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Thispaper is a continuation of ourwork on edge-flames tn premixedcombustion. An edge-flame ts a
t_sm-dimensionalstructure constructed from a one-dimensional configuration that has two stable solutions
(bistableequilibrium). Edge-flames can displaywavelike behavior, advancing as ignitionfronts or retreating
as failure waves. Here we consider two one-dimension',d configurations: twin deflagrations in a straJmng

flowgenerated by the counterflow of fresh streams of mixture: and a single deflagration subject to radiation
losses.The edge-flames constructed from the first configuration have positive or negative speeds,according
Io the value of the strain rate. But our numerical solutions strongly suggest that only positive speeds
(_rresponding to ignition fronts) can exist for the second configuration. We show that this phenomenon

occur in diffusion flames when the Lewis numbers are small. And we discuss the asymptotics of
one-dimensionaltwin deflagration configuration, an overlooked problem from the 70s.

Introduction

defined, roughly speaking,
sheet with an edge. There is a growing

.... on in non-premixed combus-
A

liquid, will
; edge flames are an important part of
of the combustion field that occurs in

solid propellants [2];
• ' are a noticeable eristic of candle flames

'conditions [3]; and they must ex-
is torn in a flame-sheet by tur-

so that their behavior is relevant to
of lifted turbulent diffusion flames

theoretical work has been pio-
Dold and coworkers [6,7].

in premixed combustion have been
Indeed, there appears to be only a
treatment [8] and a single explicit

study [9]. Old experimental evidence
[10] is noted in Ref. [8]. The pres-

to Ref. [8] and examines pre-
in two hitherto unexamined con-

framework in which edge-flames can be
the following fashion: There

one-dimensional combustion systems,
+. on a spatial variable x, say, for which

solutions. Of particular interest
for which there are three solu-

and one unstable, the counterflow

diffusion flame being a well-known example. Sup-
pose the weakest (strongest) of the stable solutions
has a temperature distribution Tt(x) [T.2(x)]. Tt(x)
will ot_en correspond to a quenched state, or a close
approximation thereof, with values close to some
background or supply temperature Tf. The maxi-
mum value of To(x) will be close to a flame-tem-
perature (e.g., the adiabatic flame-temperature or
the Burke-Schumann flame-temperature). An un-
steady two-dimensional combustion field can then
be defined by an initial-value problem in the x - z

lane, where the boundary conditions in x are those
r the one-dimensional problem, and

T(x, :, t) _ To.(x), Tt(x) as z --+ +oo, -oo (1)

If To(x) is associated with a single thin reaction zone
(flame-sheet) and Tt(x) is associated with negligible
reaction, an edge-flame is defined and the edge-
flame structure either moves in the direction of de-

creasing z, in which case we call it an ignition front,
or moves in the direction of increasing z, in which
case we call it a failure wave. Here we continue the

discussion of ignition fronts and failure waves in the
premixed context. We discuss the situation where
the one-dimensional problem is defined by a twin-
flame counten%w, and we also discuss a deflagration
in which multiple solutions arise because of radiation
losses. Some related results on diffusion flames are

briefly discussed, as is the asymptotic description of
quenching for the twin-flame problem. As the latter
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FIG. 1. Variations of ma.'amum temperature with Dam-
k6hler number for twin counterflow flames: E, exact: El,

first-order approximation of exact solution: A. solution of

the autonomous equation AI0: AI. (A19), 1 term in q; A2.
(AI9), 2 terms in q: B, (3..20).

•,still only be of interest to the asymptotics commu-

nity. it is relegated to the Appendix.

This work and Ref. [8] are parts of the dissertation
of Vedarajan [ 11].

The Twin-Flame Counterflow Problem

Consider a symmetric counterflow of fresh mix-

ture that, in general, supports twin flames. This con-

figuration has long been studied, both theoretically

and experimentally.

A simple model suitable for our purposes starts

with the equation

- prrxd./dx(CpT, Y) = ;,.C_ _d'/dx"-(CpT, Y)

+ BYe -wRr(Q, - 1) (2)

where a is the rate of strain and we have assumed

that the Lewis number is 1. The supply conditions
are

Ixl ---_ ao T-.->Tf, Y--4Yf (3)

IfATo _a QYf/Cp is used as a reference temperature,
and

is used as a reference length, a single nondimen-

sional equation can be deduced, namely,

-xT, = T,:, + D(1 + Tf - r)e -°'r, (4)

D = B/pa, 0 = E/RJT_

Because of the symmet_, it is sufficient to solve this
equation in x > 0 with the boundary conditions

T,(O) = O, T(oz) = Tf (5)

Note that within a context that resolves the cold-

boundary, difficulty (e.g., a cutoff temperature), the

system of equations 4 and 5 has a stable quenched

solution in which T = Tf every_vhere. In addition, it

is weU known that for D greater than some minimum

value D,,_, there are two solutions. These can be

characterized by the maximum value of T (T,_,), and

a representative response, obtained numericallv, is
shown as a solid line in Fig. 1 (curve E). Here Tf =

0.2, T_ _ t + Tf = 1.2, and 0 = t6, values adopted
throughout the paper. The upper branch corre-

sponds to stable solutions, and it is these, along with

the quenched solutions, that are the key ingredients
of the unsteady two-dimensional problem described

in general terms in the Introduction. We are par-

ticularly concerned with solutions for values of D
close to Dmi n.

As an aside, not part of the main thrust of our
discussion, we note that there have been asymptotic

treatments of the system of equations 2 and 3 in lieu

of a numerical strategy, but there are ingredients
that have not been discussed before, and we de-

scribe these in the Appendix.

Failure Waves and Ignition Waves

In this section, we use the strategy described in
the Introduction to define a two-dimensional un-

steady problem with T.,_(x) defined by a point on the

upper branch of Fig. 1 (curve E) and Tt(x) _ Ty, the

quenched state. The appropriate generalization of

equation 4 is

T, - xT, = T= + 7= + D(TQ - T)¢ -art (6)

now accounting for diffusion in the z direction as
well as in the x direction.

Note that as tzl _ oo where T= _ 0, equation 6
reduces to the one-dimensional form (equation 4),

and the solution T2(x) can be assigned as z _ +oo,

the solution Tl(x) =--Tfas z _ - oo. (Note the remark

following equation 5.) Boundary conditions in x are
those for the one-dimensional problem, namely,

equation 5. And initial conditions, whose precise

form is not important, are defined by a simple

smooth interpolation between Tz and T.,.

Figure 2a shows an initial temperature profile.
Note that at z = - 5, it is Tl w Tf, and at z = + 15,

it is T,,(x), the one-dimensional thrin-flame configu-
ration. The Damkbhler number is 4.9 x 10 7 and the

flame sheets are merged together, because we are

close to Dmi _. Figure 2b shows the profile at a later
time, and it is clear that the structure is retreating,

corresponding to a failure wave.
In view of the double-flame structure, it might be

argued that the use of the rubric "edge-flame'" is not
appropriate, but the behavior revealed here has its

counterpart in the edge-flames discussed in Ref. [8],

where the single-flame counterflow problem is ex-
amined (fresh versus inert counterflow).

If a is decreased (D increased), it is possible to
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FIG.2. Temperature profiles of a failure wave D = 4.9 x 107: (a) t = 0: (b) t = 4.5.
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FIG. 3. Reaction-rate contours of an ignition front D =
1.1 X l0 s. t = 4.5. Values are {0.5, 1.0, 3.0, 5.0, 5.0. 3.0.
1.0, 0.51.
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FIC. 4. Variations of wave speed (edge speed) with Da-
mkOhlernumber, twin flames.

get an ignition front, and Fig. 3 shows reaction-rate

contours in such a case. Steepening of the leading

(IHTdr(_lc_e.).dPs:_:nth°ef_h_u rfl:mejs qt_te faoP_'_:notf

unchanging shape following the passage of initial
transients.

By performing a number of calculations for dif-

ferent values of D, it is possible to construct a graph

showing variations of the front speed V with D (Fig.
4). Here

V = (._). S -' (7)

where (-')+ is the dimensional front speed and S is

the adiabatic flame speed defined bv the system. The
quenching value ofD (D,.,.) is 4.862 x l0 r, and for

values olD between Dm,_ and Do (9.776 × 10r), the

front speed is negative. But for values of D greater

than Do, the front speed is positive, The significance
of results such as these, both in the present context

and in the single-flame context of Ref. [8], is that

flames can experience two distinct types of quench-

ing: global quenching, arising when D is reduced

below the value D,.m; and quenching if part of the

flame has been destroyed and D,.,, < D < Do so

that a failure wave enlarges the region of destruction.
Results such as these and the one-dimensional an-

alog discussed in Ref. [8] suggest that the basic in-
gredients we have included here--multivaluedness,

quenching--will always lead to the dichotomy of
positive and negative speeds for the two-dimensional

structure. That this is not the case is shown by the

example discussed in the next section.

Multivaluedness Due to Radiation Losses

Consider the equation for a plane deflagration, ra-
diation losses included,

MCpT x = ).T= + BQYe -Emr - q" (8)

q" = lff3MWe_,tm (_- Y)(T- 7"/)W/m 3

where MW is the mean molecular weight, P,,.. is the

total pressure in atmospheres, and T is the tempera-

ture in degrees Kelvin. We suppose that Y represents

methane and the radiating species are COz and H._O,

whose concentrations are proportional to (_) - Y).

There is a corresponding equation for Y (cf. equation
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FIG. 5. Variations of flame temperature with equivalence

ratio for a deflagration with radiation losses.

2). The expression for q'" is derived bv first con-

structing an accurate representation of tlae tempera-

ture dependence of the band radiation for each spe-

cies and then fitting this with a straight line, a

surprisingly reasonable approximation up to a tem-

perature of 1800 K. All other parameters are chosen

so that the model provides a reasonable approxi-

marion of methane/air flames in the neighborhood

of the lean limit. The goals are only qualitative, but
we do not wish to be led astray by gross quantitative
inaccuracies.

Now the system of which equation 8 is a part de-

fines, in addition to the quenched solution T = Tf,

Y = Yr, dual solutions for values of Yf greater thah

i !1 , I "

FIG. 7. Temperature contours for an ignition front with
radiation losses, 0 = 0.53556. Values are (1.5, 2.0.2.5, 3.0.

3.5, 4.01.

the radiation-defined inflammability limit Y/ =
0.02945 (equivalence ratio _ = 0.5355): See Fig. 5.

the upper branch of which corresponds to stable so-
lutions. Thus we can construct a two-dimensional

unsteady combustion field (an edge-flame), and Fig.

6 shows an ignition wave for _b = 0.53556, a value

close to the limit. Temperature and reaction-rate

contours are shown in Figs. 7 and 8. The wave is

quite thick because the temperature decay occurs on
a scale that is much larger than the preheat-

zone thickness. Figure 9a shows variations of the
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contours for an igmtion front with

lasses, _ = 0.53556. Values are {0.04, O.I, 0.3,

'ILt

_, results which strongly suggest

speeds do not occur. Thus the limit
ratio is 0.5355, and yet at an equivalence

the edge speed is positive with a
0.3555. Of course, it is not

_b arbitrarily close to the limit in
I number of calculations, but it seems unlikely,

.9a is examined, that anything but positive
achieved.

:flso a characteristic of existing results when the un-

derl.ving one-dimensional flame is a diffusion flame

(e.g., Ref. [1]).
On the other hand, if a hole is torn in a flame

subject to radiation losses, the hole will heal no mat-
ter how close the equivalence ratio is to the limit
value. It is natural to wonder if robust flames of this

nature can occur in the counterflow configuration ff
the Lewis number is different from 1, and although

we have no results of this nature for premixed

flames, we have uncovered robust edges in the case

of diffusion flames. Figure 9b shows variations of

edge speed versus Damk6hler number when the un-

derlying one-dimensional flame is defined by a sim-

ple symmetric counterflow configuration (1:1 stoi-
chiometrv, both Lewis numbers equal to 0.3), and

negative'speeds are not obtained. However, this

might not be a commonly realizable phenomenon.
In examining edge-fames constructed from the S-

shaped response of the Kirkby-Schmit'z configura-
tion [12] (flux conditions for the fuel applied to one
boundary, Dirichlet conditions for the oxidizer ap-

plied at the other), for a variety of parameter choices,
we have failed to identify robust edges even for

Lewis numbers as small as 0.2.

Clearly, the results presented here and in Ref. [8]
could have relevance to the behavior of turbulent

premixed fames in the laminar flamelet regime, par-
ticularlv where the response of turbulent flame

speed to turbulent intensi .ty "bends."

: :" Conelusiom

we have examined two examples of

remark following equation

_a arise when the reactants are premixed.

for the symmetric (twin-flame) counter-
are similar to those of the single-

in Ref. [8]. These can
the observation that if a hole is

a flame, it will get larger or smaller,
on the value of the straining rate. This is

L

II. 1,141 (I) 0.54 O.S4S

i

i

t

i
i

I

Appendix

Asymptotic Solution of the One-Dimensional
Counterflow Problem

Here we brieflv discuss the system of equations 4

and 5 in the asymptotic limit 0 -o oo; there are in-

gredients that have not been discussed before. In the
limit, reaction is confined to a flame sheet located at

x = x,, and if x, _ 0, we have, to first order,

O,S5

O

>

0,$

Ilklll_0e $.lE*Oe IIOE+011) e SE+0tP 70E*O8 75E*01) O OE*09 85E#09

D

FiG. 9. Non-negative edge speeds:

(a) deflagration with radiation losses

and (b) symmetric diffusion counter-
flow configuration, Lex = Let =

0.3.
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0 <---x < x. T = 1 + Tf-_ T,,, Y = 0: (A1)

x >x.T - T[ = 1 - Y/Yf

= effc(x/,/__)/erfc(x./_)

The usual flame-sheet analysis determines the gra-
dient on the unburned side of the flame,

I'd-lYe(x. + O) = [2DT_e-'-e-'r"] 1/2

= {S[pCv/a,_pz2}. _ _ (A2)

where S is the adiabatic flame speed defined by the

system. (The label 0. is used to denote a quanti .ty

that is expressed in terms of dimensional variables.)

Matching with the gradient of equation Al(b) then

_elds a tbrmula for x.,

4'_--nne-q/2/erfc(x./_f2) = _ (A3)

and from this, we can deduce variations of._. with

_, where

£. = {SpCp2-1x.}+ = x._J (A4)

is a nondimensional flame-sheet location that is not

scaled with a..% decreases monotonically with in-

creasing a, reaching the value 0 when g-'°(-ot) =
rd2, a well-known result (e.g., Ref. [13]). For these

solutions, the maximum temperature remains fixed

at:r,=l+r r.
There is also a solution for which x. = 0 and the

flame temperature T. is within O(UO) of T_. Then,
to first order,

x > 0 T = rf + erfc(x/_) (AS)

Within the reaction zone, the variables are t, ¢ where

T = To(1 + O-1T, t), x = 0-1¢ (A6)

t_¢ = DO-'2e-_r*te t

t = t., t, = 0at( = 0

(A7)

whence

Here t. defines the flame temperature, a quantity to
be determined.

A single integration leads to

(t.) 2 = 2D0-"e -°rL [p(t.) - p(t)],

p(t) m e t (1 - t) (AS)

which imposes the requirement t < t. < 0, a range

in which p is an increasing function. Matching beo

tween the gradients defined by equations A5 and A8
(x --* 0, t _ -oo) then leads to a formula for t.,

namelv,

p(t.) = 2rr-I_-_ (A9)

defined for S-_ < 2z/2. This branch, with infinite

slope at S-_' = n/2, is drawn in Fig. 1 (curve El)

along _ith the upper branch T. = T, (t. = 0) iden-
tiffed earlier when x. ¢ 0. Thus the asymptotics pre-

dicts a turning point (quenchingpoint) in the re-

sponse, but only provides a first-order estimate of its
location (T. = T_, S-:' = n/2), and not a very, ac-

curate one at that.
A refinement of this description can only come

from a higher-order analysis, and in this connection,

we rewrite equation 4 in the form

T_ + (n/2)De d (T,, - T)e -''r = O.

s = erf(x/4_) (A10)

Now the turning point can onlv be generated when

at least the exponential tail of the temperature per-
turbation within the reaction zone interacts with the

symmetry plane x = 0. The natural assumption is

that x. = 0(1n0/0) when this occurs, corresponding
to e -_¢ = O(1/0) for some k. Then we can approx-

imate e d by 1, and that this is a poor approximation
beyond the reaction zone is obviously of no concern.

Equation A10 can then be integrated using the
boundary conditions

T, = 0, T = T. ats = 0 (AID

to yield

. dr [h( - O/r,) - h( - Oral- t_

= - _.s (A12)

1 0[E_(t) - t-_e_ - t-_eq
h(t) _

+ T_[E,(t) - t-re t]

where E,(x) = .fL. dt t- te_ is the exponential inte-

gral. Equation Al2(a), with s = 1 (x = o_), T = Tf,

is an implicit formula for T.(D), and this function is

also plotted in Fig. 1 (curve A). It is a decent ap-

proximation to the exact solution.
If the problem implicit in Equations A5-A7 is ex-

amined to the next order, in an attempt to calculate

a better approximation to the flame-temperature for
the wall t_ame, that is, t. = t._ + O-_t.._, it is not

difficult to show that t..2 --) 0o as t.t --* 0, with t..2t.t

--_ const., give or take logarithmic terms. (Second-
order flame-sheet theory is seldom required in our

subject, but a detailed example is presented in Ref.
[14].) Thus the erstwhile 1/0 .2 term in T, is com-

parable to the 1/0 term if t** = O(1/,f0), corre-

sponding to an O(1/0_/0) deviation from T,. The

turning point is characterized by this scale.
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the simplified (autonomous) version of

A10, with the variables of equation A6.

ff the exponential is expanded,

= ID[td - T_O-lt3e t + ...1,

D = (n/2)DO -2e-'_T° (A13)

t
= - dt[tet - T_O-_tae t + ...] (A14)

_(t) is the first approximation), the solution of

A13 satisfying the boundary conditions

A7(b) is

_dt [q(t,) - t)]-_'2 = _ #_.¢ (A15)q

:behavior

t-- -_q(t.)_ + t, + dt x

{[1 - q(t)/q(t,)] -w2 - 1} + e.s.t. (A16)

the reaction zone,

r. = o (hiT)

mhition

_::_.,, T = A(O)s + T/ - a(O) (A18)

the boundary, condition at s = 1, where
, b a colorant.

now equate T as defined by A16 with A18
to all orders) so that A = -TZ,,/-_q(t.)

543

justification for the validity of replacing q by its first

approximation.) Indeed. for small t, and only the
first approximation for q, A19 can be approxi-
mated bv

T_ _qq(t.) _ (T_ - Tf) + T_O-' X

[-_ ln(-t,) + 1.34992...] (A20)

see Fig. 1 (curve B). The derivative of A20 is ap-

proximately

( - 1/2) C27)t, + (1/f_)dD/dt,

- #_(ot.) (ael)

which explicitly shows that in the immediate neigh-
borhood of the turning point t, is O(1/v'0).

A final note. The formula A16 mav be used to

provide a measure of the overall thickness of the
reaction zone (bounded on the left bv the symmetry

lane). The displacement effect can be calculated by

nding the value of _ for which the linear variation
of t, extrapolated to small _, defines a value oft equal

to t,. Thus,

_. - r,'-(r_ - TZ)-_x

[-]21n(-t.) + 1.34992...1 (Ag2)

which is O(ln O) when t, is O(1/jr0). Recall the re-

marks following equation A10.

Acknowledgments

,(t,) = (r. - rr) + T]O -L x

_" drill - q(t)/q(t.)l -t_ 1H (A19)

describes variations of the flame tern-

with the Damkfhler number. Within the

the autonomous problem, equation A19
all algebraic orders since an arbitrary num-

can be retained in q.

only the first term in q(t) is retained [the
norninally,..O(1)], the error in t is O(1./O),

compared to Uv/0, and the turning point is cap-

1 (curve A1). Retaining two terms in q(t)

approximation, also shown in Fig. 1
A2).

proportional to 0- i in A19 plays a crucial

in defining the turning point; for at all orders,

--- 0 so that the integral is logarithmically sin-
as t, --_ 0. (That all terms in the expansion of

A14) have a zero derivative at the origin

the expansion of each q-dependent term

A19 for large 0 is uruformlv valid in t., further
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laxly in the lwomie sessions.
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COMMENTS

]. Chomiak, Chalmers University of Technology, Swe-
den. Your edge-flames are often curved. I wonder what is

the mechanism of the branching phenomenon and how the

branching affects the speed of the flames?

Author's Reply. The fresh/fresh counterfow edge-flame

is horseshoe shaped, which is what one would expect. As

for the edge-flame constructed from a deflagration with
heat losses, it has only two choices: to be straight or curved,
and in a two-dimensional asymmetric combustion field, it
would be surprising if it were straight. The same can be

said for our previous example of a premixed edge-flame,
the one generated in a fresh/'mert countedlow (Ref. [8] in

the paper). The most obvious effect of edge curvature on
the propagation speed occurs when the Lewis number (Le)

is different from 1, and we will report results for premixed
flames in this case elsewhere. As we briefly note for dif-

fusion edge-fames, small values of Le lead to enhanced

reaction near the edge, and the edge-speed remains posi-

tive all the way to the I-D quenching point. Indeed, edge

advancement is possible beyond the I-D quenching point:
the edge trails cellular structures, sublimit flames--obvi-

ously, it can not trail a I-D flame. This can also happen for

the deflagration-with-heat-losses problem, even ff Le = 1,
for reasons that we discuss elsewhere.

Robert Pit=,,Vanderbilt University, USA. Do you expect

substantial differences in your conclusions if more complex

chemistry, is employed in your analysis?

Author's Reply. No. The essential characteristics of un-

bounded edge-flames---well defined waves that can travel

with positive or negative speeds, depending on the Da-
mk6hler numbermhave their roots in the fact that the un-

derlying I-D problem has two stable solutions. Whether

the I-D configuration is a dLffusion flame or a premixed

flame is a mere detail, as is the chemistry. Premixed failure

waves (edge-flames with negative speeds) have. we believe,

been seen in the sublimit failure of upward propagating
methane-air flames in a standard inflammability tube, as

we note in (Ref. [8] in the paper). Bonney has recently

been able to establish stationary, premixed edge-flames in

his laboratory, and his observations are consistent with the-

ory. These are analog-computer simulations with full chem-

istry. We can safely say that there are three, not two, basic

flames in combustion: diffusion flames, deflagrations, and

edge-flames.
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