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A Simulation to Study Speed Distributions in a Solar Plasma

ABSTRACT

We (Peter Cheeseman. of NASA Ames/Caelum Research) & Jose Luis Alvarellos of the

SJSU Physics Department/SJSU Foundation.) have carried out a numerical simulation of a

plasma with characteristics similar to those found in the core of the Sun. Particular emphasis

is placed on the Coulomb interaction between the ions and electrons, which could result in a

relative velocity distribution different from the Maxweli-Boltzrnann (MB) distribution

generally assumed for a plasma. The fact that the distribution may not exactly foliov_ the MB

distribution could have vet)" important consequences for a variety of problems in solar

physics, especially the neutrino problem. Veo briefly, the neutrino problem is that the

observed neutrino detections from the Sun are smaller than what the standard solar theoo'

predicts [l ]. In Section I we introduce the problem and in section II we discuss the approach

to tO to solve the problem: i.e., a molecular dynamics approach. In section Ill _e provide

details about the integration method, and any simplifications that can be applied to the

problem. In section IV (the core ofthis report) x_e state our results• first for the specific case

of I000 particles and then for other cases with different number of particles. In section V g'e

summarize our findings and state our conclusions. Sections V1 VII and Vlll provide the list

of figures, reference material and acknowledgments respectively.

I. INTRODUCTION/STATEMENT OF THE PROBLEM

A plasma is a hot. ionized gas which is compo_d of(positive) ions and free electrons

distributed over a region of space (Chen [2]: Spitzer [3]). Plasmas are electrically neutral

(overall charge=0). Examples of plasmas are the ionosphere, which is an upper layer of the

atmosphere, and the gas in the interior of the Sun. In the core of the Sun, temperatures are so

high that atoms are completely stripped of their electrons, thereby constituting a plasma,

composed of (positive) nuclei and free electrons.

core.

We wish to stud)' the behavior of a plasma under the same conditions as in the Sun's

The main interaction affecting the behavior of the ions and electrons in plasma is the
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CoulombForce. Muchof theworkdonein PlasmaPhysics/SolarPhysicsassumesa MB speed

distributiontbr theionsandelectrons.TheMB speeddistributionis

g(v)=4n,'t(m/2,_%T)!_v: exp(-v:/v,h ) (I)

where n is the number density', kB is Boltzmann's constant. Tthe temperature and we

define v_ =- 2k_T/m. The quantity g(v)ak' gives the number of particles per unit volume v, ith

a speed between v and v + ak,. Analytical derivations of the MB distribution assume that all of

the ener_ is kinetic energy, that is, the classical derivation neglects an,, inter-particle forces

such as the Coulomb force. A measure of the deviation from "'ideal gas" conditions is the

parameter/-'which will be defined later: suffice it to sa_ that for an ideal gas. F = 0. and for a

real plasma F> 0. i-here will be deviations from MB due to the Coulomb interaction, the

question is how much (S_ihart [4]). For another _,iew on the effects ofa non-MB distribution

on solar neutrino rates see Cla)ton (refs. [5] and [6]).

Energy production in the Sun is by thermonuclear reactions, primarily via the proton-

proton (PP) chain. There are three possible PP chains (PPI, PPII and PPIlI) and which

dominates depends primarily on temperature (Clayton. 1983, [7]). In the overall view, the PP

chain amounts to the combination of four protons to produce a 4He nucleus, tv, o positrons and

_o (electron) neutrinos (Bahcall 1989 [8]):

41H --_ 4He + 2e _ + 2re [Q = -26.7 MeV] (2)

Of the 26.7 MeV released, only about 0.6 MeV is carried away by the neutrinos. The reaction

is not as straightforward as implied by the above equation, which is a simplified view of the

whole chain. The PP chain involves several "branches", such as the first branch of the PP

chain:

tH + tH --* 'H + e÷ + ve [Q = 0.42 MeV] (3)

For the rest of the branches see (Clayton, 1983 [7]) or (Bahcall, 1989, [8]).



Thealternative reaction we are interested in is (Bahcall & Wolf. 1063 [9])

3He +e --_ 3H _ ve [Q = -18.6 keV] (4)

This is an electron capture by a 3He nucleus to give a Tritium nucleus plus a neutrino. This

reaction is not part of the standard solar model: note that it is endothermic and would release

neutrinos of vet). low energy. Iov, er than present "neutrino telescopes" would detect. If this

reaction _ere to "eo"_. the energy, would ha_e to be provided by. the electrons. _hich would

need an a_erage ener_' of 18.6 keV. At the core of the Sun (1.56x!07 K) the mean kinetic

energy of electrons is 2 keV. Assuming a MB distribution the ratio of electrons with ener_

18.6 keV to those with 2 keV is approximately 1.3 lxl0 "s. In Ref. [9]. Bahcall & Wolf imply

that the reaction 3He(e.vc)3H is only important in the case that the central density of a star p,, >

2x107 K_m 3, and so would proceed at a negligible rate in the Sun's core, where p = 1.48x10 s

Kg/m 3. Ho_ever, the)' did not take into account the statistical mechanics of interacting

particles. We suspected that the mean energy of electrons may be higher than 2 keV, which

would make the electron capture reaction given above to be much more likely than the

standard solar model predicts. A possible cause for deviations from MB distribution are the

Coulomb interactions between electrons and ions. Another possible cause is electron

degeneracy (see Swihart, 1972 [4]), but we concentrate on the effect of Coulomb interactions

here. This is the purpose of the simulation.

I1. APPROACH TO THE PROBLEM

We have developed a numerical model of a plasma, with characteristics typical for the

interior of the Sun; i.e., the plasma will have the same temperature and density (T = 1.56x10:

K, p= 1.48x105 Kg/m 3, see Bahcali [8]), as the core of the Sun. We used a Molecular

Dynamics OVID) simulation of electrons and ions (Halle [10]), using paired electron-ion

"clusters" (as dipoles) to cut off field contributions below a given threshold. We use the

Velocity-Verier scheme to advance the system in time. It is reasonably fast and quite accurate.

The simulation consists of a large number of ions and electrons in a given volume (determined

by the densit T in the Sun's core) using periodic boundary conditions. We ignore quantum

effects. We are investigating the following (among other things):



I. The possibility ofa non-Maxv, ellian velocity distributions (ions and electrons) due to

the long-range effects of the Coulomb force. This (possibly) non-Maxveellian

distribution can affect the rate of certain nuclear reactions occurring in the Sun's core

_hich are very important for the solar neutrino problem.

2. Check the relaxation times for ion-ion and ion-electrons interactions.

3. We v, iil also check the (analytical) mean-free-path formula for ions and electrons.

III. DETAILS OF THE INTEGRATION

(a) Units

We choose to use atomic units or au (see McQuarrie [! 1]) as the most natural set of units

for the problem at hand. The unit oflenmh is the Bohr radius, the unit of mass is the electron's

mass. etc. See the following table:

Quanti_

Mass

Charge

Length

Time

Ene rg;,

Table I: Atomic Units

Atomic Unit

m=l (electron mass)

lel=1 (electron charge)

ao = 1 (bohr)

Electron period in Bohr orbit

1 hartree

MKS Equivalent

9.1091xi0 3t Kg

1.6021xl0 "19C

5.2918x10 IL m

2.4189x10 "17 s

4.35944xl0 "is J

Only temperature is the same as in the MKS set, i.e.. it is measured in degrees Kelvin.

(b) Initial Conditions

Since one of the things we v, ant to check are the relaxation times, we choose initial

conditions which are as far removed from equilibrium as possible, and then we see how long it

takes for the system to relax. The initial positions are arranged in an FCC (Face-Centered-

Cubic) pattern, as in a NaCI crystal, with electrons and protons at alternate positions. The total

number of particles Nv is constrained by the fact that _e want the overall charge to be zero. If

we assume we have only electrons and protons, as in our case, this means that the total number



of particles has to be an even number. Furthermore. since we are using an FCC pattern, the

cubic root of the total number of particles has to be an integer: this is the number of particles

on a side of the computational box. Therefore. ;_, is constrained b)the following conditions:

• .Vpiseven

• CNp)ls is an integer

Using these criteria we find that Np = 8i 3, with i= 1.2.3.4.5. etc.. so 5_o = 8, 64.216. 512. 1000.

1728. etc.

The initial spacing d bet_'een each electron and proton in the lattice is determined from

the Wigner-Seitz radius a, or

1a = (5)
/'/'n

,shere n, is the ion number densit2,' (equal to the electron number density), lfsse assume onl)

Hydrogen is present, w'e obtain a = 0.26. As previousl)mentioned, a measure of the Coulomb

coupling stren_h is F, v,'hich is defined as the ratio of the average potential energy to the

average kinetic energy, or for equilibrium conditions

2

F 3keTa (6)

Using the previously obtained value ofa. v,'e find F = 0.05 (in au k8 = 3.17606x 106

hartrees/K).

Since we are using a cubic computational box, it can be shown that the length of a side

will be L = dN_, so that the volume is V 3= d /_ p. The number density of ions n, is

number of protons =_=_NP/2 1 (7)

Volume of comp.box d_,Vp 2d _

Substituting this expression into Eq. (5) and solving for d we obtain



(8)

Once we ha_e decided the total number of particles and their initial positions _e need to decide

on their initial velocib. At first thought this seems simple: assign the initial velocities

according to the average kinetic energy per particle at the center of the Sun (determined by the

temperature). However. the average potential energy per ion-electron pair is lower at t=O.O

(for an FCC lattice) than for equilibrium conditions. This means that as the system evolves in

time and approaches equilibrium, its potential energy will increase slightly. To conserve

energy, the kinetic component has to decrease as the system evolves, which means the initial

kinetic energy has to be slightly greater than the kinetic energy at equilibrium. We want the

total energy per particle (after relaxation) to be equal to the mean kinetic energy per particle at

the center of the Sun. The extra amount of kinetic energy is obtained by comparing the

potential energy per fproton-electron) pair at t = 0.0, u(Oj, and at equilibrium. <u>. At t = 0.0

we have an FCC lattice, and the potential energ2,' per pair is (in au's)

u(O) a ' . . := -=-I.o6>9, a (9)

v_here a = 1.7476 is the Madelung constant for an FCC lattice (see Ashcrofi & Mermin [12]).

At equilibrium, the average distance between an ion and an electron is the Wi_er-Seitz radius.

so

<u >= -1/a (10)

The initial kinetic energy per particle k(O) will be the kinetic energy at equilibrium <k> plus

the difference between Eq. (9) & (10) divided by 2:

< u > -u(O)
k(O) =< k > -_ (1 l)

2



v, here < k >= 3k_T / 2. Since all particles have the same initial kinetic energy, the initial

speed per particle _'ill be _0) = ._2k(0)/m. Electrons _ill be faster than protons (b) a factor

of- 43) due to their iox_er mass. In effect, the initial speed distribution for electrons and

protons is a delta function. The direction of the velocity vectors is chosen at random.

(c) Advancing the System in Time

Once the initial conditions are chosen (in the form of initial positions and velocities), the

system is advanced in time via the Velocity-Verlet scheme (Alien & Tildesley 1992 [i 3] or

Swope et al. [14]). Each particle/=1.2,3 .... ,'_ is advanced in time as follo_'s:

r, tt-- At). = r,(t) + v,(t) ,At - 0.5 ,[F,(t) m,] e__lt: (12a)

v, tt'z_t 2) = v,(t) - 0.Sm[F,(t)" m,.]eAt (12b)

v, ft,-At) = vi (t+At/2) -_ 0.So[F,(t+At),'m,]eAl (12c)

_here ,._4tis the (fixed) time-step size and (F/m,) is the acceleration on particle i. The scheme

is reasonably fast and very accurate: the local truncation error is O(Afl). We use periodic

bounda_ conditions: once a particle exits the computational box. it re-enters it on the opposite

side.

(d) Forces

The computation of the forces on particle i is done as follows. A sphere centered on

panicle i with a "'cut-off." radius Rc is chosen so that the forces on particle i of(most) particles

outside of this sphere are ignored. Choosing the quantity Rc is a compromise between

execution speed and accuracy, and must be found empirically; v,e chose to use Rc = 0.67. In

addition, we keep charge neutrality for all the particles whose forces are acting on particle i

(including particle/). If there is no charge neutrality within this sphere, we search outside the

sphere for the nearest particles of the appropriate charge to keep the net charge zero.

Thereafter, the force on particle i is



jzz

_here the sum goes fromj =l.2.3 ..... V,. where A,_ is the number of"neighbors'" of particle i

(which varies as a function of time. but typically <N,,> ~ 40 for Rc = 0.67) and F o is the force

on particle i due to particlej. The reason for the emphasis on charge neutrality is that we want

to use paired electron-ion "clusters" (as dipoles) to cut off field contributions belox_ a given

threshold, as the field of a dipole fails offfaster than that of a simple point charge. Finding

which particles to use in the calculation of the forces on a particle (the "'neighbors") is

computationally expensive, so g e use the concept of neighbor lists to save time (see Halle.

[10]). A list of the N, neighbors of particle i is obtained and the same list is used over several

consecutive time-steps to compute the forces. Typically we update the list ever) 15 time-steps

We use a modified form of the Coulomb interaction betv, een t_o particles:

F - q,q:r _. (14)

which, in the limit of small ctends to the real Coulomb force. The main reason for this

"'softened" force is one of computational convenience, as it removes the possibilib of the

denominator in Eq. (14) from "blow'ing up" due to very close approaches. Another way to

think of this softening is that each particle has a cloud of charge, 85% of v, hich is contained

within a radius of3¢(see Sellwood [i 5]). Again, one must choose empirically a small enough

value ofcso that Eq. (14) is a good approximation to the real Coulomb force, but not so small

that close approaches between particles result in large errors (because of the finite size of the

time-step At) due to extreme values of the denominator. We use c = 2x10 3.

The force between a "real'" particle i (located inside the computational box, CB) and an

"image" particlej' (a projection of a "real" particlej close to the opposite edge of the

computational box from particle i) is handled by Haile's "'Minimum Image Criterion" (see

[10]). This becomes important for particles close to the edge of the CB. This criterion

identifies which of the multiple images of a real particle will be used in the computation of the

8



forces,and is applied separately to each cartesian component.

component we have

x --+x,,-L (x,<-L/2)

x--+x,+L (x >L/2)

For example, for the x

and x,: is unchanged if - L/2 < x < L/2.

Finally, we mention that another computational "trick" to speed up the simulation is to

use Newton's Third Law whenever possible, if the force on particlej due to particle i Fp is

computed, then the force on particle i due toj F,: does not need to be computed again as it is

already known, i.e., F. = -F (along the same line!).

(d) Stochastic Heating

Stochastic Heating is a numerical artifact and is a result of all the errors in the

computer simulation (due to truncation error, finite time-step, rounding off, finite computer

precision, etc.). The result is that the mean kinetic energy per particle <k> increases as the

simulation proceeds in time (see Hockney & Eastwood [16]). The average error in the kinetic

energy <h> of., say, particle i. is a linear function of the number of time-steps n. and is given

by

[q/5(A/)]:
<h>= n (15)

2m,

where q, is the particle's charge, m, is its mass, 8is the (modulus of the) error in the electric

field (due to truncation, finite machine precision, etc.) computed at the location of panicle i

and At is the time-step used. it can be seen from Eq. (! 5) that the smaller the time-step, the

smaller the effects of stochastic heating. Furthermore, the larger the mass, the less error in

kinetic energy; hence, for a given time-step size, protons are much less affected (by a factor of

m_,,,,,/m,,,_,, _ !836) than electrons by stochastic heating.



The result is that unless v,e provide corrections, the kinetic energy per particle (and

hence the total system ener_') vdll increase without bound. Therefore. v,e periodically check

the error in the total ener_' and automatically provide corrections for stochastic heating by

reducing the magnitude of the velocity vectors of all the particles. These corrections are

different for protons than electrons.

(e) Table of characteristic lengths

Follovdng is a table of the characteristic length scales in,,olved in the problem. Also

included is the Debye length, often-used in Plasma Physics work to indicate the "'screening"

effects of a collection of charges:

Table II: Characteristic Lengths for the problem

Length Value (au)

Wigner-Seitz radiu_, a. Eq. (5) 0.26

Lattice dist., d. Eq. (8) 0.33

Cut-offradius. R_

Softening radius, c

Deb.ve length. 2z_ 0.54

The significance of the Debye length is that for distances much greater than 2D from a given

charge, screening effectively cancels out the charge (see Chen. [2]). In addition, if the number

of particles inside a "'Debye'" cube is much greater than uniD', then the s)stem is defined as a

"'collision-less" system (see [16]). In our case, the total number of particles in a Debye cube is

(2z,/d) 3 _ 4. Therefore, collisions are important for our problem, as expected.

(f) Running the Programs

We implemented all of the previously mentioned ideas in the form of FORTRAN 77

codes. There are actually two versions of the program. The first version (main:

PLSMMD.FOR) advances the system in time from t = 0.0 (FCC lattice, initial speed

distribution is a delta function) to a sufficiently long enough time that the system is "'_ell

relaxed". Along the way the pro m'am checks the speed distribution, conservation of energy

and conservation of momentum. A time after which the system is "well relaxed" has been

10



foundempiricallyandit isapproximately 330.0 time units (= 330.0 x 2.4189xl0 t: - 8xi0 _s

seconds). The second version (main: PLSMMD2.FOR) integrates the st stem in time from

where the first program left offto an additional, arbitrary number of time steps. In this second

version we check the speed distribution, energy conservation and close approaches. To speed

up the simulation we skip momentum checking. The simulations are quite CPU intensive and

a t3pical run could have lasted any_'here from a fev¢ days to a month depending on the total

number of particles. The computer used was a 6-CPU. Ultra Enterprise 4000/5000 Sun

Micros2_stems workstation with 1.2 GB of main memory running Solaris5.6. Both versions

v, ere compiled with Sun Microsystems" f77 compiler in double precision and optimized for

speed (i.e.. used the [--04 -fast] compiler options). Each run took place on a single CPU. a

248 MHz UltraSPARC-II chip. See the Appendix for the programs and a discussion of the

input parameters for these two programs.

IV. RESULTS

We have done several runs with different numbers of particles. In what follov,s w'e

will discuss a t2,pical case (with A_, =1000 particles), state our results and then tabulate the

same quantities using other values of_._,. Whenever possible we compare our ans_,ers with

analytical expressions.

(a) Case Np --1000 particles (Relaxation Run):

We ran the first program, PLSMMD at the Unix prompt. This first program is run

mainly to "'relax" the system to equilibrium conditions, so we call this a "'relaxation run". In

Figure I we see a plot of the initial positions and velocities in the computational box (CB).

The length of a side the CB is L dN/'3= , so for._, = 1000 we haveL =3.328. The

arrangement of electron-proton positions can easily be seen to be that of an FCC lattice: the

circles with dots at the center are protons while the dots are electrons. The velocity vectors are

also shown, although at this scale only the electron velocity vectors can be seen (the velocity

vectors of the protons are approximately 43 times shorter). Note that the velocity vectors are

randomly oriented, but the magnitude of all these vectors is the same (for a given species,

obtained from Eq. (I !)). For electrons this initial speed is v,l(O ) = 12.2322 while for protons it

is v(0) =0.2854. In effect, the initial speed distribution is a delta function. It's easy to see

that, apart from the orientation of the velocity vectors, there's nothing random about these

!1



initial conditions. We now propagate this system for, sard in time using the Velocib-Verlet

scheme. The time step size is At = l.lxl0 _. inte_ated for 3xl0 _ time-steps. The softening

radius is _= 2xl0 3 and the outer "'cut-off" radius Re = 0.67.

in Fig. (2) we see four panels with information related to the behavior of the energy for

this first inte_ation, in the first panel (Fig. 2(a)) we see the beha_ ior as a function of time

(0.0 _<t <_330.0 ) of the total kinetic energ3 K(t) (top line), the total system energy, both

analytical and numerical. E and E,(t). (ve_ close together appearing as one line. right below

the kinetic energy) and the total potential energy U(t) (bottom line. always negative). Note that

most of the energy is kinetic, and it is this fact that makes plasma researchers ignore the

potential energy of the system in some cases, assume ideal gas conditions, and hence use pure

Max_elI-Boltzmann (MB) statistics. The two circles on the vertical axis represent the

anal xlical values of the initial potential and kinetic energies (Lo = u(Oi *.\_,:2 = -2626.8

hartrees. Ko = kgO)*A_, = 74813 hartrees, _ith u(Oj and k(O) given b.v Eqs. (9) and ( 11 )

respectively) from which we can obtain an anal_xical value for the total system ener_ E =

72186.2. In the second panel, Fig. 2(b), we have zoomed in on the first panel to observe the

behavior of the system energy at the beginning of the simulation (note that the time axis goes

from 0.0 to 5.0). We also moved U(t) upward by 72000 hartrees to better appreciate the

behavior of the kinetic and potential energies as the system mo_es towards equilibrium. Firstly

notice that the (total) kinetic and potential energies correctly keep "'sxnc'" w'ith each other to

approximately conserve the (numeric) total ener_ E,(t) = K(O- U(t) _ const.. The straight

line is E and the (not so) straight line just below _it is E,(t). Second. note how the potential

energy moves upwards as time increases. Again this is due to the fact that at t = 0.0 v_e have

an FCC lattice, which has a lower potential energ) than a random configuration.

Consequently, the potential energy tends to increase asymptotically towards an equilibrium

value and the kinetic energy tends to decrease as wnptotically to it own equilibrium value

(corresponding to the system temperature). In the third panel Fig. 2(e), we see the proton and

electron "'components" of the kinetic and potential energies. Note that the potential energies of

electrons and protons are very close to each other (indeed, they are almost indistinguishable at

this scale), but the kinetic components are quite separated. The electron kinetic energies are

higher than the proton kinetic energies, or in other words, the electrons are at a higher

12



temperature than the protons; however, note also that we started allparticles with the same

kinetic ener_'. In Fig. 2(d) we plot the percent error in energy, which we define as

%error = 100x E.(t) - E (16)
E

It can be seen that the i%error, < 1% during the simulation, in fact. the w'orst error _as - 0.9

°o at t = 93.2 and the mean of the absolute value was <l%error> - 0.22%. Also _orth

mentioning is that we ha_e checked the numerical value of/'and we obtained </-_ = 0.0521.

in good agreement with the discussion given previously (see the discussion regarding Eq. (6)).

in Fig. (3) we see the behavior ofthe system momentum P(t) as a function oftime.

Since there are no external forces acting on the s_stem, the system momentum should be

conserved. In Fig. 3(a) we plot the total system momentum as a function of time. We plot

here the x, y and z components of the total momentum (p,. p_, p-) as v_,ell as the magnitude of

the total system momentum ptot where

P,o, = (P_ + P_ + P_ )_"' (17)

Note that conservation of momentum holds quite well: not only is the total momentum well

conserved but so are each of the three components. In Fig. 3(b) we see a plot of the "'electron"

component of the momentum and finally on Fig. 3(e) ae see a plot of the "'proton" component

of the momentum. It can be seen that most of the momentum is carried by the protons (due to

their higher mass).

In Fig. 4 we see four panels showing data for a specific particle, in this case an

electron. In the first panel (Fig. 4(a)) we see a plot of the electron's position as a function of

time in the form ofx(t), y(t), z(t). At t ~ 0.45 z(t) undergoes a large deflection, then y(t)

undergoes a large deflection at t - 0.75 and finally z(t) also undergoes a large deflection at t~

1.2. Because we are using periodic boundary conditions the following constraint holds:

lx(t) _<L/2 = 1.664 where L is the len_h of a side of the CB: the same relationship holds for

yet), z(t). In Fig.4 (b) we see a plot of the velocity as a function of time in the form of

13



v(t).v (t),v:(t). It can be seen that at t=O.O, the z-component was the largest component. In

the follow ing panel Fig. 4(e) v_e plot the cosine of the angle Obetv, een this electron's initial

velocity vector vo = v(t = 0.0) and its velocity vector as it evolves as a function of time v = v(t),

i.e., the relationship be_,een these t_o vectors and Oisjust VoOv = cos(O). We are interested

in measuring the deflection time, defined as the time "'in which deflections deflect the test

particles by 90 °.. (Spitzer [3], p. 131 ): by definition this is the time when cos(O) -- 0.0. In this

case v,e found to = 0.80. Finally. '._e define the Mean Free Path 2 as the distance the particle

travels during the deflection time: in Fig. 4(d) we plot the particle's speed

v(t) = [v_ (t) + v_ (t) + v_ (t)]' : as a function of time. The integral of vrt) from 0.0 to to gives us

the electron's mean free path; here 7. = 7.6 (the dashed vertical line denotes tt_). Note also that

the electron's speed decreases slightly in accordance _ith the previous discussion regarding the

kinetic energy (see Fig. 2(b)). It should also be noted that this electron deflection time was

found not at equilibrium conditions but at t -- 0.0. If_,e repeat the measurements (for the same

electron) during the post-relaxation run (t > 330.0) ,,_e obtain to = 1.0 and ). = 6.8, so the values

are quite similar to what we had at t = 0.0. In fact. we've found that in general there's no

appreciable difference be_'een deflection times found at t =0.0 and at t > 330.0. The

deflection time and the Mean Free Path of a proton veere obtained in this case as well: these

results are listed in Table VII.

It is interesting to compare these results with those given by Spitzer. If x_e use the

formula for the deflection time assuming an ideal gas. we get an ansx_er that is too large by

about an order of magnitude. For a fully ionized gas we must use the equation (Spitzer [3]. p.

132)

t o =[8.rvn,p_(@(x)-G(x))InA] -t (18)

which gives the deflection time for a "test" particle. Here n is the "field" particles" number

density. (the field particles are all particles other than the "test" particle), w is the relative speed

between the test particle and the field particles, Po = (/-m') -_(in this case;/a is the electron-

proton reduced mass), cl_(x) is the error function and G(x) is defined in Spitzer as

G(x) = (Ca(x) - x_'(x))/2x: (19)
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whilex is defined to be

x = w_T (20)

Spitzer lists values of _(x) -G(x) as a function ofx. The quantit3. In.X is a _,,a,, to take into

account quantum-mechanical effects. Spitzer tabulates values of InA a.s a function of

temperature and density. However. for our problem the densit2," is to> l-.igh capprox. 9x10 :-_

electrons/cm 3) and so this theor) breaks do_n and he does not list a _ alze of lnA appropriate to

our case. In spite of this. a crude extrapolation of his table allow s us to e_imate InA ~ I :

furthermore, our simulation is purely classical and no quantum effects _,.ere taken into account.

We can take w - (<v,,>+<vr>)/2 ._ 5.8 (see Table Ill below) and from thZs v,e get x - 0.6.

Therefore. according to Spitzer, _(0.6)- G(0.6) _ 0.42 and so plu_gi.-.g into Eq. (18) _e

obtain to _ 1.3. This is a bit larger than what _e obtained, but it's _ll i,'a g_-,,:l agreement.

In Figure 5 we see a histogram of the instantaneous electro.-. _d proton speed

distributions at the end of this first integration (t = 330.0). The values of the (instantaneous)

mean speed and mean squared speed are also shown. The mean speed <v> ,_as obtained first

and the mean squared speed <v:> was obtained from

(v:) = (v): +o': (21)

where o': is the variance of the speed distribution. We represent rele_ _t information about

these distributions (plus the initial speeds at t =4).0) in the following table:

Table III: Speed characteristics at t = 330.0 plus initial speeds t a_l ,,alues in atomic units)

Particle Min. speed v(r--o.o) ! Max. speed

Electron i.63 (12.2322) 1 !.33 12.33 29.28

Proton 0.04 (0.2854) 0.26 028 :i 0.70
I

(el.)/(pr.) 40.75 (42.85) 43.58 44.03 _ 41.83
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Inthelastrowwedividetheelectron speed value by the proton speed value. In all cases the

numbers are veo' close to the ratio of the square root of their masses "_;1836.2 =42.85- 43. in

the case of the initial speeds this ratio is exact by definition: Note that even the slowest

electron is more than t_vice as fast as the fastest proton.

Finally in Fig. 6 we plot the positions and velocities of all the particles at the end of

this first integration. All positions have randomized by this time; note however, the apparent

formation of a "'chain" of particles towards the top of the CB. Again. the _elocity sectors of

most protons are too small to see at this scale, but those of electrons are clearb visible.

(b) Case ?_, =1000 particles (Post-Relaxation Run):

Once the system has relaxed, the program PLSMMD dumps the positions and

velocities shown in Fig. 6 as initial conditions used in the next program PLSMMD2. The

reason we ha_e v, ritten two separate programs is that once the system is relaxed v,e search for

close approaches (an activity that is quite CPU intensive), especially betv, een electrons and

protons. To speed up the simulation we do not check for conservation of momentum (although

we still check for energy conservation).

In Fig. 7 we see four panels showing the four moments of the electron speed

distribution. <v>, <v:>, <v 3> and <v 4 > as a function of time ( 0 < t < 440.0 ). The straight

horizontal lines represent the Maxwell-Boltzmann values and are given by

(v:) = 3kBT (22b)
m

3 3 _/
\rim _ J

(22c)

(v') =15k_5" (22d)
m"

where the qa, moment is given by
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and oa is the MB speed distribution (Eq. ( 1) divided by the number densi_' n, i.e.. oa = g / n ). T

= 1.56xl07 K is the equilibrium temperature and kB is Boltzmann's constant, it can be seen

that at t = 0.0 the moments are far from the MB values and far from relaxation. Hov_exer. as

time increases, the moments tend to settle to some "'quasi-relaxed'" x alues slightly above the

MB values. This gives us an estimate of the "relaxation time" for the electrons. We estimate a

relaxation time for electrons t_ - 84 (2x10 15 s). We note that this value is quite a bit higher

than that found at other _X_,'sand this is due to the unusual upward "'arching" of the moments at

the beginning of the integration (especially noticeable in the second moment). The vertical

dashed line at t = 330.0 separates the "'relaxation" run from the "'post-relaxation'" run. _hile the

values in the plots give the mean moments found for the range 330.0 < t < 440.0 (past the

relaxation time). The follovdng table compares the empirically found values v_ith the MB

values given by Eqs. (22):

<v>

I

i <';>
i

1 <v3>

I
1
t

Table IV: Electron speed distribution moments

Moment Value MB (Eqs. 22) % Diff. i

I 1.35 11.22 -I.1% J
i

151.3

2272

148.2

2217

*2.1% i

-2.5% i

<v_> 37542 366 i 0 : "-2.5%
J

Note that the values are higher by 2% on average than what MB statistics predict. The electron

speed distribution seems to have reached a "quasi-equilibrium" temperature that is higher than

the temperature this problem would suggest. This "electron temperature" can be easily

obtained from Eq. 22(b), this implies a temperature 2.1% higher than !.56xl 07 K or

approximately 1.60xl 07 K.

In Fig. 8 we see four panels showing the moments of the speed distribution of protons.

Again, as time increases the moments tend to relax to a "'quasi-equilibrium" value, although the
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timetakenis longerthanfor electrons.It's hardto estimatetheequilibriumtimefromthe

secondmomentbut fromthirdandfourthmomentonecouldestimate t_ ~ 280 (Tx10 "_5s) for

protons. Just as for electrons, _e take the largest value to be the best approximation to the

relaxation time, i.e., from the first moment one could estimate t_ - 190, but the third and fourth

moments have clearly not yet relaxed. Note that in this case all four moments are low'er than

the MB values (at least after "'relaxation"). In Table V we compare the empirical values found

(again, for the range 330.0 < t < 440.0 ) with the MB values obtained from Eqs. (22): recall

that the mass of the proton is 1836.2 au:

Table V: Proton speed distribution moments

Moment Value

0.2594

0.0792

MB (Eqs. 22) %Diff.

0.26 ! 8 -0.9%

0.0807 -i.9%
!

..) ._<t'_> 0.0.7., 0.0282 -3.2% *

<v4> 0.0104 0.0109 -4.6%

Here the empirically found moments are 2.7% lower on average than the MB values. The

proton temperature implied by <,,z> in this case is 1.54x107 K. This is interesting because the

average of the electron temperature and the proton temperature is very close to the Sun's core

temperature. It seems that the higher the moment, the further ax_av it is from MB: why this

should be so is a puzzle.

What conclusion can we draw from these plots of the speed distribution? The

distributions _e have found seem consistent with what Lyman Spitzer wrote in his Physics of

Fully Ionized Gases. so we will quote him directly (p. 136):

"'We are now in a position to discuss what happens in a proton-electron gas, for

example, v,hen the velocity distribution is originally arbitrary. We assume that the

mean kinetic energies of electrons and protons are of the same order of magnitude.

Collisions of electrons with protons will deflect electrons and lead to an isotropic

velocity distribution, but will not change appreciably the distribution of electron kinetic

energies. Electron-electron collisions will gradually establish a Maxwellian velocity
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distribution for the electrons, while proton-proton collisions will yield a corresponding

velocity, distribution for the protons, but at a kinetic temperature that max differ from

the electron temperature. Finally. equipartition bet_een electrons and protons is

established by electron-proton collisions."

What _e have done is to integrate this "'Coulomb" gas fo_ard in time long enough for the

distribution of both electrons and protons to have relaxed to "'quasi-MB'" values, but not so

long that they have had time to come to thermal equilibrium v_ith each other. Perhaps the

electrons are "'hotter" than protons due to their lighter mass. In any case. according to Spitzer.

if we had integrated long enough past the "'equipartition time" t_q. electrons and protons should

both have reached the same temperature. The equipartition time is approximateb 43 times the

collision time tc for protons and 1836 times the collision time for electrons. _here the collision

time in seconds is given by (Spitzer [3]. p. 133):

11.4,f-_ _
t - (24)

nZ _ In A

where A is the particle's mass in terms of the proton mass, n is the number density of a given

species (per cm3), Z is the charge number (Z = i for both protons and electrons) and from our

previous discussion, lnA = 1. lfw'e plug in numbers we obtain a collision time for electrons tee

~ 2xl0 _5 s and to, - 8.6xi0 _4 s for protons. Note that the collision time for electrons is

identical to the relaxation time found previously, while for protons the agreement is offby an

order of magnitude. Furthermore, note that according to Eq. (24). tcr/lc_ -- 43. If we estimate

the equipartition time to be 1836 times the electron collision time then we obtain t_,t- 1836x80

= 154224 (in au). With a time step size of l.lxl04 this would take 1.37x109 time steps (!) to

achieve, a practical impossibility.

Finally we are interested in the speed distributions of proton-electron close approaches.

At a given time step, whenever an electron approached within an arbitrary "small" distance R,,

of a proton we recorded the positions and velocities for the pair; we called this a close-

approach event or simply an "event". The positions and velocities of the pair were recorded as

long as the proton-electron distance r,j remained smaller than R,_. This was done only during
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the "post-relaxation'" run; that is, during 330.0 < t _<440.0. We define two types of events:

capture and escape. A "'captured" electron has. at a gi+en 5 " a speed such that it cannot

escape the Coulomb attraction of the proton while an "'escaped" electron has enough speed (at

a given 5 ) to escape the Coulomb attraction. The boundary between these t+,vo cases is

obtained from

l , )-t:_'2, -(r,_ +e: =0 (25)

where/2 is the electron-proton reduced mass. vc, is the "'critical speed", and e is the softening

radius: this is just the relative kinetic ener_' plus the potential energy (corresponding to the

force function of Eq. (14)). Solving for v¢, we obtain

v: = - (26)

_, (r,- +e:)

This discussion is of course completely analogous to the concept of parabolic orbits in celestial

mechanics. At a given electron-proton distance r_. (with r,j < R,, ) we compute the pair's

relative speed v,j =lv_ - vii: if v >__v., then this is an "'escape event": othe_'ise it is a "'bound

event". We have found a few cases where an electron was bound in orbit around a proton for

sex eral time-steps. In such a case. the same electron-proton pair will give rise to several

consecutive bound.events. Such bound pairs can not last indefinitel)because eventually other

particles" electrical forces will disrupt the bond. In an)' case, we are mainly interested in

escape events and the relative speed distribution of such events. In Figure 9 we have three

panels with various speed histograms. We used R_, = 5.477 x 10 -3 , about 2% of the Wigner-

Seitz radius. In Figure 9(a) we have a histogram of v,_ for all close proton-electron

approaches; there were 6008 "'events". Of these, only 2146 were escape events: in Fig. 9(b)

2 for the escape events only. The minimum relative speed squaredwe show a histogram of v?

was (v_j)=,_ = 345.01 which is v,', at R,, = 5.477 × 10 -3 while the average relative speed

squared <v_ > = 567.05 and the maximum relative speed squared was found to be (v,_)=,
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= 1354.0. The histogram "'looks" like a MB ener_" distribution with the zero shifted to the

right by the amount 345.01. All of these values are higher than the <v"> value obtained in

Table IV (151.3) because of the proximity of the particles. In other _ords. the histogram

sho_n in Fig. 9(b) is proportional to the energ> distribution of passing electrons as "'seen"

from a proton's point of_iew. For a real Coulomb force and not the modified version we've

used here. all these values would be even higher. Going back to the alternative nuclear

reaction e-(3He.3H)ve, recall that _e need an electron with at least 18.6 keV = 683.5 hartrees to

make the reaction feasible. Using the MB value of <v:> from Table IV. the average electron

energy is approximately/.t<_;>/2 - (0.999)(148.2)/2 = 74.0 hartrees, too io_ by almost an

order of magnitude, lfwe now use the average relative energies of close approaches, we get

/.,< v,_ >,12 - (0.999)(567.05)./2 = 283.2 hartrees and using the maximum speed we get

bt(v_ )m=,/2 _ (0.999)( 1354.0)'2 = 676.3. vet) close to the threshold value. It is clear that ifae

do take into account inter-particle forces, the relative energies increase. Furthermore. had v_e

used a 3He nucleus instead of a proton in the simulation all these relative energies _ould be

higher by a factor ofZ = 2 due to the higher charge ofthe 3He nucleus. The specific values

listed here are dependent on the arbitrarily chosen value of R= = 5.477 x 10 -3 . A more formal

analysis would use a value of R,,, as the distance in which the electron and the 3He nucleus

"fuse" to become a Tritium nucleus (using the theory of nuclear beta decay).

If we think of the critical speed as the escape speed of electrons, then we can say that

electrons with v,j = v, are on "'quasi-parabolic'" orbits. Electrons with vv < v,., are on "'quasi-

elliptical" bound orbits (pure. two-body orbits in this case are in general not closed due to the

form ofthe force function, i.e.. Eq. (14)). Meanwhile, electrons _ith v,j > v., are on "'quasi-

hyperbolic" orbits. A particle on a h)perbolic-like orbit would, in the limit ofr,_ --_ _-. have a

certain "'excess speed" above zero (if it were zero we would have a parabolic-like orbit). For

every event shov, xl in Fig. 9(b) v_'e have subtracted an amount corresponding to a parabolic

orbit (given by Eq. (26)) and show the results in the last histogram. Fig. 9(e): this is a

histogram of the "excess speed squared". The figure is a half-Gaussian with a standard

deviation of 0r= ! 13 and a mean value of<v,_> = 115.17. It was expected that perhaps the

,2
values of < _,j > for the excess speed would be higher than the mean squared speed for an ideal
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gas(i.e., <v "_> = 148.2), but this was not the case. We checked to see ifthis deficiency could

be explained by Debye screening, but screening is a very small effect at this close range

2>( r; _ R,, ) and does not account for the smallness of<L, .

An attempt was also made to obtain histograms for electron-electron and proton-proton

close approaches but these happened too infrequently to obtain useful data.

(c) SummaD' of Results:

In this section we summarize our results using ._,_,= 512, 1000, 1728 particles, which

are presented in the form of tables. Again. the time step size is At = I. lxl0 -_, and the outer

"'cut-off" radius Rc = 0.67.

In Table VI we show the electron deflection times plus the Mean Free Paths. The

anai xtical mean free path is obtained from 2 = <v>sis tD = (i 1.22)(1.3) = 14.6. An asterisk

means that we are taking the average x alue obtained starting from t-= 0.0 and from t = 330.0.

since, as we have seen for the Np = !000 case. the values do not vary much. The values are

somewhat consistent with each other. It should also be noted that in all cases the Mean Free

Paths are larger than the sides of the largest CB's side (L,_ = d(1728) _/3= 4.0).

Table VI: Electron Deflection Times & Mean Free Paths

Np _ Deflection Time tD Mean Free Path 2

512" 1.9 26.6

1000" 0.9 7.2

1728" 1. ! 9.6

Spitzer (Eq. 18) 1.3 14.6

In Table VII we show the deflection times plus the Mean Free Paths for protons. These

values were measured only at t = 0.0. Unfortunately we could not obtain values for Np = 1728.

However, it is apparent that the measured deflection times are higher than Spitzer's
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predictions.TheoreticallyweexpecttheMeanFreePathsof electronsandprotonsto bethe

same.

Table VII: Proton Deflection Times & Mean Free Paths

N_ Deflection Time tD Mean Free Path 2

512 103.0 16.1

1000 206.0 52.1

1728 na na

Spitzer(Eq. 18) 55.7 14.6

In Table VIII we show the values of the estimated relaxation times t_ for protons and

electrons. These relaxation times are a measure of hog' long it takes the speed distribution to

relax from FCC lattice type initial positions and delta functions as the initial speed

distributions. The means are also computed: as expected, the relaxation time for electrons is

much shorter than that for protons due to the latter's higher mass and lower mean speeds.

Table hi11: Relaxation Times

Np Electrons Protons

512 21 150

1000 84 280

1728 14 300

Mean 39.7 _43.o

In Table IX we present the observed values of the first four moments of the electron

speed distribution. Recall that these values were obtained only for the range

330.0 < ! -<440.0, i.e., the "post-relaxation" run (330 < t < 424.28 for the case Av = 1728).

Mean values were obtained and percent differences between these mean values and the MB

values are also shown. It seems that the higher the number of particles, the higher the value of

the moment. However, if we make the assumption that the higher the number ofparticles the

more "accurate" the simulation is, the values seem to be converging "'up" to some asymptote as

the number of particles get higher. This is shown in Figure 10 for the second moment: the
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other moments show this type of behavior as well. It v, ould be hard to justify a fit to find this

conx ergent value with only three points, however

Table IX: Electron speed distribution moments ( 330.0 < t < 440.0 )

: <v_> <1,4>

512 _ ' _3i 11.31 149.70 : _. 1.00 36640.00
!

i il.35 151.30 2272.00 37540.001000 !

1728" 2283.40 37724.00151.89

150.96 2262.13 37301.33I 11.35
i

i 11.22
Mean

MB _ 148.20 2217.00 36610.00
J

°/0 Diffe fence 1.1% 1.900 _ 2.0% 1.900
I

An asterisk means that the time range is 3.,0 < t _<4.4..8.

In Table X w.e show the values of the first four moments of the proton speed

distribution for 330.0 < t < 440.0 (330 < t _<424.28 for the case .\;_ = 1728). Again we take

the average and compare it to the MB value. Here. the average values are lov, er. in contrast to

the electron case. Interestingly, the higher the moment the further away the values are from

MB. In Figure 11 we show the values of the second moment as a function of the number of

particles. Again, the empirical values seem to be converging "'dovm'" to some asymptotic

,, alue: the other moments seem to converge also.

Finally in Table XI we show the "'mean relative speeds squared", rat' (that is. just s_hat

v, as directly measured < v_ >l_,,_ ) and the "'mean relatb, e excess speed squared" < v,_>_,¢_.

The relationship between these two is

< v_ >_e_m,l = <*'_ >_=,,, - v"c, (27)

\._

_here ve_, depends on the relative electron-proton distance ro and is given by Eq. (26). Note

that the mean squared excess speed ray,' (! 13.66). is smaller than the mean squared speed

assuming a MB distribution (148.20).
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Table X: Proton speed distribution moments (330.0 < t < 440.0 )

<V>
7

<_¢'> <v3>

512 0.2600 0.0799 0.0277 0.0105

1000 0.2594 0.0792 0.0273 0.0104

1728* 0.260 i 0.079 ! 0.027 0.0 I

Mean 0.2598 0.0794 0.0273 0.0103

MB 0.2618 0.0807 0.0282 0.0109

%Diff -0.8% - 1.6% -3.1% -5.5%

An asterisk means that the time range is 330 < t < 424.28.

Table Xi: Mean relative speeds squared, raw and excess

(R, = 5.477 x 10-3.330.0 < t < 440.0 )

512

1000

's

< V_y >(raw t < I '2:;>(excess1

570.50 113.50

567.05 115.17

1728" 566.44 112.31

Mean 568.0 113.66

An asterisk means that the time range is 330 < t < 424.28.

V. CONCLUSIONS/SUMMARY

We have integrated a simplified model of a plasma forward in time using a Molecular

Dynamics approach. The total number of paiticles was varied and results with different A_,

were compared. This plasma is a fully ionized gas consisting of protons and free electrons and

has the same temperature and density as is found in the core ofthe Sun. We wished to

investigate whether inter-particle forces (the Coulomb force) in this multi-body problem might

be a source of deviations from MB statistics predictions, which are strictly true for an ideal gas.

Specifically we wished to see if the reaction given by Eq. (4), e(3He)H)ve, [Q = -! 8.6 keV]

might be made more likely than standard solar theory predicts due to multi-body effects.

The plasma was integrated from non-equilibrium initial conditions (FCC lattice for positions

and a delta function for the speed distribution) until quasi-equilibrium was reached. During

this time we checked the deflection times, the mean free paths and the relaxation times (from
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the first four moments) for electrons and protons. The results were somewhat consistent with

analytical results as provided by Spitzer [3]. especially for electrons.

After the system was completely "'quasi-relaxed". _e again propagated the system

tb_ard in time and collected statistics on the first four moments of the proton and electron

speed distributions as well as statistics on close inter-particle approaches. The first four

moments of the speed distribution were recorded for the duration of the post-relaxation run and

the average results were compared to the MB _alues. A curious phenomenon is that. although

we started protons and electrons with the same kinetic energies, electrons quickly gained

kinetic energy at the expense of protons. Therefore. electrons were slightly "'hotter" (+1.9%)

and protons were slightly cooler (-1.6%) than the system temperature of 1.56x107 K (see

Tables IX and X). However. this is not at all inconsistent aith the beha_ ior of a full) ionized

gas. as shov, n by Spitzer [3]. Note that the average of the electron I1.59xl07 K) and proton

temperatures (1.53x107 K) is ver3' close to the sxstem temperature. To have the plasma in true

equilibrium we would have to have integrated the s)stem past the "'equipartition time", _here

protons and electrons would have the same temperature. As we ha_e seen. this would be out of

the question with the present approach. This is v, hy we prefer to call the plasma "quasi-

relaxed" and not relaxed at the end of the inteeration.

A way we used to measure deviation from MB was to look at the first four moments

during "'quasi-equilibrium (t > 330.0) and compare the values with MB. The electron moments

v, ere higher (+1.7% on average) than MB and the proton moments xsere lower (-2.8% on

average) than MB. However, it is likely that the observed deviations from MB are consistent

with the plasma not being in complete thermal equilibrium.

What about close approaches between electrons and protons? We do have to use the

total relative energy and not just the kinetic energies. For example in the A_ = 1000 particles

case, we had that the mean relative kinetic ener_ was <k> = 283.2 hartrees, but the mean

relative potential energy in this case was <u> .... 226.4 hartrees for a total

mean relative energy of<e> = 56.8 hatrees, lower than even the MB relative energy of 74.0

hartrees and quite low compared to the threshold energy for the reaction e(3He.3H)ve, [Q = -

683.5 hartrees]. Note that, relative to the MB case, the inter-particle forces seem to have
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actually' decreased the mean relative energies, possibly making the rate of the reaction

e(3He.3H)ve less likely than in the pure MB case. As previously stated, the mean squared

excess speed raw (113.66). is smaller than the MB mean squared speed ¢ 148.20).

We conclude that the observed deviations from a MB distribution are probably not

significant enough to make the alternative reaction e(3He.3H)v_ more likely than in a pure

MB case. Indeed. the observed deviations are in accordance _ith the expected behavior of a

plasma, as described by Spitzer. Deviations from MB due to electron degeneracy (protons

are practically non-degenerate) were also explored analytically as an aside project. At the

temperature and pressure found at the core of the Sun, the mean electron energy is about 3%

higher in the degenerate case than in the MB case. Again. this is probably too small an effect

to make a difference. It seems that. in light of recent investigations regarding neutrino

"'flavor changes", a possibly better explanation for the deficiency' of neutrinos from the Sun

may be neutrhlo oscillations, or the MSW effect [ 17, 18]. Ver3, briefly, neutrinos exist in

three types: electron-neutrino (re), which is the only type that is produced in the Sun, the

muon-neutrino (_) and the tau-neutrino (v_). Recent experiments at the Super-Kamiokande

neutrino detector in Japan have suggested that oscillations indeed take place in the case of the

tau and muon neutrinos and possibly' in the case of electron-neutrinos [19]. This implies that

neutrinos have mass, contra D' to standard particle physics, which assumes zero mass for

them. If oscillations do take place, as (electron) neutrinos from the Sun travel to Eatah. they

could switch to either of the other _'o types (tau and muon). With the exception of the

Sudbury Neutrino Observato_, in Canada, which can detect all three flavors and will test the

MSW effect, present-day "'neutrino telescopes" can only' detect one or two _'pes of neutrinos

at a time. If neutrinos oscillate, the deficiency of solar neutrinos may be only an apparent

one, as the detectors only detect neutrinos of one flavor (electron) or the other, thus possibly

explaining the solar neutrino problem. Therefore, it may be that the ansv, er to the solar

neutrino problem may lie in particle physics, not statistical mechanics.
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VI. FIGURES AND FIGURE CAPTIONS

FIGURE 1: Initial conditions (positions and velocities) for the particular case Np = 1000

particles. Initial positions correspond to an FCC lattice. Only the velocity vectors of the

electrons can be seen.

FIGURE 2: Behavior of the system energy for the case A_, = I000. (a) System energy

(kinetic. total and potential). (b) System energy but with the potential energy increased by

72000 hartrees. {c) System energy separated into proton and electron components. (d)

Percent error in the total energy.

FIGURE 3: Behavior of the system momentum for the case A_, = 1000. (a) Total and x, y, :

components of the system momentum. (b) Electron x. ,,. z momentum components. (c)

Proton x, y, : momentum components.

FIGURE 4: Behavior of a given particle (in this case particle number 18, an electron) as a

function of time for the case Np = 1000. (a) Position as a function of time (shown in the form

of components). (b) Velocity, as a function of time (shown in the form of components). (c)

Cosine of the angle betweeen the initial velocity vector Vo and the velocity vector as a

function of time v(t). Circle represents the deflection time (here 0.80). (d) Speed of the

particle as a function of time, v(t) vs. t. The dashed vertical line corresponds to the deflection

time and the inte_al ofv(t) from zero to the deflection time gives the mean free path (here

equal to 7.6 time units).

FIGURE 5: Speed histograms for electrons (panel a) and protons (panel b) for the case/v_, =

1000 at the end of the "'relaxation run" (t = 330.0).

FIGURE 6: Final conditions (positions and velocities) for the particular case Np = 1000

particles at the end of the "relaxation run" (t = 330.0). Only the velocity vectors of the

electrons can be seen.

FIGURE 7: First four moments of the electron distribution as a function of time for the case

3,_,= 1000. The horizontal lines represent the MaxwelI-Boltzmann values.
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FIGURE 8: First four moments of the proton distribution as a function of time for the case

.\_ = 1000. The horizontal lines represent the MaxwelI-Boltzmann values.

FIGURE 9: Distributions of squared speed for close electron-proton approaches .\_, = 1000

and R,n = 0.005477. These "'events" co_er the period of the "'post-relaxation'" run 330.0 < t <

440.0. (a) Histogram of the squared speed for all events. (b) Histogram of the squared

speed for escape e_ents only. (c) Histo_am of the squared speed minus the critical speed.

In other _ords, histogram of the excess speed squared.

FIGURE 10: Empirical values of the mean squared speed <v:> for electrons as a function of

the number of particles (cases ,\'p = 5 ! 2. i 000, 1728). It can be seen that the mean value is

higher than the Maxwell-Boltzmann value.

FIGURE 11: Empirical values of the mean squared speed <l':> for protons as a function of

the number of particles (cases :\_, = 512. 1000, 1728). It can be seen that the mean value is

loner than the MaxwelI-Boltzmann _ alue.
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Fig. 1: Initial conditions (t = 0.0; N = 1000)
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Fig. 6: Final conditions (t = 330.0; N = 1000)
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Fig.7:First4 momentsofthee" speed distribution (Ne=500)
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Figure 10: Second moments as a function of N
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APPENDIX:

Inputs to and pro_ams PLSMMD.FOR & PLS.MMD2.FOR

The first thing to decide before running these _o programs is the number of

particles. Recall that the number of particles is restricted by the condition A_,= 8i 3 _here i =

1.2,3.4.5.6 .... etc. orA_ = 8, 64, 216, 512, lO00, 1728. In this "experiment" we only

considered 512 _<,_,_ _< 1728. Once the number of particles has been decided upon, the

FORTRAN include file PLASMA.INC is edited with a text editor and the number of

particles is entered, where it is defined a PARAMETER:

: .... THE TOTAL NUMBER OF PARTICLES

t ..... NP=64,216,512,!000,1728, .... 8"i^3

INTEGER NP

PA_<METER(NP = 512)

(I:I,2, 3...)

The program PLSMMD.FOR is then compiled. Now we have the executable, which needs

an input file stating the number of time-steps, the time-step size, etc. The contents of this

input file LN.DAT are as follows:

0.26

1.56e7

I000000

l.le-4

0.67

18

I00

The Wigner-Seitz radius, in atomic units (au)
The temperature, in Kelvin

The number of time steps

The time-step size (au)

"Outer" cut-off radius (au)

Particle number to follow (output in file TXYZ.DAT)

How often to _Tite energies file ENERGY.DAT (# of time-steps)
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15
0.5

Howoftento updatethe neighbor lists (# of time-steps)

Max. % error allowed in energy

Once the program PLSMMD.FOR is finished, it outputs the file IN2.DAT. which is the

input file for the program PLSMMD2.FOR. The contents of the file IN2.DAT are as

follos_s:

f

512

_0.0

0.26

15600000.000000

1000000
1.10D-04

0.67

18

100

15
!

0.00547722557052

36959.274946828

-290.94705096300

0.50000000000000

Total # of particles (used as a check)
Time at the end of the first run [computed by PLSMMD.FOR]

Wigner-Seitz radius, in atomic units (au)

Temperature, in Kelvin

Total # of time-steps

Time-step size (au)

"'(_uter'" cut-offradius (au)

Particle number to follo_' (output in file TXYZ2.DAT)

How Often to v,rite energies file ENERGY2.DAT (# &time-steps)

How often to update the neighbor lists (# of time-steps)
How often to check close approaches (# of time-steps)

How close particles can approach to record relative pos., vel.

Total ener_ (hartree) [computed by PLSMMD.FOR]

Corr. to the potential energy (hartree) [computed by PLSMMD.FOR]
Max. % error allowed in energy

The first number is used as an internal check to make sure the two programs are compiled to

the same number of particles. Note that some of the numbers are computed by the ll'_gram
PLSMMD.FOR and the user is not allo_ed to change them (for example, the time at the end

of the PLSMMD.FOR run), lest there be inconsistencies in the two programs.


