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ABSTRACT

One of the technological challenges in designing advanced hypersonic aircraft and the
next generation of spacecraft is developing reusable flight-weight cryogenic fuel tanks. As
an aid in the design and analysis of these civogenic tanks, a computational fluid dynamics
(CFD) model has been developed specifically for the analysis of flow in a cryogenic fuel
tank. This model employs the full set of Navier-Stokes equations, except that viscous
dissipation is neglected in the energy equation. An explicit finite difference technique in
two-dimensional generalized coordinates, approximated to second-order accuracy in both
space and time is used. The stiffness resulting from the low Mach number is resolved by
using artificial compressibility. The model simulates the transient, two-dimensional
draining of a fuel tank cross section. To calculate the slosh wave dynamics the interface
between the ullage gas and liquid fuel is modeled as a free surface. Then, experimental data
for free convection inside a horizontal cylinder are compared with model results. Finally,
cryogenic tank draining calculations are performed with three different wall heat fluxes to
demonstrate the effect of wall heat flux on the internal tank flow field.

NOMENCLATURE

CFD computational fluid dynamics
He/LH2 helium and liquid hydrogen

K kelvin

J/m?-s joules per meter squared per second
m meter

m/s meters per second

q speed, meters per second
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raft and the

an axd in the desngn and analysns of these ewogemc tanks, a computatlonal ﬂmd dynam S
(CFD) model has been developed specifically for the analysis of flow in a cryogenic fuel
tank. This model employs the full set of Navier-Stokes equations, except that viscous -
_dissipation is neglected in the energy equation. An explicit finite difference technique in
- . two-dimensional generalized coordinates, approximated to second-order accuracy in both
- space and tlme is used The stiffness resultmg from the low Mach number is resolved by ,

- meters per second

d, meters per second




initial specc
temperature, K
average temperature, K
initial temperature, K
ot velomty, meters per second
. densny, lulograms per metencubed

_initial density, kilograms per meter cubed

lxqmd hydrogen propellant tank. Th ‘r'analysnsr
gas mterface asa free boundary and therefor the

‘Zhou dnd Graebel? develo ed ric m dra]
process. They used a boundary integral method and assumed the ﬂuld was ompressible
and inviscid. Heat transfer was not considered, as they were interested in the free surface -

motion near the tank drain hole. Several thermodynamlc models™: 345 have been developed -
for analyzing cryogenic tanks. These models are based upon quasi- steady-statﬂ solutzom of -

o the first law of thermodynamics,
: ~ The computatxonal ﬂuxd dynamic (CFD) model presented herein simulates the two-
' of a cryo’gemc tank dralnmg process. The CFD model is

A series of calculatlons were made to model the free conve
horlzontal cylmder Expenmental data from Martini and Churc




~ An 8-sided polygon was-used to simulate the experimen —
Calculations were performed for a Reynolds cell number of 5 (100 by lOO uodt Oud),
Courant-Friedrich-Levy number of 0.2, and Mach scaling factor of 250 (0.05 Mach
number). Figures 2 and 3 present the velocity vectors and temperature contours. These
figures show that the free convective flow travels in a boundary layer at the cylinder wall.
The interior of the cylinder is relatively motionless. This is exactly what Martini and

_Churclnll observed in their experiments. They concluded that the buoyancy forces were
- stronger than the viscous forces in the interior region. The temperature contours show that
. the fluid stratifies in the interior, which was experimentally observed. Figures 4 and 5

- compare the velocity and temperature boundary layer profiles to the experimental data. The

* characteristics of the flow fleld between the model and the experimental data are in very
good agrecmenl

FUEL’TANKANALYSIS e

An 8 snded polygon was ‘chosen as
be transformed mto generahz d‘coordmates b ‘

done for the rectangular tank. The uutlal and final gnd geomelry al’é sh()Wn in Fxgures 7
and 8. The fluids used are helium and liquid hydrogen. Calculations were performed fora -

Reynolds cell number of 8.2 (40 by 40 node grid), Courant-Friedrich-Levy 'nun_iber of 0.0, s

and Mach scaling factor of 100 (0.01 Mach number). The CPU time was 16 hours for each -
drain calculation performed on a Sun Ultra computer with a clock speed of 300MHz,

_ Figures 9 through 14 present velocity vectors of drain calculations for wall heat fluxes

2 Ih ,2-s The addition of heat flux at the wall causes a palr of convection
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Figure 1. An 8-sided polygon for free convection
inside a horizontal cylinder, 100 by 100 node grid.
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Figure 3. Temperature contours, T-Tavg, at steady
state for free convection inside a horizontal cylinder.
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Figure 2. Velocity vectors at steady state for free
convection inside a horizontal cylinder, vector skip
index of 2.
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Figure 4, Comparison of velocity profiles across the
horizontal diameter to experimental data of Martini
and Churchill. Steady state free convection inside a
horizontal cylinder.
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Flgure 1. An 8 sxded polygon for free 1s]
inside a horizontal cylinder, 100 by 100 node gnd S convccuon inside
mdet of 2;
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Figure 5. Comparison of temperature profiles
across the horizontal diameter to experimental data
of Martini and Churchill. Steady state frec
convection inside a horizontal cylinder.
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Figure 7. Initial 8-sided polygon grid. Drain time =

0 seconds.
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Figure 6. Geometry, boundar, and initial
conditions for 8-sided polygon tank analysis. Tank
is symmetric and I m by 1 m.
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Figure 8. Final 8-sided polygon grid. Drain time =
300 seconds.
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Figure 13. Velocity vectors at 50 seconds. He/LH2,
q=2 J/m2-s.
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Figure 15. Temperature contours, T - T, , at
300 seconds. He/LH2, g=1 I/m2-s.
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Figure 14. Velocity vectors at 300 seconds.
He/LH2, g=2 J/m2-s.
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Figure 16. Temperature contours, T - T, , at
300 scconds. He/LH2, q=2 J/m2-s.



SAVA gy ’

AR E RN *
\\.,u?u"""::tin:.\: AN RS A
R YT LA rre v e AN
LA AR RSN
Seopttaesoresre” ¢“"H“H\“““\J
T Y R R A AN A R R T IR T R RN RO
O L N s I T

. $e

N
N\

A\
ALY
SRR

WM

WAV

s
T

S
o
"

B
I?lstancé,‘m e 900145

Figure 13. Velocity vectors at 50 seconds, ITc/LH?, =
q=2 J/m2-s. , '
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