EFFECTS OF RADIATIVE EMISSION AND ABSORPTION ON THE PROPAGATION AND EXTINCTION OF PREMIXED GAS FLAMES

YUANG JU, GORO MASUYA AND PAUL D. RONNEY

1Department of Aeronautics and Space Engineering
Tohoku University
Aoba-ku, Sendai 980, Japan
2Department of Aerospace and Mechanical Engineering
University of Southern California
Los Angeles, CA 90089-1453, USA

Premixed gas flames in mixtures of CH₄, O₂, N₂, and CO₂ were studied numerically using detailed chemical and radiative emission-absorption models to establish the conditions for which radiatively induced extinction limits may exist independent of the system dimensions. It was found that reabsorption of emitted radiation led to substantially higher burning velocities and wider extinction limits than calculations using optically thin radiation models, particularly when CO₂, a strong absorber, is present in the unburned gas.

Two heat loss mechanisms that lead to flammability limits even with reabsorption were identified. One is that for dry hydrocarbon-air mixtures, because of the differences in the absorption spectra of H₂O and CO₂, most of the radiation from product H₂O that is emitted in the upstream direction cannot be absorbed by the reactants. The second is that the emission spectrum of CO₂ is broader at flame temperatures than ambient temperature; thus, some radiation emitted near the flame front cannot be absorbed by the reactants even when they are seeded with CO₂. Via both mechanisms, some net upstream heat loss due to radiation will always occur, leading to extinction of sufficiently weak mixtures. Downstream loss has practically no influence. Comparison with experiment demonstrates the importance of reabsorption in CO₂-diluted mixtures. It is concluded that fundamental flammability limits can exist due to radiative heat loss, but these limits are strongly dependent on the emission-absorption spectra of the reactant and product gases and their temperature dependence and cannot be predicted using gray-gas or optically thin model parameters. Applications to practical flames at high pressure, in large combustion chambers, and with exhaust-gas or flow-gas recirculation are discussed.

Introduction

Flammability limit studies are important for assessing fire safety in many environments and for determining the operation limits of combustion devices. Despite many years of study, the mechanisms that cause apparatus-dependent extinction limits including flame stretch [1,2], buoyant convection [3,4] and heat losses to cold walls [5-7]. When these losses are eliminated by employing large combustion vessels at microgravity, heat loss via gas radiation is probably the dominant extinction mechanism [8-11].

Nevertheless, it is unclear whether radiative loss causes fundamental limits because emitted radiation can be reabsorbed, a factor not considered by the theories [6,7] and computations [10,11]. Whether reabsorption is important is usually assessed by computing the mean monochromatic absorption coefficient \(\kappa(u) \) weighted by the Planck function:

\[
L_p = \int_0^\infty \kappa(u)G(u)du;
\]

\[
G(u) = \frac{15}{\pi^2} \frac{u^3}{e^{u^2} - 1}; \quad u = \frac{hc\omega kT}{\hbar}
\]
Corresponding microgravity experiments in particle-laden methane-air mixtures [13] support these predictions. Gaseous flame behavior should be different from that of particle-laden flames because gases emit and absorb in spectral bands, whereas particles exhibit approximately gray-gas behavior. No computational studies of gaseous flames with detailed radiative emission/absorption models have been performed to test their effects on S_t and Φ_0. Consequently, our goal is to model premixed-gas flame propagation with detailed radiative emission/absorption effects and compare results with experiments and theoretical predictions.

In addition to microgravity studies, modeling of premixed-gas flames with reabsorption is relevant to combustion at high pressures and in large furnaces because frequently $\tau > 1$. For example, at 40 atm, a typical pressure for premixed-charge internal combustion engines, $\tau \approx 1$ for cylinders of radius 4 cm. Similarly, $\tau > 1$ in atmospheric-pressure furnaces larger than 1.6 m. Moreover, significant amounts of absorbing CO_2 and H_2O are present in the unburned mixtures of combustion devices employing exhaust-gas or flue-gas recirculation.

Numerical Model

The energy and chemical species conservation equations for steady planar premixed-gas flames were solved using a CHEMKIN-based code [14] with arc-length continuation [15,16]. This code was employed previously to model optically thin radiating counterflow flames [16]. For this study, radiative transport including both emission and absorption was computed using the statistical narrowband model with exponential-tailed inverse line strength distribution [17]. The radiative transfer equations were solved for wavenumbers between 150 and 9300 cm$^{-1}$ with 25 cm$^{-1}$ resolution using the S6 discrete ordinate method. Radiation parameters for CO_2, H_2O, and CO were taken from Ref. [18]. CH_4 radiation was not included because the necessary spectral data were not available, but CH_4 radiation is minimal even for optically thin conditions [11]. Further details of the model, including accuracy considerations, are presented elsewhere [19]. Methane oxidation was modeled using an 18-species, 58-step chemical mechanism [14]. The spatial position (x) = 0 was defined as the location where $T = 325$ K for radiation-free flames. Except where noted, the upstream and downstream boundary locations were $x = -L_0 = -30$ cm and $x = +L_1 = +400$ cm, respectively. Upstream boundary conditions were ambient temperature (300 K), and composition with inflow velocity S_t and downstream boundary conditions were zero-gradient. Ambient-temperature blackbody walls were assumed at both boundaries.

Mixtures of $\text{CH}_4 + (0.21\text{O}_2 + (0.79 - \gamma)\text{N}_2 + \gamma\text{CO}_2)$ were examined, with γ varied to assess reabsorption effects by substituting emitting/absorbing CO_2 for radiatively inactive N_2. Ambient H_2O was not considered because experiments at standard conditions allow at most 3% H_2O without condensation.

Results

Figure 1 shows typical computed results. For optically thin conditions, the volumetric radiative loss (Q_{R}) = $4\sigma(T^4 - T_d^4)/L_p$, where σ is the Stefan-Boltzmann constant and T_d the ambient temperature, is always positive (upper plot). With reabsorption, Q_{R} is negative at $x < 0$ because some radiation emitted at high $T (x > 0)$ is reabsorbed at lower $T (x < 0)$. This decreases the net loss and preheats the unburned mixture so that, consistent with the theory in Ref. [12], the peak temperature (T_p) exceeds adiabatic (T_{ad}). With optically thin radiative loss, T decays downstream to T_p (lower plot). With reabsorption, T still decays downstream (but on a much longer scale); thus, some net loss still occurs. All flames exhibit conventional convective-diffusive zones of thickness $\delta = \alpha/S_t \approx 0.1$ cm, where α is the temperature-averaged thermal diffusivity. The reabsorbing flame additionally exhibits a much longer upstream convective-radiative zone (lower plot) whose length is comparable to L_p (= 19 cm).

Fig. 2a shows that reabsorption effects in CH_4-air mixtures ($\gamma = 0$) are minor because Φ_0 is reduced.
thin radiative, radiative absorption narrowband line strength equations 50 and 9300 56 discrete for CO₂ 8]. CH₄ reabsorption is [11]. Further analysis involves 35-step position (r) = 325 K for ed, the upper were r + 400 cm, were position with boundary conditions. = γN₂ + 3 sees reabsorbing H₂O was standard it condens-
heat loss and thus flammability limits even with reabsorption, designated I and II. Mechanism I is that \(\kappa(\omega) \) is very different for \(\text{H}_2\text{O} \) and \(\text{CO}_2 \) (Fig. 3a); because \(\text{H}_2\text{O} \) is absent from the unburned gas, most \(\text{H}_2\text{O} \) radiation emitted upstream cannot be reabsorbed. Mechanism II is that \(\kappa(\omega) \) for \(\text{CO}_2 \) is broader at \(T_\text{a} \) than \(T_\text{o} \) (Fig. 3a); thus, some \(\text{CO}_2 \) radiation emitted upstream from temperatures near \(T_\text{a} \) cannot be reabsorbed farther upstream where \(T = T_\text{o} \). Mechanism II can also occur for \(\text{H}_2\text{O} \) but not for the dry reactants studied here. Both mechanisms apply for arbitrarily large domains. The manifestation of these mechanisms is seen in the spectrally resolved radiative flux at the upstream boundary \((x = -L_1) \) (Fig. 3b). The spectrum for \(\text{CO}_2 + \text{H}_2\text{O} + \text{CO} \) is similar to the \(\text{CO}_2 + \text{H}_2\text{O} \) spectra at 1300 K (Fig. 3a) less the \(\text{CO}_2 \) spectrum at 300 K, indicating that losses arise mainly from the differences between the burned-gas emission and unburned-gas absorption. \(\text{H}_2\text{O} \) emission comprises most of the loss (mechanism I), but some occurs from \(\text{CO}_2 \) emission (mechanism II).

These observations show that fundamental flammability limits due to radiative losses will exist in gaseous flames no matter how large the domain or what absorbing gases are present, because some radiation emitted from the high-temperature region cannot be reabsorbed by the unburned gases (mechanism II). These limits depend on the temperature effects on the absorption spectrum and cannot be predicted via simple mean absorption coefficients, as optically thin limits can. Of course, if sufficient quantities of inert particles, soot, or other quasi-blackbody absorbers are present, complete reabsorption could occur.

Loss at the downstream boundary \((x = L_2) \) is much less important for several reasons. A disappearing reactant (e.g., \(\text{CH}_4 \)) can produce some loss at \(x = L_2 \) via mechanism I, but \(\text{CH}_4 \) radiation was not considered, and the loss would be much less than the upstream \(\text{H}_2\text{O} \) and \(\text{CO}_2 \) loss because \(\text{CH}_4 \) disappears near \(x = 0 \) just as \(T \) rises to values where significant radiation could be emitted. Some downstream loss via mechanism II can occur because of the downstream temperature gradient, but the gradient and total decrease in \(T \) are much less than the corresponding upstream values, leading to much lower downstream loss. A third mechanism of radiative loss occurs at the downstream boundary because of the blackbody wall with \(T = T_\text{o} \), but due to reabsorption, its influence is confined to the adjacent region of thickness \(L_\text{p} \). Thus, \(T_\text{s} \) and \(S_\text{i} \) are unaffected, as was verified by changing \(L_2 \) from 400 to 100 cm.

Losses via mechanisms I or II can occur only for wavenumbers where \(\kappa(\omega) \) is nonzero on one side of the flame but changes to zero over a length smaller than the scale \((\kappa(\omega))^{-1} \) over which reabsorption occurs. Changes occur on the scale \(\delta \) for temperature and \(D/S_\text{i} \), for species \(i \), where \(D_\text{i} \) is the diffusion coefficient. Because the Lewis numbers \(\alpha/D_\text{i} \) are close to unity, \(\delta \) is an appropriate scale for both species and temperature changes. Hence, these criteria become

\[
\begin{align*}
 \text{I:} & \quad \left| \frac{d\tau}{dx} \right| > \left| \frac{d\tau}{d(1/\kappa(\omega))} \right| = \frac{d\ln(\kappa(\omega))}{d\ln(\kappa(\chi))} \\
 & \quad > \kappa(\omega)\delta \Rightarrow \kappa(\omega)\delta \leq 1 \\
 \text{II:} & \quad \left| \frac{dT}{dx} \right| > \left| \frac{dT}{d(1/\kappa(\omega))} \right| = \frac{d\ln(\kappa(\omega))}{d\ln(T)} \\
 & \quad < \frac{d\ln(\kappa(\omega))}{d\ln(T)} (2)
\end{align*}
\]

where \(\chi_\text{i} \) is the mole fraction of species \(i \) and the fact \(\tau = \chi_\text{i} \) has been used. Fig. 3b shows evidence of these criteria. The loss due to \(\text{H}_2\text{O} \) mimics \(\kappa(\omega) \) except where \(\kappa(\omega) \) is very large and reabsorption can occur within the convective-diffusive zone where \(\chi_\text{H}_2\text{O} \) changes rapidly. For \(\text{CO}_2 \), practically no loss occurs where \(\kappa(\omega) \) is large at both 300 K and 1300 K (Fig. 3a), but substantial loss occurs for \(\omega \) on the"wings" of these peaks where \(d\tau/dT \) is large.

The convective-radiative zone at \(x < 0 \) has a characteristic thickness \(L_F \approx \delta \); thus, \(L_1 \) can influence reabsorbing flames drastically. Fig. 4 shows that \(\Phi_\text{b} \) decreases as \(L_1 \) increases because more reabsorption (thus lower net \(Q_\text{b} \)) occurs with larger \(L_1 \). Because \(S_{\text{L,am}} \sim \sqrt{Q_\text{b}^2} \), \(S_{\text{L,am}} \) also decreases. Significant reabsorption effects occur even for \(L_1 = 1 \) cm (\(\tau = 0.054 \)) because \(\text{CO}_2 \) has absorption bands with \(\kappa(\omega) \) up to 4000 m\(^{-1}\) atm\(^{-1}\) (40 cm\(^{-1}\) atm\(^{-1}\)) (Fig. 3a). For the limit conditions at \(L_1 = 1 \) cm, \(S_{\text{L,am}} = 0.19 \); thus, significant absorption occurs on the scale (0.190 × 40 cm\(^{-1}\))\(^{-1}\) = 0.13 cm. This estimated
Radiative reabsorption effects on premixed flames

The effect of substitution of CO₂ for N₂ on burning velocities under adiabatic conditions, with optically thin radiative losses, and with a radiative model including reabsorption effects, is shown in Fig. 1, which shows the negative (absorption) portion of Q_in per unit of wavelength, α(0,1), required to obtain domain-independent results. This band "wings" have much smaller absorption coefficients, and thus longer absorption lengths. Consequently, they provide only limited insight on flame properties with reabsorption.

A direct determination of Q_in for small k is difficult, because for each 25 cm⁻¹ spectral window, k(ω) characterizes the sum of many individual absorption coefficients of widely varying strengths. For some individuals, but not others, absorption coefficients are orders of 10⁸ higher at 1300 K than at 300 K. Some overlap in ω-space while others are separated for transparent gaps that are required for net loss via mechanisms I or II to occur. Clearly, a single k(ω) for each spectral window cannot capture all relevant details. Thus, although the reabsorption effects are significant in the line-profile model, for large L₁, Fig. 5 shows that, for all radiation models, substituting CO₂ for N₂ has only minor effects on S₁, in 10% higher at 1300 K than at 300 K. Some overlap in ω-space while others are separated for transparent gaps that are required for net loss via mechanisms I or II to occur. Clearly, a single k(ω) for each spectral window cannot capture all relevant details. Thus,although the reabsorption effects are significant in the line-profile model, for large L₁, Fig. 5 shows that, for all radiation models, substituting CO₂ for N₂ has only minor effects on S₁, in

Second, Φ = 0.5 mixtures have much higher Boltzmann numbers (B), which is a scaled ratio of blackbody emissive power at T_ad to total heat release rate and thus measures the potential for radiative preheating to increase S₁. For non-scattering media [12]

\[B = \frac{\beta \sigma(T^4) - \Phi_0}{2\beta \sigma_0 \Sigma_{\text{rad}} T^4} \]

where \(\beta, E, \rho, \) and \(C_p \) represent nondimensional activation energy, overall activation energy, gas constant, ambient density and specific heat, respectively. Values of B for γ = 0 mixtures are about 11.3 and 127 for \(\Phi = 1.0 \) and 0.50, respectively; thus, reabsorption can increase S₁ much more in the \(\Phi = 0.5 \) mixtures.

Figure 6a shows that, for optically thin conditions, CO₂ substitution increases \(\Phi_0 \) and \(S_{1,\text{rad}} \) because the additional radiating CO₂ increases \(Q_{\text{in}} \). With reabsorption, small amounts of CO₂ substitution actually decrease \(\Phi_0 \) and \(S_{1,\text{rad}} \) due to greatly reduced \(Q_{\text{in}} \), whereas larger amounts increase \(\Phi_0 \) slightly due to reduced \(T_{\text{ad}} \). Fig. 6b shows that for optically thin conditions, \(S_{1,\text{rad}}/S_{1,\text{ad}} \) is always close to the theoretical prediction [6,7] e⁻¹/², whereas with reabsorption \(S_{1,\text{rad}}/S_{1,\text{ad}} \) can be greater than 20.

Figure 7 shows comparisons of our computed effects of reabsorption on S₁ to the theoretical prediction of Ref. [12] \(S_{1,\text{rad}}/S_{1,\text{ad}} \) as a function of gas temperature. The theory requires that \((T_{\text{ad}} - T_{\text{ad}})/T_{\text{ad}} \) be a small, \((1/\beta) \) quantity, which is justified for our conditions (Fig. 2b). Agreement is poor because the computation allows substantial net spectral heat loss (Fig. 3b), which is not considered by the theory. Agreement is improved with H₂O and CO radiative suppression (mechanism I eliminated) and still better with temperature broadening of k(ω) also suppressed (mechanism II eliminated) so that the flame is practically adiabatic. Still, \(S_{1,\text{rad}}/S_{1,\text{ad}} \) is much lower than theoretical predictions because the theory assumes graybody radiation, whereas gasses radiate only in certain spectral bands and thus accelerate S₁ less than graybody radiators would. When gray-gas conditions are applied \((k(\omega) = \text{constant} = 26 \text{ m}^{-1} = L_{\text{rad}}^{-1}) \), the agreement is more satisfactory, though calculated results are now above theoretical predictions, probably because the theory assumes constant thermodynamic and transport properties and single-step chemistry. Thus, our model is believed to capture the essential elements of flame propagation with graybody reabsorption plus the nuances of spectrally radiating gases.

Comparison with Experiment

For CH₄-air flames (Fig. 2a), comparison between computation and microgravity experiments in spherically expanding flames [20,21] and tubes [22] and earth-gravity experiments specially designed for low
while reabsorption can increase burning velocities were studied using a detailed emission-absorption mental limits independent of the system dimensions and extend flammability limits considerably, fundamental limits independent of the system dimensions exist due to the nature of gas radiation, specifically, (1) differences between the spectral characteristics of reactants and products and (2) temperature broadening of the emission/absorption spectra. The results agree well qualitatively and in some cases quantitatively with theory and experiments.

In future work, we will examine stationary "flame balls," since modeling of recent space experiments [25] suggests dominant reabsorption effects in some cases. The spherically expanding flame configuration will be studied to compare with the microgravity experiments already cited [9,26]. The effects of elevated pressures will be examined because of their

Conclusions

The effects of radiation on premixed-gas flames were studied using a detailed emission-absorption model for H2O, CO2, and CO. It was found that while reabsorption can increase burning velocities and extend flammability limits considerably, fundamental limits independent of the system dimensions
RADIATIVE REABSORPTION EFFECTS ON PREMIXED FLAMES

Fig. 7. Comparison of theoretical predictions [12] of reabsorption effects on S_r to numerical results with all radiation included, with CO$_2$ radiation only, with CO$_2$ radiation only with the temperature broadening of the absorption spectrum artificially suppressed, and with $\kappa(\omega) =$ constant $= 26$ m$^{-1}$ to simulate a gray gas.

Fig. 8. Comparison of numerical predictions of S_r with experiments on microgravity spherically expanding flames (CH$_4$ + 4O$_2$)-CO$_2$ mixtures [9] and counterflow twin-tube experiments in CH$_4$-air mixtures with $\gamma = 0.79$ (all replaced by CO$_2$) [27].

Relevance to the internal combustion engine and gas turbine flames. Collisional broadening of the absorption spectrum will likely be important in these cases. Finally, the effects of exhaust-gas or flue-gas recirculation will be examined via computations at elevated temperatures with CO$_2$ and H$_2$O addition.

Acknowledgments

PDR acknowledges support by NASA-Lewis grant NAG3-1523 and NAG3-2134. Dr. Fengshan Liu (National Research Council, Canada) contributed to building the computational code.

REFERENCES

MICROGRAVITY COMBUSTION

The simplified chemical reaction mechanism for the microgravity combustion of the two-stage fuel system presented here is based on the work of previous investigators. Recent trends in this area have increased the interest in microgravity combustion as a means to study and develop more efficient and environmentally friendly combustion processes.