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Systems Engineering Design Via Experimental Operations Research

Abstract

Unique and innovative graph theory, neural network, organizational modeling, and

genetic algorithms are applied to the design and evolution of programmatic and

organizational architectures. Graph theory representations of programs and organizations

increase modeling capabilities and flexibility, while illuminating preferable

programmatic/organizational design features. Treating programs and organizations as

neural networks results in better system synthesis, and more robust data modeling.

Organizational modeling using covariance structures enhances the determination of

organizational risk factors. Genetic algorithms improve programmatic evolution

characteristics, while shedding light on rulebase requirements for achieving specified

technological readiness levels, given budget and schedule resources. This program of

research improves the robustness and verifiability of systems synthesis tools, including

the Complex Organizational Metric for Programmatic Risk Environments (COMPRE).

Executive Summary: Findings

1. Chromatic number (a graph metric) is a statistically significant measure of

programmatic complexity, and, therefore, is included as a variable in the current
COMPRE model. Chromatic number also appears to work well in capturing

organizational complexity through covariance.

2. There are tradeoffs among user-friendliness, model realism, and input reliability for

various levels of architectural decomposition. Level III COMPRE decompositions

appear to be a good balance of these factors.

3. Artificial neural networks significantly outperform sophisticated nonlinear

regressions in modeling system complexity for NASA programs. An artificial

neural network performs a macro-assessment on global variable inputs in COMPRI_.

4. Component-level cost growth forecasting addresses program evolution, and is

employed in COMPRI_ as a generator for cost growth risk.

5. COMPRt_ includes a micro-assessment of programmatic complexity through

interaction and a macro-assessment of global parameters through synthesis. These

two types of assessments simultaneously complement and compete with each other

to determine the metric of system complexity.

1.0 Introduction

Systems engineering (SE)is a field that is generally viewed as the process of formulating

and solving problems at a very high conceptual level. The efficacy of SE tools is

determined by their ability to be broadly applied across engineering disciplines.

However, broad application is a characteristic which often competes with meaningfulness

of results. In other words, the features of an SE tool which make it broadly applicable to



numerousdisciplinesmaynot beconsistentwith obtaininghighly meaningfulresultsin a
specificengineeringdiscipline. Generality competeswith specificity.

Operationsresearch(OR) is sometimesregardedas a subsetof SE, with particular
emphasison processand operationalproblems. Applicationsof OR tend to be fairly
problem specific and technical in nature. While OR methodscan often be broadly
applied,significant parametertuning is nearly alwaysrequired,and this tuning is quite
dependenton the characteristicsof the problemat hand. For thesereasons,OR usage
requiresa thorough knowledgeof mathematicsand algorithms. OR practitionersalso
tend to have their favorite methods,familiarity being what it is. Becauseof this,
practitioners tend to stick with a relatively small "bag of tricks", despite the fact

that their knowledge accommodates a much larger set of OR methods.

The author believes that a relevant subfield of operations research, called experimental

OR, would be useful to the practicing and academic communities. By experimental OR,

the author is referring to the combination of OR methods in unique and innovative ways,

with the output being a broadly applicable method with desirable problem specific

features. The efficacy of experimental OR is highly dependent on the ability of the

experimenter to rapidly turn around small failures in pursuit of a greater success.

This means that the experimenter cannot get "locked-in" to his or her favorite method.

The approach is analogous to the mixing of ingredients to produce a desired recipe. Like

the recipe process, it is more important to obtain the right mixture of ingredients

(methods) than it is to use only the best, or most sophisticated, ingredients.

1.1 Study Objectives

The objective of this study is to apply the experimental OR approach using the

ingredients of graph theory, neural networks, organizational covariance, and genetic

algorithms to arrive at a significant improvement in systems engineering, as it applies to

NASA's programmatic controls. These efforts help to answer the following key

questions:

1. To what extent can the related fields of graph theory and neural networks shed light on

the analysis, control, and design of programmatic architectures?

2. To what extent can organizational covariance be used to improve the development of

organizational risk factors in risk tools such as COMPRE?

3. To what extent can genetic algorithms be used to evolve the analysis structures and

subtle features of programmatic architectures, as in COMPRE?

4. What is a suitable mix of graph theory, neural networks, organizational covariance,

and genetic algorithms in this context?



1.2 Significance

The significance of this research and development effort includes increased modeling

capabilities and flexibility, preferable programmatic/organizational design features, better

system synthesis, more robust data modeling, enhanced determination of organizational

risk factors, improved programmatic evolution characteristics, and better understanding

of rulebase requirements for achieving specified technological readiness levels, given

budget and schedule resources.

1.3 Statement of Uniqueness

The experimental OR approach is a unique and innovative methodology for this field.

The combination of graph theory, neural networks, organizational covariance, and

genetic algorithms have not been previously applied to large complex projects of the type

that NASA frequently encounters.

2.0 Results

In this section, the results of the efforts are given. These results include the products of

innovative research, development, and application of graph theory, neural network,

organizational covariance, and genetic algorithm methodologies as applied to the design

of programmatic and organizational architectures. While the results of these

developments are standalone, they also support certain features of the Complex

Organizational Metric for Programmatic Risk Environments (COMPRI_).

2.1 Task 1: Graph Theory Approach to Programmatic Hierarchies

"The fact that a simplex has a natural geometric dimension in which it "fives" suggests

that trying to force anything associated with this object into a lower dimension is going

to introduce some stress into the system. " - John L Casti, Complexification

Task 1 involves the investigation of the use of graph theory concepts and applications to

the design of programmatic hierarchies. This investigation includes the determination of

preferable characteristics for programmatic representation and robust operations.

2.1.1 Graph Theory Fundamentals

A graph, G, is a finite nonempty set V together with an irreflexive, symmetric relation R

on V. As an example, define V = {vl, v:, v3, v4} and R = {(vl,v2), (v:, v4), (v3, v2),

(v4,v0} as the following graph:



vl _ v2

v3 v4

Figure 2.1.1-1. A Simple Graph Representation

Figure 2.1.1-2 provides a graph of the Solid Rocket Booster (SRB) subsystems at

delivery (DEL). Note that this graph is "fully connected," in that each subsystem is

connected to every other subsystem. For each subsystem listed, the first number

following the subsystem name is the NASA Technology Readiness Level (TRL). This is

followed by the proportion of the budget allocated to the subsystem, and finally, the

schedule duration in years.

(Power, 4, 0.37, 5.25)

(Structure, 5, 0.25,

5.25)
(Thrust, 4, 0.20, 5.25)

(Recovery, 5, 0.12, 5.25) (Pvro, 5, 0.05, 5.25)

Figure 2.1.1-2. A Simple Graph Representation of the SRB at DEL

Table 2.1.1-1 shows the COMPRI_ input matrix for the Mars Pathfinder (MARS) at

delivery. The individual subsystems are established, along with their respective durations

(t), technology readiness levels (TRL), and organizational interface factors, represented

by the integers in the matrix. A nonzero value in the matrix indicates an existing

connection between subsystems represented by the corresponding row and column

intersection. Figure 2.1.1-3 shows the graph resulting from the interactions represented

by the input matrix.



Table 2.1.1-1. COMPRI_ Inputs for MARS at DEL

Subs_tem $ t TRL 1 2 3 4 5 6 7 8 9
1 Mech. Subs

4.1 6 S

2 Thermal

Control 4.1 6 2 Y

3 Entry &
Descent 4.1 4 2 2 M

4 Elect. Power

4.1 6 2 2 2 M

5 Teleconu_ 4.1 5 2 2 2 2 E

6 Attitude &

lnfo. 4.1 5 2 2 2 2 2 T

7 Fit. SW 4.1 5 2 2 R

8 Reaction

Control 4.1 6 2 2 2 2 2 2 [

9 Rocket Assist

4.1 6 2 2 2 2 2 2 C

10 Imager for
Path 4.1 4 3 2 2 2 2

11 Atmos. Str.

&l 4 3 2 2 2 2

12 APX

Spectrom. 4.1 4 3 2 2 2 2
13 MicroRove 4.1 4 2 2 2 2 2

10 11 12 13

&

2 &

2 2

2 2

&

2 &

Figure 2.1.1-4 shows the programmatic architecture of AXAF at delivery for various

levels of decomposition. The Level I decomposition is shown in the upper left portion of

the figure, and is merely the designation for the system itself, AXAF. The Level II

decomposition is shown in the lower left portion of the figure. This level of

decomposition is an initial breakdown of the program, AXAF, into its three major

subsystems, Spacecraft, Telescope, and ISIM. Finally, the Level III decomposition (right

portion of figure) further reduces the three major subsystems into their major

components. Of particular note is the refinement of interfaces as the decomposition

progresses. For instance, Spacecraft and Telescope interface at Level II, but only the

OBA component of the Telescope subsystem interfaces with components in the

Spacecraft at Level III. Thus, there is a decomposition level tradeoff involved in

analyzing the program using COMPRI_. Lower levels of decomposition require greater

data collection efforts, but provide better interface modeling and more detailed analyses.

Because of this balancing among user-friendliness, model realism, and input reliability,

the author believes that the optimal level of decomposition for most programs is Level
III.



Figure 2.1.1-3. A Simple Graph Representation of MARS at DEL

Figure 2.1.1-4. An Architectural Decomposition of AXAF at DEL



The vertices, Vl, v2, v3, and v4, of V help form the edges of the relation R. Adjacent

vertices are connected in a graph, e.g., Vl and v2 are adjacent, but v3 and v4 are

nonadjacent vertices. Directed graphs, or digraphs, consist of edges that have associated

directions with them. Figure 2. I. 1-5 shows a directed graph.

vl _ v2

v3 v4

Figure 2.1.1-5. A Directed Graph

A network is a graph or digraph which assigns a value to each of the edges. A network

resulting from a graph is called an undirected network, while a network resulting from a

digraph is called a directed network. Figure 2.1.1-6 shows a directed network.

3 A

vl _.I v2

2
v3 v4

Figure 2.1.1-6. A Directed Network

For any vertex, v, the number of edges in the graph incident to v is known as the degree

ofv. The degrees of V1, V2, V3, and v4, from Figure 2.1.1-1 are 2, 3, 2, and 1, respectively.

If p is the number of vertices and q is the number of edges for a graph, G, a well-known

graph theory theorem is that:

P

deg(v) : 2q
i=1

A vertex is called even or odd if its degree is even or odd. Another well-known theorem

is that: Every graph contains an even mlmber of odd vertices.

A cycle is a path through the graph beginning and ending at the same vertex and passing

through each vertex in the path only once. It need not include all vertices of the graph.

For the graph of Figure 2.1.1-1, the following are examples of cycles: vl, v2, v4, v_ and

v2, v4, v_, v2 A circuit is a relaxed form of cycle in which some vertices may be



repeated.A graph is connected if every two vertices of the graph is connected by some

path or trail. A connected graph with no cycles is called a tree.

A graph containing a circuit which includes all vertices and edges of the graph is called

euleriau. This brings us to another theorem: A graph is eulerian if and only if it is

connected with every vertex even.

If a graph has a path (not a circuit) containing all vertices and edges, then it is called

traversable, and the path is called an eulerian path, or eulerian trail. Another theorem

states: A graph is traversable if and only if it is connected with two odd vertices. Also,

any eulerian trail of such a graph begins at one of the odd vertices and ends at the other

odd vertex. Note that while the graph of Figure 2.1.1-1 is not eulerian, it is traversable,

with (one) eulerian path v3, v2, v4, v_. The two odd vertices are v2 and v3.

A graph is called hamiltonian if there is a cycle in it that contains every vertex. The

graph of Figure 2.1.1-1 is not hamiltonian. The classical "salesman" problem consists of

trying to find a hamiltonian graph through a set of cities. The "traveling salesman"

problem (TSP) is the problem of finding the least expensive hamiltonian graph through a
set of cities.

2.1.2 Some Advanced Graph Theory Concepts

The complement, C, of a graph, G, is a graph with the same vertex set as G, but with the

property that two vertices of C are adjacent if and only if the same two vertices of G are

not adjacent. The complement of the graph in Figure 2.1.1-1 is:

D O v2

• A

• w v4

Figure 2.1.2-1. The Complement of the Graph of Figure 2.1.1-1

A signed graph is an undirected network whose functional values are +1 or -1. The value

+1 is sometimes represented by a solid line, while the value -1 is sometimes represented

by a dashed line. Figure 2.1.2-2 shows a signed graph. A signed graph is called

balanced if its vertex set may be partitioned into two subsets (one of which might be

empty) so that each edge joining two vertices in the same subset is positive, while each

edge joining vertices in different subsets is negative. The graph of Figure 2.1.2-2 is

balanced with subsets {V1,V2,V4 } and {v3}. Theorem: A signed graph is balanced if and

only if for every two vertices of it, all paths joinmg them have the same sign. Balanced

and unbalanced graphs have important implications to social systems.

10



A d

vl t'q
I..- 'f

• v2

D v4

Figure 2.1.2-2. A Signed Graph Which is Balanced

A signed graph is clusterable if its vertex set can be partitioned into subsets (called

clusters) so that every positive edge joins vertices within the same subset and every

negative edge joins vertices in different subsets. Thus, a clusterable graph is a

generalization of a balanced graph where the number of partitions (clusters) can exceed

two. Theorem: A signed graph is clusterable if and only if it contains no cycle with

exactly one negative edge. Thus, the graph of Figure 2.1.2-2 is both balanced and

clusterable. A balanced graph is, by definition, clusterable.

A planar graph is a graph which can be drawn in a plane such that no two edges intersect

except at a vertex. A planar graph already drawn in a plane so that no two edges intersect

is called a plane graph. The connected pieces of the plane are called regions of the

graph. Theorem: Given a connected plane graph with p vertices, q edges, and r regions,

p - q + r = 2. Also: Given a planar graph with p vertices and q edges, andp greater

than or equal to three, then q is less than or equal to 3p - 6. Planar graphs are important

in coloring problems. As is shown in Figure 2.1.2-3, the graph of Figure 2. l. 1-1 is planar

with two regions.

v2
A • L

vl

Figure 2.1.2-3. Representing the Graph of Figure 2.1.1-1 as a Planar Graph

A coloring of a graph is the assignment of a different color to each vertex such that

adjacent vertices are assigned different colors. For an n-coloring of the graph in Figure

2.1.2-3, what is the minimum value of n? We see that n must be at least three. This is

called the graph's chromatic number. An example 3-coloring for this graph is shown in

Figure 2.1.2-4. A proper 9-coloring of the MARS graph is shown in Figure 2.1.2-5. An

important theorem states: The chromatic rmmber of a graph is less than or equal to one

ph_s the maximum degree among its vertices. The Four Color Theorem states: /he

chromatic number for any planar graph is less than or equal to four.

II



v2

Figure 2.1.2-4. A 3-Coloring of the Graph of Figure 2.1.1-1

Figure 2.1.2-5. A Proper 9-Coloring of MARS at DEL

12



Numerous models were developed to evaluate the correlative effect of roughly 15

different graph metrics discussed in this section. Table 2.1.2-1 provides the results of the

major regression experiments conducted. This table provides the results following a

significant filtering of the graph metrics. The data used for filtering and regressions is

provided in Appendix A. These experiments were conducted following an exhaustive

comparison of the inter-correlation of a larger set of graph metrics. It is seen that, in

addition to the initial cost estimate, both minimum degree and chromatic number are

statistically significant predictors of cost growth. For actual duration prediction, no graph

metrics were found to be significant predictors.

Table 2.1.2-1. Regression Statistics for Graph Metric Models

Depend.

Variable

Cost

Growth

Cost

Growth

Cost

Growth

Cost

Growth

Cost

Growth

Cost

Growth

Cost

Growth

Actual

Duration

Actual

Duration

Cost

Est.

5.7E-07

1.4E-06

9.5E-06

2.6E-06

1.7E-06

8.3E-07

3.2E-02

Dura-

tion

Est.

4.6E-02

Min.

Deg. (5)

9.1E-03

7.9E-02

0.965

Chrom.

No. (Z)

4.7E-02

0.945

0.433

0.245

Connec

-tivity

(K)

2.9E-02

5.5E-02

Corre-

lation

(R)

0.934

0.909

0.884

0.883

0.262

0.922

0,913

0.858

Signifi-

cance

Level (_)

4.4E-06

4.9E-06

2.5E-05

2.6E-06

0.608

1.2E-05

3.6E-06

9.0E-05

2.1E-02 6.5E-02 0.22 0.31 0.877 8.5E-04

Actual

Duration 2.1E-04 0.199 0.409 0.830 1.3E-03

Actual

Duration 1.1E-04 0.304 0.820 4.0E-04

Significant Finding:

An exhaustive investigation of approximately 15 different graph metrics was conducted.

This investigation included several hundred different nonlinear regressions and neural

network examinations. The two graph metrics which survived the cut were minimum

degree and chromatic number. Ultimately, a variable representing chromatic number
was added to the COMPRI_ model.

13



2.2 Task 2: Organizational Design Using Covariance Structures

This task involves the investigation of the use of statistical covariance concepts and

applications to the design and analysis of organizations. This investigation includes

concepts resulting from Task 1, particularly those involving balanced vs. unbalanced

graphs.

2.2.1 Organizational Covariance Model and Input Requirements

The baseline organizational covariance model is isomorphic to the programmatic

covariance model found in Complex Organizational Metric for Programmatic Risk

Environments (COMPP_):

n

L(t) = _-'w, (t)E[ri (t)]
i=l

i1 Q

o'(t) = [_-" wi (t)_-' _wj (t)C0 (t)] '/2
i=l j=l

t

I {[ri (t) - E[q (t)l][rj (t) - E[rj (t)]l }dt

Cij (t) : 0 I

ffdt
0

1 t

E[q (t)] = t I q (t)dt
0

_-' wi(t ) = 1,wi(t ) > 0
i=l

where

k(t) is a (time-dependent) organizational development maturity function, representing a

rate of payoff for investing in a certain level of organizational development and technical

capability,

n is the number of personnel investments made,

wi (t) is the relative investment weight for personnel i,

E[ri (t)] is the expected return-on-investment for personnel i over the organizational

development schedule represented by t,

ri (t) is the return-on-investment for personnel i over the schedule duration, t, and is

dependent on personnel education, experience, and skill levels,

14



o(t) represents total organizational risk, and

Cij (t) is the covariance between personnel i and j over the organizational development
duration.

The organizational development maturity function, _,, accounts for personnel technical

capability, schedule, and budgetary distribution decisions, as well as organizational size.

The organizational risk function, o, captures the same issues, as well as architectural

design of the organization. It is anticipated that the ratio of these two functions may

provide a useful organizational complexity measure for decision-making and control

purposes.

2.2.2 Integration of Organizational Covariance With Graph Theory Concepts

The organizational architecture is an important determinant in the evaluation of the

organizational covariance structure. This architecture also is very important from a graph

theory perspective. Figure 2.2.2-1 show a graph theory representation of a four person

organization. The solid lines between personnel indicate a positive relationship, the

dashed lines a negative relationship, and the lack of any line represents a neutral

relationship. In this particular example, the graph is balanced and can be partitioned into

two groups of personnel each of which has only positive relationships within and

negative relationships between. The groups are {1, 2, 4} and {3}. Some organizational

research has indicated the importance of implementing and sustaining a balanced

organization.

vl v2

v3 v4

Figure 2.2.2-1. Graph Theory Representation of One Type of Balanced

Organization Consisting of Four Personnel

Significant Finding:

The chromatic number variable, in combination with the organizational interface

factors already present in COMPRI_ appears to satisfactorily capture

organizational complexity through covariance.

2.3 Task 3: Neural Network Approach to Programmatic Hierarchies

This task involves the investigation of the use of neural network concepts and

applications to the design and evaluation of programmatic hierarchies. There is an

attempt to treat a programmatic hierarchy as a neural network. The task includes the

selection of learning, training, transfer functions, and associated parameters. Information

15



concerning"optimal" designof neural networksis considered for programmatic design.

Task 1 results are integrated with the findings of this task.

2.3.1 Network Geometry, Learning, and Propagation

Artificial neural networks were developed based on the concept that the human brain is

one of the best pattern recognition tools available. Thus, artificial neural networks are an

attempt to simulate the processes that biological neurons perform in the human brain.

The representation for an artificial neuron is characterized by a number, n, of inputs, each

weighted and leading to a sum, which is then activated by a transfer function, producing

an output on a path leading to other neurons or the final output. Figure 2.3.1-1 shows a
schematic for an artificial neuron. A common activation or transfer function is the

sigmoidal function. The sum of weighted parts and logistic (most widely used

sigmoidal) activation functions are denoted by:

n

1 : __, wix i
i=l

y = _b(I)

qk(I) - -ctll+e

Xo

.Wo

X

x.

Figure 2.3.1-1. An Artificial Neuron

Yj

A neural network is composed of a number of layers, each consisting of a certain number

of artificial neurons. The first layer of neurons is called the input layer, the next layers

are called middle or hidden layers, and the final layer is called the output layer. Figure

2.3.1-2 shows a simple neural network, called a feedforward network.

16



Ys Y9

T
er Hidden Layer

Inpm Layer

xt x2 x3

Figure 2.3.1-2. A Simple Feedforward Neural Network

2.3.2 Network Control and Strategy

Neural network operations are controlled by the type of learning (supervised vs.

unsupervised), training (e.g., backpropagation), and the network design (number of

layers, number of neurons in each layer). Training algorithms are further characterized

by tuning parameters such as momentum, transfer function parameters, learning

constants, etc.

Approximately 12 different neural network model configurations were experimented with
in this task. Each of these were trained over several hundred to several thousand

combinations of network weights. Some networks performed well, while others did not.

The networks that did not perform well resisted all attempts at training, indicating a

probable lack of causality. Of course, even those networks that did train well do not

guarantee causality, only make it more likely. However, some of the networks with good

fit were also discarded, due to an unhealthy overdependence on a single variable or an

indication that the network was memorizing vs. learning the database. The final network

chosen is balanced (in terms of predictor variables), does not appear to be memorizing

the database, and has an excellent fit. This neural network is discussed in Section 2.5 of

the report.

17



Significant Finding:

Several hundred neural network configurations with different variable combinations were

investigated during this study. Neural networks were found to significantly outperform

sophisticated nonlinear regression methods, on a consistent basis. The final neural

network implemented in COMPRI_ is shown in Section 2.5 of this report.

2.4 Task 4: Use of Genetic Algorithms to Evolve Programs

This task involves the investigation of the use of genetic algorithm (GA) concepts and

applications to the evolution of programmatic hierarchies. This investigation includes the

selection of appropriate GA formulations and parameters. This task focuses on the ability

or inability of GA's to replace or complement the use of basis functions in evolving

programmatic hierarchies. The task utilizes data from previous efforts, as well as

complementary on-going efforts.

2.4.1 Genetic Algorithm Setup: Population, Fitness, Mating, and Mutation
Parameters

Genetic algorithms (GA's) were developed from observations of biological processes

and species population evolution processes. The evolution processes modeled include

mating, mutation, and survival of the fittest. Typical GA parameters of interest include:

population size, chromosome length, crossover rate, mutation rate, generation gap,

elitism, and diversity. Also important in any GA are typical algorithm parameters, such

as initial conditions, measures of performance, and termination criteria.

2.4.2 Programmatic Evolution Using Genetic Algorithms

Genetic algorithms may be useful in evolving programmatic characteristics over a

duration. Specifically, GA's might be applicable to the prediction of excessive optimism

and/or pessimism concerning programmatic features such as budget, schedule, and

technological readiness. GA's might also be useful in determining the interactions

among these three programmatic elements. For instance, how much budget does it take

to increase technological readiness from one level to another over a stated period of time?

Questions such as these may be answered using a combination of GA's, neural nets, and

appropriate historical databases

Figure 2.4.2-1 shows

some programs in the

the program evolved.

estimates were wildly

how estimates of the program duration evolve over milestones for

database. In nearly every case shown, duration estimates grew as

In certain cases, such as OTA, SSM, and HST, initial duration

optimistic.

Figure 2.4.2-2 shows how estimates of the overall program TRL evolve over milestones

for some programs in the database. In nearly every case shown, TRL estimates shrank as

the program evolved, indicating that the initially estimated technology readiness was

higher than the actual readiness. In certain cases, such as OTA, SSM, and HST, initial

TRL estimates were wildly optimistic.

Figure 2.4.2-3 shows how estimates of the subsystem TRL's evolve over milestones for

GRO. In nearly every case shown, TRL estimates shrank as GRO evolved, indicating
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that the initially estimated technology readiness was higher than the actual readiness. In

the case of thermal control, the initial TRL estimate was wildly optimistic.

4

Figure 2.4.2-1. Evolution of Duration Estimates for Some Programs
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Figure 2.4.2-2. Evolution of Overall TRL Estimates for Some Programs
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Figure 2.4.2-3. Evolution of TRL Estimates for GRO Subsystems
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The preceding graphs make it clear that there is a bias present in estimating TRL and

schedule duration at the beginning of programs. Furthermore, this bias is firmly in the

direction of excessive optimism regarding the programmatic requirements. To what

extent does this bias reflect itself in the experience cost growth of the program?

Figure 2.4.2-4 shows the trend in the number of cost growth "events" with increasing

TRL. A cost growth event is defined as a 10% increase in subsystem or component cost

for a given program. Thus, a subsystem with a cost growth of 53% is associated with 5.3

cost growth events. All components and subsystems for the entire database were

evaluated and categorized by TRL. This trend follows intuition, since more risky

technology (lower TRL components) would be expected to have a greater number of cost

growth events, and thus, higher cost growth than more mature technology subsystems.

The regressed line in the chart is derived using an exponential trend. This regression

serves as the basis for establishing expected programmatic cost growth in COMPRt_.

4.5

4

3.5

_ 2.5

•6_ 2

C

:E 0.5

1 2 3 4 5 6 7 8 9

TRL

1
lActual

_4.-- R egressed

Figure 2.4.2-4. Mean No. of CG Events vs. TRL

Figure 2.4.2-5 shows the trend in the standard deviation of cost growth "events" with

increasing TRL. All components and subsystems for the entire database were evaluated

and categorized by TRL. This trend also follows intuition, since more risky technology

(lower TRL components) would be expected to have a greater variance in the number of

cost growth events, and thus, higher cost growth than more mature technology

subsystems. The regressed line in the chart is derived using an exponential trend. This

regression serves in the covariance matrix of COMPRI_.
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Figure 2.4.2-5. Standard Deviation of No. of CG Events vs. TRL
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Significant Finding:

The cost growth regressions were included in the COMPI_ model. These

regressions represent a novel, intuitive, and data-supported methodology for

understanding the stability (through cost growth) of a program. Although these

regressions naturally evolve from the optimism bias, the excessive optimism in

estimation programmatic duration and TRL is not currently compensated for in
COMPRE.

2.5 Integration of Research Results into COMPRF= Configuration

This section of the report provides the details of how the detailed research from previous

sections was used in arriving at the current COMPP_ model.

Table 2.5-1 provides the connection weights for the artificial neural network model in

COMPRI_. A value in this matrix represents the connection weight between the neuron

corresponding to the row and the neuron associated with the column of the matrix.

Figure 2.5-1 shows the fit of the neural network to the actual database for cost growth

(%). This model has an average error of 7% per program. The fit is reasonably good for

all programs except PV Large and DE. Some of the smaller cost growth programs are

also underfitted. Nevertheless, the neural network fits the cost growth data significantly

better than regression.

Figure 2.5'2 provides the current COMPRI_ architecture. Information on cost, schedule

duration, technology readiness levels, organizational interface factors, and component

interfaces are used to create an architecture diagram like that shown in the upper right

portion of the figure. A covariance analysis, which serves as a micro-assessment, results

in risk measures that account for how the program is put together, the technological risk,

and the schedule and cost risk components. These risk parameters are then fed into a

neural network, along with global features of the program such as overall cost, duration,
and chromatic number.

The neural network (lower left portion of the figure) performs a macro-assessment by

assimilating these global features into a final measure of system complexity, namely, cost

growth. Finally, an s-curve (lower right) which provides the probability that the actual

cost growth is less than a given target value is produced. Program managers may then

use such a curve to state various confidences in achieving budget, or to redesign the

program to produce a more satisfactory cost growth profile.

The s-curve is arrived at by using the expected cost growth output from the neural net

model combined with the average error of the neural net itself to arrive at a normal

distribution for cost growth. The mean of this normal distribution is the expected cost

growth (from the neural net) of the program of interest. The standard deviation of the

normal distribution is the average error (nominally 7%) of the model. This is not the

same standard deviation as that resulting from the basis functions. However, it is

influenced through training by the basis function standard deviation, as well as the other

parameters utilized in the neural network. The cumulative probability resulting from
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applicationof the normal distribution is the point on the s-curve corresponding to the

target value. Thus,

P(CG < TCG) = NOtLklS( TCG - IJ )
o"

where,

CG = actual (unknown) programmatic cost growth (%),

NORMS = standard normal distribution,

P = probability,

TCG = target cost growth (%),

_t = expected cost growth (%) from neural net,

= neural net average error (%) in predicting cost growth.

Figure 2.5-3 shows the COMPRE cost growth results for the Materials Science Research

Rack No. 1 (MSRR-1). The 95% confidence point corresponds to a cost growth of 12%,

which is shown in comparison with the other programs in the database. From a

comparative standpoint, this would appear to be a very stable program.

Figure 2.5-4 shows the COMPRI_ schedule growth results for the Materials Science

Research Rack No. 1 (MSRR-1). The 95% confidence point corresponds to a schedule

growth of 10%, which is shown in comparison with the other programs in the database.

Again, from a comparative standpoint, this would appear to be a very stable program.

Figure 2.5-5 shows a comparative feature analysis for 4 other programs with similar

global characteristics as MSRR-1. The resulting cost growth values range from 0%

(MARS) to 42% (ERBS). This is another sanity check on the restrained cost growth

values achieved by COMPRt_.

Figure 2.5-6 provides a comparison of the cost-risk for the subsystems of MSRR-1.

Cost-risk is the compound value arising from the investment in a subsystem and its

relative risk produced by the micro-assessment of covariance analysis. Here, it is seen

that the ESA Module holds an order of magnitude greater cost-risk than any other

MSRR-1 subsystem. This seems to track well with intuition.

Table 2.5-1. COMPRIE Neural Net Connection Weights

Hidden

Layer or

Output
Node

Cost

Variable

Duration

Variable

COMPR£
Risk

Variable

(sigma)
-81.1

COMPI_

Return
Variable

(lambda)
6.33

Chromatic
Number

Variable

(chi)
-3.65

Bias Node Cost

Growth

(output

node,)
1 3.16 0.88 1.26 53.9

2 7.44 -1.75 102.8 9.83 -0.27 0.30 43.1

3 0.64 -14.3 -9.5 -27.3 11.8 4.08 -5.49

4 -3.42 3.05 -2.3 -4.07 -9.30 1.22 -14.3

Cost N/A N/A N/A N/A N/A -7.58 N/A
Growth

(output)
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Figure 2.5-2. Current COMPRI_ Model Architecture
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Figure 2.5-6. Relative Cost-Risk Values for MSRR-I Subsystems

Figure 2.5-7 shows the significance of chromatic number in the COMPP_ model. Recall

that chromatic number is inherent in any programmatic architecture. Thus, this

"connectivity" measure is important in the covariance calculation, which is highly
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dependenton interfacesamongsubsystems.Furthermore, the chromatic number is used

as a global input to the neural network. In this figure, it is clear that the effect of

chromatic number is highly sensitive to the programmatic cost. For instance, up to a cost

of about 4 times the estimated cost of MSRR-1, chromatic number has a negligible effect

on predicted cost growth. However, above 7 times the estimated cost the effect is

striking. Moreover, this effect varies with the chromatic number itself. For chromatic

numbers in the ranges of 1-2 or 7-8, little effect is seen. For numbers in the range of 3-6,

it is very powerful. Since a chromatic number of 1-2 indicates extremely low

connectivity, and is, thus, very impractical for functioning systems, this chart would

indicate that for MSRR-1, more connectivity is better. This result is program dependent,

however, and should be carefully examined for each individual circumstance. There is

no denying, however, that chromatic number can, in certain circumstances, have a

striking effect on cost growth prediction. Finally, this graph shows the subtle interaction

of the local covariance analysis with the global neural network synthesis.

 70I
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-.- Cost =4X
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Figure 2.5-7. Significance of Chromatic Number

3.0 Conclusions

.

.

Chromatic number (a graph metric) is a statistically significant measure of

programmatic complexity, and, therefore, is included as a variable in the current

COMPR_ model. Chromatic number also appears to work well in capturing

organizational complexity through covariance.

There are tradeoffs among user-friendliness, model realism, and input reliability for
various levels of architectural decomposition. Level III COMPRE decompositions

appear to be a good balance of these factors.
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.

.

Artificial neural networks significantly outperform sophisticated nonlinear

regressions in modeling system complexity for NASA programs. An artificial neural

network performs a macro-assessment on global variable inputs in COMPRE.

Component-level cost growth forecasting adequately addresses program evolution,

and is employed in COMPRI_ as a generator for cost growth risk.

5. COMPRI_ includes a micro-assessment of programmatic complexity through

interaction and a macro-assessment of global parameters through synthesis. These

two types of assessments simultaneously complement and compete with each other to

determine the metric of system complexity.
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APPENDIX A: Programmatic Database

Program Total Cost (1996 $M) Cost Growth (%) Duration (years) Chromatic #
ORB 11838 30 7.7 11

SSME 2617 161 6.9 5
HST 1893.3 163.8 9 4
GAL 1119 177 10.2 6
ET 811 73 7.5 6

SRB 664 22 5.3 5

UARS 567.1 -15.8 6,5 2
SRM 567 114 6 4

Magellan 543.2 50.1 5.583 2
ACTS 399,8 39.4 9.083 3
GRO 394 125 7 6

COBE 193 3 7.33 4
Mars 170 0 4.1 9

TOPEX 156.3 155.4 9.083 3
ERBS 146.1 42.8 3.83 2

TIROS-N 145.3 12.6 3.25 2
DE 114.7 34.6 4.0833 2

PV ORB 105,3 15.3 4.25 5

PV Large 99.2 125.1 4.833 4
CRRES 72.6 36.4 7.23 6

TOMS-EP 51 17 4 6

AMPTE 44.2 59 2.5 2
PV Small 38.5 64.4 4,833 4
STEP-0 31 8 3.5 6
FAST 28 3 2.8 5

Lewis 25 15 3.2 6
DARPASAT 16 13 4 5

SME 11.4 0 2.3 2
ORSTED 9 10 4,1 5

HETE 4.9 27 3.1 5
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