WORKSHOP ON
EVOLUTION OF IGNEOUS ASTEROIDS:
FOCUS ON VESTA AND THE HED METEORITES

Edited by
D. W. Mittlefehldt and J. J. Papike

Held at
Houston, Texas
October 16–18, 1996

Sponsored by
Lunar and Planetary Institute

Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113
LPI Technical Report Number 96-02, Part 1
LPI/TR--96-02, Part 2
This report may be cited as

This report is distributed by

ORDER DEPARTMENT
Lunar and Planetary Institute
3600 Bay Area Boulevard
Houston TX 77058-1111.

Mail order requestors will be invoiced for the cost of shipping and handling.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program</td>
<td>v</td>
</tr>
<tr>
<td>Description of Workshop</td>
<td>1</td>
</tr>
<tr>
<td>Solicited Abstract</td>
<td>3</td>
</tr>
<tr>
<td>List of Workshop Participants</td>
<td>5</td>
</tr>
</tbody>
</table>
Program

Wednesday, October 16, 1996
8:30 a.m.–12:00 noon

ASTRONOMY AND THE VESTA-HED CONNECTION
Chairs: C. R. Chapman and M. J. Gaffey

Does Vesta = HED Parent Body?

R. P. Binzel* (review talk)
Astronomical Evidence Linking Vesta to the HED Meteorites: A Review

J. T. Wasson* and C. R. Chapman (review talk)
Space Weathering of Basalt-covered Asteroids: Vesta an Unlikely Source of the HED Meteorites

Discussion

Astronomical Observations

M. J. Gaffey*
Asteroid Spectroscopy: Vesta, the Basaltic Achondrites, and Other Differentiated Asteroids

R. Jaumann*, A. Nathues, S. Mottola, and H. Hoffmann
Multispectral Lightcurves of Vesta

K. L. Reed*, M. J. Gaffey, and L. A. Lebofsky
Shape and Albedo Variations of Asteroid 4 Vesta

Geologic Mapping of Vesta with the Hubble Space Telescope

C. Dumas* and O. R. Hainaut
Mapping Vesta in the Visible and Near-Infrared: The 1994 and 1996 Oppositions as Viewed from the Ground

Discussion

Wednesday, October 16, 1996
1:30–5:30 p.m.

PETROLOGY AND GEOCHEMISTRY
Chair: G. J. Taylor

H. Takeda* (review talk)
Mineralogical Records of Early Planetary Processes of the HED Parent Body

*Denotes speaker
Cumulate Eucrite Controversy

P. H. Warren*, G. W. Kallemeyn, and K. Kaneda

*Cumulate Eucrites: Volatile-depleted Asuka 881394, Cr-loaded EET 87548, and Cumulate vs. Noncumulate Relationships

A. H. Treiman and D. W. Mittlefehldt*

*The Cumulate Eucrite Serra De Magé: New INAA Data, and the Composition of Its Parent Magma

W. Hsu and G. Crozaz*

*Noncumulate vs. Cumulate Eucrites: Heterogeneity of 4 Vesta

Discussion

Relationship Between Basaltic Eucrites and Diogenites?

*The Origin of Eucrites: An Experimental Perspective

J. J. Papike*, L. E. Bowman, M. N. Spilde, G. W. Fowler, and C. K. Shearer

*Diogenites: Cumulates from Asteroid 4 Vesta—Insights from Orthopyroxene and Spinel Chemistry

C. K. Shearer*, G. Fowler, and J. J. Papike

Petrogenetic Models for the Origin of Diogenites and Their Relationship to Basaltic Magmatism on the HED Parent Body

P. H. Warren*

*HED Petrogenesis: Are Orthopyroxenitic Magmas Plausible?

Discussion

Wednesday, October 16, 1996
5:30–7:30 p.m.

POSTER SESSION
Great Room

A. Ruzicka, G. A. Snyder, and L. A. Taylor

The Composition of the Eucrite Parent Body: Implications for the Origin of the Moon and for Planetary Accretion

M. E. Zolensky, M. K. Weisberg, P. C. Buchanan, and D. W. Mittlefehldt

Carbonaceous Chondrite Clasts in HED Achondrites

L. Ksanfomality and W. K. Hartmann

Practical Evaluation of Regolith Maturation Processes

L. E. Bowman, M. N. Spilde, and J. J. Papike

Automated SEM Modal Analysis Applied to the Diogenites

P. C. Thomas, R. P. Binzel, M. J. Gaffey, B. H. Zellner, A. D. Storrs, and E. Wells

Vesta: Spin Pole, Size, and Shape from HST Images
P. H. Warren, G. W. Kallemeyn, and T. Arai

Compositional-Petrologic Investigation of Quench-textured Eucrites: Microporphyritic ALH 91001 and Vesicular PCA 91007

T. D. Swindle, R. Lipps, and I. Scott

Is There Another Link in the Chain? Looking for Streams of HED Meteorites

M. M. Grady, I. P. Wright, and C. T. Pillinger

The Content and Isotopic Composition of C in HED Basaltic Achondrites

C. S. Schwandt and G. A. McKay

REE Partition Coefficients from Synthetic Diogenite-like Enstatite and the Implications of Petrogenetic Modeling

L. Bussolino, R. Somma, C. Casacci, V. Zappalà, A. Cellino, and M. Di Martino

A Space Mission to Vesta: General Considerations

Thursday, October 17, 1996

8:30 a.m.–12:00 noon

DYNAMICS, SURFACE PROCESSES, AND MISCELLANEOUS TOPICS

Chair: J. F. Bell

Asteroid Break-Up and Families

E. Asphaug* (review talk)

Large Ejecta Fragments from Vesta and Other Asteroids

F. Marzari, A. Cellino, D. R. Davis, P. Farinella*, V. Zappalà, and V. Vanzani

The Vesta Asteroid Family: Origin and Evolution

F. Migliorini*, V. Zappalà, A. Morbidelli, and A. Cellino

A Dynamical Study of Vesta-Family Fragments

D. R. Davis*, P. Farinella, F. Marzari, and E. Ryan

Disrupting and Destroying Families from Differentiated Parent Bodies

K. C. Welten*, L. Lindner, K. van der Borg, Th. Loeken, P. Scherer, and L. Schultz

Cosmic-Ray Exposure Ages of Diogenites and the Collisional History of the HED Parent Body or Bodies

Discussion

Early Energetic Particle Irradiation of the HED Parent Body Regolith

M. Humayun* and R. N. Clayton

Isotopic Constraints on the Origin of Eucrites

G. I. Consolmagno

Cosmogonic Implications of the HED-Vesta Connection

Discussion
Thursday, October 17, 1996
1:30–5:30 p.m.

PLANETARY HEATING AND DIFFERENTIATION
Chair: J. J. Papike

Thermal History of Vesta and HEDs

A. Ghosh* and H. Y. McSween Jr.
The Thermal History of Asteroid 4 Vesta, Based on Radionuclide and Collisional Heating

A. Yamaguchi*, G. J. Taylor, and K. Keil
Significance of the Most Metamorphosed Eucrites

L. E. Nyquist* and D. D. Bogard
Pyroxene Homogenization and the Isotopic Systematics of Eucrites

D. W. G. Sears*, S. J. K. Symes, and P. H. Benoit
Metamorphism of Eucrites and Eucrite-related Meteorites and Implications for Parent Body Sources

M. Zema*, M. C. Domeneghetti, G. Molin, and V. Tazzoli
Cooling Rates of Diogenites: A Study of Fe²⁺/Mg Ordering in Orthopyroxene by X-Ray Single-Crystal Diffraction

Discussion
L. Wilson* and K. Keil (review talk)
The Nature of Volcanic Eruptions on 4 Vesta

G. J. Taylor*, R. C. Friedman, and A. Yamaguchi
Eucrites, Terrestrial Basalts, and Volcanic Processes on Vesta

Discussion
K. Righter and M. J. Drake*
Core Formation in Vesta

H. E. Newsom*
Core Formation in the Howardite-Eucrite-Diogenite Parent Body (Vesta)

A. Ruzicka*, G. A. Snyder, and L. A. Taylor
Asteroid 4 Vesta as the HED Parent Body: Implications for a Metallic Core and Magma Ocean Crystallization

Discussion
Friday, October 18, 1996
8:30 a.m.–12:00 noon

MISSION TO VESTA
Chair: D. W. Mittlefehldt

MASTER: An Orbiter for the Detailed Study of Vesta

J. F. Bell*
Vesta: The Big Questions

R. Z. Akhmetshin*, T. M. Eneev, and G. B. Efimov
On the Sample Return from Vesta by Low-Thrust Spacecraft

Discussion

Workshop Wrap-Up Discussion
Some Possible Topics

Should we send a spacecraft to Vesta?
What do we need to learn about Vesta?
What do we need to learn about HEDs?
What measurements should be made at Vesta?
Description of Workshop

In 1970, McCord et al. first demonstrated that the reflectance spectra within a restricted wavelength region of the asteroid 4 Vesta showed remarkable similarity to that of the eucrite Nuevo Laredo. This led to the suggestion by Consolmagno and Drake in 1977 that Vesta was indeed the parent body of the eucrites and that therefore, through study of the eucrites and the related achondrites, the howardites, and diogenites (HED meteorites), we could begin to decipher the geologic history of Vesta. Unfortunately, at that time the observational techniques available to astronomers were insufficient to do more than affirm that the spectra of Vesta did indeed resemble that of eucrites for all regions of the spectrum examined. Details of the surface geology were beyond available astronomical capabilities. During this time, more and more HED meteorites were being returned from Antarctica, and HED meteorites were being studied using ever more sophisticated analytical techniques. In spite of the wealth of new data, the lack of geologic context hampered definitive interpretation of the genesis of eucrites.

Recently, the geology of the surface of Vesta has been coming to light. In 1983 Gaffey first began showing maps of the surface geology of Vesta constructed from numerous spectra obtained at different times as the asteroid rotated. By noting the details of spectral variation with rotation, he was able to develop two possible gross-scale geologic maps of Vesta showing the distributions of mafic and ultramafic materials. These maps were published in 1997. Finally, the capabilities of the Hubble Space Telescope were brought to bear on Vesta and images with a resolution of about 50 km were obtained using four different filters by Binzel and co-workers. Maps produced by this team published in 1997 began to reveal the geology of Vesta in sufficient detail that crude interpretations of the geologic history of the asteroid could be attempted.

Additionally, in 1993 Binzel and Xu published a study of small asteroids in the region near Vesta in orbital-element space. In this study, they showed that there are a number of asteroids a few kilometers in size with reflectance spectra like that of Vesta that form a trail in orbital-element space from near Vesta to near resonances that can more easily supply material to near-Earth space. Binzel and Xu thus concluded that these small asteroids were spalls of Vesta ejected by impact and that some of their brethren had been perturbed to Earth-approaching orbits. They suggested that these latter were the immediate parents of HED meteorites. This seemed to remove a long-standing dynamical objection to Vesta as the HED parent body, as discussed by Wasson and Wetherill in 1979.

Within the last few years, NASA has initiated the Discovery program of low-cost, rapid-timescale development, exploration missions. Vesta has been proposed as an object worthy of study by a Discovery mission, although a Vesta mission has not yet been selected.

With all the recent activity aimed at studying Vesta and the HED meteorites, and the possibility of a space mission to Vesta, we felt that time was ripe to convene a workshop bringing together astronomers, meteoriticists, and planetary geologists to focus on what could be learned about the geologic evolution of Vesta through integrating astronomical and HED meteorite studies. This, of course, assumes that the HED meteorites are from Vesta, and this issue was specifically addressed (but not resolved) in the workshop. Indeed, it seems likely that this issue can only be resolved by returning samples from Vesta for detailed study on Earth.

The workshop was held at the LPI on October 16–18, 1996, and was attended by some 70 scientists. Sessions included a set of talks on Earth- and space-based astronomical observations of Vesta plus the evidence pro and con for Vesta being the HED parent body, talks on the petrology and geochemistry of HED meteorites, talks on the formation and dynamics of ejecta from Vesta, talks on the thermal history of asteroids and HED meteorites, volcanic processes and differentiation history, and a short session devoted to
possible missions to Vesta. By all accounts, the workshop was considere1 a great success, although this is the opinion of a biased set of observers.

Alas, just after the workshop the two of us jointly embarked on a major publication project and never did find time to do a synopsis of the workshop. Rather than risk a major faux paux by dredging up from two-year-old memories the talks and lively discussion that occurred in the workshop, we instead refer you to Part 1 of this volume, which contains the abstracts accepted for presentation at the meeting, and two other sources. Derek Sears, the Executive Editor of Meteoritics & Planetary Science, wrote a brief editorial published in the January 1997 issue that highlighted some of the salient points brought out during the workshop. He and the editorial board of Meteoritics & Planetary Science also kindly agreed to publish worthy full-length papers that resulted from of the workshop. A total of 13 papers were published in the November 1997 issue, and these cover a wide range of topics. Of particular interest is the fact that several of these papers present models for the origin of the basaltic eucrites, and they are mutually exclusive. Clearly, although we have learned much about the HED meteorites, the fundamental question of how their parent body differentiated remains unresolved.

Also included here is an abstract by E. Asphaug on cratering of asteroidal-sized bodies that we solicited for the workshop, but which was received too late to include in the printed abstract volume.

Logistics, administrative, and publications support for the workshop were provided by the Publications and Program Services Department of the Lunar and Planetary Institute. We thank the LPI and the many individuals on the staff who helped make the workshop such a great success.

—David W. Mittlefehldt, Lockheed Martin Houston, Texas
James J. Papike, University of New Mexico, Albuquerque, New Mexico

References

Solicited Abstract

LARGE EJECTA FRAGMENTS FROM VESTA AND OTHER ASTEROIDS. E. Asphaug, Mail Stop 245-3, NASA Ames Research Center, Moffett Field CA 94035 (asphaug@cosmic.arc.nasa.gov).

The asteroid 4 Vesta, with its unique basaltic crust, is a primary mystery of solar system evolution [1] and a key to our understanding of the origin of asteroid families and the accretion of planets. A localized olivine feature [2] suggests excavation of subcrustal material in a crater or impact basin comparable in size to the asteroidal radius \(R_{\text{crust}} = 280 \text{ km} \) [3]. Furthermore, small asteroids associated with Vesta (by spectral and orbital similarity [4]) comprise likely ejecta from this impact [5]. To escape, and to reach the Kirkwood gap, these \(\sim 4-7 \text{-km} \) bodies had to be ejected at speeds considerably greater than \(v_{\text{esc}} = 350 \text{ m/s} \).

This evidence that large fragments were ejected at high speed from Vesta has not, however, been fully reconciled with our understanding of impact physics. The main problem is that large impact accelerations tend to create small fragments, not approximately kilometer-sized asteroids. Simply analytical spallation models [4,6], for instance, predict that an impactor capable of ejecting these multikilometer “chips off Vesta” would be almost the size of Vesta! Such an impact would lead to the catastrophic disruption of both bodies, in contradiction to the evident preservation of much of Vesta’s primordial crust. A more direct analysis, based on comparison with cratering on Mars, shows that Vesta could survive an impact capable of ejecting kilometer-scale fragments at sufficient speed. Specifically, the same impactor that ejected \(\sim 1 \text{-km} \) blocks from the surface of Mars at \(\sim 1 \text{ km/s} \) during the formation of the \(\sim 220 \text{-km} \) crater Lyot [7] could have impacted Vesta without destroying it. This result is obtained by (1) applying gravity scaling [8] to an \(\sim 150 \text{-km} \) transient crater (probably an upper limit for Lyot) to derive the impactor radius and speed (17 km at 8 km/s), and (2) applying the same scaling rule (in reverse) to Vesta to give the diameter of the transient crater (270 km) the same impactor would have formed there, under lower gravity. Since the craters on both bodies form in basalt, similar fragment size/velocity distributions would form. Furthermore, any material-related scaling errors cancel, making this argument particularly robust. In short, if kilometer-sized blocks are ejected at 1 km/s on Mars, the same will happen on Vesta, provided Vesta can survive such an impact without catastrophically disrupting.

To what extent, then, does Vesta survive the formation of a crater whose diameter is equal to the planet radius? This is best addressed using a hydrocode such as SALE 2D [9,10] to predict global surface velocities subsequent to the impact just described. Earlier efforts [11] showed that Vesta survives impacts by 50-km-diameter, 5-km/s objects without large-scale disassembly or global overturning of the crust. The numerical resolution of such models was, however, not adequate to directly demonstrate the creation of large fast spalls during such impacts. With the application of new grid methods on modern workstations, the desired result has now been obtained: kilometer-sized fragments from Vesta at kilometers per second velocity.

SALE 2D has been modified so that the near-surface layers are far more highly resolved than the interior. We can also model impactors such as ice, rock, or metal hitting a layered target such as basalt over iron, or regolith over basalt. These boundaries are important in near-surface ejection processes and in large-scale disruption leading to asteroid families and to stripped cores. Figure 1 shows an initial target Vesta, a 275-km-radius sphere with iron core, dense rock mantle, lower density upper mantle, and basalt crust. The bump is the impactor, a 5-km/s, 20-km-radius rocky asteroid in one simulation, and an 8-km/s, 24-km-radius ice comet in
Figure 2 shows the prompt ejecta from the asteroid impact: The blackest dots represent basalt from the near-surface, and one of these regions contains 1-km fragments at 1 km/s. The faster comet impact achieves a more favorable result (Fig. 3), with somewhat larger fragments traveling at several hundred meters per second. Each dot represents a subvolume of the target containing hundreds to thousands of fragments. Future work will involve higher numerical resolution, a thorough exploration of the effect of surface layers and pre-fracture, and three-dimensional models using HST-derived asteroid shapes. Such efforts will lead to a better understanding of spallation, such as that which brought martian meteorites to Earth, and of the catastrophic disruption of asteroids and the formation of families.

Acknowledgments: This work was supported by NASA grant NAGW 3904.

List of Workshop Participants

Glen Akridge
Department of Chemistry and Biochemistry
University of Arkansas
Fayetteville AR 72701
Phone: 501-575-3170
Fax: 501-575-7778
E-mail: dakridge@comp.uark.edu

Tomoko Arai
University of Tokyo
7-3-1 Hongo
Tokyo 113
JAPAN
Phone: 310-825-2015
Fax: 310-206-3051
E-mail: tomoko@min.s.u-tokyo.ac.jp

Erik Asphaug
Mail Stop 245-3
NASA Ames Research Center
Moffett Field CA 94035
Phone: 415-602-0786
Fax: 415-604-6779
E-mail: asphaug@cosmic.arc.nasa.gov

Jeffrey F. Bell
Institute of Geophysics and Planetology
University of Hawai‘i
2525 Correa Road
Honolulu HI 96822
Phone: 808-956-3136
Fax: 808-956-6322
E-mail: bell@pgd.hawaii.edu

Richard P. Binzel
Mail Stop 54-410
Department of Earth, Atmosphere and Planetary Sciences
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge MA 02139
Phone: 617-253-6486
Fax: 617-253-2886
E-mail: rpb@mit.edu

Donald Bogard
Mail Code SN2
NASA Johnson Space Center
Houston TX 77058
Phone: 281-483-5146
Fax: 281-483-2911
E-mail: donald.d.bogard1@jsc.nasa.gov

Claudio Casacci
Alenia Space
P.O. Box 70110
146 Torino
ITALY
Phone: 39-11-7180385
Fax: 39-11-7180244

Clark R. Chapman
Southwest Research Institute
1050 Walnut, Suite 429
Boulder CO 80302
Phone: 303-546-9670
Fax: 303-546-9687
E-mail: cchapman@boulder.swri.edu

Guy Consolmagno
University of Arizona
Vatican Observatory Research Group
Steward Observatory
Tucson AZ 85721
Phone: 520-621-7855
Fax: 520-621-1532
E-mail: gjc@as.arizona.edu

Ghislaine Crozaz
Washington University
Box 1169
One Brookings Drive
St. Louis MO 63130
Phone: 314-935-6257
Fax: 314-935-4083
E-mail: gcw@howdy.wustl.edu

Donald R. Davis
Planetary Science Institute
620 North 6th Avenue
Tucson AZ 85705
Phone: 520-622-6300
Fax: 520-622-8060
E-mail: drd@psi.edu

Chiara Domeneghetti
Universita di Pavia
CNR-CSCC
Via Abbiategrasso, 209
Pavia I-27100
ITALY
Phone: 39-382-505871
Fax: 39-382-505887
E-mail: demeneghetti@crystal.unipv.it
John Jones
Mail Code SN2
NASA Johnson Space Center
Houston TX 77058
Phone: 281-483-5319
Fax: 281-483-1573
E-mail: john.h.jonesl@jsc.nasa.gov

Klaus Keil
Department of Geology and Geophysics
Planetary Geosciences Division
University of Hawai‘i at Manoa
Honolulu HI 96822
Phone: 808-956-8761
Fax: 808-956-3188
E-mail: keil@kahana.pgd.hawaii.edu

David J. Lindstrom
Mail Code SN2
Planetary Science Branch
NASA Johnson Space Center
Houston TX 77058
Phone: 281-483-5012
Fax: 281-483-1573
E-mail: david.j.lindstroml@jsc.nasa.gov

Marilyn M. Lindstrom
Mail Code SN2
NASA Johnson Space Center
Houston TX 77058
Phone: 281-483-5135
Fax: 281-483-5347
E-mail: marilyn.m.lindstroml@jsc.nasa.gov

Gary Lofgren
Mail Code SN4
NASA Johnson Space Center
Houston TX 77058
Phone: 281-483-5276
Fax: 281-483-5276
E-mail: gary.e.lofgrenl@jsc.nasa.gov

Francesco Marzari
Department of Physics
University of Padova
Via Marzolo 8
I-35131 Padova
ITALY
Phone: 39-49-827-7190
Fax: 39-49-827-7102
E-mail: marzari@pd.infn.it

Lucy Ann McFadden
Department of Astronomy
University of Maryland
College Park MD 20782
Phone: 301-405-2081
Fax: 301-314-9067
E-mail: mcfadden@astro.umd.edu

David S. McKay
Mail Code SN1
NASA Johnson Space Center
Houston TX 77058
Phone: 281-483-5048
Fax: 281-244-8892
E-mail: david.s.mckayl@jsc.nasa.gov

Gordon A. McKay
Mail Code SN2
Planetary Science Branch
NASA Johnson Space Center
Houston TX 77058
Phone: 281-483-5041
Fax: 281-483-1573
E-mail: gordon.a.mckayl@jsc.nasa.gov

Fabio Migliorini
Armagh Observatory
College Hill
Armagh
Northern Ireland BT61 9DG
United Kingdom
Phone: 44-1861-522928
Fax: 44-1861-527174
E-mail: pat@star.arm.ac.uk

David Mittlefehldt
Mail Code C23
Lockheed Martin Engineering
2400 NASA Road 1
Houston TX 77058
Phone: 281-483-5043
Fax: 281-483-5347
E-mail: david.w.mittlefehldtl@jsc.nasa.gov

Horton Newsom
Institute of Meteoritics
University of New Mexico
Northrop Hall, Room 306D
Albuquerque NM 87131
Phone: 505-277-0375
Fax: 505-277-3577
E-mail: newsom@unm.edu
Laurence E. Nyquist
Mail Code SN2
NASA Johnson Space Center
Houston TX 77058
Phone: 281-483-5038
Fax: 281-483-1573
E-mail: laurence.e.nyquist1@nasa.gov

James J. Papike
Institute of Meteoritics
University of New Mexico
Northrop Hall 313
Albuquerque NM 87131-1126
Phone: 505-277-3577
E-mail: jpapike@unm.edu

Michael Rampino
Department of Applied Science
New York University
26 Stuyvesant St.
New York NY 10003
Phone: 212-998-3743
Fax: 212-995-3820
E-mail: rampino@is3.nyu.edu

Kevin L. Reed
GDE Systems, Inc.
MZ 6500-E
16250 Technology Drive
San Diego CA 92127
Phone: 619-592-1089
Fax: 619-592-5407
E-mail: kevin.reed@gdesystems.com

Kevin Righter
Lunar and Planetary Laboratory
Space Science Building #92
University of Arizona
Tucson AZ 85721-0092
Phone: 520-621-2816
Fax: 520-621-4933
E-mail: righter@lpi.arizona.edu

Alex Ruzicka
Department of Geological Sciences
Planetary Geosciences Institute
University of Tennessee
Knoxville TN 37996-1410
Phone: 423-974-6023
Fax: 423-974-6022
E-mail: aruzicka@utkux.utcc.utk.edu

Graham Ryder
Lunar and Planetary Institute
3600 Bay Area Boulevard
Houston TX 77058
Phone: 281-486-2141
Fax: 281-486-2162
E-mail: zryder@lpi.jsc.nasa.gov

Hans Josef Schober
Institut für Astronomie
University of Graz
Universitätsplatz 5
A-8010 Graz
AUSTRIA
Phone: 43-316-384-091
Fax: 43-316-380-9820
E-mail: hans.schober@kfunigrat.ac.at

Craig S. Schwandt
GDE Systems, Inc.
Mail Code C23
Lockheed Martin Engineering
2400 NASA Road 1
Houston TX 77058
Phone: 281-483-1368
Fax: 281-483-1573
E-mail: craig.s.schwandt@nasa.gov

Derek W. G. Sears
Cosmochemistry Group
Department of Chemistry and Biochemistry
University of Arkansas
Fayetteville AR 72701
Phone: 501-575-5204
Fax: 501-575-7778
E-mail: cosmo@uafsysb.uark.edu

Charles K. Shearer
Department of Earth and Planetary Sciences
Institute of Meteoritics
University of New Mexico
Albuquerque NM 87131
Phone: 505-277-9159
Fax: 505-277-3577
E-mail: cshearer@unm.edu

Alexander Shukolyukov
 Scripps Institution of Oceanography
Mail Code 0212
University of California, San Diego
La Jolla CA 92037-0212
Phone: 619-534-4886
Fax: 619-534-0784
E-mail: ashukolyukov@ucsd.edu
Mike Spilde
Institute of Meteoritics
University of New Mexico
Northrop Hall, Room 313
Albuquerque NM 87131-1126
Phone: 505-277-1644
Fax: 505-277-3577
E-mail: mspilde@triton.unm.edu

Paul Spudis
Lunar and Planetary Institute
3600 Bay Area Boulevard
Houston TX 77058
Phone: 281-486-2193
Fax: 281-486-2162
E-mail: spudis@lpi.jsc.nasa.gov

Timothy D. Swindle
Lunar and Planetary Laboratory
University of Arizona
P.O. Box 210092
Tucson AZ 85721-0092
Phone: 520-621-4128
Fax: 520-621-4933
E-mail: tswindle@u.arizona.edu

Hiroshi Takeda
Chiba Institute of Technology
Research Institute
2-17-1 Tsudanuma
Narashino City
Chiba 275
JAPAN
Phone: 81-474-78-0587
Fax: 81-474-78-0587
E-mail: takeda@cc.it-chiba.ac.jp

Ivan Thorsos
Institute of Meteoritics
University of New Mexico
Northrop Hall, Room 332
Albuquerque NM 87131-1126
Phone: 505-277-1644
Fax: 505-277-1126

Allan Treiman
Lunar and Planetary Institute
3600 Bay Area Boulevard
Houston TX 77058
Phone: 281-486-2117
Fax: 281-486-2162
E-mail: treiman@lpi.jsc.nasa.gov

Heinrich Wänke
Max-Planck-Institut für Chemie
Abteilung Kosmochemie
Saarstrasse 23
Mainz
D-55122
GERMANY
Phone: 49-6131-305-231
Fax: 49-6131-371290
E-mail: waenke@mpch-mainz.mpg.de

Paul H. Warren
Institute of Geophysics
University of California
Los Angeles CA 90095-1567
Phone: 310-825-3202
Fax: 310-206-3051
E-mail: pwarren@ucla.edu

Jeffrey Taylor
Planetary Geosciences Division
University of Hawai‘i
2525 Correa Road
Honolulu HI 96822
Phone: 808-956-3899
Fax: 808-956-6322
E-mail: gtaylor@pgd.hawaii.edu

John T. Wasson
Institute of Geophysics
University of California-Los Angeles
Los Angeles CA 90095-1567
Phone: 310-825-1986
Fax: 310-206-3051
E-mail: wasson@igpp.ucla.edu

Peter Thomas
Cornell University
422 Space Sciences Building
Ithaca NY 14853
Phone: 607-255-5908
Fax: 607-255-9002
E-mail: thomas@cospif.tn.cornell.edu

Kees C. Welten
Space Sciences Laboratory
University of California
Berkeley CA 94720-7450
Phone: 510-495-2445
Fax: 510-486-5496
E-mail: kcwelten@ulinky.berkeley.edu
George W. Wetherill
Department of Terrestrial Magnetism
Carnegie Institution
5241 Broad Branch Road NW
Washington DC 20015
Phone: 202-686-4370 x4375
Fax: 202-364-8726
E-mail: wetherill@eros.ciw.edu

Lionel Wilson
Institute of Environmental and Biological Sciences
Environmental Science Division
Lancaster University
Lancaster LA1 4YQ
United Kingdom
Phone: 44-1524-593975
Fax: 44-1524-593985
E-mail: l.wilson@lancaster.ac.uk

Akira Yamaguchi
National Institute for Research in Inorganic Materials
1-1 Namiki
Tsukuba 305, Ibaraki 305-0044
JAPAN
Phone: 81-298-51-3354 x2629
Fax: 81-298-51-2768
E-mail: yamaguchi@nirim.go.jp

Vincenzo Zappalà
Astronomical Observatory
10025 Pino Torinese
Torino
ITALY
Phone: 39-11-4919035
Fax: 39-11-4919030
E-mail: zappala@to.astro.it

Michele Zema
Dipartimento di Scienze della Terra
Università di Pavia
Via Abbiatierrasso, 209
Pavie
I-27100
ITALY
Phone: 39-382-505887
E-mail: zema@crystal.unipv.it

Anna Zezulová
Jihlavská Street No. 22/613
Prague 4-140 00
CZECH REPUBLIC
Phone: 42-2692-9569

Michael E. Zolensky
Mail Code SN2
NASA Johnson Space Center
Houston TX 77058
Phone: 281-483-5128
E-mail: michael.e.zolensky@jsc.nasa.gov