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Abstract

This study investigates the use of H2, _ -

synthesis, and mixed Hz/_. methods to
construct full order controllers and

optimized controllers of fixed dimensions.

The benchmark problem definition is first

extended to include uncertainty within the
controller bandwidth in the form of

parametric uncertainty representative of

uncertainty in the natural frequencies of the

design model. The sensitivity of H2

design to unmodeled dynamics and

parametric uncertainty is evaluated for

a range of controller levels of authority.

Next, _.-synthesis methods are applied to

design full order compensators that are

robust to both unmodeled dynamics and to

parametric uncertainty. Finally, a set of

mixed HJ_ compensators are designed

which are optimized for a fixed compensator

dimension. These mixed norm designs

recover the H: design performance levels

while providing the same levels of robust

stability as the _ designs. It is shown that

designing with the mixed norm approach

permits higher levels of controller authority

for which the H2 designs are destabilizing.

The benchmark problem is that of an active

tendon system. The controller designs are
all based on the use of acceleration

feedback.

Introduction

Concepts for active and hybrid

active/passive control in building structures

have been explored by a number of authors

(e.g. Ref. 1). More recent attention has been

given to the applicationofrobust control

theory in the context of I-L, design (e.g.

Refs. 2, _ref{Yang}, _ef{Kose}). Robust

control is concerned with maintaining

performance with uncertainty in the

dynamical system. Uncertainties are

basically the discrepancies between the

mathematical model of the plant to be

controlled and the actual plant. It is ot_en

the case that the higher modes &vibration
of a structure are discarded in the model.

Thus one form of uncertainty is due to

neglected dynamics. Another example is the

mass or stiffness of some element of the

dynamical system, which will always differ

to some degree from the model value. This

is called parametric uncertainty. Exogenous

inputs, or disturbances, are also

uncertainties. They affect performance, but

not stability. For an actively controlled

building, seismic activity, wind gusts, and

sensor noise are examples of exogenous

disturbances. Robust control means having

a controller which maintains stability and

performance specifications in the presence

of uncertainty. Performance is measured by

the response of the controlled system to

worst case bounded, disturbances. Specific

definitions of performance will be given

later. Before robust control theory was



developed,multivariablecontrollerdesign

techniques provided only sufficient

conditions for robust performance, which

could be very conservative for poorly

conditioned plants (or for well conditioned

plants with non-round performance

specifications). What distinguishes robust

control theory is that it provides a systematic

approach to evaluating and designing

controllers that attempt to maintain

performance specifications in the presence

of uncertainty in a non- conservative
fashion. Because robust controllers can

tolerate uncertainties, control of a building

structure's seismic response is an ideal

application. The examples of uncertainties

given above are all present. Also,
deformations in the structure will cause

changes in the inherent stiffness and passive

damping. The nonlinearities encountered in

the deformation of the building structure

during a seismic event can also be
considered as uncertainties.

While robust control provides performance

in the presence of uncertainties, the

performance is defined by an I-_ norm

measure, which may not be well suited to

the performance objectives. In cases such as

minimizing control energy, line-of-sight

pointing error, or (as in this paper)

minimizing the root-mean-square (rms)

vibration response of a structure, the H2

norm is a better measure of performance.

However, it is well known that 1-12design at

high control authority levels has very poor

robust stability properties. These issues are

addressed in the mixed H:/I-_ design

method. Mixed H2

/I-L, design seeks to minimize the H2
norm of one transfer function while

satisfying an overbound constraint on the I-Lo

norm of another transfer function. Using

this approach allows one to design for H2

nominal performance while maintaining the

robust stability pcovisions of I-L design.

The problem from a controls point ofview is

the need to develop a controller that can

reliably accommodate the uncertainty in
excitation that is characteristic of

earthquakes, while at the same time handle

the presence of uncertainties caused by

inelastic structural response. The purpose of

this paper is to examine design approaches

which achieve nominal performance only

(H:), robust performance (It -synthesis), and

nominal performance/robust stability (mixed

H2/It), applied to the problem of building

structural control. The challenge is to

achieve the highest attainable level ofrms

performance for a specified bounded set of

uncertainties. This paper provides a brief

description of the H2, It -synthesis, and

mixed H2/it design methods, emphasizing

the role of uncertainty modeling. A

comparison of these controller design

techniques is giverL, using the three-story
tendon controlled structure at the National

Center for Earthquake Engineering
Research.

Modeling for Design and Evaluation

Design of a high performance control

system is inherently dependent on the

availability of an accurate design model and

knowledge of associated uncertainties. For

structural systems such as the building

control benchmark problem, models are

typically of higher order than is desirable,

especially when frequency dependent

weights are included in the control design.

As in the case of this benchmark problem,

the complexity of a control system may have

constraints that require either reducing the

model dimension for control design,

reducing the dimension of the control

system, or designing optimal controllers of

fixed dimension. This paper implements the

latter approach. A reduced order nominal

design model will be obtained fi'om the



evaluationmodelin Ref.h'ef{Speneer}.
Additionally, amodelformulationwill be
presentedwhich accountsfor realparameter
uncertaintiesin thedesignmodel.

A six statenominalperformancedesign
modelwasobtained by balancing and

residualizing the 20 state evaluation model,

retaining the modes at 2.268, 7.332, and

12.240 Hz. Inputs to the generalized plant

for H_ control design consist of the ground

acceleration disturbance, $\ddot{x}._g$,

sensor noise, and the tendon control input, u.

Performance outputs include the weighted

displacement of the three floors relative to

the ground, zp, and the weighted control

force, zu. The measurement output, y, is the
absolute acceleration of each of the three

floors. All units are in volts.

Robust Performance Design Model
The nominal evaluation model for the

benchmark problem may be extended

to include parametric uncertainty within the
control bandwidth in the form of errors in

the modal damping and frequency squared

terms as introduced in Ref. h'ef{Balasl }.

Uncertainty will only be used for the natural

frequency squared terms in this paper, but

for completeness, the formulation for

uncertain modal damping will also be

presented. Although the uncertain natural

frequency square terms are real parameters,

using a complex uncertainty also accounts

for variations in modal damping ifa

hysteretic damping model is assumed.

In modal form, the nominal A matrix for a

second order system is written

\begin {equation)

A_O - _let_[ _begin{array}{c c} 0 & 1 \\ -

\omega^2 & -2kzeta_amega

\end{array} hight] \\

\end{equation}

Introducing multiplicative uncertainty in the

modal frequency square and modal damping
terms results in

\begin {eqnarray}

A & = & klett[ \begin{array} {c c} 0 & 1 \\

-\omega^2(l+_lelta._l) & -

2kzeta_mega(1 +\delta_2)

\end {array} h-ight] _label {eq:uncA} \\

&=&A 0 + kDelta A

\end {eqnarray} \\

where

\begin{eqnarray}

_Delta A & = & kleft[ \begin{array} {c c} 0

& 0\\

-\omegaA2\delta_l &-2kzeta\omega\delta_2

\end {array} hight] \\

& = & \delta_l Ueft[ \begin{array} {c} 0 \\ 1

\end{array} hight]

klett[-\omegaA2 \;\; 0 hight] +

\delta__2 kleft[ \begin{array} {c} 0 \\ 1

\end{array} hight]

kleft[0 k;\; -2kzeta\omegakright]



\end{eqnarray}

For a system with n total modes and m

uncertain modes,

$ A = A_0 + ksum_{i=l }^{mJkDelta A_i$,
and

\begin (equation}

kDelta A i = (e_{2i})\delta_{ li}(-
\omegaS^2)(e_{ 2 i- 1})^T

+ (e_{ 2i})\delta__{2i}(-

2Xzeta_i\omega_i)(e_.{ 2i })^T

\end{equation}

where $(e_.j)$ is the jth standard basis vector

for $kRe^{2n}$.

Defining k to be the set of indices of

uncertain modes allows the plant with

uncertain natural frequency square and

damping terms to be as shown in Fig. 1 with

the following definitions:

\begin {equation}

kDelta A{LW} = kDelta A_(LD} =

E_(2k}, \;\;\;

kDelta A_(RW} = -\Omega^2 EAT_{2k-1 },
\;\;\;

£Delta A_(RD} = -{\cal D } \Omega

EAT_(2k),

\end{equation}

\begin {equation}

{Xcal D } = {L'-m diagI[2_.eta_{k(i)}],

k;k;_;kf'orall i=l,2,kldots,m, _q_;\;

\end{equation}

_begin{equation}

E_(2k} = [e._{2k(1)} k;_;e_{2k(2)Ik;\;

\cdots_;_; e_{2k(m)}]

\end{equation}
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Figure 1. Plant with Uncertain Modal

Damping

and Frequency Square Terms

Fig. 2 illustrates the generalized plant for

robust control design. In addition to the

uncertainty in the modal frequency square

terms, an additive uncertainty is included to

represent model error outside the control

bandwidth. This type uncertainty model

forces the controller to gain stabilize the

high frequency modes that were truncated
from the evaluation model. Additional

inputs for the robust control design

generalized plant include inputs associated

with the additive uncertainty, wa, and the

modal frequency uncertainty, wm.

Additional outputs include those associated

with the additive uncertainty, za, and the

modal frequency uncertainty, zm.

\Omega = {_m diag} _omega_{k(i) }],£;\;\;
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Figure 2. Generalized Plant for Robust

Control Design

t_ontroiler Design Approaehe_

1-12methods are often used when designing

control systems to reduce the vibration

response of a flexible structure. While H2

design gives good nominal performance, the

controllers are highly tuned to the design

model and errors in the design model are not

accounted for, typically inducing instability

at higher levels of control authority. As a

result, the actual performance achievable is

limited with H2 designs. To achieve high

levels of performance in the actual system,
robustness to model errors must be taken

into account in the design process. In this

section, a brief introduction to H2, _ It-

synthesis, and mixed H2/l.t control design is

given. In the following section, these
methods will

be used to design controllers for the
benchmark structural control

problem and to demonstrate the

significance of designing for

nominal performance and robust stability.
For more details on the

theoretical basis of the control design

methods used in this paper, see

Refs. _ref{Sweriduk} and _ref{Calise}.

Design for Nominal Performance

The generalized plant may be written in

state space form as

\begin{eqnarray}

\dot{x} & = & A x + B_I w + B_2 u \\

z& =& C_I x+D_{12} u\\

y & = & C__2 x +D_{21} w +D_{22} U

\end{eqnarray}

where $x kin _q.eOa$ is the state vector, $w

kin LReA{nw}$ is the disturbance vector, Su

kin LReA{nu}$ is the control vector, $z kin

LR_{nz}$ is the performance vector, and $y

kin LKeA{ny}$ is the measurement vector.

The H2 optimization problem is to find a

stabilizing controller that minimizes the H2

norm &the closed loop system from

disturbance inputs $w$ to performance

outputs $z$, denoted ST_{zw}$. The closed

loop system may also be written as the linear

fractional transformation (LFT) shown in

Fig. 3.. Another approach to design for

nominal performance employs the _ norm,

which can be interPreted as the gain of the

system and is the worst-case amplification

over all inputs w(t) of unit energy. From a

frequency domain perspective, the _ norm

is defined as the maximum singular value of

T(s) over all frequencies, i.e.

\begin{equation}

\parallel T_{zw} \parallel_kinfty =

_sup_omega \{\bar, sigma

(T_{zw}(jkomega))\}

\end{equation}

control design theory, based on Refs.

kref{Francis} and _-ef{DGKF}, involves



defining (possibly fi'equeney dependent)

weights on the inputs and outputs such that

the performance objectives are satisfied by

minimizing $\parallel T_{zw}

\parallel_kinfty$. Because the I_ norm is

defined with respect to the peak magnitude

of the transfer matrix frequency response

and the H2 norm is defined by an integral

square quantity (in time or frequency by

Parseval's Theorem), the respective closed

loop systems may have considerably

different characteristics. Depending on the

performance objectives, one design

procedure may be preferable to the other.

With regard to rms performance

specifications, H2 design typically yields

better nominal performance. The significant

benefit of I-L, theory is that robustness to

model errors is explicitly factored into the

design process.
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Figure 3. Linear Fractional Transformation
of Closed

Loop

Design for Robust Stability

In addition to nominal performance, robust

stability is an important

design consideration. Robust stability

requires the closed loop system
to remain stable for bounded model errors.

The uncertainty may be

modeled in many forms such as

multiplicative, inverse multiplicative,

additive, parametric, etc. and may be

located at various points in the

loop. Recall that in an earlier section a

model was presented for the benchmark

problem with parametric and additive

uncertainty modeled. By absorbing all of

the scalings and weights into the plant P, the

robust stability problem may be formulated

as the LFT in Fig. 4 kref{fig:RSLFT}. The
uncertainties are scaled so that

$kDelta ktelta$ is the set of all stable

perturbations such that $kparallel kDelta

\parallel._kirtRy kleq ktelta$. Assuming that

K(s) internally stabilizes the closed loop for

$kDelta = 05, then a sufficient condition for

robust stability for all plants in the set

formed by $kDelta kin kDelta_delta$ is $_m

that'{kref{Maciejowski }, _ref{Morari} }$

\begin{equation}

\parallel T_{zw}(K) \parallel__nfty _leq

kfrac { 1} {\delta}

_label {eq:RS} \end{equation}

Thus like the nominal performance problem,

robust stability is provided by minimizing

the norm of a particular transfer function.
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Figure 4. LFT for Robust Stability Analysis

Design for Robust Performance

It is the ability to formulate the performance

problem as a robust stability problem that

enables robust performance controller

design in the I-I**setting. Consider the

uncertain plant in Fig. 2 with inputs and



outputsdefined for performance and an

uncertainty model. The plant is recast as an

LFT in Fig. 5 where

\begin {equation}

w_l=_left[_begin{array} {c} w_m \\ w...a

\end {array}_ght] _;_;

w_2=_left[_begin{array} {c} {_"m noise} \\

\ddot{x}__g \end{array}kright] _;_;

z_l=_lef't[_begin{array} {c} z_.m \\ z_a

\end{array}_ght] _;_;

z__2=kleft[_begin{array} {c} z._.p \\ z_u

\end{array}_ight] \\

\end{equation}

The conditions for robust performance are:

\begin {enumerate }

_item robust stability (Eq. @ef{eq:RS}), and

_item performance maintained for all SkDelta
_in kDelta \deltas

\end{enumerate}

Closing the loop from $z_25 to $w_25

through a fictitious uncertainty block

$'d)elta_p$

recasts the robust performance

problem as a robust stability problem,

shown in Fig. 5 where the blocks are scaled
to one.

A sufficient condition for robust

performance is that

\begin {equation}

\parallel T(K) kparallel.__nfty < 1

klabel{eq:scRP}

\end{equation}

Define ${_nderlinekDelta}_l$ to be the set

of all stable, bounded, unstructured

perturbations ${\underlinekl)elta}$ such that

$\parallel {\underlinekDelta} _parallel_._nfty

< 15. When ${\underlinekDelta} _in '

{\underline_)elta}_l$, Eq. _'ef{eq:scRP} is

necessary and sufficient to ensure robust

stability. Designing for robust performance

using SkDelta_p$ as in Fig. 5 introduces a

block diagonal structure to

$ {\underlinekDelta}$ which results in F--Zl.

_ref{eq:scRP} being only sufficient and

possibly overly conservative. This

conservatism is relaxed in the I.t -analysis

and ILt-synthesis $h'rn procedures

^{kref{Doyl }, _ref{Doy2}, _'ef{DoyChu} } $

by accounting for the block diagonal

structure in $ {\underlinekDelta} $.
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Figure 5. LFT for Robust Performance

Design

The structured singular value is used to

define the la -measure, which although not a

norm, is denoted

\begin{equation}



\parallelT(j\omega)\parallel__mu=
_sup_{\omega}\{_rnu

(T_{zw)(j\omega))\}

\end{equation}

Hence the sufficient condition for robust

performance in Eq. _ref{eq:scRP} becomes

the necessary and sufficient condition

\begin{equation}

\parallel T0\omega ) \parallel_kmu < 1

_label{eq:ncRP}

\end{equation}

Although the

structured singular value cannot be directly

computed, an upper bound

can be computed as

\begin{equation)

kmu(T)=kinf_{D}\{\barksigma(DTDA{-

_label {eq:mubound}

\end{equ_ion}

where $D = {_rn diag}[d_.jI_.j]$ has the
same structure

as $D$ and $d_j$ are scalar, positive, real

functions offi'equency. An

iterative scheme is used to solve this

optimization problem. In the

first step, an _ controller is designed and

in the second step, the

SD$-scales are optimized for this controller

in accordance with Eq.

kref{eq:mubound}. In the next iteration,
these SD$-scales are

incorporated into the

generalized plant and the control design is

repeated, followed again by

$D$-scaling. This iterative process

continues until the upper bound in Eq.

_ref{eq:mubound} cannot be reduced

significantly.

Design for Robust Stability and Nominal
Performance

Although p. -synthesis provides stability and

performance in the presence of model errors,

the performance is defined by an I-I_-norm

measure which may yield poor H2

performance. The mixed H2/I_ design

procedure has been developed to provide

robust stability and nominal (Ha)

performance by minimizing the Ha norm for

one set inputs/outputs while satisfying an

H_-norm overbound for another set of

inputs/outputs. With reference to Fig. 5, the

objective is to satisfy

\begin {equation}

_-nin_K \parallel T_{z2w2} \parallel_2

\end{equation}

subject to

\begin{equation}

\parallel T_{zlwl } \parallel__nffy <

\gamma

\end{equation}

This problem has been solved for controllers

of fixed $_rm dimension"{_ref{ Sweriduk},

_'ef{Ridgely} }$ with a numerical homotopy
algorithm for the formulation of Ref. 7

given in Ref. 17. The homotopy algorithm

that solves the necessary conditions for a

fixed order mixed H_a_, (or It) controller is

a two parameter iterative scheme which

effectively trades between robust stability

and nominal performance by varying the

overbound on the H,o-norm, $\gamma$,

and the weight on the Ha cost, $_lambda$.



For a given $\gamma, _q_lambda$ is

increased until the _ -norm constraint

becomes an active, equality constraint (at

which point the H2 norm can no longer be

reduced) or until the H2 norm ceases to
decrease. The set of controllers where the

FL. -norm is equal to the overbound are

called the boundary solutions, the set of

which provides an explicit

trade between nominal performance and

robust stability. By

incorporating the D-scales fi'om I.t -

synthesis into the

FL subproblera, the

structure of the uncertainty block may be

accounted for, resulting in a

fixed order mixed Hz/l.t design procedure.

The next section presents a

brief overview of the numerical algorithm
used for fixed order mixed norm

controller synthesis.

Controller Design Results

This section presents a comparison of the

design approaches for nominal

performance (I42

), robust performance (It -synthesis), and
nominal

performance/robust stability (mixed Hz/g)
for the benchmark structural

control problem. For evaluating the

nominal performance of these designs,

performance is defined by the rms response
of the three relative floor

displacements, Vz, and the rms control

effort, Vu.

With reference to Fig. _ref{fig:H2GP} for

the H2

nominal performance

design, the disturbance input and

performance output vectors are

\begin{equation}

w=klett[_begin{array}{c} {_n noise} \\

ktdot{x}_g \end{array}Mght] k;k;

z=_lett[_begin{array} {c} z_p \\ zu
kend{array}Mght] \\

\end{equation}

The design parameters are defined as

follows: the control weight, Wu =

Sksqrt{9}$, the weight on relative

displacement of each floor, Wp = 25, the

sensor noise intensity, Kn = 0.001, and the

intensity of the ground disturbance, Kd

0.0017 (chosen to match the de intensity of

the Kanai-Tajimi (K-T) spectrum). Control

authority was varied in the design process

using the scalar 9.

For the It -synthesis design, Fig. 2

kref{fig:RSGP} is used where the

uncertainty model included 5\% uncertainty

for the natural frequency square error (Wm

= $\sqrt{0.005}$) and the additive

uncertainty weighting function is given by

'.,begin{equation}

W_{additive} = 6.4

kfi'ac{(s+5_3 } {(s+200)_3 } klabel{eq:wadd}

\end {equation }

In order to balance the plant for improved

numerical results, the additive uncertainty

model is realized as the frequency dependent

term, Wadd, and the constant gain term,

Kadd, as indicated in Fig. 2 h'ef{fig:RSGP}.

The uncertainty block has the structure

kbegin{equation}



_Delta= _lefi[_begin{array} {c c e e c}

\delta 1 & & & & \\

& \delta 2 & & 0 & \\

& & _lelta 3 & & \\

& 0 & & _)elta 4 & \\

& & & & _Delta...p

\end{array}_ght]

\end{equation}

with $K)elta 4 _in C^{3xl } _; {_rn and}
K)elta__p _in C^{4x4}$.

For the IX-synthesis design, the

corresponding disturbance and

performance vectors are

\begin{equation}

w=_lefi[_begin{array} {c} w_m \\ w._a \\

{_a-rnnoise} \\ _ddot{x}_g \end{array}_right]
\,\;

z=_lei_[_begin{array} {c} z_m \\ z_a \\ z_u \\

z_p \end {array}_ight] \\

\end{equation}

A set of IXcontrollers of varying control
authority

was designed by fixing Wp and varying p

to achieve good nominal

performance. In order to make a consistent

comparison of control

approaches from a robustness perspective,
each controller was

designed to achieve a IX

measure of one so that achievable

performance given a fixed level of

robustness could be evaluated. First order

$D$-scales were used for each g controller

design, resulting in t.t controllers with 19

states computed using the MATLAB g -
Analysis and Synthesis Toolbox. n

Finally, a set of mixed H2/IX controllers were

designed with fixed controller dimension of

6th order using the homotopy algorithm of
Ref. 17. In order to trade between nominal

performance and robust stability, the H2

subproblem is defined for nominal

performance as above and the Ix subproblem

accounts for the additive and parametric

uncertainty models. The problems are

defined by the inputs and outputs

\begin{equation}

w_l=klef_[_begin{array} {c} w_m \\ w_a

\end{array}_ght] k;\;

z_l=_lefi[_begin{array} {c} z_m \\ za

\end{array}_ight] _;_;

w_2=_lefi[_begin{array} {c} {h-m noise} \\

\ddot {x}_g \end {array}kright] _;\;

z_2=kleR_begin{array} {c} z_p \\ z__u

\end {array}_right] \\

\end {equation }

and the SD$-scales for the Ix subproblem are
obtained from $D-K$ iterations for

$T_{zIw1 }$.

Fig. 6 presents the rms nominal performance

curves for each control design method. The

robust control designs are for the baseline

uncertainty model (which has 5%

uncertainty in the natural frequency square

parameters and the additive uncertainty).

The costs are computed with the K-T

spectrum input. H2 design costs are



computedfor both the design and evaluation
models to illustrate the limitation on

achievable performance due to model error.

Although the cost curve evaluated with the

design model extends to high control

authority levels, the maximum performance
with

the evaluation model is obtained at p =

15.63. The loop

closed with the 1-12

controllers and the evaluation model are

unstable for smaller values ofp. This cost

comparison also indicates

that for control authority levels lower than

the instability level,

the actual performance is almost identical to

the design model performance.
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Figure 6. RMS Performance Comparisons

Fig. 6 also indicates the loss ofrms

performance that is

incurred in exchange for robust

performance. As a basis for comparison

the set of_t designs is evaluated in terms of

rms performance. A

substantial gap in performance exists
between the 1-12

and g designs

since the _ designs achieve a given level of

output performance at a higher control cost

than the I-I2 designs. However, the mixed

HffI-L, designs effectively recover the rms

performance of the H2 designs while

providing the same level of robust stability

as the p. designs. The mixed H2/p. design

procedure provides performance comparable

to 1-I2design while overcoming the major

shortcoming of H2 design, namely a lack of
stability robustness.

The impact of uncertainty on performan_ in

the mixed norm design setting is evident in

Fig. 7 where a set of mixed norm designs are

evaluated with 10% and 20°,4 parametric

uncertainty in addition to the baseline 5%

parametric uncertainty. As the level of

robustness increases, performance in

sacrificed as indicated by the upward shift in

the performance curve. A cursory

comparison of Figs. 6 and 7 indicates that

the mixed norm controllers designed for

10% and 20% parametric uncertainty yield

comparable performance to the l.t controllers

designed for 5% uncertainty. Hence the

mixed norm designs provide more robust

stability for a given level of performance

than the I_ controllers. Note that these

comparisons are for nominal performance

and may not hold for robust performance.

in these analyses, the additive uncertainty is

held fixed since it is defined with respect to

the model and serves only to force the

controller to roll offand gain stabilize the

high frequency unmodeled dynamics.
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Figure 7 Impact of Uncertainty Level on

RMS Performance

Robust stability of each design is evaluated

using mixed _. analysis

where the parametric uncertainty is
considered real and the additive

uncertainty complex. As a result, the mixed
%mmeasure is a less

conservative measure of robust stability.

Fig. 8

plots the _'n measure for the set oft-I2

controllers for varying

authority levels as a function of parametric

uncertainty level. This

plot should be interpreted as indicating the

magnitude of perturbation

required to destabilize the closed loop.

From Eq. _ref{eq:RS}, a la

measure $< 15 indicates robust stability is

guaranteed for all plants in
the uncertain set. For a controller

associated with a _t measure of

$\beta$, the system will be unstable for

$\parallel kDelta

\parallel..._infty _geq kfi'ae { 1 } {\beta}$.
The H2

designs are robust with respect

to the uncertainty model only for very low

authority controllers.

Fig. 8 illustrates the well known property of
Hz

controllers that as control authority

increases, the sensitivity (in

terms of stability) to model error increases.

This figure also

indicates that the _n measure is relatively
insensitive to different

levels of parametric uncertainty at high
control authority levels which indicates that

the additive uncertainty dominates the

stability analysis. Only at low authority

levels are the H2 designs sensitive to

parametric uncertainty. Since control

bandwidth is proportional to the authority

level for these H: designs, the higher

authority controllers interact with and

destabilize the unmodeled modes.
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Figure 8. Robust Stability Analysis of H2

(top) Controllers and Mixed Norm Designs

Performed for 5% Uncertainty (bottom)
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Figure 9. Robust Stability Analysis of

Mixed Norm Designs Performed for 10%

(top) and 20% Uncertainty (bottom)

Robust stability analyses of the mixed norm

designs for 5%, 10°,4, and 20% parametric

uncertainty are shown in Figs. 8 and 9. For

the $5\%$ uncertainty design, an
overbound of one was achieved.

Although robust stability is not guaranteed

for levels of uncertainty

above $5\%$, the h-n measure for 525\%$

parametric uncertainty is less

than two, which is roughly three times

better than the 1-I2designs. It

is also interesting to note that the
measure for the mixed norm

design is sensitive to differences in

parametric uncertainty and is

relatively insensitive to the control

authority, which is opposite the

characteristic of the H2 designs. As a

matter of fact, the krn measure

decreases slightly

with control authority for the mixed norm

designs. Somewhat
different behavior is observed with the

mixed norm designs for $10\%5

and $20\%5 parametric uncertainty. The

mixed norm design set for 510\%5

parametric uncertainty used an I-L,

overbound of 51.35, so robust

-stability is not fully guaranteed for 510\%5

variations in the uncertain

natural frequency. From Fig. 9,

the peak _'n measure for $10\%$ parameter

uncertainty

is $1.265. Similarly for the mixed norm

design with 520\%$ parametric

uncertainty, an I-L, overbound of $2.15 was

used and the peak h-n

measure is 51.755. These two designs have
a characteristic behavior

more similar to the H2 designs in that the h'n
measure is more

sensitive to control authority than

parametric uncertainty level.

However, the variation with control

authority is significantly less than

the 1-I2designs.

Conclusions

This paper has presented a comparison of

t-I2, _t -synthesis, and mixed H2/p. control

design for a structural benchmark control

problem with an emphasis on the issues of

robust stability and nominal performance. A

particular uncertainty model was employed

which accounted for uncertainty in the

natural frequency of each mode in the
control bandwidth and an additive

uncertainty to provide stability in the

presence of high fi'equeney unmodeled

modes. It has been shown that although H2

design yields good nominal performance,

the designs have poor stability

characteristics with respect to errors in the

design model. I_ -synthesis designs provide

robust stability, but tend to sacrifice

performance for robust stability and result in

controllers with higher control authority

than the H2 designsfor a given level of

performance. A fixed order mixed H2/p.

design approach was introduced which

provides the same robust stability guarantees



asthe _t -synthesis designs while almost

fully recovering the H2 nominal

performance levels. Accounting for the

model errors also permits higher levels of

control authority for which the H2 designs

are destabilizing with the evaluation model.

This mixed norm design approach was
demonstrated to be an effective means for

designing He controllers with robust stability
for the benchmark structural control

problem.
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