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The alignment of vorticity and scalar gradient with the eigcndirections of the rate of strain tensor is
investigated in turbulent buoyant nonpremixed horizontal and vertical flames. The uniqueness of a
buoyant nonpremixed flame is that it contains regions with distinct alignment characteristics. The
strain-enstrophy angle ^ is used to identify these regions. Examination of the vorticity field and the
vorticity production in these different regions indicates that ^ and consequently the alignment
properties near the flame surface identified by the mixture fraction band F=Fst differ from those in
the fuel region, F>Fst and the oxidirer region, F<FSI. The F=FJ( band shows strain-dominance
resulting in vorticity/or alignment while F>FSI (and F<FSI for the vertical flame) band(s) show(s)
vorticity//? alignment. The implication of this result is that the scalar dissipation, ef, attains its
maximum value always near F**=Fsl. These results are also discussed within the framework of
recent dynamical results [Galanti et al., Nonlinearity 10, 1675 (1997)] suggesting that the
Navier-Stokes equations evolve towards an attracting solution. It is shown that the properties of
such an attracting solution are also consistent with our results of buoyant turbulent nonpremixed
flames. © 1998 American Institute of Physics. [81070-6631(98)01709-7]
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I. INTRODUCTION

More than 40 years ago, Batchelor and Townsend1 sug-
gested that the material lines consisting of fluid particles tend
to align along the direction of the largest principal rate of
strain, denoted by a. They also indicated1 that this alignment
is unlikely to be perfect since the principal axes of strain
rotate relative to the fluid. Indeed, Kerr,2 and Ashurst et a/.,3

observed that in homogeneous isotropic and homogeneous
shear turbulence, the vorticity alignment is not with the larg-
est strain direction but with the intermediate strain, denoted
by ft. Dresselhaus and Tabor4 showed analytically that the
competition between the strain and rotation determines
whether the material (or vorticity) lines will align with a or
(3 direction. Nomura and Elghobashi,5 and Boratav et al.
showed that for the variable density flows of nonpremixed
flames with heat release, the vorticity tends to align along the
a strain direction.

The analyses of Dresselhaus and Tabor4 and Boratav
et al.6 led to a vector equation which can be written for the
most general case as:

a-D

(1)-(ft' + C-ft)xA.

The components of the unit vector A are the direction co-
sines of the unit material or vorticity element with respect to
the strain orthonormal eigendirections ea, e^ and er, where
a, /3, y denote the eigenvalues of the rate of strain tensor
with the conventional ordering, a>/3>y. The direction of
the unit vector A is along the material or vorticity element.

ft' is the rotational velocity vector of the strain basis axes. C
accounts for the coriolis effect of the baroclinic torque. For
incompressible flows, the velocity divergence D, (D = a
+ f) + -y), and the baroclinic term C are zero. For the vortic-
ity element analysis, the cross product flxA is zero.

Dresselhaus and Tabor4 examined the material element
alignment for an incompressible flow and used the notation X
for A. Boratav et al.6 examined the vorticity element align-
ment and used the notation ft for the variable A. £ in Eq. (1)
is a quadratic nonlinear term which contains the eigenvalues
a, ft and 7. In an incompressible flow, t, is defined as £
= £iine = a\* + ft\l+y\l. For the variable density vorticity
alignment, our previous result6 and further analysis show that
£-€vorticity=atii + PQ'l+'YQ'l-D- II can be shown that
D appearing in the £ definition cancels with that in the first
term on the right hand side of Eq. (1). Thus, the divergence
D does not affect A directly, but D affects the alignment
indirectly via its presence in the vorticity equation. In turbu-
lent nonbuoyant flames, the density reduction causes D to be
positive and thus creates a sink of vorticity5'11 in the reaction
zone. Accordingly, a region of weak vorticity and strong
strain is created in the reaction zone of turbulent nonbuoyant
flames.6 The implication of this result in turbulent buoyant
flames will be discussed in Sec. HI.

The present work aims at addressing the following two
points: First, as numerous studies of the vorticity-strain
alignment indicate certain universality, we would like to in-
vestigate whether our results for buoyant flames show the
same trends, and to understand why these universality trends
(or lack of) exist.

Second, we would like to study the alignment of the
scalar gradient vector VF with the strain eigenvectors, and
establish whether this VF alignment is conditional on the
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FIG. 1. Initial configuration. Cross-section of the solution domain, (a) Hori-
zontal flame, (b) Vertical flame. U and W (see the arrows) denote the direc-
tion of the mean flow in x and i directions, respectively.

value of the mixture fraction F. The alignment of VF with
the strain eigendirections has direct relevance to the chemical
reaction process in turbulent nonpremixed flames since it
controls the temporal development of the scalar dissipation
rate and subsequently the progress of the chemical reaction.

The motivation for studying the alignment of strain, vor-
ticity and scalar gradient in a buoyant nonpremixed flame is
the unique feature of this flow of consisting of regions of
quite distinct alignment characteristics as will be discussed
later.

The paper is organized as follows: We present a brief
description of the flow, and the solution method of the gov-
erning equations in Sec. H We discuss the vorticity-strain
alignment characteristics in Sec. in. We introduce a quantity,
^, to measure .the relative magnitude of vorticity with re-
spect to strain in Sec. ID A. We examine the regions in the
flow field having different ty characteristics in Sec. in B. We
examine the vorticity-strain alignment pdfs in these in Sec.
ni C. In Sec. ni D, we study the effects of the vorticity-
strain alignment characteristics on the scalar gradient-strain
alignment by examining the evolution equation of the scalar
gradient vector [Eq. (4)]. We discuss the universality of the
alignment results in Sec. IV.

II. FLOW DESCRIPTION

The two flow configurations (horizontal and vertical
flames) chosen for the study are shown in Fig. 1. This figure
shows a cross-section of the three-dimensional solution do-
main. The first configuration describes a horizontal flame for
which the initial interface between the parallel and uniform
mean-velocity streams of fuel and oxidant is perpendicular to
the gravity vector. The second configuration describes a ver-

tical flame for -which the initial interface between the fuel '
and oxidant streams is parallel to the gravity vector. For both
cases, the gravity vector is in negative z direction.

The flow is subsonic and the domain is unbounded and
thus the thermodynamic pressure is assumed uniform in
space and constant in time. In small Mach number turbulent
flows with density variations arising from chemical energy
release, the kinetic energy is small in comparison to the ther-
mal energy. In order to compute such a flow, the full set of
compressible equations may be employed. However, this has
the computational disadvantage of a rather severe time step
limitation in order to resolve the high frequency acoustic
waves. In subsonic (small Mach number) flows, the time
scale of the acoustic waves is much smaller than those asso-
ciated with the convection processes. Since the acoustic fluc-
tuations do not interact effectively with the fluid dynamics,
they can be neglected. Simplifications to the fully compress-
ible equations can therefore be made based on the small
Mach number conditions. The resulting governing equations
are similar to those of McMurtry et a/.,7 except that the
buoyancy forces are included in our equations. The three-
dimensional, time dependent, variable density continuity,
Navier-Stokes and energy equations are solved together with
the conservation equations of the mass fractions of the fuel
and oxidizer. The chemical reaction between the fuel and
oxidizer follows a single-step, irreversible, binary reaction
with Arrhenius kinetics. The molecular viscosity, mass dif-
fusion coefficient, thermal conductivity, and the constant-
pressure specific heat are assumed to be invariant in time and
space. The boundary conditions are periodic for the xz and
yz plane boundaries, while a convective outflow boundary
condition is imposed along the xy plane boundaries. The
flow field is initialized with a prescribed energy spectrum
which is proportional to ke~ k where k is the magnitude of
the wave number vector.

The governing equations are discretized using a stag-
gered grid and a semi-implicit second-order finite differenc-
ing scheme. The source terms in the energy and species
equations are discretized using the Crank-Nicolson implicit
method. The Poisson equation for the pressure is solved us-
ing a FFT combined with a tri-diagonal matrix solver follow-
ing the algorithm by Schmidt et a/.8

Three different grids with 963, 1283 and 192X96X96
points were used for the simulations with an initial Reynolds
number based on Taylor microscale, /?x = 25. Two grids with
1283 and 192X96X96 points were used with an initial Kx

= 35. In all the simulations, the resolution criteria r)kmaji

>1.8 is satisfied, where rj is the Kolmogorov length scale
and kmax is the maximum resolved wave number in the field.

The value of R\, and the number of grid points were
prescribed such that the motion at the smallest scales are well
resolved. This insures that the velocity and scalar gradients
(including pressure gradients) are well resolved. The resolu-
tion accuracy is evaluated by comparing the results. of the
simulations using grids with successive refinement. For the
nonbuoyant flame, the difference between the values of the
pressure Hessian [Eq. (8)] obtained from the simulations
with the two grids: 963 and 1283, i.e., increasing the resolu-
tion by a factor of 2.37, resulted in less than 2% change in
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the values of the pressure Hessian. For the buoyant flame,
the gradients arc steeper than those in the nonhuoyant flame.
In order to resolve these gradients, we placed more points in
the direction which has the steepest gradients, namely, the
gravity direction. Here again, the values of the pressure Hes-
sian from simulations with the two grids: 963 and 192
X962 differed by less than 5% near the Fs, surface.

The turbulence is allowed to develop without chemical
reaction until the velocity derivative skcwness reaches a
value of approximately equal to 0.5. At that time, the chemi-
cal reaction is allowed to take place between the two non-
premixed streams of fuel and oxidizcr.

The ranges of dimensionlcss numbers tested are:
Damkohkr number=1000, 5000, °c; Froude numbcr=7, 10,
18 and x; and R^ = 25 and 35. This paper will present results
of only two buoyant flames, one horizontal and the other
vertical with Damkohler number=5000, and Froude number
= 10. The initial /?x of the horizontal and vertical flames
equals 25 and 35, respectively. We will refei also to the
corresponding nonbuoyant flows of the two cases whenever
necessary.

All the simulations continued until a non-dimensional
time / = 6, which equals about three eddy turnover times. The
simulations are terminated before the expanding flow ap-
proaches the boundaries and starts to invalidate the imposed
boundary conditions.

All the presented results are obtained at t = 5 to insure
that the maximum values of scalar dissipation, reaction rate,
and temperature are already attained.

III. RESULTS

A. Strain-enstrophy state

The studies of Batchelor and Townsend,1 Dresselhaus
and Tabor,4 and Boratav et al.6 show that the relative mag-
nitudes of the strain and rotation terms determine the
vorticity/strain alignment characteristics. The rotation terms
[see Eq. (5.4) of Batchelor and Townsend,1 Eqs. (12) and
(19) of Dresselhaus and Tabor,4 Eq. (2) of Boratav et al.6 or
Eq. (1) in the present paper] consist of the vorticity, the
rotation of the strain axes, and for the variable density case,
the baroclinic vorticity production. For both incompressible4

and compressible6 flows, when the strain is dominant over
the rotation, the material lines and the vorticity lines align
along the direction of the maximum strain a. In this section,
we focus on the relative magnitudes of the strain and vortic-
ity. The effects of the rotation of the strain coordinates on the
alignment will be briefly discussed in Sec. Ill C.

We examine the relative magnitudes of the strain and
vorticity at each mesh point in a zone of containing the flame
surface using a "Strain-Enstrophy State" plane. The ab-
scissa and ordinate in that plane are the local enstrophy w
•<a/2=RijRjj and the mean square strain rate 5,-;-5,-7-. The
polar coordinates of a given point on that plane are the dis-
tance, A, from that point to the origin and the counterclock-
wise angle, denoted by the Strain-Enstrophy angle, ty, and
measured from the abscissa:9

FIG. 2. Contours of oul-of-plane vorticity on a xz. plane at the mid-y loca-
tion, for the horizontal flame, 1 = 5, Fr= 10, Da = 5000. Only part of the
solution plane is shown in the z (vertical) direction. Black and while corre-
spond to negative and positive vorticity. The thick black curves correspond
to a superposition of surfaces where F^F,, •

(3)

The definition of ^ in (3) indicates thai large values of ^
(^>45°) are associated with strain-dominaled regions, and
smaller values of ty (<S45°) denote enstrophy-dominated re-
gions. Since we are interested in the effects of chemical re-
action (density variation) on the turbulence structure, we will
focus our attention on a mixture fraction zone (0.15«F
«0.85) surrounding the stoichiometric reaction surface (F
= 0.5).

In order to identify regions with different ^ characteris-
tics, we first examine the enstrophy characteristics of the
different regions (Sec. Ill B) and then compute the ^ char-
acteristics (Sec. Ill C).

B. characteristics

In order to determine the enstrophy (/?,y/?,y) characteris-
tics of the different regions, we examine the vorticity isosur-
faces, and investigate the importance of different terms in the
enstrophy equation in these regions.

We present in Fig. 2 and Fig. 3 the out-of-plane vorticity
contours for the horizontal and vertical flames, respectively.
Positive and negative signs are marked to show the counter-

'

(2) FIG. 3. Same as the previous figure, vertical flame.



Phys. Fluids, Vol. 10, No. 9, September 1998 Boratav, Elghoba*hi, .and Zhong -2263

1/2<co2>

30

20

10

Da=5000, Fr-10
(vertical)

- ;Da=5000,Fr=10 -
, (horizontal)

. Da=1000, Fr=10
(vertical) \

0.0 0.2 0.4 p 0.6 0.8 1.0

FIG. 4. F-band-averaged enstrophy o>-o>/2. Curves correspond to: (a),(b)
Da = 5000, Fr = 10 vertical (dashed) and horizontal (solid) flames, (c) Da
= 1000. Fr= 10 vertical (dashed-dotted).

rotating vortices. The solid lines are the F-isosurfaces sur-
rounding the Fst surface. It is seen from the figures that the
horizontal flame Fs, surface is saddled by quadruples
whereas the vertical by dipoles. For the horizontal flame, the
vorticity above the Fsl surface is stronger than that below.
For the vertical flame, the magnitudes of vorticity on both
sides of the Fsl surface are nearly the same.

Boratav et al.6 show that the baroclinic torque is the
main source of vorticity production in buoyant nonpremixed
flames. This term changes sign across the Fsl surface and
vanishes at that surface because the density gradient changes
signs across the reaction zone. They6 also show that the larg-
est magnitude of fluid velocity is along the gravity direction
(w, the ^-component of the velocity) and occurs at the Fsl

surface (i.e., at the location of minimum density). Away
from the Fsl surface, the fluid density increases, resulting in
smaller w. Thus, dwldz, which is the major contributor to
V-u changes sign across the Fsl surface. For regions of F
<FSI, it is positive, and for F>FSI, it is negative, thus
resulting in stronger vorticity in the former than in the latter,
in the horizontal buoyant flame.

Similar arguments can be made about the vortex stretch-
ing term, namely, the dominant contributor to the stretching
term is dwldz, which changes sign across FIt. Thus the
vorticity production due to the stretching is mainly in the
regions of F>FSI, resulting in stronger vorticity there.

In summary, the strong baroclinic torque creates vortic-
ity in both regions of F>FS, and F<FSI. The velocity di-
vergence and the vortex stretching terms produce stronger
vorticity in regions of F>FSI compared to that in F<Fsl in
the horizontal flame. There is no such distinction between
these regions in the vertical flame. The vorticity attains its
minimum value at the Fsl surface, as presented in Fig. 4,
which shows the F-averaged enstrophy for different values
of Froude and Damkohler numbers.

C. W and alignment

Based on our analysis in the previous section, we clas-
sify the flow field into three distinct regions corresponding to
the following mixture fraction values: (i) F — FSI; (ii) F

> (iii) F<FSJ. In order to have sufficiently large
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FIG. 5. Horizontal flame, 1 = 5, fr= 10, Da = 5000. Top: (a) pdfs of the
strain-enstrophy angle 9 for three F-bands: Solid: F~, dashed: F~ and
dashed-doned: F°. Bottom: (b) pdfs of the angle between vorticity and the
eigenvector corresponding to the largest strain a of the rate of strain tensor.
Same F-bands as above.

sample size for the statistics, we choose the following three
F bands to compute the pdf of ¥: (i) 0.45=sF=s0.55, denoted
as the F° band; (ii) 0.50<F«0.85, denoted as the F"1" band;
and (iii) 0.15=£F<0.50, denoted as the F~ band.

As discussed earlier, in the horizontal buoyant flame, the
vorticity is small in F°, and large in F+. Also, the vorticity
in F+ is larger than that in F". Figure 5(a) shows that the
flow is strain-dominated not only in F°, which is expected,
but also in F~~ which is a manifestation of the fact that vor-
ticity is small relative to the strain in these regions. On the
other hand, as seen from Fig. 5(a), for F+, the vorticity
strength relative to strain increases.

Figure 5(b) presents the alignment characteristics for the
same flow of Fig. 5(a). In this figure, the x axis is the cosine
of the angle between the vorticity and the largest strain di-
rection, denoted by cos 6a. The two strain-dominated bands,
F° and F~ show a alignment trends, the former being stron-
ger (i.e., larger probability values). On the other hand, the
F+ band in which the vorticity is more dominant than the
strain, does not show a alignment trends but ft (this is not
shown here due to space limitation).

Figure 6(a) and (b) shows the results for the vertical
flame, which are very similar to those for the horizontal
flame, except that the statistics for F~ and F+ are nearly
identical, and thus only F"1" results are shown.
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FIG. 6. Vertical flame, t = 5, Fr=\0, £>a=5000. Top: (a) pdfs of the
strain-enstrophy angle ^ for two /'"-bands: Dashed: F". dashed-dotted: F°.
The other band F~ statistics are very close lo ihose of F" and therefore arc
not plotted. Bottom: (b) pdfs of the angle between vorticity and the eigen-
vector corresponding to the largest strain a of the rate of strain tensor. Same
F-bands as above.

It should be mentioned that the strain rotation term ft' is
not included as part of the rotation terms in the definition of
^. Our computations show that this term is small compared
to the other rotation terms (i.e., vorticity and baroclinic
term), and thus it is not included in the ty definition.

D. Scalar gradient alignment

Now we discuss how the vorticity alignment influences
the scalar gradient alignment with the strain eigenvectors.
We consider the evolution equation for the scalar gradient:.10

z?
D?

(4)

where ^y denotes the viscous term. The contribution of the
second term on the right hand side ofEq. (4) is to move VF
toward a direction perpendicular to the vorticity vector. And
as discussed in the previous section, the flow in the F° band
is strain-dominated and the vorticity aligns with the a eigen-
vector. Thus, for the F° band, VF will move toward a plane
containing e^ and ey. In other words, VF will be strained
only by ft and y strains. Since |y|>|/3|, the deformation of
VF will be mostly along the y direction. In incompressible
turbulence, simulations by Kerr2 and Ashurst et al.3 show
that the \y\l\P\ ratio is about 4. Our simulations show that the

Pr<
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FIG. 1. Vertical flame, / = 5, F>= 10, Da = 5000. The pdf of the angle 6a.y

(see the text far definition). Norn that the most likely value is approximately
equal to W.

average of this ratio in the F° band is much larger than 4.
Thus, VF is expected to align strongly along er in the F°
band.

On the other hand, for the F+ (and F~ for the vertical
flame) band(s), the vorticity aligns along the ft eigenvector.
Thus, VF will be on a plane strained only by a and y strains.
The dominant direction of deformation will depend on the
relative magnitudes of a and y. We quantify this relative
magnitude by computing the a-y angle O a_y defined as:

j. Figure 1 displays the pdf of this angle for
the vertical flame. The pdf shows that the most likely angle
value is around 40°. This is equivalent to a ratio of |y|/la|
= 1.19.

The pdf of the cosine of the angle between VF and ey

for the vertical buoyant flame is shown in Fig. 8. As dis-
cussed above, in the F° band, the \y\l\P\ ratio is large, result-
ing in good alignment between VF and e? as seen in Fig. 8.
On the other hand, in F+ (and F~ for the vertical flame)
band(s), as seen in Fig. 1, the pdf of the a-y angle has its
most likely value at an angle of 40° (note that cos 40° =0.77)
which 1S Consistent with the oosinp of die angle between Vf~
and y eigendirection given in Fig. 8 in the F"1" band.

Probability
(vertical)
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FIG. 8. Vertical flame, / = 5, Fr= 10, Da = 5000. pdf s of the angle between
VF and the eigenvector corresponding lo the largest compressive (negative)
strain y of the rate of strain tensor. F-bands are: Solid: F°. Dashed: F+.
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FIG. 9. F-band-averaged scalar dissipation eF for four different runs with
Da = 1000 and 5000, and Fr = °° and 10.

In summary, our results show that both in the absence
and presence, of buoyancy, the- F° band in nonpremixed
flames is strain-dominated, mainly due to the small vorticity
and large strain in this region. Accordingly, the vorticity (al-
beit small) aligns along the a direction in F°. Consequently,
the scalar gradient VF aligns along y in F°. Figure 9 shows
that for a wide range of simulation parameters (not all are
shown here), the peak scalar dissipation e F =VF-VF always
occurs within F°.

IV. UNIVERSALITY OF ALIGNMENT

We have discussed in the previous sections that if the
relative magnitudes of strain and vorticity are known, the
preferential alignment directions of the vorticity and the sca-
lar gradient vectors can be predicted. However, we did not
explain why the dynamics moves toward such a state.

Recently, Gibbon and Heritage12 and Galanti era/.13

suggested that the alignment trends similar to those obtained
here and in literature l3 can be a manifestation of an attract-
ing fixed point of the Navier-Stokes equations and in this

_sense._the.aliEnmentjs universal. In this section, we compuie
certain quantities which appear in their12'13 analysis and
check whether our results are consistent with the existence of
such an attracting solution.

Gibbon and Heritage12 and Galanti et a/.13 indicated that
the fixed point in the Navier-Stokes equations is associated
with the angle 6 between the vorticity and vorticity-
stretching vector. This angle is given by:12'13

0=tan
_ j |ft)XS-cu|

a)-S- (a (5)

When 0=0, the vorticity and stretching vectors are parallel
and the vorticity is stretched. Also, when the vorticity aligns
with an eigenvector of the rate of strain tensor, then the
vortex stretching vector S-o> will also align with the vortic-
ity, resulting in 0=0 or 0=ir. For Burgers vortex, 9 value is
strictly equal to zero. It is shown12'13 that cos 6 approaches
unity as the solutions move to the attracting fixed point.

The above analysis can be extended to the variable den-
sity case12 if f=o>/p is used instead of the vorticity at, and
the variable density stretching, ap=(at/p)-V\i is used in-
stead of S-&>. Figure 10 shows the pdf of the angle between
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FIG. 10. The angle between the variable-density vortex stretching af

sfcj/p-Vu and vorticity £=tafp. Only the vertical flame results are shown
for two different F-bands for brevity.

ap and £ in the vertical flame for the F° and F+ bands; the
horizontal flame results in these bands are similar. As ex-
pected, since the vorticity aligns with a in F° and with y8 in
F + , the cos 6 pdfs have their most-likely values close to
unity.

A quantity whose evolution has been examined in
detail12'13 is the scalar A.s (in Ref. 13, a) defined as:

(6)
fa-to

for incompressible flows. For the Burgers vortex, AS is equal
to the applied external strain which is positive. For the at-
tracting solution given in Refs. 12 and 13, the solution has a
stable fixed point for A^>0. For the variable density flows,
this quantity is defined as:

A, (7)

The F-averaged A5 distributions for the horizontal and
vertical flames are shown in Fig. 11. We note that As values
are positive in all F bands. Also, the largest As values on the
average are in the F° band for both the vertical and horizon-
tal flames, due to the fact that the denominator, (ca/p) • (<w/p)
in (7) is small compared to the numerator, in that band.

AS = KGJ/P) . S . ((o/p)] / [ (oVp). (oVp)]
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FIG. 11. F-averaged A; values for the horizontal and vertical flames.
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Another scalar quantity of interest12'1 is AP, which is
related to the pressure Hessian P. For the variable density
flows, the pressure Hessian P and A/> arc given by:12'13

(8)

(9)
(eo/p)-(to/p)

For Burgers vortex, the quantity A/> is strictly negative. For
the attracting solution given by Refs. 12 and 13, as the solu-
tion moves towards the fixed point, A/> becomes negative.

Our simulations show that A/> is negative for all F bands
for both the vertical and horizontal flames. A/> attains its
peak negative (minimum) value in the F° band for both
flames.

Finally, we examine how buoyancy changes the charac-
ter of the pressure Hessian tensor P: Eq. (8) shows that for
constant density, the pressure Hessian tensor Pp ,-;, is a sym-
metric tensor and its eigenvalues are real. This is not the case
for the variable density flow. As an example, we write the
following two elements of Pp,ij '•

d 1 l\ dP 1 d2P

\\ dp i a2p
(10)

and the two elements are not necessarily equal in the pres-
ence of buoyancy. Therefore, buoyancy creates eigenvalues
of Pp,ij which are complex.

To verify this argument, we have computed the eigen-
values of Pp>ij for both horizontal and vertical flames. The
results of the two cases are similar and thus we present only
those of the vertical flame. We use the notation introduced
by-Chong et a/.14 to classify the eigenvalues of Pp<ij. For the
variable density case, the sum of the eigenvalues denoted by
the invariant P is not necessarily zero, and thus the catego-
ries of P>0 and P<0 exist.

We find that, for the vertical flame, 85% of all mesh
points belong to one of the eigencategories with all real ei-
genvalues. Following Chong era/.,14 these categories with
only real eigenvalues are labeled as la (all negative eigen-
values), \b (all positive eigenvalues), 6a (two negative, one
positive eigenvalue) and 6b (two positive and one negative
eigenvalue). They contain, respectively, 6.6%, 7.2%, 35.72%
and 34.9% of all the mesh points. The rest of the points
(15%), are distributed among the categories 9a, 9b, 10a and
\Qb which have one complex conjugate and one real eigen-
value. (See Ref. 14 for details of the classification of eigen-
values.) They contain respectively 4.9%, 2.8%, 3.1% and
4.7% of all the points.

Figure 12 shows the pdfs of the strain-enstrophy angle
^ for each of these eigencategories. In this figure, the lines
for categories with real eigenvalues which contain more
points appear smoother. As was discussed earlier, in the F°
band, the ty values are close to 90°, and we see from Fig. 12
that they belong to either la (i.e., ) or 6a (i.e., H ).
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FJG. 12. Strain-enstrophy angle ¥ pdfs for different types of pressure
Hessian eigenvalues. The labels of each group is taken from Chong el at.
(1990). Top: Groups la, Ib, 6a and 6b with only real eigenvalues. Bottom:
Groups 9a, 9b, lOa and lOb with one conjugate pair complex eigenvalue.
Vertical Hame.

Figure 12 also shows that at the other extreme of the Sf
pdfs (i.e., ^=0°) where vorticity dominates over strain,
most points belong to the category Ib (i.e., + + +). Between
the two extremes of ^ (i.e., ^0° and ^==90°), all the
categories with complex eigenvalues are seen (Fig. 12) in
addition to the group 6b which has all real eigenvalues. Re-
call from Fig. 6(a) that mesh points with ty=40° belong to
the F+ and F~ bands.

We conclude that buoyancy produces complex Ppi,-7- ei-
genvalues in the F+ (and F~ for the vertical flame) band(s).
On the other hand, the F° band (which has *«*90°) has
mostly real Pptij eigenvalues indicating that buoyancy ef-
fects are not considerable at the flame surface.

V. CONCLUDING REMARKS

In turbulent nonpremixed flames, buoyancy effects can
be summarized as follows: Buoyancy generates strong vorti- „
ces on both sides of the flame surface (Fsl), and thus reduces
the strain-dominance in the field. This reduction results in
the vorticity alignment with the ft strain away from the flame
surface.

The strain-enstrophy angle ^, can be used to determine
the regions in which a or ft alignment trends are expected.
The motivation for introducing ty is based on the alignment
equation [Eq. (1)] which we derived for the variable density
case. This equation indicates that in regions where strain
dominates over vorticity (or equivalently the baroclinic
term), a alignment is expected.

The alignment characteristics of the region near F,, (de-
noted by F°) are not affected by buoyancy. This result is of
importance to the scalar field. The peak scalar gradient (dis-
sipation rate CF) occurs in F° regardless of the presence of
the buoyancy.

Our results are consistent with the recent analysis of
Gibbon and Heritage12 and Galanti et a/.13 which suggested
that the Navier-Stokes equations evolve toward an attracting
solution. All the requirements for the solution of the Navier-
Stokes equations to move to an attracting fixed point are met
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in the flows we considered in this paper. One drawback of
the analysis of Rcfs. 12 and 13 is that it docs not distinguish
between the a alignment and the /3 alignment. Also, Ihc
analysis12 '13 ignores the dynamics of regions with large
strain/small vorlicity. In fact, along a vorticily null line A.s

and A P arc undefined.

ACKNOWLEDGMENTS

This work is supported by NASA microgravity Grant
No. NAG3-1601. The computations were performed on Cray
C-90 at NASA Ames and at San Diego Supercomputing
Center. This research was also supported in part by the Uni-
versity of California Irvine, through an allocation of com-
puter resources.

'G. K. Batcheior and A. A. Townsend, "TurbuVeat diffusion," in Surveys
in Mechanics (Cambridge University Press, Cambridge, 1956).

2R. M. Kerr, "Histograms of helicity and strain in numerical turbulence,"
Phys. Rev. Lett. 59, 783 (1987).

3Wm. T. Ashurst, A. R. KerStein, R. M. Kerr, and C. H. Gibson, "Align-
ment of vorticity and scalar gradient with strain rate in simulated Navier-
Stokes turbulence," Phys. Fluids A 30, 2343 (1987).

4 E. Dresselhaus and M. Tabor, "The kinematics of stretching of material
elements in general flow fields," J. Fluid Mech. 236, 415 (1992).

5K. K. Nomura and S. E. Elghobashi, "The structure of inhomogcncous
turbulence in variable density nonpremixcd flames," Theor. Comput.
Fluid Dyn. 5, 153 (1993).

6O. N. Boratav, S. E. Elghobashi, and R. Zhong, "On the alignment of the
a-strain and vorticity in turbulent nonpremixed flames," Phys. Ruids 8, 1
(1996).

7P. A. McMurtry, J. J. Rilcy, and R. W. Metcalfc, "Effects of heat release
on the large-scale structure in turbulent mixing layers," J. Fluid Mech.
199, 297 (1989).

8H. Schmidt, U. Schumann, and H. Volkert, "Three-dimensional, direct
and vectorized eliplic solvers for various boundary conditions," Report
DFVLR-Mitt 84-15 (1984).

9O. N. Boratav and R. B. Pelz, "Structures and structure functions in the
incrtial range of turbulence," Phys. Fluids 9, 1400 (1997).

10K. K. Nomura, "Small-scale structure of turbulence in a nonpremixed
reacting flow with and without energy release," Ph. D. Dissertation, Uni-
versity of California Irvine (1994).

"E. Meiburg, "Lagrangian simulation of diffusion flames," Combust. Sci.
Tcchnol. 71, 1 (1990).

12J. D. Gibbon and M. Heritage, "Angular dependence and growth of vor-
ticity in the three-dimensional Euler equations," Phys. Fluids 9, 901
(1997).

13B. Calami, J. D. Gibbon, and M. Heritage, "Vorticity alignment results
for the 3D Euler and Navier-Stokes equations," Nonlinearity 10, 1675
(1997).

MM. S. Chong, A. E. Perry, and B. J. Cantwell, "A general classification of
three-dimensional flow fields," Phys. Fluids A 2, 765 (1990).




