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Abstract

We develop and test a 1—point closure turbulence model with the following features.

1) we include the salinity field and derive the expression for the vertical turbulent

diffusivities of momentum K , heat K, and salt K as a function of two stabilityui n s

parameters: the Richardson number Ri (stratification vs. shear) and the Turner number R

(salinity gradient vs. temperature gradient).

2) to describe turbulent mixing below the mixed layer (ML), all previous models have

adopted three adjustable "background diffusivities" for momentum, heat and salt We

propose a model that avoids such adjustable diffusivities We assume that below the ML, the

three diffusivtties have the same functional dependence on Ri and R as derived from the

turbulence model However, in order to compute Ri below the ML, we use data of vertical

shear due to wave-breaking measured by Gargett et al. (1981). The procedure frees the

model from adjustable background diffusivities and indeed we employ the same model

throughout the entire vertical extent of the ocean.

3) in the local model, the turbulent diffusivities K , are given as analytical functions ofiii^n^s

Ri and R

5) the model is used in an 0-GCM and several results are presented to exhibit the effect of

double diffusion processes.

6) the code is available upon request.



I. Introduction

For sake of completeness, we recall that the 0-GCM solve the dynamic equations for

the mean velocity U-, mean temperature T and mean salinity S:

The velocity, temperature and salinity fields have also fluctuating components Up T" and

s" which produce the correlations uW (Reynolds stresses), u'.'T"(heat fluxes) and
J

u'.'s"(salinity fluxes). The challenge then is to construct such correlations so as to solve

Eqs (la-c). To fix the ideas, we further write:

= -K E. (Id)

where £ =£(U ; -+U, ;) is the mean shear. The K , are the turbulent difjusivities for>•} lit Ji1 m,n,s
momentum, heat and salt. As discussed in paper I, they have the general functional form.

Vh,s= 2 7 Sm,h,s ('«'
where K and c are the turbulent kinetic energy and its rate of dissipation which in principle

are given by two dynamic equations (the K-e model). The dimensionless structure

functions S , must differ from one another so that:m ) n j o

In general we can write.

Sm,h,s ' Sm,h
where a and a are the volume expansion coefficients a=-pAdp/ffT and a =p'ldp/d^ and

I S 1 o

where the shear VU can be generated either by external sources like in the mixed layer ML

or by internal wave-breaking processes below the ML. If one introduces the Turner number



R and the Richardson number Ri:

where

p cfz 0~T0z 0~s0z ' nv~ ~~p' ^ '

we can rewrite (li) more concisely as

Sm,h,s= Sm,h,s(Rp' *) (2c)

(Clearly, we could have also defined Ri in terms of N2 rather than just the thermal

gradient. We have chosen the latter for reasons of presentation of the results). One must

distinguish the following four cases:

SF (salt fingers, salty-warm over fresh-cold):

R >0, Ri>0

R <1 Stable, N2>0, R >1 Unstable, N2<0 (2d)

DC (diffusive convection, fresh-cold over salty-warm):

R >0, Ri<0

R <1 Unstable, N2<0, R >1 Stable, N2>0 (2e)

DS (doubly stable, fresh-warm over salty-cold]

R <0, Ri>0, N2>0, Stable (2f)

DU (doubly unstable, salty-cold over fresh-warm):

R <0, Ri<0, N2<0, Unstable (2g)

The stability/instability is predicated on the Brunt-Vaisala frequency N with N2>0

(stable) and N2<0 (unstable).

The general problem is to construct (2c) so as to encompass all four cases (2d-g)



First, there is ample evidence from laboratory and oceanic field data that show that K, is

different from Kg. In the SF case, the ratio K / K h > l (Hamilton et al., 1989) while in the

DC case, Kh/Kg>l (Kelley, 1984). Schmitt (1981) has also shown that the observed T-S

relationship is not consistent with K, =K . For a discussion and review of the importancen s
of these processes and their extent in different parts of the ocean, see Turner (1967, 1973.

1985), Schmitt (1994) and Zhang et al. (1998). In spite of this evidence, almost all 0-GCM

still assume

Ks=Kh (3a)

Recently, attempts have been made to overcome (3a) but the task is not easy The mam

difficulty is that in the absence of a model capable of encompassing all four cases, SF, DC,

DS and DU, the only alternative is to employ laboratory and ocean data to build the

functional form of the diffusivities to be used in an 0-GCM. This is the approach

employed by Large et al. (1994), Zhang et al. (1998, ZSH) and Merryfield et al. (1999,

MHG) who used relations by Schmitt (1981) and Kelley (1984, 1990), among others.

There is, however, an internal limitation to such a procedure since the available data

refer to SF and DC but not to DS and DU which are also important (Duffy and Caldera,

1999) Thus, away from the regions where SF and DC are active, the above authors take

Vh,s<
DS- DU> =° <3b>

or, more precisely, they use a background diffusivity which is chosen primarily on grounds

of numerical stability but whose physical origin must be an internal-wave breaking

phenomenon This is clearly not a satisfactory situation especially in view of the fact that

Since the studies by ZHS and MHG have shown the importance of double diffusion, the

above procedure is certainly far better than (3a) but still not fully satisfactory. The goal of

this paper is to consider the same problem but with a different methodology.

We develop a turbulence model to compute the three difjusivzties for momentum, heat

and salt and construct the functions (Ig) and (li) for the four processes SF, DC, DS and

DU in the presence of an arbitrary shear. The inclusion of shear is quite relevant since is



known to hamper the SF mechanism (Linden, 1971, 1974a, b; Kunze, 1990) and yet, the

above procedures do not account for shear since they expressed K, and K in terms of only

one stability parameter R rather than R and the Richardson number Ri

We present three models- 1) K and e are solutions of two dynamical equations (K-e

model), 2) only one of them satisfies a differential equation while the other is taken to be

the local limit of its dynamic equation and 3) both K and c are taken as the local limit of

their respective dynamic equations. As we shall show, in model 3) all the relations are

algebraic and one must solve a cubic equation. The numerical results correspond to 3).

The structure of the paper is as follows. In II-VII we derive the general non-local,

dynamic equations for the mean fields as well as the turbulent variables. In VIII we derive

the analytic expressions for the turbulent diffusivities with only two non-local variables,

the turbulent kinetic energy K and its rate of dissipation, t In IX-X we study the case of

double diffusion without shear and show that the predictions of the model are m agreement

with several laboratory and ocean data. In XI we give the complete analytic solution for

the local model: we derive the algebraic expressions for the momentum, heat and salt

diffusivities in the presence of arbitrary shear. In XII, we discuss the time scales. In XIII,

we display several solutions of the model, specifically we plot the diffusivities K's and their

ratios as a function of the two stability parameters, the Richardson number and the Turner

number. In XIV-XVI we present the results of an 0—GCM with the above model where we

use the same turbulence model below the mixed layer where the shear is no longer due to

the external wind forcing but to a wave breaking mechanism. In XVII we present some

concluding remarks.

II. Continuity equation

Following the formalism presented elsewhere (Canuto, 1997), the total velocity,

density and pressure fields are split into mean and fluctuating parts as follows:

P'=P'=0 (5a)



the Reynolds average <u!>=0. The relation between the two is discussed in Canute

(1997a). Using the equation for the density p

<5C>
we obtain, upon mass averaging,

(5d>

III. Velocity Field. Mean and Turbulent Variables

Consider the Navier—Stokes equations

O\j 1 GrX- 1 J COC- 1 (7X 11
J ! J

where a-- is the viscous stress tensor (i/ is the kinematic viscosity)

•L u, (5f)
/TV \f ^ '
t/Al JV

J\

Mass averaging (5e), we obtain the dynamic equation for the large scale flow U,

where r-- are the turbulent Reynolds stresses
J

r. . E ,niVuJ = ̂  (5h)

The kinetic energy of the large scale field

Ku =

satisfies the equation (a,.= da/ftc.; a-. , =5a..1 i JJ»K *J
u = - U,(P , + ryj+ ff,) (5J)

The Reynolds stresses R.. satisfy the non-local dynamic equation (Canute 1997):

?t (6a)

where the non-local term D-. represents the flux of Reynolds stresses R-^:

- 1 (6b)

In Eq.(Ga), the source term due to shear is represented by:



-Ai)^[R
1kui,k+Rjkui,k) <6d>

while the source (sink) term due to stratification is represented by

-PE.. = GTuJ&ik+ 7U^jk)P)k (6e)

The fluctuating pressure p' gives rise to the pressure—velocity correlation

V^ + ajp;,. VV^Ak <6f>
Finally, compressibility introduces a pressure—dilatation term

where d=uV . is the "dilatation", while e- is the dissipation tensor which we assume

diagonal for its largest contribution originates in the small scales region:

2-

Below, we present the dynamic equation for e The trace of (6a) yields the equation for the

turbulent kinetic energy K,

K = ip-1 pUVuT = IR.. (7a)

tK + Df = - R^jU, j+ p-2 ^uT P^. + ̂  p^ - e (7b)

where Dr(K) is the non-local transport of K:

(?C)

IV. Concentration Equations

Consider a model with two fluids of density pc and p(l-c), where c is the

concentration and p the total density of the fluid which satisfies (5c). The equation satisfied

by pc is given by (no external sources)

or alternatively,

where J is the diffusion flux

(8C)V '



where xc is the molecular diffusivity of the c-field. Mass averaging, we derive

pc = pCt pc\T = /5CU+ p$ (9a)

where C is mean concentration and $• is turbulent concentration flux

CEC, p^ = p$j (9b)

Taking the mass average of Eq. (8b), we obtain the equation for the mean concentration C:

1 < ]0a>
To provide the turbulent flux $ , we need a turbulence model.

V. Temperature field

We begin with the equation for the entropy S (Landau and Lifshitz 1987),

where /t is the chemical potential and

where F^ is the thermal flux. In the absence of diffusion, q.= Fr but here q depends also on

the gradients of the concentration as well as on the gradient of //. Using
dS _ dS I dT , flS | dc dS i dp
3T 77T'c,p HIT yc~'T,p 3T 7?p'c,Tdt

and the relations:

p,c
one can transform Eq (11) as:

P O\i COC« 1 Qt COC* 1 1109C* C OfXi CTXi
1 1 J K K

where the dimensionless function w is defined by:

u = — Tp^-Jp = a T (15b)

Next, we take the mass average of (15a). Making use of the results derived in Canuto

(1997) and recalling that a--u- . = ~pf, we obtain

^c 8? = - (F?+FF- um^}: -



(16a)

where F^ is the heat flux

F? = c />T"uV = pH. (16b)

The Uy term in (16a) can be written using the second of (5b) and (22e) below. Eq (16a) is

the generalized Bernoulli's equation with turbulence, diffusion and heat flux. When dealing

with incompressible ocean turbulence, one can neglect the third-order term p'u'.1 as being

smaller than the second-order terms to which is summed; the last term can also be

justifiably neglected as a kinematic term smaller than the remaining turbulence terms; the

pTcT term can also be neglected since d=du./dx.-=Q in an incompressible flow; the term pt

cannot in principle be neglected since it represents the energy gained by the temperature

field that is lost by the kinetic energy because of friction; thus, its presence is a

consequence of energy conservation Thus, we have:

_ FIT1 f* r V\ /) —
„„ U -I /Til* I TT'M I , ./ij I 77n"t/ M5 J_ nt / 1 Rr>\i + Hnt + ui7K7 )F + Pc ( lbc>

Since D/Dt =9/5t +Ujd/dx., one can probably neglect the u? term since it summed to the

mean flow velocity U- which is expected to be larger. This further reduces (16c) to:

In all 0— GCM, this equation is however further reduced to:

VI. Turbulence

As already discussed, we need to evaluate the following second-order moments (2c).

The equation for the first of them has already been given by Eq.(6a). As for the correlation

0 = ̂  E p$ (17)

we first note that using Eq.(8a), pc2 satisfies the dynamic equation (J- .=dpJ-/dx)
t »1 1 1

<18a'

10



Taking into account the relations

^2 = ^C2 + ^TT2 (18b)

pUTc2 = ^UjC2-f- Ujpc712 + puT?'2 + 2C)^rcTr (18c)

the mass average of (18a) gives:

CTi,i <18d)
. (18e)

Introducing the new function <&

p$ (19a)

Eq (18d) simplifies to:

4t* + DfW] = -^i + ̂ ,rc;ii,i (19b)

where the non-local transport of $ is given by

uT^ (19c)

The last two terms in (19b) will be evaluated as follows:

which, using Eq (8c) and considering the incompressibility of the flow, becomes (for ease of

notation, we employ <..> instead of an over bar)

" (19e)
J

Using a mathematical identity, we also have

> <i9f>
The last term represents the viscous-diffusion of (17), which we may consider small while

the first term is the viscous— dissipation which we cannot neglect. We recall that in the case

of momentum, the dissipation c, see Eq.(7b),

is of the same form as the first term in (19f) and since one takes t=2K/r, by analogy we

write

11



(19h)

where r is correlation time scale to be discussed below Thus, finally,

.-2r1$ (20)

Next, we consider the third term in (2c). Multiply (8a) by Uj, (5e) by c and add the

results We obtain.

j i J

where

F. E_|g_pg. + |-<7.. (21b)
1 /TV "Ol /TV 11 * 'i cKj i c^ ij

Recalling that

pU.C + /9$ (21c)
;., $. + «?. ,$) + /?u"u'.'c" (21d)
i L r i i I / - i / " l 1 * • '

substitution into the mass averaged form of (21a) gives, after several steps,

"l

where the function A- is given by

After some algebra, we have:

Fc - F.C = - g^A-c^ - <c"|g"> + F (vis)c - F.(vis) C (22a)1 1 i ^ ^ i

where F (vis) is the last term in (21b) and the dimensionless function A. is given By-

After some steps, we have:

Fj(vis)c - Fj(visj C = i/p<c"—u"> (22c)

Since by definition

pp = -^cTF (22d)

use of the expansion

12



£ = - aTT" + a c" (22e)
P

gives

F = aTV" - a F2 (22f)

The c"2 term will be approximated with 2$ given by Eq (19a) while TV will be computed

later. Thus, we have:

(22g)

J

To evaluate the last term in (22g), we use (8c) and obtain

since by definition pu"=0 The last two terms in (22g) are therefore

(24b)
*

which, using mathematical identities, we rewrite as

The first term represents the diffusion of $.. We shall neglect the last term since one can

argue that c" and the velocity gradient peak at different wavenumbers and there is

therefore little overlap. As for the second term, it has a structure intermediate between

(19g) and (19h) and it will therefore be written as

> = « * <24c>

The last term we must compute is the pressure correlation term

Using the analogy with the temperature case, we write

Finally, the complete equation for $j is

> ) = - R C r *jU. -gA.(
1 1J iJ J MJ 1

13



(26)

where we have absorbed T into T . Next, we consider the fourth function in (2c) which
Ulrf r

we generalize to

i> = ipT^ = pV (27 a.)

First, we recall that, except for the last term, the temperature equation (16a) can be

treated as in Canute (1997), where the equation for if> is given by Eq.(26f). Thus, we must

add the last term in (16a),

(27b)

in the derivation, one encounters the term

2

While the last term represents the diffusion of the potential energy ^T"^, the first term

represents the dissipation of it and we shall write it in analogy to the dissipation of

turbulent kinetic energy, Eq.(19g), with a time scale T* to be discussed later. The final

form of the dynamic equation for \P is:

DT + '-'Df = - cp'HiT,> - 2 V* + ** kk - ikV? <27d>
where the heat flux H. is defined in Eq.(16b). Next, we consider the second term in (2c),

namely the heat flux (16b) Here too, the relevant dynamic equation was already derived in

Canute (1997), Eq (24a), to which we must add the last term of (16a) In the derivation

one encounters a term analogous to (24b), specifically,

r l l

(27e)

which we treat in a similar fashion. The final result is:

= - CPRUT r ¥i,j -
'27f'

where the pressure term give rises to the relaxation term r' «. Finally, we use the fact that

14



(28a)

and the expansion (22e) to obtain

= aT™ - a c"T" (28b)
\j

so that (27f) becomes:

(28c)

Finally, let us consider the last term in (2c), the correlation between T" and c" We

recall that in general

d c _ D C , DC" , .
3t-DT + DT +u

and thus from Eq. (8b)

,DC DC" „ 0C „ 0c'\ _ T
DT + ui cfJT + ui } ~ Jk,k

Subtracting the mass average of (29b) from (29b) itself, we obtain

D C " , / ,n rrn\dC _ „ dc" „ 5c" , IT ^/,-lT
Et +(uru i^ i-

< u i3£ i
>-u i^ i

 +p ^~<p Jk,k

Multiplying (29c) by T" and mass averaging, we obtain:

" ~ T" C = <P'IT> J

k k

where by ...(higher order terms) we mean all the terms that entail correlations higher than

the second-order terms under consideration. For example, if we neglect the h o., we must

also neglect u^" in (29d): in fact, because of the second relation in Eqs.(5b), uT1" is already a

second order variable As for the equation for T", we employ Eqs (27) and (32) of Canuto

(1993; with obvious change in notation) to which we must add the last term in (15a).

Keeping only the largest terms, we have

" 6T 8C

k ^k
+

Once we multiply by c" and mass average, we obtain:

15



T. + x<c"l2T"> + ho (29f)
J 51

Adding Eq. (29d) to (29f), we obtain

D /)2
±L T"c" — _ <f>.T . _ c^H.C . -I- Y<C"-^ oT">
Tit 1 1 T\ 1 1 ^ /7YIJL I ,1 p i ,1 C/AJ^

(29g)

The last term becomes

v (a T*-a cT')- (29h)c L L

whereas

has a form analogous to (24c) and will be treated in similar fashion giving rise to the two

most important terms

" f "

Thus, finally:

= - $ T . - cp>H C . -

(29k)

VII. Non-Local Model

To simplify the use of the equations we have derived, we list them below, beginning

with the equations for the mean quantities:

Large scale flow, U-:

-« (30a)
J

Mean temperature T:

"< Vp'Hi - ac*i)P,i (3°b)

16



where u is given by (15b)

Mean concentration C:

*> <30c)

Reynolds Stresses /ra-'u'! = />R-:

(31a)

where

+ (31b)

The pressure-velocity correlation TT- • is discussed in Appendix A

Turbulent kinetic energy K=£R-.:

g,K+Dj(K) = - R^i j - ̂ Ivi'H, - a,.*,]?^ - c (32)

In both (3 la) and (32) we have not included the dilation term

Convective flux, c /mVT" = pfL- =

H H. + c Dr(H ) = — c R.-T •—Dt i p r v p ij ,j j i,j p - i ^ - ,j

Temperature fluctuations, i/oT"2 = /?\P:

Concentration variance, ipc"2 = ^$

Concentration flux, pc"u"- = />$•:

. ) = - R..C . - 4.U.J - ^ ( )

(36)

Temperature-concentration correlation, T"c":

Df = - ».T . - c-j - - r

(37)

17



The time scales r , r «, r , r «, r« will be discussed below.

VIII. Diffusivities. The K-c Model

A widely used turbulence models is the non-local K— t model in which both K and t

are treated non-locally while all the remaining turbulence variables are treated locally. The

equations for the mean variables are unchanged We have two non-local equations:

Xinetic energy K:

DtK + Df = -RijVgAi(aTJi-°c*i>-£ <38>

Dissipation rate e:

Bt< + Df " - csRijUi,j+
 i

while the other turbulence variables are given by the local expressions

Convective flux, F ? = c ouVT" = c^:

Tp(> Ji
Temperature fluctuations, ^

p(> Ji - - V,r Jku.,k - ̂ 'K* - «c""]p,i <40'

(41)

Concentration variance, ±pc"2 = p$.

$ = - i r$ .C. (42)c i ,1

Concentration flux, pc"u"- = ^$-:

Temperature-concentration correlation, T"c":

Reynolds stresses (Appendix A):

2r ~*b-• = — -TF KS- • — (1—p )S- • — (1—p ) Z- • 4- /? B-• (46)

Solving Eqs.(42)-(44), we obtain:
o/^

(47a)

18



where-

ik = Rik
(47c)

Equation (47a) begins to acquire a familiar form but to obtain an explicit form for $j we

must apply the Hamilton-Cayley theorem. The result is:

$. = _D..|£ (48a)
i 1J0X-

J

where the turbulent dtfjusmty tensor D-- is given by:

with
Vik

A = 1+L -L , A = - 1-L , A = (A + L V1 (48c)
o 1 2 1 i o y

= ,.., j— Vji.

6L,= L' + 2'im»mk'ki - 3L,',j'j,

From Eqs (42) and (45), we then obtain the expressions for the concentration variance

and the T"c" correlation:

<49a>
<49b>

Analogously, using Eqs (41), and (49b) into Eq (40), we obtain an expression for the

convective flux Jj which is structurally similar to (47a-c), namely,

where.

Using the Hamilton-Cayley theorem, we can solve (50a). The convective flux is given by.

19



The turbulent conductivity tensor \.. has the following form:

with

B = 1+M -M , B = - 1-M , B = (B + M )-* (51c)
0 1 2 1 1 V 0 3 ' '

M = /,.., 2M= - M' + M..Mj.,

lfjl (51d)

Finally, Eqs. (48a) for 4>; and (51a) for J. must be substituted in Eqs.(A.6-7) so as to

obtain the tensor B.., Eq (A.5) Once that is done, the result is substituted in (46) and the
J

Reynolds stresses R. . can then be obtained in terms of the gradients of the mean variables
J

The solution of (46) entails a system of algebraic equations. We recall that there are only

five independent compor

differential equation (32).

five independent components of R since the kinetic energy K satisfies a separate

IX. No Mean Shear

The ID case is particularly interesting since it allows a completely analytical solution

of the problem. Using Eqs (48a) and (51 a) one obtains the heat and concentration (salt)

fluxes as
or

(52)

(53)
3

The turbulent diffusivities K, are given by the expressions:
II jO

where the turbulent viscosity is given by

i/T = riP (55a)

A, = TT (1+ r/x + TT TT xR JD-1 (55b)
h 4V ' i 2 p' v '
A = JT (1+ //X -JT 7T x)D-! (55C)

S i 2 4

D = (l+ipc)(l+/a) -f JT^TT^R (55d)

T]= ^(x-KR p ) , //= T4(T5-ir2Rp) (55e)

20



where we have introduced the following dimensionless functions

x = r2! (56a)

where N£ has been defined earlier, Eq.(2b). Eqs.(54) are still not the final form since they

depend on two unknown variables v and x which we must express in terms of the large

scale variables. To compute i/ , we need an expression for w2 For that, we use the equation

for the Reynolds stresses, (46), (A.5)--(A.9). We obtain:

"T = r ^ + TsfVAsV1"1 (56C)

Next, we need an equation for x. We shall take the local limit of the kinetic energy

equation (38) which reads

<-gV,-««b», = Vh<WA,> <57a>
Substituting (57a) into (56c). we obtain the equation for x

which changes (56d) to:

Thus, v is expressed in terms of K and e. Finally, using the expressions for A, , Eq (57c)

becomes

A(x)x2+ B(x)x - y5 = 0 (57d)

where A(x) and B(x), which can depend on x (see below), are given by

A=TT (U—TT TT )R — IT (TH-TT TT R ) — IT—(TILL H-TT w TT R ) (57e)
1 2 4 X / ? 4 1 2 / 9 ' 1 2 4 / 9

15/~"A (57f)

Thus, x is expressed entirely as a function of R . Finally, we have

Kh=fffAh' Ks=llfAs <58a>
where we still have to determine K and t which in principle are solutions of the two

dynamic equation (38) and (39). Eq.(38) has already been used in the local form, that is,

Eq (57a) Eq.(39) for t has not yet been used and it can be taken to be local or not Below,

21



we give the solution corresponding to the case where (39) is taken to be local which means

i = A-'K3/2 (58b)

where A is a mixing length; the specification of A is the price that one has to pay for not

solving Eq.(39). From the definition of x, Eq.(56a), and the definition r=2Kr1, we obtain,

using (58b),

K = 4A2N2x-' (58c)

and thus the final expressions for the diffusivities K, follow from Eqs.(58a):
11 }\j

^ N£ , K
i s 5 r h - s x > ' A

s <58d>
Thus, the problem is completely solved analytically. In fact, both diffusivities are now

expressed in terms of the gradients <9T/dz and dS/dz Clearly, when N^<0 (corresponding

to unstable stratification), x must be taken as the negative solution of (57e) since K is

always positive, Eq (58c)

In addition to the heat and salt turbulent diffusivities, it is also useful to introduce a

mass diffusivity K . We begin by using Eqs.(2b) and (22e) to rewrite (38) as

Df(K) = KmN2 - gp-yw"- -f (59a)

where

F^ = J^ (59b)

is the "mass flux". Quantifying the strength of shear by the dimensionless parameter F

(Hamilton et al., 1989)

r = KmNjr'-l (59c)

we have in the stationary and local case

^w"" = pg-^Tc (59d)

If we further write the mass flux as

^ - - K

the "turbulent mass diffusivity" K becomes (Schmitt, 1994, Eq.7):

K = T ̂ >, N2 = N2(1-R ) (59f)
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On the other hand, use of Eqs.(22e), (52) and (53) gives

- K R ) (59g)

Using Eqs.(59e) and (2b), we obtain the following expression for K in terms of K^ and KC'

V(Kn-KcV(MlP"' (60)

In the absence of mean shear, F=— 1, Eq (59d) shows that the mass flux is downward

/9'w"<0 (61)

Thus we have, using (2d-g):

SF, Stable, R <1:

Eqs.(59f) and (60) imply that:

,
K <0, ^ < R < 1 (62a)

v c ^

SF, Unstable R >1

Eqs (59f) and (60) imply that-

V0' VK V1 (62b)

DC, Stable R>1 :

Eqs (59f) and (60) imply that:
K,

Kp<o, ir>V1 (62c)

The requirement of dynamical stability N2>0 sets the lower limit for R while the

requirement of turbulent mixing sets the upper limit of R . This is a natural result since

transgressing the upper limit would mean that dS/cte, which acts like sink, is too strong for

turbulent mixing to survive.

DC, Unstable, R <1:

Eqs.(59f) and (60) imply that:

V0' >RP' V1 (62d)

X. Qualitative Results. No Shear
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Before presenting the numerical solutions of the model, we present some qualitative

results. Using the definitions of K, , Eqs.(58d) and (57c), we derive the relations.n jD

In diffusive-convection, x<0 and since in the stable case R >1, we conclude that

Kh>Kg (63b)

in accordance with the measurements (Kelley, 1984). In salt fingers, we write (57c) as.

Ki=R- )i (1+151 j (64a)
Ah p ' XAh

Since x>0 and R <1, it follows that

V Kh (64b)

in agreement with the measurements (Hamilton et al, 1989, fig.2). Furthermore, in

diffusive-convection, the flux ratio

is predicted to be (x<0)

RF<1 (65b)

m agreement with the data (Kelley 1990, fig. 2). Similarly, in salt fingers we derive that the

flux ratio:

is predicted to be (x>0)

RF<1 (66b)

in accord with the measurements (Turner, 1967, fig.4; Schmitt, 1979, fig. 4; McDougall and

Taylor, 1984, fig.4; Taylor and Buchens, 1989, fig.6; Ozgokmen et al. 1998, fig.13).

XI. Salt-Fingers and Diffusive-Convection. The effect of Shear .

Here, we present the analytic solutions for the turbulent diffusivities of momentum,

heat and salt in the presence of the three gradients VU VT, and VC which we take in the
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form given of Eqs.(73a,b). K and c can be treated either locally or not. It is convenient to

introduce the following dimensionless variables:

<67a>

Concentration Flux:

J. (67c)

*i (6'd)

?^ (67e)

eqs.(46), (47a-d) and (50a-c) become:

Reynolds stresses:

vK"V&j (68a)

2aij = - T5£ij - (H^j - (H>A + VTU

Temperature Flux:
2

/z.. = p ft. • - A-(p n. + p c ) (70b)

where,

ft = r TT t1 = T Vui,j - V U' i,j ' pv^ij

The functions p's are defined as follows:

Pi=0.832, P2= 0.545, P3= 3*, P4= ^/g2

^-2 l - i - i „ =„P ^ T T T T T T , p = •?• 7T 7T 7T , P== OTT
5 1 2 3 6 3 3 2 4 7 2

5 / \-lP = f^TT , p = 7 T 7 r ( 7 r 7 r )
8 ^ 4 9 5 4 3 2
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= 7T 7T 7T2, p = 7T 7T"1 (72)
1 0 2 4 3 1 1 1 3

If we take.

^i(T'C) " S3

and thus-

J^T.C), U = [U(z), V(z), 0] (73a)

rO 0 dti/fa f 0 0 00/&,
=1 0 0 0V/& , V..=J 0 0 «9V/& (73b)

o J J l-00/&-aW& o J
we can give a complete algebraic solution of the algebraic set of equations (68)-(70). Since

we are dealing with only one component of the vectors n-, c-, we simplify the notation to.

n =n= — n ea r2-^—. n = TT TT (74a)
3 oto T C*Z' o 2 3

Heat flux.

=*- V f f l V'7'h
Salt Flux:

K s= 2 T S s

1

c EC=C g-^a ̂ , c = 7T2 (74b)
3 0 ° Cdz' 0 3

The dimensionless shear is given by:

If we introduce the simplifying notation

WE/T^U , 0=T" (74d)

we obtain the following results:

Momentum Flux.

3TT If 1

K m = 2 f S m

K = 2 <75b>

The dimensionless structure functions S , , see Eqs.(3d), are given by
Ill^iljb

Sm = 75AmD-'. Sh = T5\AhD-'. Ss = IS'.V1

anc + a c 2 - l - a n + ac (76b)

Ah = (1 + b c + b n)(60 + by + bc + bn) (76c)

A = (1 + b c -h b n)(60 + by + bc + bn) (76d)
v - 6 7 3 4 5
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D = 24 + d yn2 + d ync + d yc2+ d n3 + d n2c + d nc2 + d c3+
1 2 3 4 5 6 7

+ d yn + d yc + d n2-f d nc + d c2 -f d y + d n + d c (76e)
8 9 10 11 12 13 14 15

As one can see, the dimensionless functions A's and D depend on the gradients of the mean

temperature, concentration and mean velocity represented by n, c and y. The functions a^,

bi and d, (Appendix C) depend on the time scales r , T , etc which in turn depend on the
1\ 1\ ,̂ 1'*-'

Peclet numbers. For large Peclet numbers, a , b and d become constant, Appendix C. As
K K K

before, the variables K and c are in principle solutions of Eqs.(38) and (39). The

(superficial) algebraic complexity of the functions A's is a small price to pay when one

considers that the above equations are the solution of a fully turbulent problem in the

presence of three external fields, T, U and C. It is indeed quite surprising that such a

complex problem could be expressed via a set of algebraic relations.

In the case of a local model, Eq.(38) becomes:

Using the definition of the K's and that of ^> given in Eq.(74c), we have

4Sm-Ri(l-R^(Sh-RpSs)] = |j (77b)

Once we substitute the functions S h , Eq (77c) yields the function:
Ill^IlyU

R ) (78a)

We recall that in the functions A^ . 0 we must substitute:m,n,s
l-iy-1 (78b)

c = ̂ RiR^l-Rp-1 (78c)

We shall exhibit the turbulent diffusivities K . K, and K0 in units of A2N (forin n o u.

different values of R ) vs.Ri which we recall is defined as follows:
P'

Ri =
which helps us differentiate between stable and unstable stratification.

XII. The RNG method to determine the time scales r , r^ TC> T p TQ

To make the above equations predictive, one must know the dissipation time scales of
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the different turbulent variables, namely T , T «, r , r «, r«. Not surprisingly, this is one

of the most difficult problems since one-point closure models, like the one we have used,

are unable to provide them. In most engineering and geophysical applications (e.g., the MY

model), it was always assumed that

*K = (V Tc0' V V r$rl~ constant (79a)

However, on physical grounds, it is only possible to say that

T
Pr v r^rc (79b)

while T a remains to be determined. Since in principle, one may want to consider regimes

in which the Peclet number of both the temperature and salinity fields are not excessively

lager than unity (Pe~l correspond to low levels of turbulence), we adopt expressions for

that were previously depermined: theye are

47^=1, Safl+a;1)-1 (79c)

=4 (79d)

t^/atc) (79e)

We have used only one symbol for both Pe and a, but clearly in each specific case one must
TP

insert the corresponding Pe and <r, where:

where Xar are the molecular diffusivities of the two fields. The turbulent Prandtl numbersc/,c

a. are functions of the corresponding Pe and the RNG method gives the following result
I

(Canute and Dubovikov, 1996)

'T ~l} (79g)

The constants 7 are given by:
1)2
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27= (72+47)*-7, 7=7 +7, F=7/7 , 7=0.3 (79h)
1' 2

XIII. Numerical Results

In Figs.1-3 we plot K , vs. Ri (defined in Eq.78d) for different R (defined inro^n^o p

Eq.2a). The panels are characterized by the symbols SF (salt fingers), DC (diffusive

convection), DS (doubly stable) and DU (doubly unstable) defined in Eqs (2d-g). Consider

the case of salt-fingers in Fig.la. At a fixed Ri, the diffusivity increases as R increases

which is physically understandable since the instability is generated by salt and thus the

larger the source, the larger the diffusivity. Next, consider the dependence on Ri. We notice

that the smaller the shear Ri-»o>, the larger are the K's, which at first may seem

paradoxical: since both salt and shear contribute to the instability, their effect should add

up What we find is that the larger the shear, the smaller the diffusivity, which implies

that shear and salt-fingers work in opposite directions. It is in fact known (Linden 1971,

1974b, Kunze, 1990) that shear has the tendency to disrupt the fingers transport process In

the case of DS and DU, Fig.lb, R is negative, see Eqs.(2f-g). Quite understandably, the

former case (right panel) corresponds to the lowest diffusivity because of the large stability

introduced by both salt and temperature. The only source of instability is shear and thus

turbulent mixing dies when stratification is too strong. In the DU sade, the opposite occurs

in the sense that both T and S are unstable and the resulting diffusivities are the largest.

The same considerations hold true for K, and K which are shown in Figs.2,3. Considern s

now the DC case, Fig.la. At a given Ri, the diffusivity decreases as R increases, the

opposite of the SF case. This is in accordance with the fact that in this case salt acts as a

sink of turbulent mixing (which is caused by an unstable temperature gradient), and thus,

the stronger the sink, the lower the level of turbulence, a circumstance that is reflected in

the decrease of the diffusivity. As for the effect of shear, we notice that here too, the

smaller the shear (large Ri), the larger the diffusivities which implies that shear prevents

the mixing caused by the temperature instability. However, this is not true in general, the
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curves first decrease with increasing Ri, which indicates that for moderate Ri shear helps

mixing, as one would expect, but the trend does not continue since the curves change

curvature. However, there is saturation phenomenon which does not occur in the SF case

At large R (large sink), the help in mixing from shear saturates. Finally, the lowest three

curves correspond to a stable situation, while the second and third correspond to an

unstable situation. In Figs. 2b and 3b we present K, and K in the DU (doubly unstable)

and DS (doubly stable) cases. Quite naturally, in the altter case the diffusivities are the

lowest. In Figs.4-6 we plot the ratios K /K, , K /K and K, /K which show quitem n m s n o

clearly that the diffusivities are indeed different among themselves. In Figs. 7-10 we exhibit

the turbulent mass diffusivity K defined in Eq (59e) and given in terms of K, by
p "»"

Eq(60). In Fig 11 we plot T defined in Eq.(59f). Schmitt (1994) "measured" values of

T=0 18-0.25 are indeed predicted by the model for the case of salt fingers (upper right

panel) for quite a range of Ri but the precise value depends on R .

The length scale A is determined using the Deardorff— Blackadar formula:

A = 2-3/2B I, B =24.7,
i
) (80a)

I = nzi (i H-Kz)-1, t = 0.17H (80b)
i ov o o

where iq2=K is the turbulent kinetic energy, N is the Brunt-Vaisala frequency, «=0 4 is

the von Karman constant and H is the mixed layer depth. When used within the NCAR

CSM Ocean Model, H is determined as the depth where the buoyancy difference

g[/9(H)- /9(surface)]p(H)-1 = 3 lO^ms'2 (80c)

XIV. Ocean GCM

We tested the new vertical diffusivities in a global ocean general circulation model,

the NCAR CSM Ocean Model produced by the University Corporation for Research,

National Center for Atmospheric Research, Climate and Global Dynamics Division. They

developed their model by modifying the MOM 1.1 GFDL code (NCAR CSM Ocean Model
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Technical Note, The NCAR CSM Ocean Model, by the NCAR Oceanography section). We

employed the stand-alone 3°x3° configuration of the model detailed in their technical note

with the default parameter values. It has 3.6° spacing in longitude and a variable spacing in

latitude increasing from 1.8° at the equator to 3.4° at 17° N, S and then decreasing back to

1.8° for 60° N, S and poleward. There are 25 levels of increasing thickness in the vertical,

with the surface level 6 meters thick The option for the GM mesoscale eddy

parameterization was enabled. Bulk forcing with a seasonal cycle plus a 1/2 year timescale

restoring condition on the salinity is used, except under sea-ice where there is strong

restoring. This configuration corresponds to the case B-K described in Large et al (1997).

It should be noted, however, that for determination of the length scale in our turbulence

model we used the program's definition for mixed layer depth (a buoyancy difference from

the surface of 3 10'4ms'2), which is different from that graphed as a diagnostic in Fig.5 of

Large et al.(1997) We initialized our runs with annually averaged Levitus data and ran for

126 momentum years. As in Large et al. (1997) a 3504sec timestep for momentum is used,

while for the first 96 momentum years the tracers are accelerated by a factor increasing

from 10 at the surface to 100 for the deep ocean. We then set all timesteps equal for the

remaining 30 years as they did.

First, we ran the NCAR program as is, with the option for the KPP mixing enabled,

producing the KPP data presented in the figures below. Then, in place of the KPP module,

we inserted a module which uses our new model for the diffusivities for momentum and

heat with the salt diffusivity set equal to that of heat. To save computing time, we

constructed tables of the dimensionless functions S , and of the dimensionless variable y
111*11

(obtained from solving Eq.68e),

y = * $£? E ixa(£)2 (81a)

vs. Ri. Then, for each point in space and time these were interpolated to the local Ri. The

diffusivities K , were written in terms of (81a) as
111*li
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MBv-*S mh (81b)
111) .11 \ 111,11

XV. Below the Mixed Layer

Below the ocean mixed layer, the external wind-generated shear is too small to

generate turbulent mixing and yet, even in regions where both the temperature and the

salinity gradients are stably stratified, it is usual to assume "background diffusivities" for

viscosity, heat and salt diffusivity which are believed to be caused by internal wave

breaking (Large et al., 1997). In our case, when we assumed K^=K , we followed the same

practice. It would be preferable not to do so but rather model the physical processes

causing this background mixing. Our main assumption is that the turbulence model has

given us the correct functional dependence of the K , on Ri and R and that suchm,n,s p
diffusivities can thus be used below the ML. Since all the arguments discussed below, are

valid for any of the three K's, we shall use only the generic symbol K and write succinctly

K = K(Ri,R ) (82a)

The key problem is how to define and thus compute Ri. Here, we shall make us of the

measured data (Gargett et al., 1981) on the vertical shear generated by the wave breaking

phenomenon. By integrating over all wavenumbers one can compute the shear due to

internal waves, S , . One can then form a corresponding Ri , as follows:

Riwb= N2/Swb (82b)

where

N2 = - g/r1-^ (82c)

Gargett et. al. (1981, sec. 5) confirmed earlier arguments by Munk (1966) that Ri , ~1 To

those argument, we would like to add the following consideration. As the value of Ri ,

above which there is no longer turbulent mixing, computed from our model is 0(1), if Ri ,

were »1, there would be no turbulence generated by the internal waves at all. On the

other hand if Ri , were «1, there would be a very strong turbulence producing a

viscosity sufficient to damp out the waves themselves. The wave-generated turbulence is

thus self-limiting Since the turbulence model gives a precise value for Ricr, while the
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above argument only tells us that Ri u~0(l), we shall write:

Riwb=cRicr (82d)

where c is a constant reasonably close to unity. We have found that c=0.88 gives a

diffusivity close that measured by Ledwell et al. (1993). Since in the local model, the K's

are also proportional to the length scale A or i. Below the mixed layer, we thus need an

analogous i^. We shall use the same formal expressions (80a,b) but with different t (wb)

which we compute as follows. Assuming a Kolmogorov spectrum at wavenumbers upward

of a breakpoint k and integrating, we obtain:

/ (wb) = (3Ko)3/2(B k )-' (82e)

where Ko=1.6 is the Kolmogorov constant. We identify k with the best value of Gargett

et al. (1981) for the break in slope of the observed spectrum of internal waves, namely

k = y0 2 TT radians/meter (82f)

Thus, ^0(wb) is known and so is t , . Similarly, y , is obtained by solving the

production=dissipation, Eq (77b). Thus, the complete wave— breaking expressions for the

three diffusivities are:

Km,h,s<wb> = **f(*W*?d Sm,h,s(Riwb' V (82g)

We add together the diffusivities calculated using the shear resolved in the ocean model

and the background diffusivities, ensuring continuity in the transition between regions

where external excited shear dominates and those where the internal wave shear does We

thus take the total diffusivities to be:

Km,h,s = Km,h,s<Ri'V + Km,h,s(»b' V <82h>

In the statically unstable case (Ri< 0), we set K , (wb)=0. The very large mixing duem^n^o

to convective instability makes the background irrelevant in this situation in any case.

XVI. 0-GCM results

Using the model for the K's extended all the way to the bottom of the ocean, we

obtain the results presented in Figs. 12-23. In each case, we compare the results with
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Levitus (1994) data, with the KPP model (K ,=K ) for which we have rerun the code andn s
with our model with K = K , . In Figs. 24-32 we plot K , (cmV1) vs. depth (meters)s XI m,li 5 s,^/

at different locations. As expected, the K's are small below the mixed layer where they can

reach very high values, as we explicitly show in Figs.30-32. In case of the Canary Islands,

Fig.29, the diffusivity of a truly passive scalar (and thus strictly not K , ) wasm,n,s,/?

measured by Ledwell et al. (1993) to have a value of 0.11±0.02 cmV1. Finally, in Fig.33 we

present the polar heat transport. As already discussed in the work of MHG, global

properties are not strongly affected by double diffusion phenomena.

XVII. Conclusions.

Considering the importance of double diffusion phenomena in oceanography (Schmitt.

1994, Zhang et al., 1998; Merrifield et al., 1999), we believe we have made a quantitative

step by presenting a new formalism. The resiliency of the new approach is demonstrated by

the fact that it can encompass salt-fingers, diffusive-convection, doubly stable and doubly

unstable gradients The whole formalism was developed so as to include shear which,

though of different origin at differernt depths, is always present. Within the mixed layer, it

is mainly due to external wind gradients while in the ocean interior is believed to be mainly

due to wave breaking phenomena.

Clearly, the model with salinity would have lost much of its attractiveness if we could

use it only in the ML and if we had to parameterize the physical processes below the ML

with adjustable background diffusivities as done thus far. We have suggested that below

the ML the functional dependence of the three diffusivities on the two stability parameters

R and Ri is still the one given by the turbulence model since the latter does not depend on

any specific form of the shear entering the Richardson number Ri. As dicvussed in XIV, we

have used the data on vertical shear measured by Gargett et al. (1981).

The final model comes in more than one flavor depending on whether on uses local or

non-local models. Logically, the first model we have treid is the local one since the whole
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problem can be solved analytically. The expressions for the turbulent diffusivities are

algebraic. The whole turbulence problem is reduced to the solution of a cubic equation

The problem is however far from solved. Of particular significance is the role played

by the salinity—temperature correlation. If we were to assume that

TV = (T^s112)* (83a)

and that

Tcff= \ T = ± T 9 (83b)

as one may be tempted to do, one would obtain that the two fields are indistinguishable

and this implies that

Ks=Kh (83c)

contrary to what is observed. Fortunately, the present model dos not require either of

Eqs (83a,b) but once they are imposed, (83c) follows. These and similar questions will be

the subject of future studies.
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Figure caption

Fig. la Momentum diffusivity K in units of A2Nu, see Eqs.(74c) and (58b) vs. Ri defined

in Eq.(78d) for different values of the Turner number R defined in Eq.(2a). The label DC

and SF are defined in Eqs.(2d)-(2e).

Fig.lb Same as in Fig.la for the DU and DS cases, Eqs.(2d)-(2e).

Fig.2a. Heat diffusivity vs. Ri for different R . Salt-fingers and diffusive-convection

Fig.2b Same as in Fig.2a for the DU and DS cases.

Fig.Sa Salt diffusivity K vs. Ri for the SF and DC cases
o

Fig.Sb Same as in Fig.3b for the DU and DS cases

Fig 4 The turbulent Prandtl number K /K, vs. Ri. The heavy line corresponds to the

laboratory data discussed in paper II, Figs. 3,4.

Fig 5. The ratio of momentum to salt diffusivity vs. Ri for different R

Fig. 6 The ratio of heat to salt diffusivity vs. Ri for the DC and SF cases for different R

Fig 7 The mass flux diffusivity K defined in Eqs.(59e) and (60) vs. Ri for different R for

the DC and SF cases

Fig.8 The ratio K /Km vs. Ri for different R for the DC and SF cases.

Fig. 9 Same as in Fig.8 for the ratio K /K,

Fig 10 Same as in Fig.8 for the ratio K /K
P s

Fig 11 The efficiency parameter F defined in Eqs.(59c) and (59f) vs. Ri for different values

of R . A value r=0.18-0.25 (Schmitt, 1994) is indeed predicted by the model for the

salt-finger case.

Fig. 12 The resulting global ocean temperature using the 0-GCM discussed in XIV with

the background diffusivities computed following the new procedure discussed in XIV above.

The Levitus (1994) data are the solid line. We have also run the 0-GCM code with the

KPP model (K =1^) and the results are indicated by diamonds. The results with our new

model with K =K, are shown by squares while the full model with Kg^K^ are indicated by
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asterisks.

Fig. 13 Same as Fig. 12 for the global salinity

Fig.14. Same as Fig.12 for the Artie ocean

Fig.15. Same as Fig 13 for the Artie ocean

Fig. 16 Same as Fig.12 for the Atlantic ocean

Fig.17. Same as Fig.13 for the Atlantic ocean

Fig.18. Same as Fig.12 for the Pacific ocean

Fig.19. Same as Fig.13 for Pacific ocean

Fig.20. Same as Fig.12 for the Indian ocean

Fig.21. Same as Fig.13 for the Indian ocean

Fig.22. Same as Fig.12 for the Southern ocean

Fig 23 Same as Fig.13 for the Southern ocean

Fig.24. The foir diffusivities K , (cmV1) for the Papa staionrn,n,s,p

Fig.25 Same as in Fig.24 for the Artie ocean

Fig.26 Same as in Fig.24 for the Canary Islands.

Fig 27 Same as in Fig 24 but for the first 1km

Fig 28 Same as in Fig.25 for the first 1km

Fig.29 Same as in Fig 26 for the first 1km. Ledwell et al. (1993) value of 0.11±0.02 cmV1

(see, however, the discussion in the main text)

Fig.30. Same as in Fig.27 for the first 40m

Fig.31 Same as in Fig.28 for the first 40m

Fig.32 Same as in Fig.29 for the first 60m.

Fig.33 Polar heat transport vs. latitude for three different models.
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Appendix A: Reynolds stress equations

Rather than employing Eq.(31a), we introduce the traceless tensor

where K satisfies Eq. (38). We thus have:

8,bij + Df<b> = -
where the (traceless) tensors ft and Z representing shear and vorticity are defined as:

ij + Df<b> = - 3KSij - V zij + By - *« ( A'2)

< A 2 >

ij = bikvjk + bjkvik <A '3>
where £.. and V.. are shear and vorticity:

u = *<ui,j + V' vij = «ui,rV (A-4)

The new tensor B-. is given by

<A 5>
( A 6 )

We recall that

(A 8)

Finally, we have to treat the pressure-velocity tensor. Following the procedure described in

(Canute 1994), we take

?-'nij - 2 v'b.i - K - p, v p2zij + (l-"5
)Bii (A-9)

where the numerical constants p and 3 are given in the text. The time scale r is
1,2 5 ° Pv

discussed in Appendix B. Finally, Eq. (A. 2) becomes

"^ij - (1-p
2'

 Zij + ^5Bij
(A.10)

Dtbij + Df(b> = - 2 V'bij - IS KEij - ('-

Appendix B

The (T , r g, TO) vs. r relation is (Canute and Dubovikov 1998):
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for the T-field we have

,)]-' (B.2)

<B-3'
For the C-field we have:

))-' < B 4 >

For the T-C correlation, we have:

( B 6 )

The Peclet numbers Pe^ are defined as:

_ 4 ? r 2 K 2 , l I-

The turbulent Prandtl numbers a. «, a. are themselves functions of the corresponding Pe's

and satisfy the general equation. Calling ffl^E, we have

«; 7S+1 r ._ _:] (B_8)

with 27 =(72+47)2-7, 7 = 7 + 7 and 7=0.3. The Prandtl number a=vf\ is usually 0(10'8)

and thus negligible.

The Peclet number Pe can safely be taken much larger than unity in which case both
\j

(B.4) and (B.5) become constant. When also Pe«»l, we have

at=0.72 (B.9)

and thus:

or
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n = 0.0691, c = 0.5184 (B.17)
o o

Appendix C

The functions a,b,c and d entering Eqs.(88a)-(88e) are given by:

a = p [I2p +8p -30p p -5p (p +3p „,)],i ir 9 6 68 ev im *2ni;j

a = - 5[(p p +p p -2p p p )(p w+3p _)+
2 Uh4 9 6 11 4 6 1 im *2m'

+8(p p +2p p -2p p )+12(p p +p p -p p p )
V * 4 * 9 *6*11 *5 6' V i l l * 9 MO 11 5 6 T

-30(p p p +p p p -p p p -p p p )V*3 4 9 6 8 11 K5 6 8 3 5 6 '

i= P4P7~Pii' b2=-pn' bs= 15p
2m

d3=
d = - 4p p (2p +3p

4 *6 11V 6 9

d = 4p p p2(4-f 3p ) - 4p p (3p +2p ) - 4p p (3p +3p +2p +2p
5 476 l' 4 9V 11 6 6 11 9 10 4 6

(C

b = - 30p , b = - 30p , b = - p . b =p p -p (C 2)
4 V 5 6 6 10 7 6^7 K9

d = p [p^p +6p ) + 2(p ̂ -Sp }p p - p^ (p +2p )]
i iil 2inv^6 9 im ^2m e 8 ^imv^e 9

d = 4p2p p (4+3p ) - 4p p (2p +3p ) - 8p p (p +p ) - 12p p (p +p )
6 467 7 49 4 \V 4 6V 10 IV 10 11 4 6

d = p2

9
 Ki (2p +2p +p ) -p2 (6p +6p +p ) -2p p (p -3p m)v Kn *io K4y 2mv Kn Fio *V ^3 4VKim K2m/

d = 8p2 + 4p (3p +7p ) + 24p p
10 6 6 9 IV 9 11

d = - 8p p p (4+3p ) + 4p (4p +7p +3p ) -I- 4p (3p +7p ) + 24p (p +p )
11 467 1 \ 6 9 ir 6 10 11 11 9 10

d = 4p (7p +6p ) + 4p (2p +3p ), d = 6p2 -2?^
12 10V 4 Ml7 4V K4 V\\ ' 13 2H1 *im

d = - 24p -24p -28p , d = - 24p -24p -28p (C.3)
14 *9 11 6 15 11 10 4
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