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A Simulation to Study Speed Distributions in a Solar Plasma

ABSTRACT

\We (Peter Cheeseman of NASA Ames/Caelum Research) & Jose Luis Alvarellos of the

SJSU Physics Department/SJSU Foundation.) have carried out a numerical simulation of a
plasma with characteristics similar to those found in the core of the Sun. Particular emphasis
is placed on the Coulomb interaction between the ions and electrons, which couldresultina
relative velocity distribution different from the Maxwell-Boltzmann (MB) distribution
generally assumed for a plasma. The fact that the distribution may not exactly follow the MB
distribution could have very important consequences for a variety of problems in solar
physics. especially the neutrino problem. Very briefly. the neutrino problem is that the
observed neutrino detections from the Sun are smaller than what the standard solar theory
predicts {1]. In Section | we introduce the problem and in section 1l we discuss the approach
to try to solve the problem: i.e.. a molecular dynamics approach. In section [11 we provide
details about the integration method, and any simplifications that can be applied to the
problem. In section IV (the core of this report) we state our results. first for the specific case
of 1000 particles and then for other cases with different number of particles. In section V we
summarize our findings and state our conclusions. Sections VI VII and VIil provide the list

of figures. reference material and acknowledgments respectively.

L. INTRODUCTION/STATEMENT OF THE PROBLEM

A plasma is a hot. ionized gas which is composed of (positive) ions and free electrons
distributed over a region of space (Chen [2): Spiwzer (3]). Plasmas are electrically neutral
(overall charge=0). Examples of plasmas are the ionosphere, which is an upper layer of the
atmosphere and the gas in the interior of the Sun. In the core of the Sun, temperatures are so
high that atoms are completely stripped of their electrons, thereby constituting a plasma,

composed of (positive) nuclei and free electrons.

We wish to study the behavior of a plasma under the same conditions as in the Sun’s

core. The main interaction affecting the behavior of the ions and electrons in plasma is the



Coulomb Force. Much of the work done in Plasma Physics/Solar Physics assumes a MB speed

distribution for the ions and electrons. The MB speed distribution is
gv)= 4n7r(m/2ﬂkﬂT)§3 vexp(—vi/vi) (1)

where n is the number density. k3 is Boltzmann's constant. T the temperature and we

definev) =2k, T/m. The quantity g(v)dv gives the number of particles per unit volume with
a speed between v and v + dv. Analytical derivations of the MB distribution assume that all of
the energy is kinetic energy, that is, the classical derivation neglects any inter-particle forces
such as the Coulomb force. A measure of the deviation from “ideal gas™ conditions is the
parameter /- which will be defined later: suffice it to say that for an ideal gas. /"= 0. and for a
real plasma /"> 0. There will be deviations from MB due to the Coulomb interaction. the

question is how much (Swihart [4]). For another view on the effects of a non-MB distribution

on solar neutrino rates see Clayton (refs. [5] and [6]).

Energy production in the Sun is by thermonuclear reactions, primarily via the proton-
proton (PP) chain. There are three possible PP chains (PP, PPII and PPIII) and which
dominates depends primarily on temperature (Clavton. 1983, [7]). In the overall view, the PP
chain amounts to the combination of four protons to produce a *He nucleus. two positrons and

two (electron) neutrinos (Bahcall 1989 [8]):
4'H - *He + 2™ + 2v, [Q =-26.7 MeV] (2)

Of the 26.7 MeV released, only about 0.6 MeV is carried away by the neutrinos. The reaction
is not as straightforward as implied by the above equation, which is a simplified view of the
whole chain. The PP chain involves several "branches". such as the first branch of the PP

chain:

'H+'Ho H+e" +v, [Q=042MeV] (3)

For the rest of the branches see (Clayton, 1983 {7]) or (Bahcall, 1989, [8]).

(V]



The alternative reaction we are interested in is (Bahcall & Wolf. 1963 [9])

‘He+e > H+v, [Q=-18.6keV] (4)

This is an electron capture by a *He nucleus to give a Tritium nucleus plus a neutrino. This
reaction is not part of the standard solar model: note that it is endothermic and would release
neutrinos of very low energy. lower than present "neutrino telescopes” would detect. If this
reaction were to "go". the energy would have to be provided by the electrons. which would
need an average energy of 18.6 keV. At the core of the Sun (1.56x10’ K) the mean kinetic
energy of electrons is 2 keV. Assuming a MB distribution the ratio of electrons with energy
18.6 keV to those with 2 keV is approximately 1.31x10°. In Ref. [9]. Bahcall & Wolf imply
that the reaction *He(e".v.)’H is only important in the case that the central density of a star g, >
2x10” Kg/m’, and so would proceed at a negligible rate in the Sun’s core, where p = 1.48x10°
Kg/m®. However. they did not take into account the statistical mechanics of interacting
particles. We suspected that the mean energy of electrons may be higher than 2 keV, which
would make the electron capture reaction given above to be much more likely than the
standard solar model predicts. A possible cause for deviations from MB distribution are the
Coulomb interactions between electrons and ions. Another possible cause is electron
degeneracy (see Swihart, 1972 [4]), but we concentrate on the effect of Coulomb interactions

here. This is the purpose of the simulation.

[1. APPROACH TO THE PROBLEM

We have developed a numerical model of a plasma, with characteristics typical for the
interior of the Sun; i.e., the plasma will have the same temperature and density (7= 1.56x10
K. p=148x10° Kg/m®, see Bahcall [8)), as the core of the Sun. We used a Molecular
Dynamics (MD) simulation of electrons and ions (Haile [10}), using paired electron-ion
"clusters" (as dipoles) to cut off field contributions below a given threshold. We use the
Velocity-Verlet scheme to advance the system in time. It is reasonably fast and quite accurate.
The simulation consists of a large number of ions and electrons in a given volume (determined
by the density in the Sun’s core) using periodic boundary conditions. We ignore quantum

effects. We are investigating the following (among other things):
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1. The possibility of a non-Maxwellian velocity distributions (ions and electrons) due to
the long-range effects of the Coulomb force. This (possibly) non-Maxwellian
distribution can affect the rate of certain nuclear reactions occurring in the Sun’s core

which are very important for the solar neutrino problem.

to

Check the relaxation times for ion-ion and ion-electrons interactions.

3. We will also check the (analytical) mean-free-path formula for ions and electrons.

[1I. DETAILS OF THE INTEGRATION
(a) Units

We choose to use atomic units or au (see McQuarrie [11]) as the most natural set of units
for the problem at hand. The unit of length is the Bohr radius. the unit of mass is the electron’s

mass. etc. See the following table:

Table I: Atomic Units

Quantity Atomic Unit MKS Equivalent
Mass ~ m=1 (electron mass) 9.1091x10™" Kg
Charge le|=1 (electron charge) 1.6021x10"° C
Length a, =1 (bohr) 5.2918x10" ' m
Time Electron period in Bohr orbit 2.4189x107 s
Energy 1 hartree 4.35944x107° )

Only temperature is the same as in the MKS set, i.e..itis measured in degrees Kelvin.

(b) Initial Conditions

Since one of the things we want to check are the relaxation times, we choose initial
conditions which are as far removed from equilibrium as possible, and then we see how long it
takes for the system to relax. The initial positions are arranged in an FCC (Face-Centered-
Cubic) pattern, as in a NaCl crystal, with electrons and protons at alternate positions. The total
number of particles N, is constrained by the fact that we want the overall charge to be zero. If

we assume we have only electrons and protons, as in our case, this means that the total number



of particles has to be an even number. Furthermore. since we are using an FCC pattern. the
cubic root of the total number of particles has to be an integer: this is the number of particles
on a side of the computational box. Therefore. N, is constrained by the following conditions:
o Nyiseven

« (N,'7isaninteger

Using these criteria we find that N, = 87, with i=1.2.3. 4. 5. etc.. so N, = 8, 64. 216. 512. 1000.

1728, etc.

The initial spacing d between each electron and proton in the lattice is determined from

where n, is the ion number density (equal to the electron number density). If we assume only

the Wigner-Seitz radius a, or

Hydrogen is present, we obtain @ = 0.26. As previously mentioned, a measure of the Coulomb
coupling strength is I which is defined as the ratio of the average potential energy to the

average kinetic energy, or for equilibrium conditions

(6)

Using the previously obtained value of a. we find 7= 0.05 (in au k5 = 3.17606x 10°

hartrees/K).

Since we are using a cubic computational box. it can be shown that the length of a side

willbe L = dN% , s that the volume is ¥ =d’N . The number density of ions n, is

, - __bumber of protons N2
' Volumeof comp.box d’N, 2d’

)

Substituting this expression into Eq. (5) and solving for d we obtain



b
d =[z£] a (8)

Once we have decided the total number of particles and their initial positions we need to decide
on their initial velocity. At first thought this seems simple: assign the initial velocities
according to the average kinetic energy per particle at the center of the Sun (determined by the
temperature). However. the average potential energy per ion-electron pair is lower at 1=0.0
(for an FCC lattice) than for equilibrium conditions. This means that as the system evolves in
time and approaches equilibrium, its potential energy will increase slightly. To conserve
energy. the kinetic component has to decrease as the system evolves. which means the initial
kinetic energy has to be slightly greater than the kinetic energy at equilibrium. We want the
total energy per particle (afier relaxation) to be equal to the mean Kinetic energy per particle at
the center of the Sun. The extra amount of kinetic energy is obtained by comparing the
potential energy per (proton-electron) pair at t = 0.0, u/0), and at equilibrium. <u>. Atr=0.0

we have an FCC lattice. and the potential energy per pair is (in au’s)

o (2]

where a=1.7476 is the Madelung constant for an FCC lattice (see Ashcroft & Mermin [12]).

3 i
) =-1.3659/a 9)
27

At equilibrium, the average distance between an ion and an electron is the Wigner-Seitz radius.
SO

<u>=-l/a 10)

The initial kinetic energy per particle k(0) will be the kinetic energy at equilibrium <k> plus
the difference between Eq. (9) & (10) divided by 2:

k(0) =<k>+i’-‘->—2——”(—9l aan



where < k >=3k,T /2. Since all particles have the same initial Kinetic energy, the initial

speed per particle will be w(0) = {/2k(0)/m . Electrons will be faster than protons (by a factor

of ~ 43) due to their lower mass. In effect. the initial speed distribution for electrons and

protons is a delta function. The direction of the velocity vectors is chosen at random.

(c) Advancing the System in Time
Once the initial conditions are chosen (in the form of initial positions and velocities), the
system is advanced in time via the Velocity-Verlet scheme (Allen & Tildesley 1992 [13] or

Swope et al. [14]). Each particle i=1.2,3.....N; is advanced in time as follows:

ra-At)=r)+ viyelt - 0.56[F (1) "m,]cj“ (12a)
v (1=A2) = v(t) ~ 0.5¢[F, (1)’ mj]eA (12b)
V(1A = v (1+A2) ~ 0.5¢f[F (t+A41). m,je At (12¢)

where ¢ is the (fixed) time-step size and (F,’m, is the acceleration on particle i. The scheme
is reasonably fast and very accurate: the local truncation error is O(Ar'). We use periodic
boundary conditions: once a particle exits the computational box. it re-enters it on the opposite

side.

(d) Forces

The computation of the forces on particle i is done as follows. A sphere centered on
particle i with a “cut-off" radius R. is chosen so that the forces on particle i of (most) particles
outside of this sphere are ignored. Choosing the quantity R, is a compromise between
execution speed and accuracy, and must be found empirically; we chose to use Rc=0.67. In
addition, we keep charge neutrality for all the particles whose forces are acting on particle /
(including particle i). If there is no charge neutrality within this sphere, we search outside the
sphere for the nearest particles of the appropriate charge to keep the net charge zero.

Thereafter, the force on particle { is



F=3F (13)

where the sum goes from j =1.2.5.....N,,. where N, is the number of “neighbors™ of particle
(which varies as a function of time. but typically <N,> ~ 40 for R = 0.67) and Fj; is the force
on particle 7 due to particle j. The reason for the emphasis on charge neutrality is that we want
to use paired electron-ion "clusters” (as dipoles) to cut off field contributions below a given
threshold. as the field of a dipole falls off faster than that of a simple point charge. Finding
which particles to use in the calculation of the forces on a particle (the “neighbors™) is
computationally expensive, so we use the concept of neighbor lists to save time (see Haile,
[10]). A list of the N, neighbors of particle / is obtained and the same list is used over several

consecutive time-steps to compute the forces. Typically we update the list every 15 time-steps

We use a modified form of the Coulomb interaction between two particles:

94,7, .
Sy r

A\

F =
[+ )"

u

(14)

which. in the limit of small £ tends to the real Coulomb force. The main reason for this
“softened™ force is one of computational convenience. as it removes the possibility of the
denominator in Eq. (14) from “blowing up™ due to very close approaches. Another way to
think of this softening is that each particle has a cloud of charge, 85% of which is contained
within a radius of 3¢ (see Sellwood [15]). Again, one must choose empirically a small enough
value of £so that Eq. (14) is a good approximation to the real Coulomb force. but not so small
that close approaches between particles result in large errors (because of the finite size of the

time-step Ar) due to extreme values of the denominator. We use £=2x10".

The force between a “real™ particle / (located inside the computational box, CB) and an
“image” particle j’ (a projection of a “real” particle j close to the opposite edge of the
computational box from particle i) is handled by Haile’s “Minimum Image Criterion™ (see
[10]). This becomes important for particles close to the edge of the CB. This criterion

identifies which of the multiple images of a real particle will be used in the computation of the



forces. and is applied separately to each cartesian component. For example. for the x
component we have

x, >x,—L (x“ <- L/2)

x, >x, +1L (x{l > L/2)

and x, is unchanged if - L/2<x < L/2.

Finally, we mention that another computational “trick™ to speed up the simulation is to

use Newton's Third Law whenever possible. If the force on particle j due to particle i Fis

computed. then the force on particle i due to j F, does not need to be computed again as it is

already known. i.e.. £, = —F (along the same line!).

(d) Stochastic Heating

Stochastic Heating is a numerical artifact and is a result of all the errors in the
computer simulation (due to truncation error, finite time-step, rounding off. finite computer
precision, etc.). The result is that the mean kinetic energy per particle <k> increases as the
simulation proceeds in time (see Hockney & Eastwood [16]). The average error in the kinetic
energy <h> of, say, particle i. is a linear function of the number oftimé-steps n. and is given

by

-

cpoolas@nf
2m

(15)

where g, is the particle’s charge. m, is its mass, & is the (modulus of the) error in the electric
field (due to truncation, finite machine precision, etc.) computed at the location of particle i
and Ar is the time-step used. It can be seen from Eq. (15) that the smaller the time-step, the
smaller the effects of stochastic heating. Furthermore, the larger the mass, the less error in
kinetic energy; hence, for a given time-step size, protons are much less affected (by a factor of

m ~ 1836) than electrons by stochastic heating.

m/mrkm



The result is that unless we provide corrections. the kinetic energy per particle (and
hence the total system energy) will increase without bound. Therefore. we periodically check
the error in the total energy and automatically provide corrections for stochastic heating by
reducing the magnitude of the velocity vectors of all the particles. These corrections are

different for protons than electrons.

(e) Table of characteristic lengths ,
Following is a table of the characteristic length scales involved in the problem. Also
included is the Debye length, often-used in Plasma Physics work to indicate the “screening”

effects of a collection of charges:

Table 11: Characteristic Lengths for the problem

Length Value (au)
Wigner-Seitz radius. a. Eq. (3) 0.26
Lattice dist., d. Eq. (8) 033
Cut-off radius. R. 0.60 <R, £ 0.67
Softening radius. £ 2.0x10”
Debye length. /4p 0.54

The significance of the Debye length is that for distances much greater than /p from a given
charge, screening effectively cancels out the charge (see Chen. [2]). In addition. if the number
of particles inside a “Debye™ cube is much greater than unity. then the system is defined as a

~collision-less™ system (see [16]). In our case. the total number of particles in a Debye cube is

(2,/d ) = 4. Therefore, collisions are important for our problem. as expected.

()  Running the Programs

We implemented all of the previously mentioned ideas in the form of FORTRAN 77
codes. There are actually two versions of the program. The first version (main:
PLSMMD.FOR) advances the system in time from ¢ = 0.0 (FCC lattice, initial speed
distribution is a delta function) to a sufficiently long enough time that the system is “well
relaxed”. Along the way the program checks the speed distribution, conservation of energy

and conservation of momentum. A time after which the system is “well relaxed™ has been
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found empirically and it is approximately 330.0 time units (= 330.0 x 2.4189x10"'" ~ 8x10™"*
seconds). The second version (main: PLSMMD2.FOR) integrates the system in time from
where the first program left off to an additional. arbitrary number of time steps. In this second
version we check the speed distribution, energy conservation and close approaches. To speed
up the simulation we skip momentum checking. The simulations are quite CPU intensive and
a typical run could have lasted anywhere from a few days to a month depending on the total
number of particles. The computer used was a 6-CPU. Ultra Enterprise 4000/5000 Sun
Microsystems workstation with 1.2 GB of main memory running Solaris5.6. Both versions
were compiled with Sun Microsystems™ £77 compiler in double precision and optimized for
speed (i.e.. used the [-O4 —fast] compiler options). Each run took place on a single CPU. a
248 MHz UltraSPARC-II chip. See the Appendix for the programs and a discussion of the

input parameters for these two programs.

IV. RESULTS

We have done several runs with different numbers of particles. In what follows we
will discuss a typical case (with N, =1000 particles). state our results and then tabulate the
same quantities using other values of A,. Whenever possible we compare our answers with

analytical expressions.

(a) Case N, =1000 particles (Relaxation Run):

We ran the first program, PLSMMD at the Unix prompt. This first program is run
mainly to “relax” the system to equilibrium conditions. so we call this a “relaxation run™. In
Figure 1 we see a plot of the initial positions and velocities in the computational box (CB).

The length of a side the CBis L =dN,", so for N, = 1000 we have L = 3.328. The

arrangement of electron-proton positions can easily be seen to be that of an FCC lattice: the
circles with dots at the center are protons while the dots are electrons. The velocity vectors are
also shown, although at this scale only the electron velocity vectors can be seen (the velocity
vectors of the protons are approximately 43 times shorter). Note that the velocity vectors are
randomly oriented, but the magnitude of all these vectors is the same (for a given species,

obtained from Eq. (11)). For electrons this initial speed is v, (0) = 12.2322 while for protons it
is v, (0) =0.2854. In effect, the initial speed distribution is a delta function. It's easy to see

that, apart from the orientation of the velocity vectors, there’s nothing random about these

11



initial conditions. We now propagate this system forward in time using the Velocity-Verlet
scheme. The time step size is Ar = 1.1x107. integrated for 3x10" time-steps. The softening

radius is £= 2x107 and the outer “cut-off" radius R, = 0.67.

In Fig. (2) we see four panels with information related to the behavior of the energy for
this first integration. In the first panel (Fig. 2(a)) we see the behavior as a function of time
(0.0 <t <330.0) of the total kinetic energy K(?) (top line), the tota! system energy. both
anahtical and numerical. £ and E,(1). (very close together appearing as one line. right below
the kinetic energy) and the total potential energy Uf1) (bottom line. always negative). Note that
most of the energy is kinetic. and it is this fact that makes plasma researchers ignore the
potential energy of the system in some cases. assume ideal gas conditions. and hence use pure
Maxwell-Boltzmann (MB) statistics. The two circles on the vertical axis represent the
analytical values of the initial potential and kinetic energies (L, = uf0)*N,'2 = -2626.8
hartrees. K, = k(0)*N, = 74813 hartrees, with u(0) and k/0) given by Eqgs. (9) and(11)
respectively) from which we can obtain an analytical value for the total system energy £ =
72186.2. In the second panel, Fig. 2(b), we have zoomed in on the first panel to observe the
behavior of the system energy at the beginning of the simulation (note that the time axis goes
from 0.0 to 5.0). We also moved Uyz) upward by 72000 hartrees to better appreciate the
behavior of the kinetic and potential energies as the system moves towards equilibrium. Firstly
notice that the (total) kinetic and potential energies correctly keep “sync™ with each other to
approximately conserve the (numeric) total energy En(t) = K(1)= L(1) ~ const.. The straight
line is E and the (not so) straight line just below it is E.(7). Second. note how the potential
energy moves upwards as time increases. Again this is due to the fact that at 7 = 0.0 we have
an FCC lattice, which has a lower potential energy than a random configuration.

Consequently, the potential energy tends to increase asymptotically towards an equilibrium
value and the kinetic energy tends to decrease asymptotically to it own equilibrium value
(corresponding to the system temperature). In the third panel Fig. 2(c), we see the proton and
electron “components” of the kinetic and potential energies. Note that the potential energies of
electrons and protons are very close to each other (indeed, they are almost indistinguishable at
this scale), but the kinetic components are quite separated. The electron kinetic energies are

higher than the proton kinetic energies, or in other words, the electrons are at a higher



temperature than the protons: however. note also that we started all particles with the same

kinetic energy. In Fig. 2(d) we plot the percent error in energy. which we define as

E ()-E

%error =100 x (16)

It can be seen that the [%error; < | % during the simulation. In fact. the worst error was ~ 0.9
%, at 7 = 93.2 and the mean of the absolute value was <|%error> ~ 0.22%. Also worth
mentioning is that we have checked the numerical value of /" and we obtained </> = 0.0521.

in good agreement with the discussion given previously (see the discussion regarding Eq. (6)).

In Fig. (3) we see the behavior of the system momentum P(t) as a function of time.
Since there are no external forces acting on the system, the system momentum should be
conserved. In Fig. 3(a) we plot the total system momentum as a function of time. We plot
here the x, y and - components of the total momentum (p;. p,. p:) as well as the magnitude of

the total system momentum p,,, where

4
73

Pu =(p:+p+p) an

Note that conservation of momentum holds quite well: not only is the total momentum well
conserved but so are each of the three components. In Fig. 3(b) we see a plot of the “electron™
component of the momentum and finally on Fig. 3(c) we see a plot of the "proton™ component
of the momentum. It can be seen that most of the momentum is carried by the protons (due to

their higher mass).

In Fig. 4 we see four panels showing data for a specific particle, in this case an
electron. In the first panel (Fig. 4(a)) we see a plot of the electron’s position as a function of
time in the form of x(1), y(1), z(t). Att~ 0.45 z(t) undergoes a large deflection, then v(1)
undergoes a large deflection at ¢ ~ 0.75 and finally z(¢) also undergoes a large deflection at 1~

1.2. Because we are using periodic boundary conditions the following constraint holds:

{x(t){ < L/2 =1.664 where L is the length of a side of the CB: the same relationship holds for

V1), z(1). In Fig.4 (b) we see a plot of the velocity as a function of time in the form of



v, (#).v,(#).v.(1). It can be seen that at 1=0.0, the z-component was the largest component. In

the following panel Fig. 4(c) we plot the cosine of the angle & between this electron’s initial
velocity vector v, = v(t = 0.0) and its velocity vector as it evolves as a function of time v = v(7),
i.e., the relationship between these two vectors and s just v,e v =cos(8). We are interested
in measuring the deflection time, defined as the time ~in which deflections deflect the test
particles by 90° (Spitzer [3]. p.131): by definition this is the time when cos(6) = 0.0. In this
case we found 1p = 0.80. Finally. we define the Mean Free Parh 7 as the distance the particle
travels during the deflection time: in Fig. 4(d) we plot the particle’s speed

v(t) =[vi(t)+v (1) +v](1)]'*as a function of time. The integral of v7) from 0.0 to 1 gives us

the electron’s mean free path; here 2 = 7.6 (the dashed vertical line denotes rp). Note also that
the electron’s speed decreases slightly in accordance with the previous discussion regarding the
kinetic energy (see Fig. 2(b)). It should also be noted that this electron deflection time was
found not at equilibrium conditions but at ¢ = 0.0. If we repeat the measurements (for the same
electron) during the post-relaxation run (¢t > 330.0) we obtain ¢p = 1.0 and £ = 6.8, so the values
are quite similar to what we had at 1 = 0.0. In fact. we’ve found that in general there’s no
appreciable difference between deflection times found at r =0.0 and at 1> 330.0. The
deflection time and the Mean Free Path of a proton were obtained in this case as well: these

results are listed in Table VII.

It is interesting to compare these results with those given by Spitzer. If we use the
formula for the deflection time assuming an ideal gas. we get an answer that is too large by

about an order of magnitude. For a fully ionized gas we must use the equation (Spitzer [3]. p.
132)

t, = [Bamip(@(x)-Gx))nA]'  (18)
which gives the deflection time for a “test” particle. Here n is the “field” particles” number

density (the field particles are all particles other than the “test”™ particle). w is the relative speed

between the test particle and the field particles, p, = (zw)'(in this case; y is the electron-

proton reduced mass), ¢xx) is the error function and G(x) is defined in Spitzer as
G(x) = (®(x) - xP'(x))/ 2%° (19)
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while x is defined to be

x=wu/2k,T (20)

Spitzer lists values of @(x)—G(x) as a function of x. The quantity In\ is 2 way to take into
account quantum-mechanical effects. Spitzer tabulates values of In.\ as a function of
temperature and density. However. for our problem the density is too high (approx. 9x10-
electrons/cm®) and so this theory breaks down and he does not list a value of InA appropriate to
our case. In spite of this. a crude extrapolation of his table allows us to estimate InA ~ 1:
furthermore, our simulation is purely classical and no quantum effects were taken into account.
We can take w ~ (<v>+<1v,>)/2 = 5.8 (see Table 11l below) and from this we get x ~ 0.6.
Therefore. according to Spitzer, ®(0.6) - G(0.6) = 0.42 and so pluzzi=g into Eq. (18) we

obtain 1p ~ 1.3. This is a bit larger than what we obtained, but it's s:il in good agreement.
In Figure 5 we see a histogram of the instantaneous eleciror and proton speed
distributions at the end of this first integration ( = 330.0). The values of the (instantaneous)

mean speed and mean squared speed are also shown. The mean speed <v> was obtained first

and the mean squared speed <v™> was obtained from
<v2>=<v): +0° 2n

where ¢’ is the variance of the speed distribution. We represent relevant information about

these distributions (plus the initial speeds at r =0.0) in the following table:

Table III: Speed characteristics at ¢ = 330.0 plus initial speeds (a_l values in atomic units)

Particle | Min.speed| v(r=0.0) <v> J<vi> | Max.speed.

Electron 1.63 (12.2322) 11.33 1235 29.28
Proton 0.04 (0.2854) 0.26 028 . 070 |

(el)/(pr.) 40.75 (42.85) 43.58 HO03 ¢ 4183 |
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In the last row we divide the electron speed value by the proton speed value. In all cases the
numbers are very close to the ratio of the square root of their masses v1836.2 =42.85~43. In
the case of the initial speeds this ratio is exact by definition, Note that even the slowest

electron is more than twice as fast as the fastest proton.

Finally in Fig. 6 we plot the positions and velocities of all the particles at the end of
this first integration. All positions have randomized by this time; note however. the apparent
formation of a “chain™ of particles towards the top of the CB. Again. the velocity vectors of

most protons are too small to see at this scale. but those of electrons are clearly visible.

(b) Case N, =1000 particles (Post-Relaxation Run):

Once the system has relaxed. the program PLSMMD dumps the positions and
velocities shown in Fig. 6 as initial conditions used in the next program PLSMMD2. The
reason we have written two separate programs is that once the system is relaxed we search for
close approaches (an activity that is quite CPU intensive). especially between electrons and
protons. To speed up the simulation we do not check for conservation of momentum (although

we still check for energy conservation).

In Fig. 7 we see four panels showing the four moments of the electron speed
distribution. <i>, <v™>, <v*> and <v’ > as a function of time (0 <7 £ 440.0). The straight

horizontal lines represent the Maxwell-Boltzmann values and are given by

4
(v)= 2[2"3T ) (222)
3

(22b)

(v)= 8(2’(;{3 J @)

(v‘) _15k,T° (22d)

where the ¢" moment is given by
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<\"> = ]\'@(v)dv 23)

and g is the MB speed distribution (Eq. (1) divided by the number density n,ie.. g=g/n). T
= 1.56x10” K is the equilibrium temperature and kj is Boltzmann's constant. It can be seen
that at £ = 0.0 the moments are far from the MB values and far from relaxation. However. as
time increases. the moments tend to settle to some “quasi-relaxed™ values slightly above the
MB values. This gives us an estimate of the “relaxation time™ for the electrons. We estimate a
relaxation time for electrons 7,, ~ 84 (2x107° 5). We note that this value is quite a bit higher
than that found at other N,;'s and this is due to the unusual upward “arching™ of the moments at
the beginning of the integration (especially noticeable in the second moment). The vertical
dashed line at r = 330.0 separates the “relaxation™ run from the “post-relaxation™ run, while the
values in the plots give the mean moments found for the range 330.0 <t < 440.0 (past the
relaxation time). The following table compares the empirically found values with the MB

values given by Eqgs. (22):

Table I'V: Electron speed distribution moments

Moment Value | MB(Eqs.22) % Diff. |

<> 11.35 11.22 1%

| <> 151.3 148.2 +2.1%
<> 2272 3317 =2.5%
> 37542 36610 25%

Note that the values are higher by 2% on average than what MB statistics predict. The electron
speed distribution seems to have reached a “quasi-equilibrium” temperature that is higher than
the temperature this problem would suggest. This “electron temperature” can be easily
obtained from Eq. 22(b), this implies a temperature 2.1% higher than 1.56x10” K or
approximately 1.60x1 0'K.

In Fig. 8 we see four panels showing the moments of the speed distribution of protons.

Again, as time increases the moments tend to relax to a “quasi-equilibrium™ value, although the



time taken is longer than for electrons. It's hard to estimate the equilibrium time from the
second moment but from third and fourth moment one could estimate 7, ~ 280 (7x10™'* s) for
protons. Just as for electrons. we take the largest value to be the best approximation to the
relaxation time, i.e.. from the first moment one could estimate 7~ ~ 190. but the third and fourth
moments have clearly not vet relaxed. Note that in this case all four moments are lower than
the MB values (at least after “relaxation™). In Table V we compare the empirical values found
(again, for the range 330.0 <7 < 440.0) with the MB values obtained from Egs. (22): recall

that the mass of the proton is 1836.2 au:

Table V: Proton speed distribution moments

Moment Value MB (Eqgs. 22) % Diff.
<> 0.2594 0.2618 -0.9%
i <> 0.0792 0.0807 -1.9%
<> 0.0273 0.0282 -3.2%
<v*> 0.0104 0.0109 -4.6% ;

Here the empirically found moments are 2.7% lower on average than the MB values. The
proton temperature implied by <v?> in this case is 1.54x10” K. This is interesting because the
average of the electron temperature and the proton temperature is very close to the Sun’s core
temperature. It seems that the higher the moment. the further away it is from MB: why this

should be so is a puzzie.

What conclusion can we draw from these plots of the speed distribution? The
distributions we have found seem consistent with what Lyman Spitzer wrote in his Physics of

Fully lonized Gases. so we will quote him directly (p. 136):

“We are now in a position to discuss what happens in a proton-electron gas, for
‘example, when the velocity distribution is originally arbitrary. We assume that the
mean kinetic energies of electrons and protons are of the same order of magnitude.
Collisions of electrons with protons will deflect electrons and lead to an isotropic
velocity distribution, but will not change appreciably the distribution of electron kinetic

energies. Electron-electron collisions will gradually establish a Maxwellian velocity

18



distribution for the electrons. while proton-proton collisions will yield a corresponding
velocity distribution for the protons. but at a kinetic temperature that may differ from
the electron temperature. Finally. equipartition between electrons and protons is

established by electron-proton collisions.”

What we have done is to integrate this “Coulomb™ gas forward in time long enough for the
distribution of both electrons and protons to have relaxed to “quasi-MB™ values. but not so
long that they have had time to come to thermal equilibrium with each other. Perhaps the
electrons are “hotter” than protons due to their lighter mass. In any case. according to Spitzer.
if we had integrated long enough past the ““equipartition time™ 7.,. electrons and protons should
both have reached the same temperature. The equipartition time is approximately 43 times the
collision time ¢. for protons and 1836 times the collision time for electrons. where the collision

time in seconds is given by (Spitzer [3]. p. 133):

_h4ar .
“ nZ'lnA

where A is the particle’s mass in terms of the proton mass, n is the number density of a given

species (per cm?). Z is the charge number (Z = | for both protons and electrons) and from our

previous discussion. InA = 1. If we plug in numbers we obtain a collision time for electrons 7.,

~2x10"* s and 1, ~ 8.6x10™"* s for protons. Note that the collision time for electrons is

identical to the relaxation time found previously. while for protons the agreement is off by an

order of magnitude. Furthermore, note that according to Eq. (24). 1 /1, = 43. If we estimate

the equipartition time to be 1836 times the electron collision time then we obtain 7., ~ 1836x80
= 154224 (in au). With a time step size of 1.1x10™ this would take 1.37x10° time steps (!) to

achieve, a practical impossibility.

Finally we are interested in the speed distributions of proton-electron close approaches.
At a given time step, whenever an electron approached within an arbitrary “small” distance R,,
of a proton we recorded the positions and velocities for the pair; we called this a close-

approach event or simply an “event”. The positions and velocities of the pair were recorded as
pp Pty po pa

long as the proton-electron distance r, remained smaller than R,,. This was done only during



the “post-relaxation™ run; that is. during 330.0 <7 £ 440.0. We define two types of events:
capture and escape. A “captured” electron has. at a given r, . a speed such that it cannot
escape the Coulomb attraction of the proton while an “escaped™ electron has enough speed (at
a given 7, ) to escape the Coulomb attraction. The boundary between these two cases is

obtained from

where u is the electron-proton reduced mass. v,, is the “critical speed™, and & is the softening
radius; this is just the relative Kinetic energy plus the potential energy (corresponding to the

force function of Eq. (14)). Solving for v,, we obtain

; 2
vV, = ———— (26)

This discussion is of course completely analogous to the concept of parabolic orbits in celestial

mechanics. At a given electron-proton distance r, (with r, < R, ) we compute the pair’s
relative speed v, =|v,. - ";l tif v, 2 v, then this is an “escape eveni”; otherwise it is a “bound

event”. We have found a few cases where an electron was bound in orbit around a proton for
several time-steps. In such a case. the same electron-proton pair will give rise to several
consecutive bound-events. Such bound pairs can not last indetinitely because eventually other
particles’ electrical forces will disrupt the bond. In any case, we are mainly interested in

escape events and the relative speed distribution of such events. In Figure 9 we have three

panels with various speed histograms. We used R, =5.477x 107, about 2% of the Wigner-
Seitz radius. In Figure 9(a) we have a histogram of v,f for all close proton-electron

approaches; there were 6008 “events™. Of these. only 2146 were escape events: in Fig. 9(b)

we show a histogram of v,f for the escape events only. The minimum relative speed squared
was (vf_  ain = 345.01 which is vl at R, =5.477x 10~ while the average relative speed

squared <v,f > =567.05 and the maximum relative speed squared was found to be (v ; ) max



=1354.0. The histogram "looks™ like a MB energy distribution with the zero shifted to the
right by the amount 345.01. All of these values are higher than the <1*> value obtained in
Table IV (151.3) because of the proximity of the particles. In other words. the histogram
shown in Fig. 9(b) is proportional to the energy distribution of passing electrons as “seen™
from a proton’s point of view. For a real Coulomb force and not the modified version we've
used here. all these values would be even higher. Going back to the altemative nuclear
reaction e’ (*He H)v.. recall that we need an electron with at least 18.6 keV = 683.5 hartrees to
make the reaction feasible. Using the MB value of <v*> from Table IV. the average electron
energy is approximately £#<v=>/2 ~ (0.999)(148.2)/2 = 74.0 hartrees. too low by almost an

order of magnitude. If we now use the average relative energies of close approaches. we get

p<v5 >/2 ~(0.999)(567.05)/2 = 283.2 hartrees and using the maximum speed we get

y(vj ). /2~ (0.999)1354.0)'2 = 676.3. very close to the threshold value. It is clear that if we

max ' <
do take into account inter-particle forces. the relative energies increase. Furthermore. had we
used a “He nucleus instead of a proton in the simulation all these relative energies would be
higher by a factor of Z = 2 due to the higher charge of the *He nucleus. The specific values

listed here are dependent on the arbitrarily chosen value of R, =35.477x10™. A more formal

analysis would use a value of R,, as the distance in which the electron and the *He nucleus

~fuse™ to become a Tritium nucleus (using the theory of nuclear beta decay).

If we think of the critical speed as the escape speed of electrons. then we can say that

electrons with v, = v are on “quasi-parabolic™ orbits. Electrons with v, < v_ are on “quasi-

r

elliptical™ bound orbits (pure. two-body orbits in this case are in general not closed due to the

form of the force function. i.e.. Eq. (14)). Meanwhile, electrons with v, > v are on “quasi-

hyperbolic™ orbits. A particle on a hyperbolic-like orbit would. in the limit of 7, — > have a
certain “excess speed” above zero (if it were zero we would have a parabolic-like orbit). For
every event shown in Fig. 9(b) we have subtracted an amount corresponding to a parabolic
orbit (given by Eq. (26)) and show the results in the last histogram. Fig. 9(c): thisis a
histogram of the “excess speed squared”. The figure is a half-Gaussian with a standard

deviation of o= 113 and a mean value of <v3> = 115.17. It was expected that perhaps the

values of < v; > for the excess speed would be higher than the mean squared speed for an ideal
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gas (i.e., <yis>= 148.2), but this was not the case. We checked to see if this deficiency could

be explained by Debye screening. but screening is a very small effect at this close range

(r, < R,) and does not account for the smallness of <v.>.

An attempt was also made to obtain histograms for electron-electron and proton-proton

close approaches but these happened too infrequently to obtain useful data.

(¢) Summary of Results:
In this section we summarize our results using N, = 512, 1000, 1728 particles, which
are presented in the form of tables. Again. the time step size is Az = 1.1x10™, and the outer

~cut-off " radius R. = 0.67.

In Table VI we show the electron deflection times plus the Mean Free Paths. The
analytical mean free path is obtained from /4 = <v>\g £p =(11.22)(1.3) = 14.6. An asterisk
means that we are taking the average value obtained starting from = 0.0 and from ¢ = 330.0.
since. as we have seen for the N, = 1000 case. the values do not vary much. The values are

somewhat consistent with each other. It should also be noted that in all cases the Mean Free

Paths are larger than the sides of the largest CB's side (L_,, = d(1728)" = 4.0).

Table VI: Electron Deflection Times & Mean Free Paths

N, Deflection Timefp | Mean Free Path 2
512 1.9 26.6
1000 0.9 7.2
1728 1.1 9.6
Spitzer (Eq. 18) 1.3 14.6

In Table VII we show the deflection times plus the Mean Free Paths for protons. These
values were measured only at t = 0.0. Unfortunately we could not obtain values for N, = 1728.

However, it is apparent that the measured deflection times are higher than Spitzer’s



predictions. Theoretically we expect the Mean Free Paths of electrons and protons to be the

same.

Table VII: Proton Deflection Times & Mean Free Paths

N, Deflection Time 7, |  Mean Free Path 1 |
512 103.0 | 16.1
1000 206.0 ’ 52.1
1728 na na
Spitzer (Eq. 18) 55.7 14.6

In Table VIII we shoﬁ' the values of the estimated relaxation times 7., for protons and
electrons. These relaxation times are a measure of how long it takes the speed distribution 1o
relax from FCC lattice type initial positions and delta functions as the initial speed
distributions. The means are also computed: as expected, the relaxation time for electrons is

much shorter than that for protons due to the latter’s higher mass and lower mean speeds.

Table VIII: Relaxation Times

N, Electrons Protons
512 21 150
1000 84 280
1728 14 300

Mean 39.7 2433

In Table IX we present the observed values of the first four moments of the electron
speed distribution. Recall that these values were obtained only for the range
330.0 <7 <440.0, i.e., the “post-relaxation” run (330 < < 424.28 for the case A\, = 1728).
Mean values were obtained and percent differences between these mean values and the MB
values are also shown. It seems that the higher the number of particles, the higher the value of
the moment. However, if we make the assumption that the higher the number of particles the
more “accurate” the simulation is, the values seem to be converging “up™ to some asymptote as

the number of particles get higher. This is shown in Figure 10 for the second moment: the
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other moments show this type of behavior as well. It would be hard to justify a fit to find this

convergent value with only three points. however

Table IX: Electron speed distribution moments (330.0 <¢ <440.0)

N, é <v> 7> ] <> <v'>
512 ‘ 11.31 149.70 « 2231.00 36640.00
1000 | 11.35 151.30 | 2272.00 37540.00

1728* , 11.38 151.89 | 2283.40 37724.00

Mean i 11.35 150.96 2262.13 37301.33

MB ' 11.22 148.20 2217.00 36610.00
%Difference j 1.1% 1.9% | 2.0% 1.9%

An asterisk means that the time range is 330 <r < 424.28.

In Table X we show the values of the first four moments of the proton speed
distribution for 330.0 <7 < 440.0 (330 <7< 424.28 for the case N, = [728). Again we take
the average and compare it to the MB value. Here. the average values are lower. in contrast to
the electron case. Interestingly, the higher the moment the further away the values are from
MB. In Figure 11 we show the values of the second moment as a function of the number of
particles. Again, the empirical values seem to be converging “down™ to some asymptotic

value: the other moments seem to converge also.

Finally in Table X1 we show the “mean relative speeds squared™. raw (that is. just what
2

was directly measured <v; >(qu)) and the “mean relative excess speed squared”™ <V, >(evcess) -

The relationship between these two is
2 2 2
<V, Z(excess) = <V, Ziawi — Ver 27
where v’ depends on the relative electron-proton distance 7, and is given by Eq. (26). Note

that the mean squared excess speed raw (113.66). is smaller than the mean squared speed

assuming a MB distribution (148.20).



Table X: Proton speed distribution moments (330.0 <r < 440.0)

N, <y> <> <> <v'>
512 0.2600 0.0799 0.0277 0.0105
1000 0.2594 0.0792 0.0273 0.0104

1728* 0.2601 0.079i 0.027 0.01
Mean 0.2598 0.0794 0.0273 0.0103
MB 0.2618 0.0807 0.0282 0.0109
%Diff -0.8% -1.6% -3.1% -5.5%

An asterisk means that the time range is 330 <r < 424.28.

Table XI: Mean relative speeds squared. raw and excess

(R, =5.477x107.330.0 <7 < 340.0)

N, < ‘u >(raw) < \ >excess)
512 570.50 113.50
1000 567.05 115.17

1728* 566.44 112.31
Mean 568.0 113.66

An asterisk means that the time range is 330 <r < 424.28.

V. CONCLUSIONS/SUMMARY

We have integrated a simplified model of a plasma forward in time using a Molecular
Dyvnamics approach. The total number of particles was varied and results with different A,
were compared. This plasma is a fully ionized gas consisting of protons and free electrons and
has the same temperature and density as is found in the core of the Sun. We wished to
investigate whether inter-particle forces (the Coulomb force) in this multi-body problem might
be a source of deviations from MB statistics predictions, which are strictly true for an ideal gas.
Specifically we wished to see if the reaction given by Eq. (4), e'(*He,H)v,, [Q=-18.6 keV)
might be made more likely than standard solar theory predicts due to multi-body effects.
The plasma was integrated from non-equilibrium initial conditions (FCC lattice for positions
and a delta function for the speed distribution) until quasi-equilibrium was reached. During

this time we checked the deflection times, the mean free paths and the relaxation times (from



the first four moments) for electrons and protons. The results were somewhat consistent with

analytical results as provided by Spitzer [3]. especially for electrons.

Afier the system was completely “quasi-relaxed”, we again propagated the system
forward in time and collected statistics on the first four moments of the proton and electron
speed distributions as well as statistics on close inter-particle approaches. The first four
moments of the speed distribution were recorded for the duration of the post-relaxation run and
the average results were compared to the MB values. A curious phenomenon is that. although
we started protons and electrons with the same kinetic energies. electrons quickly gained
kinetic energy at the expense of protons. Therefore. electrons were slightly “hotter™ (+1.9%)
and protons were slightly cooler (-1.6%) than the system temperature of 1.56x10” K (see
Tables IX and X). However. this is not at all inconsistent with the behavior of a fully ionized
gas. as shown by Spitzer [3]. Note that the average of the electron (1.39x10” K) and proton
temperatures (1.53x107 K) is very close to the sy stem temperature. To have the plasma in true
equilibrium we would have to have integrated the system past the “equipartition time™, where
protons and electrons would have the same temperature. As we have seen, this would be out of
the question with the present approach. This is why we prefer to call the plasma “quasi-

relaxed™ and not relaxed at the end of the integration.

A way we used to measure deviation from MB was to look at the first four moments
during ~quasi-equilibrium (¢ > 330.0) and compare the values with MB. The electron moments
were higher (+1.7% on average) than MB and the proton moments were lower (-2.8% on
average) than MB. However., it is likely that the observed deviations from MB are consistent

with the plasma not being in complete thermal equilibrium.

What about close approaches between electrons and protons? We do have to use the
total relative energy and not just the kinetic energies. For example in the N, = 1000 particles

case, we had that the mean relative kinetic energy was <k> = 283.2 hartrees, but the mean

1
relative potential energy in this case was <u> = -[u,/r,f + &t } =-226.4 hartrees for a total

mean relative energy of <e> = 56.8 hatrees, lower than even the MB relative energy of 74.0
hartrees and quite low compared to the threshold energy for the reaction e CHe *H)v., [Q = -

683.5 hartrees]. Note that. relative to the MB case, the inter-particle forces seem to have



actually decreased the mean relative energies. possibly making the rate of the reaction
e’ (CHe.'H)v, less likely than in the pure MB case. As previously stated. the mean squared

excess speed raw (113.66). is smaller than the MB mean squared speed (148.20).

We conclude that the observed deviations from a MB distribution are probably not
significant enough to make the alternative reaction e "He.>H)v. more likely than in a pure
MB case. Indeed. the observed deviations are in accordance with the expected behavior of a
plasma. as described by Spitzer. Deviations from MB due to electron degeneracy (protons
are practically non-degenerate) were also explored analyvtically as an aside project. At the
temperature and pressure found at the core of the Sun, the mean electron energy is about 3%
higher in the degenerate case than in the MB case. Again. this is probably too small an effect
to make a difference. It seems that. in light of recent investigations regarding neutrino
“flavor changes™, a possibly better explanation for the deficiency of neutrinos from the Sun
may be neutrino oscillations. or the MSW effect [17, 18]. Very briefly. neutrinos exist in
three types: electron-neutrino (v,). which is the only type that is produced in the Sun, the
muon-neutrino (v,) and the tau-neutrino (v;). Recent experiments at the Super-Kamiokande
neutrino detector in Japan have suggested that oscillations indeed take place in the case of the
tau and muon neutrinos and possibly in the case of electron-neutrinos [19]. This implies that
neutrinos have mass, contrary to standard particle physics, which assumes zero mass for
them. If oscillations do take place, as (electron) neutrinos from the Sun travel to Earth. theyv
could switch to either of the other two types (tau and muon). With the exception of the
Sudbury Neutrino Observatory in Canada. which can detect all three flavors and will test the
MSW effect. present-day “neutrino telescopes”™ can only detect one or two tvpes of neutrinos
at a time. If neutrinos oscillate, the deficiency of solar neutrinos may be only an apparent
one, as the detectors only detect neutrinos of one flavor (electron) or the other, thus possibly
explaining the solar neutrino problem. Therefore, it may be that the answer to the solar

neutrino problem may lie in particle physics, not statistical mechanics.



VI FIGURES AND FIGURE CAPTIONS

FIGURE I: Initial conditions (positions and velocities) for the particular case N, = 1000
particles. Initial positions correspond to an FCC lattice. Only the velocity vectors of the

electrons can be seen.

FIGURE 2: Behavior of the system energy for the case .\, = 1000. (a) System energy
(kinetic. total and potential). (b) System energy but with the potential energy increased by
72000 hartrees. (c¢) System energy separated into proton and electron components. (d)

Percent error in the total energy.

FIGURE 3: Behavior of the system momentum for the case A, = 1000. (a) Total and x, y, =
components of the system momentum. (b) Electron x. v. z momentum components. (c)

Proton x, », 2 momentum components.

FIGURE 4: Behavior of a given particle (in this case particle number 18, an electron) as a
function of time for the case N, = 1000. (a) Position as a function of time (shown in the form
of components). (b) Velocity as a function of time (shown in the form of components). (c)
Cosine of the angle betweeen the initial velocity vector v, and the velocity vector as a
function of time v(z). Circle represents the deflection time (here 0.80). (d) Speed of the
particle as a function of time, v(?) vs. t. The dashed vertical line corresponds to the deflection
time and the integral of v(1) from zero to the deflection time gives the mean free path (here

equal to 7.6 time units).

FIGURE 5: Speed histograms for electrons (panel a) and protons (panel b) for the case N, =
1000 at the end of the “relaxation run™ (¢ = 330.0).

FIGURE 6: Final conditions (positions and velocities) for the particular case N, = 1000
particles at the end of the “relaxation run” (t = 330.0). Only the velocity vectors of the

electrons can be seen.

FIGURE 7: First four moments of the electron distribution as a function of time for the case

N, =1000. The horizontal lines represent the Maxwell-Boltzmann values.



FIGURE 8: First four moments of the proton distribution as a function of time for the case

N, =1000. The horizontal lines represent the Maxwell-Bolizmann values.

FIGURE 9: Distributions of squared speed for close electron-proton approaches A, = 1000
and R, = 0.005477. These “events™ cover the period of the “post-relaxation™ run 330.0 <7 <
440.0. (a) Histogram of the squared speed for all events. (b) Histogram of the squared
speed for escape events only. (¢) Histogram of the squared speed minus the critical speed.

In other words, histogram of the excess speed squared.

FIGURE 10: Empirical values of the mean squared speed <v™> for electrons as a function of
the number of particles (cases N, = 512, 1000, 1728). It can be seen that the mean value is

higher than the Maxwell-Boltzmann value.

FIGURE 11: Empirical values of the mean squared speed <i~> for protons as a function of
the number of particles (cases N, = 512. 1000. 1728). It can be seen that the mean value is

lower than the Maxwell-Boltzmann value.



Fig. 1: Initial conditions (t = 0.0; Np = 1000)
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Fig. 4(a): Posttion as a fn. of time

Fig. 4(b): Velocity as a fn. of time
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Fig. 6: Final conditions (t = 330.0; N_= 1000)







Fig. 7: First 4 moments of the e speed distribution (Ne=500)
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Fig. 8: First 4 moments of the p* speed distribution (Np=500)

i 1 T
, 028 b <v>=0.2594 .
0.24 L 1 : 1 . ‘ , ,
0 50 100 150 200 250 300 350 2430
0.09: T T T
|
& 0.085 - <>=0 0752 4
>
0.08 MWM*AWWfMWWW
; i i i | .
0 50 100 150 200 250 300 350 430
r T I 1 T
0.04k n ) .
. | <v*>=00273
Aol
< oosL 2
1 Wm
002 L i 1 . N 1 1 M :
0 50 100 150 200 250 300 350 420
0.016 — T T - T 7
00147 <«v*>=0 0174 i
,,; 0012~ .
g 001 - ”W
0.008 - — -
0006 /1 1 1 1 ) d 1 }
0 50 100 159 200 250 300 350 400

time






Fig. 9: (ELECTRON-PROTON); R'n=0.005477; 330.00 < t < 440.00;
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Figure 10: Second moments as a function of Np
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Figure 11: Second moments as a function of Np
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APPENDIX:
Inputs 10 and programs PLSMMD.FOR & PLSMMD2.FOR

The first thing to decide before running these two programs is the number of
particles. Recall that the number of particles is restricted by the condition N, =8i  where i =
1.2.3.4.5.6.... etc. or N, = 8, 64, 216, 512, 1000, 1728. In this “experiment” we only
considered 512 < A, < 1728. Once the number of particles has been decided upon. the
FORTRAN include file PLASMA.INC is edited with a text editor and the number of
particles is entered. where it is defined a PARAMETER:

....-HE TOTAL NUMBER OF PARTICLZS
.....N\NP=84£,21€,512,1000,1728, ..., 8*I"3 (I=1,2,3...)
INTEGER NP
FARAMITER (NP = 512)

() )

The program PLSMMD.FOR is then compiled. Now we have the executable. which needs
an input file stating the number of time-steps, the time-step size, etc. The contents of this
input file IN.DAT are as follows:

026 The Wigner-Seitz radius, in atomic units (au)

1.56e7 The temperature, in Kelvin

1000000 The number of time steps

l.1e4 The time-step size (au)

0.67 “Outer” cut-off radius (au)

18 Particle number to follow (output in file TXYZ.DAT)

100 How often to write energies file ENERGY.DAT (# of time-steps)

(3]
[



tn

]
0.

thn

How often to update the neighbor lists (# of time-steps)
Max. % error allowed in energy

Once the program PLSMMD.FOR is finished. it outputs the file IN2.DAT. which is the
input file for the program PLSMMD2.FOR. The contents of the file IN2.DAT are as

follows:

S12 Total # of particles (used as a check)

5330.0 Time at the end of the first run [computed by PLSMMD.FOR]
0.26 Wigner-Seitz radius. in atomic units (au)

15600000.000000 Temperature, in Kelvin

1000000 Total # of time-steps

1.10D-04 Time-step size (au)

0.67 “Quter” cut-off radius (au)

18 Particle number to follow (output in file TXYZ2.DAT)

100 How often to write energies file ENERGY2.DAT (¥# of time-steps)
15 How often 1o update the neighbor lists (# of time-steps)

1 How often to check close approaches (# of time-steps)
0.00547722557052  How close particles can approach 1o record relative pos., vel.
36959.274946828 Total energy (hartree) [computed by PLSMMD.FOR]
-290.94705096300  Corr. to the potential energy (hartree) [computed by PLSMMD.FOR]
0.50000000000000  Max. % error allowed in energy

The first number is used as an internal check to make sure the two programs are compiled to
the same number of particles. Note that some of the numbers are computed by the program
PLSMMD.FOR and the user is not allowed to change them (for example. the time at the end
of the PLSMMD.FOR run), lest there be inconsistencies in the two programs.
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