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Abstract

The driving forces for a generally oriented crack embedded in a Functionally

Graded strip sandwiched between two half planes are analyzed using singular integral

equations with Cauchy kernels, and integrated using Lobatto-Chebyshev collocation.

Mixed-mode Stress Intensity Factors (SIF) and Strain Energy Release Rates (SERR) are

calculated. The Stress Intensity Factors are compared for accuracy with previously

published results. Parametric studies are conducted for various non-homogeneity ratios,

crack lengths, crack orientation and thickness of the strip. It is shown that the SERR is

more complete and should be used for crack propagation analysis.

1. Introduction

One way to reduce the residual stresses in composites is to process fully tailored

materials and interfacial zones with predetermined continuously varying mechanical

properties. Such materials are known as Functionally Graded Materials (FGM) (see

Asish et. al., 1997 and Holt et. al., 1993). Some FGM could be described as two-phase

particulate composites where the volume fractions of its constituents differ continuously

in the thickness direction (see Niino and Maeda, 1990; Hirano and Yamada, 1988; Hirano

et. al., 1988; and Kawasaki and Watanabe R., 1990). This implies that the composition

profile could be tailored to give desired thermomechanical properties. One of the most

important of these properties is the minimization of crack propagation. In order to design

FGM components, then, the driving forces of crack propagation must be fully
understood.

The problem under consideration here is that of a generally oriented crack embedded

in a nonhomogeneous strip sandwiched between two isotropic half planes. A system of

singular integral equations with Cauchy kernels is used to analyze the driving forces

(Stress Intensity Factors (SIF) and Strain Energy Release Rates (SERR)) of crack

propagation.

The present work is a generalization of a sequence of papers (Delale and Erdogan

(1983), (1988a), (1988b), Konda and Erdogan (1994), and Chen and Ergodan (1996))

concerning driving forces of crack propagation for problems involving various boundary

conditions and crack geometry. In these papers, an exponential variation in material

properties within the FGM is assumed, and it is shown that Poisson's ratio has little effect

on stress intensity factors. Therefore, in the present formulation, the same Poisson ratio

NASA/CR--1999-209166 1



is used in all three materials, while the shear modulus has an exponential form. Also,

these papers considered only horizontally oriented cracks, while the present paper

addresses a crack with arbitrary orientation angle.

The solution methodology follows the basic steps presented in the previous papers.

Specifically, the problem is cast in perturbation form. First, the crack surface tractions

are computed for an FGM embedded between the two half planes with given far field

stresses when no crack is present. In the second step, these tractions are used to compute

the stresses at the crack tips for the perturbation problem. These steps are depicted in

Figures I b and l c. In order to account for the arbitrary orientation angle, the perturbation

problem is separated into two parts, depicted in Figures 2b and 2c. The first part includes

the influence of the interfaces, and the second part examines the crack in an infinite
FGM. Details are shown in the next section.

2. Formulation of the problem

The geometry of the problem is shown in Figure l a. The two dissimilar materials,

which are perfectly bonded to the FGM, are isotropic and homogeneous, the FGM has a

finite thickness h, and is denoted as Material 2. Material 1 occupies the lower half plane,

for y < O, while Material 3 occupies the upper half plane for y > h.

In global coordinates (x,y), the shear modulus of the FGM is assumed to be as
follows:

/12 (y) =/11 e r> ( 1)

and in local coordinates (xl,yz) as:

_/2(XI, y,) = llle_-', *6>, (2)

where

_i = 7cos(0) (3)

/3 = 7sin(0)

Hooke's law relates strain and stress using two independent material constants:

1
(_,, =--[(_+ 1)Ox,

8B

1

I

Ex> = 2---_Txy

+ (K - 3) O,,y ]

q'- (K_ "1- l)(Yyy ] (4)
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where the bulk modulus, K, is defined as,

fc = 3- 4v for

or

3-v
Ic- for

l+v

The solution strategy is shown in Figures

half plane is

plane strain (5)

plane stress (6)

lb and lc. The governing equation for the

. c_4F,(x,y)'04Fj(x,Y) + 2 O4F_(x, v) _]

O x 4 0 xec9 3,2 O y4
-0 (7)

The solution of (7) is found by applying the Fourier Transform:

F_(x, y) = iV(¢z, y)e "_do_

and solving the characteristic equation

d2V d4V

cdV- 2c_2 d7 + d--_- = 0

::_ nl 4 - 2ot-'m: +od =0

m I = m 3 = o_ & m 2 = m 4

so that,

(8)

(9)

F_(x, y) = 9_2__=1 i[(D ' (o0 + yD 2(o0)e I<y -4-(D_ (o0 + yD 4 (_))e -I<' ] e'X<*dot (10)

Due to the condition of irregularity at y<0 (the stress function vanishes as v --+ -oo),

D3(c0 and D4(00 must be zero, therefore

'iG(x,y)= 9-_- [(D,(a)+ yD2(a))e I'_i']ei'_'da (1 1)

Similarly for Material 3, the application of the condition of irregularity at y>0 yields
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F_(x, y) = _ [(C l (a) + yC 2(a))e -I'_b ] ei"_da (12)

The solution strategy of the perturbation problem is shown in Figure 2. The Airy

stress function method is adopted in this study, mainly for making use of the technique

developed by Delale and Erdogan (1988). It is assumed that the Airy stress function for

the FGM is composed of two functions; one is associated with an infinite plane

containing the crack on the xl-axis, U2(x_,yj) (see Figure 2c), while the second is an

uncracked strip, F2(x,y) (see Figure 2b).

The governing equation in the global coordinate system is

V2(o_ +cy_)+72[,, _XX

4 " "_2F, (x,Y)
V F2(x,y)+ 7" -

_y2

K,-3 ]_ 27 0__((y_ + ¢yyy) = 0+ ---=--- (yy
K2 +1

K_ -- 3 O2_----((X'Y).] 273-_V2F_ (x, y) = 0
K, +1 c)x" J

(13)

The characteristic equation of (13) is

m 4 _ 2ym 3 + (72 - 2e_2)m__ + 27c___m+ (o_4 _0_272 K2 --3)=0
K_+I

(14)

Four roots of (14) and the stress function are obtained in the following forms:

7

7

m4 =2+1

=Z+ 7
- 2 4 VK, +1

0_2 + 7-_4 10_t_ _ 2 +1

O_2 y2 . _- K,

(15)

=* F__(x,y) =v-2-_ [A'(o0em':' +A2(o0em-_Y +A3(°0e_'_' +A4(c0em'y] e'_d°t

The governing equation in the local crack coordinate system is

(16)
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V4U2 (x_, yj ) - 26 3--_ (V 2U I (x

8[38 32U2(x,,y,) +132(_¢2 -332U2(x,,y ,)
I+K 2 3x_byj 1+1¢, _y_

(2 2 1,;:, --3b2U_(xl,yl))82 2U (x"Yl)-_ - - =0

by? 1+_¢_ bx,

)) - 2137x, (V2U_ (xl, Yl )) +

"x

Yl

/

32U_(x,,yl)
- )+

The characteristic equation of (17) is

+ 20t(i[3 + or) 2 + 0_8 i + 20_
K_ +1 _K 2 +1

+_-'/c_e+623-K2+]3(2i°_-13))=0K2+I

The four roots of (18) are

(17)

(18)

=1 6+13_/__ _ 6+13_ +4(cz2+i_ 13- _K2+l)

n3 = 2l_5+_2+1 2-_ + 13__-1 - + 4(°_2 + i°_ _K_+I)

(19)

By examining the roots carefully, it can be noticed that n_ and n2 are always negative

as 0_-__+_,, while n3 and n4 are always positive as e_-__+oo. This implies that the stress

function can be expressed in the following form:

U 2(x,, 3', ) = _ [B, (o0 + B 2(o_) - ] e'""do_;

1i
U2(x,, y,)=--f-_ [Bb(oOe"'" + B4(a)e ''_', ] e'Wdot,;

y, >0

3't <0

(20)
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Two constants in the system of equation (20) can be determined by application of the

continuity of stresses at yl=0, as follows:

3U2(x_,O +) _ 3U2(x,,O-)

3yl 3yl

U2(x ,,0*) = U2(x ,,0-)

(21)

B3(oQ- n 4 -n, B_(ot)4
n 4 -n 3

B4(o 0 = nl -n3 B,(o0+ n2 -n3 B2(O0

n 4 -n 3 n 4 -n_

(22)

The general forms of the stress functions used to generate the stress components due

to each problem have been obtained. Next, formulate the stresses for the infinite plate

with a crack by differentiating the stress function U2 (B_ and B2 are still functions of or):

(t,.>. y_) 1 i 2 ,l,,, 2 ...._ ei,,_,do_. = + m B, e -
0",,, - tx,, _ [111B,e ]

(t,,,), + -I i "
O',,,, - tXl,)' 1 )= 9"__ O_2[Ble'q" +B'e"'_>"]e'"_'da

(u, ) 1 i "_(3" " (x),y_-) = _ [n_(w)B_ + w2B2)e '''>' +n_(.sB) + w4B2)e ''_'' ] e'""_dot
(23)

(3",, ,, (t'">"t x,, y_-) = --2;'r-1_=Ia2[(wIBl+w'B_)e""'- _ +(}lsB_+w4B2)e,q,,] e,.,,,_da

ill --114 ;W2 _ 112--114 ;W3 _

113 -- 114 113 -- 114

!13--111 ;B_ -- 113--112

113 -- 714 113 -- 114

The singular integral equations for this class of problems are formulated in terms of

two auxiliary functions:

(24)

Notice that the auxiliary functions are valid for any x j, but are nonzero only within the crack (a, b).

Using Hooke's law for the stresses given by (23), local strains and displacements can

be calculated. For example,
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(t.'_. + ____l ] i 2 ,zi_l 2 ,I,rl
e,, " (x,,y,)= 8P2 2__=[(I¢2 +l)(n' Ble +n2Bze " )

- cz2(re2 - 3)(B, e"' '_ + B 2e"=" )]ei''do_

1 1 i[(t¢= + 1)(n_(w,B, + w.B,)e"'"' + n_(w3B , + w4B2)e ''"'* )
e"_t/'_ )(xl' Y_) - 81.t2 21r __ " - -

_ o_2(toe -3)((wiB 1+ w2B =)e '''s' + (w3B , + w4B 2)e ''_, )]ei.,,_da

(25)

Using (25) and first equation of (24) it can be shown that :

'i8p_el_"f,(x,) = _ (tQ +l)[(n_ -n3w , -n_w3)B ,

2 , 2 ihg*+(n_-n___-n aw 4)B e]e doe

(26)

The Fourier transform of (26) yields

F I (0_) = h, lB _ + hleB 2

t¢.+l
hi I - (1ll -/13 )(/l I -114)

8p_

K_ +1
h,-,- - (n_,-n 3)(n 2-n 4)

8/.t_

I,

F, (a) = If I (t)e(e-'""dt

a

(27)

In order to determine f2(xl), it is necessary to find v(x_,yl) by integrating the normal

strains in the y direction:

2 2

v(x,,yl +) = 1¢, -3) ( n, Ble,,,,, -_
- 2n" : n,-5 n 2-5

B_e ,,2,, )e i.,,,_dg

-(I¢. +1) aa2( B,e ''''_ +-- B,e":', )e",_da]

and (28)

2 2

v(x,,y?) = [(K"2 -3) --_1 f( n3 B,e"'"' -t
2zr-I n_-5 " n 4-5

B 4e,U,, )ei',°r do_

-(_c, +1) a2( B4e"'" +--
- _ -_ . 114 -- I_

B4e <', )ei','_ da]
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The constant of integration can be set to zero due to the fact that the plate is fixed at

the origin. Differentiating (28) and substituting into second equation of (24), then taking

the Fourier transform yields

F2(O_) = h21B 1+ h.B,

(n, - n, )(n, - n 4) .

- 8_ l - _ .

h33 --

ia-fl

8p_

h

(a (1+ K',)-Sz( 3"'_ (n2 -n3)(n2 -n4)_

F 2Ca) = I f2 (t) etl3-i_'''dt
tt

(29)

Equations (27) and (29) can then be solved for Bi and B2:

F I ((x)h 22 -- F2 ((x)hl2
BI=

hllh22 -h21hl2

-El (o.)h 21 + F2 (o0h,,
B2=

hllh2__ -h21hl2

(30)

The stresses at any given point in the cracked FGM strip can be expressed by the

sum of stresses obtained from the U2 and F2 Airy stress functions, namely:

:2, .,'._(x I yl) + :r._.crO (x_,y_)=o'# - , ai) - _x_, Yt ) for (i, j = x_ y_ ) (31 )

These are expressed in (x,y) or (x_,y_) coordinates using the regular stress transformation:

2.
r,, j Lmn -mn m- - n-j[ r.,,,, j

m = cos(O);n = sin(O)

(32)

thus the stresses for the FGM are,
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cv(2' (x 1 i _ 2 m,'_ 2 m _, 2 m_', ixet- +m2A2e -- +m3A3e - +m4A4e "]e do__x_, ,Y)=-_- [m?A,e m'V

+cos(0) 2 [n_Ble"'-" +n,B2e -- ]e,X,,_dot

1 i0¢2 .._
--sin(0)2-._7_ _ [Ble "'y' +B2e -- ]eiX_do_

+ 2sin(0)cos(0) ic@,B_e n'y' + n_Bee n'_'' ]e'Xl'_do_

{2).x " 1 i m,v ,,,_., ix_= ---- o_2[Ate m'y + A.e m::' + A3e " + A4e - ]e do¢
r_y: t . Y; 2rc__

+ sin(0)-' -2-_1i[n_B,en,y , + n.B_e__ -" ] e'X'_do_

1 _ . i_do _
-cos(0)2 _ ;od[B,e n''' + B.e°::'] e

_ ;" hi"' n,vi eiXlC_d_
-2sin(0)cos(0) l_[nlB_e - +n_B_e - ]

_(2)(x,y ) 1 iio_[m_A_em,y +m,A,em,,, +m3A 3 +m4A4e ]= ___ .. era,, m_, ei_do_
_Y 2X

+ sin(0)cos(0) n_B.e n'_ + ne2B.e n:s' ] e'X'"do_

+sin(0)cos(0) o_2[Bie " +B2e-]

1 ;io_[n_B_eO,_, + n_B.e.:S,] e,_,_do_
- (cos(0)2 _ sin(0)2 )_ __

The stresses for Material 1 are

Cell 1 iX_,(x,y)=_---_ [fx2(Ut +yD2)+2o_D 2] ei<-_ei_dot

__l_(x.y ) _ 1 ;[(x2(DI +yD2)] el_belX_dc_

-_'(x,y) =---1 ;io_[o_(D_+yDe)+D,]el<Ye,,,_do _

(33)

(34)
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and for Material 3 are

r, (x,y) = [o_2(Ct+yC2)-2aC2]e-la["ei'ado_

1 i[o_2(C, + yC,)kq,,bei.,,_da (35)cr'3'(x' Y)" 2a"

<.?(x,y)- 1 iio_[_ a (C, + vC,) + C, ]e-I<'e_'_da
LIg

From (33), (34) and (35), it can be seen that there are 10 constants, DI, D2, C_, Cz,

A_, A2, A3, A4, B_ and B2 (still are functions of o_ in the Fourier space) which must be

determined using 10 boundary conditions. There are eight stress and displacement

continuity conditions:

,r'%(x,O)=,r

cr _'',,(x,/1) = o"_,,-"' (x, tl)

{1_ _(21ZX 0xr,, (x,0) =,,, _ , )

r,._,(x,h) _2,,, = r,, (.v,h)

u_'_(x,O) = u_2_(x,0)

u _3'(x, h) = u _e_(x,h)

v"'(x,0) = v_e_(x,0)

v '3' (x,h) = v _2_(x,h)

fOF --oo<X<OO
(36)

From (36), the other constants can be expressed in terms of B_ and B2, which in turn

are expressed in terms of the two unknown auxiliary functions. The remaining two

boundary conditions come from the perturbation problem, namely,

cr,_ ,, (x 1,0) = -p, (x I ) for a < x I < b

r,,,, (x_ ,0) = -p__(x, ) for a < x I < b
(37)

Here, p_ and P2 are the traction forces on the crack surfaces. D_, D2, Cl and C2 are

found in terms of AI, A2, A3, A4, B_ and B2 by using the stress continuity conditions of

(36). Further, by using the displacement continuity conditions of (36), the following

linear system can be constructed:

NASA/CR--1999-209166 10



Cll Ci2 Cr3 C14

C2: C,_3 C24

;i: C32 C3_ C34

C41 C42 C43 C44

J_

= Ji
J

(38)

where Dl, D2, C_, C2, Cjl through C44 and Jl through J4 are functions of o_ derived using

MATHEMATICA, see Shbeeb (1998).

The system of equations (38) can be solved for Ai, (i-I .... 4) in terms of the

unknowns Fl(o0 and F2(cz), which are components of Ji, (i=1..4) as follows:

A i = J i = 1...4 (39)
z__., tq /

Here, Q is the determinant of the 4 by 4 coefficient matrix and the Qij are the

corresponding 3 by 3 cofactors.

To make use of (37), the stresses of the FGM must be formulated in (x_,y_)

coordinates as

__21 =---1 fot2(Ble°,., +B.e..y,) e,_,_dot
°Y'Y' (xl'Yl) 2rt__

1 i_+-- [ (mn sin(0)+iotcos(0))2Ane m"'] eiX_'d(z
2x-_ ,,=1

(40)

i2_ (xj Yl)=---Tx0, _ ,
• n,v, n,,, eiX,_Xdot1 ilct(n_B_e . +n,B_e-')

2rt__

2rt ['_-"((t_2 + m2n)sin(0)cos(0)
__ rl=l

+ io_m n(cos(0) 2 - sin(0) 2))A ne m:_h ] e_X,_do_

(41)

Each term in (40) and (41) must be examined for singular behavior. Upon

substitution of (30), (27) and (29) into (40), the first integral above can be written as

follows:

=-- f:(t)e 13''_1_"KI1 tXl t)dt- f,(t)e_'l,"_(x ,t)dt
"OY"_'(x"Y:))_1' 2 . -

*'12 1 (42)

where

NASA/CR--1999-209166 I 1



i p n23q
k_j_ ( 1 Of"2 h.e n'y' -h2l_ e,C.x _,,do ¢"'ll .Xl .t) =-

__ hi]h22 h]2h21

(43)

k,2_(x,.t) 1 i h "'_' - "'Y'----__ (_2 11e " -l'll2e - ei_.x,
g_. h,lh_,2:_t__ __ _ -"dot

(44)

Since the integrands are continuous functions of ot and vanish at (x=0, then any

singularity must occur as o_ goes to infinity. The integrand of (43) vanishes as ot--+_+oo,

while that of (44) is as follows:

bile",', _hi2 e''2y, __+( hll -hi2 e-r_b, _.+ g 2ie-m'
11111122-h12h21 hllh22 - h12h21 a2(K'2 +1)

----) __+oo

By subtracting and adding this asymptoUc value from (44) and taking the limit as y_

goes to zero. the following is produced:

kl'_' l[i '(h,,h "
t2 txt,t)= o_- h_-hp

117 -_ 22 hl2h21

2i )ei_,_t,d_ +
o_- (K:2 +1)

i h - hp 2i )e"_"-'_d_z + SIP]]_ _ +
°_2(hj_h. -hl_h_ l o_: (g. +1)

0 - ....

(45)

where

.. _ 2ie_Y, ei_,__,_do__3 J 2ie-_Y'SIP = hm( / ----7. e ,_<x,- ,da)
_,--,o 2(1; 2 + 1) o (K2 + 1)

(46)

Let o(=-¢x in the first integral in (46) to obtain

4 limfe -'_;' sin(cz(t - x_ ))dcz -
(__, + 1) ,,,-_o:,

4 t-x]
-- lim
(K 2 + 1) _,--,o(t - x, )2 + y_

4 1

(___ +1) t-x,

(47)

and

.__,,. 1 _ h -hi,
K_2tx_,t)= [jo¢2( " -

117 -= hllh22 -hph2j
2i )eia_x,_t_d0_ +

0_2 (_c2+ 1)

hit -h:

0 22 . 21

2i i_._,-,I 4 1

_ + 1) )e dc_ .]o_-(_ 2 (K 2 +1) t-x,

(48)

NASA/CR--1999-209166 12



Similarly, let _'=-ot in (48). Note that every odd power of ot becomes negative.

,.(_). li or2 Htl-H _, h_,-h_K_2tx,.t)= [ { [H_,H.-H_IH_ _.... hllh22 -hl2h21

+iot2[ Hll -Hi2 ._ hll -hi2
HliHe2 -Hn2H2j hllh22 -h12h2,

4i 4 1
]siniot(t - x, ))}dot ---

ot2(_:. +1) (_2 +1) t-x,

]cos(ot(t - x, ))

(49)

The Hij (i, j =1,2) have the same forms as the hij, with the only difference being in the

sign of the odd powers of ot where they are negative. It is worth noting that:

H'I-H'2 =conjugate(. hl,-hj,.,,.22-.,e.:, t (5O)

Repeating the same procedure for (43) by splitting the integral in the same manner as

in (48) and substituting the result along with (49) into (42) yields the following:

lim(a_i, (x,, y, ))(,, p,e_" [ 4 " 1'!
- f_t +-- f, it)K,', ix, ,t)dt

,,_0 2 n'(t¢ 2 +l)_t-x_ rc
(51)

where

(I)(x .t) = -I{ot:[X,, + conj(X,1 )]cos((_(t - x,KII i ))
0

+ iot2 I-X,, + conj(X_, )]sin(ot(t - x_ ))}dot

K"'(x t)= f{ot2 + conj(X,_)]cos(c_(t - x, )),. ,, - [X,2
0

4i

+iote[-X,. _ + conj(X,2) 0_2 (_, +1) ]sin(°t(t- x' ))}d°(

Xll = )
htih22 -hl2h2i

hll -hi2

(52)

The same procedure can be repeated for the first part of the shear stress (41) to
obtain

NAS A/CR--1999-209166 13



hm(r_:,. (x_,yj)) _ /J_et_'' [. 4 i f_(_f__ 1 i• _ - t+-- f_(t)K_(x,,t)dt
,,-_o _' 2 /r(t¢2 + 1) _t-x _ /r -

| b

+_ ! L (t)K_2(x, ,t)dt

(53)

where

K'_'" t) = -i{io¢[X2, -conj(X 21)]cos(o_(t - x 1))21 _XI'

0

4i

+ °t[X 21+ c°nj(X21 ) + 0¢(K2 + 1)']sin(0c(t - xl ))}dot

KI_. t) =-i{i_[X -conj(X,)]cos(o_(t-xj))22 IX1' 22 ..

0

•+ o{[X 22 "f" conj(X 22 )] sin(o_(t - x, )) }doc

nlh22 -n,h,_

X21-- (h-_lh22 :hTh2l )

X22 n2hll -nlhl:
= (hllh22 hj2h21 )

(54)

The examination of the remaining two parts of the stress equations (40) and (41 ) and

application of the asymptotic expansion and the limit as y_ goes to zero yields the

following terms:

glet_" (t 'vt2'' ,t)dt +-_lim(cy¢2! (x,, yl)) _2' - -_ [ .1] tr_1, tx 1 f,(t)K11_t(xl,t)dt] (55)

,lim(°'_'_'!'(x"Y'))'>,_,, /'t'e/_"'2 [7 f_(t)K(_'(x,,t)dt+_ f2(t)K,'__t(x,,t)dt] (56)

where
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(2) . iK,, (x,,t) = {[Y1,+ c°nj(Yll )]cos[O_cos(0)(t- x I)]
0

+ i[-Y2, + conj(Yll )] sin[a cos(0)(t - x, )] }do: +

( 2a_t (x_ sin(0) 2 - cos(0)2 (t - x 1)2 ) + 4b1_(x I (t - x_ ) sin(0)cos(0))
(x_ sin(0) 2 + cos(O)2(t - x, )2 )2

2GlX 1sin(02 + 2dll cos(0)(t - xj)"--7- _ ....... )

x_- sin(0)- + cos(O)2(t - x_ )2

K_2'(x, t) = i{[Y,_ + corq(Y_,)]cos[o_cos(O)(t - x, )]12 _ _ -

0

+ i[-Y_2 + conj(Y_2 )]sin[oecos(O)(t - x1)] }do_ +

( 2a12 (x_ sin(O) 2 - cos(O)2 (t - x I )2) + 4bl2 (x 1(t - xj ) sin(O)cos(O))
(x) sin(O) 2 + cos(O) 2 (t - x I )2 )2

2cj2x I sin(O) + 2d12 cos(O)(/- x I))
xl_ sin(O)2 )2, . +Cos(O)2(t_Xl

K(2), . i,, tx,,t)= {[Y,, +co,q(Y,,)]cos[acos(O)(t-x,)]
o

+ i[-Y_j + conj(Y_l )]sin[acos(O)(t - x_)] }dot +

(2al_( xt2 sin(0 )2 _ cos(0f (t - x_ )2 ) + 4b_l(x I (t - x_)sin(O)cos(O))
• _ )2)2(x_-sin(0)- + cos(O)2(t - X,

2C_,X1sin(0) + 2d,1 cos(0)(t - x_).
--;---;----., .-z-:----cv )
x? sin(0)- + cos(0)" (t - x_ )-

Kl__l(x, ,t) = i{[Y12 + conj(Y_2 )]cos[occos(0)(t - x, )l
0

+ i[-Y_2 + conj(Yj2 )]sin[o_ cos(0)(t - x I )] }doe +

2aj2 (x_ sin(0) 2 _ cos(0)2 (t - x_) 2) + 4b_2(x_(t - x I ) sin(0) cos(0 ))
(

, . , )2)2(x_-sin(0)- + cos(0)2(t - X1

2C,2X, sin(O) + 2d,2 cos(O)(t -f, ))
sin(O)2 +

where Yij aij, bij, cij can be found in Shbeeb (1998).

+

+

(57)

(58)
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By substituting these expressions into (40) and (41), the final system of singular

equation is formulated:
b D

--e (-pt(x,))= [f,(t)K,,(x,,t)+_ L(t)K,_(x,,t)

2.u, ;z"_ t - x1 ;,r ,_ (59)

_, +1 __,, 1
--e (-p2(x,))= t+-- f_(t)K,_(x_,t)+ f2(t)K22(x_,t)

21u_ lr _ t - x_ ;r ,, -

where.

K;_ +1
Kll(xl,t)- -

4

_1+1
K,:(x,,t)- -

4

1_ +1
K,_(xj,t)-

4

1{_+1
K._. (x I .t) -

4

(Ki_,'(x,.t) + K_'(x,,t))

(K,,_Cx, _2,_2 ,t)+K_, (x.,t))

(2)
(K_,I_'(x. ,t)+ K2_ (x_ ,t))

k'")(x .t)+ _-')"'22 1 K22 (x_,t))

3. Solution of Singular Integral Equations

The singular integral equations (59) with the Cauchy kernels are solved for the

unknown auxiliary functions, ft(t) and _(t), by transforming them into a system of linear

algebraic equations. In order to obtain unique results, the following conditions need to be

incorporated with the solution:

h

f f,(t)dt = 0 i = 1,2 (60)

The singular integral equation (59) can be solved using Gaussian quadrature. For

example, using Lobatto-Chebyshev collocation as described in Theocaris and Ioakimidis

(1977), we obtain the system of algebraic equations in terms of discrete unknowns g(tk)

in the following form:

._.'_, ,, gj(tk)%

/:1 _'f" ,{:l tk- X v
+ ]_ _ < (x,,, tk)gj (,,) w, + R,,(x,,) = f, (x,,)

.i:1 k:l

(61)

where p=l ..... n, the Wk are the weights, the abscissas tk are the roots of the related

orthogonal polynomial, and R, is the error. The abscissas are
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t k = cos( (k - 1)/r)
n - 1

k = 1..... n. (62)

The corresponding weights are

/r /r
W I = W n -- ;W. --

2(n-l) n-I
r = 2 ..... n -1. (63)

The collocation points are

x,, = cos((22Pn--21)n") p = 1..... n - 1. (64)

Two additional equations are needed, which are generated using (60) in the

following form:

£gl(sk)wk =0 (65)
k=l

tl

Eg2( _'k)w_ =0 (66)
k=l

By combining (61), (65) and (66), the system of equations can be represented as follows:

[A12,,.,2,,{g }2,, = {P}2,, (67)

This system can be solved by any standard method. Formally, the unknowns are

{g}=[a]-'{P} (68)

Finally, the goal is to obtain the SIF in terms of gl(t) and g2(t). The SIF are defined
as follows:

k_ (a) = lim x/2(a - x, )or,, (x_,0)
-'_I ----)_1

k_ (b) = lira _/2(x_ - b)_ ,,,, (x_ ,0)

k2(a) = lim ff2(a - x I )r,,.,, (x t,0)

k, (b) = lim _/2(x_ - b)r,,,, (x_ ,0)
- ._ i__)b

(69)
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Fromtheprincipalpart theexpressionsfor gt(t) andg2(t),Muskhelishvili (1953),the
following is obtainedfor kj(a):

k,(a) = 2"f-21"1'-- e_'g2(a) (70)
(x2 +l)4_-a

Similarly,

24_pl

k, (b) = (K2 + 1)b-_/b-_-a e_'g2(b)
(71)

k2(a) = 24_l.1,__ e_,g,(a) (72)
(I¢_+ 1)b4ffL--a

k2(b ) = 2_/-2]d, e_,g,(b)
(_'_ + 1)_/b- a

(73)

Note that a=-1 and b=l when solving (68).

The strain energy release rate (SERR) can be calculated from Erdogan and Konda

(1994). They are

Gj (a) -/r(t¢2 + 1)kl(a)2
8/.t 2(a,0)

Gt(b ) _ re(to 2 + 1)kl(b)2
8122(b,O)

G2(a ) _ It(K"2 + 1) k_(a) 2
8/.12(a,0)

G2(b ) _ _(t¢ 2 + 1) k2(b)2
81.t2(b,O)

(74)

where GI is the opening mode SERR and G2 is the sliding mode SERR. The total SERR

is expressed as

G T (a) -

Gr(b ) -

/r(tC: + 1)

8p_,(a,0)

lr(_-, + 1)

8,/d2(b,0)

(k,(a) 2 + k2(a) 2)

(k, (b) _-+ k2(b) 2 )

(75)

The verification of the solution above is accomplished by comparing the results of

this model with that of Erdogan and Konda (1994). In this model, h is set to o_ to
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simulate an infinite FGM plate, with various values of yc. The two models give virtually

identical results, as seen in Table 1. For 7=0 (the homogeneous case), the singular

integral equations can be reduced to a closed form solution (see for example Tada et. al.

(1973)) producing SIF proportional to normal and shear tractions applied on the crack

surface.

4. Parametric Studies

The focus of the following parametric study is limited to investigating the influence

of the material properties of the half planes, crack length and orientation, and thickness of

the FGM interface on the resulting driving force as measured by the SIF and SERR. To

accomplish this, the normalized nonhomogeneity constant 71a = ln(_t3/_h) is defined using

(3). The range of the constant is assumed to be between -3 and 3, which includes all

known engineering materials. A negative yh represents a problem where the bottom half

plane is stiffer than the upper half plane. A positive 7h represents a problem where the

upper half plane is stiffer than the lower half plane. Hence, if the shear moduli of all

three phases are normalized with respect to _tl, the equivalent variation of the shear

modulus of the upper half plane takes values of approximately 0.05 to 20 times the lower

half plane shear modulus.

In this study, all the cases were considered under plane stress conditions with

Poisson's ratio = 0.3 and the materials were subjected to far field normal stress in the y

direction. The length of the crack is chosen to be 2c, and the thickness of the interface is

h. All geometrical dimensions are normalized with respect to c or h. Results are

presented for the normalized mode-I and mode-II SIF, i.e., k_/ko and kz/lq_, and

normalized SERR, i.e., GI/G0 and G2/G0, where k0 = _3y_(c) 1/2and Go = ko_-Tz(_:+l)/81aj.

In the first study, consider the influence of the thickness of the interface h/c and non-

homogeneity constant 7h = ln(la3/lal) on a crack inclined at 30 degrees such that the center

of the crack is always kept in the middle of the interface. The distances a and b from the

crack tips are the same from the lower and upper half plane, respectively.

Figures 3 and 4 show mode I and II of the normalized SIF at crack tip a versus the

non-homogeneity constant ln(_3/lal). Observe that as ln([t3/_tj) increases, both kt and k2

decrease. The strongest effect is observed for the smallest thickness of the interface,

while h/c = 100 may be considered as an infinite FGM plate, for which the SIF are

virtually constant. When ln(la3/_t_) = 0, the plate is homogeneous, so the influence of the

thickness of the interface disappears and the SIF become the same as for the infinite

FGM plate.

Figures 5 and 6 represent mode I and II normalized SIF at crack tip b versus

ln(!u3/lul). The SIF curves increase with increasing ln(_3/_h), which is different from the

behavior at tip a, except for the case of the infinite FGM plate. In addition to this

behavior, the magnitude of the SIF tends to be higher at crack tip b than at tip a,

especially for extreme values of ln(la3/lul).

Modes I and II of SERR are shown in Figure 7 and 8 for crack tip a and in Figure 9

and 10 for crack tip b. Notice that at both tips, SERR are decreasing with increasing

stiffness of the upper half plane. Specifically, SERR at crack tip b behaves differently

from the SIF at this tip. The behavior of SERR is more physically intuitive than the
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unexpected behavior of the SIF. It should be recalled that the SERR is calculated using

SIF and local material properties, so it contains more information than the SIF. For this

reason the remaining parametric studies are discussed using only SERR data.

The influence of the orientation angle 0 on the relation between SERR and the non-

homogeneity constant at crack tip a for the case of the interface thickness h/c-2 under

uniform shear stress at infinity is shown in Figures 11 and 12. As expected, the highest

mode-I SERR is obtained for the smallest angle because of the high normal traction

component acting on the surface of the crack. It can also be expected that the highest

magnitude mode-II SERR is produced for 0=45 degrees, since the shear traction

component is maximized then. The behavior of the SERR at crack tip b is similar to the

behavior at crack tip a, as can be deduced by comparison of Figures 7 and 9, and of 8 and

10. Hence, the magnitudes of the mode-I SERR at crack tip b are higher than at crack tip

a, while the magnitudes of the mode-II SERR are smaller at crack tip b. In fact, the total

SERR at crack tip b is equal to the total SERR at crack tip a.

In the next study, assume that the crack orientation is 30 degrees from the horizontal,

and the thickness of the interface is h=l. Crack tip a is fixed at the distance a/h = 0.1

from the origin while crack tip b is at distance equal to b/h= 0.3, 0.7 and 1.1 along the Xl

axis, making the half of the crack length c/h = 0.1, 0.3 and 0.5, respectively. Modes I and

II normalized SERR at crack tip b are shown in Figures 13 and 14, respectively. Notice

that the crack length significantly changes both SERR modes in the case of negative non-

homogeneity constant. For the case where the upper half plane is stiffer than the lower

half plane, the longer crack produces smaller normalized SERR.

Finally, assume constant crack length, constant orientation at 30 degrees and

constant thickness of the interface FGM h/c = 2, and examine the influence of the

position of the crack along the xl axis. Figures 15 and 16 show modes I and II normalized

SERR at crack tip a versus the non-homogeneity constant for the crack defined by tip

positions varying from 0.2 to 1.6 from the origin. Notice that the largest modes I and II

SERR are obtained when a/c = 1.6 for negative non-homogeneity constant and when 'a/c

= 0.2 for positive ln(_t3/la_). Hence, the closer the crack tip is embedded to the stiffer
material, the smaller the normalized SERR.

5. Conclusions

The analysis of an arbitrarily oriented crack in a strip of FGM sandwiched between

two isotropic homogeneous half planes is done using singular integral equations. The

equations are solved using Lobatto-Chebyshev integration, and give accurate results for
mix-mode S1F and SERR.

Parametric studies show that SERR contain relevant information that is missing in

the SIF, and therefore it is recommended that SERR be used as a driving force parameter

for fracture problems of a crack in FGM. The model has shown that SERR are sensitive

to the ratio of the shear moduli used as non-homogeneity constant. They are also

sensitive to the ratio of thickness to the crack length. The longer the crack or the thinner

the interface, the larger the SERR produced for negative values of ln(_t3/la_), and the

smaller the SERR produced for positive values of ln(_3/_t_).
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The crack orientation influence shows that SERR is proportional to the traction

forces at the crack surface assumed in the perturbation problem. As the lower half plane

becomes stiffer (ln(g_/gl) becomes more negative), both modes of the SERR become

larger for every crack orientation. Clearly, the proper selection of the FGM parameters

• can reduce the driving forces of a crack embedded in the interface material.
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Table I Verification of the Solution.

C _

Konda and

Erdogan(1994)

kl(a)/_c

Present Study

kl(a)/,JC

Konda and

Erdogan(1994)

kz(a)/_c

Present

Study

k2(a)/"_c

0.25 1.036 1.036 0.065 0.062

0.50 1.101 1.I01 0.129 0.122

1.0 1.258 1.260 0.263 0.243

b-a)/2

NASA/CR--1999-209166 22



APPENDIX A

EXPRESSIONS OF THE CONSTANTS

It should be pointed out that all the algebraic manipulation were either verified or

done by MATHEMATICA ®.

? •

D_ =A t +A 2 +A 3 +A 4 +glB1 +g2B2

D 2 =(m¿ - ot)A 1 +(m 2 - o_)A 2 +(m 3 - o_)A 3 +(m 4 - (x)A 4

-(o_g_ - lg3)B_ -(o_g 2 - lg4)B',

C 1 = el<h[(1-h(m, + tx))A,e m'h +(l-h(m 2 + o_))A2e m-'h

+(1-h(m_ + o_))A3 e"_h +(1-h(m 4 + o_))A4e m_h

+ e_hT_"_e'{(g_ (1_ h 0_)_ ihg) )B_e_n, h_o_ + (g2(1 _ h 0_) _ ihg4 )B'e_-_h'_'_°'}l
0( O(

C_ = el_Ph[(mj + o_)Aje m_h+(m 2 + o_)A2e m_h+(m 3 + o_)A_e m_h

+ (m 4 + c_ )A4e m_h+ ei_hf_"le'{ ( O_g I + lg_ )B_e_,h_ _
O(

Ig4 ._., cn,hsecl0)
+(0_g 2 +--;b,e _ }]

cos(0) )2
g, - O_2 (cn, -iczcos(0):

cos(0) )2
g2 - O_2 (cn2 -iotcos(0) 2

g3 = cos(0) 2(cz sin(0) -icn, )(ctcos(0) + i cnj sin(0))

g4 = COS(0)-' (or sin(0) -icn 2 )(o_cos(0) + icn 2 sin(0))
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1 3- K2

8+_22+1-] +4((0_c°s(0))2+ _'2+1

"I/v/,-2 +!__ 8-[3 2+lj +4((O_COS(0)) 2 io_cos(0) 13+ -----_ _C2+1

cn3 + [8_ _-2 +1 J+ _-_/8 + [3_ q _11

cn 4 = 1(8-[}_ 1+ 11(8-__}2

+4((Otcos(O)) 2 +iotcos(O)[3- _22+1 )

+ 4((otcos(O)) 2

+iotcos(O) [3+ _ K2 +1

B( - F_(o_ cos(0))che2 - F 2(or cos(0))chl2
chi]ch22 -- ch21chl2

B{ = - F, (O_ cos(0))ch2, + F 2 (acos(O))ch,,
chll ch22 - ch2_chl 2

K',+I
C]llt --

8//0

K,+I

Chl 2 --
81G

ch -
2[

ch22 -

(cn, - cn 3)(cn, - cn 4)

(On 2 -- Ctt 3 )(Cn 2 -- crt 4 )

iot cos(0) - 13 ((¢z cos(0))2 (1 + P¢2 ) _ 32(i¢ 2 -3))[

8P 0

io¢ cos(0 ) - 13

8_t 0

(cn 1 - cn 3 )(cn I - cn 4 )
,]

(3 -cn I )(3 - cn 3 )(3 - cn 4 )

9

((o_ cos(O))- (I + P¢2) - 3 2 (_. _ 3))[
(cn 2 - cn 3 )(cn 2 - cn 4 )

(6 - cn 2 )(6 - cn 3 )(3 - cn 4 )
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C,, = 2_m,(r,
O_

Ci2 = 2 IO_lm2(K'j

OC

+ 1) + a(t¢ 2 - 2K'j - 1)

+ 1) + a(*¢ 2 - 2 G - 1)

.C,3 = 2 ]O_[m3(Kl + 1) + a(_¢ 2 -- 2K, -- 1)

C_4 = 21_lm4(G +l)+a(K" e -2 G - 1)

C2_ = 2m1( G -1)- 2a (to, + 1)-

C22 = 2m2(K , - 1) - 2a(x, + 1) -

C23 = 2m_(t¢, - 1)- 2a (K_ + 1)

C24 = 211l 4 ( K"1 -- 1 ) -- 2 a (_l + 1)

m_(_ + 1)

O_

,n_(_: + 1)

,n_(_2 + 1)

_Z

m_(_, + 1)

O_

(K"2 - 3)m_ - a; (_, + 1)

m I -

(tO2 --3)m_ --a2(K'2 + 1)

7112 -- _/

(/¢2 -- 3)m_ - 0_-_(/¢2+ 1)

DI 3 --

(r 2 -3)m_ -a-_(r2 +l)

tit 4 -- _/

C3, =[(2a(1-X3)-210:lm_(l+tc3))+a(X :-3) m_(_2 +l)]e'''h
G¢ O_

C3: =[(2O_(1-K3)-2I&'[me(I+K3))+O_(IQ, -3) m_(K'_ +l)]e,,,:, ,
O_

lal
C33 =[(2C_(1-K3)-2 m3(l+K3))+O_(_C2--3) m;(_c_+l)le",J'

C34 = [(2o_(1 - _3) - 2 Ic_im4( 1+ _ )) + o_(K', - 3) m4(K': + l)]e"J'
_ O_

C4_ = [(4_ + 2(_" 3 - 1)(m, + _ ))- (_c__- 1)m_ -o_-'(K'_, + 1)]e,,,,_,
m 1 -- _/

C42 =-.

C43 =

[(4a + 2(K_ - 1)(1712 + a )) -

[(4a[ + 2(_c_ - 1)(m_ + a ))

[(4a + 2(K" 3 -- 1)(m 4 + a ))C44 .=-

(K2 -l)m_ -a2(_2 + 1) ]e,,,:,,

m 2 -- _,,

(K" 2 -- l)m 3 -O_2(K_ + 1)]e,,,_,,

m 3 -'y

(a'., - 1)m 4 -a2(_2 + 1)]e,,,_,,

/114 --
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b h

J, = S, _ J] (t)e/J'e-i°_°_'°'dt + R, I f2(t)e_'e-i_°_'°'dt

g6ch21 - gsch22 2a(1 - K"1)(g2chn - gjch,_2 )
S I = t

ch llch2-, - cht2chel

Ri g-_chl2 - g6chll= +

chl 2cib., 2 - ch 12Chzl

chl tch22 -- chj2ch2_

2a(1 - tq )(g_chl2 - g2chll )

¢h I ich22 -- chl2ch21

2i(x" 1 + 1)(g4ch21 - g3ch22 )
t-

a (ch 1,ch22 - ch12ch21 )

2i(x" I + 1)(gschl2 - g4chll)
+

Ot (ch I1ch22 - chpch21 )

J2 = $2 f ft (t) el3'e-i°'_'°_° _dt + R 2

J_

f f2 (t)e _'e -i_'_°_(°'dt
tl tl

S,= g7ch22-gsch21 + 2_(l+lq)(gfh22-g2ch2j)

cil I fh22 - c1112ch2, chl i¢h22 - chl2ch21

R-, = gsch_ - gvcit'"- t- 2o_(1 + K"I)(gzchlj - g_ch_.,)

Chl Ich22 - chl2ch2t chj lch22 - ch_ech21

2i(x' I - l)(g4ch21 - g3ch22 )
F

+

a( chl ich22 - ch12ch21 )

2i(x" l - l )(g whl2 - g 4chl l )

a( ch, lch22 - Chl2ch21 )

J, = S_I J](t)e_'e-i_c"_'°'dt + R_f f2(t)e_'e-i°_¢°si°'dt
tl Lg

I (ll_]l SOC(O ) I (till1SeC(O

S 3 : e i'fzhtan_O)[g6cn2f - _ gscn22e t3_e _,
chllch22 - clh2ch21 113

4 2i(t¢_ + 1)(g 4ch,__e ''''_°!- - gwh22e ''''/'_'l° _))]

o_ (ch_ _ch22 - clhech2_ )

-- K 3)tgfn22e -- gecne_e - )

ch_ _ch22 -- CII_2CII2_
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c'il_ _ch22 -- ch_2ch21 J.13 ch_ _ch22 -- ch_ 2ch2_

20:(1 + tf_)(gech __e'"'h_'_':_°_-- gl ch,2 e'"'h_'a°_ )
(

. cn_/_sec(O )

2i(x'_ -- l )(g _ch-,.,e ''''/'_':''_0_ - g4_.tte,e ))]

o:(ch_ 1ch22 - c'hl2ch21 )

. _ g7cn_2e" ,,,_/,_c_o_ ,t/_e_,
R 4 = eiCa, tanlo)[gschlle'"_/'_ecI°_

¢h1_c1122 -- chl2 cil2_ 1..1_

2i(tq 1)(g4ch. .,,,,,_Iol . ,,,,/,_clol.
+ . - _e - - g3cn_2e ))]

o¢( ch_ f h22 - ch_ech2_ )

c lt_ _c1122 -- c'll_ 2c h21

NASA/CR--1999-209 166 26



cos(0)[a 2 cos(0)2 (a:2 - 3) - cn) (_c2 + 1) COS(0)gs
t_ cos(0) + ifl

cos(0)[a 2 cos(0)2 (K'_ - 3) - cn_ (K'_ + 1)
g6 _--" - " -

cos(0)

O_cos(0) + ifl

cos(0)[a 2 cos(0) 2(K"2 + 1) - cn_ (K" 2 -- 3) cos(0 )g7 + !
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APPENDIX B

an = real OlD, Cn = real (constll), bn ffi imaginary (i11), dn = imaginary (constll)

al2 = real (!12), ct2 = real (const12), bl2 -- imaginary (!12), dx2 = imaginary (const12)

a21 - -real (121), c2t = -real (const21), bzl = -imaginary (121), d21 = -imaginary (const21)

a2z - -real (122), c22 = -real (const22), b22 = -imaginary (122), dzz = -imaginary (const22)

where

ill =
21E-h_gl+2t° (--1 + E_I) (1 + E'm'gt) o_ ( 1-_-2 )_/z (Cost0] + EI' g2)

"_ _ -- K 2

co.tll  ,-/.,c.t l.ifin o,
( t-_-z )3f_ (Sin[O]+ (I Cos[3 0] + Sin[O] + Sin[3 01) K_ + (-I Cos[O]+ SinIOl) Xz)

+

I (1-_.-) s/2 (4 (Cos[3 0] - 41 Cos[0] 2 Sin[0]) K_ + 41 Sin[0] (- 1 + x2) + 4 Cos[0] (2 + K2))

4yN_- g2

+ I Sin[O]) 2 [ 1(Cos[O]
[ 4(1+x0(-3 +g2)(l +Xz) 2

I (Sin[a] + (I Cos[3 0] + Sin[O] + Sin[3 0]) + (-I Cos[O] + Sin[O]) x2)
gl

-6- 3Kx + _2 (-1 + Kl + K2) + I I+KZ (--4-- 3_! K2 -- gl /¢2 + _)

1

16 (1 + Xl) (--3 + _Z) (1 + K2)2

(4 (Cos[3 0] - 41 Cos[0] 2 Sin[0]) + 41 Sin[0] (- 1 + _z) + 4 Coslel (2 + '_2))
KI

-3_1 -x2(-3-xl +K2)-I3_ _ (2 +3Kl +KZ(I +Xl +XZ)) +
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_ (Sin[0] + (I Cos[3 0] + Sin[0] + Sin[3 0]) _t + (-I Cos[0] + Sin[0]) K2)

7' (-3 + K2)(1 + _2)

_/'7"--
I - l 22._- (4 (Cos[3 0] - 41 Cos[0] 2 Sin[0]) rl + 41 Sin[0] (- I + r2) + 4 Cos[0] (2 + Kz)) l

I47(-3 + K2)(I +rz)

+ I Sin[0]) z [ 1(Cos[0]
[ 4(1 + xt) (-3 + Kz) (1 + to2)2

I (Sin[0] + 0 Sin[0] + Sin[3 0]) + (-I Cos[0] + Sin[0])
Cos[3 0] + K! K2)

-6 - 3 ._ + .2 (-1 + _ + ._) - l _/l-'_z (-4 - 3 _ ÷ x_ (-1 - ._ ÷ _z))

1

16 (1 + KI) (-3 + K2) (1 + K_)z

(4 - Sin[0]) KI + (-1 + _2) + Cos[0] + _2))
(Cos[3 O] 4 I Cos[O] 2 4 [ Sin[O] 4 (2

-3_ - K: (-3 -,c_ +_) + !_/_ (2 +3K_ +,_z (1 + ,c_+,c2))

i12 =

l 3/2
2E-"-O+zle(-1 + E2'maO)o_(l-_7 ) (Cos[0] + EtaCz)

constl2 = E tm_J ),(Cos[0] + IS]n[0]) Sin[0] I +

I I (__.)3fz (-21 Cos[0] - Sin[0] - I Cos[0] g_ - I Cos[0] gz + Sin[0] tcz)

I (7_-) +[z (Sin[O] + I Cos[O] K, - I Cos[O] +z + SinlO] Kz) /
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Etma_

(Cos[O] + I Sin[O]) 2

1 [(-21 Cos[O] Sin[O] I Cos[O] I Cos[o] + Sin[O] x2)
g2

4 (1 + xD(-3 + x2) (1 + x2) _ t

-6-3x_+xz(-]÷._+x_)÷I_/ (-4-3.,-x_-x, x2÷_) -

(Sin[o] + Cos[o]xt Cos[O]x2 +
I I Sin[O] £2)i

-3 x_ - x2 (-3 - x_ ÷ x2) - I _ (2 ÷ 3 x_ + K2 (1 + x_ + xz))
1 +xz

(4 (1 + xl) (-3 + x2) (1 + x2)z))] +

-7' " " 3 - Kz
+ I Sm[o]) S'n[o] [-I + _l

(Cos[O]

I _ _,z (-21 Cos[O] - Sin[O] - I Cos[O] Xl - I Cos[O] x2 + Sin[O] x2)

_' (-3 + K2) (1 + x2)

I #_-_-_ (Sin[O] + I Cos[0l xl - I Cos[0] Xz + Sin[0l xz) [
T

/7' (-3 + xz) (1 + x2)

(Cos[O] + 1 Sin[O]) 2

[ 1 [' 4 (1 + xl) (-3 + x2) (1 + xz) 2 (-21 Cos[0] - Sin[0] - I Cos[0] xt - I Cos[0] x2 + Sin[0] x2)

-6-3Xl+Xz(-l+x1+x2)-I l+x'-"_ (-4-3xl+gz(-1-xz+K2)) -

(Sin[o] + xl Cos[o] x2 + Sin[0] Xz)
I Cos[O] I

-3xl - K2(-3- Iq +x2)+I q _ (2+3xl +xz(1 +xl +x:))

(4 (1 + xl) (-3 + x2)(1 + ,2)2)]]

/
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121 =

1 3/2

2 E-_gl÷21e(-1 + E2_1)_(!--_-2 ) (Cos[0] + ESex2)

const21 = E tm_1 _- 7 (Cos[O] + I Sin[O]) z I +

(T_)s/2(Sin[O]+(IC°s[30]+Sin[O]+Sin[30])x_+(-IC°s[O]+Sin[ 0])x2) 1
- +

tl-'_K2J (4(C°s[30]-41C°s[012Sin[0])Kt+4ISin[0](-l+x2)+4C°s[0](2+K2)) -

I (Cos[0] + I Sin[O]) z [ 14 (1 + xl) (-3 + xz) (1 + x2) z

l (Sin[01 + (I Cos[3 01 + Sin[0] + Sin[3 0]) + (-I Cos[0] + Sin[0]) K2)
KI

( 2f--l+K2 II

3 - Kz
-6- 3gl + t:z (-1+ xl + Kz) + I (-4- 3xl x2 KI K2 "l" K_2) "4-

1

16 (1 + _1) (-3 + xz) (1 + x2) 2

(4 - 41 Cos[0] 2 Sin[0]) + 41 Sin[0] (- 1 + _2) + 4 Cos[0] (2 + K2))
(Cos[3 e] KI

-3 K_ - K2 (-3 - K_ + xz) - I m (2 + 3 K1 + Kz (1 + x_ + Kz)) +

' f ,÷.Etmg 3 -_-7(Cos[0] +ISintO])2 t- _ _ )

_ (Sin[0] + (I Cos[30] + Sin[0] + Sin[30]) g] + (-I Cos[0] + Sin[0]) x2)

7" (-3 + Kz) (1 + Kz)
4-

_TT"-

13_ _---_2 (4 (Cos[3 0] - 41 Cos[0] 2 Sin[0]) xl + 41 Sin[0] (- 1 + K2) + 4 Cos[0] (2 + Kz)) I -

4)'(-3 + K_) (1 + KZ) J
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i (Cos[0] + iSin[0])2 / 4 1(1 + xl) (-3 + xz) (1 + _z) 2

I (Sin[o] + (I Cos[3 0] + Sin[0] + Sin[3 0]) gl + (-I Cos[o] + Sin[o]) xz)

-6-3xl+x_(-l+xl+xz)-I l+x2 (-4 3Xl+K2(--1--XI+xz)) +

I

16 (1 + xl) (--3 + XZ) (1 + Xz) 2

(4 (Cos[3 0] - 41 Cos[O] _ Sin[o]) xl + 41 Sin[o] (-1 + xz) + 4 Cos[o] (2 + x_))

-3 xi - x2 (-3 - x_ + x2) + I 1 + x-----_(2 + 3 xt + x2 (1 + xl + xz))

x21 =- iaml Cos[20] + _- Sin[20] (02 +ml z) (S,)- De----_($2) + De--_ _3 - ._en S_

( 1 )Exp[m_ xl Sin[0]] - i a m2 Cos[2 0] + _ Sin[2 0] (02 + m22)

- _ $1 + De-'-n"$2 - ($3) + -- ($4) Expire2 xl Sin[0]] -Den

( | )(D_n D32 D33 D34i a ms Cos[2 0] + _ Sin[2 0] (02 + m3 z) (S0 - _en ($2) + _en $3 - _ $4_ Exp[m3 xl Sin[0]] -

i_m4Cos[20]+ _-Sin[20](02+m42) - S_ + _--_-n Sz - _en ($3)+ De----_($4) Exp[m4x_ Sin[o]];

x21c = Conjugate[x21];

122 =
2 1 E -tmag'+21s (- 1 + E _tm_l) O_(_ )3/2 (Cos [0] + E Is xz )

_'3 -- K 2

const22 =
(1 + xl) (-3 + x2) (I + xz) 2 E zls -I Cosh[imagl] Sin[0] (-3 + x2) (1 + (2 + xl) Xz) +

/ 4Sinh[imagl] - 1 + 1 + xz (-Sin[o] (-1 + x2)(-1 + xl x:)+ 2 ICos[0] (1 + xx)(-1 + _))}}

and where,

imagl = - _- I y q _ Ix, Sin[o], real1 = _)xa Sin[0]

1 3-xz • (__a+ .]._ X Iimag3 _-Iy xl Sin[o], real3 ) Sin[0]
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Figure 1. Formulation of the Perturbation Problem.

(a). The Original Problem.

(b). The Elasticity Problem.

(c).The Mixed Boundary Value Problem.
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NASA/CR-- 1999-209166 34



y\
Xl

_x

Material 3

FGM Yl_, x

Material 1

y, (a)

x

m

+

Y

Fiil infinite

P

x

(b) (c)

Figure 2. Methodology of the solution of the Perturbation Problem

(a). The Mixed Boundary Value Problem

(b). Infinite FGM Strip Without Crack

(c). Infinite FGM Plate With Crack
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Figure 3. Normalized mode I SIF at crack tip (a) for various h/c, 0=30 deg. and

center of the crack is located at if2, under loading of uniform normal stress.
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Figure 4. Normalized mode II SIF at crack tip (a) for various h/c, 0=30 deg. and

center of the crack is located at 13/2, under loading of uniform normal stress.

NASA/CR--1999-209166 37



1 Yl 1

0.9

_°
o.8

0.6
i + h/c=lO

---o--- h/c=lO0

05 _

-3.2 -2.4 -1.6 -0.8 0 0.8 1.6 2.4 3.2

In(p/P 1)

Figure 5. Normalized mode I SIF at crack tip (b) for various h/c, 0=30 deg. and

center of the crack is located at h/2, under loading of uniform normal stress.
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Figure 6. Normalized mode II SIF at crack tip (b) for various h/c, 0=30 deg. and

center of the crack is located at h/2, under loading of uniform normal stress.
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Figure 7. Normalized mode I SERR at crack tip (a) for various h/c, 0=30 deg. and

center of the crack is located at h/2, under loading of uniform normal stress.
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Figure 8. Normalized mode H SERR at crack tip (a) for various h/c, 0=30 deg.

and center of the crack is located at h/2, under loading of uniform normal stress.
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Figure 9. Normalized mode I SERR at crack tip (b) for various h/c, 0=30 deg. and

center of the crack is located at h/2, under loading of uniform normal stress.

NASA/CR-- 1999-209166 42



o

c,J
(.9

,LI1

h/c=2

h/c=4

h/c=6

h/c=8
h/c= 10

h/c= 1O0

In(p/p)

Figure 10. Normalized mode II SERR at crack tip (b) for various h/c, 0=30 deg.
and center of the crack is located at h/2, under loading of uniform normal stress.
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Figure 11. Normalized mode I SERR at crack tip (a) for various 0, h/c=2 and

center of the crack is located at h/2, under loading of uniform normal stress.
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Figure 12. Normalized mode II SERR at crack tip (a) for various 0, h/c=2 and

center of the crack is located at h/2, under loading of uniform normal stress.

NASA/CR--1999-209166 45



.,Q

In(l_IP-l)

Figure 13. Normalized mode I SERR at crack tip (b) for 0=30 deg., same h and

fixed crack tip (a) and movement of crack tip (b), under loading of uniform
normal stress.
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Figure 14. Normalized mode II SERR at crack tip (b) for 0=30 deg., same h and

fixed crack tip (a) and movement of crack tip (b), under loading of uniform
normal stress.
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Figure 15. Normalized mode I SERR at crack tip (a) for 0=30 deg., h/c=2,

constant crack length and various positions of crack, under loading of uniform

normal stress.
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Figure 16. Normalized mode II SERR at crack tip (a) for 0=30 deg., h/c=2,

constant crack length and various positions of crack, under loading of uniform
normal stress.
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