34.1

34.1
34.0

34 .I
34.0

33.9

35.8
35.8

53.8

33.9
33.8

55.6

53.6
53.6

55.6

h_

Btu

(hr)(sq ft)(°F)

31.4
31.5

31.7

31.6

31.7
51.6

31.5

31.5

31.5
31.5

31.5

31.6
51.6

51.6

51.6
51.6
51.5

31.5
31.3

31.4
51.3
31.3

At m ,

oF

t® = 77.7 ° F;

St 0.4

x105 St(_)

x 103

p® = 0.0741 ib/cu ft

22.6 2.77
19.87 2.44
18.18 2.22
17.76 2.17
17.47 _2.13
16.91 2.07
16.65 2.04
16.85 2.06
15.38 1.88

15.09 1.85
15.54 1.88

15.28 1.88
15.24 1.88
14.69 1.81

14.68 1.81
14.68 1.81
14.35 1.76

14.22 1.76

14.29 1.77
14.03 1.74
12.95 1.61
15.20 1.64

0.0741 Ib/cu ft

118.4 570
i18.2 562

19.7 558

20.4 565

20.6 560
21.1 357

21.2 553
21.5 364

22.9 552
25.5 555
25.2 556
25.4 558
25.6 560

124.1 554

24.2 355
24.2 355
24.7 555
24.9 355
24.9 555

25.6 559
25.6 545
25.6 551

t = 77.5 ° F; p_

18.2
19.4
21.0
21.7
22.1
22.5
22.8
23.0
24.3
24.9
24.8
24.9
25.1

25.9

25.6
26.0
26.6
26.6
26.6
27.0
28.5
28.3

370
372
364
570
568
364
562
369
365
360
368
561
564
561
565
561
564
260
585
365
350
359

20.5 2.69

19.16 2.54

17.54 2.28

17.05 2.25

16.65 2.19
16.18 2.14
15.86 2.10
16.03 2.12
14.92 1.98

14.45 1.91

14.84 1.96
14.50 1,91

14.50 1.91

13.93 1.84
14.17 1.87

13.89 1.83

15.67 1.81

15.55 1.79
13.65 1.82

13.45 1.79
12.40 1.65
12.69 1.69

2.80
2.47
2.25
2.20
2.16
2.10
2.07
2.09
1.92
1.88
1.91
1.91

1.91
1.84

1.85

1.85

1.79
1.79

1.80
1.77

1.64
1.67

2.75
2.57

2.31

2.28

2.23
2.17

2.15

2.16

2.01
1.95

2.00

1.95
1.95

1.87
1.91

1.87

1.84

1.85
1.85

1.82
1.68

1.73

Re x G,

×10_ 6 Ib
(hr)(sq ft)

xlO-3

0.263 55.6

.431 33.7

.593 33.4

.755 33.6

.915 33.5

1.071 53.5

1.231 35.5
1.590 55.4

1.553 33.5
1.708 33.4

1.872 55.4

2.05 55.4
2.18 35.5
2.33 33.3
2.49 33.3
2.65 33.3
2.82 33.3
2.95 33.0

3 .I0 33.1
3.27 33.1

3.42 55.1
3.58 33.1

0.243 30.2

._00 30.4

.551 30.5

.698 50.6

.848 30.6

.995 30.5

1.139 50.5
1.287 50.5

1.455 30.5

1.582 50.4
1.750 50.4

1.888 30.4
2.04 30.4
2.18 30.3
2.33 30.3
2.48 30.4

2.62 50.4

2.76 30.4

2.89 30.2
5.05 30.3

3.19 30.2
3.34 50.2

At m,

oF

t =

16 .I

17.6

19.1
19.8

20.0
20.2

20.6

21.0
22.3

23.0
22.8
22.9
25.0
25.7

23.7

25.8
24.3
24.5
24.5

24.9

26.2
28.0

t =

18.3

19.1

20.5
21.5

21.6
22.1
22.6
22.7
24.0
24.6
24.7
24.7
24.9
25.5
25.4
25,6
26.3
26.4
26.6
26.9
28.1

28.1

4994

q",

Btu

(hr)(sqft)

h, St /Twh0.4 Re x
Btu xlO 3 St{_z_J

xl0 -6

(hr)(sq ft)(°F)
xlO 3

79.1 ° F; p® = 0.0741 ib/cu ft

353
550
344
351
347
341
541
350
344
342
345
345
341
541
543
342
340
343
542
346
331
342

21.9

19.86
18.01

17.71
17.35

16.86

16.55
16.68

15.40
14.85

15.05
15.07
14.80

14.38

14.45
14.57

14.00

13.99
13.96

15.90
12.61

13.15

2.72 2.75 0.259
2.46 2.49 .427
2.25 2.28 .580
2.20 2.24 .741
2.16 2.19 .894

2.10 2.13 1.053
2.06 2.09 1.210

2.08 2.11 1.561
1.92 1.95 1.526

1.85 1.88 1.674

1.88 1.91 1.851
1.88 1.91 1.989

1.85 1.88 2.14
1.80 1.83 2.29
I. 81 1.84 2.45
1.80 1.83 2.61

I1.75 1.78 2.76
!1.75 1.78 2.92
1.76 1.79 3.05
1.75 1.78 3.21

1.59 1.82 Z.37

1.66 1.69 5.52

78.9 ° F; p_ = 0.0740 Ib/cu ft

350 19.18
356 18.66
352 17.15
356 16.83
353 16.54
350 15.82
345 15.24

354 15.62
548 14.51

347 14.09
351 14.22
346 14.00
548 14.05
345 13.51

346 13.64
547 15.56

347 13.20
246 13.II
248 13.09
548 12.95

356 11.95
545 12.19

2.64

2.56

2.54

2.30
2.29

2.16

2.08
2.14

1.98

1.95
1.95

1.92

i. 93

1.86
1.88

1.86
1.81

I. 80

1.81

1.78
1.65
1.68

2.68

2.59

2.58

2.33
2.26

2.19

2.12

2.17
2.02

1.97

1.99
1.95

1.97

1.89
1.91

1.90

1.84

1.85
I. 85

1.82
1.69
1.72

0. 235
.385

.529

.674

.816

.958

I.I01

i. 244

1.588
I. 522
1.668
1. 811

i. 950

2.08
2.25
2.58

2.53
2.67
2.78
2.93
5.07
5.21
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LOAD DISTRIBUTION

0 "Z

/

= Jo W(x)_('7.,x) dx

co ('_,x) = DEFLECTION AT "Z

DUE TO UNIT LOAD AT x

U
CO

Tw(x)

.%

q" (I) = /O

4 I ----x
/

q"(x)

h?.('/,,x) d Tw(X)

h._('/.,x) = HEAT-TRANSFER

RATE AT 7. DUE TO UNIT

TEMPERATURE RISE AT x

Figure i. - Analogy of superposition techniques for beam deflection and heat transfer.
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_2

Br (0 ,b)

B=(o ,b)

1.0

.8

.6

.4

.2

O= I/9

b =zo1!

/

0=1/9

b = IO/9
7

,,_'_= 819
b=l/9

0 .2 .4 .6 .8 1.0

Figure 2. - Incomplete beta fumctions for turbulent nonisothermal heat transfer.

r a_!( I z)b_ IBeta function Br(a,b)__ = z - dz.
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APPROXIMATION BY
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PRESCRIBED TEMPERATURE

OR HEAT FLUX

I STEP

;F
b,I

03,'1. I

m I ÷ m 2 +m 3

m I +m 2 +

J m3 +m 4

\
\

IL

Figure 3. - Approximatiom of prescribed temperatures or heat flux by steps and ramps •
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0
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A

105
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FLOW REYNOLDS

8 106

NUMBER, Re x
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Figure 6. - Local Stanton numbers for constant heat input. Prandtl number_ O. 7.
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EQUATION
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I0
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Figure 7. - Example for double-step temperature distribution.
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Figure ii. - Prescribed temperature treatment of irregular example.



52

400

N-

O-

i.

m

m

X

200
14.

hi
"r

100'

A

,A

Z_MEASURED HEAT FLUX /_

r r

APPROXIMATION BY __//

STEPS AND RAMPS

L=

'\ / \ N

32

li..
o

4,--

<! 24

ILl
0
Z
W
n,'
hi
h
U. 16

o

w

F-

Q.

I-

0

8

/

0 MEASURED TEMPERATURES /\

/ \
/

/ ,q \

" ///\ \
._"1 / O_

/ II PREDICTED --_ / rv/ ' O N

: / :_ TEMPERATURES/ -.

I i ,I "_°I L !

| "--...._ .-._ I''--._TEMPERATURES PREDIGTED FROM
- _ .-I --' ISOTHERMAL EQUATION --

.8 1.6 2.4 :5.2

DISTANCE FROM LEADING EDGE, X , ff

4.0 4.8

Figure 12. - Prescribed heat-flux treatment of irregular example.
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