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I. EXECUTIVE SUMMARY 

The imminent destructive threats of Lighfizing 011 helicopters and other airborne sys- 

tems has always been a topic of great interest to this research grant. Previously, the 

lightning induced currents on the surface of the fuselage and its interior were pre- 

dicted using the finite-difference time-domain (FDTD) method as well as the NEC 

code. The limitations of both methods, as applied to lightning, were identified and 

extensively discussed in the last meeting. After a thorough investigation of the ca- 

pabilities of the FDTD, it was decided to incorporate into the numerical method a 

subcell model to accurately represent current diffusion through conducting materials 

of high conductivity and finite thickness. Because of the complexity of the model, its 

validity will be first tested for a one-dimensional FDTD problem. .Although results 

are not available yet, the theory and formulation of the subcell model are presented 

and discussed here to a certain degree. 

Besides lightning induced currents in the interior of an aircraft, penetration of 

electromagnetic fields through apertures (e.g., windows and cracks) could also be 

devastating for the navigation equipment, electronics, and communications systems 

in general. The main focus of this study is understanding and quantifying field 

penetration through apertures. The simulation is done using the FDTD method 

and the predictions are compared with nleasurements and moment method solutions 

obtained from the NASA Langley Research Center. 

Cavity-backed slot (CBS) antennas or slot antennas in general have many appli- 

cations in aircraft-satelli te  type of communications. These can be flushmounted on 

the surface of the fuselage and, therefore, they retain the aerodynamic shape of the 

aircraft. In the past, input impedance and radiation patterns of CBS antennas were 

computed using a hybrid FEM/MoM code. The analysis is now extended to coupling 

between two identical slot antennas mounted on the same structure. The predictions 

are performed using both the hybrid FEM/h/lohI and the FDTD NEWS code. The 

results are compared with each other as well as with measurements performed in the 

Electrobfagnetic Anechoic Chamber (ETvfAC) of ASU. 111 addition to self and mu- 

tual impedances versus frequency, the comparisons include mutual coupling S12 as a 

function of distance for various slot orientations. 

The FDTD NEWS code was upgraded from second-order accurate in time and 



space, e.g. FDTD(2,2), to second-order accurate in time and fourth-order accurate 

in space, e.g. FDTD(2,4). It  was shown in the previous report that the higher-order 

FDTD scheme is more accurate for the same discretization size and exhibits smaller 

dispersion errors. This was illustrated for a one-dimensional wave propagation prob- 

lem. Tn this report, an in-house developed three-dimensional version of FDTD(2,4) 

is used to predict radiation patterns of electrically large helicopter problems. Specif- 

ically, the radiation patterns of a monopole on the NASA scale helicopter model at 

9.18 GHz are predicted and compared with the FDTD(2,2) NEWS code and mea- 

surements. 

.4 new iterative algorithm is formulated in conjunction with the hybrid FEM/Mohl 

approach to solve effectively for the coupling parameters of multiple cavity-backed slot 

antennas on the surface of a platform. Each radiating element is solved independently 

to find the governing field distribution in the aperture of the cavity. The interaction 

anlong these cavities is accounted for through an iterative procedure which continu- 

ously updates the fields in each finite elenlent domain until convergence is achieved. 

The validity of the method is tested by calculating the mutual coupling between two 

similar cavity-backed slot antennas mounted on an infinite ground plane. This ap- 

proach is not only accurate but also extremely powerful and efficient both in terms 

of memory storage and solution time. 

The hybridization of FEkI with high-frequency methods such as the physical optics 

(PO) has been a focus of this project for the last few years or so. In this report, the 

FEM is formulated for two-dimensional scattering and radiation problems in conjunc- 

tion with either absorbing boundary conditions or the boundary integral approach. 

The validity of the method has been tested against MOM solutions. For radiation 

problems, the finite element domain is coupled (using a one-way interaction) to a 

physical optics formulation to compute scattered fields by a nearby large object. 

Spectral methods are applied for the first time to the solution of one-dimensional 

problems. The great potential of these methods in the area of electromagnetics is 

demonstrated through numerical experimentation. Conclusions are obtained by com- 

paring results with the standard FDTD algorithm. Furthermore, the PML concept 

has been applied to spectral methods to simulate open-space propagation problems. 



11. INTRODUCTION 

The major research topics addressed in this report are the ones which have been 

identified and recommended by the Advisory Task Force of the Advanced Helicopter 

Electromagnetics (AHE) program. Although some of these topics provide a contin- 

uation of previous work, emphasis was placed on research areas that are of special 

interest to the program. Some of these subjects were brought to our attention in the 

Annual Conference held at the Boeing plant in Philadelphia, PA, on May 26-27, 1999. 

The main topics of focus in this report are the following: 

r Lightning and its numerical modeling 

r Field penetration through apertures 

r Analysis of cavity-backed slot antennas 

r Mutual coupling of cavity-backed slot antennas 

r Higher-order FDTD schemes 

r Hybrid methods 

Spectral methods 

Each of the above topics is addressed in sequence in this document, reporting on 

progress already made primarily during the period after the May 1999 meeting and 

outlining future work to be accomplished. 

The topic of lightning is now being studied in a more systematic way. Two different 

numerical methods have been used to predict the diffusion of currents in the interior 

of a conducting enclosure of finite skin thickness and conductivity. One of these two 

methods was the NEC code which models the structure using a wire-grid model. The 

thickness of the walls was taken into account implicitly through the radius of the 

wires. Although the results predicted by NEC agreed well with results obtained from 

an independent study performed by Dr. Jack Nachamkin at Boeing in Philadelphia, 

the WEC analysis does not account for the skin depth of the wall, which is known to 

be a function of frequency and conductivity. A more accurate approach to predict the 

diffusion of currents in the interior of a conducting structure is to use a more robust 



technique such as the FDTD method. The FDTD method is accurate provided the 

discretization inside the thickness of the walls is adequate enough. Unfortunately, it 

was determined in previous reports that the cell size of the grid inside the conductor 

has to be extremely small to achieve accuracy in the solution. In addition, the larger 

the conductivity of the wall, the smaller the cell size should he. This will increase the 

computational domain substantially, therefore limiting the use of the FDTD to only 

small problems. 

In this report, the FDTD scheme is augmented by introducing a subcell model 

to accurat,ely represent field and current variation inside the thickness of the walls. 

This subcell model assumes a one-dimensional variation of the fields of the slab in a 

direction normal to the wall. This assumption is valid provided, first, the thickness 

of the wall is much smaller than its radius of curvature and its transversal direction 

and, second, the conductivity of the material is sufficiently high so that the waves 

propagate in a direction normal to the wall. Because of its complexity, this model 

will be first implemented for a one-dimensional problem. At this stage, numerical 

results are not available; thus, emphasis will be directed toward the formulation and 

the theory behind the subcell model. 

Penetration of field intensity into the the interior of an aircraft through apertures 

is an EM1 issue with great relevance to the AHE project. When an aircraft is fly- 

ing near high-power transmitting antennas, the external threat might couple through 

apertures with sensitive control equipment thereby resulting in severe malfunction- 

ing. The ability to predict the amou~it  of power that couples through an aperture 

at a given frequency is of great interest to us. In this report, the FDTD method is 

used to compute field penetration inside a moderately sized cavity with three aper- 

ture configurations: a single large aperture, two large apertures, and a single small 

aperture. The object is excited with a normally incident Gaussian pulse with spec- 

trum up to 1 GHz. The electric field shielding, which is the relation between the 

field in the interior of the box relative to the field outside the box, is plotted for all 

three cavity configurations as a function of frequency. The FDTD predictions are 

compared with numerical data obtained using the method of mome~lts. Although at 

first this problem might seem trivial for a method such as the FDTD, there are for 

sure numerical difficulties associated with the highly resonant nature of the cavity as 



well as the electrically small size of the aperture. These problems can be alleviated by 

introducing a loss mechanism into the computational domain to accelerate the decay 

of the late-time fields. 

Antenna technology as applied to helicopters was always of special interest to 

the AHE project. During the last few years, emphasis was placed on the numerical 

analysis of cavity-backed slot (CBS) antennas which can be conveniently flushmounted 

on the surface of a fuselage thereby retaining the aerodynamic profile of the aircraft. 

Prediction of input impedance and radiation patterns of a single CBS antenna on 

an infinite ground plane was achieved through a hybridization of the FEAT and the 

spectral/spatial domain method of moments. This hybridization offers numerous 

advantages since the free-space region does not need to be descritized; this saves 

memory space and speeds up computational time. The FDTD is also used in this 

report to predict the input impedance of a single CBS antenna. Although this problem 

may seem trivial, it is actually difficult since the time-domain fields propagating 

inside the cavity decay with a very slow rate. As is discussed in this report, the 

source modeling has been augmented with a source resistance which helps dissipate 

the time-domain fields inside the highly resonant structure. 

Both the hybrid FEM/WloM method and the FDTD method have then been ap- 

plied to compute the mutual coupling of two identical CBS antennas mounted onto 

a ground plane. For such a problem, the FDTD has a severe drawback compared to 

the hybrid approach. Using the FDTD, the free-space exterior-to- the-cavities region 

needs to be discretized and terminated properly with some type of absorbing bound- 

ary conditions. This approach creates large computational domains which, in turn,  

generate large errors primarily due to dispersion. The hybrid FEM/hZoh/Z approach, 

on the other hand, does not discretize the exterior region; thus, placing the two CBS 

antennas farther away presents no significant challenges to the method. Predictions 

on mutual coupling using the hybrid FEM/MoM approach are shown versus frequency 

and distance and compared with measurements performed in the EMAC facility of 

ASU. 

This hybrid FEM/MoM approach was then improved to further speed up the 

computational time as well as to further reduce memory requirements. Specifically, 

instead of treating the two CBS antennas as a tightly coupled system which can be 



solved directly using the hybrid method, they are rather perceived as two non-coupled 

antennas placed in close proximity to each other. For mutual coupling computations, 

one antenna is always excited using a current or voltage source, whereas the second 

antenna is left as an open circuit. The field distribution for the transmitting antenna 

is obtained in the absence of the second antenna. Through a coupling matrix, which 

basically represents the governing transfer function, the induced field in the aperture 

of the second antenna is computed. This field acts as an excitation to  the second 

antenna problem which can be solved to obtain the field distribution everywhere 

including the cavity. Using this field, a first-order approximation to the mutual 

impedance may be computed. The same coupling matrix can be used to compute the 

induced by the second antenna field in the aperture of the first antenna. The iterative 

process repeats until convergence is achieved. Results based on this algorithm are 

presented in this report for the coupIing of two identical CBS antennas placed at 

some distance apart. The predictions are conlpared with data obtained using the 

hybrid FEhl/hloM direct approach. Results of mutual coupling as a function of 

distance are also included in the report. 

Higher-order techniques in the context of the FDTD method have been one of our 

research topics during the last year. In the last couple of reports, we have introduced 

the concept of higher-order FDTD schemes. Specifically, a second-order accurate 

scheme in time and fourth-order accurate in space [FDTD(2,4)] was introduced for 

the solution of one-dimensional wave propagation problems. The results obtained 

using FDTD(2,4) were compared with results from a standard FDTD(2,2) scheme. 

It was shown in a previous report that the higher-order scheme exhibits significantly 

lower dispersion error for the same discretization. As a result of this observation, 

the higher-order scheme can be used to more accurately solve for electrically large 

problems, which are of special interest to the AHE project. Although there may seem 

at first that the implementation of FDTD(2,4) into a generic three-dimensional code 

is straightforward, there are few challenging problems that still need to be overcome. 

For example, for a fourth-order accurate scheme in space, the accurate enforcement 

of Dirichlet boundary conditions on PEC walls and around discontinuities is not easy. 

The FDTD(2,4) has recently been implemented into a three-dimensional code to 

more accurately solve radiation problems at higher frequencies. For the truncation 



of the computational domain, the anisotropic PML was used. This new higher-order 

code is very similar to the NEWS FDTD(2,2) code with the exception that scattering 

has not yet been implemented. This is the first version of FDTD(2,4) which is still 

under validation. As part of this validation process, the radiation patterns of a 

monopole mounted on the NASA helicopter are computed a t  9.1s GHz. Numerical 

results are compared with the FDTD(2,2) (NEWS code) method and measurements. 

For electrically large radiation problems, it is almost impossible though to obtain 

an accurate solution within a reasonable amount of time. One solution t o  electrically 

large problems is the implementation of a robust hybrid method. In this report, we 

have already introduced a hybrid FER/I/MoM approach which computes mutual cou- 

pling through an iterative mechanism. The same ideas in now under investigation for 

the hybridization of FEM with PO to solve antenna radiation problems for helicopter 

communications. In other words, the fields of the transmitting antenna will be solved 

at the first iteration using the FEM. The P O  surface currents on the surface of the 

fuselage will be computed based on the radiated fields by the antenna. These surface 

currents produce scattered fields that are affecting the first-iteration field intensity in 

the vicinity of the antenna. This perturbation field will be considered at the second 

iteration to correct the governing fields in the antenna domain. The iteration contin- 

ues on until convergence is achieved. To implement this idea, it was decided to begin 

with a two-dimensional finite element code which uses either ABC's or BI methods 

for the truncation of the computational domain. This code has been written and 

validated against other numerical solutions in this report. A first-order hybridization 

with the P O  is also shown here. This means that, at this stage, there is only one-way 

interaction between the antenna and the object; i.e., the fields scattered by the object 

are not allowed yet to change the field distribution in the vicinity of the antenna. This 

feature will be implemented in the next AHE report. 

An alternative to hybrid methods approach to solving electrically large computa- 

tional problems is the use of spectral methods. Spectral methods are very powerful 

due to their impressive accuracy, exponential convergence, and negligible dispersion 

and dissipation. These are all desirable features for the solution of radiation prob- 

lems involving helicopters. In the previous report, we presented and discussed the 

basic formulation of spectral methods. Some of the feature of spectral methods were 



demonstrated through numerical experiments and comparison with finite difference 

methods. In this report, the spectral methods are applied for the first time to one- 

dimensional propagation problems. The accuracy and future potential of these meth- 

ods in electromagnetics is demonstrated through numerical experiments. 



Chapter 1 

Thin Conducting Layer Subcell 
Modeling 

I. Introduction 

Problems concerning numerical accuracy may arise when someone tries to simulate, 

using FDTD, structures that contain elements such as sheets, slots and wires which are 

too fine to be resolved by the smallest affordable cell size. The problem becomes more 

serious when the material is of high conductivity which must be distinguished from a 

perfect conductor. In this section, we present a subcell modeling for thin conducting 

sheets [I]. This model assumes a one dimensional variation of the fields within the 

slab in a direction normal to the sheet. This assumption is a good approximation 

under the following conditions: 

The thickness of the sheet is much smaller t8han its radius of curvature a.nd its 

tra,nsversal dimensions 

The conductivity of the material is sufficiently high so that the waves propagate 

in a direction normal to the sheet. 

11. Analysis 

We start the analysis by examining the role of the second condition mentioned in 

section I.. For this purpose, the problem in Fig. 1.1 is examined. I11 this figure, a 

uniform plane wave is incident from free space on a conductive material half space. 



CONDUCTING HALF SPACE 

EQUiPHASE PLANE 

Figure 1.1: Wave incident from free space on a conductive half space 

The  incident wave electric field E; is described by: 

where 

Po -w* 

The transmitted wave is given by: 

The coefficients y,, y, satisfy the constraint equation: 

Since the continuity of the tangential fields at  the interface x = 0 must hold for any 

value of y, the coefficients of y at the exponentials of the incident (1.1), reflected and 

transmitted (1.3) fields must be the same; hence: 



From (1.4) and (1.5) we obtain y, : 

For a highly conducting material (a >> we), (1.6) and (1.2) give: 

If a >> we0 and 11 is of the same order as /LO t,hen by writing y, a, + jp,, we obtain: 

From Fig. 1.1, it is seen that tan ll,t = Py/P,. Hence, under the same assumptions as 

above and using (l.S), (1.5) and (1.2)) we obtain: 

tan $+ = _ N  P y  
f i ~ ~ i n Q i  

P x  - J"" 

From (1.5) and (1.9)) it is seen that not only the constant amplitude planes but also 

the constant phase planes in Fig. 1.1 are approximately parallel to the interface. This 

means that the fields within the conducting material vary only in the x-direction, 

which is normal to the interface. The same is true for the case of the conducting 

layer shown in Fig. 1.2. Hence, the electric field within the layer satisfies the one 

dimensional wave equation: 

where A-,  A+ are arbitrary constants and y is given by: 



Figure 1.2: Thin conductive layer 

The square root in (1.11) is the one with the positive imaginary part so that the first 

term in (1 . lo)  represents a wave traveling in the negative x-direction and the second 

a wave traveling in the positive. Using the Maxwell-Faraday equation combined with 

(1.10)) we obtain the magnetic field: 

This field has only components along y and z axes, and is denoted as Ht.  The purpose 

of the present derivation is to express the electric fields at the two faces of the slab 

shown in Fig. 1.2 in terms of the magnetic fields, thus producing a "two-port network" 

representation of the slab in Fourier transform domain. In order to achieve this, the 

electric and magnetic fields in (1.10) and (1.12) are evaluated at the two faces of the 

slab (x=O and x=d): 



where the subscript t indicates that the magnetic fields have only components tan- 

gential to  the faces of the slab. Taking the cross product of a, with both sides of 

(1.15) gives: 

- - JY [ (a, .  (A-  - .A+)) - (A-  - At)] 
W P  

where d:, A; are the tangential components of A t ,  A- respectively. The  same 

procedure but for (1.16) gives: 

Solving the system of (1.17) and (1.18), we find: 

- U P  -e-yd (a, x H ~ ~ )  + a, x H~~ 
A, = - 

e-7d - e ~ d  
(1 20 )  

j Y 

Substituting (1.19) and (1.20) into (1.13) and (1.14), the desired two-port network 

relationship is obtained: 



where, 

jwp  1 
Z I Z  = ZZl = -- 

k sin ( E d )  

and k is such that y = jk so that the expressions in (1.22) and (1.23) are of tlie same 

form as in [ I ] .  The unit vector ii is normal to the slab and directed outwards in both 

faces: 
= { -1. for x = 0 

a ,  for x = d 

For good conductors ( a  >> we), k in (1 .4)  becomes: 

2 k = - j w p a  (1.26) 

The implementation of (1.21) in time domain starts by expanding the trigonometric 

functions of (1.22) and (1.23) in power series and keeping a finite number of terms: .. ( k d ) 2 n ( - 1 ) n  
jwp  cos ( k d )  jwp  Cn=o (2n)! 

Zll = -- - - -- 
k sin (Ed)  k d ) 2 n ~ l ( _ l ) ~  E ~ = o  (Zn+l)! 

( k d ) 2 " ( - 1 ) "  

- jwp  L o  - -- (2n)!  
kd)2"(-1)" 

k2d  E;=O ( ( zn+l ) !  



where, 

Similarly, Z12 is written as: 

Now (1.27) and (1.29) are expanded in a partial fraction sum: 

where the first sums correspond to the real roots in the denominator of (1.27) and 

(1.29), and the second sums to the pairs of complex conjugate roots. The above 

expansion should be modified by including a polynomial if iZI > W .  Substituting 

(1.30) and (1.31) into (1.21), we obtain: 

where the auxiliary variables ,Tij,k are defined as: 



and so on for the rest of t,hem. These equations are transformed in time domain giving 

auxiliary differential equations. From (1.34) and (1.35), for example, we obtain using 

also (1.28): 

2 d2 d 3  
(pod2) z.Yll,i(t) + ~ L O ~ ~ E ~ - - X ~ ~ , ~ ( ~ )  clt + Fk.Tl19k(t) = 

These differential equations are then discretized in time using a finite difference 

scheme and update equations are derived and combined with the usual E'ees' FDTD 

algorithm as follows: First, the magnetic fields Htl ,  Htl are advanced using the last 

values of E t l ,  Et2. Since the tangential magnetic fields at the faces of the slab are 

not included in the normal FDTD scheme, they can be approxjnlated by the nearby 

availabIe components HI, H2 as shown in Fig. 1.2. If the thickness of the layer d is 

much smaller than the cell size Ax then Etl, and Et2 can be both assumed to reside 

midway between Htl  and Htl, therefore the ordinary FDTD update equations can be 

used. Then, the auxiliary variables Xtj , , ,  XtJVk are advanced in time and finally the 

new electric fields Et l ,  Et2 are obtained using the time domain equivalent of (1.32) 

and (1.:33). 

Currently, the implementation of the above procedure in one dimension is in 

progress. 



Chapter 2 

FDTD Predictions of Penetration 
Through Apertures in Conducting 
Enclosures 

The penetration of electromagnetic fields into conducting enclosures via apertures is 

an ELI1 issue that is relevant to all of aviation. The stories are numerous, of disrupted 

communications, disabled navigation equipment, and worse; due to the effects of Eh4 

sources external to the aircraft. 

Although there are many possible mechanisms for the penetration of fields into an 

aircraft (including direct penetration through composites, penetratiorl through cracks 

and joints, conduction along cabling, etc.), it is usually the wiildows which admit the 

greatest. Consequently, it is of greatest importance to understand and be able to 

predict the field penetration through apertures. 

In this report, three cases of penetration are considered. The three cases consist 

of a modestly sized enclosure with three aperture configurations: one large aperture, 

tuTo large apertures, and one small aperture. 

Contrary to initial intuitive estimations, these are not entirely trivial problems for 

the Finite-Difference, Time-Domain (FDTD) method. Particularly when the aperture 

is small relative to the size of the enclosure, the decay time of a pulsed excitation is 

enormous. However, there may be some advantages to introducing an artificial loss 

mechanism into the problem space to accelerate the decay of the late-time fields. 

Thank you to Dr. M. D. Deshpande of FDC/NYMA Langley Research Center, and 

Fred Beck and C. Cockrell of NASA Langley Research Center for providi~lg the MOM 



Case #I 

Figure 2.1: A 30 cm X 30 cm X 12 cm conducting box with a 20 cm X 3 cm aperture. 
A vertically polarized plane wave is normally incident on the aperture. 

predictions and measurements used for comparisons with the FDTD predictions. 

I. Case #1 

The enclosure is a rectangular box having the dimensions of 30 cm wide by 30 cm 

deep by 12 cm high. The first aperture case (Case #1) consists of a 20 cm wide by 

3 cm high aperture i11 the side of the box. The drawing in Figure 2.1 illustrates this 

small box with an aperture. 

As shown in the figure, the fields (a Gaussian pulse) are normally incident on the 

aperture. The Rayleigh number ( P )  for the pulse was chosen to yield a spectrum of 

up to 1 GHz. 

This geometry was discretized at a cell size of 2.5mm. This cell size is very 

small (XI120 at 1 GHz), but is necessary to resolve the aperture of Case #3. This 

discretization results in a solution space that measures 130 x 130 x 58 cells, for a total 



Figure 2.2: The 30 X 30 X 12 cm box with the 20 X 3 cm aperture (Case #1) was 
discretized at 2.5 mm per cell (X/120 at 1 GHz). 

of 980,200 cells. A view of the mesh from the side of the box containing the aperture 

is pictured in Figure 2.2. Five pad cells separate the sides of the box from the six 

layers of PML. 

The pivotal issue in using a pulse excitation with the FDTD method is that the 

fields (or currents), particularly at the locations of interests, decay to zero. When 

the time-domain response has decayed to zero, it can be Fourier transformed into the 

frequency domain without error. In some cases, it may not be practical or possible 

to execute sufficient sin~ulation time to achieve complete decay of the pulse response. 

In those cases, a reasonably good answer can be obtained by transforming the pulse 

response after it has decayed to a sufficiently small amount. However, the criterion 

for what is "sufficiently small" has not been formalized. 

After some "false starts," Case #1  was executed for 131,000 time steps. This 

corresponds to a simulation time of 0.6 microseconds. In this O.G/rsec, the pulse 

could travel back and forth (across the long dimension) through the enclosure almost 

600 times. This simulation ran for approximately 46 (wall clock) hours on our SGI 

Octane. 

In Figure 2.3, the component of the time-domain electric field, at the center of the 

enclosure, that is copolarized with the excitation field is plotted with respect to the 

number of time steps. As shown in the inset, the field has decayed to an amplitude 

of 0.0002 V/m. As will be seen in Figure 2.4, this is sufficiently close to zero to  result 

in an accurate prediction for this case. 
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Figure 2.3: The  time-domain electric field at the center of the enclosure for Case # l .  
The  fields have decayed to  .0002 V/m a t  the end of 131,000 time steps. 



The results are presented here as elecric field shielding. The electric field shielding 

is a relation between the fields at the center of the box relative to the fields outside 

of the box. To realize the electric field shielding using the FDTD, the following 

procedure was performed. First, an empty FDTD solution space was created. This 

empty solution space does not need to be large. A space of 26 x 26 x 26 cells was 

chosen. The cell size of the empty solution space must match that of the problem 

solution space. Then the same pulse used in the problem simulation was launched in 

the empty solution space. The frequency response of the pulse at the center of the 

empty solution space was stored. Note that the number of time steps can be greatly 

reduced compared to that of the problem simulation. Tn this case, 32,000 time steps 

were used. This was more than necessary. Finally, the "electric field shielding" was 

computed according to 

empty space frecluency response 
electric field shielding = 201og( 1 (2.1) 

problem space frequency response 

where "empty space frequency response" and "problem space frequency response" 

are the linear magnitude values of the z components of the frequency-domain electric 

fields computed at the centers of the empty and problem solution spaces, respectively. 

Note that with this definition, the fields at the center of the enclosure are highest 

when the electric field shielding is lowest (near 650 MHz for Case #I) .  

The FDTD-predicted electric field shielding is plotted in Figure 2.4 with measured 

values and Method of Moments (MOM) predicted values. The h4ohl prediction model 

consists of the cavity mounted behind an infinite ground plane which includes the 

aperture. Thus the MOM prediction does not include any diffraction effects from the 

exterior edges of the enclosure. The correlation of the FDTD prediction is excellent 

compared to the MohlI prediction and the somewhat noisy measurement. This noise 

is attributed to resonances in the screen room in which the measuremeilts were per- 

formed [2 ] .  



11. Case #2 

Case #2  consists of the same box as in Case #1, but with two 20 x 3 cm apertures. 

One aperture is at the same location as the one for Case #1, the second aperture is 

located in the center of the side of the box opposite the illumination. A drawing of 

the conducting enclosure with the two apertures of Case #2 is shown in Figure 2.5. 

All of the FDTD parameters (cell size, P ,  number of pad cells, etc.) for Case #2 

are the same as those in Case #I.  The predictions were again computed for 131,000 

time steps, and the same procedure was used to normalize the resulting frequency- 

domain field at the center of the enclosure relative to the input pulse response. 

The time-domain response of the pulse at the center of the cavity is shown in 

Figure 2.6. The field configuration and pulse response is different from that of Case 

#1 due to the different aperture configuration. The time-domain fields are somewhat 

lower for this reason. The peak response for Case #1 is 0.7262 V/m; for Case #2 

it is 0.4421 V/m. However, the amplitude of the late-time fields for Case #1 is 

approximately 1.93 x lo-" or about 0.027% that of the peak. In Case #2, the 

amplitude of the late-time fields is about 4.8 x 1 0 - q T / m ,  or about 0.011% of the 

peak. It is a reasonable conclusion that the fields inside the cavity of Case #2 have 

decayed more rapidly than those in Case #1 due to  the additional loss mechanism of 

the second aperture. 

The only values available for comparison for this case are MOM predictions. One 

of the predictions is labeled "with internal coupling", the other is labeled "without 

internal coupling" (with respect to the apertures). It is assumed by the author that 

these two predictions were intended to explore the effects of the coupling between 

the two apertures, and are not the most accurate Mob1 predictions possible. This 

is in consideration of the fact that this structure is slightly less demanding on the 

FDTD than that of Case #1, for which the agreement with MOM was excellent. The 

FDTD-predicted electric field shielding in Figure 2.7 is greater than that of the Mol l  

predictions. However, the general shape is very similar, and the null occurs at ap- 

proximately the same frequency as in the MOM predictions. 



Case #3 

Again, the enclosure for Case #3 has the same dimensions as those in Case #1 and 

#2. This time, the single aperture is 0.5 cm in height and 10 cm wide. The vertically 

polarized pulse is again normally incident on the face of the box which contains the 

aperture, as shown in Figure 2.8. The geometry was again meshed at 2.5 mm per 

cell. The mesh of the aperture side of the box is shown in Figure 2.9. 

After executing Case #3 for 131,000 time steps, the time-domain electric field 

amplitude a t  the center of the box has only decayed to a value of 0.03 V/m, as seen 

in the inset of Figure 2.10. This high-Q cavity essentially represents a condition that 

is the opposite of Case #2 relative to Case #I: the smaller aperture of Case #3 

provides a smaller loss mechanism, and the fields decay very slowly. 

Is the late-time electric field amplitude of 0.03 V/m close enough to zero for the 

accurate transformation of the time-domain fields into the frequency domain? The 

electric field shielding was computed as before, and the results are plotted with MohI 

prediction and with measured values in Figure 2.11. The agreemerlt between the 

measurement and the MOM prediction indicates that they are accurate, and that the 

FDTD prediction is significantly in error. The only agreement between the FDTD 

prediction, and the MOM prediction and measurement is the location of the null at 

700 LIHz. Evidently, the time-domain fields have not decayed to a small enough value 

for the FFT to be accurate. 

One possible solution is to execute the simulation for a greater number of time 

steps. With the current configuration of the code, a radix-2 F F T  is used to transform 

the time-domain fields into the frequency domain. That means that the computer 

memory reserved for the time-history of the fields to be transformed must be increased 

by powers of two: the smallest increase is double the current number of time steps. 

In this particular case, the array size could be increased from 131,072 to 232,177. 

Unless there is reason to  believe that the late-time fields will decay to an acceptably 

small value within some intermediate number of time steps, the logical number of 

time steps to run is then 232,000. That would take at least twice as long to run as 

does the present number of time steps: approximately four days. Judging from the 

rate of decay evident in Figure 2.10, a doubling of the number of time steps is unlikely 

to be sufficient. This option is not particularly appealing. 



Another possibility is to introduce some additional loss mechanism into the so- 

lution space. To enlarge the existing aperture or add an additional aperture would 

surely change the field distribution inside, thus invalidate the prediction. The tvalls of 

the enclosure could be made lossy; however, a third possibility is to artificially assign 

some small loss to the free-space cells of the solution space. This third approach is 

attempted. 

A. Case #3, artificial loss 

The FDTD prediction for Case #3 was computed again for 131,000 time steps, but 

with the free-space cells artificially assigned a conductivity of 0.000001 S/m. This 

change was implemented in the input (control) file. The second parameter of the first 

media property line defines the conductivity of the free-space cells. 

The time-domain electric field amplitude versus time step is shown in Figure 2.12. 

The late-time fields have decayed only slightly more than those for the lossless case. 

However, the electric field shielding has improved substantially as seen in Figure 2.13. 

The null at 700 MHz has increased to the MOM predicted value, and the erroneous 

peaks at approximately 410 MHz and 890 MHz have been reduced. However, the dis- 

crepancies between the FDTD prediction and the measurement and i%lohI prediction 

is still considerable, particularly below 300 MHz. 

Some improvement in the FDTD-predicted electric field shielding was observed 

in the previous case in which the free-space cells were assigned a very small value of 

conductivity. The obvious next step would be to increase this conductivity to obtain 

a more pronounced effect on the late-time fields. This case was repeated with the 

artificial conductivity of the free-space cells set to 0.0032 S/m. Furthermore, the 

number of time steps have been reduced to 16,000. 

In Figure 2.14, the time-domain fields at the center of the cavity are shown versus 

time steps, and the last 3,000 time steps are shown in the inset. The late-time fields 

have now been driven almost to zero within 16,OO time steps. 

.4 dramatic improvement in the comparison between the FDTD prediction and the 

measurement and MOM prediction is evident in Figure 2.15. However, the FDTD- 

predicted null at 700 hIHz is slightly higher than both the measured and MoAi- 

predicted null. 



B. Case #3, variable artificial loss 

Finally, Case #3 is repeated after making a slight nlodification to the NEWS code 

to linearly increase the artificial conductivity assigned to the free-space cells. This 

variable conductivity is set to zero at time step zero, and increases to a value of 0.0064 

S/m at 16,000 time steps. The value of 0.0064 S/m was chosen to yield the same 

total loss experienced by the pulse: the integration of the instantaneous conductivity 

with respect to the simulation time. 

The time-domain field at the center of the cavity is plotted versus tirne steps in 

Figure 2.16. As seen in the inset, again the fields have been driven virtually to zero 

within 16,000 time steps. However, the difference in the rate of decay from that of 

the previous case is clearly evident. 

The electric field shielding for this case is compared with measurement and hIoM 

prediction in Figure 2.17. The agreement is excellent. Note that the FDTD-predicted 

null at 700 MHz is now between that of the measurement arid the Moh4 prediction. 

IVhy is the electric field shielding predicted by the FDTD slightly better when 

the artificial conductivity of the free-space cells is linearly increased than when it 

is set to a constant? It is speculated that there is an initial response to the pulse 

excitation that is critical to the accuracy of the final predicted spectrum. This initial 

pulse response is clearly seen in the time-domain field plots for Cases #1 and #2 

(within the first few thousand time steps), but is not obvious in Case #3. In Figures 

2.15 and 2.19 the time-domain field for the lossless Case #3 is cornparcd with that 

using a constant artificial loss and a variable artificial loss, respectively. Notice that 

the time-domain response for the constant artificial loss case is different from that 

of the lossless case. However, the time-domain response of the linearly increasing 

artificial loss case is almost exactly the same as that of the lossless case for the first 

few thousand time steps. For the linearly increasing artificial loss case, the early-time 

loss is negligible and the initial pulse response is not significantly altered. The loss 

then increases to levels that are effective in causing a rapid decay of the late-time 

fields, enabling an accurate Fourier transformation into the frequency domain. 



Conclusions 

The FDTD-based NEWS code was used to compute the electric field shielding of a 

conducting box having three different aperture configurations. The FDTD predictions 

were compared with measurements and XlloXI predictions, where available. 

Due to  the high Q of the cavities considered, the conventional second-order FDTD 

method required a very large number of time steps for a Gaussian pulse excitation to 

decay to a value that was sufficiently close to zero for accurate Fourier transformation 

of the time-domain fields into the frequency domain. With 131,000 time steps (in this 

case), however, the agreement of the FDTD predictions with measurements and MOM 

predictions were excellent. 

The loss mechanism which allows the time-domain fields to decay consists of the 

fields exiting the cavity through the aperture and terminating into the Absorbing 

Boundary Condition (ABC). When the aperture area is small relative to the size 

of the cavity, the late-time fields decay more slowly than urherl the aperture area is 

large. For small apertures, the number of time steps necessary to allow the late-time 

fields to decay can be enormous. An extremely large number of time steps has signif- 

icant drawbacks: long computatiori time, accumulation of dispersion, accumulation 

of numerical error, etc. 

This study suggests that the introduction of an artificial loss mechanism into the 

solution space may be a viable alternative to extremely large numbers of time steps. 

In this report, the free-space cells were assigned a low value of conductivity. This 

additional loss mechanism did force the transient fields to decay more rapidly. 

The speculations, based on the observations from this study, concerning the intro- 

duction of this artificial loss are as follows. When the free-space cells are assigned a 

very low value of conductivity, the loss experienced by the pulse is cumulative over a 

large number of time steps, and the greatest effect is on the late-time fields. When the 

free-space cells are assigned a higher value of conductivity, the initial pulse response 

of the cavity is altered, and the accuracy of the prediction is degraded. However, if 

the conductivity of the free-space cells is increased as a function of time steps from 

an initial value of zero, the initial pulse response of the cavity is virtually unaltered 

from its true free-space response. The artificial loss then increases to values that are 

effective in forcing the late-time fields to zero. 



For Case #3 (a 30 x 30 x 12 cm box with a 10 x 0.5 cm aperture), 131,000 

time steps were found to be insufficient for the late-time fields to decay to suitable 

levels. By slightly altering the NEWS code to linearly increase the conductivity of 

the free-space cells from zero to 0.0064 S/m, the transient fields were driven to zero 

in 16,000 time steps. This resulted in a predicted electric field shielding that was 

in excellent agreement with measurement and MOM prediction, and was a reduction 

in computation time of approximately 87% over that of the unaltered NEWS code 

(which did not yet yield an accurate FDTD prediction). 

It should be noted that, strictly speaking, the use of time-varying material prop- 

erties violates an assumption made in the formulation of the conventional FDTD 

update equations. The update equations are derived using the time derivative of the 

electric field intensity, not the electric flux density. Therefore, there is an implicit 

assumption made that the permittivity ( 6 )  is constant with time. 

The introduction of a linearly increasing artificial loss to the free-space cells of an 

FDTD problem consisting of a cavity with an aperture was found to greatly reduce 

the computation time of the calculations, reduce the computer memory requirements, 

enable the solution of an otherwise possibly intractable problem, and to yield results 

that are in excellent agreement with other methods. However, additional cases should 

be examined to verify that this technique is generally applicable to this class of prob- 

lems. In addition, there may be advantages to  other profiles (exponentially increasing, 

delayed, etc.) of the artificial loss that can be explored. 



Case No. 1 

Frequency (MHz) 
Figure 2.4: A comparison of the electric field shielding at the center of the enclosure 
for Case #1 between FDTD prediction, hIoM prediction, and measurement. 



Figure 2.5: A 30 cm X 30 cm X 12 cm conducting box with two 20 cm X 3 cm 
apertures. 
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Figure 2.6: The time-domain electric field at the center of the enclosure for Case #2. 
The fields have decayed to approximately .00005 V/m at the end of 131,000 time 
steps. 
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Figure 2.7: A comparison of the electric field shielding at  the center of the enclosure 
for Case #2 between FDTD prediction, MohI prediction (with internal coupling be- 
tween the apertures), and hlohiI prediction (without internal coupling between the 
apertures). 



Case #3 

Figure 2.8: A 30 crn X 30 crn X 12 cm conducting box with one 10 cm X 0.5 cm 
aperture. 

Figure 2.9: The  30 X 30 X 12 cm box with the 10 X 0.5 cm aperture (Case #3) was 
discretized at 2.5 rnm per cell (XI120 at 1 GHz). 
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Figure 2.10: The tirne-domain electric field at tl;e center of the enclosure for Case 
#3. The fields have only decayed to 0.03 V/m at the end of 131,000 time steps. 
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Figure 2.11: A comparison of the electric field shielding a t  the center of the enclosure 
for Case #3 between FDTD prediction (with no artificial loss mechanism), MOM 
prediction, and measurement. 
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Figure 2.12: The  time-domain electric field a t  the center of the enclosllre for Case 
#3 and with the free-space cells of the FDTD solution space artificially assigned a 
conductivity of 0.000001 S/m. The  fields have decayed only slightly more than those 
of the lossless case after 131,000 time steps. 
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Figure 2.13: A comparison of the electric field shielding at the center of the enclo- 
sure for Case #3 between FDTD prediction (with a constant 0.000001 S/m artificial 
co~lductivity assigned to  the free-space cells), R4oM prediction, and measurement. 
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Figure 2.14: The time-domain electric field at the center of the enclosure for Case #3 
with the free-space cells of the FDTD solution space artificially assigned a conduc- 
tivity of 0.0032 S/m. The fields have decayed almost to zero after only 16,000 time 
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Case No. 3 
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Figure 2.15: A comparison of the electric field shielding a t  the center of the enclo- 
sure for Case #3 between FDTD prediction (with a constant 0.0032 S/m artificial 
conductivity assigned to the free-space cells), Mol l  prediction, and measurement. 
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Figure 2.16: The time-domain electric field at t i e  center of the enclosure for Case 
#3 and with the free-space cells of the FDTD solution space artificially assigned a 
linearly increasing conductivity as a function of time steps. The fields have decayed 
to nearly zero after o~l ly  16,000 time steps. 
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Figure 2.17: A comparison of the electric field shielding a t  the center of the en- 
closure for Case #3  between FDTD prediction (with a linearly increasing artificial 
conductivity assigned to the free-space cells), MOM prediction, ancl measurement. 
The  agreement is excellent. 
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Figure 2.18: A comparison of the initial time-domain electric fields at the center of 
the enclosure for Case #3. The solid line corresponds to the case of the free-space 
cells being assigned a constant artificial conductivity of 0.0032 S/m. The patterned 
Iine is for the lossless case. Note that differences between the two curves occur very 
early in the simulation. 
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Figure 2.19: A comparison of the initial time-domain electric fields at  the center of 
the enclosure for Case #3. The solid line corresponds to  the case of the free-space 
cells being assigned a linearly increasing artificial conductivity. The  patterned line is 
for the lossless case. Note that there is little difference between the two curves for 
the first few thousand time steps. 



Chapter 3 

Analysis of Cavity-Backed Slot 
Antennas: FDTD, FEM & 
Measurements 

I. Introduction 

hfutual coupling between cavity-backed slot (CBS) antennas mounted on a ground 

plane has been examined in the past using the Finite-Difference Time-Domain (FDTD) 

method and a hybrid Finite Element Method/hlethod of hloments (FEM/MohlI) ap- 

proach. Predictions were compared with measurements performed in the Electro- 

Magnetic Anechoic Chamber (EhlZAC) facility at Arizona State University. In this 

report, simulation issues related to the modeling of CBS antennas with either FDTD 

or FER/l/hlohI are described. Furthermore, additional numerical results are presented 

and compared with measurements. 

Initially, FDTD modeling of CBS antennas is discussed, including an efficient 

source implementation for single elements and its extension to multiple elements. 

Then, the hybrid FEill/hIoM approach is briefly described and its advantages are 

outlined. In the last section, FDTD and FEM/h/fohl are used to compute the input 

impedance of a CBS antenna and coupling between two identical CBS antennas. Fi- 

nally, some parametric studies of coupling are performed using the hybrid FEhI/MohI 

code. 



11. FDTD Modeling 

A. Source Implementation 

The computation of the input impedance of an antenna or the network parameters 

of a system of antennas involves the Fourier transform of the input voltages and 

currents. Therefore, using a transient excitation (pulse) the impedance or the network 

parameters can be determined over a frequency band by fast Fourier trallsforming 

(FFT) the time-domain data. The basic requirement for the FFT to work is to allow 

enough simulation time for the transient phenomena to decay. IIowever, one of the 

main difficulties involved in FDTD simulations is that in some applications, e.g., 

resonant lossless structures, tens or even hundreds of time-steps may be required for 

the transient fields to decay. 

The voltage source that is used in FDTD simulations is commonly connected 

directly to the antenna; hard voltage source. This source is usually a pulse with 

a significantly greater than zero amplitude, only for a very short fraction of the 

total computation time. When the pulse amplitude drops essentially to zero, the 

source becomes effectively a short circuit. Consequently, any reflections from the 

antenna towards the source are totally reflected back. Additionally, the energy that 

is i~ltroduced in the con~putational space can be dissipated by either radiation, or 

absorption due to the presence of lossy media or lumped elements. For resonant 

structures, this radiation or absorption process may require a long time to dissipate 

the excitation energy. 

Marly attempts have been recently made in order to reduce the required simulation 

IS source time. A transient source for a microstrip line was introduced in [3]. Th' 

is located near the FDTD outer boundary and when its amplitude falls to zero, 

the source is removed and replaced with a FDTD absorbing boundary. The main 

disadvantages of this method are that it can not be explicitly applied to arbitrary 

geometries, and the feed location should be far enough from any geometrical features 

so that no reflections return to the feed location before the source is replaced with 

the absorbing boundary. A similar approach has been applied to antennas that are 

fed by a coaxial cable. Instead of irltroducing an absorbing boundary during the 

calculation, a portion of the coaxial cable terminated in an absorbing boundary is 
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Figure 3.1: Voltage source. 
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included in the FDTD calculation [4], 151. It is reported in [5] that this approach 

is preferable to the gap source described in 161, since the fields decay more rapidly 

when the explicit coaxial cable is used. Furthermore, a more involved technique 

that reduces the simulation time is based on the use of signal processing methods to 

predict the voltages and currents at later times based on manipulation of computed 

results at earlier times. This technique [7],[S] proposes the truncation of the FDTD 

computations at a given time and use of the already calculated results to predict 

the ones at future times. However, the utilization of prediction methods increases 

the complexity of the FDTD calculation process (post-processing). Additionally, the 

prediction methods are complicated and their accuracy depends significantly on the 

choice of order of the prediction technique, which has to be made by the user and is 

not a trivial matter. 

A novel, effective and very simple technique to implement for reducing the simula- 

tion time is based on a source with an internal resistance that provides the excitation. 

Initially, this method was used in [9] to excite microstrip patch antennas. In addi- 

tion, the expression for a voltage source with an internal resistance in parallel with 

the free-space capacitance of the FDTD cell is given in [lo]. However, the advantages 

of this method were illustrated and outlined explicitly only in [ll]. 

Consider the excitation of an FDTD computational region with a voltage source 

at a certain mesh position (i,, j,, k , ) .  Figure 3.2 shotvs the equivalent circuit of a 

voltage source with an internal source resistance R,. The voltage at the output port 
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of the source, which is fed to the antenna, can be easily computed by applying Ohm's 

Law to the circuit of Figure 3.2 

where I, is the current flowing through the source which is equal with the current at 

the input port of the antenna. This current can be conlputed using the integral form 

of Amphre's law. Obviously, the input impedance of the antenna is calculated from 

the following equation: 
K u t  (w) Zin(u)  = - 
I s  (4 

Source 

L o  
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Figure 3.2: Voltage source with intrinsic resistance. 

The source resistance cannot be chosen very large, otherwise instabilities may 

occur due to  neglecting the displacement current through the FDTD cell containing 

the source. This problem can be encourltered by judicious choices of the values of the 

resistance or by taking into account the capacitance of the FDTD cell as discussed 

in [lo]. A reasonable choice for R, is the value of the characteristic impedance of the 

transmission line; e.g., 50 ohms for a standard coaxial cable. 

B. Illustration of the effectiveness of the resistive voltage 
source 

In order to illustrate the effectiveness of the use of a voltage source with an internal 

resistance, it was decided to compute the input impedance of an air-filled cavity- 



backed slot antenna analyzed in [l2]. A three-dimensional (3-D) view of the cavity 

under consideration is demonstrated in Figure 3.3 and a detailed description of the 

geometry is shown in Figure 3.4. The input impedance of the cavity-backed slot 

antenna was measured in the Electromagnetic Anechoic Chamber facility at Arizona 

State University. In the experiment, the aperture antenna was mounted on a finite 

ground pIane of dimensions 24 x 24 in and the sharp edges were covered with absorbing 

material to reduce diffractions. Additionally, the antenna was rotated at an angle 

with respect to the principal axes and offset relative to  the center of the ground, to 

direct the diffractions away from the aperture. Moreover, the input impedance of 

the same aperture mounted on an infinite ground plane was calculated in [12] using 

a hybridization of the Finite Element Method (FEM) with the Moment hlethod 

(MohI) and compared very well with measurements; showing that the dimensions of 

the ground plane do not have a profound effect on the value of the input impedance. 

Figure 3.3: A three-dimensional view of an air-filled rectangular cavity-backed slot 
antenna fed with a probe oriented in the y-direction. 

In the FDTD simulations, this aperture antenna was mounted on a 9 x 9 cm finite 

ground plane, which is smaller than the one used in the measurements to reduce 

the size of the computational space. In order to determine the input impedance of 

the antenna, the voltage and current at the feeding probe of the cavity-backed slot 

antenna have to be computed. The simulation time should allow the transient effects 



Figure 3.4: A two-dimensional view of an air-filled rectangular cavity-backed slot fed 
with a probe oriented in the y-direction. 

in both the voltage and current to decay so that they can be accurately Fourier 

transformed. As discussed previously, the voltage is a user defined function of time 

that decays quickly to zero, whereas the current may need a long time to decay. Two 

FDTD simulations were performed, and for both the cell size was 1.5 mm whereas the 

probe was excited with a voltage Rayleigh pulse. In the first case, the voltage source 

had zero internal resistance (R, = O),  and in the second case, R, was set equal to 50 

ohms. Figs. 3.5 and 3.6 show the computed current at the probe exciting the cavity 

for the two cases, respectively. Obviously, the current in the case with no internal 

resistance (R, = 0) did not decay to zero even after 64,000 time steps, indicating the 

resonant behavior and the high quality factor, Q, of the antenna. On the contrary, in 

the second simulation, the source current converged to zero very fast and the FDTD 

calculation time reduced significantly. 
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Figure 3.5: Current of the probe exciting the cavity-backed slot antenna for R, = 0 
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Figure 3.6: Current of the probe exciting the cavity-backed slot antenna for R, = 
50 ohms 



C. Calculation of the ABCD-parameters using a voltage 
source with internal resistance 

I11 the previous section a voltage source with an internal resistance was used to ef- 

ficiently compute the input impedance of an antenna. However, when a problem 

involves the calculation of the network parameters of a syst,enl of antennas, then a 

modified approach should be used. Here, because our analysis is related to mutual 

coupling between two antennas, only the evaluation of two-port network parameters 

will be considered. The computation time required for the calculation of the two- 

port network para,meters that model a system of two antennas can be substantia,lly 

reduced by using a voltage source with an internal resistance. The augmented system 

of two generic antennas along with the voltage sources is shown in Figure 3.7. This 

system can be thought of as the cascade connection of three two-port networks, as 

illustrated in Figure 3.7. 

Figure 3.7: Augmented system of two generic antennas with voltage sources. 

The proposed approach requires to initially compute the EI-parameters of the 

entire system including the antennas and the load resistors. Then, the 1'-parameters 

of the system are converted to ABCJD-parameters. It is known that the ABCD matrix 

of the cascade connection of two-port networks is equal to the product of the -4BCD 

matrices representing the individual two ports. Note also, that the order of matrix 

multiplication must correspond to the order in which the  letw works are arranged, since 

matrix multiplication is not, in general, commutative. Therefore, the ABCD matrix 

of the entire system is equal to the product of the ABCD matrices of each sub-network 



and can be written as 

[ ,tot " tot  ] = [ R BRS1 ] [ " a n t  "ant ] [ ARS2 Bz2 ] 
Ctot Dtot CRsl D R ~ ~  Cant Dant ' R S ~  D ~ s 2  

(3.3) 

where ABCDR,, and ABCDRS2 are t,he ABCD matrices of the series resistances 

Rsl and Rs2, respectively, and ABCDant is the ABCD matrix of the overall antenna 

system. The ABCD parameters of a two-port network consisting of a series impedance 

Z between ports 1 and 2 (see Figure 3.8) are given by 

Figure 3.5: Two-port rletwork consisting of a series impedance 2. 

Consequently, the ABCD matrices denoted as ABCDR,, and ABCDRS2 are given 

by 

whereas the ABCD matrix of the overall antenna system, ABCDarLt, can be conlputed 

by the following expression: 

ARS R ] [ t o t  t o  ] [ A R , ~  BRS2 ] [ ] = [ Chl DRSl Ctot Dtot CRf2 (3.7) 

The computed ABCDant matrix of the two antennas can be converted, if needed, to 

any of the other type of two-port network parameters using the appropriate conversion 

formulas. Follotving the method described, computation of the ABCD parameters of 

the two antennas can lead to great savings in the computational time. 



111. FEM/MoM Hybrid Approach 

A vector finite element method (FEkI) hybridized with the method of nlonlents 

(Moll)  is used in the analysis of cavity-backed slot (CBS) antennas. The FEhI, 

which is based on linear tetrahedral elements, solves for the electric field distribu- 

tion inside the cavity or cavities, since we are interested in coupling. A spectral 

domain Mohf is implemented through the continuity of the tangential magnetic field 

in the aperture(s) to solve for the field distribution in the exterior region; note that 

the cavity(ies) is(are) mounted on an infinite ground plane with a possible dielec- 

tric/magnetic overlay. The main drawback of the spectral domain hlohI is that it 

becomes extremely slow with increasing the number of edges in the aperture(s). This 

problem is overcome by using an asymptotic extraction of the exponential behavior 

of the Green's function; the asymptotic part is evaluated using a computationally 

efficient spatial domain integration. The excitation is based on either a plane wave 

incidence (scattering problem) or a coaxial feed model (radiation problem) imple- 

mented using the FEM. The radar cross section (RCS), input impedance, return loss, 

and gain versus frequency can be conveniently and efficiently calculated using the 

hybrid forn~ulation. 

A. FEM/MoM formulation 

A two-dimensional (2-D) view of a CBS antenna mounted on an infinite ground plane 

coated with a dielectric layer is depicted in Figure 3.9. A vector FEh4 is implemented 

for the solution of the source-free Helmholtz's equation 

inside the cavity volume (a),  where [ E , ]  and [p, ]  are, respectively, the permittivity and 

permeability tensors of the domain, and E is the unknown electric field. Full-tensor 

representation of E ,  and 11, allows electromagnetic modeling of frequency dependent 

anisotropic materials. Dirichlet boundary conditions are imposed on all perfectly 

conducting surfaces, which implies that f i  x E  = 0 on cavity walls. Using this boundary 

condition and the well-known Galerkin's approach, the Helmholtz's equation can be 



written in a weak integral form given by 

where W is the chosen testing function, I;, is the free-space propagation constant, 9,  

is the free-space intrinsic impedance, and S denotes the area of the cavity aperture. 

For scattering, a linearly polarized plane wave, denoted by Hi"", is incident on the 

aperture plane at an angle 8; with respect to the normal vector and d i  with respect 

to the x-axis. By imposing the boundary condition that the tangential magnetic field 

must be continuous across the aperture plane, one may write 

where HTef is the - magnetic field reflected by the coated ground plane in the absence of 
- 

the aperture, is the spectral dyadic Green's function for a coated conducting ground - 
plane in the presence of a magnetic current source at the origin, and M is the Fourier 

transform of the magnetic current (E x i,) just above the aperture. Substituting 

(3.10) into (3.9) and utilizing the inverse Fourier transform in conjunction with the 

definition that T = W x 6,, the weak form of Helmholtz's equation can be expresses 

as 

The finite element volume is discretized with tetrahedrons and the aperture with 

triangles. Thus, the electric field (E) inside the cavity is expanded in terms of a set 

of basis functions W, ' s  and the magnetic current (M) in the aperture is expanded 

in terms of another set of basis functions T,'s, where i corresponds to a global edge 

number. The second type of basis functions (T,'s) were originally proposed by Rao et  



al. [13]. These are very similar to W,'s with the only difference being the enforcement 

of normal continuity, rather than tangential continuity, across edges. The Fourier 

transform of these triangular basis functions is known in closed form [14]. 

The integral on the right-hand side of (3.11) represents the excitation vector which 

is evaluated using a pure spectral domain approach. The spectral integral on the left- 

hand side of (3.1 1) represents the admittance matrix for the exterior region of the 

cavity. The latter is evaluated using a mixed spectral/spatial domain hfoM approach. 

The exponential behavior of the governing Green's function is nunlerically extracted 

to  improve the computational speed of the spectral integration. The asymptotic 

part is evaluated using a spatial integration which is known to be computationally 

more efficient. Thus, using the asymptotic extraction, the admittance matrix can be 

expressed in spectral domain as 

- - 
( k , )  Gh ( k x k , O ) J ( - k x - k y ) d k x d  (3.12) 

- - 
where Gh is the dyadic Green's function of a homogeneous space with E ,  = ed and 

pl. = &! (e f  and pt referred to the dielectric coating), and T, is the Fourier transform 

of the i th basis function. The first integral in (3.12)) denoted as e,, is evaluated using 

a pure spectral domain approach after converting to polar coordinates. The second 

integral in (3.12)) denoted as Y : y ,  is evaluated using a spatial, instead of spectral, 

domain MohT 

Y 1 J = - 2 k 2  L, T;(r) . [hi T3 (r') Gh(r, r') dA' dA I 
+ 2 Ja 'V - T; (r) Gh (r ,  r f)Vf - TJ (r') CIA' dA 

: I 
where A, (A3) is the triangle supportirlg the ith ( j t h )  basis function, r (r') is the 

position vector, and Gh is the Green's function for a homogeneous medium with 
d d E ,  = E, and p,  = p T .  



Once the unknowns (non-PEC edges) inside the cavity and aperture are assembled, 

a linear system of equations is formed 

where [MI represents the finite element matrix given by 

and [Y] = [F] + [YH]; the superscripts c and a ,  which denote cavity and aperture, 

respectively, are used to distinguish field interactions between the two regions. The 

rank of matrix [ A l l  is N, + Na where N, is the number of non-PEC edges inside the 

cavity, and N, is the number of non-PEC edges in the aperture. The rank of matrix 

[I*-] is N, . 
The right-hand side vector, which is non-zero only in the aperture plane and 

expressed by the surface integral in (3.11), can be evaluated very conveniently using 

the spectral domain approach 

for hard and soft polarization, respectively; i denotes the global number of an edge 

in the aperture, * indicates complex conjugate, and 

k = ko sin 6, cos 4; 

k,, = ko sin 0; sin 4;. (3.17) 

The Green's function definitions for i'r and C r  as well as additional details in the 

derivation of (3.15) and (3.16) are provided in [12],[15]. 

For radiation, the forn~ulation remains the same except for the excitation vector 

which is formulated in a different way. Instead of plane wave incidence, the antenna 

is now excited using a coaxial feed model which becomes part of the finite element 



domain. The associated formulation for the coaxial feed model and the evaluation of 

the reflection coefficient at the coax/cavity interface are explicitly given in [12]. 

The far-zone radiated and/or scattered fields are calculated using the magnetic 

current distribution in the aperture. Specifically, these are given by 

C E, {-??zj($,, I;,,) sin 4 + F;,(%,, f i g s )  cos 4) 
j € A  

j h, cos 6 t - j k o r  - M  I: 
Eb = 

2 7r I- qb ( x.5, kg,) - 

Ej {p;j(kx,, C,,) cos + p;j(,(%s, k,,) sin 4) 
jE A  

where A is a triangle in the aperture. Ihowing the far-zone fields, antenna charac- 

teristics such as RCS, directivity, gain and efficiency can be calculated. 

z 
A 

Dielectric Coating 

Id,, 

Ferrite-Loaded Cavity 

Figure 3.9: Two-dimensional view of a ferrite-loaded cavity-backed slot. 



IV. Numerical Calculations 

Initially, in order to examine the accuracy of FDTD results computed using a source 

with an internal resistance, the input impedance of the cavity-backed slot antenna 

examined in Section 11, was computed for three different cases. In all the cases, the 

feeding probe was excited by a voltage source with R, equal to 50 ohms. In the first 

case, the radius of the probe was not modeled (infinitely thin probe) and the cell 

size was 1.5 mm. In the second case, the radius was taken into account by using the 

thin-wire model and the cell size was 1.5 mm. In the third case, the cell size was 0.6 

nlm and the probe itself was discretized along with the rest of the geometry. Fig. 3.10 

illustrates the computed input resistance and reactance of the aperture antenna for t,he 

three different cases. Also, the FDTD calculations are compared with measurements 

and with the results based on the hybrid FEM/Moh4 formulation which were reported 

in [12]. Obviously, the accuracy of the FDTD results depends greatly on the wire 

modeling of the probe that excites the antenna. Excellent agreement between the 

FDTD computations and the measurements is observed in the case where the probe 

was discretized. The improvement in accuracy for the last case can be attributed to 

the finer discretization and the enhanced modeling of the probe. 

Moreover, the coupling between two identical cavity-backed slot antennas (whose 

specifications are defined in Fig. 3.4) mounted on a square 9 x 9 cm ground plane, 

25 mm apart from each other, was computed by FDTD and FEM/Moh4 and the re- 

sults of the two methods compare very well (see Fig. 3.11 for the geometry specifica- 

tions and Fig. 3.12 for the coupling calculations). The discrepancies at the higher end 

of the band can be attributed to discretization errors. In these simulations the FEM 

mesh consisted of 75,874 elements with average edge size 0.16 cm whereas the FDTD 

used a cell size of 0.6 mm and a computational domain of 160 x 160 x 142 cells. Notice 

that two different FDTD methods were used. The first one, denoted as FDTD(2,2), 

represents a second-order accurate FDTD both in time and space. The second one, de- 

noted as FDTD(2,4), represents a second-order accurate in time and and fourth-order 

accurate in space FDTD. It can be observed that the FDTD(2,J) sclieme does not 

provide a significant improvement in accuracy compared to the FDTD(2,2) scheme. 

However, it is expected that as the distance between the two apertures becomes large 

in terms of the wavelength, FDTD(2,4) will outperform FDTD(2,2). 
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Figure 3.10: Input impeda.nce of a cavity-backed slot antenna. 
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Figure 3.11: Geometry of two identical cavity-backed slot antennas ~nounted  on a 
square ground plane (for antenna specifications see Figure 1.4). 



-10 
5000 6000 7000 8000 9000 10000 11000 12000 

Frequency (MHz) 

I I I I - Measurements 
FDTD(2,2) 

I I I I I I 

Figure 3.12: S-parameters of two identical cavity-backed slot antennas mou~ited on a 
square ground plane (for antenna specifications see Figure 1.4). 
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Parametric studies of coupling between two E-plane oriented cavity-backed slot an- 

tennas, shown in Fig. 3.13, were performed both numerically and experimentally; d de- 

notes the separation between the two antenna apertures. Only the hybrid FEh,I/hIohI 

approach was used in these calculations because it was shown to be more efficient and 

accurate than FDTD. The advantages of FEMIMohl are attributed to the fact that 

this method does not discretize the space between the two cavities but rather the 

open-space interaction between the slots is accounted for in the Mohl formulation. 

A sample of the results is illustrated in Figs. 3.14 and 3.15, where the computed 

coupling of the two antennas is plotted versus separation distance at different fre- 

quencies and compared with measurements. It is observed that the coupling between 

the two antennas diminishes at approximately the same rate as a function of aperture 

separation at all frequencies. Also, the agreement between the measurcn~erlts and 

the FE&l/&IohI hybrid is excellerit considering that the levels of coupling are below 

-20 dB. 

Figure 3.13: Top view of two identical cavit,y-ba.cked slot antennas mounted on a 
ground plane (E-plane configuration). 

Finally, the FEh,l/i\iloM method was used to compute coupling versus separation 

distance for an echelon configuration of the two identical CBS antennas examined 



7 GHz 

Figure 3.14: Coupling versus distance for the E-plane configuration at: (a) 7 GIlz 
and (b) 8 GHz. 
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Figure 3.15: Coupling versus distance for the E-plane configuration at: (a) 11 GHz 
and (b) 12 GHz. 

-26 

-28 

-30 

s-32 
u - 
2 
-34 

-36 

-38 

I 

- 

- 

- - 

- 

- 

- 

-40 0 20 40 6'0 8b 100 1;0 1;0 lk0 
separation (mm) 



above (see Figure 3.16). The distance cl was fixed to 25 nlm and the separation s 

was varied. The calculations are illustrated in Figure 3.17 for different frequencies. 

For this type of configuration there exist no available measurements. Again, it is 

observed that the coupling drops as a function of distance in a similar way for different 

frequencies. hloreover, it can be seen that coupling drops with a considerably faster 

rate in the case of the echelon configuration than in the E-plane orientation. This 

coupling behavior agrees with what it has already been observed in patch antennas, 

and is due to the fact that along the ground plane the E-plane radiation pattern 

of an aperture antenna exhibits a maximum, whereas the H-plane radiation pattern 

exhibits a null. 

Figure 3.16: Top view of two identical cavity-backed slot antennas mounted on a 
ground plane (echelon configuration). 

V. Conclusions 

111 this report an overview of the analysis of cavity-backed slot antennas in the context 

of FDTD and FEhl/hIoM was presented. Different numerical issues related to the 

modeling of such antennas were described. It was found that the use of a voltage 

source with an internal resistance in FDTD is indispensable for efficient comyuta- 

tions. Both FDTD and FEMIMoM were used to compute the input impedance of a 

single CBS antenna, and coupling between two elements, and compared very well with 



Figure 3.17: Coupling versus distance for the echelon configura,tion. 

measurenlents. However, it was found that for coupling versus distance calculations, 

FER/l/hloM is faster and more accurate than FDTD. This is attributed to the fact that, 

FEM/hIobI does not discretize the space between the two cavities but rather treats 

the open-space interaction within the hlon'l formulation. Therefore, it does not suffer 

from dispersion errors Iike FDTD which sinlulates the open space in addition to the 

cavity space. Also, the FEM/h4ohl computational space remains constant because 

only the CBS antennas need to be discretized in the hybrid methodology. On the 

contrary, FDTD has to also account for the space between the two antennas thereby 

yielding very large domains especially for large distances. Another advantage of the 

FEkZ/MohI approach is that it is more flexible in simulating arbitrary geometries 

without having the staircasing problem of FDTD. For example, coupling between ar- 

bitrarily oriented CBS antennas on a ground plane can be accurately computed using 

the existing FEM/MoM code, whereas t,he FDTD code would have to  be modified to 

include contour-path methods in order to eliminate the staircasing errors. 





Chapter 4 

Radiation Pattern Analysis: 
FDTD (2,2) versus FDTD (2,4) 

I. Introduction 

In our research lab, higher-order FDTD schemes were developed in the past and 

thoroughly investigated. Specifically, a second-order accurate in time and fourth- 

order in space FDTD scheme [FDTD(2,4)] was first examined. The characteristics 

of FDTD(2,4) were compared with the ones of the standard second-order in time 

and space FDTD [FDTD(2,2)]. It was shown that FDTD(2,4) exhibits significalitly 

smaIIer dispersion than FDTD(2,2). Therefore, it is expected that FDTD(2,4) can 

handle electrically large domains more efficiently and accurately. However, there are 

some problems related to the behavior of FDTD(2,4) around discontinuities especially 

PEC ones. Some of these issues were examined in the previous report by analyzing 1-D 

domains and some ways to resolve them were presented. As far as truncation methods, 

the anisotropic PML technique was used to terminate FDTD(2,2) and FDTD(2,4) 

lattices. Tt was found that PhIL is a very effective truncation technique, and it 

performs equivalently on either FDTD(2,2) or FDTD(2,4) computational grids. 

After validating the FDTD(2,4) 3-D code along with PRIL, a more general FDTD(2,4) 

code was implemented. This code works in a similar way as the NEWS FDTD(2,2) 

code. Before the simulation starts, it reads a discretized geometry created by the 

Anastasia mesher and also an input file where all the problem parameters are speci- 

fied. This FDTD(2,4) code can handle any type of radiation problems like the NEWS 

FDTD(2,2) code. However, scattering simulation capability has not been imple- 



mented yet. It should be emphasized that this is the first version of a 3-D FDTD(2,4) 

code, and therefore, this program is st,ill under validation. This validation procedure 

consisted of different radiation problems, e.g., ana,lysis of dipoles, monopoles, cavity- 

backed slot antennas, etc., where patterns, coupling and input impedances have been 

calculated. 

In this report, a few radiation problems are examined in order to investigate 

and illustrate possible advantages of FDTD(2,4) versus FDTD(2,2). Initially, the 

radiation patterns of a monopole antenna mounted on the tail of the NASA scale 

model helicopter are computed a t  9.1s GHz. Moreover, the radiation patterns of 

a monopole antenna mounted on top of a rectangular box are calculated at 2 GRz. 

Both problems are analyzed using either FDTD(2,4) or FDTD(2,2) and the numerical 

results are compared with measurements. 

11. Numerical Analysis 

The first problem consists of a quarter-wavelength nlonopole at 9.18 GHz, mounted 

on the tail of the NASA scale-model helicopter. The geometry is shown in Figure 4.1. 

The principal radiation patterns of this monopole on the NASA helicopter were mea- 

sured in the Electromagnetic Anechoic Chamber facility at Arizona State University 

in the past. The physical length of the monopole was 8.17 mrn (XI4 at 9.18 GHz), 

the cell size was 4 mm (X/8) and the computational domain was 184 x 440 x 98 cells 

or 21X x 51X x 11X long. Both FDTD(2,2) and FDTD(2,4) were used to compute the 

principal plane patterns of the monopole. The numerical calculations are illustrated 

in Figs. 3.2-4.4, where the predicted yaw, roll, and pitch plane patterns are compared 

with measurements. Considering these computations, it seems that FDTD(2,4) does 

not provide a significantly better accuracy than FDTD(2,2). The main reason for this 

is that the discretization errors of each method are mixed with staircasing errors. The 

artificial corners that have been created on the simulation geometry through stair- 

casing become diffraction points that affect substantially the shape of the radiation 

patterns. This effect becomes more dominant at high frequencies, as the one used in 

this simulation. Through a closer examination of the results, it seems though that 

FDTD(2,4) exhibits a slightly better accuracy than FDTD(2,2). This improved ac- 

curacy of FDTD(2,4) can be observed, for example, on the yaw pattern calculatio~ls, 



and on the top, bottom and port side of the roll plane. 

Monopole 

Figure 4.1: Geometry of a monopole mounted on the tail of the NASA scale-model 
helicopter. 

Because of the coexistence of discretization and staircasing errors in the previous 

example, it was not clear which method is more accurate. Therefore, another problem, 

which is free of staircasing errors, was chosen to be analyzed. This problem consists 

of a monopole mounted on a rectangular box of dimensions 11X x 5X x 2X at 2 GHz 

(see Figure 4.5). The physical length of the monopole was 60 mm (X12.5)) the cell 

size was chosen either 20 mm (Xl7.5) or 5 mm (X/30), and the computational domain 

was 92 x 54 x 34 cells or 320 x 168 x SS, respectively. Both FDTD(2,2) and FDTD(2,4) 

were used to compute the principal plane patterns of the monopole. The FDTD(2,2) 

code was run for both cell sizes (20 mm and 5 mm) whereas the FDTD(2,4) code 

was run only for the coarser mesh. The predictions of the simulation with the finer 

discretization (5 mm or X/30) were used as a reference to determine the accuracy of all 

simulations performed with the coarser discretization (20 mm or X17.5). The results 

of FDTD(2,2) and FDTD(2,4) for the coarser mesh are compared in Figs. 4.6 and 4.7 

with the FDTD(2,2) predictions obtained for the finer mesh. From these figures, it is 

obvious that even with such a coarse discretization of X/7.5, FDTD(2,4) still predicted 

very accurately all principal patterns, whereas FDTD(2,2) failed to predict some of the 

peaks and nulls in these patterns. This example clearly illustrates that FDTD(2,4) 

outperforms FDTD(2,2) in terms of accuracy. Furthermore, it is expected that as 

frequency increases, the accuracy of FDTD(2,2) will decline even further whereas 

FDTD(2,4) will still provide satisfactory results. Additional simulations at higher 
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Figure 4.2: Yaw plane radiation patterns of a monopole mounted on the tail of the 
NASA scale-model helicopter at 9.18 GHz. 
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Figure 4.3: Roll plane radiation patterns of a monopole mounted on the tail of the 
NASA scale-model helicopter at 9.18 GHz. 
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frequencies were not performed as it was impossible to run a fine enough mesh such 

as X/30 at a frequency higher than 2 GHz with the available computational resources. 

Figure 4.5: Geometry of a monopole mounted on a rectangular box. 

111. Conclusions 

Radiation patterns of monopoles on helicopters and rectangular boxes were com- 

puted using FDTD(2,2) and FDTD(2,4). It was shown that FDTD(2,4) outperforms 

FDTD(2,2) in terms of accuracy and overall computational efficiency. 
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Figure 4.6: Roll plane radiat,ion patterns of a monopole mounted on a rectangular 
box at 2 GRz. 
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Figure 4.7: Pitch plane radiation patterns of a monopole nlounted on a rectangular 
box at 2 GHz. 



Chapter 5 

A New Iterative Hybrid Method 

I. Introduction 

Analysis of slot antennas mounted on a flat conducting surface was performed in the 

past using a hybrid finite element/moment method (FE/MlI)  approach which is also 

referred to as the finite element/boundary integral (FE/BT) method. According to the 

FE/MhI hybridization, the interior of the cavity is discretized using finite elements 

(tetrahedrons, prisms, bricks, etc.) whereas the exterior region is treated using a 

spectral or spatial domain moment method. As a result, the overall system matrix 

consists of the finite element matrix [A], which is highly sparse, and the admittance 

matrix [Y], which is dense; the two matrices are coupled through the unknowns in 

the aperture. 

For the analysis of a single cavity-backed slot antenna, it was s h o ~ ~ ~ n  in previous 

reports that the hybrid FE/MhI approach has enormous advantages over the pure FE 

or FDTD methods. The reason for that is because both the FE  and FDTD lliethods 

require discretization not only in the interior of the cavity but also in the exterior 

region. The cliscretization in the exterior region needs to be fine enough so that 

the absorbing boundary conditions (ABC's), which are placed at some distance away 

from the slot, are accurate. This excessive discretization may become con~putational 

expensive, both in terms of CPU time and memory storage, since the number of 

unknowns could increase substantially. This computational load becomes even larger 

when coupling between two or multiple antennas needs to be computed. In such 

case, not only the interior of all slot antennas has to be discretized but also the free 

space surrounding them. Computer simulation of such a problem becomes almost 



impossible using a pure FE or FDTD method. Even for the hybrid FE/MM approa,ch, 

the con~putational burden becomes increasingly la.rger as the number of slot antennas 

increases. 

In t3his chapter, a new iterative hybrid FE/ILIM approach is proposed to compute 

efficiently and fast coupling among multiple cavity-backed slots that are placed ar- 

bitrarily with respect to each other and flushmounted on a flat conducting surface. 

Electromagnetic coupling among these antennas is computed through an iteration 

algorithm. For simplicity, assume that there exist twro cavity-backed slots spaced 

a given distance apart. For coupling computations, one antenna is excited with a 

constant voltage T/b whereas the other one is left open circuit. The new algorithm 

is as follows: at the first iteration, the antenna that is excited radiates in space in 

the absence of the second antenna. The radiated field induces a field in the aperture 

of the second antenna which propagates through its cavity. The second antenna, in 

turn, scatters the incident field in all directions thus affecting the field distribution 

in the aperture of the radiating slot. This perturbation in the field of the radiating 

element also changes the input impedance. The new field distribution is re-radiated 

toward the second antenna and the iteration process continues until convergence of 

the field in the two apertures is achieved. Once we reach convergence, the self and 

mutual impedances can be computed. 

The new algorithm becomes extremely advantageous when the two antenna con- 

figurations are identical; thus, reducing (as it will be discussed later in this chapter) 

memory requirements and CPU time. It also provides a mechanism to achieve a full 

hybridization of FE/MM with other numerical techniques such as the GTD, PO, or 

even FDTD. In this chapter, we will present the fornlulation of this iterative method 

and apply it to the problem of computing coupling parameters of two identical cavity- 

backed slots flushmounted on an infinite conducting ground plane. The results ob- 

tained using the proposed iterative method will be compared with results obtained 

using the direct FE/MM approach. A comparison of CPU times and memory storage 

will also be provided. 



Antenna #I 

Antenna #2 

Figure 5.1: Geometry of two identical cavity-backed slot antennas mounted on an 
infinite ground plane. 

11. Formulation 

The problem under investigation is coupling among multiple cavity-backed slot anten- 

nas flushmounted on a conducting ground plane. For simplicity, we will first formulate 

the problem of coupling between two cavity-backed slot antennas similar to  the ones 

shown in Figure 5.1. In order to compute the coupling parameters for such a configu- 

ration, one antenna is usually excited at the input terminal using a constant current 

I1 whereas the input terminal of the second antenna is left as an open circuit. Ra- 

diation by the first antenna induces a voltage V2 at the input terminal of the second 

antenna. Thus, the mutual impedance Z21 can be calculated using 

Similarly, the self impedance Zll is equal to 



Due to reciprocity, ZI2 = Z21 and Z2* = Zll. Iinowing the complete set of Z- 

parameters, the corresponding S-parameters can be computed in a straightforward 

manner using standard transformation formulas found in microwave books. 

Using the hybrid FE/Mh,I approach to solve this coupling problem, the interior 

of the two cavities, including the apertures, is discretized using tetrahedral elements. 

The free space in between the two slots will not be discretized but rather the inter- 

action between the two slots is taken into account through an integral formulation 

using the respective half-space Green's function. This approach certainly provides an 

advantage over the FDTD and pure FE methods since they both require a brute force 

discretization in free space. By renumbering the unknowns inside the finite element 

volume so that the unknowns in the aperture appear first whereas the unknowns in- 

side the cavity appear last, the corresponding matrix system for a single radiating 

antenna is given by 

where the superscript a stands for aperture and c for cavity. The non-zero excitation 

vector bc is part of the finite element volume inside the cavity. In addition, the matrix 

:bfal" is a pure method of moments matrix and is dense; ilfclc is a pure finite element 

matrix and is highly sparse; the other two matrices A J " / ~  and hfcla provide coupling 

between the field inside the cavity and the field in the aperture. Now, in case there 

are two cavity-backed slots in close proximity, the combined matrix system, after 

renumbering the unknowns, is given by 

The subscript 1 denotes antenna # I  and 2 denotes antenna #2. Note that for cou- 

pling calculations, when antenna #1 is excited, antenna #$ is left open circuit and 

vice versa. Thus, the right-hand side vector of the matrix system for antenna #2 is 



zero. The above matrix system can be written in a more compact and convenient 

form as follows: 

VIatrix ilIl is the self matrix of antenna # I ,  h12 is the self matrix of antenna #S, T12 

and Tzl are the interaction matrices between slots 1 and 2, and bl is the right-hand 

side vector corresponding to the excitation of antenna # l .  It is important to mention 

here that the matrices T12 and Tzl are transpose of each other, thus only one of them 

is stored in memory. In case the two cavities/slots are identical, and therefor their 

mesh information must be identical, these two matrices are symmetric which means 

only half of the matrix entries need to be saved. 

As seen from the matrix system in (5.5), the electric fields El and E2 are coupled 

only through the dense interaction matrices T12 and T21. If those interaction matrices 

were to be zero, matrices i\fl and A f 2  would be completely decoupled, therefore, 

allowing us to solve for El and E2 independently and more efficiently. However, since 

these matrices are not zero, we need to take into account the interaction between the 

two slots and the governing fields. 

The matrix system in (5.5) can be efficiently solved through an iteration algorithm. 

The iteration starts by setting the field E2 to zero. This implies that antenna #I 

radiates in space as if antenna #2  was not present. In other words, for iteration k = 0 

and, therefore, we can write that 

where the superscript (0) indicates iteration k = 0. Thus, after the matrix system 

in (5.9) is solved, rve can obtained E I O )  which simply represents the governing field 



distribution of antenna # l  in the absence of antenna #2. Then, from (5.5) we can 

write that 

iZ12 . El1) = 0 - Tzl - E ~ O )  (5.10) 

where the product of Tzl . E,(') requires NF x N; operations; n;" is the number of 

unknowns in the aperture of antenna # I  and N;L is the number of unknowns in the 

a,perture of antenna #2. Once the value of Ez is updated, the iteration algorithm 

may continue on by updating El using 

The  updating of the vectors El and E2 will continue until an acceptable convergence 

tolerance is obtained. A measure of convergence can be defined based on the 2-norm 

residual given by 

PVhen both pl and pa are less than a given tolerance, it means that convergence has 

been achieved. 

This hybrid method, which takes into account coupling between antennas through 

an iterative algorithm, is extremely advantageous when it is necessary to  compute 

the coupling parameters of two identical antennas as a function of distance. For 

two identical cavity-backed slot antennas, only one geometry needs to  be discretized 

since illl = hJ2 = ill. Also, TI2 = TZ1 = T which, in this case, is a square symmetric 

matrix. Thus, when coupling versus distance is calculated, the system matrix .If does 

not change as a function of distance; the only matrix that changes versus distance is 

the interaction matrix TI which is relatively small (ATa x ATa) and calculated using a 

spatial or spectral domain method of moments. As a result of this observation, the 

matrix r l l  needs to  be inverted only once, possibly using a sparse LU decomposition, 

whereas the updating of the fields El and E2 is done relatively fast using a simple 

backward substitution. Even when the relative distance between the two antennas 

is changing, the matrix M does not need to  be inverted again. Consec~uently, the 

coupling parameters as a function of distance may be computed with only minimum 



computational effort which corresponds to the CPU time needed by the sparse LU 

algorithm to invert the matrix AS. In addition, the memory requirementas for storing 

the system matrix are reduced considerably, compared to a brute force discretization 

of the original two-antenna corifiguration. Memory savings also occur in storing other 

finite element arrays such as the connectivity information, nodal coorcli~latcs, edges, 

etc. 

More pronounced improvements in terms of CPU time and memory storage can be 

observed when the number of antennas is increased to three. In such a case, the self 

matrix h/I is identical for all radiating elements and, thus, it needs to be inverted only 

once for coupling versus distance calculations. In contrast, the number of interaction 

matrices increases from one to a total of three; i.e., T12 = T21, TI3 = TS1. and T23 = 

T32. Filling though these matrices as a function of distance is not computationally 

expensive, especially when using a spatial domain method of moments. 

111. Results 

In the previous section, the idea of field interaction between two distant radiating ele- 

ments through a novel iterative hybrid approach has been introduced and formulated 

for a generic problem. Each of the radiating objects is treated separately using the 

method of choice, whereas the coupling between the two objects is taken into account 

at subsequent iterations to correct the field distribution obtained from a previous 

iteration step. This approach is innovating and potentially powerful because it allows 

field interaction not only between two FEM domains, or an FEhl and a Mh4 domain, 

but also between FEM and GTD or FEAI and PO. 

Since this is the first time that tlris iterative approach is presented to the AME 

program, it will be initially applied to the problem of coupling between two cavity- 

backed slot antennas mounted on an infinite ground plane, as is shown in Figure 5.2. 

The two cavity-backed slots are placed a distance D apart whereas the transverse 

dimensions of each slot correspond to those of an X-band waveguide. The depth 

of the cavity is 7.7559 cm and the probe is located in the center of the horizontal 

dimension at a distance of 1.905 cm from the bottom face. The length of the probe 

is 0.6985 cm. 

The most obvious approach to solve for the coupling parameters of the two slots is 
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Figure 5.2: E-plane configuration of two identical cavity-backed slot antennas 
mounted on an infinite ground plane (L = 2.286 cm, W = 1.016 cm). 

to perform a brute-force discretization in both cavities and apply the hybrid FE/MM 

approach. The interaction between the two slots is implicitly taken into account 

in the formulation. This approach has the disadvantage of creating twice as many 

unknowns, compared to the proposed iterative method, therefore requiring excessive 

memory storage and a long CPU time to solve the final matrix system. Besides, the 

matrix system needs to be re-solved every time the separation distance D between the 

slots is changed. In contrast, using the iterative approach, only one cavity needs to 

be discretized, thus saving memory storage and generating a smaller matrix system, 

which can be solved faster and more efficiently. Also, every tinie the separation 

distance is changed, the new field distribution can be conveniently computed using a 

simple back-substitution since the original self matrix is not a function of separation 

distance. This back-substitution can be performed provided the sparse LU or ILIJ 

factorization of the original matrix was obtained at the first iteration step. More 

substantial computational savings, both in terms of memory and CPU time, can 

be obtained when coupling anlong a larger number of identical cavity-backed slot 

antennas is computed. 

Using the iterative approach to calculate coupling, the two antennas are basically 



treated separately whereas the field interaction between the slots is accounted for 

through an iteration procedure. It is not clear, however, how many iterations it 

takes for the field distribution in the two domains to actually converge. The first 

experiment performed in this study was to calculate the real and imaginary parts of 

the self and mutual impedances as a function of iteration number k at a frequency 

of 8 GHz and a separation distance of 1 cm along the E-plane. These results are 

illustrated in Figs. 5.3 and 5.4. For the sake of clarity, k = 0 indicates that the self 

impedance of antenna 1 was calculated assuming antenna 2 was not present. For 

k = 1, the field radiated by antenna 1 induced a field distribution on antenna 2 which 

was then scattered and altered the field distribution of antenna 1. This iteration 

procedure continues for a higher values of k. In both these figures, it is clear that the 

self and mutual impedances converge to a value at k = 3. For k = 0, which basically 

means that there is no interaction between the two antennas, the real part of the self 

impedance was found to be 37 ohms whereas the imaginary part was -86.15 ohms; 

the converged values, however, at k = 3 are 41.3 and -85.4 ohms, respectively. For a 

smaller separation distance D, these discrepancies between first and second iterations 

are even larger. Similar observations are made for the mutual impedance, too. For 

k = 0, the mutual impedance is absolute zero since the interaction has not yet been 

accounted for. As the iteration number increases, both real and imaginary parts of 

the mutual impedance converge to a consta~lt value. 

This iterative technique was applied on the same antenna configuration, however 

with slot separation D = 2 cm, to calculate the self and mutual impedances as a 

function of frequency. The self impedance as a function of frequency is shown in 

Figure 5.5. The results obtained using the iterative technique for k = 5 are compared 

with the FE/MM direct approach which was validated against measurements and 

presented i11 Chapter 3. As illustrated, the comparison between the two techniques 

is excellent; note that the iterative technique is computationally more efficient. The 

mutual impedance as a function of frequency is shown in Figure 5.6. The agree- 

ment between the two methods is fairly good although there are some discrepancies 

for frequencies close to the parallel resonance of the slot. The reason is related to 

the accuracy of computing the coupling matrix between the two slots. This matrix 

is similar to a transfer function; knowing the input, the accuracy of the output is 



Figure 5.3: Real and imaginary partas of the self impedance as a function of iteration 
number. The two slots are placed in an E-plane configuration with separation distance 
of 1 cm. The frequency of operation is 8 GHz. 

Figure 5.4: Real and imaginary parts of the mutual impedance as a function of iter- 
ation number. The two slots are placed in an E-plane configuration with sepa,ration 
distance of 1 cm. The frequency of operation is 8 GHz. 
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solely determined by the accuracy of the transfer function. This coupling matrix was 

computed using a spatial domain method of moments which involves integration over 

triangular surfaces. These integrals are evaluated using a 13-point Gauss quadrature 

which is not strictly accurate, especially for large separations. In order to more ac- 

curately compute the mutual impedance, the 13-point Gauss quadrature needs to be 

improved by a higher-order integration. 

Figure 5 .5 :  Real and imaginary parts of the self impedance as a function of frequency. 
The two slots are placed in an E-plane co~lfiguration with separation distance of 2 cm. 
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Figure 5.6: Real and imaginary parts of the mutual impedance as a function of 
frequency. The two slots are placed in an E-plane configuration with separation 
distance of 2 cm. 
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Figure 5.7: Return loss and mutual coupling as a function of frequency. The two slots 
are placed in an E-plane configuration with separation distance of 2 cm. 

Figure 5.7 for a separation distance of 2 cm along the E-plane. The iteration technique 

is compared with the hybrid FEIhIM direct approach which is considered accurate 

enough. As illustrated, the agreement between the two methods is excellent. Even 

with one iteration the mutual coupling as a function of frequency compares very well. 

However, since the computational effort required for subsequent iterations is minimal, 

we often choose to compute the coupling parameters after 5 iterations have past. 

The most noticeable computational savings in terms of CPU time are realized 

when computing coupling parameters as a function of distance. The reason for achiev- 

ing such computational speed-up is because the system matrix is factorized (either 

using LU or ILU) only once. As the separation distance is varied, the updated field 

distribution inside the cavities is computed by using only a simple back-substitution 

which involves order of AT operations, where N is the number of unknowns for the self 

matrix. Simply stated, the self matrix k I  is not a function of the distance between 

the two slots. 

The real and imaginary parts of the mutual impedance as a function of distance 

between the two slots are plotted in Figure 5.5. Three line traces are s h o ~ ~ n  in 

each graph: one representing the direct approach and the other two representing 

the iterative approach. For the iterative approach, we chose to show the results for 

both "iteration 1" and "iteration 5" although there are no substantial discrepancies 

between the two traces. As those are compared with the direct approach, there exist 



some small differences which are mostly attributed to the accuracy of the coupling 

matrix formulated through a spatial domain integral boundary equation. 
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Figure 5.S: Real and imaginary parts of mutual impedance as a function of distance. 
The two slots are placed in an E-plane configuration and the frecjuency of operation 
is S GIIz. 
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Although Figure 5.S illustrates some minor discrepancies between the direct and 

iterative hybrid techniques, as those were used to compute the real and imaginary 

parts of the mutual impedance, their comparison for mutual coupling (SI2) as a 

function of distance is very good. The corresponding graph is shown in Figure 5.9 

for a separation distance ranging between 30 and 160 Inm. As illustrated, both 

methods give almost identical results. As far as the iterative technique is concerned, 

the difference in the predictions when using only 1 iteration versus when using 5 

iterations is more noticeable for relatively small separation distances. 

Before concluding this chapter, it is important that we discuss the computational 

requirements of the techniques used in this report to predict coupling of slot antennas. 

Basically, we have used two methods: a direct FE/MM hybridization and an iterative 

FEIMM hybridization. For the first method, the coupling mechanism between the two 

antennas is implicitly built into the matrix system, whereas for the second metliod, 

this coupling mechanism is explicitly taken into account through an iteration process. 

For the same discretization, the iterative method requires less than half the memory 

requirements compared to the direct method. Concerning computational time, it 

is good that we consider the case discussed in Figure 5.9. For this problem, the 

number of tetrahedrons used in the direct approach was 39,046 whereas the number 
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Figure 5.9: Mutual coupling as a function of distance. The two slots are placed in an 
E-plane configuration and the frequency of operation is S GHz. 



of unknowns was 41,120. For the iterative approach and using the same element 

mesh size, the number of tetrahedrons used in the computat,ional domain was 19,543 

whereas the total number of unknowns was 20,583. Solving the matrix system for the 

FE/MRI direct approach, a Conjugate Gradient Square (CGS) algorithm was used. 

The total CPU time spent to conipute the mutual coupling between the two slots for a 

total of 14 points, as shown in Figure 5.9, was 288 minutes. For the FE/hlhl iterative 

approach, we had the choice of either using a sparse ILU decompositiori to factor 

the matrix once and then use back-substitutions for the remaining iteration process, 

or using the CGS algorithm for all iterations. Both options were followed. When 

the sparse ILU decomposition was used, it took 134 minutes to obtain the matrix 

factorization; the remaining computations were performed within a very small time 

period (1-2 minutes, assuming 1 iteration per point). When the CGS was used, again 

assuming only 1 iteration per point, the total CPU time for 14 evaluation points was 

83 minutes. However, as the number of iterations increases, the CPU time increases 

accordingly. For example, if 5 iterations are used, the total CPU time increases to  

265 minutes. 

As seen from these numbers, the FE/hIRII iterative approach results in both mem- 

ory savings and ClPU speed-up. Specifically, if our main objective is to compute 

n~ut.ual coupling versus distance for a large number of points, the iterative approach 

using ILU factorization first and then back-substitutions might be the most attractive 

choice. On the other hand, if the number of evaluation points is small, the iterative 

approach using CGS might be preferred. 

IV. Conclusions 

In this chapter, we introduced a novel hybrid iterative approach to efficiently calcu- 

late coupling between two or more cavity-backed slot antennas mounted on an infinite 

ground plane. Each cavity is independentsly analyzed using the hybrid FE/MM ap- 

proach, whereas the field interaction between the antennas is taken into account 

through an iteration algorithm. This results in substantial computatiorlal savings 

both in terms of memory storage and CPU time. It was observed that this algorithm 

converges within only a few iterations. The results compare favorably with the hybrid 

FE/MRII direct approach which has been used in the past to compute self and mutual 



impedances of two cavity-backed slots. 

Another advantage of this new iterative approach is the potential for further hy- 

bridization of finite element with other methods such as the geometrical theory of 

diffraction (GTD) and/or the physical optics (PO). Field interaction between an an- 

tenna and an electrically large object in close proximity can be accounted for through 

this iterative approach in order to compute the overall radiation pattern as well as the 

input impedance. Most hybrid techniques only consider one-way interaction between 

the antenna and the object. In other words, the scattered fields by the object are 

not allowed to change the field distribution of the antenna and, therefore, its input 

impedance is the same as that one in the absence of the object. Using this innovative 

iterative algorithm, a full irlteraction between the two objects is possible. 



Chapter 6 

Hybrid Techniques for Scattering 
and Radiation Problems 

I. Introduction 

Increasing the frequency of operation in helicopter communications provides a way of 

overcoming tlie limitations of line-of-sight communication. Satellite comn~unication is 

an area from which m o d e r ~ ~  helicopter technology is seeking for solutions to reach out 

over-the-horizon. In satellite communications usually higher than VHF frequencies 

are used, which results in the enormous size of computational domain. Therefore, it 

hinders use of a rigorous numerical method in the analysis of an antenna mounted on 

an airframe. As second choice, the adoption of hybrid techniques has been suggested. 

In fact, the FEM and PO were hybridized to analyze a monopole antenna on the 

APACHE helicopter in the UHF band. Its predictions for simple structures were 

provided along with measurements and exact solutions to validate the code. At the 

same time, the limitation of the method was also revealed; mainly due to having no 

account for diffractions and higher order interactions. Instead of using PO, the use of 

PTD a1lo~z.s inclusion of the diffractions in the analysis. However, the PTD solution 

is available only for simple structure; therefore, the implementation of PTD for a 

helicopter structure may take considerable amount of effort. Therefore, main focus of 

this report is on investigating and taking into account the higher order interactions 

through a hybrid technique. Here, higher order interaction means only tlie interaction 

between the antenna and its lit zone on the airframe. The diffractions can also be 

thought of as higher order interactions, but these are not included yet. 



In this report, to get a better insight of the problem, a 2D hybrid code was devel- 

oped and used. As for the FEhl analysis, more accurate boundary conditions than 

ABCs were implemented, referred to here as BIE (Boundary Integral Equation). Us- 

ing both truncation schemes, the FEM is hybridized with the P O  which corresponds 

to the first order interactions. The reformulation was needed to account for higher 

than the first order interactions. In order to take the higher order interaction system- 

atically, an iterative algorithm is presented. It is also explained that the consideration 

for higher order interactions can be achieved using other than PO, e.g., GTD. The 

iterative algorithm shows that it allows the modification of equivalent currents at 

each iteration by having an updated right-hand side vector. 

11. 2D Radiation and Scattering 

The 2D-radiation problem can be decomposed into two decoupled TE, and Thl, 

polarization analyses. For both cases, the scalar Heln~holtz equation is given by 

where 

for E,-polariza,tion and 

for Hz-polarization. The equation can be solved in conjunction with a boundary 

condition which can be derived from an ABCs or BIE [16]. For the finite element, 

triangular elements or quadrilateral elements are used to discretize the computational 

domain. If the triangular elements are used, a much larger number of unknowns will 

be generated compared to the quadrilateral elements. However, triangular elements 

do not require any computational effort to evaluate the integrals for the element 

matrix because all these integrals can be evaluated in an analytic way. In contrast, 

the quadrilateral elements lead to a smaller number of elements than the triangular 

elements, but the evaluation of the element matrix has to be performed in a numerical 

way. The truncation of the computational domain can be achieved by using -4BCs. 



The two ABCs implemented here are those of first (yl , ql) and second order (72, q2) 

This formulation is for the scattering problem; however, it can also be used for the 

radiation problem by setting bin" to zero. Based on this formulation, a 2D-FEM code 

was written. To validate the 2D-scattering code, scattering from a square cylinder 

was considered. The schematic of the problem is depicted in Figure 6.1. The FEM 

code does not have limitations in terms of coated materials on the scatterer, but a 

PEC square cylinder was chosen to compare with MOhT solutions. Both triangular 

elements and quadrilateral finite elements were used in conjunction with the 2nd order 

ABCs. The mono-static echo width of a square cylinder predicted with the FEhI is 

compared with the MOhl results in Figure 6.2. The echo width call be computed 

from 
Idsc12 

a ( y )  = p4=3 lim 27rp- 
I$nc 12 

Because of symmetry in the geometry, the echo width ( a )  in other ranges is a repeating 

of Figure 6.2. As can be seen, the agreement between the FEM and hIOh1 is very 

good, let alone the agreement between triangular and quadrilateral elements. The 

ABCs was applied at the distance of 0.35X away from the scatterer. It will also be 

interesting to test the accuracy of the 1st and 2nd order ,4BCs because the shape 

of ABC surface is almost square. Figure 6.3 shows that both the 1st and 2nd order 

,4BCs work well for this problem, though all coefficients of the ABCs are derived from 

an assumption that the ABCs surface is a circular cylinder 
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Figure 6.1: Scattering from a square cylinder when a plane wave is incident from an 
angle of with respect to the z-axis. 

111. Boundary Integral Formulation 

When the FEM is used with ABCs to analyze an elongated geometry, there is always 

additional number of unknowns. However, the ABCs is a local boundary condition; 

therefore, the sparsity of the system matrix can be reserved. 111 other situation, such 

as two independent radiation systems are located close to each other, but it can- 

not be solved as one combined system, then ABCs may not be possible to apply 

because of the requirement of minimum distance. For this case, it is necessary to  

have a boundary condition that can be applied to the geometry as close as it can 

be. Having such a boundary condition, the overall radiation problem may be able 

to be represented through a coupling mechanism occurred between the two indepen- 

dent systems. Alternative boundary condition can be obtained from surface integral 



Figure 6.2: Comparison of monostatic echo widths (:) calculated by the FEhI and 
MOM. 

equations. Although, these are exact prior to discretization, they suffer from the fact 

that they are global conditions and create full matrices. However, if they are used 

just to obtain equivalent sources of the original source as an intermediate step, it may 

provide better conditions for the exterior region than ABCs. 

In the exterior region, the total field can be represented by the superposition of 

the original incident fields and scattered fields. Both are due to the source in the 

FEM domain, but it will be represented by the equivalent source. Therefore, the 

equivalent source may be arisen from an interior source or an interior scatterer. For 

the TAUz polarization, these equivalent sources are expressed as 

For the TE, polarization, the equivalent sources are given by 
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Figure 6.3: Comparison of monostatic echo widths (t) calculated by FEhf using 1st 
order ABC a,nd the 2nd order ABCs. 

where f i  is the outward unit normal vector to the surface, and t' is the unit tangent 

vector defined so that iz x i = i .  In the exterior region, the equivalent source must 

satisfy EFIE for Thfz  polarization or MFIE for TE,  polarization, which are given by 

Let's consider the Thf:  polarization case shown in Figure 6.4. The interior region is 

discretized with a linear basis function of triangular elements. As consequence, the 

boundary I? is broken into Nb short segments. The electric field on the boundary 

is piecewise-linear whereas the magnetic field is piecewise-constant; therefore, the 

basis function for EFIE requires the same type of basis function in order to provide 



Figure 6.4: Hybrid between an FEM and an integral equation using linear basis 
functions on the boundary. 

continuity conditions for both fields. Moreover, using the simple testing function, such 

as Dirac delta functions located in the center of each cell, (6.14) can be expressed as 

a matrix equation 

einc = Lkt + Mj, (6.16) 

where L and M are square matrix and einc, kt and j, are all column vectors. The 

equation can be solved for j, to get 

In fact, this is another type of radiation boundary condition and can be applied to 

FEhI formulation i~isteacl of ABCs. Moreover, it is more general than the ABCs, 

since the shape of the boundary is not restricted. 



In order to hybridized with the FEkI, rewrite the discretized weak form of the 

Helmholtz equation in a matrix form 

['ii Ibi 1 E J 0 1  [;I = [ ; I  
where the entries of I;,;, ILZb = Ib,l and E represent interior interactions and can be 

obtained from 

/l $ 0 ~ ~ .  voj - k Z f , ~ , ~ , d ~  (6.19) 

and the entries of J can be expressed as 

The basis function B, is the projection of N, on the boundary, and 8, is the linear 

basis function for the electric equivalent current J, given by 

Finally, substituting (6.17) into (6.18) will 1ea.d to 

The conlbined system (6.22) forms a complete system for the solution of the total 

fields. Because of the global condition in the radiation condition, the part of the 

matrix with rows and columns associated with nodes on the boundary will be fully 

populated. The sparsity pattern of an example problenl is depicted in Figure 6.5. 

It should be mentioned that care must be exercised in the computation of L and 

M matrix. Specifically, there are three cases, as can be seen in Figure 6.6, where 

the integrand becomes singular in every row, because the argument of 2D Green's 

function becomes zero. To undertake more accurate evaluation, an asymptotic form 

of singuIar parts are subtracted from the original integral which results in an integral 

that can be computed by a numerical way. The remaining term which has to be 

added to the first integral contains the singularity but can be evaluated analytically. 

After calculating the total field, the equivalent current j, can be calculated from 

(6.17). Once the J and A1 are known, the scattered fields in the exterior region can 



be obtained using EFIE. In the far-field range, the scattered field can be calculated 

using the following formulae: 

The above formulation for TMZ-polarization is implemented to predict the scat- 

tering width of an arbitrary shape of cylinder. To validate the BIE 2D code, the 

bistatic scattering width of a circular cylinder having 2 X  radius is predicted. Fig- 

ure 6.7 shows the bistatic echo width obtained by the BIE method in comparison 

with MOM results. 

0 10 20 30 40 50 60 70 80 
column 

Figure 6.5: Matrix sparsity pattern after the hybridization. 



Collocation (M) method with a linear basis function (N) 

M= (N- I) M=N+ I 

0 Regions where the integrand becomes singular 

Figure 6.6: Cases where M and L elements become singular. 

IV. Hybridization of FEM with P O  

Although a hybridization of FEM with PO for 3D geometries was presented by the 

authors elsewhere, it was not a complete formulation. Three major issues pointed out, 

to be improved are: 

a. Inclusion of higher order interactions between the source and the obstacle 

b. .Augmentation of diffractions in the analysis 

c. Inlprovement of computation time needed for the PO integration 

With an aim to finding causes of those problems and hopefully provide solutions, it 

was necessary to simplify the problem in terms of size and complexity. Therefore, 

a good starting point was to develop an FEM/PO code in 2D-space. The geometry 

and coordinate system of the problem is shown in Figure 6.8. In the absence of any 

obstacle, the line source produces cylindrical waves. The exact solution for an electric 

line source in a cylindrical coordinate system is given by 
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Figure 6.7: Bistatic echo widths (:) predicted by BIE and MOM when the plane 
wave is incident from c p  = 0". 

Using the 2D FEhl for T!WZ polarization, the radiated field due to  a line source in 

the absence of an obstacle can be calculated from (6.1) with f = -jk,ZoJz. By 

setting discretization size of X/20, the error of the fields for all observation angles was 

confined within 3%. In the presence of the obstacle, here a P E C  body, the radiated 

fields will induce an electric current on the surface which may be evaluated using 

the P O  approximation. Once the P O  currents are available then, the scattered fields 

from the obstacle can be calculated from the EFIE with zero magnetic currents: 

where Jpo is the P O  current defined by 



The corresponding magnet,ic fields on the surface of the obstacle can be obta,ined . 

using Maxwell equations: 

Since the derivative of the 2D Green's function with respect to the observation points 

can be carried out with ease, the magnetic fields can be calculated without any ap- 

proximation. Owing to the PO approximation which is denoted as a forward reaction 

in the figure,the obstacle is replaced by the P O  current in free-space; therefore, the 

exterior of the FEkI domain must satisfy (6.14). At this time, EFc should be replaced 

11y E, in (6.28). If the source were given, such as f (p) ,  the E, would be calculated 

exactly without the PO approximation using 

It is also possible that other basis functions may be applied on the obstacle in order 

to get even better current approximation; however, they should be included in the 

matrix system, so their application will be limited only to small obstacles. Figure 6.9 

shows the backward reactions, which represent backward radiations from the PO 

source to the FEhl domain and eventually perturb previous FEM soIutions. The 

reaction between the forward and backward direction can be expressed as a matrix 

equation 

where 6, is a column vector having only one nonzero element at the node where 

the electric line source is located; whereas, e, is a column vector whose entries are 

scattered fields evaluated on the boundary nodes. Note that the second vector on the 

right-hand side account for the presence of an obstacle. In fact, the system matrix 

on the left-hand side and the first source vector on the right-hand side were already 

used to calculate the equivalent currents around the line source in the absence of the 

obstacle. Therefore, the matrix equation can be rewritten as 

A1 [el + Se] = Alez = bl + Sb (6.33) 



Note that the system matrix A will be the same as for the first step even for further 

iterations. From a computational efficiency point of view, LU factorization should 

be utilized to  inverse the matrix A. The reason is that all that  is required to obtain 

new Se will be just backward and forward substitutions, if both L and U are stored 

from the first step. 

Lit region 
Obstacle 

Figure 6.8: Electric line source near an obst,acle (forward reaction). 

The first example considered here is a line source near a strip. The  distance 

between the source and the strip was 1.0 X and the width of the strip was 2.0 A. 

Figure 6.10 shows total fields computed by the FEM/PO in comparison to hiOhI 

preclictions. The  second order ABCs was used with the FEM/PO. The  agreement 

between both results is shown to be excellent for both lit and shadow zones, even 

though the FEMIPO was performed without higher order iterations. From the width 

of the strip and the distance, the shadow region can be calculated in terms of p angle 

as can be seen in the figure. It should be mentioned that the inclusion of higher oder 

effects will improve mainly the predictions in the lit zone. The  improvement of the 

fields in the shadow zone can be accomplished only by supplementation of diffractions. 

Total field prediction for another example is shown in Figure 6.11. In this problem, 

the obstacle is chosen to be a circular cylinder having a radius of 1.OX. Based on 
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Figure 6.9: Electric line source near an obstacle (backward reaction). 

the geometry, the lit and shadow region can be defined as marked in Figure 6.11. 

The comparison to the exact solution exhibits good agreement in most of the lit zone 

except near boundary called transition regions. Again, the higher orcler interactions 

are not yet included, since those are not incorporated into our 2D FEhI/PO code. 

Instead of using ABCs to calculate the ecluivalent source, the 2D-BIE code is used 

to calculate P O  currents. The comparison between the BIE/PO and ABC/PO is 

depicted in Figure 6.12. Basically, the total fields predicted by both scheme were 

identical. However, the BIE/PO will be used as for the future analysis, because it 

saves lots of computation efforts when higher oder interactions are taking into account. 

The main reason is its use of collocation method. Because of that,  the calculations 

of the interactions are needed only at the matching points. 

V. Hybridization of FEM with GTD or PTD 

For the case where the obstacle has smooth and flat surface, the FEM/PO works well. 

If the body has more lit region from the source point of view, the performance of the 

FEM/PO would be even better. However, for the special geometry such as wedges, 
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Figure 6.10: Total radiation fields due to a line source near a strip. The distance 
between the source and plate is 1.OX and the width of the plate is L O X .  Comparison 
between FEM/PO and MOhZ predictions 

the FEM/PO may fail but GTD solutions may be valid. The same approach used for 

the hybridization between the FEM arid P O  can be expanded for GTD as well. The 

problem under consideration is shown in Figures 6.13 and 6.14. 111 fact, the exact 

modal solutions are available in the form of an infinite series [17]. 

E; = E; + EZ = c, aVJV(P~)H:2)(P~ ' )  sin[v(4' - 41 sin[v(d - a)] P < P' 
C, al,JU(ilp')H:;)(Pp) sin[v(dl - a)] sin[u(d - a)] P > p' 

(6.35) 

where a, and z~ are 

The magnetic field components can be obtained by using the Maxwell's equation as 



Angle (degree) 

Figure 6.11: Total radiation fields due to a line source near a cylinder. The distance 
between the source and the cylinder is 2.OX and the radius of the cylinder is 1.OX. 
Comparison between FEM/PO predictions and the exact solution. 

H i  = - cu a, J;(Bp)Hp(pp') sin[v(dl - a)] sin[v(9 - a)] p L p' 
C, "u~V(Bp~)~ : (~) (pp)  sin[v($' - a)] sin[v(# - a)] p 2 p' 

(6.39) 

Using the above total magnetic fields, the surface currents on the wedge can be 

obtained by 

JGrD = f i  x (BH; + d ~ i )  = ( i l  x H j ) ,  (6.40) 

Instead of using Jpo in (6.28), JGTD can be substituted to get scattered fields which 

will allow us to calculate higher order interactions in the FEhI analysis. However, 

if both source and observation points are in the far-field range at the frequency of 

operation, then the asymptotic solution or GTD should be used because of its high 

convergence rate and accuracy. In GTD, the total scattered fields consist of GO fields 

and diffracted fields. At the given source point and observation points, GO fields can 

be calculated easily using geometrical optics; whereas diffractions fields are obtained 

using the diffraction coefficients which are available in [17]. 

The physical theory of diffraction (PTD) for the wedge can also be applied in 

conjunction with the FERZ. Based on the PTD theory [ls], the P O  current needs to 
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Figure 6.12: Total radiation fields due to a line source near a cylinder. The dis- 
tance between the source and the cylinder is $A and the radius of the cylinder is f A.  
Comparison among FEM/PO, BIE/PO predictions and the exact solution. 

be supplemented by the contributions from the nonuniform current 

where the E; represents diffracted fields calculated from Iieller's diffraction coeffi- 

cients. The electric field due to the physical optics current on the illuminated face 

is already calculated, so here only the diffracted field due to  the PO current will be 

addressed. Based on the method of stationary phase, the fields due to the P O  current 

is referred to as the end-point contribution. Using the geometry shown in Figure 6.13, 

the nonuniform current [19] is known to be 

where F ( x )  is the Fresnel function and defined by 

More general expressions for other than the half-plane are also available. In order to 

treat the obstacle using the PTD, the approximated P O  current in (6.28)' should be 



replaced by the PTD currents given by 

If the obstacle is a cylindrical bocly, the UTD can provide the scattered field not 

only in the lit ancl shadow regions but also in the transition regions without any 

discontinuity. Figure 6.14 shows a detailed geometry for scattering from a cylinder. 

For an observation point in the lit region, the reflected field is given by 

where Ei (QT)  is the incident field a t  the reflection point at  Q,, ancl here only ThI, or 

soft-polarization is considered. Distance parameters are defined in the Figure 6.14. 

The generalized reflection coefficient for this polarization is given by 

where 

a. F ( x )  is the transition function already used in connection with edge diffraction 

in GTD and PTD. 

b. The  argument of the transition function is ,Yp = 2koLp cos2(6;) and the distance 

parameter L, is given by 
sTsi 

Lp = 

c. The  C p  is the Fock parameter associatecl with the reflected field in the lit region 

( ,  = -2m(QT) cos 6; (6.48) 

d. The  value of the curvature parameter a t  the reflection point is expressed as a 

function of the radius of curvature a, of the surface a t  Q, 



e. Finally, the function P~ is the Pekeris caret function and can be written in terms 

of Fock scattering function p*(x) [20]. 

e - j r / 4  
Fs (S) = p* (x) e - 3 . ~ 1 4  

2x J.rr 

In the shadow region, the diffracted field is given by 

Ei(Q') is a GO type incident field at the attachment point Q'. Observation point pd 

may be in the shadow region and even on the shadow boundary. The UTD surface 

diffraction coefficient, T,, calculates the surface waves launched from two detachment 

points on the circular cylinder. Figure 6.15 shows decomposed GO field and the 

diffracted fields due to a line source in the presence of a circular cylinder. The 

distance between the source and the cylinder was 2.OX and the radius of the cylinder 

was 1.OX. As can be seen, the GO fields are zero in the shadow zone, so that the 

diffractions will be the main contribution for the interactions. 

VI. Conclusions 

In this report, an iterative algorithm was developecl to analyze the radiation due to 

a source in the presence of a large body. In order to take the presence of an obstacle 

into account, the right-hand side vector of the system equation is modified at each 

iteration. Updated right-hand side vector contains scattering fields which represent 

backward radiation due to an induced current on an obstacle. To get a better insight 

of the problem, a 2D hybrid code was developed and used. As for the FERI analysis, 

BIE formulation was added to the conventional mesh truncation scheme, ABCs. 
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Figure 6.13: FEbI analysis in the presence of wedge. 

Figure 6.14: FEM analysis in the presence of a circular cylinder. 
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Figure 6.15: Decomposed GO fields and diffracted fields due to a line source i11 the 
presence of a circular cylinder. The  distance between the source and the cylinder was 
2.OX and the radius of the cylinder was 1.0X. 





Chapter 7 

Spectral Methods 

I. Introduction 

In the past, the authors introduced a family of spectral methods to provide an al- 

ternative way to handle efficiently electrically large computational domains, such 

as helicopter airframes. Spectral methods are very powerful due to their high accu- 

racy, exponential convergence, and negligible dispersion and dissipation. All these at- 

tributes are extremely important in computational electromagnetic problems. Some 

of the key elements in the forn~ulation of spectral methods were presented by the 

authors elsewhere. The high accuracy of the spectral nlethods n7as demonstrated 

through numerical experimerlts and compared to the accuracy of the finite-difference 

methods. 

In this report, the spectral methods are applied for the first time to the solution 

of one-dimensional electromagnetic problems. Here, the ability of spectral  neth hods 

to solve electromagnetic problems will be demonstrated, and their accuracy will be 

illustrated through numerical experiments. Their accuracy will also be compared to 

the one of the standard FDTD algorithm. Spectral methods, as expected, will exhibit 

orclers of magnitude better accuracy than FDTD because of their negligible disper- 

sion. Different types of numerical experiments are presented here. Initially, the entire 

domain Chebychev collocation method is applied to solve an 1-D T ~ l ~ z - n ~ o c l e  propa- 

gation problem. Furthermore, the PML technique is used in the context of spectral 

methods to simulate "open space" problems. Then, the ideas of interior domain grids 

and fictitious points are presented and applied to a multi-domain approach in the last 

two sections. This material is based on a recently published paper [21]. 



From the material presented here, it will be shown that the spectral methods are 

very promising for numerical electromagnetic analysis. Our ultimate goal is to apply 

and extend these methods initially to generic 2-D and 3-D problems and then to 

radiation problems. 

11. Solving Maxwell's Equations 

Here, the one-dimensional (1-D) Maxwell's equations for the TAI' mode given by 

are examined. Direct application of the entire domain Chebychev collocation nletllod 

is quite straightforward. The spatial derivatives are approximated by using the dif- 

ferentiation matrices (DM) and an appropriate grid. Assuming a Chebychev grid 

x,, i = 0,1, ..., N and assuming grid values for the fields E,, and H,,, i = 0,1, ..., N 

we can write the semi-discrete form of hlaxwell's equations as: 

where Hy and & are the vectors containing the grid values of the field components 

and D the differentiation matrix. 

The first numerical experiment simulates a 1-D domain, one wavelength long, for 

the T!VIz-mode. The domain was excited with a sinusoidal source at the left hand side, 

and was terminated at the right boundary using the exact solution. This problem 

was solved using either the Chebychev collocation method or the FDTD second- 

order accurate scheme for different nu~nber of points. The error was computed in the 

maximum norm at time t = 2T, where T is one period. Figure 7.1 compares the 

FDTD results with the ones of the spectral method. Obviously, the spectral method 

outperforms the FDTD method in terms of accuracy. It is quite impressive that in 

orcler to get the same accuracy as the one that the spectral method provides with 



a computational domain of 70 points, an FDTD domain of 1024 points is needed. 

Therefore, by using spectral methods, high accuracy can be achieved without very 

fine spatial discretization. The main drawback though of spectral methods is that 

they exhibit very restrictive stability criteria, forcing us to discretize very finely in 

time. However, there have been proposed approaches that deal successfully with this 

problem and accomplish to relax the time-step restrictions. 

Figure 7.1: Ma,ximum error in the solution of the 1-D TM inode at t=2T. 
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of interest, and truncate it by applying appropriate artificial boundary conditions on 

the outer perimeter of the domain, which simulate its extension to infinity. These 

boundary conditions should allow the outward propagating wave to exit the domain 

and suppress spurious reflections of this wave to an acceptable level. Depending 

upon their theoretical basis, outer grid boundary conditions of this type have been 



called either radiation boundary conditions (RBCs) or absorbing boundary condi- 

tions ( ABCs). Initially, ABCs were obtained by applying the theory of one-way wave 

equations derived by Engquist and Majda [22]. Recently, a novel and pioneering ABC 

was introduced by Berenger [23], who used a non-physical absorbing (lossy) mate- 

rial adjacent to the computational boundary to truncate the domain, and he called 

this approach Per fec t l y  i t la tched Layer ( P M L ) .  The PML exhibits characteristics that 

permit electromagnetic waves of arbitrary frequency and angle of incidence to be ab- 

sorbed while maintaining the impedance and velocity of a lossless dielectric. Berenger 

reported reflection coefficients for PML in two dimensions significantly better than 

second- and third-order one-way wave equation (OIVWE) based ABCs. 

Here, the Ph4L concept is applied in the context of spectral methods to truncate 

an 1-D domain. According to Berenger the PML material should have properties so 

that the following relation is satisfied: 

where E and p are the properties of the material we want to match, e.g., in the case 

of free space E = and CL = / lo .  To implemerit the PA/IL we just need to assign to 

some of the grid points towards the end of the domain such material properties. Two 

are the key elements in an effective PML implementation: 

Define a desirable and acceptable reflection coefficient. 

Define an appropriate conductivity grading so that no rapid changes in conduc- 

tivities occur in the domain creating numerical reflections. 

The effectiveness of PhlL is shown here by solving again an 1-D domain which is 

terminated by PML with a desirable reflection coefficient and backed by PEC 

walls. The grading of the conductivity is quadratic. The Chebychev collocation 

method again is used to solve a half-wavelength long domain. The right hand side 

end of the computational space is the PML, and a Gaussian pulse was excited a t  

the left hand side end. The pulse propagates along the domain (towards the right) 

until it enters the PAIL where is gets absorbed. hilany simulations were performed 

with different number of grid points for the PML, and it was found that PhIL works 

equivalently well in the spectral methods as in the FD methods. A sample of these 



results is shown in Figure 7.2 where frames of the propagating pulse are plotted in the 

same graph for a case where 16 points were used for the PhfL termination. Clearly, 

this figure illustrates the absorption of the pulse in the PhIL. Therefore, PRfL can 

be used to terminate effectively computational domains i11 the context of spectral 

methods. 

Figure 7.2: Traveling pulse in 1-D domain terminated with PRIL. 

111. Interior Domain Grids and Fictitious Points 

The material that is illustrated here is based on a recently published paper [21]. As 

claimed in this paper, 'LAccuracy can be gained by clustering a grid less and using the 

approximations only well within the interior". Given a grid of points a,, j = 1, ..., N ,  

the interpolation error for a smooth function is given by: 



for some J E [xl,  x ~ ] .  The $(x) is called the remainder, and it is known from 

interpolation theory that it is minimized in the max-norm over [-1,1] when the nodes 

are forming a Chebychev grid. Figure 7.3 illustrates the remainder for a Chebychev 

and an equispaced grid for N = 10. Notice that both grids are interior meaning 

that they do not contain the ends of the interval. Notice that tlle remainder of the 

equispaced grid is large near the ends of the interval (Runge phenomenon) whereas 

the remainder of the Chebychev is larger over most of the interval. Thus, maybe a 

better choice for a grid is to have node distribution between the Chebychev and the 

equispaced ones. 

Other node distributions are defined in 1211. According to this paper a closed grid, 

meaning that the endpoints are included, is defined implicitly by 

r (; - 7 )  

cT = f i rp  -?)  (7.8) 

where z, for j = 0,1, ..., N are the grid points. However, an open grid, i.e., not 

containing the end points, is defined by 

where Z, for j = 1, ..., N are the grid points. These equations for either the open 

or the closed grids can be solved numerically for a specific y < 1 to obtain the grid 

points. Notice that y = 0 corresponds to the equispaced grid and y = 0.5 corresponds 

to the Chebychev grid. Even though the optimal choice of grid in terms of error is 

the Chebychev one (y = 0.5), it was suggested in 1211 that a different choice of 

0 < y < 0.5 can possibly have some advantages. To show how the locations of tlle 

nodes are changing, depending on the choice of the equations corresponding to 

the open grid were solved for N = 20 and for different y. The results are plotted in 

Figure 7.4 where each contour illustrates the positions of each node versus y. 

Another idea used in 1211 is the concept of fictitious points, which is simply to 

augment a grid with additional nodes at which the function values are not directly 

known nor updated. This yields an interpolant that is used only in the interior of the 

extended interval. To illustrate this, we construct a grid by taking a 10-node open grid 



for y = 0.35 and by adding to it one fictitious point per side of the interval by reflecting 

the outer points about f 1. Then, we plot tshe interpolation remainder for this grid 

and compare it with the one of the corresponding Chebychev grid (N = 10 and open 

grid) in Figure 7.5. It is seen that the fictitious point grid has a decreased error even 

though the minimum spacing between true points has increased by approximately a 

factor of 1.5. 

Figure 7.3: Interpolation remainder for N = 10. 
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In this section the multi-domain approach proposed by Driscoll in [21] is presented. 

The formulation will not be presented here but only briefly discussed. Basically, 

this multi-domain method breaks the domain under analysis into a number of sub- 

domains. The grid of each sub-domain is constructed by an interior node distribution 

(open grid) and m fictitious points determined by reflection of grid points about 

the boundaries of the sub-domain. The values of the fields at the fictitious points 
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Figure 7.4: Positions of the nodes for different y and for N = 20. 
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Figure 7.5: Interpolation remainder for N = 10. 



are determined by enforcing certain conditions, such as the continuity of tlle fields, 

their first time derivative, etc., or by enforcing the boundary conditions known by 

electromagnetic theory in case the boundary occurs between two different media. 

Details of the approach are described in [ Z l ] .  

The multi-domain approach has the advantage of using sma1Ier differentiation 

matrices and a larger time-step because each sub-domain is formed by a number of 

points consideral3ly smaller than the one of the entire domain method. Note that in 

all the numerical si~llulations illustrated in this section one fictitious poirit per side of 

a subdomain is used. 

The first numerical experiment was based on a three sub-domain code which was 

written for validation. The entire free-space computational domain was divided into 

three sub-domains and a pulse was excited at the left boundary of the domain. The 

right boundary of the domain was terminated with PEC. A sample of the compu- 

tations is shown in Figure 7.6 where different frames of the propagating pulse, as 

well as the reflected one by the PEC', are shown. It seems that the couplirlg of 

the sub-domains was successfully implemented and there are no spurious reflections 

occurring at the interfaces. Here, a 17-node Chebychev grid was used in each sub- 

domain (including the fictitious points). The matching of the sub-domains (related 

to the determination of the field values a t  the fictitious points) at each interface was 

impleme~ltecl such that it was dependent on the matching at other interfaces. Tlle 

same experiment was also performed with the matching between two neighbor sub- 

domains (related to the determination of the field values at the fictitious points) not 

being dependent on the matching at other interfaces. The computations are shown 

in Figure 7.7 where different frames of the propagating pulse, as well as the reflected 

one by tlle PEC, are shown. It is observed that both approaches of matching the 

interfaces give very similar results. Therefore, for the following experiments it is cho- 

sen to do the matching at each interface independently of the others. This makes the 

coding of a general sub-domain program much more simple and practical. 

The next simulation exanlines a I-D domain divided into t\vo sub-domains where 

one is free-space and the other one is PRIL. This is done to investigate how coupling 

between two sub-domains with different material properties is done. Following again 

the method proposed in [21], continuity of the fields as well as of their first time 
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Figure 7.6: Traveling pulse in 1-D domain terminated with PEC (matching at one 
interface depends on the others). 



PEC 

Figure 7.7: Traveling pulse in 1-D domain terminated with PEC (matching at one 
interface is independent of the others). 



derivative is enforced because the PhlL has the same permittivity 6 and permeabil- 

ity p with the free-space. However, in this case the continuity conditions are more 

complicated than the ones in the case of materials with no magnetic or electric con- 

ductivity. The reason is that in this case these conditions now involve both E and H 

fields coupled in the same equations. A sample of the simulation results are shown in 

Figure 7.8 where different frames of the propagating pulse are shown. As expected, 

when the pulse enters the PhlIL it gets absorbed without creating any reflections. 

Figure 7.8: Traveling pulse in 1-D domain terminated with Pn'lL. 

Finally a general multi-domain code was written that can divide a domain into a 

number of sub-domains which have the same number of points. This code works only 

for homogeneous regions, i.e., all sub-domains must have the same material properties 

in addition to zero electric and magnetic conductivities. However, the code can be 

generalized for different types of materials. To illustrate the high accuracy of the 

Chebychev collocation method, a free-space domain was analyzed. The domain was 

two meters long and was excited at the left boundary with a Gaussian pulse that 



had significant frequency components up to  1.5 GHz (10% bandwidth). On the right 

boundary the domain was terminated on PEC, but the simulation time was chosen 

so that the pulse does not reach this end creating reflections. This problem was 

analyzed first using the Chebychev collocation method for a different number of sub- 

domains and grid points, and second, using a second-order accurate FDTD scheme. 

The results are shown in Figure 7.9 and we observe that additional subdomains do not 

necessarily provide better accuracy. Also, the high accuracy of the spectral methods 

compared to the second-order FDTD scheme is again observed. 
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Figure 7.9: Maximum error in the solution of the 1-D Thl mode. 

V. Conclusions 

In this report, spectral methods have been applied for the first time in the context 

of electromagnetics. The 1-D h4axwell's equations were successfuIIy solved by thesc 

methods, and the PhIL was used to simulate open-space problems. The numerical 



simulations illustrated that spectral methods outperform the standard FDTD algo- 

rithrn in terms of accuracy, as they exhibit exponential convergence, i.e., the error 

drops exponentially as the number of discretization points increases. Furthermore, 

these methods exhibit negligible dispersion and therefore can simulate accurately 

electrically large domains. The main drawback of them is their restrictive stability 

criteria which require a very small time-step in order for them to  be stable. However, 

there have been a few proposed nlethocls that deal successfully with this problem and 

accomplish to relax the time-step restrictions. 

Moreover, the concepts of interior domain grids and fictitious points were intro- 

duced. These principles were applied in the multi-domain formulation that was pre- 

sented. A multi-domain approach has the advantage of using smaller differentiation 

matrices and it can also use larger time-step due to the fact that each sub-domain is 

formed by a number of points considerably smaller than the one of the entire domain 

method. This can lead to computational savings as a significantly larger time-step 

can be used without substantial loss of accuracy. 

The spectral methods seem to be very promising for the analysis of electromagnetic 

problems. They can handle efficiently large domains because of their high accuracy, 

exponential convergence, and negligible dispersion and dissipation. Our ultimate goal 

is to apply and extend these methods initially to generic 2-D and 3-D problems and 

then to radiation problems. 
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