On-Line Database of Vibration-Based Damage Detection Experiments

Richard S. Pappa
Langley Research Center, Hampton, Virginia

Scott W. Doebling
Los Alamos National Laboratory, Los Alamos, New Mexico

Tina D. Kholwad
University of New Mexico, Albuquerque, New Mexico

January 2000
The NASA STI Program Office ... in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA's scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counterpart of peer-reviewed formal professional papers, but having less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or co-sponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services that complement the STI Program Office's diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results ... even providing videos.

For more information about the NASA STI Program Office, see the following:

- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA STI Help Desk at (301) 621-0134
- Phone the NASA STI Help Desk at (301) 621-0390
- Write to: NASA STI Help Desk NASA Center for AeroSpace Information 7121 Standard Drive Hanover, MD 21076-1320
On-Line Database of Vibration-Based Damage Detection Experiments

Richard S. Pappa
Langley Research Center, Hampton, Virginia

Scott W. Doebling
Los Alamos National Laboratory, Los Alamos, New Mexico

Tina D. Kholwad
University of New Mexico, Albuquerque, New Mexico
On-Line Database of Vibration-Based Damage Detection Experiments

Richard S. Pappa
Structural Dynamics Branch
NASA Langley Research Center
Hampton, VA 23681
E-mail: r.s.pappa@larc.nasa.gov

Scott W. Doebling
Engineering Analysis Group
Los Alamos National Laboratory
Los Alamos, NM 87545
E-mail: doebling@lanl.gov

Tina D. Kholwad
Structural Dynamics Branch Co-op Student at NASA LaRC
University of New Mexico
Albuquerque, NM 87131
E-mail: tinakhol@unm.edu

ABSTRACT

This paper describes a new, on-line bibliographic database of vibration-based damage detection experiments. Publications in the database discuss experiments conducted on actual structures as well as those conducted with simulated data. The database can be searched and sorted in many ways, and it provides photographs of test structures when available. It currently contains 100 publications, which is estimated to be about 5%-10% of the number of papers written to date on this subject. Additional entries are forthcoming. This database is available for public use on the Internet at the following address: http://sdbpappa-mac.larc.nasa.gov. Click on the link named “dd_experiments.fp3” and then type “guest” as the password. No user name is required.

INTRODUCTION

Detection of structural damage using changes in vibration characteristics has received considerable research attention in recent years. This subject is part of a broader area of research and development known by various names including “structural health monitoring,” “system health maintenance,” and “integrated vehicle health management” [1,2]. Assessing structural integrity using vibration data has broad, potential application throughout the aerospace, civil, and mechanical engineering fields [3]. Researchers have proposed numerous ways to detect damage with vibration data (for example, by monitoring modal parameters [4,5]), but many unanswered questions remain concerning the effectiveness and usefulness of this technology.

The authors have created a new, on-line bibliographic database of vibration-based damage detection experiments to help answer the following three questions:

1. What types of experiments have been conducted to date to prove or disprove various methods?
2. Do methods that work on simple, laboratory structures also work on real, fully assembled structures?
3. Where do we go from here to move this technology to a state of readiness where it can be integrated into future structural designs?

The database is available to anyone with Internet access and a standard Web browser.

This paper explains how to access and use the database and gives an overview of its contents. To date, 100 publications have been tabulated. This number is expected to grow to over 1000 in the months ahead. Readers are encouraged to submit citations of additional publications they have written for inclusion in this public database. Submit this information by e-mail to: r.s.pappa@larc.nasa.gov.

The database uses commercial, off-the-shelf software known as FileMaker Pro [6,7]. Use of this particular brand of software is not an official endorsement or promotion of this product by the authors or the United States Government.

LOGGING IN AND GETTING HELP

To access the database, point your Web browser at the following address: http://sdbpappa-mac.larc.nasa.gov. You do not need FileMaker Pro software installed on your computer to use the database, including its searching and sorting capabilities. Figure 1 shows the welcome screen that will appear. Enter the database by clicking the link
named “dd_experiments.fp3” and then type “guest” as the password. No user name is required.

Help is available at any time by clicking the “?” icon located at the top of each page. This help information is a built-in feature of FileMaker Pro Web Companion, the Web publishing component of the FileMaker Pro software. The help text mentions that you may be able to edit, create, or delete records. You will not be able to perform these functions when you access the database using the “guest” password. When you are finished reading the help text, delete this window in your Web browser to return to the database.

TABLE VIEW

Figure 2 shows the initial database screen. This image was captured on a computer monitor with a resolution of 1024 x 768 pixels, which is the minimum resolution required to see the entire horizontal dimension of the table without scrolling. Use the vertical scroll bar to see additional rows of the table below the tenth record. (Each record in the database corresponds to one publication.) By default, you are viewing records 1 through 25, which is indicated in the “Record range” box to the upper-left of the table. To see all available records, change the “25” in the box to a large number and press Enter or click the small arrow icon adjacent to the box. You can now move through the entire database using the vertical scroll bar. There are several other ways to select the range of record numbers for viewing, which are explained in the help text.

Each record in the database has many fields of information associated with it. You are currently viewing the data in the “Table View” mode, where you see only five of these fields (Author & Date Code, Affiliation, Title, Test Structure, and Simulated Structure). These five fields were selected during database development to provide a sufficient, succinct summary of each record in a table format. All of the fields are self-explanatory except the Author & Date Code field, which contains the first author’s last name appended with the year of publication and a counter index. For example, the Author & Date Code of “Kim, H. M. 1995-2” indicates that this is the second paper entered into the database that was written in 1995 by H. M. Kim.

Notice the “(P)” appearing at the end of the Test Structure field in the first record of the database (the Author & Date Code of the first record is “Abdalla, M. 1997-1”). This “(P)” indicates that a photograph of the test structure is available for viewing. You can see the photograph and additional information associated with the first data record by shifting to the “Form View” mode, discussed next.

FORM VIEW

Form View provides a more detailed look of each record in the database individually. To see the first record in Form View, do one of the following things:

- Click the “Form View” tab at the top of the window

or

- Click the small numeral “1” to the left of the first row in the table.

Figure 3 shows the first record in Form View mode. You will probably need to use the vertical scroll bar to see the entire contents of this record. Form View displays ten fields of information associated with each record (Author & Date Code, Affiliation, Citation, Test Structure, Simulated Structure, Methodology, Photograph, Photograph Name, Date Added to Database, and Date of Last Modification). These ten fields were selected during database development to provide a useful, succinct description of each record in a list format. All of the fields are self-explanatory except the Methodology field, which contains a paraphrase of the specific vibration-based method used by the authors to detect structural damage in their experiment.

You can move to other data records in several ways. To go directly to a specific record number, type the number in the “Record” box and press Enter or click the small arrow icon adjacent to the box. To see the previous or next record, click the upper or lower page, respectively, of the small book icon. You can also skip several records at a time by sliding the tab located on the right edge of the book icon either up or down.

You may notice the same photograph appearing in more than one record of the database. To conserve disk space, each photograph is stored only once in a separate database file named “photos.fp3.” The photographs in this second file are then dynamically linked to the Photograph field in the first file using the Photograph Name field as a key. The interested reader is welcome to examine the photograph database also. Access it by pressing the Home icon located at the top of each page (to the right to the “?”
icon) and then click the link named “photos.fp3.” Return to the publications database when you are finished by pressing the Home icon again and then click the link named “dd_experiments.fp3”

SEARCHING THE DATABASE

Search the database to locate specific information of interest by clicking the “Search” tab located next to the Form View tab at the top of the window. You may begin in either the Table View or Form View mode. Following the search, the records satisfying your search criteria are displayed in Table View format.

Figure 4 shows the search specification page that appears when you click the “Search” tab. To begin, choose either AND or OR logic using the radio buttons at the top of the page. Most searches use AND logic, and this is the default value. Next, enter various words, phrases, dates, or other information of interest in the appropriate blank boxes. Please click the “?” at the top of the page for a full explanation of various search options and operators that are available. When you are finished reading the help text, delete this window in your Web browser to return to the database. For each search criteria you enter, select the type of search to be conducted in the pull-down menu located in each row. There are two choices for each field: “contains” the criteria or “does not contain” the criteria. Finally, begin the search by clicking the “Start search” button located at the top-left of the window.

A typical search result appears in Figure 5. This table shows all of the records in the database containing the phrase “Los Alamos” in the Affiliation field. If you switch to the Form View mode at this point, you will be working with only these eight records resulting from the search, rather than with the entire set of 100 records contained in the database. You can examine each of the eight records individually in Form View mode by clicking the upper or lower page of the small book icon to go to the previous or next record, respectively. You can return to working with the complete set of records in the database at any time by pressing the “Find all” button.

SORTING THE DATABASE

The records in the database can also be sorted in various ways to help locate specific data more quickly. By default, the database is sorted in ascending order of the Author & Date Code field. Sort the database in other ways by clicking the “Sort” button located in the top-left area of the window in both the Table View and Form View modes. Following the sorting operation, the sorted records are displayed in Table View format.

Figure 6 shows the sort specification page that appears when you click the “Sort” button. You can sort the contents of the database by choosing up to four field names and whether each field is to be sorted in ascending or descending order. Sorting is performed based on the first field, then the second field, etc. After selecting the field names and sorting directions, begin sorting by clicking the “Start sort” button at the top-left of the window.

Figure 7 shows typical results of a sorting operation, conducted by sorting the Title field of each record in ascending order. This sort was performed immediately after obtaining the search results shown in Figure 5, so only the eight records with “Los Alamos” in the Affiliation field are still being displayed. If you click the “Find all” button at this point, you will see all 100 records in the database sorted in ascending order of the Title field. (In other words, the “Find all” button cancels the last search operation but does not cancel the last sort operation.) You can specify a different sorting order if you wish by clicking the “Sort” button again and making other selections. To deactivate sorting, you must perform another sorting operation with no fields of information selected.

CONCLUSIONS

This paper discussed an implementation of one of the newest capabilities available on the World Wide Web, the searchable and sortable technical database. This bibliographic database of vibration-based damage detection experiments can be used by anyone having Internet access and a standard Web browser. Users can search and sort the database in a variety of ways, and the results of their requests are displayed on dynamically changing Web pages. The database currently contains 100 publications, which is estimated to be about 5%-10% of the number of papers written to date on this subject. Additional entries and capabilities will be added to the database in the months ahead.

Readers are encouraged to submit citations of other publications they have written for inclusion in this public database. If possible, also send electronic photographs of the test structures used in the experiments. Submit this information by e-mail to: r.s.pappa@larc.nasa.gov.
ACKNOWLEDGEMENTS

Thanks to everyone who contributed lists of publications or photographs for this on-line database.

REFERENCES

Figure 3 – Typical Record (Form View)
Figure 4 – Search Specification Page

Figure 5 – Typical Search Results (Affiliation = “Los Alamos”)
Figure 6 – Sort Specification Page

Figure 7 – Typical Sorted Results (Figure 5 Sorted by Title)
On-Line Database of Vibration-Based Damage Detection Experiments

Richard S. Pappa, Scott W. Doebling, and Tina D. Kholwad

NASA Langley Research Center
Hampton, VA 23681-2199

National Aeronautics and Space Administration
Washington, DC 20546-0001

Pappa: Langley Research Center, Hampton, VA; Doebling: Los Alamos National Laboratory, Los Alamos, NM; Kholwad: University of New Mexico, Albuquerque, NM. Presented at the 18th International Modal Analysis Conference, San Antonio, Texas, February 7-10, 2000.

This paper describes a new, on-line bibliographic database of vibration-based damage detection experiments. Publications in the database discuss experiments conducted on actual structures as well as those conducted with simulated data. The database can be searched and sorted in many ways, and it provides photographs of test structures when available. It currently contains 100 publications, which is estimated to be about 5%-10% of the number of papers written to date on this subject. Additional entries are forthcoming. This database is available for public use on the Internet at the following address: http://sdbpappa-mac.1arc.nasa.gov. Click on the link named “ddl_experiments.fp3” and then type “guest” as the password. No user name is required.