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EPNL
LSAF
ACE
npr
PNL
RC
spl
SAR

Nomenclature

Effective Perceived Noise Level
Low-speed Aeroacoustic Facility
Axisymmetric Coannular Ejector (nozzle)
nozzle pressure ratio

Perceived Noise Level

Round Convergent (nozzle)

sound pressure level

Suppressor Area Ratio (mixing duct cross—sectional area / primary throat area)



Summary

Technology development is underway throughout the High Speed Research community to
support the introduction of a high—speed civil transport early in the next century. One of the
main goals of this technology development is to ensure that the airplane noise levels are
environmentally acceptable. Jet noise is considered to be the dominating noise source and
various suppression devices are being developed to address this noise source. The Boeing
Commercial Airplane Group has developed an ejector—suppressor nozzle that would be used
on a low-bypass (between approximately 0.5 and 1.0) mixed flow turbofan engine. This
nozzle, known as the Axisymmetric Coannular Ejector (ACE) nozzle, is a plug nozzle with
an ejector designed to provide aspiration of about 20 % of the engine flow (Figure S1). A
variety of mixing enhancers were designed to promote mixing of the engine and the aspirated
flows. These included delta tabs (Figure S2), tone-injection rods, and wheeler ramps. They
were tested at various locations on the nozzle and in various combinations as shown in
Figure S3.

Model-scale acoustic and propulsion performance testing of the ACE nozzle was conducted
in the Boeing Low—speed Aeroacoustic Facility (LSAF). This facility consists of a free—jet
wind tunnel with its test section in an anechoic chamber (Figure S4). Acoustic data were
collected using microphones on both both 4.7 and 20—foot sidelines. This report addresses
the acoustic aspects of the testing. The main acoustic objectives of this test were to: 1)
evaluate the Effective Perceived Noise Level (EPNL) attenuation attainable from the ACE
nozzle; and 2) evaluate the effectiveness of a number of different mixing enhancer designs.

Broadband shock-associated noise is seen for the ACE nozzle for nozzle pressure ratios of
3.0 and above. For the ACE nozzle without ejector, the delta tabs on the primary eliminated
this shock-associated noise at'npr 4.0 (Figure S5) and reduced it at other npr’s. None of the
other mixing enhancer configurations, either with or without ejectors, showed any effect on
the shock-associated noise. However, the contribution of the broadband shock—associated
noise to the EPNL was small, at most half an EPNdB, and the reductions that were achieved
did not have any significant impact on the EPNL.

The effect of the mixing enhancers on jet-mixing noise tend to follow certain characteristic
trends, as shown in Figure S6 and described as follows: The delta tabs on the primary nozzle
generally reduce the low— to mid—frequency (about 500 to 10 kHz model-scale) jet-mixing
noise by 2 to 4 dB, and increase the high frequency (over 10 kHz) jet-mixing noise by 5 dB
or more, relative to the other three primary nozzle configurations (i.e., the baseline nozzle,
the tone—injection rods, and the wheeler ramps), which all give almost identical results. The
high—-frequency noise increase is not seen for the highest power settings (npr’s 3.5 and 4.0)
or the highest noise emission angles (e.g., 140°). These trends are generally seen for all
three ejector shroud configurations (i.e., no ejector, baseline ejector, and ejector with tabs).

The model—scale measured data were extrapolated to sideline and cutback flight conditions.
Results of these extrapolations, on an EPNL basis, are shown in Figure S7 for the sideline
case. These results can be plotted as functions of npr, of jet velocity, or of thrust, as shown
in Figure S7. Plotting versus thrust allows for any thrust loss associated with particular
configurations to be accounted for. The figure shows that the EPNLs for the various ACE
nozzle configurations are all fairly close. The primary delta tabs with ejector shroud
configurations generally have the lowest levels, while the baseline primary generally has the
highest levels.



The greatest attenuation levels were achieved for the configuration of delta tabs on the
primary nozzle with an ejector shroud installed — either the baseline or the tabbed ejector.
Figure S8 shows that there is up to two EPNdB more attenuation with the primary delta tabs
relative to the other three primary nozzle configurations (i.e., baseline nozzle, tone-injection
rods, and wheeler ramps) when compared on an npr basis. The exact benefit depends on the
extrapolation condition and the power setting. The other three primary configurations give
attenuation levels within an EPNdB of each other. Which of these other primary configura-
tions gives the greatest attenuation depends on the shroud configuration, the extrapolation
condition, and the power setting.

Figures S9 and S10 summarize the noise reductions achieved by the various ACE nozzle
configurations, relative to the RC nozzle, at the sideline and cutback flight conditions and
power settings. For sideline flight conditions and power settings delta tabs on the primary
nozzle, with either ejector installed, give the greatest attenuation, 5.3 EPNdB relative to the
RC nozzle when compared on an npr basis (Figure S9). Without an ejector the primary tabs
gave 4.7 EPNdB attenuation. The various other configurations (i.e., all those without
primary tabs, including the baseline primary nozzle, the tone-injection rods, and the wheeler
ramps) performed fairly similarly, achieving between 3.5 and 4.2 EPNdB attenuation. The
effect of comparing ACE and RC nozzles on a thrust basis, i.e., accounting for the reduced
thrust of the ACE nozzle relative to the RC at the same gas conditions, is to reduce the
attenuation levels by between 1 and 1 1/, EPNdB. For cutback flight conditions and power
settings all the configurations tested performed fairly similarly, giving between 0.6 and 1.6
EPNJB attenuation relative to the RC nozzle when compared on an npr basis (Figure S10).
The effect of comparing ACE and RC nozzles cutback levels on a thrust basis is to reduce
the attenuation levels by about half an EPNdB.
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Introduction

Technology development is underway throughout the High Speed Research community to
support the introduction of a high—speed civil transport early in the next century. One of the

_ main goals of this technology development is to ensure that the airplane noise levels are

environmentally acceptable.

Jet noise is considered to be the dominating noise source and various suppression devices are
being developed to address this noise. The choice of a jet noise suppressor is dependent
upon the engine cycle of the airplane, which determines the amount of suppression required.
The Boeing Commercial Airplane Group has developed an ejector—suppressor nozzle that
would be used on a low-bypass (between approximately 0.5 and 1.0) mixed flow turbofan
engine. This nozzle, known as the Axisymmetric Coannular Ejector (ACE) nozzle, is a plug
nozzle with an ejector designed to provide aspiration of about 20 % of the engine flow. The
principle of an ejector nozzle is that the high—velocity primary flow is mixed (to some degree
depending on the shroud length) with an aspirated flow before being exhausted into the
lower velocity ambient flow. This reduces the higher velocity gradients, and stronger noise
sources, associated with the direct mixing of the primary and the ambient flows.

A variety of mixing enhancers were designed to promote mixing of the engine and the
aspirated flows. These included delta tabs, tone—injection rods, and wheeler ramps. The
principle of these various devices is to create vorticity that increases the aspiration, and
increases the degree to which the primary and aspirated are mixed. These mixing enhancers
were designed for different locations on the ACE nozzle: on the primary nozzle protruding
into the primary flow; on the primary nozzle protruding into the aspirated flow; and on the
ejector nozzle protruding into the aspirated flow. Zaman (Reference 1) has postulated on the
specific mechanisms causing the counter-rotating streamwise vortices shed from delta tabs.
A number of researchers have shown them to be effective in increasing aspiration and
mixing (References 1 and 2) and in reducing noise (References 2 through 7).

Model-scale acoustic and propulsion performance testing of the ACE nozzle was conducted
in the Boeing Low-speed Aeroacoustic Facility. This report addresses the acoustic aspects
of the test, and the accompanying volume addresses the propulsion aspects. The main
acoustic objectives of this test were to: 1) evaluate the EPNL attenuation attainable from the
ACE nozzle; and 2) evaluate the effectiveness of a number of different mixing enhancer
designs. ' :
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2. Description of the Facility, Instrumentation, and Data Acquisition
2.1.  Low-speed Aeroacoustic Facility

Testing was done in the Boeing Low-speed Aeroacoustic Facility (LSAF). This facility
consists of a free—jet wind tunnel with its test section in an anechoic chamber. A drawing of
the LSAF is shown in Figure 1 and a photograph in Figure 2. The free—jet exit measures
nine feet high by 12 feet wide, with corner fillets. The anechoic chamber measures 65 feet
long by 75 feet wide by 30 feet wide. It is lined with foam wedges, making it anechoic for
broadband noise above 200 Hertz. The free—jet flow exits the LSAF through a 19—foot by
19-foot exhaust collector, passes through a duct silencer, and is then turned upward by a
deflector. .

The free—jet flow is supplied by two centrifugal fans operating in parallel, with a combined
flow of 2000 pounds per second at the Mach 0.25 LSAF design point. Each fan has a
107-inch wheel with ten backward—inclined airfoil blades, and is powered by a 5200-horse-
power synchronous motor. Tunnel speed is controlled by variable—frequency motor speed
controls, operated remotely from the LSAF control room, over the Mach number range of
0.05 t0 0.25. The maximum fan speed, corresponding to Mach 0.25, is 945 rpm.

2.2, Model-jet Flow Simulator

The model jet airflow was generated by the Boeing 3800 model-jet flow simulator. Draw-
ings of the 3800 simulator are shown in Figures 3 and 4, and photographs in Figures 2 and 5.
For this study the simulator was located two feet to the east of the tunnel centerline, as
shown in Figure 1, to allow for locating a traversing microphone structure in the flowfield.
While this simulator has a dual-flow capability only the primary flow was used in the
present study. High pressure dry air is supplied to the simulator at a total pressure of 300
pounds per square inch, with a maximum continuous flow capability of approximately 20
pounds—mass per second for a single stream. The air is heated to the desired temperature by
means of an 8—inch diameter propane burner system located in the support strut. The
maximum allowed temperature was 1960° Rankine.

Fuel for propane burners is stored in a 1500—gallon tank outside the building, where the
liquid propane is pumped to 150 psig and then vaporized in a steam—powered heat exchang-
er. The resulting gaseous propane is piped into the test area through a heated and insulated
fuel line to assure that the propane remains gaseous.

As shown in the figures, the simulator has a boundary-layer bleed system. While bleed
surfaces are located on both the trailing edge of the nacelle fairing and the uppermost aft
portion of the tapered strut, only the nacelle location was used in the present study. The
bleed surface is perforated with 1/16~inch holes with staggered centers for a 22.7 % open
area. The strut and nacelle fairings form the vacuum plenum.

Prior to the present nozzle testing a study was conducted of the boundary layer profiles
produced by this bleed system. As a result of this study it was decided to operate the bleed
system at a rate of approximately 4.5 pound—mass per second in order to produce the desired
boundary layer profile. No boundary layer bleed was used for tunnel—off testing.

2.3.  Force Balance

Force measurements were made using the Boeing E-3 force balance. While this is a
6—component balance the measurement of interest for the present testing was the axial force.
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2.4.  Acoustic Instrumentationi and Data Acquisition

Acoustic data were collected using both near— and far-sideline microphones and an elliptic
mirror. The near—sideline data were taken with two microphones mounted on a traversing
mechanism, and the far-sideline data were taken with 16 pole-mounted microphones. These
installations are shown in the drawing in Figure 1 and the photograph in Figure 2.

The near—sideline microphones were Briiel and Kj&r (B&K) 1/4-inch model 4136 micro-
phones with model UA0385 nosecones and were installed parallel to the flow, nosecones
facing upstream. The traverse mechanism moved along a 4.7—foot sideline relative to the
model jet and covered an angular range of 50 to 165 degrees. These two microphones were
thus in the free—jet flow when the tunnel was operating. The traverse mechanism moved at 1
degree/second and data were integrated over a two—second period to acquire 1/3 octave band
data from 200 to 80,000 Hertz.

The far—sideline microphones were B&K 1/4—inch model 4135 microphones without
gridcaps. The 16 microphones were located along a 20-foot sideline relative to the model jet
and covered an angular range of 60 to 150 degrees. These measurements were thus made out
of the free—jet flow. The microphones were “pointed” toward the model nozzle, i.e., with the
diaphragms normal to a line from the nozzle. An eight-second integration time was used to
acquire 1/3 octave band data from 200 to 80,000 Hertz. In addition, narrowband data were
acquired for the nominal 60—, 90—, and 120-degree microphones.

The elliptic mirror had a diameter of 1.5 meters and its focal points were about 3.1 meters
apart. The mirror was mounted outside of the flow on a traverse mechanism. Its far focal
point was postioned on the model—jet axis, and a microphone was mounted at its near focal
point. While traversing parallel to the model—jet axis, the mirror focal points were aligned at
some constant look angle ranging from 60 degrees (relative to the upstream jet axis) to 132
degrees. The elliptic mirror microphone was a B&K 1/4—inch model 4136 microphone
without gridcap. The traverse mechanism moved at 1 inch/second and data were integrated
over a two-second period to acquire 1/3 octave band data from 200 to 80,000 Hertz.

All microphones were calibrated with a 124 dB, 250 Hertz pistonphone (corrected for
barometric pressure) before and after each day’s testing. All noise data were processed
on-line, using the Boeing ADP-1 system. Corrections for frequency response and incidence
angle were made at this time. B&K 2133 analyzers were used for the 1/3 octave band data,
and HP3562 analyzers were used for the narrowband data. The acoustic and aerothermal
data were transmitted to an Apollo computer system for further analysis.

2.5.  Aerothermal Instrumentation

Aerothermal performance data were collected with the Aerothermal Data System (ATDAS).
These data included temperatures and pressures measured in the test chamber, in the wind
tunnel, in the air flowmeter, in the fuel flowmeter, and in the charging station. In addition
the model nozzle was extensively instrumented with both total and static pressure taps. The
accompanying volume of this report provides details of the aerothermal performance aspects
of the test, including instrumentation, data reduction, and results.
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3. Description of Nozzles and Test Conditions
3.1.  Round Convergent Nozzle

The round convergent (RC) nozzle provided a set of reference data for the mixer-nozzle data
and also served as a means of checking various aspects of the model jet simulator operation
and instrumentation. The RC nozzle had an exit area of 13.2 square inches, and is shown
installed on the model jet simulator in Figure 5.

3.2. Axisymmetric Coannular Ejector Nozzle

The Axisymmetric Coannular Ejector (ACE) nozzle was an axisymmetric plug nozzle with
an ejector cowl designed to aspirate 20% of the primary flow at takeoff conditions. Figure 6
is a schematic drawing of the nozzle and Figure 7 is a photograph of the nozzle, with and
without the ejector installed. The principle of an ejector nozzle is that the high—velocity
primary flow is mixed (to some degree depending on the shroud length) with an aspirated
flow before being exhausted into the lower velocity ambient flow. This reduces the higher
velocity gradients, and stronger noise sources, associated with the direct mixing of the
primary and the ambient flows. The model consisted of several parts including: a primary
nozzle ring; a centerbody plug; an ejector inlet and mixing duct closeout ring assembly. The
primary ring formed a convergent divergent nozzle with the plug surface. This nozzle was
designed for a nozzle pressure ratio of 2.5. The primary nozzle throat area was 20 square
inches with an area ratio of 1.03. The suppressor area ratio (SAR) was 1.2. The aspirated
flow passage was formed by attaching the ejector inlet ring to the primary ring with eight
struts.

The overall length of the model was 62 inches and the external diameter was 10.48 inches.

In general, the high temperature parts (plug adapter duct, primary ring) were manufactured
from Inconel 625. The plug was made from Haynes Alloy 230, and parts under less heat
stress (duct aerodynamic skins, closeout nozzles, etc.) were manufactured from 316 stainless
steel. Aerothermal instrumentation included six aspiration inlet boundary layer total pressure
rakes, two mixing duct exit profile total pressure rakes, and a myriad of static pressures.
Further design and fabrication details of the ACE nozzle are given in the accompanying
volume of this report.

Four interchangeable primary rings and two interchangeable closeout rings were tested. The
nozzle was also tested without an ejector shroud. The primary rings and the closeout rings
were configured with various mixing enhancers and were tested in various combinations as
shown in Figure 8. They are described in the following sections.

3.2.1. Primary Nozzles
Baseline: The baseline primary ring had no mixing enhancers.
Delta Tabs: Thirty—six triangular shaped delta tabs were equally spaced around the trailing
edge of a primary ring and protruded 0.095 inches into the primary stream. This is about 1.1
times the computed boundary layer thickness at that location. Figure 9 shows a close—up
photograph and the design details of the delta tabs on the primary ring.
Tone Injection Rods: These rods are round plugs that were welded into the trailing edge of a
primary ring. The rods are 0.281 inches in diameter and were set back 0.625 inches from the
primary ring trailing edge. Thirty—six of these mixing devices were placed on the outside of
the primary ring, therefore protruding into the aspiration stream. Figure 10 shows a close-up
photograph and the design details of the tone injection rods on the primary ring.
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Wheeler Ramps: Three hundred sixty wheeler ramps were attached to the outer edge of one
of the primary rings. The wheeler ramps were equally space around the primary ring at
0.060 inches from the trailing edge and protrude into the aspiration stream. Figure 11 shows
a close—up photograph and the design details of the wheeler ramps on the primary ring.

3.2.2. Closeout Nozzles
Baseline: The baseline closeout ring had no mixing enhancers.

Delta Tabs: The delta tabs used on the closeout ring were the same shape as the delta tabs
used on the primary ring; however, the closeout ring delta tabs were somewhat smaller,
protruding only 0.083 inches into the mixed exit stream. The delta tabs were equally spaced
around the trailing edge of the closeout ring with 36 delta tabs used overall. Figure 12 shows
a close—up photograph and the design details of the delta tabs on the closeout ring.

3.3.  Test Conditions
The RC and ACE nozzles were tested along the General Electric GE21/F15-A17 0.62
bypass ratio throttle line, shown in Figure 13. The nozzles were tested at a tunnel Mach

number of 0.245. Additionally, a couple selected configurations were tested without the
wind tunnel operating, as shown in Figure 8.
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4. Extrapolation Procedure

In order to determine the noise that a given nozzle configuration would be expected to
produce if installed on an airplane, a procedure is required to project the measured model~
scale data to actual flight conditions. A computer program which does this extrapolation for
supersonic jet noise measured in the LSAF was developed for a previous test program and
was used in the present study with some modifications.

4.1.  Extrapolation Program

The major elements of the extrapolation program are shown in Figure 14. Certain of these
are described in the following sections.

4.1.1. Noise Floor Subtraction

The facility noise floor consists of noise not associated with the model being tested. It can
include: wind tunnel noise; noise generated by flow over the jet simulator; noise generated
by flow over the microphones; and noise produced by the jet simulator bleed system. For the
present study the noise floors were measured by operating the model jet at a temperature and
velocity to match the tunnel flow, and operating the bleed system at the rate that was used
throughout the study. The noise floors were subtracted (for the tunnel-on case) from the
measured signals. The noise floors are shown in Figure 15 for the 20—ft sideline micro-
phones and in Figure 16 for the 4.7-ft sideline microphones. Also shown in these figures are
the ACE nozzle measured levels for two pressure ratios, 1.5 (the lowest power point tested)
and 2.5 (near the power setting for the sideline noise certification measurement). The
indicated frequency range of interest is based on a full-scale frequency range of 50 Hertz to
10 kiloHertz and an approximate model scale factor of 10. Although the noise floor, in some
cases, comes close to the measured signal, the results of the noise floor subtraction showed
no obvious anomalies or indications of noise floor contamination.

4.1.2. Noise Component Separation

The measured spectra are separated into four components, as shown in Figure 14, specifical-
ly, tones, shock—associated noise, low—frequency jet noise, and high—frequency jet noise. An
example of the result of this component separation is shown in Figure 17. There are two
primary reasons for the component separation: 1) to achieve a more accurate extrapolation
by being able to use different source locations for the different components; and 2) to be able
to eliminate a particular component from the spectra. This latter process can be used, for
instance, to eliminate a tone that is known not to be associated with the model, or to examine
the effect of being able to reduce a particular component, e.g. shock-associated noise.

4.1.3. Noise Source Distributions

The extrapolation program used a distributed noise source model, illustrated in Figure 18.
For each of the four components, and for each one third octave band, this sort of distribution
is used. From the desired extrapolation sideline and angle, the acoustic ray is traced back to
determine the microphone from which to project the data.

4.14. Free-jet Shear-layer Corrections

The data measured outside the tunnel flow were corrected for propagation through the
free—jet shear layer using the method developed by Amiet (Reference 8).
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4.2.  Extrapolation Conditions
4.2.1. Flight Geometry and Conditions

The Round Convergent nozzle and the Axisymmetric Coannular Ejector nozzle data were
extrapolated to full-scale flight conditions chosen to be representative of the General Electric
GE21/F15-A17 0.62 bypass ratio engine with the ACE nozzle, on the Boeing 1080-926
airplane. The specific conditions were as follows:

condition altitude engine flight airspeed mic nozzle est’d.un— stage 3
(feet) pitch angle (knots) sideline pressure installed limit

(degrees) (degrees) (feet) ratio  thrust (1bf) (EPNdB)

sideline 689 14.6 7.1 266.8 1476 2.7 52,000 102.6
cutback 835 9.8 2.3 267.4 0 1.8 28,000 105.5

4.2.2. Scaling Factor

The appropriate scale factors for the RC and ACE nozzle extrapolations were chosen by
using the following procedure:

1. For a series of test points taken along the throttle line, the measured model mass
flow was plotted versus the measured model jet velocity. A second order curve
fit was put through these data. This was done for both the RC and the ACE
nozzles, and the results are shown in Figure 19.

2. For the sideline and cutback points the full-scale engine air mass flow and jet
velocity were determined.

3. At the full-scale sideline and cutback jet velocities, the ratios of the full-scale to
the model-scale mass flows were calculated. The square roots of these ratios are
the scale factors.

The scale factors differed slightly for the sideline and cutback conditions, being about 10.8
and 11.2 for the RC nozzle, and about 8.9 and 9.2 for the ACE nozzle, for the sideline and
cutback conditions, respectively. It was decided to use the sideline values of 10.8 and 8.9 for
the RC and ACE nozzles, respectively, since this was considered the more critical noise
certification point.

4.3. Relative Velocity Adjustments

The tunnel Mach of 0.245 that the nozzles were tested at was less than the actual airplane
Mach number for the noise certification points, as indicated above. An empirical correction
was derived to account for this relative velocity effect and adjust the Effective Perceived
Noise Level (EPNL) data to the certification airspeed.

The test conditions were defined by three independent variables: nozzle pressure ratio and
temperature, and tunnel speed. However, the empirical correction was modeled on three
independent variables that are more consistent with theories of jet noise. The noise intensity
was assumed to behave as follows: '
m n T P

I x ( Vjet ) ( Vjet - Vambiem ) ( jet )

Therefore
EPNL = 10 [m log (Vjer) + n log (Vjet — Vambient) + P log (T je[)] + constant
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and the EPNL adjustment can be derived to behave as follows:

A EPNL = _OFEFNL Mlog(v,) 4+ —2ET | Alg(v))
g log( Vjet) g log (Vrel)
const V., Tjﬂ const V jet ,T et
EPNL
22 A og(r )
g log( T)) Jet
jet

constvV,_ ,V
jet rel

where the partial derivatives are the 10 m, 10 n, and 10 p terms, respectively.

Since the target throttle line was achieved, i.e., the temperatures and primary jet velocities
were correctly duplicated, only the relative velocity terms are needed to adjust the data. A
least squares routine was used with RC nozzle data and with data from selected ACE nozzle
configurations to solve for this partial derivatives. The resulting values were:

nozzle Vel term
RC 59
ACE 56

This indicates that although the relative velocity effects will change the absolute EPNLs for
the two nozzles the suppression levels for the ACE nozzle relative to the RC nozzle will not
be significantly affected. - 7

Additionally, an empirical thrust correction was derived to account for the increased ram
drag that would exist on the ACE nozzle at the higher tunnel Mach number. This correction
was derived by a least squares fit to tunnel-off and tunnel-on data. The correction was
small, amounting to a reduction in thrust of less than 1 percent when adjusting the data from
an ambient velocity of 276 to 450 feet per second.

The results of the relative velocity and ram drag corrections are shown in Figure 20. This
figure shows the corrected and uncorrected thrusts and sideline EPNLs for the RC nozzle and
a selected ACE nozzle configuration.

4.4.

As described in previous sections data were taken both with the wind tunnel not operating
and operating at a tunnel Mach number of 0.245, and data were taken on two different
sidelines. The various data sets for any given nozzle configuration are illustrated in Figure
21, which indicates potential sources of inaccuracies in these data. By projecting data from
different “boxes” in this figure to some common conditions and comparing the results, it is
possible to get an indication of the seriousness of these sources of error. For instance,
Figures 22 and 23 show a comparisons of tunnel—on data from the two different measure-
ment sidelines (1. e., boxes C and D) projected to a full-scale flight condition. Figure 22
shows the directivity pattern for the three noise components for their respective peak
frequencies. The agreement, which reflects the effects of the source locations, near—field
effects, and shear-layer correction, is considered reasonable. Figure 23 shows the in-flow
and out—of-flow data to agree to within less than 1 EPNdB, and generally within a few

Data Accuracy and Selection
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tenths of an EPNdB. Particular effects could be better isolated by comparing data from
different data sets, for example from boxes A and B to examine the source location effects.
These comparisons could be used to adjust the source location distributions until satisfactory
agreement is achieved.

In this report wind tunnel-on, out—-of-flow microphone data are presented. The tunnel-on
data better account for the relative velocity effect, i.e., the empirical relative velocity effects
are smaller. The out—of—flow (20—foot sideline) data are less sensitive to source location
assumptions, are unlikely to have near—field effects, and have a better signal-to—noise ratio.
Based on the present test and previous LSAF tests the Amiet shear layer correction is felt to
be quite accurate.
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5. Daiscussion of Test Results

The following sections discuss the test results. Noise from various sources are discussed,
including: facility noise, screech tones, broadband shock-associated noise, and turbulent
Jet—-mixing noise.

5.1.  Facility Noise

A facility-related tone was present at 630 Hertz (or about 63 Hertz when converted to
full-scale frequencies) in certain cases. The most probably cause of this tone is the burner
unit of the jet simulator. This tone is not included in the noise floor and, although the
capability exists to remove the tone in the data reduction procedure, this was not done. The
tone was never large and had no impact on EPNLs.

5.2.  Screech Tones

The use of delta tabs to eliminate or reduce screech tones associated with supersonic jet
flows has been demonstrated by several researchers (References 2 through 7). The ACE
nozzle, however, did not show screech tones even with the baseline (i.e., no mixing enhanc-
er) configuration. The absence of screech tones may be due the presence of the plug.

5.3. Broadband Shock-associated Noise
5.3.1. Spectral Analysis

A theory of broadband shock-associated noise has been developed by Tam and Tanna
(References 9 through 11). In their model the shock—associated noise is postulated to be
generated by the interaction between the large turbulence structures from the shear—layer
instability and the quasi—periodic shock—cell structures. As described in a previous section,
the component separation procedure produces a shock—-associated noise spectrum. The
broadband shock—associated noise is seen for the ACE nozzle for nozzle pressure ratios of
3.0 and above. Examples of these spectra are shown in Figures 24 through 31. This spectral
shape matches closely that predicted by Tam and Tanna’s theory. The figures show the
characteristic trends of shock—-associated noise: to peak at higher frequencies at higher
angles; to peak at higher frequencies at lower jet velocities; and to be most evident at
forward and mid angles.

Some researchers have reported reductions of broadband shock-associated noise on simple
(i.e., non—ejector) circular nozzles by the use of delta tabs (References 4 and 6). Compari-
sons of Figures 28 and 29 to Figures 30 and 31 show that for the ACE nozzle without ejector
the delta tabs on the primary reduce the shock—associated noise at npr 3.0 and eliminate it at
npr 4.0. Similar comparisons of Figures 24 through 27 show that with the ACE ejector
shroud installed the tabs do not reduce the shock-associated noise. None of the other mixing
enhancer configurations showed any effect on the shock-associated noise.

5.3.2. Effective Perceived Noise Level Impact

The impact of the broadband shock-associated noise on the EPNL can by determined by
using the component separation procedure to eliminate the shock-associated noise before
calculating the EPNL. Figures 32 and 33 show the results of this analysis for several nozzle
configurations. These figures show that, at the most, the shock-associated noise causes
about a half an EPNdB increase. At the power settings of interest for noise certification
regulations there is no impact. These figures also show that the reductions of broadband
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shock-associated noise due to the delta tabs that were noted above in the model-scale spectra
did not have any significant impact on the EPNL.

5.4. Jet-mixing Noise
5.4.1. Spectral Analysis

This report, in an attempt to provide a fairly complete set of data covering the range of ACE
nozzle configurations and conditions tested, presents model—scale spectral results in Figures
34 through 63. Any given figure presents the nozzle configurations from either a row or a
column of the Figure 8 configuration matrix for one throttle condition. For example, Figure
42 shows the effect of the various different primary nozzle configurations with the baseline
ejector shroud installed at an npr 2.5 throttle condition. Three angles are shown — 90, 120,
and 140 degrees — as representative of the different characteristic spectral shapes that were
observed. No forward angles are shown since, in general, the spectra in the forward arc were
similar in shape to the 90° spectra. In addition, some representative directivity plots are
shown in Figures 64 and 65.

Several researchers have reported reductions in the broadband jet mixing noise, particularly
at lower frequencies, due to delta tabs on simple circular nozzles (References 2 through 6).
In some cases an accompanying increase in the higher frequency noise levels was observed
(References 3 and 6). These same trends (with a few exceptions) were seen in the present
study, as typified by Figure 48 and discussed below.

W— id—frequenc ise
The delta tabs on the primary nozzle generally reduce the low- to mid-frequency (about 500
to 10 kHz) jet-mixing noise relative to the other three primary nozzle configurations (i.e.,
baseline nozzle, tone—injection rods, and wheeler ramps), which all give almost identical
results. This reduction is typically 2 to 4 dB, and is seen for all three ejector shroud
configurations (i.e., no ejector, baseline ejector, and ejector with tabs). Figure 48 shows an
example of this trend at the npr of 2.5, a power setting near the sideline certification setting.

An exception to this trend occurs for the configuration of baseline ejector and rods on the
primary at high angles. Although the rods generally do not show any reduction of noise,
they do for these conditions. Figure 42 shows this configuration giving over 5 dB greater
suppression than the more general trend.

Another exception is at an npr of 1.5 where there are not as pronounced differences among
the various nozzle configurations.

High—frequency Noise

The delta tabs on the primary nozzle generally increase the high frequency (over 10 kHz)
jet-mixing noise at low to mid angles and for power settings up to 3.0, relative to the other
three primary nozzle configurations (i.e., baseline nozzle, tone—injection rods, and wheeler
ramps), which all give almost identical results. This increase is typically 5 dB or more, and
is seen for all three ejector shroud configurations (i.e., no ejector, baseline ejector, and
ejector with tabs). This high—frequency noise increase is not seen for the highest power
settings (npr’s 3.5 and 4.0) or the highest angles (e.g., 140°). Figure 48 shows an example
of this trend at the npr of 2.5, a power setting near the sideline certification setting. As this
figure shows, an increase of high—frequency noise does not occur at high angles when an
ejector shroud is installed. For these high angles the primary tabs show noise reduction
across the entire spectrum.
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Exceptions for “No—ejector” Configurations

The ACE nozzle configurations with no ejector shroud (essentially large—plug nozzles)
behave a little differently from the above trends. The noise reduction benefit of the primary
delta tabs is generally not achieved. Figure 60 shows that some mid- and high-frequency
levels are higher when an ejector is not installed. In a few instances at higher powers,
however, the noise levels are lower without the ejector, as shown in Figure 57.

5.4.2. Effective Perceived Noise Levels

Effective Perceived Noise Levels were calculated for the RC nozzle and and the various
ACE nozzle configurations as described in a previous section. These results can be plotted
as functions of npr, of jet velocity, or of thrust, as shown in Figures 66 and 67, for selected
configurations at the sideline and cutback conditions, respectively. Plotting versus thrust
allows for any thrust loss associated with particular configurations to be accounted for.

Figures 66 and 67 show that the EPNLs for the various ACE nozzle configurations are all
fairly close. The primary delta tabs with ejector shroud configurations generally have the
lowest levels, while the baseline primary generally has the highest levels. As noted in the
discussion of spectra, the “large plug” configuration has the lowest levels at the npr 4.0
setting.

5.4.3. Effective Perceived Noise Level Attenuations

The attenuation levels of the various ACE configurations relative to the RC nozzle are shown
in Figures 68 through 81. As in the case of the model-scale spectra plots, a fairly complete
set of data covering the range of ACE nozzle configurations and conditions tested are
presented in this report. Similarly, any given attenuation plot presents the nozzle configura-
tions from either a row or a column of the Figure 8 configuration matrix.

The greatest attenuation levels were achieved for the configuration of delta tabs on the
primary nozzle with an ejector shroud installed — either the baseline or the tabbed ejector.
Figures 70 and 71 show that with the primary tabs there is little difference between the
baseline or the tabbed ejector, except at the highest power setting where a slight advantage is
seen for the tabbed ejector. Without an ejector attenuations were a half to one EPNdB less at
the cutback and sideline nozzle pressure ratios. However, these figures also show that the
lower thrust loss of large plug nozzle relative to an ejector nozzle results in very similar
attenuation levels when these levels are plotted versus thrust.

Figures 78 to 81 show that, with either of the two ejector configurations, there is up to two
EPNdB more attenuation with the primary delta tabs relative to the other three primary
nozzle configurations (i.e., baseline nozzle, tone—injection rods, and wheeler ramps) when
compared on an npr basis. The exact benefit depends on the extrapolation condition and the
power setting. The other three primary configurations give attenuation levels within an
EPNdB of each other. Which of these other primary configurations gives the greatest
attenuation depends on the shroud configuration, the extrapolation condition, and the power
setting.

Figures 82 and 83 summarize the noise reductions achieved by the various ACE nozzle
configurations, relative to the RC nozzle, at the sideline and cutback flight conditions and

power settings. Figure 82 shows that for sideline delta tabs on the primary nozzle, with
either ejector installed, give the greatest attenuation, 5.3 EPNdB when compared on an npr
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basis. Without an ejector the primary tabs gave 4.7 EPNdB attenuation. The various other
configurations (i.e., all those without primary tabs, including the baseline primary nozzle, the
tone-injection rods, and the wheeler ramps performed fairly similarly, achieving between 3.5
and 4.2 EPNdB attenuation. The effect of comparing ACE and RC nozzles on a thrust basis,
i.e., accounting for the reduced thrust of the ACE nozzle relative to the RC at the same gas
conditions, is to reduce the attenuation levels by between 1 and 1 1/, EPNdB. Figure 83
shows that for cutback all the configurations tested performed fairly similarly, giving
between 0.6 and 1.6 EPNdB attenuation. This reflects the fact that at the low power setting
of cutback the ACE nozzle is not very effective. The effect of comparing ACE and RC
nozzles cutback levels on a thrust basis is to reduce the attenuation levels by about half an
EPNdB.
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6. Conclusions

As stated in the Introduction, the main acoustic objectives of this test were to: 1) evaluate the
EPNL attenuation attainable from the ACE nozzle; and 2) evaluate the effectiveness of a
number of different mixing enhancer designs. Each of these objectives is addressed here.

EPNL Attenuation

For sideline flight conditions and power settings delta tabs on the primary nozzle, with either
ejector installed, give the greatest attenuation, 5.3 EPNdB relative to the RC nozzle when
compared on an npr basis (Figure 82). Without an ejector the primary tabs gave 4.7 EPNdB
attenuation. The various other configurations (i.e., all those without primary tabs, including
the baseline primary nozzle, the tone—injection rods, and the wheeler ramps) performed
fairly similarly, achieving between 3.5 and 4.2 EPNdB attenuation. For cutback flight
conditions and power settings all the configurations tested performed fairly similarly, giving
between 0.6 and 1.6 EPNdB attenuation relative to the RC nozzle when compared on an npr
basis (Figure 83).

Mixing Enhancer Effectiveness

Broadband shock-associated noise is seen for the ACE nozzle for nozzle pressure ratios of
3.0 and above. For the ACE nozzle without ejector the delta tabs on the primary reduced
this shock-associated noise at npr 3.0 and eliminated it at npr 4.0 (Figures 28 through 31).
None of the other mixing enhancer configurations, either with or without ejectors, showed
any effect on the shock—-associated noise. However, the contribution of the broadband
shock—associated noise to the EPNL was small, at most half an EPNdB, and the reductions
that were achieved did not have any significant impact on the EPNL.

The effect of the mixing enhancers on jet-mixing noise tend to follow certain characteristic
trends, as shown in Figure 48 and described as follows: The delta tabs on the primary nozzle
generally reduce the low- to mid—frequency (about 500 to 10 kHz model-scale) jet-mixing
noise by 2 to 4 dB, and increase the high frequency (over 10 kHz) jet-mixing noise by 5 dB
or more, relative to the other three primary nozzle configurations (i.e., the baseline nozzle,
the tone—injection rods, and the wheeler ramps), which all give almost identical results. The
high—frequency noise increase is not seen for the highest power settings (npr’s 3.5 and 4.0)
or the highest angles (e.g., 140°). These trends are seen for all three ejector shroud configu-
rations (i.e., no ejector, baseline ejector, and ejector with tabs), although some exceptions
were observed as noted in preceding sections.
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Figure 5. Photograph of the RC Nozzle Installed on the Flow Simulator
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Figure 33.
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